

Informations techniques

PVG32

Groupe de distributeurs proportionnels

Historique des révisions

Tableau des révisions

Date	Modification	Rév.		
Mai 2021	Diverses corrections de données apportées dans l'ensemble du document.	1401		
Mai 2020	Mise à jour majeure, progression du numéro de révision pour correspondre au catalogue de documents en ligne.			
	Remplacement du numéro de document « BC00000038 » par « BC152886483664 »	XX		
Septembre 2019	Révisions mineures dans l'ensemble du document	1102		
Décembre 2018	Révision majeure du document.	1101		
Septembre 2018	Rubrique de sécurité, nouveaux tiroirs PVBS ajoutés.	1001		
Juillet 2018	Mise à jour majeure.	0901		
Novembre 2017	Modification de la section concernant les dimensions.	0803		
Août 2017	Ajout d'une note d'information à la section Données techniques.	0802		
Mars 2016	PVB à pression compensée, PVP à centre ouvert ; caractéristiques des tiroirs principaux à position flottante.	0801		
Février 2006 - Mars 2016	Diverses modifications	BA - 0710		
Janvier 2005	Nouvelle édition	AA		

2 | [©] Danfoss | Mai 2021 BC152886483664fr-001401

Informations générales		
momutons generales	Description générale	-
	Caractéristiques du PVG 32	
	Autres caractéristiques techniques	
	Vue de coupe	
	Sécurité des systèmes	
	Données techniques PVG 32	12
	Aperçu des modules PVG 32	13
Modules d'entrée PVP		
Modules a chileer vr	PVP à centre ouvert	14
	PVP à centre ouvert avec PPRV	
	PVP à centre ouvert avec HPCO et PVE PPRV	
	PVP à centre fermé	
	PVP à centre fermé avec PPRV	
	PVPV à centre fermé	
	PVPV à centre fermé avec PPRV	
	PVPVM à centre fermé avec PPRV	
	PVP à centre ouvert/fermé avec PPRV	
	PVPM à centre ouvert/fermé	
A	andré a DVD	
Accessoires du module d'		2(
	Soupape de décharge LS électrique PVPXRéférences pour le PVPX	
	PVPC sans clapet antiretour	
	PVPC avec clapet antiretour	
	FVFC avec clapet altifetour	44
Modules de base des PVB		
	PVB non compensé	
	PVB non compensé avec clapet antiretour à chute de pression	
	PVBZ non compensé avec POC	
	PVB compensé	
	PVB compensé amorti	
	PVB compensé amorti avec LS A/B	
	PVB compensé avec LS A/B	
	PVB compensé haut débit	
	PVB compensé haut débit avec LS A/B	
	PVBZ compensé avec POC	
	PVBZ compensé haut débit avec POC et interface de collecteur	
	PVB à pression constante	78
Accessoires des modules	de base du PVB	
	Vanne antichoc et anticavitation PVLP	8
	Vanne d'aspiration PVLA	8
Madulas da milarité DVCD	- DVCDM	
Modules de priorité PVSP	Aperçu des versions PVSP et PSPVM	Q i
	Vue en coupe des modules de priorité PVSP/PVSPM	
	Tiroir compensateur pour PVSP/PVSPM	
Module de dérivation PVE		
	Principe de dérivation PVBD	
	Aperçu du module de dérivation PVBD	9
Tiroirs principaux PVBS		
	Caractéristiques de débit de fluide PVBS — performances théoriques	94
	Caractéristiques du tiroir de commande de pression - Performances théoriques	
Références des tiroirs prir		<u></u> -
	Tiroirs de commande de débit — Position neutre fermée	
	Tiroirs de commande de débit — Position neutre fermée avec port A flottant	
	Tiroirs de commande de débit — Position neutre fermée avec port B flottant	106106
	THOUS OF COMMANDE OF DECIDE — POSITION DELITE TERMER AVEC DOMES HOUSIN DOME PAWE	1112

	Tiroirs de commande de débit - Position neutre fermée avec port B flottant pour PVMF	108
	Tiroirs de commande de débit — Position neutre fermée pour PVMRPVMR	109
	Tiroirs de commande de débit — Position neutre ouverte/fermée/	109
	Tiroirs de commande de débit — position neutre ouverte étranglée	111
	Tiroirs de commande de débit — position neutre ouverte étranglée pour PVMR	
	Tiroirs de commande de débit — Position neutre étranglée A à T	
	Tiroirs de commande de débit — Position neutre étranglée B à T	
	Tiroirs de commande de débit - Position fermée A et ouverte/fermée B	
	Tiroirs de commande de débit - Position ouverte A et ouverte/fermée B	118
	Tiroirs de commande de débit linéaire — Position neutre fermée	
	Tiroirs de commande de débit linéaire — Position neutre ouverte étranglée	
	Tiroirs de commande de débit linéaire - Position neutre étranglée A à T	
	Tiroirs de commande de débit linéaire - Position neutre étranglée B à T	
	Tiroirs de commande de débit linéaire — Position neutre ouverte/fermée	
	Tiroirs de commande de débit linéaire - Position neutre fermée pour PVMRPVMR	
	Tiroirs de commande de débit linéaire - Position ouverte étranglée pour PVMRPVMR	
	Tiroirs de commande de débit à cylindre à action simple — Position neutre port A	
	Tiroirs de commande de débit à cylindre à action simple - Position neutre port B	
	Tiroirs de commande de débit linéaire à cylindre à action simple - Position neutre fermée port A	
	Tiroirs de commande de débit linéaire à cylindre à action simple — Position neutre port B	
	Tiroirs de commande de débit/pression — Position neutre fermée	
	Tiroirs de commande de débit/pression — Position neutre ouverte étranglée	
	Tiroirs de commande de débit/pression — Position neutre ouverte étranglée B à T	
	Tiroirs de commande de débit/pression — Position neutre ouverte étranglée A à T	
	Tiroirs de commande de débit/pression — Position neutre ouverte étranglée B à T	
	Tiroirs de commande de débit/pression — Ouvert/fermé en position A et fermé en position B	
	Tiroirs de commande de débit/pression — Position fermée A et ouverte/fermée B	
	Tiroirs de commande de pression — Position neutre fermée	132
	Tiroirs de commande de pression - Position neutre ouverte/fermée	
	Tiroirs de commande de pression — Ouvert/fermé en position A et fermé en position neutre B	
	Tiroirs de commande de pression — Position neutre ouverte étranglée	134
	Tiroirs de commande de pression — Position neutre étranglée A à T	135
	Tiroirs de commande de pression - Position neutre étranglée B à T	135
	Tiroirs de commande de pression linéaire - Position neutre fermée	135
	Tiroirs de commande de débit/pression — Position neutre fermée	136
	Tiroirs de commande de pression/débit — Position neutre fermée avec port B flottant	137
	Tiroirs de commande de débit/pression — Position neutre ouverte étranglée	137
	Tiroirs de commande de débit/pression — Position neutre ouverte/fermée	138
	Tiroirs de commande de pression/débit — Ouvert/fermé en position A et fermé en position B	138
Références PVBS pour tiroirs	s principaux PVBZ	
	Tiroirs de commande de débit PVBZ — Position neutre fermée	
	Tiroirs de commande de débit PVBZ — Fermé en position neutre avec port A flottant	
	Tiroirs de commande de débit PVBZ — Fermé en position neutre avec port B flottant	
	Tiroirs de commande de débit linéaire PVBZ — Position neutre fermée	142
	Tiroirs de commande de débit à cylindre à action simple PVBZ — Position neutre fermée port A	142
	Tiroirs de commande de débit à cylindre à action simple PVBZ — Position neutre fermée port B	143
	Tiroirs de commande de débit linéaire à cylindre à action simple PVBZ — Position neutre fermée port B	143
	Tiroirs de commande de débit à cylindre à action simple PVBZ-HS — Position neutre fermée	143
Indicateur directionnel PVD	I .	
Commande PVG 32		
	Commande manuelle PVM	146
	Fonctionnalité de la PVM	149
	Capots PVMD/F/R	150
	Références pour les capots PVMD/F/R	150
	PVML, capot de centrage de ressort	
	Commande hydraulique PVH	
	Commande électrohydraulique PVHC	153


Commande	álectro	hydraulid	PVF all
Communation	e electio	iivurauiiu	uerve

PVE Série 4	157
PVEP	
Caractéristiques techniques des PVEP	
PVE série 5	
PVED-CC série 5	
Aperçu des données de fonctionnement	
Connecteurs	
Coloration LED pour PVED-CC série 5	
Hystérésis et ondulation des PVED-CC	
Tanana da vás stiana das DVED CC	104
Temps de réaction des PVED-CC	
Références PVED-CC	
PVE série 7	
PVEO	
Caractéristiques techniques des PVEO	
Temps de réaction des PVEO	
Références PVEO	
PVEO-HP	
Caractéristiques techniques de la PVEO-HP	
Temps de réponse de la PVEO-HP	
Références PVEO-HP	
PVEM	
Caractéristiques techniques des PVEM	
Temps de réaction des PVEM	178
Hystérésis et ondulation des PVE	178
Références des PVEM	178
PVEA	180
Caractéristiques techniques des PVEA	
Temps de réaction des PVEA	
Hystérésis et ondulation des PVE	182
Références PVEA	
PVEH	
Caractéristiques techniques des PVEH	
Temps de réaction des PVEH	
Hystérésis et ondulation des PVE	
Références PVEH	
PVES	
Caractéristiques techniques des PVES	
Temps de réaction des PVES	
Hystérésis et ondulation des PVE	190
Références PVES	
Aperçu des connecteurs	
Plaques d'extension pour PVE série 7	194
défaillances	
Réaction générique à une défaillance	195
Aperçu des réactions en cas de défaillance	
Caractéristiques de la broche d'erreur	
Régulation de tension PWM	
Position flottante - port A (-FLA)	
Position flottante port B (-FLB)	
Économie d'énergie du PVE	199
Indication de direction (-DI)	200
Broche de position flottante dédiée (UF)	
Position du tiroir (-SP)	
Mise hors tension en position neutre (-NP)	
Mode désactivation	
	207

Fonctions spéciales

Surveillance et réaction aux

Aperçu des fonctionnalités

Plaques d'extrémit	té PVS	
•	PVS/PVSI	208
	PVS/PVSI avec raccord LX	210
	PVSI avec raccords P, T, LX et M	212
	PVST avec raccord T	214
	Plaque de départ PVSI	215
	Plaque d'extrémité PVSD	216
	PVSI avec PVE PPRV	
	PVST avec PPRV PVE et décompression PP	220
Modules d'arrêt ple	ein débit PVSKM	
•	Caractéristiques techniques	223
	Caractéristiques des tiroirs	225
Boulons d'ancrage		
_	Références PVAS	227
	Longueur totale des modules PVG 32	
	Combinaisons PVG 32/16	228
	Combinaisons PVG 256/128/32/16	229
Dimensions combin	naisons bloc de vannes PVG 32	
	Dimensions PVG 32	231
	Dimensions des PVG 32/16	233
	Dimensions PVG 100/32	235
	Dimensions PVG 120/32	
	Dimensions PVG 128/32	239
	Dimensions PVG 256/32	241

Schéma PVG et exemples de spécifications

Description générale

Le PVG est une vanne proportionnelle hydraulique à détection de charge conçue pour des performances de machine optimales et une flexibilité de conception maximale. La conception de la vanne PVG repose sur un concept modulaire permettant aux créateurs de machines de définir une solution de vanne adaptée à des segments de marché multiples pour des applications multiples.

Le PVG 32 appartient à la plateforme produit PVG et constitue une interface avec les autres gammes de valves permettant le contrôle de toutes les fonctions de la machine depuis un seul bloc de vannes.

Le PVG 32 commande un débit de port de travail pouvant atteindre 125 l/min [33 gal US/min] l/min et une pression de port de travail allant jusqu'à 420 bar [6 090 psi] bar.

Le distributeur proportionnel de contrôle de débit indépendant des variations de charge ainsi que les commandes haute technologie associées à de faibles pertes de charge permettent d'améliorer les performances et l'efficacité des machines, en augmentant la productivité et en réduisant la consommation d'énergie.

Caractéristiques du PVG 32

Les caractéristiques et avantages des distributeurs proportionnels PVG à détection de charge sont listés ci-après :

- Contrôle du débit indépendant des variations de charge :
 - Le débit d'huile vers une fonction individuelle est indépendant de la pression de celui-ci
 - Le débit d'huile vers une fonction est indépendant de la pression des autres fonctions
- Combinaison possible avec le reste de la gamme PVG, lorsqu'un module d'interface est utilisé
- Jusqu'à 12 modules de base par groupe de distributeurs PVG 32
- Caractéristiques de régulation fiables sur toute la plage de débit
- Les limiteurs LS pour les ports A et B permettent de réduire la perte d'énergie à la pression cible
- Plusieurs options de raccordements hydrauliques et de brides de fixation
- Conception compacte, installation facile et maintenance aisée
- Économie d'énergie
- Léger

Autres caractéristiques techniques

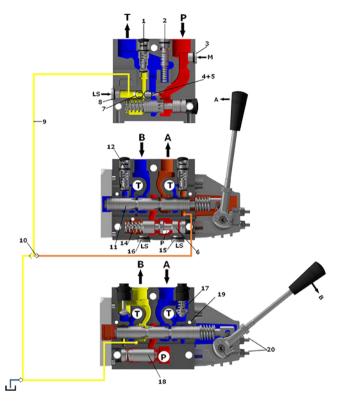
Les caractéristiques des entrées, du logement de la section de travail et des méthodes d'actionnement sont listées ci-après :

Les entrées incluent :

- Vanne de décharge de pression intégrée
- Raccordement manomètre
- Versions pour différents types de pompes
 - Systèmes à centre ouvert avec pompes à cylindrée fixe
 - Systèmes à centre fermé pour pompes à cylindrée variable
- Alimentation d'huile pilote intégrée

Le boîtier de section de travail inclut :

- Tiroirs interchangeables
- · Raccordement manomètre
- Versions pour différents besoins d'application :


- Balance de pression intégrée pour débit indépendant de la charge
- Clapet antiretour à maintien de charge intégré dans le canal P
- Valve antichoc/d'aspiration intégrée
- Vanne de décharge de pression locale intégrée

Les méthodes de commande incluent :

- Commande manuelle
 - avec levier
 - avec maintien par friction
- Commande hydraulique
- Électrohydraulique
 - Commande ON/OFF
 - Commande proportionnelle ratiométrique
 - Commande proportionnelle bus CAN
 - Commande proportionnelle PWM

Vue de coupe

1.	Vanne de décharge de la pression	11.	Tiroir principal
2.	Vanne de réduction de la pression pour l'alimentation en huile pilote	12.	Valve de limitation de la pression LS
3.	Raccordement manomètre	13.	Vanne antichoc et d'aspiration, PVLP
4.	Bouchon, centre ouvert	14.	Compensateur de pression
5.	Orifice, centre fermé	15.	Connexion LS, port A
6.	Tiroir de régulation de pression	16.	Connexion LS, port B
7.	Bouchon, centre fermé	17.	Vanne d'aspiration, PVLA
8.	Connexion LS	18.	Clapet antiretour à chute de pression
9.	Signal LS	19.	Alimentation en huile pilote pour PVE
10.	Clapet navette	20.	Vis d'ajustement du débit d'huile maximum pour les ports A/B

Sécurité des systèmes

Tous les types et marques de vannes de régulation, y compris les distributeurs proportionnels, peuvent présenter des défaillances. Par conséquent, la protection nécessaire contre les conséquences graves d'une défaillance fonctionnelle doit toujours être intégrée au système.

Considérations de sécurité générales

Pour chaque application, il est nécessaire de procéder à une évaluation des conséquences du système en cas de perte de pression ou de mouvements incontrôlés ou bloqués.

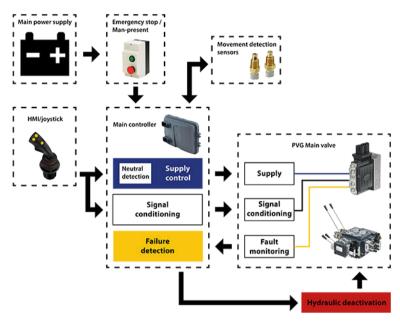
A

Avertissement

Les distributeurs proportionnels étant utilisés dans de nombreuses applications diverses et dans différentes conditions de fonctionnement, il appartient entièrement au fabricant de s'assurer que toutes les exigences de performance, de sécurité et d'avertissement de l'application sont respectées par ses produits et de veiller à la conformité avec les normes génériques et spécifiques aux machines.

Exemple de système de commande

Un exemple de système de commande utilisant une nacelle élévatrice est représenté ci-dessous : Nacelle élévatrice



Cet exemple décompose le système de commande en petits éléments illustrant en détail l'architecture, bien que de nombreux composants Danfoss soient utilisés dans le système de commande PVG.

L'objectif du système de commande est d'utiliser la sortie du PVE avec d'autres capteurs externes pour garantir que les contrôleurs principaux PLUS+1 corrigent le fonctionnement de la nacelle élévatrice.

Diagramme du bloc électrique

Avertissement

Il incombe au fabricant de l'équipement de s'assurer que le système de commande incorporé à la machine est déclaré conforme aux directives machines concernées.

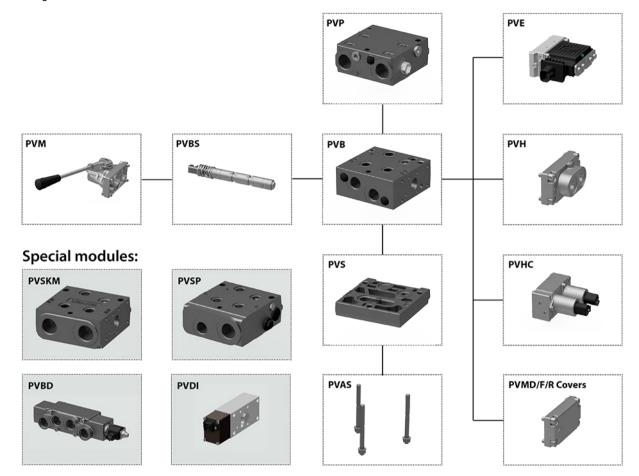
ATTENTION

Il n'est pas sûr de combiner commande électrique et commande hydraulique sur le même bloc de distributeur. Le PVE et le PVH sont conçus pour une pression pilote différente.

Comme indiqué dans les Conditions générales de vente de Danfoss, des réparations gratuites sont uniquement réalisées chez Danfoss ou dans les ateliers agréés par Danfoss.

Données techniques PVG 32

Pression maximale	Port P, A/B continu avec plaque d'extrémité PVS	300 bar	[4 351 psi]
	Port P, A/B continu avec plaque d'extrémité PVSI	350 bar	[5 075 psi]
	Port P intermittent	400 bar	[5 800 psi]
	Port A/B intermittent	420 bar	[6 090 psi]
	Port T, statique/dynamique	25/40 bar	[365/580 psi]
Débit d'huile nominal	Port P avec entrée PVP	140 l/min	[37 gal US/min]
	Port P avec mi-entrée PVPM/ PVPVM	230 l/min	[61 gal US/min]
	Port A/B avec compensateur de pression	100 l/min	[26,4 gal US/min]
	Port A/B sans compensateur de pression	125 l/min	[33 gal US/min]
Déplacement du tiroir, standard	± 7 mm	[± 0,28"]	
Déplacement du tiroir, position	Portée proportionnelle	± 4,8 mm	[± 0,19"]
flottante	Position flottante	± 8 mm	[± 0,32"]
Bande morte, tiroirs de commande de débit	Standard	± 1,5 mm	[± 0,06"]
de depit	Caractéristique linéaire	± 0,8 mm	[± 0,03"]
Fuite interne maximale à 100 bar	A/B → T, PVB sans PVLP	20 cm3/min	[1,85 po3/min]
[1 450 psi] et 21 mm2/s [102 SUS]	A/B → T, PVB avec PVLP	25 cm3/min	[2,15 po3/min]
Fuite interne maximale à 200 bar [2 900 psi] et 21 mm2/s [102 SUS]	$A/B \rightarrow T$, PVBZ avec clapets antiretour PO	1 cm3/min	[0,06 po3/min]
	A/B \rightarrow T, PVBZ avec clapets antiretour PO et PVLP	6 cm3/min	[0,37 po3/min]
Température de l'huile	Température recommandée	30 à 60 ℃	[86 à 140 °F]
(température d'entrée)	Température minimale	-30 °C	[-22 °F]
	Température maximale	90 °C	[194 °F]
Température ambiante		-30 à 60 °C	[-22 à 140 °F]
Viscosité de l'huile	Plage de fonctionnement	12 à 75 mm2/s	[65 à 347 SUS]
	Viscosité minimale	4 mm2/s	[39 SUS]
	Viscosité maximale	460 mm2/s	[2 128 SUS]
Filtration / contamination maximale	selon ISO 4406	23/19/16	•
Consommation d'huile dans le régul pilotage	ateur de pression d'huile de	0,5 l/min	[0,13 gal US/min]


12 | [©] Danfoss | Mai 2021 BC152886483664fr-001401

Aperçu des modules PVG 32

Groupe de distributeurs proportionnels PVG présenté dans l'illustration en vue éclatée pour une navigation rapide entre les modules.

Aperçu des assemblages de modules PVG 32

Navigation entre modules PVG:

Modules d'entrée PVP à la page 14 et Accessoires du module d'entrée PVP à la page 39

Modules de base des PVB à la page 46

Modules de priorité PVSP et PVSPM à la page 84

Module de dérivation PVBD à la page 89

Tiroirs principaux PVBS à la page 93

Commande manuelle PVM à la page 146

Commande électrohydraulique PVE à la page 155

Commande hydraulique PVH à la page 152

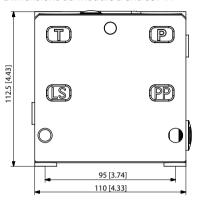
Commande électrohydraulique PVHC à la page 153

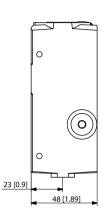
Indicateur directionnel PVDI à la page 144

Modules d'arrêt plein débit PVSKM à la page 222

Plaques d'extrémité PVS à la page 205

Boulons d'ancrage PVAS à la page 227




Les modules d'entrée PVP PVG 32, également appelés « modules côté pompe », constituent une interface entre le groupe de distributeurs proportionnels PVG 32 et la pompe et le réservoir hydrauliques.

Module d'entrée PVP

Dimensions du module d'entrée PVP

Poids: 3,1 kg [6,9 lb]

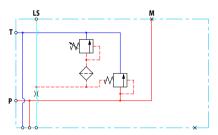
Symbole de la pompe à cylindrée fixe

Symbole de la pompe à cylindrée variable

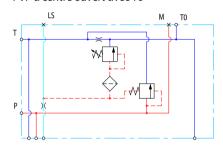
Les variantes de module d'entrée PVP sont basées sur une plateforme générique dotée d'une sélection de fonctions supplémentaires pour vous permettre d'adapter le PVP aux exigences de n'importe quel système hydraulique :

- *PVP à centre ouvert* à la page 15 (pour pompes à cylindrée fixe)
- PVP à centre ouvert avec PPRV à la page 18 (pour pompes à cylindrée fixe)
- PVP à centre ouvert avec HPCO et PVE PPRV à la page 22 (pour pompes à cylindrée fixe)
- *PVP à centre fermé* à la page 25 (pour pompes à cylindrée variable)
- PVP à centre fermé avec PPRV à la page 27 (pour pompes à cylindrée variable)
- PVPV à centre fermé avec PPRV à la page 31 (pour pompes à cylindrée variable)
- PVPVM à centre fermé avec PPRV à la page 33 (pour pompes à cylindrée variable)
- PVP à centre ouvert/fermé avec PPRV à la page 35
- PVPM à centre ouvert/fermé à la page 38

PVP à centre ouvert


Le module d'entrée PVP à centre ouvert de base est destiné à une utilisation avec des pompes à cylindrée fixe dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande mécanique est souhaité, ou lorsque la pression pilote vers le groupe de distributeurs est fournie de l'extérieur.

Le PVP à centre ouvert comprend :


- Limiteur de pression LS intégré
- Ports filetés pour manomètre P/T/LS et M
- Vanne de décharge LS en option, PVPX
- Fonctionnalité T0 et port T0 externe en option
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

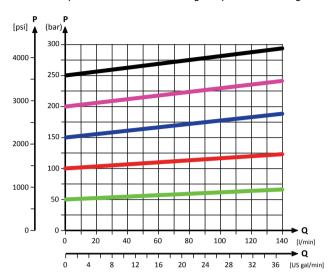
Tous les modules peuvent être activés manuellement sans l'actionnement PVM.

Schéma du PVP à centre ouvert

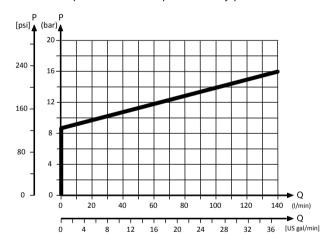
PVP à centre ouvert avec T0

Spécifications techniques pour PVP

Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	140 l/min [37 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum		
Température du fluide	-30 °C [-22 °F] 30 à 60 °C [86 à 140 °F]		90 °C [194 °F]		
Viscosité du fluide	4 mm ² /s [39 SUS] 12 à 75 mm ² /s [65 à 347 SUS] 460 mm ²		460 mm ² /s [2 128 SUS]		
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)				
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)				
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]				



Graphiques de performances théoriques

Caractéristiques de la vanne de décharge de pression LS intégrée

Caractéristiques de chute de la pression de by-pass neutre

Références pour le PVP à centre ouvert

Référence	Port P	Port T	Port LS, M (LS1**)	Port T0	Montage	PVPX*
157B5000	G1/2"			-	M8	-
157B5100	G3/4"	G3/4"	G1/4"	-		-
157B5102	G3/4"			-		Oui
157B5200	7/8-14 UNF	1.1/16.12.1115	1/2-20 UNF	-	5/16-18 UNC	-
157B5300	1-1/16 UN	1 1/16-12 UNF	1/2-20 ONF	-		-
11008852 ¹	G1/2	G3/4	G1/4 (G1/8)	-	M8	-
11030545	G3/4	G3/4	G1/4 (G1/4)	G1/4	M8	-
11053974	G3/4	G3/4	G1/4 (G1/4)	G1/4	M8	-
11151852	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	M8	-
157B5908	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	-	M8	-
157B5921	JIS 1/2	JIS 3/4	JIS 1/4	-	M8	-

Références pour le PVP à centre ouvert (suite)

Référence	Port P	Port T	Port LS, M (LS1**)	Port T0	Montage	PVPX*
157B5925	JIS 3/4	JIS 3/4	JIS 1/4	=	M8	-
157B5945	G1/2	G3/4	G1/4 (G1/8)	-	M8	-
157B5990 ²	1 1/16-12 UNF	1 1/16-12 UNF	-	-	M8	-

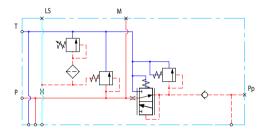
^{**} LS1 est un port LS supplémentaire.

^{*} Pour plus d'informations, voir *Soupape de décharge LS électrique PVPX* à la page 39.

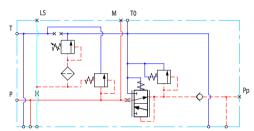
¹ Réponse LS amortie

² Sans vanne de décharge

PVP à centre ouvert avec PPRV


L'entrée PVP à centre ouvert avec régulateur de pression de pilotage (PPRV) intégré est destinée à une utilisation avec des pompes à cylindrée fixe dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande électrohydraulique ou hydraulique est souhaité (PVE ou PVH/PVHC).

Le PVP à centre ouvert avec PPRV comprend :


- Limiteur de pression LS intégré
- Ports filetés pour manomètre P/T/LS et M
- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE ou PVH/PVHC
- Port T0 et port T0 externe en option
- Port de pression de pilotage (Pp) externe en option
- · Vanne de décharge LS en option, PVPX
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

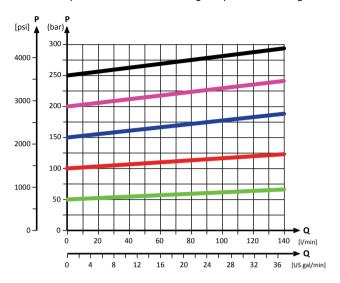
Tous les modules peuvent être activés manuellement sans l'actionnement PVM.

Schéma du PVP à centre ouvert avec PPRV

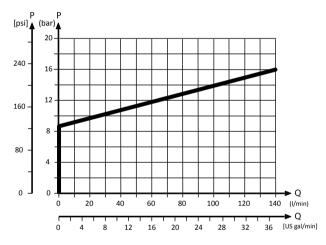
PVP à centre ouvert avec PPRV et T0

Spécifications techniques pour PVP

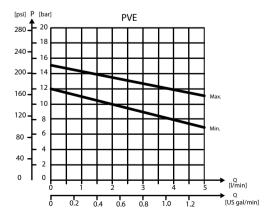
Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	140 l/min [37 gal US/min]

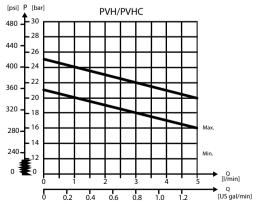

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum			
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]			
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)					
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				



Graphiques de performances théoriques


Caractéristiques de la vanne de décharge de pression LS intégrée



Caractéristiques de chute de la pression de by-pass neutre

Caractéristiques du régulateur de pression de pilotage

Références pour le PVP à centre ouvert avec PPRV

Référence	Command e	Port P	Port T	Port LS	Port M	Port Pp	Port T0	Montage	PVPX*
11008849 ¹	PVE	G3/4"	G3/4"	G1/4"	G1/4"	-	-	M8	-
I 1008851 ¹	PVH/PVHC	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	-	M8	-
11066027	PVH/PVHC	G3/4"	G3/4"	G1/4"	G1/4"	-	-	M8	Oui
11072195	PVE	M27x2	M27x2	M14x1,5	M14x1,5	-	M14x1,5	M8	-
157B5010	PVE	G1/2"	G3/4"	G1/4"	G1/4"	-	-	M8	-
157B5012	PVE	G1/2"	G3/4"	G1/4"	G1/4"	-	-	M8	Oui
157B5110	PVE	G3/4"	G3/4"	G1/4"	G1/4"	-	-	M8	-
157B5112	PVE	G3/4"	G3/4"	G1/4"	G1/4"	-	-	M8	Oui
157B5130	PVE	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	G1/4"	M8	-
157B5132	PVE	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	G1/4"	M8	Oui
157B5180	PVE	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	-	M8	-
157B5190	PVH/PVHC	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	-	M8	-
157B5210	PVE	7/8-14 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	-
157B5212	PVE	7/8-14 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	Oui
157B5310	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	-
157B5312	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	Oui
157B5330	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	-	5/16-18 UNC	-
157B5332	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	Oui
157B5380	PVE	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	-	5/16-18 UNC	-
157B5390	PVH/PVHC	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	-	5/16-18 UNC	-
11101194	PVE	M22x1,5 M16x1,5 (P2)	M22x1,5	M12x1,5	M10x1	-	M16x1,5	M8	-
11008850	PVE	G3/4	G3/4	G1/4	G1/4	-	-	M8	Oui
11013317 ¹	PVE	G3/4	G3/4	G1/4	G1/4	G1/4	G1/4	M8	-
11020964	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	M8	-
11087590 ¹	PVH/PVHC	G3/4	G3/4	G1/4	G1/4	G1/4	-	M8	-
11090453	PVE	JIS 3/4	JIS 3/4	JIS 1/4	JIS 1/4	JIS 1/4	JIS 1/4	M8	-
11119429 ²	PVE	G3/4	G3/4	G1/4	G1/4	G1/4	-	M8	-
11124965	PVH/PVHC	G3/4	G3/4	G1/4	G1/4	G1/4	G1/4	M8	Oui
11124966	PVH/PVHC	G3/4	G3/4	G1/4	G1/4	G1/4	G1/4	M8	-
11130941 ²	PVE	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	-	5/16-18 UNC	-
11167773	PVH/PVHC	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	Oui
11187356 ⁴	PVE	G1/2	G3/4	G1/4	G1/4	-	-	M8	Oui
11190123	PVH/PVHC	G1/2	G3/4	G1/4	G1/4	-	-	M8	Oui
11196947	PVE	G3/4	G3/4	G1/4	G1/4	-	G1/4	M8	-
11225941	PVE	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	5/16-18 UNC	-
157B5135 ³	PVE	G3/4	G3/4	G1/4	G1/4	G1/4	G1/4	M8	-
157B5904 ²	PVE	G3/4	G3/4	G1/4	G1/4	G1/4	-	M8	-

20 | [©] Danfoss | Mai 2021 BC152886483664fr-001401

Références pour le PVP à centre ouvert avec PPRV (suite)

Référence	Command e	Port P	Port T	Port LS	Port M	Port Pp	Port T0	Montage	PVPX*
157B5923	PVE	JIS 1/2	JIS 3/4	JIS 1/4	JIS 1/4	-	-	M8	-
157B5926	PVE	JIS 3/4	JIS 3/4	JIS 1/4	JIS 1/4	-	-	M8	-
157B5934	PVE	G3/4	G3/4	G1/4	G1/4	-	-	M8	-
157B5943 ²	PVH/PVHC	G3/4	G3/4	G1/4	G1/4	G1/4	-	M8	-
157B5953 ²	PVE	G3/4	G3/4	G1/4	G1/4	-	-	M8	Oui
157B5954	PVE	G3/4	G3/4	G1/4	G1/4	G1/4	-	M8	-
157B5960	PVE	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	-	9/16-18 UNF	5/16-18 UNF	-
157B5966 ²	PVE	G3/4	G3/4	G1/4	G1/4	-	-	M8	Oui
157B5976	PVE	G3/4	G3/4	G1/4	G1/4	-	-	M8	Oui
157B5977 ^{1,4}	PVE	G3/4	G3/4	G1/4	G1/4	-	-	M8	-
11101194	PVE	M22 x 1,5	M22 x 1,5	M12 x 1,5	M10 x 1	-	M16 x 1,5	M8	-

^{*} Pour plus d'informations, reportez-vous au sujet Valve de décharge de pression LS électrique PVPX.

¹ Réponse LS amortie

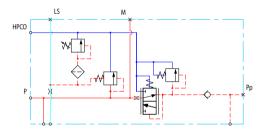
² Tiroir de régulation de pression avec clapet antiretour

³ Connexion T0 interne

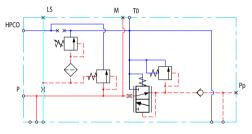
⁴ Tiroir de régulation de pression débit faible

PVP à centre ouvert avec HPCO et PVE PPRV

L'entrée PVP à centre ouvert avec fonctionnalité HPCO (transmission de haute pression) intégrée est destinée à une utilisation avec des pompes à cylindrée fixe dans des applications pour lesquelles une pompe alimentant plusieurs sous-systèmes hydrauliques est souhaitée.


La fonctionnalité HPCO intégrée guide le débit excédentaire du groupe de distributeurs PVG 32 vers le(s) sous-système(s) hydraulique(s) externe(s), donnant la priorité aux fonctions de travail de PVG 32.

Le PVP à centre ouvert avec HPCO et PVE PPRV comprend :


- Limiteur de pression LS intégré
- Ports filetés pour manomètre P/T/LS/HPCO et M
- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE
- Port T0 et port T0 externe en option
- Port de pression de pilotage (Pp) externe en option
- Vanne de décharge LS en option, PVPX
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

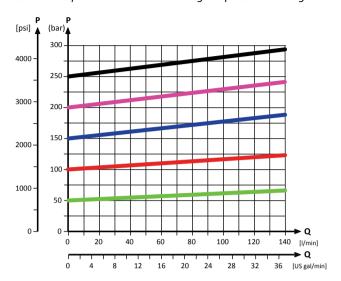
Uniquement applicable avec les plaques d'extrémité PVST avec port T séparé en raison de lignes T bloquées pour la fonctionnalité HPCO.

Schéma du PVP à centre ouvert avec HPCO et PVE PPRV

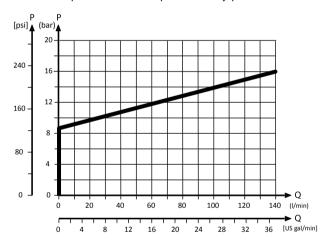
PVP à centre ouvert avec HPCO, PPRV et T0

Spécifications techniques pour PVP

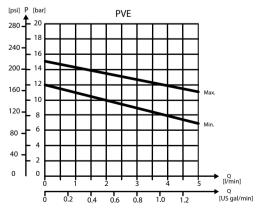
Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	140 l/min [37 gal US/min]

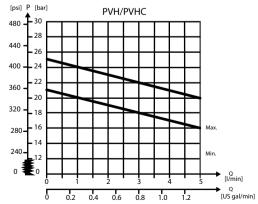

Spécifications techniques

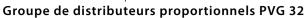
Paramètre	Minimum	Maximum				
Température du fluide	-30 °C [-22 °F] 30 à 60 °C [86 à 140 °F]		90 °C [194 °F]			
Viscosité du fluide	4 mm ² /s [39 SUS] 12 à 75 mm ² /s [65 à 347 SUS]		460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)					
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				



Graphiques de performances théoriques


Caractéristiques de la vanne de décharge de pression LS intégrée



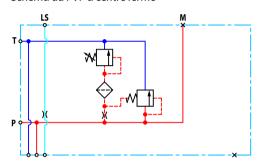

Caractéristiques de chute de la pression de by-pass neutre

Caractéristiques du régulateur de pression de pilotage

Références pour le PVP à centre ouvert (HPCO et PPRV)

Référence	Port P	Port HPCO	Port LS	Port M	Port Pp	Port T0	Montage	PVPX*
157B5140	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	G1/4"	M8	-
157B5142	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	-	M8	Oui
157B5340	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	5/16-18 UNC	-
157B5342	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	-	5/16-18 UNC	Oui
157B5961	M27x2	M27x2	M14x1,5	M14x1,5	-	M14x1,5	M8	-
11101195	M22x1,5 M16x1,5 (P2)	M22x1,5	M12x1,5	M10x1	-	M16x1,5	M8	-

^{*} Pour plus d'informations, reportez-vous au sujet *Valve de décharge de pression LS électrique PVPX*.


PVP à centre fermé

L'entrée PVP à centre fermé de base est destinée à une utilisation avec des pompes à cylindrée variable dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande mécanique est souhaité, ou lorsque la pression pilote vers le groupe de distributeurs est fournie de l'extérieur.

Le PVP à centre fermé comprend :

- Limiteur de pression LS intégré
- Ports filetés pour manomètre P/T/LS et M
- Vanne de décharge LS en option, PVPX
- Fonctionnalité T0 et port T0 externe en option
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

Schéma du PVP à centre fermé

Spécifications techniques pour PVP

Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	140 l/min [37 gal US/min]

Spécifications techniques

Paramètre	Minimum	Maximum				
Température du fluide	-30 °C [-22 °F] 30 à 60 °C [86 à 140 °F]		90 °C [194 °F]			
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)					
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				

Graphiques de performances théoriques

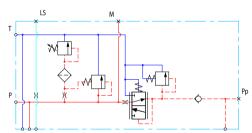
Caractéristiques de la vanne de décharge de pression LS intégrée

Références pour le PVP à centre fermé

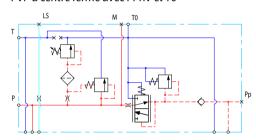
Référence	Port P	Port T	Port LS (LS1**)	Port M	Port T0	Montage	PVPX*
11030683	G3/4	G3/4	G1/4 (G1/4)	G1/4	G1/4	M8	-
157B5001	G1/2	G3/4	G1/4	G1/4	-	M8	-
157B5101	G3/4	G3/4	G1/4	G1/4	-	M8	-
157B5103	G3/4	G3/4	G1/4	G1/4	-	M8	Oui
157B5201	7/8-14 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF		5/16-18 UNC	-
157B5301	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	5/16-18 UNC	-
15B5907	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	M8	-
157B5922	JIS 1/2	JIS 3/4	JIS 1/4	JIS 1/4	-	M8	-
157B5927	JIS 3/4	JIS 3/4	JIS 1/4	JIS 1/4	-	M8	-
157B5946	G1/2	G3/4	G1/4 (G1/8)	G1/4	-	M8	-

^{**} LS1 est un port LS supplémentaire

^{*} Pour plus d'informations, voir *Soupape de décharge LS électrique PVPX* à la page 39


PVP à centre fermé avec PPRV

L'entrée PVP à centre fermé avec régulateur de pression pilote (PPRV) est destinée à une utilisation avec des pompes à cylindrée variable dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande électrohydraulique ou hydraulique est souhaité.


Le PVP à centre fermé avec PPRV comprend :

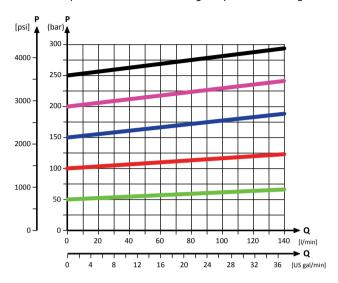
- Limiteur de pression LS intégré
- Ports filetés pour manomètre P/T/LS et M
- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE ou PVH/PVHC
- Port T0 et port T0 externe en option
- Vanne de décharge LS en option, PVPX
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

Schéma du PVP à centre fermé avec PPRV

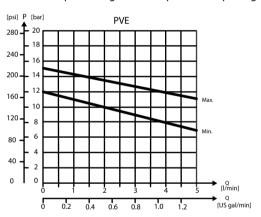
PVP à centre fermé avec PPRV et T0

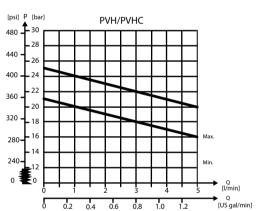
Spécifications techniques pour PVP

Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	140 l/min [37 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum			
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]			
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)					
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				




Graphiques de performances théoriques

Caractéristiques de la vanne de décharge de pression LS intégrée

Caractéristiques du régulateur de pression de pilotage

Références pour le PVP à centre fermé avec PPRV

Référence	Commande	Port P	Port T	Port LS (LS1**)	Port M	Port Pp	Port T0	Montage	PVPX*
11051802	PVH/PVHC	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	5/16-18 UNC	-
157B5011	PVE	G1/2"	G3/4"	G1/4"	G1/4"	-	-	M8	-
157B5013	PVE	G1/2"	G3/4"	G1/4"	G1/4"	-	-	M8	Oui
157B5111	PVE	G3/4"	G3/4"	G1/4"	G1/4"	-	-	M8	-
157B5113	PVE	G3/4"	G3/4"	G1/4"	G1/4"	-	-	M8	Oui
157B5131	PVE	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	G1/4"	M8	-
157B5133	PVE	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	G1/4"	M8	Oui
157B5181	PVE	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	-	M8	-
157B5191	PVH/PVHC	G3/4"	G3/4"	G1/4"	G1/4"	G1/4"	-	M8	-
157B5211	PVE	7/8-14 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	-
157B5213	PVE	7/8-14 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	Oui

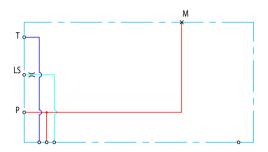
Références pour le PVP à centre fermé avec PPRV (suite)

Référence	Commande	Port P	Port T	Port LS (LS1**)	Port M	Port Pp	Port T0	Montage	PVPX*
157B5311	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	-
157B5313	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	-	5/16-18 UNC	Oui
157B5331	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	5/16-18 UNC	-
157B5333	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	1/2-20 UNF	5/16-18 UNC	Oui
157B5381	PVE	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	-	5/16-18 UNC	-
157B5391	PVH/PVHC	1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	9/16-18 UNF	-	5/16-18 UNC	

^{**} LS1 est un port LS supplémentaire

Tous les modules peuvent être activés manuellement sans l'actionnement PVM.

^{*} Pour plus d'informations, voir *Soupape de décharge LS électrique PVPX* à la page 39


PVPV à centre fermé

L'entrée PVPV à centre fermé est destinée à une utilisation avec des pompes à cylindrée variable dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande mécanique est souhaité.

Le PVPV à centre fermé comprend :

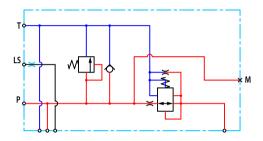
- Port T0 et port T0 externe en option
- Ports filetés pour manomètre P/T/LS et M
- Ports filetés supplémentaires en option pour P2, T2 et T02
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

Schéma du PVPV à centre fermé

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum			
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]			
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)		23/19/16 (selon ISO 4406)				
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				

	Référence	Port P (P2)	Port T (T2)	Port LS	Port M	Port T0 (T02)	Montage
	11055758	M27x2,0 (M27x2,0)	M27x2,0 (M14x1,5)	M14x1,5	M14x1,5	M14x1,5 (M14x1,5)	M8
Ī	11067570	M27x2,0	M33x2,0	M14x1,5	M14x1,5	-	M8


PVPV à centre fermé avec PPRV

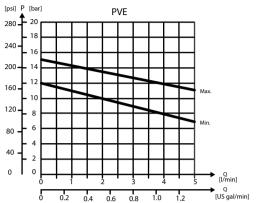
L'entrée PVPV à centre fermé avec régulateur de pression de pilotage (PPRV) est destinée à une utilisation avec des pompes à cylindrée variable dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande électrohydraulique ou hydraulique est souhaité.

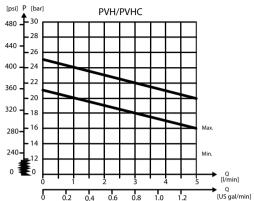
Le PVPV à centre fermé avec PPRV comprend :

- Vannes antichoc/anticavitation (PVLP) en option
- Ports filetés pour manomètre P/T/LS et M
- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE ou PVH/PVHC
- Les modèles avec port T0 ont une connexion T0 interne fermée par défaut.

Schéma hydraulique

Spécifications techniques pour PVP


Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	150 l/min [37 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum			
Température du fluide	-30 °C [-22 °F]	-30 °C [-22 °F] 30 à 60 °C [86 à 140 °F] 90 °C [194 °				
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)					
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				

Caractéristiques du régulateur de pression de pilotage

Références pour le PVPV à centre fermé avec PPRV

Référence	Actionneur	Port P	Port T (T2)	Port LS	Port M	Port Pp	Port T0 (T02)	Montage	PVLP
11012350 ¹		M27x2,0	M33x2,0	M14x1,5	M14x1,5	-	-	M8	-
11003806		M27x2,0	M27x2,0 (M14x1,5)	M14x1,5	M14x1,5	-	M14x1,5 (M14x1,5)	M8	-
11008854 ²		G1	G1	G1/4	G1/4	-	-	M8	Oui
11124107		1 5/16-12	1 1/16-12	9/16-18	9/16-18	-	-	M8	Oui
11196949		G1	G1	-	-	G1/4	-	M8	Oui
157B5911	PVE	1 5/16-12	1 5/16-12	9/16-18	9/16-18	-	-	5/16-18	-
157B5913		1 5/16-12	1 5/16-12	9/16-18	9/16-18	-	-	5/16-18	Oui
157B5938		G1	G1	G1/4	G1/4	-	-	M8	-
157B5941		G1	G1	G1/4	G1/4	-	-	M8	Oui
157B5948 ³		G1	G1	G1/4	G1/4	-	-	M8	Oui
157B5973 ⁴		G1	G1	G1/4	G1/4	-	-	M8	Oui
157B5978		M27x2,0	M33x2,0	M14x1,5	M14x1,5	-	-	M8	-
11008856		G1	G1	G1/4	G1/4	-	-	M8	Oui
11051803	PVH/PVHC	1 5/16-12	1 5/16-12	9/16-18	9/16-18	-	-	5/16-18	Oui
157B5916	- PVII/PVIIC	1 5/16-12	1 5/16-12	9/16-18	9/16-18	-	-	5/16-18	-
157B5963		1 1/16-12	1 1/16-12	7/16-20	-	-	9/16-18	M8	-

¹ Pas d'orifice LS

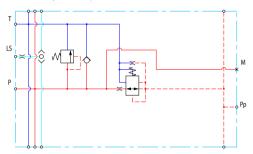
Tous les modules peuvent être activés manuellement sans l'actionnement PVM.

² Connexion T0 interne

³ Trou de 0,4 mm dans le cône de réduction de pilotage (standard 0,8 mm)

⁴ Fonctionnalité HPCO

PVPVM à centre fermé avec PPRV


La mi-entrée PVPVM à centre fermé avec régulateur de pression de pilotage (PPRV) est destinée à une utilisation avec des pompes à cylindrée variable dans des applications pour lesquelles un groupe de distributeurs avec sections de travail à commande électrohydraulique ou hydraulique est souhaité.

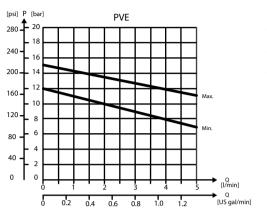
L'utilisation d'un module PVPVM dans un groupe de distributeurs requiert une rotation à 180° des sections de travail PVG d'un côté.

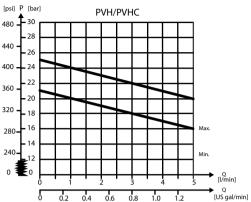
Le PVPVM à centre fermé avec PPRV comprend :

- Vannes antichoc/anticavitation (PVLP) en option
- Ports filetés pour manomètre P/T/LS et M
- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE ou PVH/PVHC

Schéma hydraulique

Spécifications techniques pour PVP


Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	230 l/min [61 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum		
Température du fluide	-30 °C [-22 °F] 30 à 60 °C [86 à 140 °F] 90 °C [19				
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]		
Propreté du fluide (activation mécanique)		23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)				
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]			

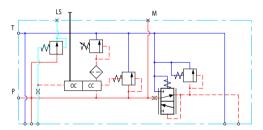
Caractéristiques du régulateur de pression de pilotage

Références pour le PVPVM à centre fermé avec PPRV

Référence	Actionneur	Port P	Port T	Port LS	Port M	Port Pp	Montage	PVLP
157B5914		1 5/16-12 UNF	1 5/16-12 UNF	9/16-18 UNF	9/16-18 UNF	G1/4	5/16-18 UNC	Oui
157B5937	PVE	G1	G1	G1/4	G1/4	G1/4	M8	-
157B5940		G1	G1	G1/4	G1/4	G1/4	M8	Oui
11083156		1 1/16-12 UNF	1 1/16-12 UNF	9/16-18 UNF	9/16-18 UNF	G1/4	5/16-18 UNC	Oui
157B5912	PVH/PVHC	1 5/16-12 UNF	1 5/16-12 UNF	9/16-18 UNF	9/16-18 UNF	G1/4	5/16-18 UNC	-
157B5986		G1	G1	G1/4	G1/4	G1/4	M8	Oui

Tous les modules peuvent être activés manuellement sans l'actionnement PVM.

PVP à centre ouvert/fermé avec PPRV


Le PVP à centre ouvert/centre fermé avec régulateur de pression de pilotage (PPRV) est destiné à une utilisation avec des pompes à cylindrée fixe ou variable dans des applications pour lesquelles le fabricant de l'application ne détermine pas le type de pompe.

Les modules permettent de passer facilement entre les configurations à centre ouvert et à centre fermé grâce à une clé hexagonale externe. Les variantes comprennent également une fonctionnalité de stimulation LS, augmentant la pression LS vers le régulateur de pompe LS avec une pression constante de 6 bar, afin de compenser toute purge ou fuite LS potentielle.

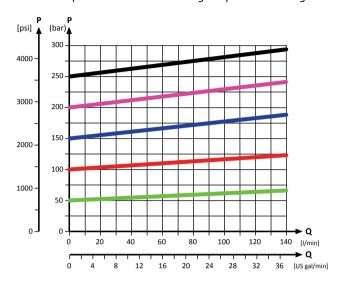
Le PVP à centre ouvert/fermé avec PPRV comprend :

- Sélecteur CO/CF intégré
- Limiteur de pression LS intégré
- Ports filetés pour manomètre P/T/LS et M
- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE ou PVH/PVHC
- Fonctionnalité de stimulation LS en option

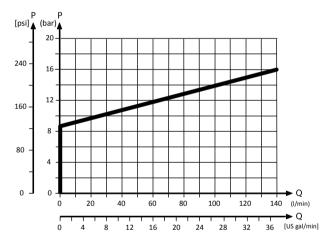
Schéma hydraulique

Spécifications techniques pour PVP

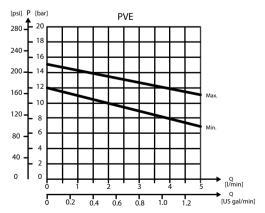
Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	140 l/min [37 gal US/min]

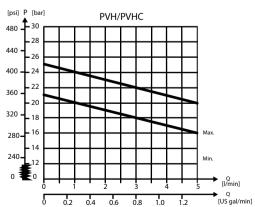

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum			
Température du fluide	-30 °C [-22 °F] 30 à 60 °C [86 à 140 °F] 90 °C [194 °F					
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]			
Propreté du fluide (activation mécanique)		23/19/16 (selon ISO 4406)				
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)					
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]				



Graphiques de performances théoriques


Caractéristiques de la vanne de décharge de pression LS intégrée



Caractéristiques de chute de la pression de by-pass neutre

Caractéristiques du régulateur de pression de pilotage

Modules d'entrée PVP

Références pour le PVP à centre ouvert/fermé avec PPRV

Référence	Commande	Port P	Port T	Port LS (LS1**)	Port M	Port T0	Montage	Compensation LS
11093273	PVE	G3/4	G3/4	-	G1/4	-	M8	Oui
11119094	PVE	G3/4	G3/4	-	G1/4	-	M8	-
11119095	PVE	1 1/16-12 UNF	1 1/16-12 UNF	1/2-20 UNF	1/2-20 UNF	-	M8	-
11131344	PVH/PVHC	G3/4	G3/4	-	G1/4	-	M8	Oui
11168608 ¹	PVE	G3/4	G3/4	-	G1/4	-	M8	Oui

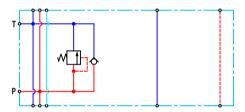
^{**} LS1 est un port LS supplémentaire

Tous les modules peuvent être activés manuellement sans l'actionnement PVM.

¹ Réponse LS amortie

Modules d'entrée PVP

PVPM à centre ouvert/fermé


La mi-entrée PVPM à centre ouvert/centre fermé agit comme un simple collecteur et est destiné à être utilisé avec des pompes à cylindrée fixe ou variable. L'unique logique du PVPM est une vanne antichoc/anticavitation PVLP pour protéger des pics de pression et éviter toute cavitation.

Pour les **pompes à cylindrée fixe**, le module PVPM doit être configuré avec un module PVP à centre ouvert. Pour les **pompes à cylindrée variable**, le module peut être configuré avec une plaque de départ PVSI ou un module PVP/PVPV à centre fermé.

Le PVPM à centre ouvert/centre fermé comprend :

- Vannes antichoc/anticavitation (PVLP) intégrées
- Ports filetés pour P/T
- Pression de pilotage et lignes T0 à travers le module

Schéma hydraulique

Spécifications techniques pour PVP

Port P continu max.	Port P intermittent max.	Port T statique/ dynamique max.	Débit nominal max.
350 [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]	230 l/min [61 gal US/min]

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		

Références pour le PVPM à centre ouvert/centre fermé

Référence	Port P, T	Montage	PVLP
11093682	1 5/16-12 UN	5/16-18 UNC	Oui
11093684	G1"	M8	Oui

La plateforme accessoire du module d'entrée PVP générique inclut une soupape de décharge LS électrique PVPX et des adaptateurs de pression pilote externe PVPC avec ou sans clapet antiretour pour tous les PVP à centre ouvert avec PPRV.

- Soupape de décharge LS électrique PVPX à la page 39
- PVPC sans clapet antiretour à la page 42
- PVPC avec clapet antiretour à la page 44

Soupape de décharge LS électrique PVPX

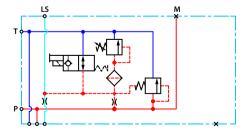
La soupape de décharge LS électrique est un accessoire disponible pour les modules d'entrée PVP avec vanne PVPX. Le PVPX est composé d'une électrovanne et d'une bobine magnétique, permettant à l'opérateur de décharger électriquement la pression LS vers le réservoir.

Les variantes de configuration incluent également une fonctionnalité de contournement manuel pour activer manuellement le PVPX :

- Normalement ouvert (NO),
- Normalement ouvert avec contournement manuel (NOCM)

Il existe deux types de configurations NOCM: PUSH, et PUSH & TURN. Avec la fonction TURN, vous pouvez conserver la fonction de contournement jusqu'à ce que vous la déverrouilliez à nouveau.

• Normalement fermé (NF)


Variantes de configuration

Normalement ouvert (NO)	Normalement ouvert avec contournement manuel (NOCM)	Normalement fermé (NF)
M \$ \$		M \$ \$

Le déchargement de la pression LS vers le réservoir permet de réduire le niveau de pression dans le système. Ce niveau est déterminé par :

- la somme de la chute de la pression dans le réservoir et de by-pass neutre dans une configuration de PVP à centre ouvert
- la somme de la pression dans le réservoir et de la pression de veille dans une configuration de PVP à centre fermé

Schéma du PVPX avec NOCM

Caractéristiques techniques des PVPX

Tension d'alimentation	12/24 V _{CC} ± 10 %
Résistance à 12 V _{CC}	$7,2 \Omega \pm 7 \%$
Résistance à 24 V _{CC}	$28,2 \Omega \pm 7 \%$
Consommation de puissance	20 W

© Danfoss | Mai 2021

Caractéristiques techniques des PVPX (suite)

Temps de réponse LS maximum	300 ms
Chute de pression max. à 0,1 l/min [2,6 gal US/min]	2 bar [30 psi]
Température max. de la surface des bobines	155 °C [311 °F]
Taille du filetage	3/4-16 UNF

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		

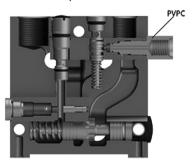
Références pour le PVPX

Références pour le PVPX, configuration NO et NF

Référence	Configuration	Tension d'alimentation	Connecteur	Indice de protection IP
157B4236	NO	12 V _{CC}		
157B4238	NO	24 V _{CC}		
157B4246	NF	12 V _{CC}	1x2 DIN	IP 65
157B4248	NF	24 V _{CC}		
157B4976	NF	26 V _{CC}		
157B4981	NO	12 V _{CC}		IP 66
157B4982	NO	24 V _{CC}	1x2 AMP	
157B4983	NF	12 V _{CC}	1 IXZ AIVIF	
157B4984	NF	24 V _{CC}		
11180766	NO	12 V _{CC}		
11180767	NO	24 V _{CC}		IP 67
11180768	NF	12 V _{CC}	1v2 DELITSCH	
11180769	NF	24 V _{CC}	1x2 DEUTSCH IP	IF O7
11225108	NO	26 V _{CC}		
11225109	NF	26 V _{CC}		

Références pour le PVPX, configuration NOCM

Référence	Contournement manuel	Tension d'alimentation	Connecteur	Indice de protection IP
157B4256	PUSH	12 V _{CC}		
157B4257	PUSH & TURN	12 V _{CC}		
157B4258	PUSH	24 V _{CC}	1x2 DIN	IP 65
157B4259	PUSH & TURN	24 V _{CC}		
157B4260	PUSH	26 V _{CC}		
157B4985	PUSH	12 V _{CC}	1x2 AMP	IP 66
157B4986	PUSH	24 V _{CC}	1X2 AIVIP	IP 00
11193839	PUSH	12 V _{CC}		
11193836	PUSH	24 V _{CC}	1x2 DEUTSCH	IP 67
11225111	PUSH	26 V	1 IXZ DEUTSCH	IP 0/
11225110	PUSH & TURN	- 26 V _{CC}		



PVPC sans clapet antiretour

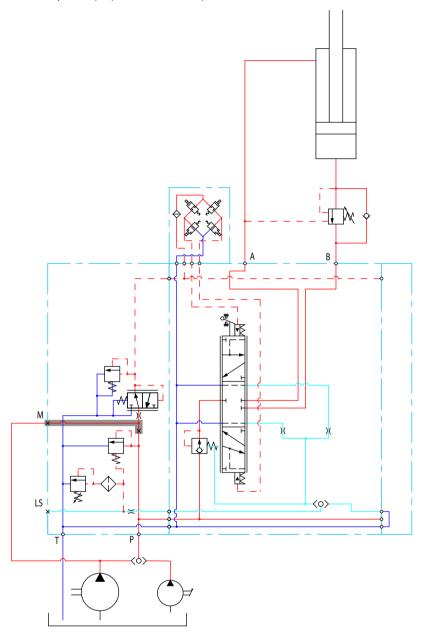
L'adaptateur de pression de pilotage externe PVPC sans clapet antiretour est un accessoire du port M disponible pour les modules d'entrée PVP avec régulateur de pression de pilotage (PPRV) intégré.

Le PVPC sans clapet antiretour coupe le PPRV intégré vers le PVE ou PVH/PVHC dans le groupe de distributeurs et permet l'utilisation d'une alimentation de pression de pilotage externe à travers l'adaptateur PVPC.

PVPC sans clapet antiretour

Exemple d'application du PVPC sans clapet antiretour : lorsque son utilisation est souhaitée pour alimenter le groupe de distributeurs avec de l'huile depuis une pompe d'urgence commandée manuellement sans diriger le débit d'huile vers le PPRV.

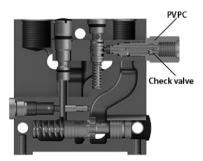
Lorsque la pompe principale est en mode de fonctionnement normal, l'huile est dirigée à travers l'adaptateur PVPC via le PPRV vers les commandes PVE électriques.


En cas de défaut du débit de la pompe principale, le clapet navette externe garantit que le débit d'huile depuis la pompe d'urgence commandée manuellement est utilisé pour ouvrir la vanne d'équilibrage et abaisser la charge. Il est uniquement possible d'abaisser la charge lorsque le levier de manœuvre mécanique des sections de travail PVG est utilisé.

Références pour le PVPM à centre ouvert/centre fermé

Référence	157B5400
Filetage	G1/2"

Schéma hydraulique pour PVPC sans clapet antiretour



PVPC avec clapet antiretour

L'adaptateur de pression de pilotage externe PVPC avec clapet antiretour est un accessoire du port M disponible pour les modules d'entrée PVP avec régulateur de pression de pilotage (PPRV) intégré.

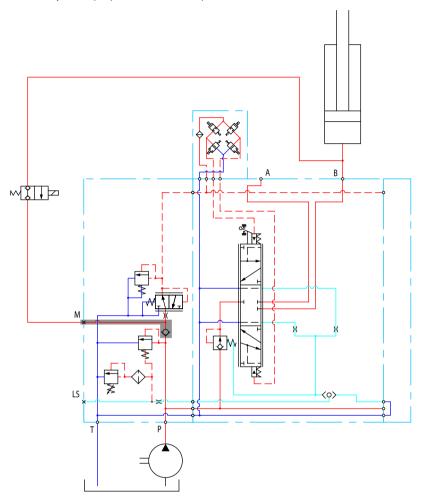
Le PVPC avec clapet antiretour permet une alimentation en pression de pilotage externe par le biais de l'adaptateur PVPC et du PPRV, tout en permettant également à la pompe principale d'alimenter le PPRV par l'intermédiaire de la galerie P en tant que PVP à centre ouvert standard avec PPRV.

PVPC avec clapet antiretour

Exemple d'application du PVPC avec clapet antiretour : lorsque son utilisation est souhaitée pour commander le groupe de distributeurs via les commandes PVE électriques sans débit de pompe.

Lorsque l'électrovanne externe est ouverte, l'huile côté pression du cylindre est alimentée via le PVPC par l'intermédiaire du PPRV pour agir en tant qu'alimentation pilote pour les commandes PVE électriques. Cela signifie qu'il est possible d'abaisser une charge au moyen des commandes PVE électriques sans démarrer la pompe.

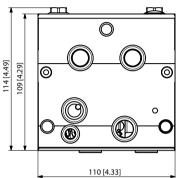
Le clapet antiretour intégré empêche l'huile de s'écouler vers le réservoir via le tiroir de régulation de pression. Lorsque la pompe fonctionne normalement, l'électrovanne externe est fermée pour garantir que la charge n'est pas baissée en raison de l'exigence de débit d'huile pilote d'environ 1 l/min [0,25 gal US/min].

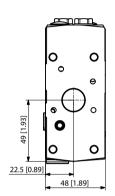

Avec un PVP à centre fermé, l'alimentation en huile pilote externe peut être connectée au raccordement de la jauge de pression sans utiliser de bouchon PVPC.

Références pour le PVPM à centre ouvert/centre fermé

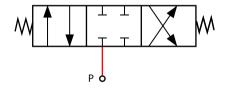
Référence	157B5600	157B5700
Filetage	G1/2"	1/2-20 UNF

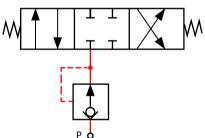
Schéma hydraulique pour PVPC avec clapet antiretour




Les modules de base des PVB PVG 32, également appelés « sections de travail », constituent l'interface entre le groupe de distributeurs proportionnels PVG 32 et la fonction de travail (cylindre ou moteur, par ex.).

Module de base PVB


Dimensions des PVB 32



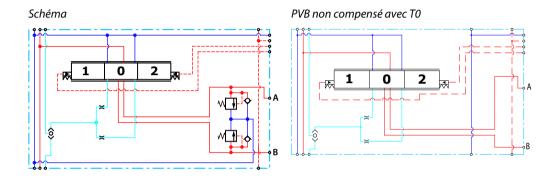
Poids: 3,05 kg [6,73 lb]

Symbole schématique du PVB non compensé

Symbole schématique du PVB compensé

Les variantes de module de base PVB sont basées sur une plateforme générique dotée d'une sélection de fonctions supplémentaires pour vous permettre d'adapter le PVB aux exigences de n'importe quel système hydraulique. La plateforme générique de module de base PVB comprend les variantes principales suivantes :

- PVB non compensé à la page 47
- PVB non compensé avec clapet antiretour à chute de pression à la page 50
- PVBZ non compensé avec POC à la page 53
- PVB compensé à la page 54
- PVB compensé amorti à la page 57
- PVB compensé amorti avec LS A/B à la page 60
- PVB compensé avec LS A/B à la page 63
- PVB compensé haut débit à la page 67
- PVB compensé haut débit avec LS A/B à la page 70
- PVBZ compensé avec POC à la page 74
- PVBZ compensé haut débit avec POC
- PVBZ compensé haut débit avec POC et interface de collecteur à la page 76



PVB non compensé

Le PVB non compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément.

Le PVB non compensé comprend:

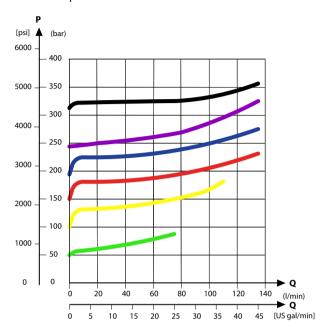
- Réseau de sélecteur de circuit LS intégré
- Vannes antichoc/anticavitation (PVLP) en option
- Clapet navette LS_{A/B} en option pour utilisation de tiroir flottant
- Possibilité T0 en option

Spécifications techniques pour le port A/B

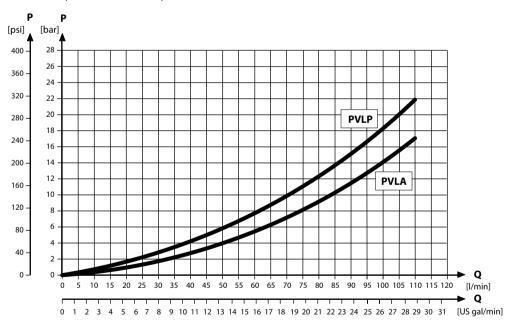
Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]*	420 bar [6 090 psi]**	125 l/min [33 gal US/min]

^{*} Avec plaque d'extrémité PVSI. Avec plaque d'extrémité PVS 300 bar [4 351 psi] max.

Spécifications techniques


Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		

^{**} Pression intermittente à 250 000 cycles max. de l'intégralité de la durée de vie du PVG, avec plaque d'extrémité PVSI. La pression intermittente maximale à 250 000 cycles max. souligne la nécessité de confirmer le cycle de fonctionnement de l'application avant de poursuivre selon les spécifications. Pour plus d'informations, contactez le service d'ingénierie des applications produit de Danfoss.



Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP

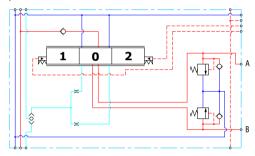
Caractéristiques des vannes d'aspiration PVLP/PVLA

Références pour le PVB non compensé

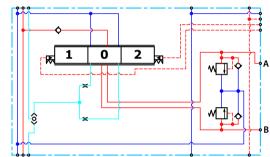
Référence	Port A/B	PVLP/PVLA	Clapet navette A/B LS	Fonctionnalité T0
157B6000	<u> </u>	_	_	_
157B6010		_	_	Oui
157B6030		Oui	_	_
11071832		Oui	Oui	_

Références pour le PVB non compensé (suite)

Référence	Port A/B	PVLP/PVLA	Clapet navette A/B LS	Fonctionnalité T0
157B6400		_	_	_
157B6410	7/8–14 UNF	_	_	Oui
157B6430		Oui	_	_


PVB non compensé avec clapet antiretour à chute de pression

Le PVB non compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression permet une dépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément. Le clapet antiretour à chute de pression intégré empêche tout reflux des ports de travail influençant les autres fonctions.


Le PVB non compensé avec clapet antiretour à chute de pression comprend :

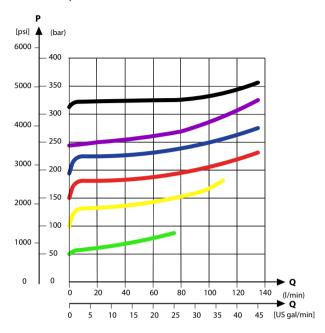
- Réseau de sélecteur de circuit LS intégré
- Clapet antiretour à chute de pression
- Vannes antichoc/anticavitation (PVLP) en option
- Clapet navette LS_{A/B} en option pour utilisation de tiroir flottant
- Possibilité T0 en option

PVB non compensé avec clapet antiretour à chute de pression

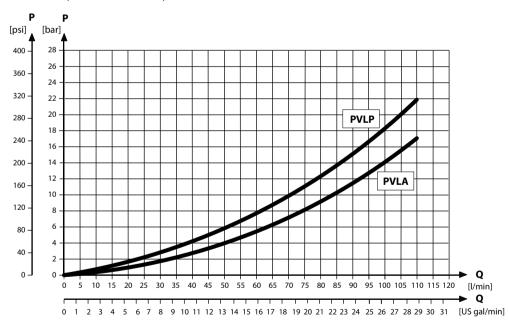
PVB non compensé avec clapet antiretour à chute de pression et T0 $\,$

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 ℃ [86 à 140 ℉]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		



Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP

Caractéristiques des vannes d'aspiration PVLP/PVLA

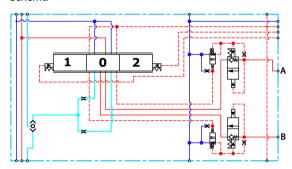
Références pour le PVB non compensé avec clapet antiretour à chute de pression

Référence	Port A/B	PVLP/PVLA	Clapet navette A/B LS	Fonctionnalité T0
157B6100	G1/2"	_	_	_
157B6500	7/8–14 UNF	_	_	_
157B6110	G1/2"	_	_	Oui
157B6909	7/8–14 UNF	_	_	Oui

Références pour le PVB non compensé avec clapet antiretour à chute de pression (suite)

Référence	Port A/B	PVLP/PVLA	Clapet navette A/B LS	Fonctionnalité T0
157B6130	G1/2"	Oui	_	_
157B6530	7/8–14 UNF	Oui	_	_
157B6140	G1/2"	Oui	_	Oui
157B6904	7/8–14 UNF	Oui	_	Oui
157B6136	G1/2"	Oui	Oui	_
157B6536	7/8–14 UNF	Oui	Oui	_

PVBZ non compensé avec POC


Le PVBZ non compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression permet une dépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément.

Le clapet antiretour piloté à très faible fuite empêche la dérive du cylindre.

Le PVBZ non compensé avec POC comprend :

- Réseau de sélecteur de circuit LS intégré
- POC intégré
- Fonctionnalité T0

Schéma

Spécifications techniques pour le port A/B

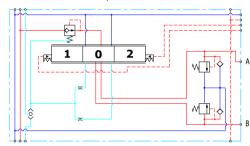
Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]

Spécifications techniques

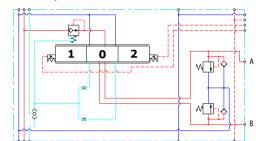
Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		

Références pour le PVBZ non compensé avec POC

Référence	Port A/B	POC
157B6051	G½"	Port B
157B6052	G/2	Port A/B
157B6451	- 7/8–14 UNF	Port B
157B6452		Port A/B


PVB compensé

Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément.


Le PVB compensé comprend:

- Réseau de sélecteur de circuit LS intégré
- Balance de pression intégrée
- Vannes antichoc/anticavitation (PVLP) en option
- Port T0 et port T0 externe en option

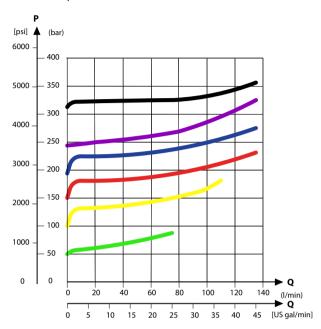
Schéma du PVB compensé

PVB compensé avec T0

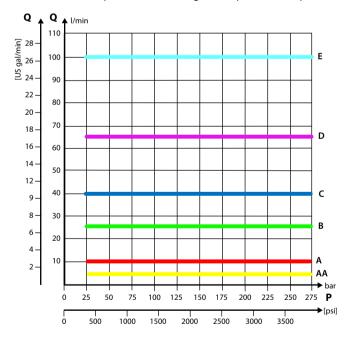
Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.*
350 bar [5 067 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]

^{*} Possible avec tiroir de fonctionnement turbo au débit nominal max. de 130 l/min

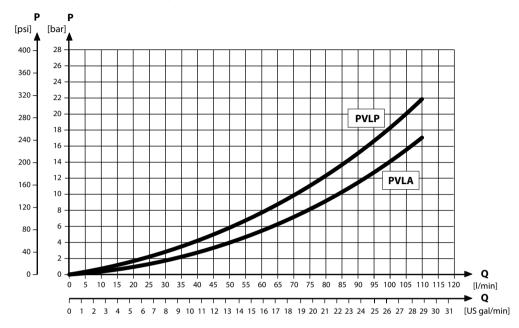

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 ℃ [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		



Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP

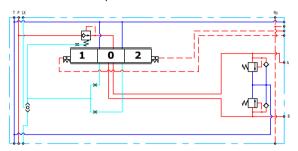


Débit de fluide indépendant de la charge – PVB pression compensée

Références pour le PVB compensé

Référence	Port A/B	PVLP/PVLA	то
157B6200		-	-
157B6210	G1/2"	-	Oui
157B6230	1 01/2	Oui	-
157B6240		Oui	Oui
157B6600		-	-
157B6922	7/8–14 UNF	-	Oui
157B6630	7/6-14 UNF	Oui	-
157B6906		Oui	Oui
157B6850	M22x1,5	Oui	Oui
157B6849	Aucun*	-	-

^{*} Haut usiné, préparé pour interface personnalisée.


PVB compensé amorti

Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément. L'amortissement de la réaction du compensateur ralentira le système éliminant ainsi l'instabilité.

Le PVB compensé amorti comprend:

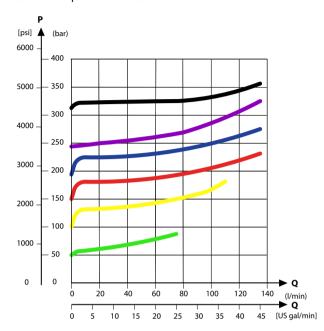
- Réseau de sélecteur de circuit LS intégré
- Balance de pression intégrée
- Vannes antichoc/anticavitation (PVLP) en option

Schéma du PVB compensé

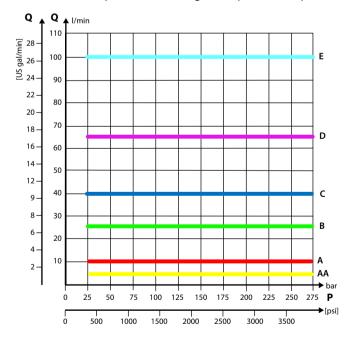
Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.*
350 bar [5 076 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]

^{*} Possible avec tiroir de fonctionnement turbo au débit nominal max. de 130 l/min

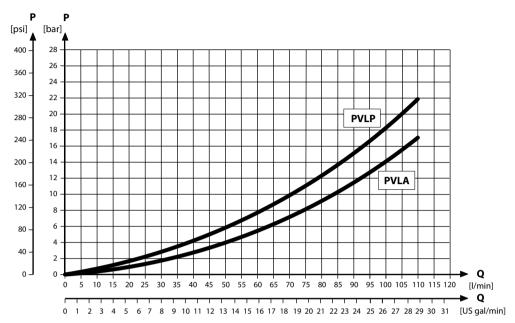

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]	



Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP



Débit de fluide indépendant de la charge - PVB pression compensée

Références pour le PVB compensé amorti

Référence	Port A/B	PVLP/PVLA
157B6206	G1/2"	-
157B6236	101/2	Oui
11036629	7/8–14 UNF	-
11036630		Oui

PVB compensé amorti avec LS A/B

Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément. L'amortissement de la réaction du compensateur ralentira le système éliminant ainsi l'instabilité. La vanne de décharge de pression LS_{A/B} intégrée permet de limiter l'accumulation maximale sur le port de travail séparément pour les ports A/B.

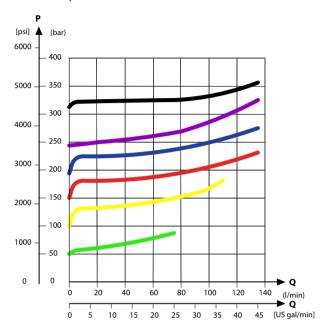
Le PVB compensé amorti avec LS A/B comprend :

- Réseau de sélecteur de circuit LS intégré
- Balance de pression intégrée
- Vannes de décharge de pression LS_{A/B} intégrées et réglables
- Connexion du port LS_{A/B} externe
- · Vannes antichoc/anticavitation (PVLP) en option

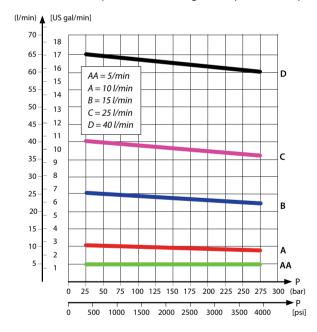
Schéma du PVB compensé amorti avec LS A/B

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.*
350 bar [5 076 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]

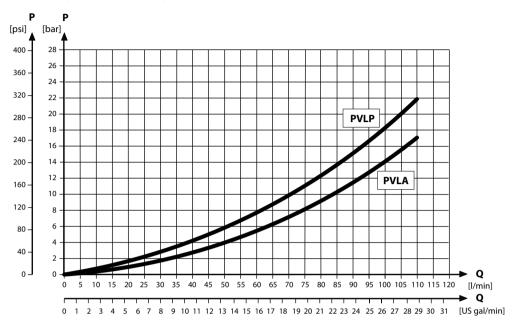

^{*} Possible avec tiroir de fonctionnement turbo au débit nominal max. de 130 l/min

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 40 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm2/s [39 SUS]	12 à 75 mm2/s [65 à 347 SUS]	460 mm2/s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à	140 °F]	

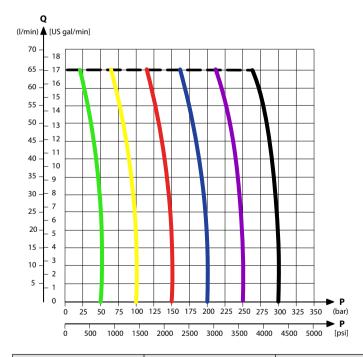


Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP

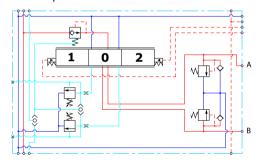


Débit de fluide indépendant de la charge – PVB pression compensée

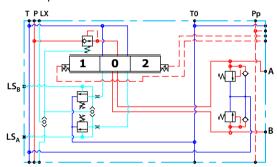


Caractéristiques de PVB à pression compensée pour LS A/B

Référence	Port A/B	Port LS	PVLP/PVLA
157B6208	G1/2	G1/4	-
157B6238			Oui
11036631	7/8-14	1/2-20	Oui


PVB compensé avec LS A/B

Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément. La vanne de décharge de pression LS_{A/B} intégrée permet de limiter l'accumulation maximale sur le port de travail séparément pour les ports A/B.


Le PVB compensé avec LS_{A/B} comprend :

- Réseau de sélecteur de circuit LS intégré
- Balance de pression intégrée
- Limiteurs de pression LS_{A/B} intégrés et réglables
- Connexion du port LS_{A/B} externe
- Clapet navette $LS_{A/B}$ intégré pour utilisation de tiroir flottant
- Vannes antichoc/anticavitation (PVLP) en option
- Possibilité T0 en option

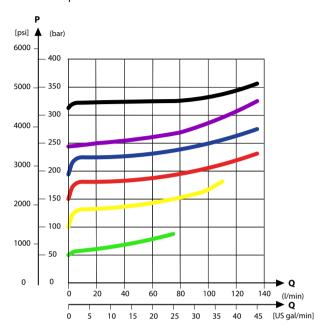
PVB compensé avec LS

PVB compensé avec LS et T0

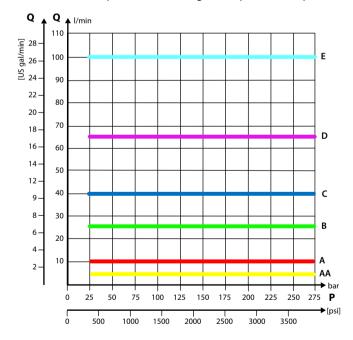
Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.*
350 bar [5 076 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]

^{*} Possible avec tiroir de fonctionnement turbo au débit nominal max. de 130 l/min

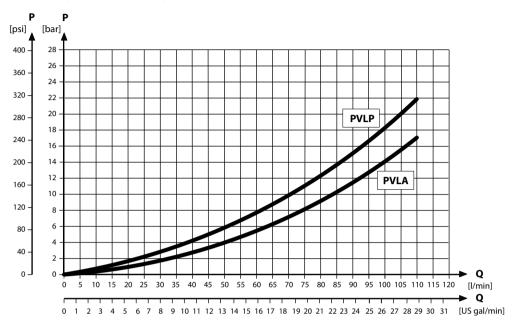

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]	

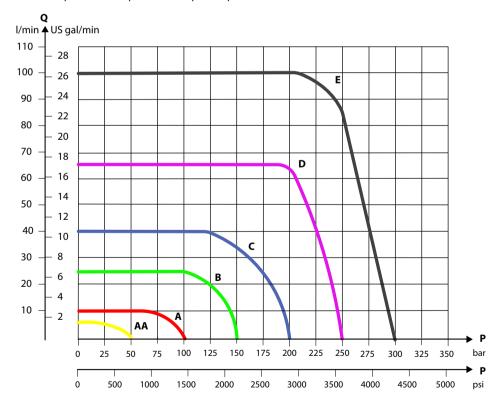


Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP



Débit de fluide indépendant de la charge - PVB pression compensée

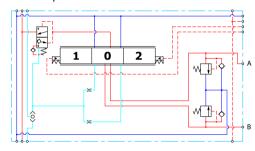


Caractéristiques de PVB à pression compensée pour LS A/B

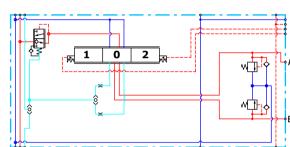
Références pour le PVB compensé avec LS A/B (toutes avec clapet navette)

Référence	Port A/B	Port LS	PVLP/PVLA	то
157B6203			-	-
157B6213	G1/2"	G1/4"	-	Oui
157B6233	G1/2	G1/4	Oui	-
157B6243			Oui	Oui
157B6603			-	-
157B6613	7/8–14 UNF	1/2–20 UNF	-	Oui
157B6633			Oui	-
157B6643			Oui	Oui

PVB compensé haut débit


Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément.

La purge évitera l'accumulation de pression sur les ports de travail en position neutre.


Fonctionnalités

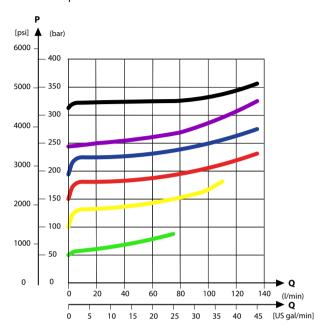
- Réseau de sélecteur de circuit LS intégré
- Balance de pression de débit élevée avec purge intégrée
- Limiteurs de pression LS_{A/B} intégrés et réglables
- Vannes antichoc/anticavitation (PVLP) en option
- Possibilité T0 en option

PVB compensé haut débit

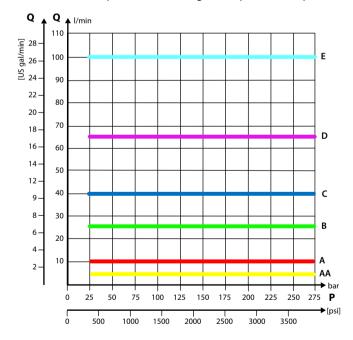
PVB compensé haut débit avec T0

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]	420 bar [6 090 psi]	130 l/min [34 gal US/min]

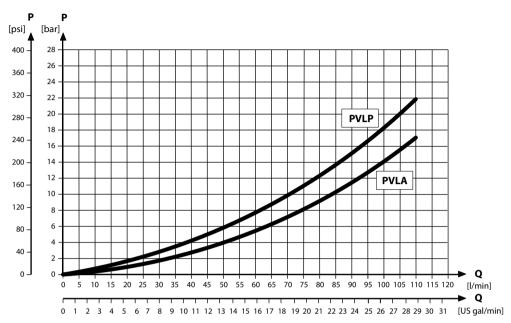

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum	
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]	
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]	
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)			
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]			



Graphiques de performances (théoriques)


Caractéristiques des vannes antichoc PVLP

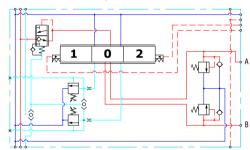


Débit de fluide indépendant de la charge - PVB pression compensée

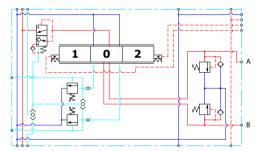
Références pour le PVB compensé haut débit

Référence	Port A/B	PVLP/PVLA	Clapet navette A/B LS	Fonctionnalité T0
11126962	7/8-14 UNF	_	_	Oui
157B6938		Oui	_	_
157B6852	G½"	Oui	_	_
157B6853		_	_	_

PVB compensé haut débit avec LS A/B


Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément. La vanne de décharge de pression LS_{A/B} intégrée permet de limiter l'accumulation maximale sur le port de travail séparément pour les ports A/B.

La purge évitera l'accumulation de pression sur les ports de travail en position neutre.


Fonctionnalités

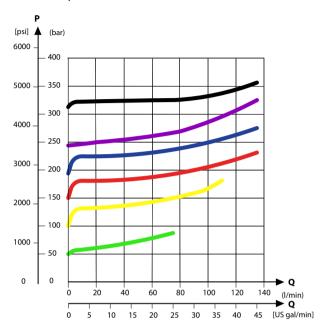
- Réseau de sélecteur de circuit LS intégré
- Balance de pression de débit élevée avec purge intégrée
- Limiteurs de pression LS_{A/B} intégrés et réglables
- Clapet navette LS_{A/B} intégré pour utilisation de tiroir flottant
- Connexion du port LS_{A/B} externe
- Vannes antichoc/anticavitation (PVLP) en option
- Possibilité T0 en option

Schéma du PVB compensé haut débit avec LS A/B

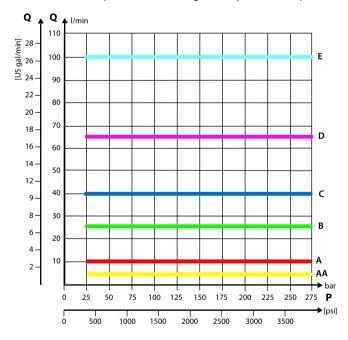
PVB compensé haut débit avec LS A/B et T0

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]	420 bar [6 090 psi]	130 l/min [34 gal US/min]


Spécifications techniques

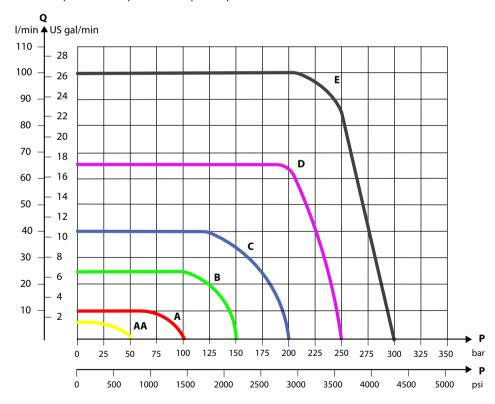
Paramètre	Minimum	Plage recommandée	Maximum	
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]	
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]	
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)			
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]			



Graphiques de performances (théoriques)

Caractéristiques des vannes antichoc PVLP

Débit de fluide indépendant de la charge – PVB pression compensée

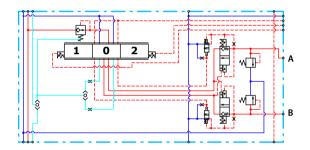


Caractéristiques de PVB à pression compensée pour LS A/B

Références pour le PVB compensé haut débit avec LS

Référence	Port A/B	Port LS _{A/B}	PVLP/PVLA	Clapet navette LS _{A/B}	Fonctionnalité T0
157B6855			_		_
11059838	G1⁄2″	G¼"	_		Oui
157B6854			Oui	Oui	_
11126963	7/0 1411NF	1/2-20 UNF	_		Oui
11126964	7/8–14 UNF	/2-20 UNF	Oui		Oui

PVBZ compensé avec POC


Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément.

La purge évitera l'accumulation de pression sur les ports de travail en position neutre.

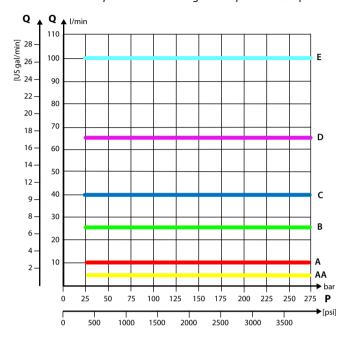
Fonctionnalités

- Réseau de sélecteur de circuit LS intégré
- Balance de pression intégrée
- POC intégré
- Possibilité T0
- Clapet navette LS_{A/B} en option pour utilisation de tiroir flottant
- Vanne de décharge de pression en option

Schéma

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]	420 bar [6 090 psi]	100 l/min [26 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 ℃ [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]	

Graphiques de performances (théoriques)

Débit de fluide indépendant de la charge – PVB pression compensée

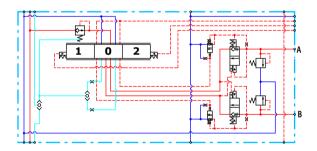
Références pour le PVBZ compensé avec POC

Référence	Port A/B	POC	Clapet navette LS _{A/B}	Décharge de pression
157B6251		Port B	_	_
157B6252		Port A/B	_	_
157B6261	G1/2"	Port B	_	Oui
157B6262	G1/2	Port A/B	_	Oui
157B6266		Port A/B	Oui	Oui
157B6960		Port A		_
157B6652		Port A/B	_	_
157B6661	7/8–14 UNF	Port A/B	_	Oui
157B6662	7/8-14 UNF	Port A/B	_	Oui
157B6666		Port A/B	Oui	Oui
157B6954	M22x1,5 mm	Port A/B	Oui	Oui
157B6958	Aucun – haut usiné*	Port A/B	Oui	Oui
11157082	Aucun – haut usiné*	Port A	_	_

^{*} Préparé pour le montage d'une dérivation PVBD. Pour plus de détails, voir *Module de dérivation PVBD* à la page 89.

PVBZ compensé haut débit avec POC et interface de collecteur

Le PVB compensé est destiné à la commande d'une fonction de travail lorsque le comportement de cette fonction en termes de débit et de pression exige une indépendance vis-à-vis de la pression de charge des autres fonctions utilisées simultanément.


La vanne de décharge de pression LS_{A/B} intégrée permet de limiter l'accumulation maximale sur le port de travail séparément pour les ports A/B.

La purge évitera l'accumulation de pression sur les ports de travail en position neutre.

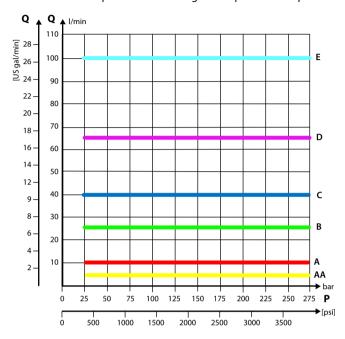
Fonctionnalités

- Réseau de sélecteur de circuit LS intégré
- Balance de pression de débit élevée avec purge intégrée
- POC intégré
- Possibilité T0
- Limiteurs de pression LS_{A/B} intégrés et réglables
- Vanne de décharge de pression en option

Schéma

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076 psi]	420 bar [6 090 psi]	125 l/min [33 gal US/min]


Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 ℃ [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]	

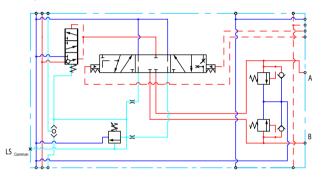
Graphiques de performances (théoriques)

Débit de fluide indépendant de la charge – PVB pression compensée

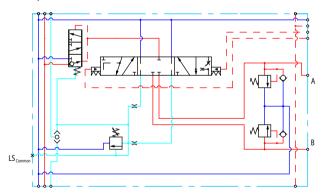
Références pour le PVBZ - POC, interface de collecteur

Référence	POC
157B6958	Port A/B
11005475	Port A/B
11032961	Port A/B
157B6969	Port A

PVB à pression constante


PVB à pression constante

Le module à pression constante est la première solution de vanne sectionnelle intégrée en son genre permettant d'appliquer une pression constante sur le port de travail. Un compensateur breveté spécial alimente ou soulage le débit de port de travail vers le réservoir en fonction de la situation de charge du port de travail.


Le PVB à pression constante comprend :

- Décharge de détection de charge intégrée pour régler la pression maximale du port (LS AB commune)
- Vannes antichoc/anticavitation (PVLP/PVLA)
- · Possibilité T0 en option

PVB à pression constante avec T0

PVB à pression constante sans TO

Spécifications techniques pour le port A/B

Pression continue max.	Pression intermittente max.	Débit nominal max.
350 bar [5 076]*	420 bar [6 090]**	125 l/min [33 gal US/min]

Avec plaque d'extrémité PVSI. Avec plaque d'extrémité PVS 300 bar [4 351 psi] max.

**

Pression intermittente à 250 000 cycles max. de l'intégralité de la durée de vie du PVG, avec plaque d'extrémité PVSI. La pression intermittente maximale à 250 000 cycles max. souligne la nécessité de confirmer le cycle de fonctionnement de l'application avant de poursuivre selon les spécifications. Pour plus d'informations, contactez le service d'ingénierie des applications produit de Danfoss.

78 | [©] Danfoss | Mai 2021 BC152886483664fr-001401

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide	23/19/16 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		

Références pour le PVB à pression constante

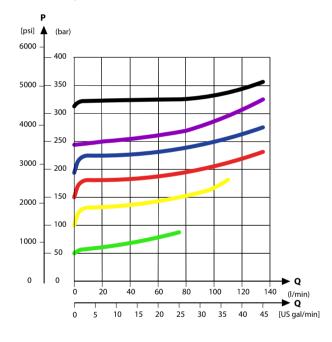
Référence	Port A/B	Port LSa	ТО
11166045	G1/2 BSP	G1/4 BSP	Oui
11186267	7/8-14 UNF	½-20 UNF	Oui
11216266	G1/2 BSP	G1/4 BSP	-
11216270	7/8-14 UNF	½-20 UNF	-

La plateforme accessoire du module PVB générique inclut des vannes antichoc et anticavitation PVLP ainsi qu'une vanne d'aspiration PVLA.

- Vanne antichoc et anticavitation PVLP à la page 81
- Vanne d'aspiration PVLA à la page 83

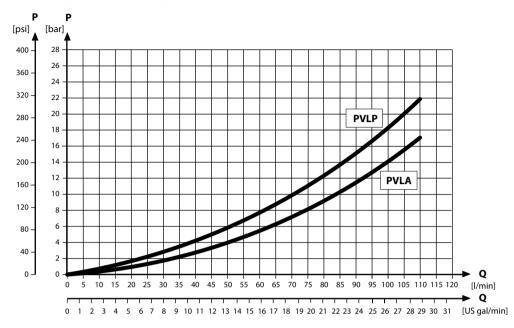


Vanne antichoc et anticavitation PVLP


La vanne antichoc et anticavitation PVLP déchargera un pic de pression vers les galeries du réservoir interne et aspirera en outre de l'huile depuis le réservoir vers le port de travail pour éviter toute cavitation. Plage de réglages de pression : 32–400 bar [460–5 801 psi].

La pression du PVLP doit toujours être réglée sur 20 bar [290 psi] de plus que le réglage LS_{A/B} du même module.


Schéma de la PVLP



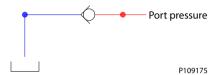
Caractéristiques des vannes antichoc PVLP

Spécifications techniques

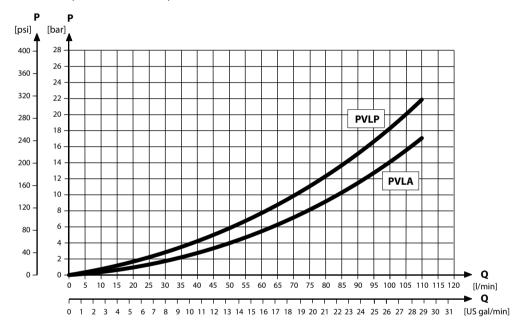
Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]		

Références pour le PVLP selon les réglages de pression

Référence	Pression en bar [psi]	Référence	Pression en bar [psi]
157B2032	32 [464]	157B2210	210 [3045]
157B2050	50 [725]	157B2230	230 [3335]
157B2063	63 [913]	157B2240	240 [3480]
157B2080	80 [1160]	157B2250	250 [3626]
157B2100	100 [1450]	157B2265	265 [3844]
157B2125	125 [1813]	157B2280	280 [4061]
157B2140	140 [2031]	157B2300	300 [4351]
157B2150	150 [2176]	157B2320	320 [4641]
157B2160	160 [2321]	157B2350	350 [5076]
157B2175	175 [2538]	157B2380	380 [5511]
157B2190	190 [2756]	-	-



Vanne d'aspiration PVLA


La vanne PVLA est un accessoire disponible pour les modules de base PVB.

La PVLA aspirera le fluide depuis le réservoir vers le port de travail pour éviter toute cavitation par le ressort 0,5 bar. Le bouchon assurera que, lors de l'utilisation d'un tiroir à simple action, tout débit refluant dans le port de travail est dirigé vers le réservoir.

Schéma de la PVLA

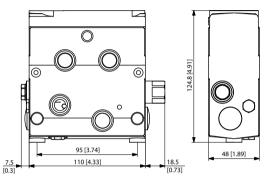
Caractéristiques des vannes d'aspiration PVLP/PVLA

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum		
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]		
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]		
Propreté du fluide (activation mécanique)		23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)		18/16/13 (selon ISO 4406)			
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]			

Référence pour la vanne d'aspiration PVLA

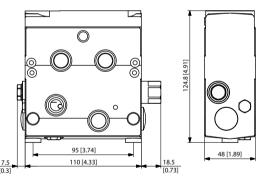
Vanne d'aspiration PVLA	Bouchon
157B2001	157B2002


Les **PVSP** et **PVSPM** sont des modules de section de travail avec une fonctionnalité de priorité intégrée. Les avantages des modules PVSP/PVSPM:

- Fonction de priorité intégrée pour l'unité de direction OSP et/ou la section de travail PVB hydraulique
- Compatibilité avec les modules d'entrée PVP à centre ouvert ou centre fermé avec débit jusqu'à 160 l/min

Module PVSP

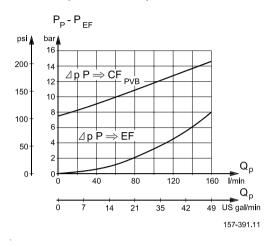
Dimensions PVSP


ATTENTION

Le module PVSP doit être installé en tant que module final du groupe de vannes à la place d'une plaque d'extrémité PVS.

Module PVSPM

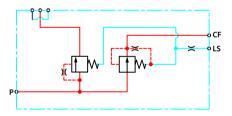
Dimensions du PVSPM



ATTENTION

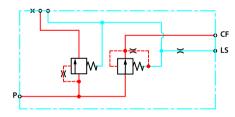
Le PVSPM doit être installé en tant que module **mi-entrée**.

Caractéristiques de chute de pression PVSP/PVSPM

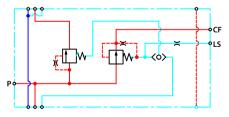


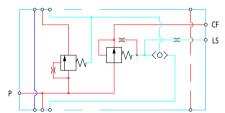
Aperçu des versions PVSP et PSPVM

La plateforme du module de priorité PVSP/PVSPM générique inclut les cinq principales versions : **Centre ouvert : PVSP et PVSPM, Centre fermé : PVSP et PVSPM ;** et **PVSPM à centre ouvert/fermé**.


Le tiroir compensateur et la vanne antichoc doivent être spécifiés séparément, voir *Tiroir compensateur pour PVSP/PVSPM* à la page 88.

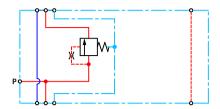
Le module **PVSP à centre ouvert** donne la priorité à l'OSP




Préparé pour vanne antichoc PVLP 63.

Le module **PVSP à centre fermé** donne la priorité à l'OSP

Le **PVSPM à centre ouvert** donne la priorité à l'OSP+PVB Le **PVSPM à centre fermé** donne la priorité à l'OSP+PVB



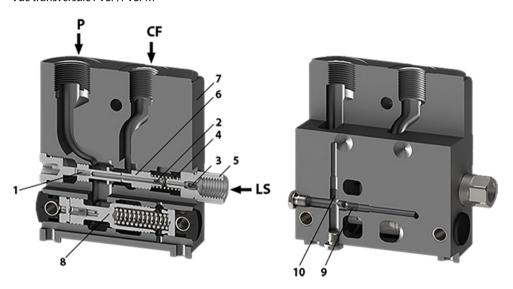
Préparé pour vanne antichoc PVLP 63.

Le module PVSPM à centre ouvert/fermé donne la priorité au PVB

Caractéristiques techniques

Pression de pompe maximale	350 bar [5 076 psi]
Débit de pompe maximal	160 l/min [42 gal US/min]
Débit contrôlé vers OSP	60 l/min [12 gal US/min]
Débit contrôlé vers PVB (PVSPM)	100 l/min [26,4 gal US/min]

Références PVSP/PSPVM


Référence	Туре	Port CF	Port P	Poids
157B6708	PVSP à centre ouvert	G1⁄2"	G1"	
157B6808	FV3F a centre ouvert	7/8-14 UNF	1 5/16-12 UNF	3,8 kg [8,38 lb]
157B6728	PVSP à centre fermé	G1⁄2"	G1"	
157B6828	FVSF a centre terme	7/8-14 UNF	1 5/16-12 UNF	
157B6707	PVSPM à centre ouvert			2
157B6727	PVSPM à centre fermé	G½"	G1"	
157B6709	PVSPM ouvert/fermé			

Vue en coupe des modules de priorité PVSP/PVSPM

Le module PVSP peut donner la priorité à une unité de direction OSP (ou d'autres vannes) et/ou à un module PVB 32, et contient une connexion P pour la pompe et une connexion CF pour la commande de débit. Le débit excessif passe du débit excessif aux modules de base PVB 32 non priorisés.

Vue transversale PVSP/PVSPM

- 1. Orifice fixe PP
- 2. Orifice dynamique
- 3. Orifice LS pour unité de direction
- **4.** Ressort pour tiroir compensateur
- 5. Connexion pour signal LS

- 6. Tiroir compensateur pour connexion CF
- 7. Boîtier PVSP
- 8. Tiroir prioritaire
- 9. Bouchon, centre ouvert
- 10. Bouchon, unité de direction à centre fermé

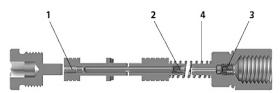
Les connexions de pompe standard de PVP et PVPVM doivent toujours être fournies avec un bouchon en acier.

Si la priorité est uniquement donnée à l'unité de direction OSP (157B6708, 157B6728, 157B6808, 157B6828), le module PVSP remplace la plaque d'extrémité PVS(I). Lors de la spécification de groupes de vannes de cette nature, vous ne devez donc pas fournir de numéro de code pour PVS.

Pour les groupes de vannes devant donner la priorité au PVB 32 (un PVB max.), le PVSPM doit être monté en tant que mi-entrée (**157B6707**, **157B6727**, **157B6709**). Le module PVB auquel la priorité est accordée doit être tourné à 180° et installé sur la droite du PVSP, voir orientation des ports sur les schémas de dimensions.

Dans les systèmes à centre fermé, la vanne de décharge de pression du PVP s'ouvre à une pression plus élevée (20 bar max.) sur les fonctions priorisées. Par conséquent, il est recommandé d'utiliser des modules PVB et OSP avec vanne de décharge de pression intégrée.

Si la priorité est accordée simultanément à une unité de direction OSP et à une fonction de PVB (PVSPM, **157B6707, 157B6727**), il est nécessaire de s'assurer que l'OSP disposera toujours d'un débit de pompe adéquat.


Sur les modules PVB priorisés, le clapet navette LS doit toujours être démonté. Et avec les modules PVB priorisés, une plaque d'extrémité **157B2018** (sans joints toriques) doit toujours être utilisée.

Sur les systèmes à centre ouvert, les modules PVB et les unités de direction priorisés doivent toujours représenter une vanne de décharge de pression intégrée pour éviter une accumulation de pression élevée inattendue.

Tiroir compensateur pour PVSP/PVSPM

Vue en coupe du tiroir compensateur

Orifice fixe PP interne: 0,6 mm [0,024"]
 Orifice dynamique: 0,9 ou 1 mm [0,035"]
 Orifice LS UE: G¼" ou US: 9/16-18 UNF

4. Ressort

Références pour le tiroir compensateur avec orifice dynamique

Référence	Orifice dynamique	Orifice LS	Ressort	
157B7900		1,2 mm	7 bar	
157B7902	0,9 mm	-	7 Dai	
157B7904		1,2 mm	10 bar	
157B7903	1,0 mm	1,211111	10 bai	
157B7905		-	7 bar	
157B7950*	0,035"	0,047"	[101,5 psi]	

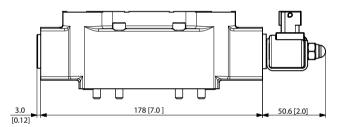
^{*} version US .

Références pour le tiroir compensateur avec LS statique

Référence	Orifice dynamique	Orifice LS	Ressort
157B7901	Bouchon	1,2 mm	7 bar
157B7951*	Bouchon	0,047"	[101,5 psi]

^{*} version US.

Le PVBD est un module de dérivation à installer au-dessus des modules PVB ou PVBZ pour étendre le champ d'application de section de travail jusqu'à 2 fonctions.


- Piloté avec PVC
- Vanne auxiliaire sur les tracteurs pour le contrôle des fonctions des équipements

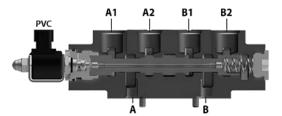
•

Module de dérivation PVBD

Dimensions PVBD

Principe de dérivation PVBD

PVC désactivé :


Le tiroir de diversion est maintenu en position (débit vers A1/B1) par le ressort sur le côté droit (à l'opposé du PVC). La chambre à ressort est toujours connectée à la galerie T0 dans le corps du PVBZ.

PVC activé:

La pression pilote est dirigée dans la chambre à côté du PVC. Un débit limité passe à travers le tiroir de diversion et les deux orifices, et dans la chambre à ressort connectée à T0. Une chute de pression à travers les orifices crée la force de commande déplaçant le tiroir de diversion vers le ressort. Par conséquent, le port A2/B2 devient actif.

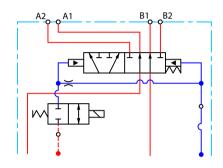
Toute fuite (le long du dégagement du tiroir) des ports de travail pressurisés A1/B1 ou A2/B2 sera toujours drainée vers T0 directement dans la chambre à ressort ou à travers le tiroir de diversion. Cela garantit une totale liberté de mouvement du tiroir de diversion en évitant l'accumulation de pression.

Vue en coupe du PVBD

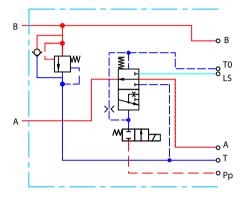
Recommandation de sécurité

La sélection de la dérivation doit uniquement être possible lorsque le tiroir principal est en position neutre. Il convient de s'en assurer en configurant correctement le contrôleur/l'interface homme-machine.

90 | [©] Danfoss | Mai 2021 BC152886483664fr-001401



Aperçu du module de dérivation PVBD

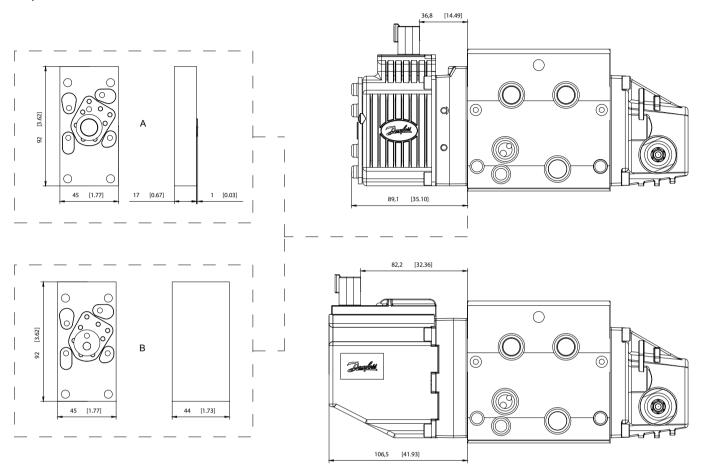

Les modules de dérivation du PVBD sont actionnés avec l'électrovanne PVC incluse ; NF et présente deux variantes : soupape de changement de vitesse 6/2 PVBD et soupapes multiples pour PVBZ **11032961**.

- La soupape de changement de vitesse 6/2 PVBD passe entre A1 & B1/A2 & B2
- Les soupapes multiples pour PVBZ passent du port A au PVBZ ou à la galerie du réservoir, par exemple entre actionnement simple et actionnement double. Le port B est préparé pour le PVLP.

Schéma PVBD

Schéma des soupapes multiples

Caractéristiques techniques


Description	Changement de vitesse 6/2 PVBD Soupapes multiples pour PVI		
Débit d'huile max. recommandé	80 l/min [21,1 gal US/min] 100 l/min [26,4 gal US/min]		
Pression de port max.	280 bar [4 061 psi]		
Tension d'alimentation	12 V _{CC} ; 14 bar		
Type de connecteur	AMP JPT 2 broches		

Références pour la dérivation PVBD

Références pour le changement de vitesse 6/2	157B1501	157B1503
Références pour les soupapes multiples	11027604	_
Taille de port	M22 x 1,5 mm	7/8-14 UNF

Plaques d'extension PVE série 7

Référence	Description	Lettre
11189080	Bloc d'aluminium 17 mm + kit d'étanchéité	Α
11189081	Bloc d'aluminium 44 mm + kit d'étanchéité	В

Les tiroirs principaux (PVBS) déterminent le débit de la section de travail ou l'accumulation de pression et sont basés sur une plateforme générique dotée d'une large sélection de fonctions supplémentaires pour vous permettre d'adapter le PVBS aux exigences de tout système hydraulique et de toute fonction.


Le tiroir principal PVBS peut être activé de trois manières différentes :

- Mécaniquement à l'aide d'un levier PVM
- Électriquement par une commande PVE/PVHC
- Hydrauliquement par une commande PVH

Tiroir principal PVBS

Dimensions du tiroir principal PVBS

Poids: 0,25 kg [0,55 lb]

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum		
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]		
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]		
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)				
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)				
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]				

Tiroirs de commande de débit (FC)

Les tiroirs de commande de débit sont destinés aux sections de travail dans lesquelles vous souhaitez contrôler la vitesse (débit) du port de

travail

Tiroirs de commande de pression (PC)

Les tiroirs de commande de pression sont destinés aux sections de travail dans lesquelles vous souhaitez contrôler la puissance (pression) du port de travail

Pour en savoir plus sur l'utilisation des tiroirs de commande de débit ou de pression, référez-vous au guide d'application **AB224686484921** - « *Utilisation de tiroirs de commande de débit ou de pression* »

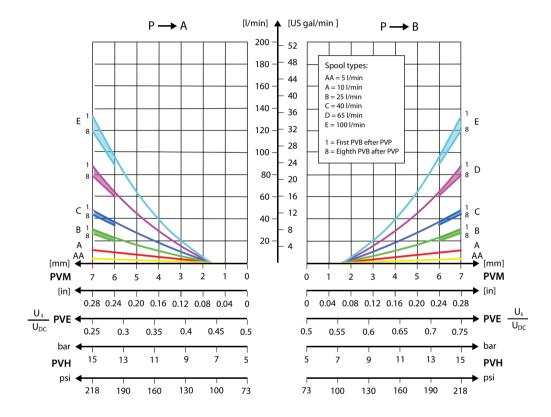
Tiroir régénératif (Regen)

Les tiroirs régénératifs signifient que l'huile qui revient dans un port sera dirigée vers l'autre port afin d'augmenter le débit de port et d'économiser le débit de la

Pour plus d'informations sur les tiroirs régénératifs, voir la fiche technique Al00000134 - « PVBS 32, Fiche technique du tiroir régénératif »

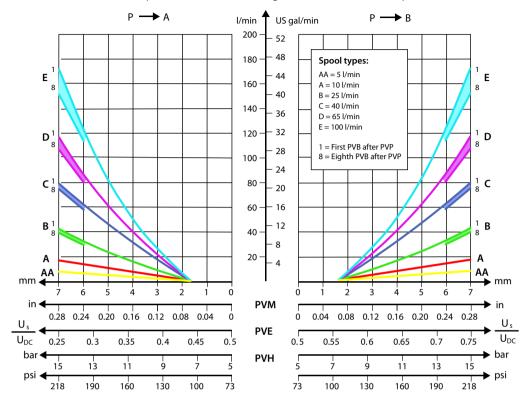
Position neutre fermée

En position neutre et à l'intérieur de la bande morte, la connexion vers le réservoir est fermée

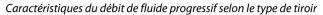

Position neutre En position neutre et à l'intérieur de la bande morte, la connexion vers le **ouverte étranglée** réservoir correspond à 10 % de la fonction de débit maximale

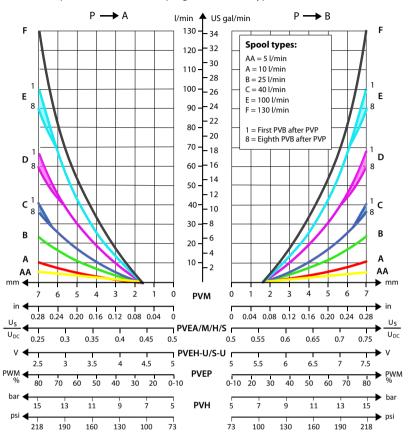
Position neutre ouverte/fermée (vidange)

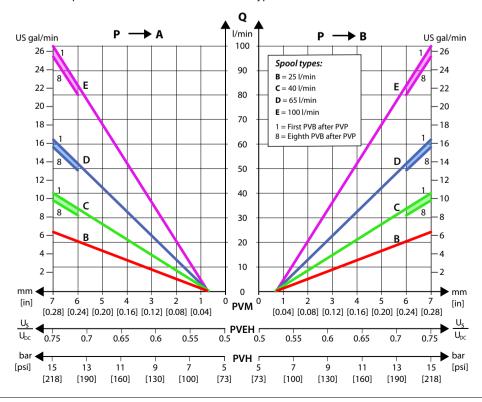
En position neutre totale, la connexion vers le réservoir est inférieure à 10 % de la fonction de débit maximale. En revanche, lorsque le tiroir est déplacé en dehors de la position neutre, mais qu'il reste dans la bande morte, la connexion se ferme.


Caractéristiques de débit de fluide PVBS — performances théoriques

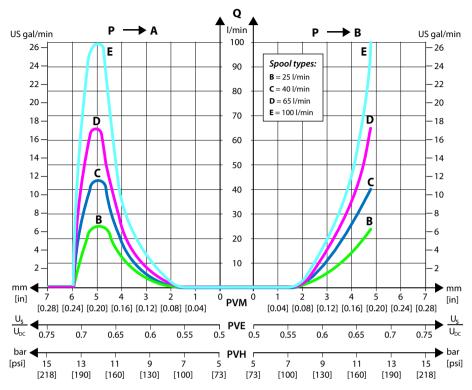
Débit de fluide à différents déplacements de tiroir + marge de 10 bar - PVB non compensé



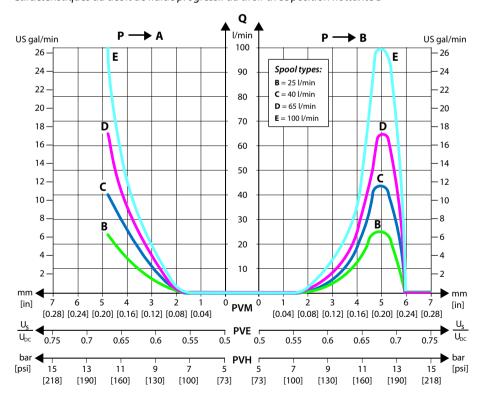

Débit de fluide à différents déplacements de tiroir + marge de 20 bar - PVB non compensé


Danfoss

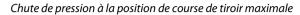
Tiroirs principaux PVBS

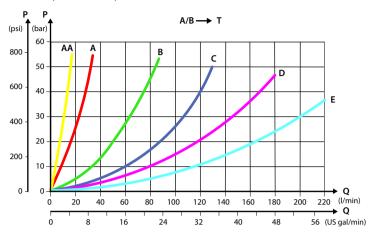


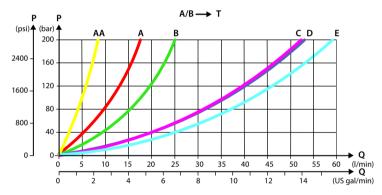
Caractéristiques du débit de fluide linéaire selon le type de tiroir



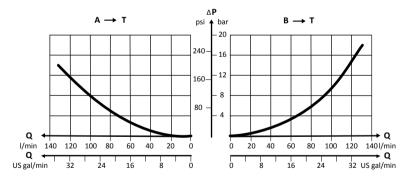
Caractéristiques du débit de fluide progressif du tiroir avec position flottante A



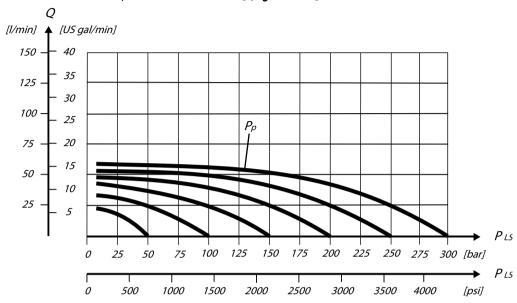

Caractéristiques du débit de fluide progressif du tiroir avec position flottante B

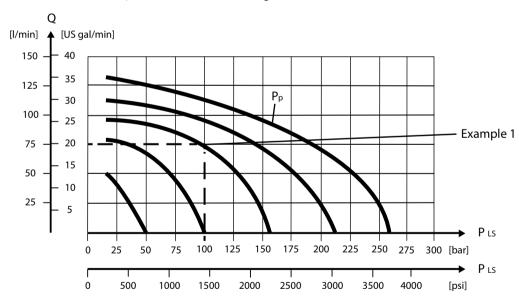

Danfoss

Tiroirs principaux PVBS



Chute de pression pour tiroir ouvert en position neutre


Chute de pression A/B vers T en position flottante



Caractéristiques du tiroir de commande de pression - Performances théoriques

Tiroirs de commande de pression Taille A 10 l/min [2,6 gal US/min]

Tiroirs de commande de pression taille B 25 l/min [6,6 gal US/min]

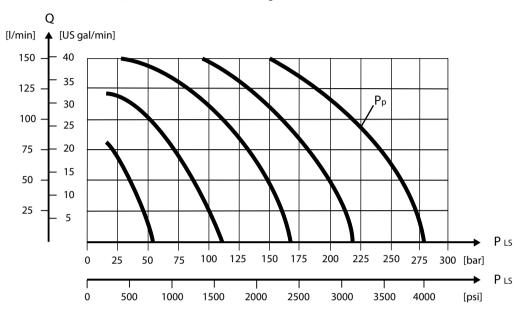
Exemple 1 : Détermination du débit d'huile

Vu:

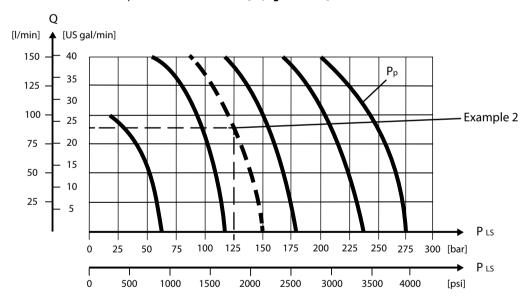
• Type de tiroir B : 25 l/min [6,6 gal US/min]

• Réglage de la pression Pp : 160 bar [2 320 psi]

• Pression de charge, LS_{A/B}: **100 bar [1 450 psi]**


Résultat:

© Danfoss | Mai 2021



Débit d'huile = 75 l/min [19,8 gal US/min]

Tiroirs de commande de pression Taille C 40 l/min [10,6 gal US/min]

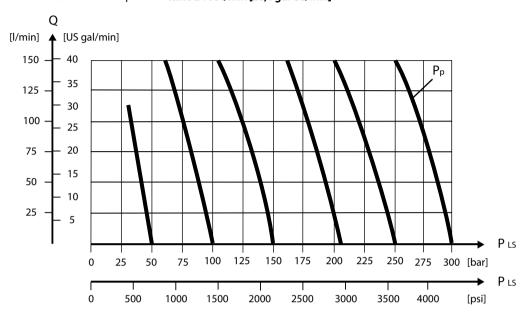
Tiroirs de commande de pression taille D 65 l/min [17,2 gal US/min]

Exemple 2 : Détermination de la taille du tiroir

Vu:

• Débit d'huile max.: 90 l/min [23,8 gal US/min]

Réglage de la pression Pp : 150 bar [2 175 psi]

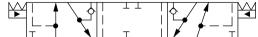

• Pression de charge, LS_{A/B}: **125 bar [1 810 psi]**

Résultat :

• Tiroir D, 65 l/min [17,2 gal US/min]

Tiroirs de commande de pression taille E 100 l/min [26,4 gal US/min]

Normalement, un tiroir plus petit peut être sélectionné avec régulation de pression. Nous savons que le tiroir peut être d'une taille inférieure à celle utilisée avec la commande de débit normale.



Tiroirs de commande de débit — Position neutre fermée

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec clapet navette		Débit - I/mi	n [gal US/min]
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9672	PVE	-	1 [0,26]	1 [0,26]	1 [0,26]	1 [0,26]
157B7005	PVE	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9543	PVE	-	10 [2,6]	5 [1,3]	5 [1,3]	10 [2,6]
157B7000	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9509	PVE	-	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B7001	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7002	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9903	PVE	-	50 [13,2]	50 [13,2]	50 [13,2]	50 [13,2]
157B7003	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9920	PVE	-	75 [19,8]	75 [19,8]	75 [19,8]	130 [34,3]
157B7004	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9977	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	130 [34,3]
11140830	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	130 [34,3]
157B9674	PVE	-	130 [34,3]	100 [26,4]	100 [26,4]	100 [26,4]
157B9503	PVE	-	2)	100 [26,4]	100 [26,4]	100 [26,4]
157B7006 ¹⁾	PVE	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
11137391	PVE	Oui	1 [0,26]	1 [0,26]	1 [0,26]	1 [0,26]
157B7025	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B7020	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11225588	PVE	Oui	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B7021	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7022	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7023	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11223875	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11212900	PVE	Oui	80 [21,1]	80 [21,1]	80 [21,1]	80 [21,1]
157B7024	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7026 ¹⁾	PVE	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
11201284	PVE	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9005	PVH/PVHC	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9000	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11225674	PVH/PVHC	-	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B9001	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9002	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]

Références pour les tiroirs de commande de débit symétriques (suite)

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9003	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9004	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9006 ¹⁾	PVH/PVHC	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9025	PVH/PVHC	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9020	PVH/PVHC	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11122055	PVH/PVHC	Oui	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B9021	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9022	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9023	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11196171	PVH/PVHC	Oui	*	90 [23,8]	90 [23,8]	*
157B9024	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9026 ¹⁾	PVH/PVHC	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]

²⁾ Complètement ouvert, aucune restriction de débit.

Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$
157B9524	PVE	-	5 [1,3]	5 [1,3]	10 [2,6]	10 [2,6]
11004213	PVE	-	5 [1,3]	5 [1,3]	65 [17,2]	65 [17,2]
157B9092	PVE	-	10 [2,6]	10 [2,6]	5 [1,3]	5 [1,3]
157B9514	PVE	-	10 [2,6]	10 [2,6]	15 [4,0]	15 [4,0]
157B9579	PVE	-	10 [2,6]	10 [2,6]	65 [17,2]	65 [17,2]
157B9579	PVE	-	65 [17,2]	10 [2,6]	65 [17,2]	65 [17,2]
157B9856	PVE	-	15 [4,0]	15 [4,0]	10 [2,6]	10 [2,6]
157B9516	PVE	-	15 [4,0]	15 [4,0]	10 [2,6]	10 [2,6]
11137748	PVE	-	20 [5,3]	20 [5,3]	15 [4,0]	15 [4,0]
157B9515	PVE	-	20 [5,3]	20 [5,3]	25 [6,6]	25 [6,6]
157B9950	PVE	-	25 [6,6]	25 [6,6]	10 [2,6]	10 [2,6]
11130056	PVE	-	25 [6,6]	25 [6,6]	15 [4,0]	15 [4,0]
157B9975	PVE	-	100 [26,4]	25 [6,6]	100 [26,4]	100 [26,4]
11119792	PVE	-	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]
11022810	PVE	-	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]
157B9566	PVE	-	65 [17,2]	65 [17,2]	10 [2,6]	10 [2,6]
11119557	PVE	-	75 [19,8]	75 [19,8]	65 [17,2]	65 [17,2]
157B9947	PVE	Oui	5 [1,3]	5 [1,3]	25 [6,6]	25 [6,6]
157B9555	PVE	Oui	7 [1,8]	7 [1,8]	10 [2,6]	10 [2,6]
11212898	PVE	Oui	10 [2,6]	10 [2,6]	5 [1,3]	5 [1,3]

¹⁾ Turbo sur port A.

Références pour les tiroirs de commande de débit asymétriques (suite)

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
157B9915	PVE	Oui	15 [4,0]	15 [4,0]	35 [9,2]	35 [9,2]
11088763	PVE	Oui	25 [6,6]	25 [6,6]	40 [10,6]	40 [10,6]
11078499	PVE	Oui	40 [10,6]	25 [6,6]	40 [10,6]	40 [10,6]
157B9810	PVE	Oui	30 [7,9]	30 [7,9]	20 [5,3]	20 [5,3]
11015763	PVE	Oui	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]
11229294	PVE	Port A	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]
11015765	PVE	Oui	40 [10,6]	40 [10,6]	65 [17,2]	65 [17,2]
11216150	PVE	Oui	40 [10,6]	40 [10,6]	65 [17,2]	65 [17,2]
157B9907	PVE	Oui	50 [13,2]	50 [13,2]	5 [1,3]	5 [1,3]
157B9828	PVE	Oui	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]
11021888	PVE	Oui	65 [17,2]	65 [17,2]	40 [10,6]	65 [17,2]
11216162	PVE	Oui	65 [17,2]	65 [17,2]	100 [26,4]	100 [26,4]
11036502	PVE	Oui	100 [26,4]	100 [26,4]	65 [17,2]	65 [17,2]
157B9857 ¹⁾	PVE	Oui	130 [34,3]	130 [34,3]	65 [17,2]	65 [17,2]
11119552	PVH/PVHC	-	15 [4,0]	15 [4,0]	10 [2,6]	10 [2,6]
11066371	PVH/PVHC	-	20 [5,3]	20 [5,3]	15 [4,0]	15 [4,0]
11130928	PVH/PVHC	-	25 [6,6]	25 [6,6]	15 [4,0]	15 [4,0]
11130924	PVH/PVHC	-	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]
11130831	PVH/PVHC	-	75 [19,8]	75 [19,8]	65 [17,2]	65 [17,2]
11094986	PVH/PVHC	-	2)	100 [26,4]	100 [26,4]	2)
11219179	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]
157B9084	PVH/PVHC	Oui	50 [13,2]	50 [13,2]	5 [1,3]	5 [1,3]
11145741 ¹⁾	PVH/PVHC	Oui	130 [34,3]	130 [34,3]	65 [17,2]	65 [17,2]
11145955	PVH/PVHC	Oui	150 [39,6]	60 [15,9]	90 [23,8]	150 [39,6]

¹⁾ Turbo sur port A.

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

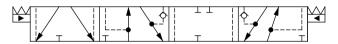
Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11124636	PVE	-	40 [10,6]	65 [17,2]	65 [17,2]	40 [10,6]	
11084778	PVE	-	2 [0,53]	10 [2,6]	10 [2,6]	5 [1,3]	
11104114	PVE	-	3 [0,79]	10 [2,6]	15 [4,0]	5 [1,3]	
11075794	PVE	-	5 [1,3]	10 [2,6]	5 [1,3]	10 [2,6]	
11098883	PVE	-	5 [1,3]	10 [2,6]	10 [2,6]	2 [0,53]	
11104452	PVE	-	5 [1,3]	15 [4,0]	10 [2,6]	3 [0,79]	
157B9633	PVE	-	5 [1,3]	25 [6,6]	25 [6,6]	5 [1,3]	

²⁾ Complètement ouvert, aucune restriction de débit.

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B) (suite)

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]	
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$
11098881	PVE	-	5 [1,3]	25 [6,6]	25 [6,6]	25 [6,6]
11126414	PVE	-	10 [2,6]	25 [6,6]	25 [6,6]	25 [6,6]
11129522	PVE	-	10 [2,6]	25 [6,6]	50 [13,2]	25 [6,6]
157B9952	PVE	-	25 [6,6]	38 [10,0]	38 [10,0]	25 [6,6]
157B9635	PVE	-	10 [2,6]	40 [10,6]	40 [10,6]	25 [6,6]
11129523	PVE	-	10 [2,6]	40 [10,6]	50 [13,2]	40 [10,6]
157B9638	PVE	-	25 [6,6]	40 [10,6]	40 [10,6]	25 [6,6]
157B9818	PVE	-	40 [10,6]	55 [14,5]	55 [14,5]	40 [10,6]
11022164	PVE	-	10 [2,6]	65 [17,2]	65 [17,2]	10 [2,6]
157B9634	PVE	-	25 [6,6]	65 [17,2]	65 [17,2]	25 [6,6]
157B9931	PVE	-	40 [10,6]	65 [17,2]	65 [17,2]	65 [17,2]
157B9551	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	10 [2,6]
157B9978	PVE	-	100 [26,4]	65 [17,2]	100 [26,4]	40 [10,6]
157B9976	PVE	-	40 [10,6]	100 [26,4]	65 [17,2]	100 [26,4]
157B9541	PVE	-	40 [10,6]	100 [26,4]	65 [17,2]	*
157B9949	PVE	-	40 [10,6]	100 [26,4]	100 [26,4]	100 [26,4]
157B9932	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	40 [10,6]
11129528	PVE	Oui	5 [1,3]	15 [4,0]	20 [5,3]	10 [2,6]
157B9827	PVE	Oui	10 [2,6]	20 [5,3]	20 [5,3]	10 [2,6]
157B9863	PVE	Oui	5 [1,3]	25 [6,6]	25 [6,6]	5 [1,3]
11100489	PVE	Oui	5 [1,3]	25 [6,6]	40 [10,6]	20 [5,3]
157B9946	PVE	Oui	25 [6,6]	25 [6,6]	10 [2,6]	10 [2,6]
157B9858	PVE	Oui	10 [2,6]	40 [10,6]	40 [10,6]	10 [2,6]
157B9639	PVE	Oui	25 [6,6]	40 [10,6]	40 [10,6]	25 [6,6]
157B9906	PVE	Oui	30 [7,9]	40 [10,6]	15 [4,0]	20 [5,3]
157B9632	PVE	Oui	25 [6,6]	65 [17,2]	65 [17,2]	25 [6,6]
157B9640	PVE	Oui	40 [10,6]	100 [26,4]	100 [26,4]	100 [26,4]
157B9839	PVH/PVHC	-	5 [1,3]	25 [6,6]	25 [6,6]	5 [1,3]
11104487	PVH/PVHC	-	5 [1,3]	25 [6,6]	25 [6,6]	25 [6,6]
11111729	PVH/PVHC	-	25 [6,6]	40 [10,6]	40 [10,6]	25 [6,6]
11074169	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	40 [10,6]
11218880	PVH/PVHC	Oui	5 [1,3]	25 [6,6]	25 [6,6]	5 [1,3]
11119474	PVH/PVHC	Oui	25 [6,6]	40 [10,6]	40 [10,6]	25 [6,6]
11145741	PVH/PVHC	Oui	150 [39,6]	150 [39,6]	150 [39,6]	65 [17,2]

^{*} Complètement ouvert, aucune restriction de débit.


Références pour les tiroirs de commande de débit pour PVML

Référence pièce	Commande	PVB avec		Débit - I/mir	Débit - I/min [gal US/min]		
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11088178	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]	
11076336	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	
11075706*	PVE	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]	
11088177	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	
11145032	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
11079716	PVH/PVHC	Oui	75 [19,8]	75 [19,8]	75 [19,8]	75 [19,8]	
11144181	PVH/PVHC	Oui	90 [23,8]	90 [23,8]	90 [23,8]	90 [23,8]	
11145641	PVH/PVHC	Oui	150 [39,6]	150 [39,6]	150 [39,6]	150 [39,6]	

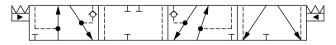
^{*} Turbo sur port A.

Tiroirs de commande de débit — Position neutre fermée avec port A flottant

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
11177587	PVE	Port B	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]


Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec	Débit - l/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11020293 ¹	PVE	Port B	*	100 [26,4]	65 [17,2]	*	

¹ Bande morte 0,8 mm [0,03"]

Tiroirs de commande de débit — Position neutre fermée avec port B flottant

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$	
157B7620	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]	
157B7621	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
157B7622	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	

^{*} Complètement ouvert, aucune restriction de débit

Références pour les tiroirs de commande de débit symétriques (suite)

Référence pièce	Commande	PVB avec		Débit - I/min [gal US/min]		
		clapet navette	$A \rightarrow T$	P → A	P → B	$B \rightarrow T$
157B7623	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7624 ¹	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9620	PVH/PVHC	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9636	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
11051805	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11085501 ¹	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

¹ Turbo sur ports A et B.

Références pour les tiroirs de commande de débit asymétriques

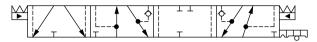
Référence pièce	èce Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
157B9911	PVE	Oui	30 [7,9]	30 [7,9]	65 [17,2]	65 [17,2]
157B9518 ¹	PVE	Oui	100 [26,4]	100 [26,4]	65 [17,2]	100 [26,4]

¹ Turbo sur port A.

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce		PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11129529	PVE	Oui	3 [0,8]	10 [2,6]	13 [3,4]	5 [1,3]	
157B9691	PVE	Oui	15 [4,0]	30 [7,9]	30 [7,9]	15 [4,0]	
157B9692	PVE	Oui	25 [6,6]	50 [13,2]	65 [17,2]	65 [17,2]	
157B9941 ¹	PVE	Oui	100 [26,4]	130 [34,3]	130 [34,3]	130 [34,3]	
157B9691	PVH/PVHC	Oui	15 [4,0]	30 [7,9]	30 [7,9]	15 [4,0]	
157B9692	PVH/PVHC	Oui	25 [6,6]	50 [13,2]	65 [17,2]	65 [17,2]	

¹ Turbo sur ports A et B.


Référence pour tiroirs de commande de débit pour PVML

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$\mathbf{P} \rightarrow \mathbf{A}$	$P \rightarrow B$	$B \rightarrow T$
11145032	PVH/PVHC	Oui	150 [39,6]	110 [29,1]	5 [19,8]	70 [18,5]

Tiroirs de commande de débit — Position neutre fermée avec port A flottant pour PVMF

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9825	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9820	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9821	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9822	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9823	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9824 ¹⁾	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

¹⁾ Turbo sur ports A et B.

Tiroirs de commande de débit - Position neutre fermée avec port B flottant pour PVMF

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence	Commande	PVB avec	Débit - I/min [g	ébit - I/min [gal US/min]			
pièce		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$	
157B9621	PVE	Port A	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
157B9622	PVE	Port A	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	
157B9623	PVE	Port A	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]	
157B9624 ¹	PVE	Port A	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	

¹ Turbo sur ports A et B

Références pour les tiroirs de commande de débit asymétriques

1	éférence	Commande	PVB avec	Débit - I/min [gal US/min]				
P	pièce		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \mathop{\rightarrow} T$	
1	57B9517 ¹	PVE	Port A	100 [26,4]	100 [26,4]	65 [17,2]	65 [17,2]	

¹ Turbo sur port A

Références pour les tiroirs de commande de débit avec PVML

	Référence Commande pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$\textbf{P} \rightarrow \textbf{B}$	$B \mathop{\rightarrow} T$	
ı	11233405	PVH/PVHC	Port A	150 [39,6]	90 [23,8]	90 [23,8]	55 [14,5]

Tiroirs de commande de débit — Position neutre fermée pour PVMR

Schéma pour PVBS sans clapet navette

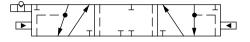
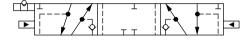



Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec		Débit - I/mir	n [gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9705	PVMR	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9700	PVMR	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11095634	PVMR	-	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B9701	PVMR	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9702	PVMR	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9703	PVMR	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9704	PVMR	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9725	PVMR	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9720	PVMR	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9721	PVMR	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9722	PVMR	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9723	PVMR	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9724	PVMR	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

Tiroirs de commande de débit — Position neutre ouverte/fermée

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

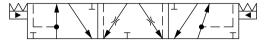
Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
11100878	PVE	Oui	35 [9,2]	35 [9,2]	35 [9,2]	35 [9,2]
11027254	PVE	Oui	75 [19,8]	75 [19,8]	75 [19,8]	75 [19,8]
157B9652	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9653	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9654	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
10030501	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]

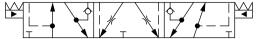
Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9698	PVE	Oui	15 [4,0]	15 [4,0]	10 [2,6]	10 [2,6]	
11055532	PVE	Oui	35 [9,2]	35 [9,2]	65 [17,2]	65 [17,2]	
11025812	PVE	Oui	50 [13,2]	50 [13,2]	75 [19,8]	75 [19,8]	
11025212	PVE	Oui	18 [4,8]	18 [4,8]	35 [9,2]	35 [9,2]	
11025161	PVE	Oui	50 [13,2]	50 [13,2]	25 [6,6]	25 [6,6]	
11157400	PVE	Oui	65 [17,2]	65 [17,2]	25 [6,6]	25 [6,6]	
11166644*	PVH/PVHC	Oui	50 [13,2]	50 [13,2]	25 [6,6]	25 [6,6]	

^{*} Bande morte 0,8 mm [0,03"]

Tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)


Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11094317	PVE	Oui	2,5 [0,65]	5 [1,3]	5 [1,3]	2,5 [0,65]	
11051992	PVE	Oui	5 [1,3]	18 [4,8]	18 [4,8]	5 [1,3]	
11027284	PVE	Oui	6 [1,6]	25 [6,6]	25 [6,6]	6 [1,6]	
11117573	PVE	Oui	25 [6,6]	35 [9,2]	65 [17,2]	65 [17,2]	
11025212	PVE	Oui	35 [9,2]	35 [9,2]	18 [4,8]	12 [3,2]	
11137744	PVE	Oui	35 [9,2]	50 [13,2]	75 [19,8]	75 [19,8]	
11027911	PVE	Oui	65 [17,2]	65 [17,2]	35 [9,2]	25 [6,6]	
11027922	PVE	Oui	75 [19,8]	75 [19,8]	50 [13,2]	35 [9,2]	



Tiroirs de commande de débit — position neutre ouverte étranglée

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce		PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9697	PVE	-	1 [0,26]	1 [0,26]	1 [0,26]	1 [0,26]	
157B7105	PVE	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]	
157B7100	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]	
157B7101	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
157B9534	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	40 [6,6]	
157B7102	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	
157B9537	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	65 [10,6]	
11091340	PVE	-	3)	40 [10,6]	40 [10,6]	3)	
157B9521	PVE	-	3)	40 [10,6]	40 [10,6]	3)	
157B9677	PVE	-	50 [13,2]	50 [13,2]	50 [13,2]	50 [13,2]	
157B7103	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]	
11007176	PVE	-	3)	65 [17,2]	65 [17,2]	3)	
11122809	PVE	-	75 [19,8]	75 [19,8]	75 [19,8]	75 [19,8]	
157B7104	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	
11144269	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	3)	
157B9098 ²⁾	PVE	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]	
157B7106 ¹⁾	PVE	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]	
157B9675	PVE	Oui	3 [0,8]	3 [0,8]	3 [0,8]	3 [0,8]	
157B7125	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]	
157B7120	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]	
157B9647	PVE	Oui	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]	
157B9594	PVE	Oui	20 [5,3]	20 [5,3]	20 [5,3]	20 [5,3]	
157B7121	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
11029379	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	40 [10,6]	
11153790	PVE	Oui	3)	25 [6,6]	25 [6,6]	3)	
157B7122	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	
157B9538	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	
11121691	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]	
11108808	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	
157B9649	PVE	Oui	55 [14,5]	55 [14,5]	55 [14,5]	55 [14,5]	
157B7123	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]	
157B9650	PVE	Oui	75 [19,8]	75 [19,8]	75 [19,8]	75 [19,8]	
11217660	PVE	Oui	*	90	90	*	

© Danfoss | Mai 2021

Références pour les tiroirs de commande de débit symétriques (suite)

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min	1
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
157B9930 ²⁾	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7124	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11122118	PVE	Oui	3)	100 [26,4]	100 [26,4]	3)
11142634 ²⁾	PVE	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B7126 ¹⁾	PVE	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9854 ¹⁾	PVE	Oui	130 [34,3]	130 [34,3]	130 [34,3]	3)
157B9105	PVH/PVHC	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9100	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9101	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9102	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9103	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9104	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9106 ¹⁾	PVH/PVHC	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9125	PVH/PVHC	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9120	PVH/PVHC	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9121	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9122	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9123	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9124	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9126 ¹⁾	PVH/PVHC	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
11201697	PVH/PVHC	Oui	40	40	40	40

³⁾ Complètement ouvert, aucune restriction de débit

Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11004389	PVE	-	5 [1,3]	5 [1,3]	65 [17,2]	65 [17,2]	
157B9094	PVE	-	15 [4,0]	15 [4,0]	30 [7,9]	30 [7,9]	
157B9544	PVE	-	100 [26,4]	15 [4,0]	25 [6,6]	40 [10,6]	
157B9526	PVE	-	30 [7,9]	30 [7,9]	15 [4,0]	15 [4,0]	
157B9815	PVE	-	30 [7,9]	30 [7,9]	20 [5,3]	20 [5,3]	
157B9545	PVE	-	40 [10,6]	40 [10,6]	15 [4,0]	40 [10,6]	
11093116	PVE	-	40 [10,6]	40 [10,6]	20 [5,3]	20 [5,3]	
11005204	PVE	-	40 [10,6]	40 [10,6]	65 [17,2]	65 [17,2]	
157B9595	PVE	-	40 [10,6]	40 [10,6]	100 [26,4]	100 [26,4]	
157B9860	PVE	-	50 [13,2]	50 [13,2]	20 [5,3]	20 [5,3]	

²⁾ Bande morte 0,8 mm [0,03"]

¹⁾ Turbo sur ports A et B

Références pour les tiroirs de commande de débit asymétriques (suite)

Référence pièce	Commande	PVB avec		Débit - I/m	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
11091575	PVE	-	55 [14,5]	55 [14,5]	30 [7,9]	30 [7,9]		
157B9696	PVE	-	65 [17,2]	65 [17,2]	10 [2,6]	10 [2,6]		
157B9506	PVE	-	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]		
157B9586	PVE	-	65 [17,2]	65 [17,2]	100 [26,4]	100 [26,4]		
11137895	PVE	-	*	65 [17,2]	40 [10,6]	*		
11122941	PVE	Oui	15 [4,0]	15 [4,0]	100 [26,4]	100 [26,4]		
157B9830	PVE	Oui	25 [6,6]	25 [6,6]	40 [10,6]	40 [10,6]		
11070681	PVE	Oui	25 [6,6]	25 [6,6]	50 [13,2]	50 [13,2]		
11217665	PVE	Oui	25 [6,6]	25 [6,6]	100 [26,4]	100 [26,4]		
157B9547	PVE	Oui	40 [10,6]	25 [6,6]	20 [5,3]	40 [10,6]		
157B9558	PVE	Oui	30 [7,9]	30 [7,9]	10 [2,6]	10 [2,6]		
157B9833	PVE	Oui	30 [7,9]	30 [7,9]	20 [5,3]	20 [5,3]		
157B9813	PVE	Oui	30 [7,9]	30 [7,9]	55 [14,5]	55 [14,5]		
11100875	PVE	Oui	*	35 [9,2]	18 [4,8]	*		
11100881	PVE	Oui	*	35 [9,2]	50 [13,2]	*		
157B9567	PVE	Oui	40 [10,6]	40 [10,6]	20 [5,3]	20 [5,3]		
157B9865	PVE	Oui	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]		
11125125	PVE	Oui	40 [10,6]	40 [10,6]	65 [17,2]	65 [17,2]		
157B9505	PVE	Oui	40 [10,6]	40 [10,6]	100 [26,4]	100 [26,4]		
11096423	PVE	Oui	50 [13,2]	50 [13,2]	65 [17,2]	65 [17,2]		
157B9681	PVE	Oui	55 [14,5]	55 [14,5]	30 [7,9]	30 [7,9]		
157B9814	PVE	Oui	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]		
11217660	PVE	Oui	1	80 [21,1]	80 [21,1]	1		
11202615	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	40 [10,6]		
157B9847	PVH/PVHC	-	30 [7,9]	30 [7,9]	20 [5,3]	20 [5,3]		
157B9546	PVH/PVHC	-	40 [10,6]	25 [6,6]	20 [5,3]	40 [10,6]		
157B9686	PVH/PVHC	-	40 [10,6]	30 [7,9]	25 [6,6]	40 [10,6]		
157B9685	PVH/PVHC	-	40 [10,6]	40 [10,6]	35 [9,2]	40 [10,6]		
157B9498	PVH/PVHC	-	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]		
11140120	PVH/PVHC	-	*	65 [17,2]	65 [17,2]	*		
157B9688	PVH/PVHC	-	100 [26,4]	20 [5,3]	30 [7,9]	40 [10,6]		
11079579	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	50 [13,2]	50 [13,2]		
11218879	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	15 [4,0]	15 [4,0]		
157B9689	PVH/PVHC	Oui	40 [10,6]	30 [7,9]	30 [7,9]	40 [10,6]		
11200936	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]		
11092123	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	100 [26,4]	100 [26,4]		
11147574	PVH/PVHC	Oui	*	65 [17,2]	65 [17,2]	*		

Références pour les tiroirs de commande de débit asymétriques (suite)

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
	clapet navette	$A \rightarrow T$	$\mathbf{P} \rightarrow \mathbf{A}$	$P \rightarrow B$	$B \rightarrow T$	
11200922	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]
11153474	PVH/PVHC	Oui	80 [21,1]	80 [21,1]	65 [17,2]	65 [17,2]

^{*} Complètement ouvert, aucune restriction de débit

Tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
11034321	PVE	-	3 [0,79]	3 [0,79]	10 [2,6]	1 [0,26]
11074918	PVE	-	5 [1,3]	10 [2,6]	5 [1,3]	10 [2,6]
11006879	PVE	-	25 [6,6]	25 [6,6]	65 [17,2]	25 [6,6]
11097891	PVE	Oui	40 [10,6]	100 [26,4]	40 [10,6]	40 [10,6]
157B9684	PVH/PVHC	-	25 [6,6]	30 [7,9]	30 [7,9]	25 [6,6]
157B9687	PVH/PVHC	-	25 [6,6]	35 [9,2]	35 [9,2]	25 [6,6]

Tiroirs de commande de débit pour PVML

Référence pièce	Commande	PVB avec	Débit - l/min [gal US/min]			
	clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9803	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11122774	PVE	-	90 [23,8]	90 [23,8]	90 [23,8]	90 [23,8]
157B9802	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

¹ Complètement ouvert, aucune restriction de débit

Tiroirs de commande de débit — position neutre ouverte étranglée pour PVMR

Schéma pour PVBS sans clapet navette

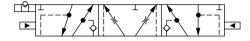



Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec		Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
157B9715	PVMR	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]		
157B9710	PVMR	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		
157B9711	PVMR	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
157B9712	PVMR	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B9678	PVMR	-	50 [13,2]	50 [13,2]	50 [13,2]	50 [13,2]		
157B9713	PVMR	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		
11128430	PVMR	-	80 [21,1]	80 [21,1]	80 [21,1]	80 [21,1]		
157B9714	PVMR	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		
157B9716 ¹⁾	PVMR	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]		
157B9735	PVMR	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]		
157B9730	PVMR	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		
157B9731	PVMR	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
157B9732	PVMR	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B9733	PVMR	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		
157B9734	PVMR	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		

¹⁾ Turbo sur ports A et B

Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11107125	PVMR	-	5 [1,3]	5 [1,3]	65 [17,2]	65 [17,2]	
11119504	PVMR	-	40 [10,6]	40 [10,6]	65 [17,2]	65 [17,2]	
11071543	PVMR	Oui	30 [7,9]	30 [7,9]	10 [2,6]	10 [2,6]	

© Danfoss | Mai 2021

Tiroirs de commande de débit — Position neutre étranglée A à T

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

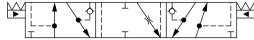
Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9504	PVE	-	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B7401	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7402	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7403	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7404	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7406 ¹⁾	PVE	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9846	PVE	-	2)	130 [34,3]	130 [34,3]	130 [34,3]
157B9527	PVE	Oui	15 [4,0]	15 [4,0]	15 [4,0]	15 [4,0]
157B7421	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7422	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7423	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7424	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7404	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7424	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

¹⁾ Turbo sur ports A et B.

Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - l/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
11022518	PVE	-	25 [6,6]	25 [6,6]	40 [10,6]	40 [10,6]
157B9834	PVE	-	30 [7,9]	30 [7,9]	20 [5,3]	20 [5,3]
11202228	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11201797	PVE	Oui	150 [39,6]	150 [39,6]	100 [26,4]	100 [26,4]

²⁾ Complètement ouvert, aucune restriction de débit.



Tiroirs de commande de débit — Position neutre étranglée B à T

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$
157B7500	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7501	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7502	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7503	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7504	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11064144 ¹⁾	PVE	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B7520	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7521	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7522	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7523	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7524	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11202731	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]

¹⁾ Turbo sur ports A et B.

Références pour les tiroirs de commande de débit asymétriques

Référence pièce Commande	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9948	PVE	Oui	25 [6,6]	25 [6,6]	10 [2,6]	10 [2,6]
11008038	PVE	Oui	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]
11037198	PVE	Oui	100 [26,4]	40 [10,6]	40 [10,6]	40 [10,6]
11126490	PVE	Oui	65 [17,2]	65 [17,2]	40 [10,6]	40 [10,6]

Références pour ouverture totale $B \rightarrow T$

Référence pièce Commande PVB avec clapet navette	Débit - I/min [gal US/min]					
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$\textbf{B} \to \textbf{T}$
11131447	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]

Tiroirs de commande de débit - Position fermée A et ouverte/fermée B

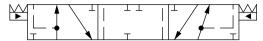
Références pour les tiroirs de commande de débit asymétriques

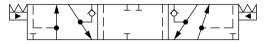
Référence	Commande	Commande PVB avec		Débit - I/min [gal US/min]				
pièce		navette	$A \rightarrow T$	$\mathbf{P} \rightarrow \mathbf{A}$	$P \rightarrow B$	$B \rightarrow T$		
157B9698	PVE	Oui	15 [4,0]	15 [4,0]	10 [2,6]	10 [2,6]		

© Danfoss | Mai 2021

Tiroirs de commande de débit - Position ouverte A et ouverte/fermée B

Références pour les tiroirs de commande de débit asymétriques


Référence	Commande	PVB avec	Débit - I/min [gal US/min]				
pièce		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$\mathbf{B} \to \mathbf{T}$	
157B9194	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]	



Tiroirs de commande de débit linéaire — Position neutre fermée

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$
11231130	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9770	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9771	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9511 ¹⁾	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9772	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9773	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9655 ¹⁾	PVE	Oui	85 [17,2]	85 [17,2]	85 [17,2]	85 [17,2]
11073991	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
11051903	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
175B9816	PVH/PVHC	-	75 [19,8]	75 [19,8]	75 [19,8]	75 [19,8]
11107159	PVH/PVHC	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11107222	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9080	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11083650	PVH/PVHC	Oui	2)	85 [17,2]	85 [17,2]	2)

¹⁾ Bande morte 1,1 mm [0,04"].

Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9086	PVH/PVHC	-	65 [17,2]	65 [17,2]	100 [26,4]	100 [26,4]

Bande morte 1,5 mm [0,06"].

Référence pour tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
11151485	PVE	Oui	30 [7,9]	85 [22,5]	110 [29,1]	35 [9,2]

Bande morte 0,8 mm [0,03"].

Références pour les tiroirs de commande de débit pour PVML

Référence pièce Co		PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$\textbf{B} \to \textbf{T}$
11127700	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

²⁾ Complètement ouvert, aucune restriction de débit.

Tiroirs de commande de débit linéaire — Position neutre ouverte étranglée

Schéma pour PVBS sans clapet navette

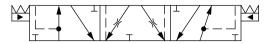


Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
11140460	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9780	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9781	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9782	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
11076654	PVE	Oui	50 [13,2]	50 [13,2]	50 [13,2]	50 [13,2]
157B9783	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9784	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9577*	PVE	Oui	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9807	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9805	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
11046738	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
11080984	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11153567	PVH/PVHC	-	100 [26,4]	40 [10,6]	40 [10,6]	100 [26,4]
11218248 ¹⁾	PVH/PVHC	-	130 [34,3]	130 [34,3]	130 [34,3]	130 [34,3]
157B9806	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9079	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9081	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9082	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11140180	PVH/PVHC	Oui	2)	100 [26,4]	100 [26,4]	2)
11231448	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
11216148	PVE	-	*	55 [14,5]	55 [14,5]	*
11231449	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

^{*} Turbo sur ports A et B

Références pour les tiroirs de commande de débit asymétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$\textbf{A} \to \textbf{T}$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11201830 ¹⁾	PVH/PVHC	-	2)	65 [17,2]	65 [17,2]	2)	

¹⁾ Bande morte 0,8 mm [0,03"].

²⁾ Complètement ouvert, aucune restriction de débit

Tiroirs de commande de débit pour PVML

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11141375	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
11142973	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	

Tiroirs de commande de débit linéaire - Position neutre étranglée A à T

Références pour les tiroirs de commande de débit symétriques

Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$\mathbf{B} \to \mathbf{T}$		
157B9794	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		

Tiroirs de commande de débit linéaire - Position neutre étranglée B à T

Références pour les tiroirs de commande de débit symétriques

Référence	Commande		Débit - I/min [gal US/min]				
pièce		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$\mathbf{B} \rightarrow \mathbf{T}$	
157B9804	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	

Tiroirs de commande de débit linéaire — Position neutre ouverte/fermée

Schéma pour PVBS sans clapet navette

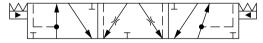
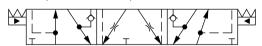



Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

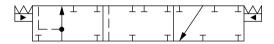
Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	P → A	P → B	$B \rightarrow T$	
11146795	PVE	Oui	15 [4,0]	40 [10,6]	65 [17,2]	15 [4,0]	
11146797	PVE	Oui	15 [4,0]	65 [17,2]	40 [10,6]	10 [2,6]	
11151486*	PVE	Oui	20 [5,3]	80 [21,1]	110 [29,1]	40 [10,6]	
11181495	PVE	Oui	15 [4,0]	40 [10,6]	40 [10,6]	15 [4,0]	

^{*} Bande morte 0,8 mm [0,03"].

Tiroirs de commande de débit linéaire - Position neutre fermée pour PVMR

Références pour les tiroirs de commande de débit symétriques

	Référence			Débit - I/min [gal US/min]					
	pièce		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
	11231130	PVMR	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		


Tiroirs de commande de débit linéaire - Position ouverte étranglée pour PVMR

Références pour les tiroirs de commande de débit symétriques

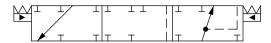
Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$		
11231448	PVMR	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B9196	PVMR	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		
11231449	PVMR	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		

Tiroirs de commande de débit à cylindre à action simple — Position neutre port A

Schéma pour PVBS sans clapet navette

Tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec	Dé	bit - I/min [gal	US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
11077423	PVE	-	5 [1,3]	5 [1,3]	-	-
157B7200	PVE	-	10 [2,6]	10 [2,6]	-	-
157B7201	PVE	-	25 [6,6]	25 [6,6]	-	-
157B7202	PVE	-	40 [10,6]	40 [10,6]	-	-
157B7203	PVE	-	65 [17,2]	65 [17,2]	-	-
157B7204	PVE	-	100 [26,4]	100 [26,4]	-	-
11015830	PVE	-	130 [34,3]	130 [34,3]	-	-
157B9200	PVH/PVHC	-	10 [2,6]	10 [2,6]	-	-
157B9201	PVH/PVHC	-	25 [6,6]	25 [6,6]	-	-
157B9202	PVH/PVHC	-	40 [10,6]	40 [10,6]	-	-
157B9203	PVH/PVHC	-	65 [17,2]	65 [17,2]	-	-
157B9204	PVH/PVHC	-	100 [26,4]	100 [26,4]	-	-
11085447	PVH/PVHC	-	130 [34,3]	130 [34,3]	-	-


Tiroir de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9905	PVE	-	25 [6,6]	65 [17,2]	-	-	

Tiroirs de commande de débit à cylindre à action simple - Position neutre port B

Schéma pour PVBS sans clapet navette

Tiroirs de commande de débit symétriques

Référence pièce		PVB avec		Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$		
157B7300	PVE	-	-	-	10 [2,6]	10 [2,6]		
157B7301	PVE	-	-	-	25 [6,6]	25 [6,6]		
157B7302	PVE	-	-	-	40 [10,6]	40 [10,6]		
157B7303	PVE	-	-	-	65 [17,2]	65 [17,2]		
157B7304	PVE	-	-	-	100 [26,4]	100 [26,4]		
157B9301	PVH/PVHC	-	-	-	25 [6,6]	25 [6,6]		

Tiroir de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce		PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9912	PVE	-	-	-	65 [17,2]	25 [6,6]	
11098878	PVE	-	-	-	25 [6,6]	5 [1,3]	
11104486	PVH/PVHC	-	-	-	25 [6,6]	5 [1,3]	

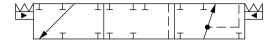
Tiroirs de commande de débit linéaire à cylindre à action simple - Position neutre fermée port A

Références pour les tiroirs de commande de débit symétriques

Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9588	PVE	-	100 [26,4]	100 [26,4]	-	-	

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B \rightarrow T inférieur à P \rightarrow A/B)

Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
11168845	PVH/PVHC	Port A	100 [26,4]	130 [34,3]	-	-		
11168871	PVH/PVHC	Port A	115 [30,4]	130 [34,3]	-	-		


Références pour les tiroirs de commande de débit pour PVML

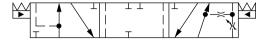
Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9585	PVE	-	100 [26,4]	100 [26,4]	-	-	

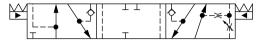
Tiroirs de commande de débit linéaire à cylindre à action simple — Position neutre port B

Schéma pour PVBS sans clapet navette

Tiroir de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec clapet navette	Débit - l/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9668	PVE	-	-	-	65 [17,2]	40 [10,6]




Tiroirs de commande de débit/pression — Position neutre fermée

Tous les tiroirs disposent de la commande de débit sur le port A, de la commande de pression sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs FC/PC symétriques

Référence pièce	Commande	PVB avec		Débit - I/mir	n [gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B7050	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7051	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7052	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7053	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7071	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7072	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7073	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7074	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9052	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9053	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9054	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9072	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9073	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9074	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]

Références pour les tiroirs FC/PC asymétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9529	PVE	Oui	65 [17,2]	65 [17,2]	40 [10,6]	65 [17,2]	

Tiroirs FC/PC de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec	Débit - l/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9533	PVE	Oui	10 [2,6]	25 [6,6]	5 [1,3]	25 [6,6]	
11120728	PVE	Oui	10 [2,6]	40 [10,6]	25 [6,6]	25 [6,6]	
157B9536	PVE	Oui	25 [6,6]	40 [10,6]	10 [2,6]	40 [10,6]	

Tiroirs de commande de débit/pression — Position neutre ouverte étranglée

Tous les tiroirs disposent de la commande de débit sur le port A, de la commande de pression sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande PC/FC symétriques

Référence pièce	Commande			Débit - I/min	[gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B7150	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7151	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7152	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7153	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7154	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11067130	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7171	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9556	PVE	Oui	30 [7,9]	30 [7,9]	30 [7,9]	30 [7,9]
157B7172	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7173	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7174	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11107242	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9173	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]

Références pour les tiroirs de commande PC/FC asymétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$	
157B9592	PVE	Oui	40 [10,6]	40 [10,6]	15 [4,0]	15 [4,0]	
11051961	PVE	Oui	100 [26,4]	100 [26,4]	65 [17,2]	65 [17,2]	
11139550	PVE	Oui	115 [30,4]	115 [30,4]	65 [17,2]	65 [17,2]	

Référence pour tiroirs FC/PC de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9548	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	5 [1,3]

Tiroirs de commande de débit/pression — Position neutre ouverte étranglée B à T

Tous les tiroirs disposent de la commande de pression sur le port A, de la commande de débit sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

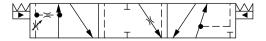


Schéma pour PVBS avec clapet navette

© Danfoss | Mai 2021

Références pour les tiroirs de commande PC/FC symétriques

Référence pièce	Commande	PVB avec		Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
157B7150	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		
157B7151	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
157B7152	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B7153	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		
11122525	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		
157B7562	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B7563	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		

Références pour les tiroirs de commande PC/FC asymétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9591	PVE	-	40 [10,6]	40 [10,6]	25 [6,6]	25 [6,6]	
157B9641	PVE	-	50 [13,2]	50 [13,2]	10 [2,6]	10 [2,6]	
157B9660	PVE	Oui	50 [13,2]	50 [13,2]	10 [2,6]	10 [2,6]	
157B9832	PVE	Oui	55 [14,5]	55 [14,5]	25 [6,6]	25 [6,6]	

Tiroirs de commande de débit/pression — Position neutre ouverte étranglée A à T

Tous les tiroirs disposent de la commande de débit sur le port A, de la commande de pression sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

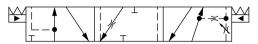
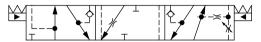



Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande PC/FC symétriques

Référence pièce	Commande	PVB avec		Débit - I/min	[gal US/min]
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B7450	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7451	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7452	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7453	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7470	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7471	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7472	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7473	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9083	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]

Références pour les tiroirs de commande PC/FC asymétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9660	PVE	Oui	40 [10,6]	40 [10,6]	25 [6,6]	40 [10,6]	

Tiroirs de commande de débit/pression — Position neutre ouverte étranglée B à T

Tous les tiroirs disposent de la commande de débit sur le port A, de la commande de pression sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

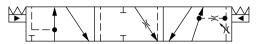
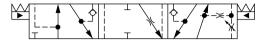



Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande PC/FC asymétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9591	PVE	-	40 [10,6]	40 [10,6]	25 [6,6]	40 [10,6]	
157B9641	PVE	-	50 [13,2]	50 [13,2]	10 [2,6]	10 [2,6]	
157B9660	PVE	Oui	50 [13,2]	50 [13,2]	10 [2,6]	10 [2,6]	
157B9832	PVE	Oui	55 [14,5]	55 [14,5]	25 [6,6]	25 [6,6]	

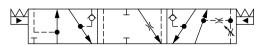
Tiroirs de commande de débit/pression — Ouvert/fermé en position A et fermé en position B

Tous les tiroirs disposent de la commande de débit sur le port A, de la commande de pression sur le port B et d'une bande morte sur 1,0 mm [0,04"].

Schéma pour PVBS sans clapet navette

Références pour les tiroirs de commande PC/FC symétriques

Référence	Commande	nde PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
157B9835	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
157B9836	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		


Référence pour tiroirs FC/PC de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9845	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	10 [2,6]	
11067514 ¹	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	25 [6,6]	

¹ Bande morte 1 mm [0,04"].

Tiroirs de commande de débit/pression — Position fermée A et ouverte/fermée B

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de débit FC/PC symétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11213570	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	

Tiroirs de commande de pression — Position neutre fermée

Schéma pour PVBS sans clapet navette

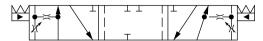
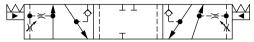



Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de pression symétriques

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]
		clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$
157B7015	PVE	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B7010	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9540	PVE	-	18 [4,8]	18 [4,8]	18 [4,8]	18 [4,8]
157B7011	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7012	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7013	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7035	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B7030	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11081829	PVE	Oui	18 [4,8]	18 [4,8]	18 [4,8]	18 [4,8]
157B7031	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7032	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7033	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9683	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9015	PVH/PVHC	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9010	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9540	PVH/PVHC	-	18 [4,8]	18 [4,8]	18 [4,8]	18 [4,8]
157B9011	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9012	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9013	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]

Tiroirs de commande de pression pour pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
			clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
111779	945	PVE	-	40 [10,6]	65 [17,2]	65 [17,2]	65 [17,2]

Tiroirs de commande de pression - Position neutre ouverte/fermée

Schéma pour PVBS sans clapet navette

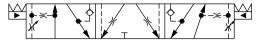
Référence			Débit - I/min [gal US/min]					
pièce		clapet navette	A T	P A	P B	B T		
157B9819	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		

Tiroirs de commande de pression — Ouvert/fermé en position A et fermé en position neutre B

Schéma pour PVBS sans clapet navette

Références pour tiroir PC/FC symétrique ouvert/fermé en position neutre

Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			A T	P A	P B	В Т		
157B9197	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		


Tiroirs de commande de pression — Position neutre ouverte étranglée

Tous les tiroirs disposent de la commande de pression sur le port A et le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

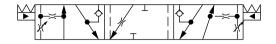
Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande de pression symétriques

Référence pièce	Commande	PVB avec		Débit - I/mi	n [gal US/min]
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B7115	PVE	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B7110	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7111	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7112	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7113	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9853*	PVE	Oui	3 [0,8]	3 [0,8]	3 [0,8]	3 [0,8]
157B7135	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B7130	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7131	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7132	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7133	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7134	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11057575	PVH/PVHC	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9110	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9112	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9113	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11243516*	PVH/PVHC	-	3 [0,8]	3 [0,8]	3 [0,8]	3 [0,8]
11057314	PVH/PVHC	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9130	PVH/PVHC	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9131	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]

^{*} Bande morte 0,8 mm [0,03"]

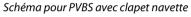
Références pour les tiroirs de commande de pression asymétriques


Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$	
157B9525	PVE	-	20 [5,3]	20 [5,3]	10 [2,6]	10 [2,6]	
11041330	PVE	-	40 [10,6]	40 [10,6]	20 [5,3]	20 [5,3]	
11190031	PVE	Oui	1	25 [6,6]	25 [6,6]	1	
11232271	PVE	Oui	1	65 [17,2]	65 [17,2]	1	
157B9634	PVH/PVHC	Oui	10 [2,6]	10 [2,6]	5 [1,3]	5 [1,3]	

¹ Complètement ouvert, aucune restriction de débit

Tiroirs de commande de pression — Position neutre étranglée A à T

Schéma pour PVBS avec clapet navette


Références pour les tiroirs de commande de pression - Position neutre étranglée A à T

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9646	PVE	Oui	15 [4]	15 [4]	15 [4]	15 [4]
157B9199	PVE	Oui	10 [2,6]	10 [2,6]	40 [10,6]	40 [10,6]

Tiroirs de commande de pression - Position neutre étranglée B à T

Schéma pour PVBS sans clapet navette

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]					
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$		
11122566	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		
157B7541	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
157B7542	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B7543	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		

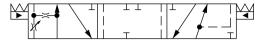
Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			$A \rightarrow T$	P → A	$P \rightarrow B$	$\mathbf{B} \rightarrow \mathbf{T}$		
157B9507	PVE	-	65 [17,2]	65 [17,2]	100 [26,4]	100 [26,4]		
11166963	PVE	Oui	65 [17,2]	65 [17,2]	100 [26,4]	100 [26,4]		

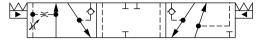
Tiroirs de commande de pression linéaire - Position neutre fermée

Schéma pour PVBS sans clapet navette

Références pour les tiroirs de commande de pression symétriques

Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]					
pièce			$A \rightarrow T$	$\mathbf{P} \rightarrow \mathbf{A}$	$P \rightarrow B$	$B \rightarrow T$		
11200910	PVE	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]		
11227386	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		




Tiroirs de commande de débit/pression — Position neutre fermée

Tous les tiroirs disposent de la commande de pression sur le port A, de la commande de débit sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

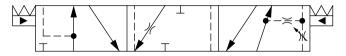
Références pour les tiroirs PC/FC symétriques

Référence pièce	Commande	PVB avec		Débit - I/mii	n [gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
157B7040	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7041	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7042	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7043	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7044	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7061	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7062	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7063	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7064	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9040	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9041	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9042	PVH/PVHC	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9043	PVH/PVHC	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9044	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9062	PVH/PVHC	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9063	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]

Références pour les tiroirs PC/FC asymétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9589	PVE	Oui	25 [6,6]	25 [6,6]	40 [10,6]	40 [10,6]
157B9528	PVE	Oui	65 [17,2]	40 [10,6]	65 [17,2]	65 [17,2]
11223873	PVE	Oui	65 [17,2]	40 [10,6]	65 [17,2]	40 [10,6]

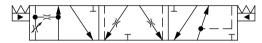
Tiroirs PC/FC de pression de retour (orifice de débit A/B->T inférieur à P->A/B)


Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9532	PVE	Oui	25 [6,6]	65 [17,2]	25 [6,6]	10 [2,6]	
11051179	PVE	Oui	25 [6,6]	10 [2,6]	25 [6,6]	5 [1,3]	
157B9535	PVE	Oui	40 [10,6]	10 [2,6]	40 [10,6]	25 [6,6]	
11051177	PVE	Oui	25 [6,6]	25 [6,6]	40 [10,6]	10 [2,6]	

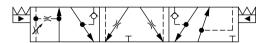
Tiroirs de commande de pression/débit — Position neutre fermée avec port B flottant

Tous les tiroirs disposent de la commande de pression sur le port A, de la commande de débit sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette


Référence pour tiroirs PC/FC symétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	$P \rightarrow A$	P → B	$\mathbf{B} \to \mathbf{T}$
157B9637	PVE	_	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]


Tiroirs de commande de débit/pression — Position neutre ouverte étranglée

Tous les tiroirs disposent de la commande de pression sur le port A, de la commande de débit sur le port B et d'une bande morte sur 1,5 mm [0,06"].

Schéma pour PVBS sans clapet navette

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande PC/FC symétriques

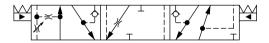
Référence pièce	Commande	PVB avec		Débit - I/min	[gal US/min]	
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$
11122564	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B7141	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7142	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7143	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7144	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B7161	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B7162	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B7163	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B7164	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
157B9163	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]

Références pour les tiroirs de commande PC/FC asymétriques

Référence pièce	Commande	PVB avec	Débit - l/min [gal US/min]				
Cla	clapet navette	$A \rightarrow T$	$P \rightarrow A$	P → B	$B \rightarrow T$		
157B9811	PVE	Oui	10 [2,6]	10 [2,6]	40 [10,6]	65 [17,2]	
157B9988	PVE	Oui	25 [6,6]	10 [2,6]	25 [6,6]	25 [6,6]	

Tiroirs de commande de débit/pression — Position neutre ouverte/fermée

Schéma pour PVBS sans clapet navette



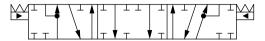
Référence pour tiroir PC/FC ouvert/fermé en position neutre

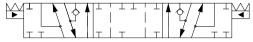
Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
	clapet n	clapet navette	$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$	
11104931	PVE	_	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]	

Tiroirs de commande de pression/débit — Ouvert/fermé en position A et fermé en position B

Schéma pour PVBS avec clapet navette

Références pour les tiroirs de commande PC/FC symétriques


Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]			
			$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$
11213571	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
11198095	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]



Tiroirs de commande de débit PVBZ — Position neutre fermée

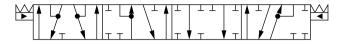
Schéma pour PVBZ sans clapet navette

Schéma pour PVBZ avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence	Commande	PVB avec		Débit - I/m	nin [gal US/min]	
pièce		clapet navette	$A \rightarrow T$	P → A	P → B	$B \rightarrow T$
157B9405	PVE	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
157B9400	PVE	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
157B9401	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
157B9402	PVE	-	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
157B9403	PVE	-	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
157B9404	PVE	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11051945	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
11019630	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11019631	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
11019633	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]
11019634	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]
11019635	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11105665	PVH/PVHC	-	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]
11105445	PVH/PVHC	-	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]
11105446	PVH/PVHC	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
11125900	PVH/PVHC	-	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]
11140563	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]
11140564	PVH/PVHC	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)


Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9573*	PVH/PVHC	-	38 [10,0]	25 [6,6]	65 [17,2]	15 [4,0]	
157B9651	PVE	-	38 [10,0]	25 [6,6]	65 [17,2]	15 [4,0]	
11084227	PVE	Oui	5 [1,3]	25 [6,6]	25 [6,6]	25 [6,6]	
11129527	PVE	Oui	40 [10,6]	10 [2,6]	40 [10,6]	10 [2,6]	
11085297	PVE	Oui	20 [5,2]	40 [10,6]	40 [10,6]	10 [2,6]	

^{*} Bande morte 1,5 mm [0,06].

Tiroirs de commande de débit PVBZ — Fermé en position neutre avec port A flottant

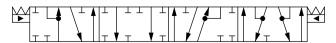
Schéma pour PVBZ avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence	Commande	PVB avec		Débit - l/min [gal US/min]				
pièce		clapet navette	$A \rightarrow T$	P → A	P → B	$B \rightarrow T$		
157B9415	PVE	Oui	5 [1,3]	5 [1,3]	5 [1,3]	5 [1,3]		
157B9410	PVE	Oui	10 [2,6]	10 [2,6]	10 [2,6]	10 [2,6]		
157B9411	PVE	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
157B9412	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B9413	PVE	Oui	65 [17,2]	65 [17,2]	65 [17,2]	65 [17,2]		
157B9414	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		
11027130	PVH/PVHC	Oui	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]		
11124250	PVH/PVHC	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		

Références pour les tiroirs de commande de débit de pression de retour (orifice de débit A/B->T inférieur à P->A/B)

Référence	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
pièce			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11085128	PVE	Oui	2 [0,5]	10 [2,6]	10 [2,6]	5 [1,3]	


Référence pour tiroirs de commande de débit pour PVML

Référence	Commande	PVB avec clapet navette	Débit - l/min [gal US/min]					
pièce			$A \rightarrow T$	P → A	$P \rightarrow B$	$B \rightarrow T$		
11128843	PVE	Oui	40 [10,6]	40 [10,6]	40 [10,6]	40 [10,6]		
157B9596	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		
157B9631	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]		
11017592	PVE	Oui	120 [31,7]	120 [31,7]	120 [31,7]	120 [31,7]		
157B9434 ¹⁾	PVE	Oui	120 [31,7]	120 [31,7]	120 [31,7]	120 [31,7]		

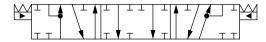
¹⁾ Bande morte 0,8 mm [0,03"].

Tiroirs de commande de débit PVBZ — Fermé en position neutre avec port B flottant

Schéma pour PVBZ avec clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
11147069	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	


Référence pour tiroirs de commande de débit pour PVML

Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$\textbf{P} \rightarrow \textbf{B}$	$B \rightarrow T$	
11146502	PVE	Oui	100 [26,4]	100 [26,4]	100 [26,4]	100 [26,4]	

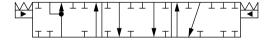
Tiroirs de commande de débit linéaire PVBZ — Position neutre fermée

Schéma pour PVBZ sans clapet navette

Références pour les tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9664	PVE	-	25 [6,6]	25 [6,6]	25 [6,6]	25 [6,6]	
157B9809	PVE	-	80 [21,1]	80 [21,1]	80 [21,1]	80 [21,1]	

Références pour les tiroirs de commande de débit asymétriques

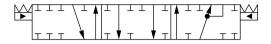

Référence pièce	Commande	PVB avec clapet navette	Débit - I/min [gal US/min]				
			$A \rightarrow T$	$\mathbf{P} \rightarrow \mathbf{A}$	$P \rightarrow B$	$B \rightarrow T$	
11130939	PVE	Oui	25 [6,6]	40 [10,6]	40 [10,6]	25 [6,6]	

Références pour les tiroirs de commande de débit pour PVML

Référence	Commande	PVB avec	Débit - I/min [gal US/min]				
pièce		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9866	PVE	Oui	25 [6,6]	40 [10,6]	40 [10,6]	25 [6,6]	

Tiroirs de commande de débit à cylindre à action simple PVBZ — Position neutre fermée port A

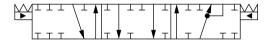
Schéma pour PVBS sans clapet navette


Tiroirs de commande de débit symétriques

Référence pièce		Commande	PVB avec	Débit - I/min [gal US/min]				
	clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$			
157B9859		PVE	-	25 [6,6]	25 [6,6]	-	-	

Tiroirs de commande de débit à cylindre à action simple PVBZ — Position neutre fermée port B

Schéma pour PVBS sans clapet navette

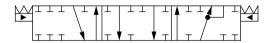


Tiroirs de commande de débit symétriques

Référence pièce Commande PVB avec		Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
11149444	PVE	-	-	-	140 [37]	140 [37]

Tiroirs de commande de débit linéaire à cylindre à action simple PVBZ — Position neutre fermée port B

Schéma pour PVBS sans clapet navette



Tiroirs de commande de débit symétriques

Référence pièce	Commande	PVB avec	Débit - l/min [gal US/min]			
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$
157B9859	PVE	-	25 [6,6]	25 [6,6]	-	-

Tiroirs de commande de débit à cylindre à action simple PVBZ-HS — Position neutre fermée

Schéma pour PVBS avec ou sans clapet navette

Tiroirs de commande de débit de pression de retour (orifice de débit B->T inférieur à P->B)

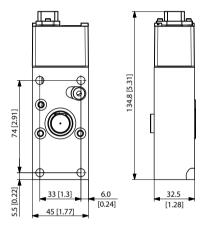
Référence pièce	Commande	PVB avec	Débit - I/min [gal US/min]				
		clapet navette	$A \rightarrow T$	$P \rightarrow A$	$P \rightarrow B$	$B \rightarrow T$	
157B9912	PVE	Oui	-	-	40 [10,6]	25 [6,6]	
11098878	PVE	Oui	-	-	100 [26,4]	65 [17,2]	

Indicateur directionnel PVDI

L'indicateur directionnel PVDI offre une rétroaction de direction électrique indépendante et un suivi de la position du tiroir par rapport à la position neutre pour une rétroaction redondante de la commande système. Il peut être utilisé en combinaison avec des commandes manuelles (PVM), hydrauliques (PVH) et électriques (PVE).

Le PVDI comprend:

- Détection de mouvement de tiroir redondant
- Convient au PVBS 1,5 mm [0,059"]
- La rétroaction électrique peut fournir un relai


Le PVDI ne peut pas être utilisé avec un PVMF ou un PVMR et doit être blindé.

Module d'indicateur directionnel PVDI

Poids: 0,6 kg [1,32 lb]

Dimensions de l'indicateur directionnel PVDI

Caractéristiques techniques

Tension	12 V – 24 V (min.10 V/max. 38 V)
Consommation de courant	10 mA – 100 mA
Consommation maximale de courant sur les broches	5 A
Position du commutateur	± 0,7 mm (+0,3/-0,2) [± 0,028 in (±0,01)]
Type de connecteur	1x4 DIN
Catégorie de protection	IP 65

Conformément à la norme CEI 60529 édition 2.2 2013-08, il est recommandé d'utiliser une protection sous forme de blindage.

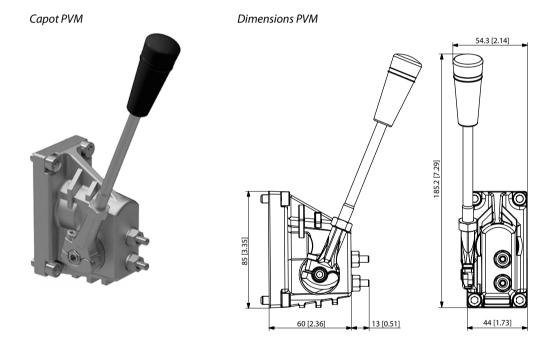
Références pour le PVDI

Référence	Description		
157B0101			
157B0102	Type de PVDI, capot PVE.		
157B0103			
157B0104	PVDI-H; capot PVH; à utiliser avec une plaque intermédiaire.		
157B0105	Type de PVDI avec deux commutateurs NO ; capot PVE.		

La commande PVG 32 peut se faire de façon manuelle, hydraulique, électrohydraulique et électrique.

Aperçu des commandes PVG 32:

- Commande manuelle PVM à la page 146
 - PVML, capot de centrage de ressort à la page 151
 - Capots PVMD/F/R à la page 150
- Commande hydraulique PVH à la page 152
- Commande électrohydraulique PVHC à la page 153
- Commande électrohydraulique PVE à la page 155
- PVE Série 4 à la page 157
 - PVEP à la page 157
- PVE série 5 à la page 161
 - PVED-CC série 5 à la page 161
- PVE série 7 à la page 166
 - PVEO à la page 166
 - PVEO-HP à la page 171
 - _ PVEM à la page 175
 - _ PVEA à la page 180
 - _ PVEH à la page 184
 - PVES à la page 188

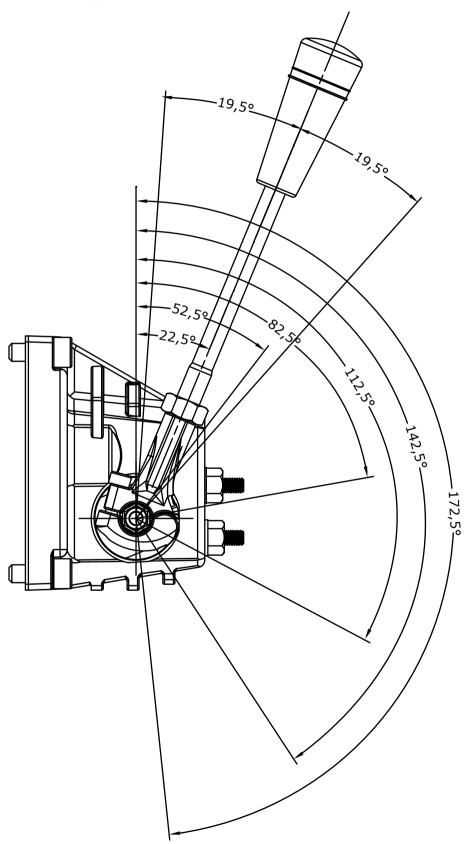

Commande manuelle PVM

Le capot de commande manuelle PVM est destiné à une utilisation sur n'importe quelle section de travail sur laquelle l'opérateur doit pouvoir interagir manuellement avec le tiroir.

Les variantes de PVM sont basées sur une plateforme générique dotée d'une sélection de fonctions supplémentaires pour vous permettre d'adapter le PVM aux exigences de n'importe quel système hydraulique, ce qui inclut les variantes principales suivantes :

- Commande manuelle PVM ou contournement d'une fonction
- Capot de centrage de ressort sans contournement manuel (PVML)
 - En option avec base de levier
 - En option avec base de levier et levier
 - Vis d'ajustement du débit en option

Les vis d'ajustement sont conçues pour limiter le déplacement du tiroir et ainsi le débit maximum possible.



Données du levier de commande

Positions du levier de commande	Plage de commande standard	Plage du levier de commande	Plage du levier de commande + position flottante
2 x 6	± 13,4°	± 19,5°	22,3°

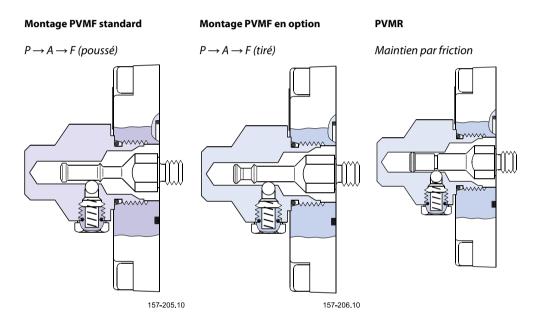
Positions de la poignée PVM

Données de couple des versions de PVM

Déplacement du tiroir	PVM+PVMD PVM+PVE	PVM+PVH	PVM+PVMR	PVM+PVMF
Depuis la position neutre	22 ± 3 Nm [16,2 ± 2,2 lbf · pi]	22 ± 3 Nm [16,2 ± 2,2 lbf · pi]	17 Nm [12,5 lbf · pi]	22 Nm [16,2 lbf · pi]
Déplacement max. du tiroir	28 ± 3 Nm [20,7 ± 2,2 lbf · pi]	83 ± 3 Nm [61,2 ± 2,2 lbf · pi]	-	-
Depuis toute autre position	-	-	0,6 Nm [0,44 lbf · pi]	-
En position flottante	-	-	-	60 Nm [44,3 lbf · pi]
Loin de la position flottante	-	-	-	28 Nm [20,7 lbf · pi]

Référence	Matériau	Vis d'ajustement	Base du levier	Base du levier et levier	Poids
157B3161	Fonte	Oui	_	Oui	
157B3171	Aluminium	Oui	_	Oui	
157B3173	Aluminium	Oui	_	_	
157B3174	Aluminium	Oui	Oui	_	
157B3184	Aluminium anodisé	Oui	_	Oui	0,4 kg [0,88 lb]
157B3186	Aluminium anodisé	Oui	_	_]
157B3191	Aluminium	_	_	Oui	
157B3193	Aluminium	-	_	_	1
157B3194	Aluminium	_	Oui	_	1

Fonctionnalité de la PVM

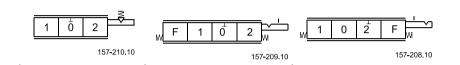

PVMF

La PVMF est disponible en montage standard ou en option.

PVMR

Le maintien par friction permet au tiroir directionnel d'être maintenu dans n'importe quelle position pour un débit variable en continu, réversible et à pression compensée.

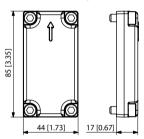
Cette fonction peut être maintenue indéfiniment sans avoir à continuer à maintenir le levier mécanique. La position de tiroir à maintien par friction peut être affectée par des forces de débit à commande différentielle élevées et une vibration du système entraînant une réduction du débit de la fonction de travail.


Capots PVMD/F/R

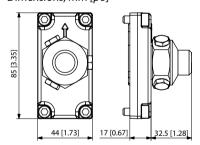
Les capots PVMD/F/R, également appelés capots de rétention, sont destinés aux sections PVB activées manuellement.

La plateforme générique de capot PVMD/F/R comprend les variantes principales suivantes :

- Capot**PVMD** pour actionnement mécanique
- Capot mécanique position flottante PVMF
- Capot à maintien par friction PVMR


Symbole PVMR (gauche), symbole de montage standard PVMF (centre), symbole de montage optionnel PVMF (droite)

Capot de rétention PVMD


Dimensions, mm [po]

Capot PVMF/R

Dimensions, mm [po]

Références pour les capots PVMD/F/R

Référence	Туре	Matériau	Poids
157B0001		Aluminium	
157B0009	PVMD	Aluminium anodisé	0,15 – 0,38 kg [0,33 – 0,84 lb]
157B0021		Fonte	[2,22 2,21.2]
157B0005	PVMF	Aluminium	
157B0004		Aluminium	0,34 – 0,57 kg
157B0012	PVMR	Aluminium anodisé	[0,75 – 1,26 lb]
157B0024		Fonte	

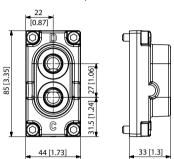
PVML, capot de centrage de ressort

Le capot de centrage de ressort PVML est destiné à une utilisation sur n'importe quelle section de travail sur laquelle l'opérateur n'est pas autorisé à interagir manuellement avec le tiroir.

Les vis d'ajustement sont conçues pour limiter le déplacement du tiroir et ainsi le débit maximum possible.

Références pour le PVML

Référence	Matériau	Vis d'ajustement
157B3202	Aluminium	-
157B3203	Aldifilialii	Oui (direction unique)


Commande hydraulique PVH

La commande hydraulique PVH est destinée à une utilisation sur n'importe quelle section de travail sur laquelle l'opérateur souhaite pouvoir interagir avec le tiroir principal via un joystick hydraulique. Le ressort de tiroir doit correspondre à cette méthode d'activation.

Capot PVH

Dimensions du capot PVH 32

Le levier de commande à distance hydraulique doit être directement raccordé au réservoir.

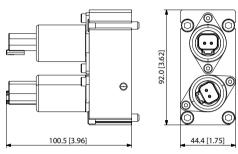
Caractéristiques techniques

Plage de pression de commande du ressort de tiroir principal	5 – 15 bar [73 – 218 psi]
Couple de manœuvre à partir de la position neutre	2,5 ±0,2 N•m [22,1±1,8 lb•po]
Couple de manœuvre position max. du tiroir	6,9 ±0,2 N•m [61,0±1,8 lb•po]
Pression maximale de l'huile pilote	30 bar [435 psi]

Références pour la commande hydraulique PVH

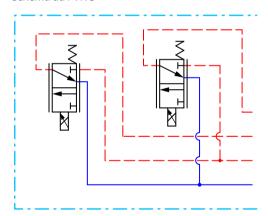
Référence	Matériau	Connexion	Poids
157B0007	Aluminium	9/16-18 UNF	
157B0008	Aldiffilliati	G1/4"	0,2 – 0,75 kg [0,44 – 1,65 lb]
157B0010	Aluminium anodisé	9/16-18 UNF	
157B0011		G1/4"	
157B0014	Fonte	9/16-18 UNF	
157B0016	ronte	G1/4"	

Commande électrohydraulique PVHC


Le PVHC est un module de commande électrique destiné à la commande du tiroir principal. La commande PVHC s'effectue via des signaux de commande PWM à courant élevé de 100-400 Hz à double modulation d'impulsions en largeur. La position du tiroir évolue lorsque les conditions changent (par exemple, un changement de température).

Une entrée avec pression de pilotage hydraulique est requise.

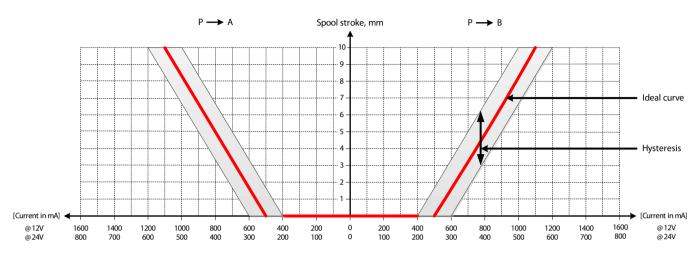
PVHC, commande électrohydraulique



Dimensions du PVHC

Poids: 0,93 kg [2,05 lb]

Schéma du PVHC



une fréquence de tremblement avec une certaine amplitude est nécessaire pour des performances d'application optimales.

Course de tiroir PVHC vs caractéristiques actuelles

PVHC characteristics – Spool stroke vs current

P109250

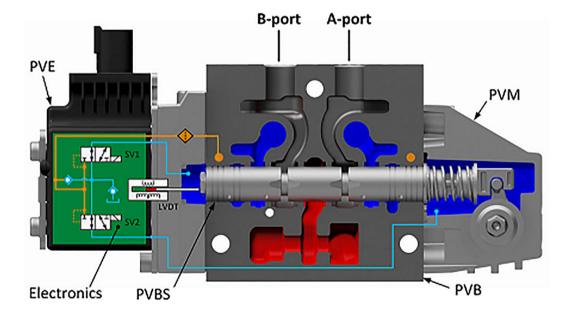
L'hystérésis est affectée par la viscosité, la friction, les forces de débit, la fréquence de tremblement et la fréquence de modulation.

Caractéristiques techniques

Tension d'alimentation U _{DC}	12 V _{CC}	24 V _{CC}
Courant d'entrée	0-1 500 mA	0 – 750 mA
Résistance	4,75 Ω ± 5 %	20,8 Ω ± 5 %
Temps de réponse	150 à 200 ms	
Fréquence PWM	100 à 400 Hz	
Plage de pression d'huile de pilotage	20 – 25 bar [290 – 362 psi]	
Plage de température ambiante	-30 °C à 80 °C [-22 °F à 176 °F]	
Plage de température	-20 °C à 80 °C [-4 °F à 176 °F]	
Propreté du fluide	23/19/16 (selon ISO 4406)	

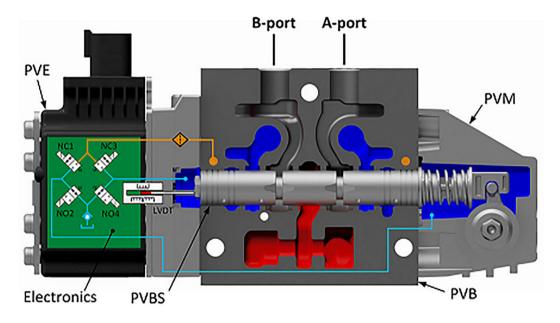
Références pour les commandes PVHC

Référence	Alimentation électrique	Type de connecteur	Classe de protection
11112037	12V	- AMP	IP 66
11112036	24V		
11112038	12V	2x2 DEUTSCH	IP 67
11112039	24V	2X2 DE013CH	IF 07


Le PVE analogique et les PVE analogiques séries 4, 5 et 7 sont des commandes électrohydrauliques utilisées pour commander une seule section de travail d'un groupe de distributeurs proportionnels PVG. La gamme de commande PVE pour PVG 32 inclut des variantes avec différents niveaux et caractéristiques de performance.

La bobine positionne le tiroir principal dans une section de travail PVG afin de contrôler soit le débit soit la pression de l'huile distribuée vers et depuis la fonction de travail. Le signal vers la commande est un signal de tension analogique, ce qui permet à l'utilisateur de commander la fonction de travail à distance au moyen d'un joystick, d'un contrôleur ou d'un dispositif similaire.

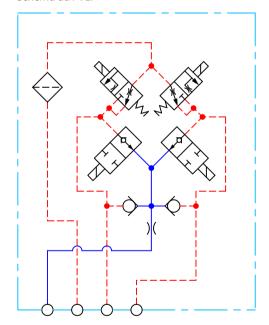
Le pont d'électrovannes électro-hydraulique de la commande est disponible dans plusieurs modèles utilisant différents principes de régulation selon le niveau de performance. La bobine positionne le tiroir principal en distribuant la pression de pilotage de l'huile de l'un des deux côtés, en pressurisant un côté avec la pression de pilotage tout en soulageant le côté opposé du réservoir, et inversement. Toutes les commandes proportionnelles sont munies d'une commande de tiroir en boucle fermée et d'une surveillance des défaillances en continu.


Les différents principes hydrauliques associés aux divers principes de régulation des électrovannes déterminent si la commande contrôle le tiroir proportionnellement à un signal de commande ou bien tout ou rien (ON/OFF) en fonction d'un signal de tension. Les caractéristiques de contrôle de la tension des commandes PVE sont indiquées dans la figure ci-dessous à gauche.

PVG 32 avec PVEO/PVEM (PVEO sans LVDT)

PVG 32 avec PVEH/PVES

PVE Série 4


PVEP

La commande PVEP est une commande électrohydraulique proportionnelle en boucle fermée utilisée principalement pour piloter des fonctions de travail exigeant des performances très élevées.

PVEP

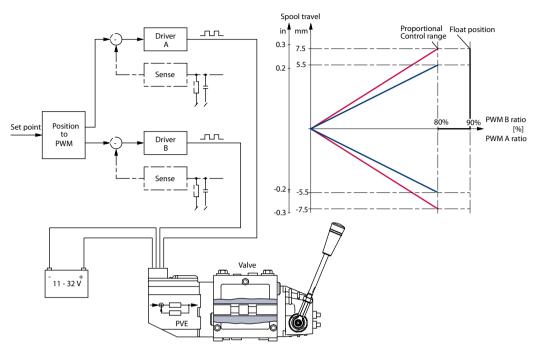


Schéma du PVEP

Fonctionnalité du PVEP

La fonctionnalité du PVEP comprend un circuit électrique avec logique à boucle fermée. Un microcontrôleur embarqué traite la tension de signal et le signal de rétroaction du LVDT et ajuste les électrovannes en conséquence. La surveillance active ou passive des défaillances, le voyant LED indiquant la survenue d'une défaillance et la broche d'erreur sont des fonctions par défaut du PVEP.

La commande d'un PVEP requiert deux signaux PWM. Le concept de base entre un contrôleur et le PVEP est représenté dans l'image ci-dessous. Le contrôle de courant n'est pas possible avec le PVEP.

Il est important que l'alimentation électrique (V_{bat}) soit connectée avant le signal PWM. Les signaux PWM sont des signaux de tension à faible puissance. Par conséquent, aucun pilote de courant n'est nécessaire. Le PVEP réalise une mesure de différence en temps réel sur l'entrée PWM, ainsi aucun filtrage ou conversion n'intervient.

Dimensions du PVEP

Poids: 0,9 kg [1,98 lb]

45 [1.77]

Toutes les bornes de connecteur sont protégées contre les courts-circuits, les connexions inverses et leurs combinaisons. La connexion de broches d'erreur depuis au moins deux PVE provoquera un dysfonctionnement du système de surveillance.

106 [4.17]

157-722.10

Caractéristiques techniques des PVEP

Pression de pilotage

Minimum	Nominale	Maximum
10 bar [145 psi]	13,5 bar [196 psi]	15 bar [218 psi]

Consommation de fluide

Neutre	Position bloquée	Commande
0,03 l/min	0,01 l/min	0,8 l/min
[0,106 gal US/min]	[0,026 gal US/min]	[0,21 gal US/min]

Température du fluide

Minimum	Recommandée	Maximum	Ambiante recommandée
-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]	-30 à 60 °C [-22 à 140 °F]

Viscosité du fluide

Plage de fonctionnement	12 à 75 mm ² /s [65 à 347 SUS]	
Minimum	4 mm ² /s [39 SUS]	
Maximum	460 mm ² /s [2 128 SUS]	
Propreté	18/16/13 (selon ISO 4406)	

Caractéristiques de la commande électrique

Tension d'alimentation U _{DC}	plage	11 → 32 V	
	ondulation max.	5%	
	surtension (5 min max.)	36 V	
Plage de commande PWM (cycle de fonctio	nnement)	10 → 80%	
Fréquence PWM		100 → 1 000 Hz	
Basculement de tension d'entrée PWM		$0 \rightarrow U_{DC}$	
Point de déclenchement PWM		70 % de U _{DC}	
Impédance d'entrée (abaissement standard)		5 kΩ	
Condensateur d'entrée			
Consommation de puissance		7 W	
Tension d'erreur	Défaillance	U _{DC}	
	Aucune défaillance	< 2 V	

Caractéristiques du voyant LED

Couleur	Caractéristiques du voyant LED	Description
Vert constant		Aucune erreur - Actionnement
Rouge constant		Erreur interne
Rouge clignotant à 1,5 Hz		Erreur externe ou de flottement

Connecteur 6 broches PVEP

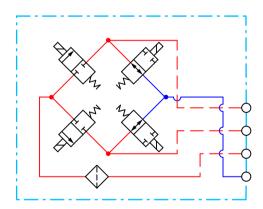
Brochage	Broche 1	Broche 2	Broche 3	Broche 4	Broche 5	Broche 6
1x6 DEUTSCH	PWM_A	Erreur	PWM_B	-	GND	U _{DC}

Référence pour PVEP

Référence	Connecteur	IP	Surveillance des défaillances
11034832	1x6 DEUTSCH	IP 67	Actif

PVE série 5

PVED-CC série 5


Le PVED-CC série 5 est une commande numérique haute performance pour les distributeurs PVG 32 et PVG 100, pouvant utiliser deux protocoles différents : CANopen et ISObus/J1939.

Le PVED-CC série 5 offre une commande CAN bus par l'intermédiaire de câblage en boucle simplifiant le faisceau de câblage et l'intelligence intégrée, où des caractéristiques spécifiques de commande adaptent le comportement de la commande à la fonction exacte nécessaire.

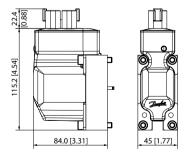

PVED-CC série 5

Schéma du PVED-CC S5

Dimensions du PVED-CC série 5

Pour plus d'informations, voir PVED-CC Séries 5 CANopen Informations techniques, **BC180386484705**.

Pour plus d'informations, voir PVED-CC Séries 5 ISObus Informations techniques, BC187186484889.

Aperçu des données de fonctionnement

Données électriques

Tension		12 V _{CC}	24 V _{CC}
Consommation de courant	En fonctionnement	520 mA	260 mA
	Neutre - Mode d'alimentation	80 mA	45 mA
Consommation d'énergie	En fonctionnement	6,24 W	6,24 W
	Neutre - Mode d'alimentation	1 W	1,1 W
Tension d'alimentation	Nominale	11 – 32 V _{CC}	
(V _{bat})	Plage	9 – 35,9 V _{CC}	
	Ondulation maximale	5%	
Bus CAN	Activé	5,5 – 36 V _{CC} *	

^{*} PVED communiquant sur le bus CAN, mais pas complètement opérationnel.

Plage de température

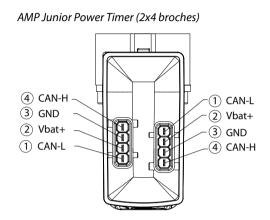
		Min.	Max.
Température	Ambiante		90 °C
	Huile	−40 °C	90 C
	Stockage		110°C

Données hydrauliques

Pression de pilotage	13,5 ± 1,5 bar	
Pression du réservoir	Continue	25 bar
	Intermittente	40 bar
Consommation d'huile	Consommation d'huile Hors tension électrique	
	Position verrouillée du tiroir	0 l/min
	Position de tiroir en constante évolution	0,7 l/min
Contamination	(ISO 4406)	23/19/16
Plage de viscosité	Nominale	12 – 75 mm ² /s
	Minimum	4,2 – 12 mm ² /s*
	Maximum	75 – 1 000 mm ² /s

^{*} Le PVED présente des performances de fonctionnement réduites

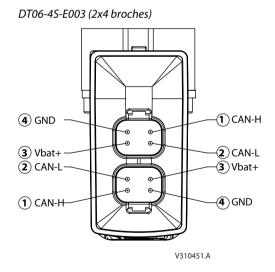
Règlements gouvernementaux


Description	Standard
Basse tension	2006/95/EC
Directive CEM	2004/108/EC
Sécurité	ISO4413:2010

Connecteurs

Connecteurs à 2x4 broches disponibles : AMP Junior Power Timer et DEUTSCH DT06-4S-E003. Les broches sont connectées par paires en interne entre les connecteurs. Les connecteurs de couplage ne sont pas fournis par Danfoss.

Connecteur AMP


Brochage:

- 1. CAN Low
- 2. Vbat+
- 3. GND
- 4. CAN High

Terminal	Joint	Boîtier	Indice de protection IP
929930-1	828901-1	2-967059-1 (gris) ou	IP66
(4 pièces)	(4 pièces)	1-967059-1 (noir)	

⁶ Aucun codage noir/gris du connecteur

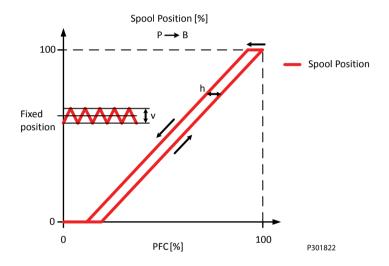
Connecteur DEUTSCH

Brochage:

- 1. CAN High
- 2. CAN Low
- **3.** Vbat+
- **4.** GND

 $\textit{Indice de protection IP}: IP67 \ ; IP69K \ sans \ connecteur$

© Danfoss | Mai 2021

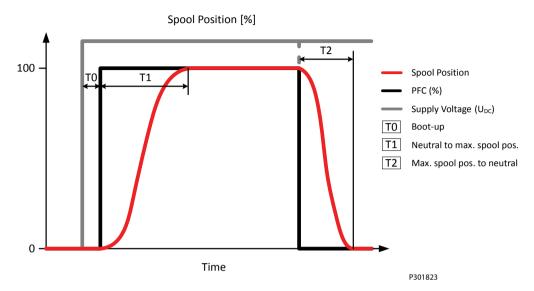


Coloration LED pour PVED-CC série 5

Caractéristiques du voyant LED

Couleur	Caractéristiques du voyant LED	Description
Vert constant		Aucune erreur - Actionnement
Vert clignotant à 1,5 Hz		Position neutre - Économie d'énergie
Rouge constant		Erreur interne
Rouge clignotant à 1,5 Hz		Erreur externe ou de flottement
Jaune		Mode désactivation

Hystérésis et ondulation des PVED-CC


Définition d'hystérésis

Hystérésis (h)	Nominale [%]	1,45 %
Ondulation constante à un signal de commande constant	Nominale [%]	0,29 %

Temps de réaction des PVED-CC

Temps de réaction

Définition de réponse échelonnée

Réaction	Durée (nominale)
T0 – Démarrage	440 ms*
T1 – Commande PFC constante	177 ms
T2 – Commande PFC constante	114 ms

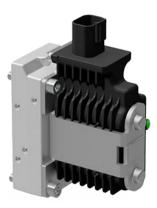
^{*} Y compris autodiagnostic au démarrage (POST) et initialisation sécurité du sous-système.

Les valeurs indiquées sont des valeurs préliminaires qui peuvent évoluer avec l'obtention d'une base statistique plus conséquente.

Références PVED-CC

Références PVED-CC selon le type de connecteur (IP67).

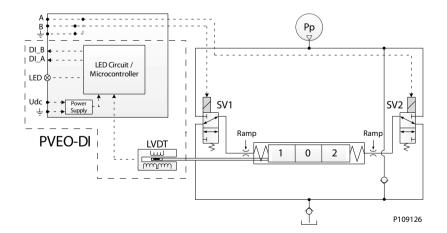
Référence	11107869	11107870
Type de connecteur	1x4 DEUTSCH	1x4 AMP



PVE série 7

PVEO

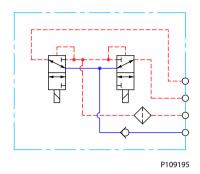
La commande PVEO est une commande tout ou rien (ON/OFF) non proportionnelle en boucle ouverte utilisée principalement pour piloter des fonctions de travail ON/OFF simples n'exigeant pas une commande proportionnelle de la vitesse ou du débit d'huile.


PVEO série 7

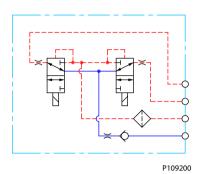
- Position neutre ou course max. du tiroir selon le signal de commande
- Alimentation électrique de 12 V_{CC} ou 24 V_{CC}
- Connecteurs DEUTSCH, AMP ou DIN/Hirschman
- Pression d'huile de pilotage du PVE standard de 13,5 bar [196 psi]
- LED indiquant uniquement si le dispositif est sous ou hors tension
- Rampe (-R) ou sortie d'indication de direction (-DI)

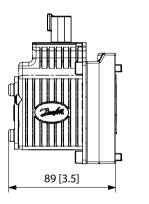
Principe de fonctionnement

Fonctionnalité du PVEO-DI


Le fonctionnement du PVEO/PVEO-HP standard comprend le circuit électrique le plus simple de la gamme de commandes, utilisant une tension de signal ou une tension d'alimentation fixe de 12 V $_{\rm CC}$ ou 24 V $_{\rm CC}$ et un circuit LED simple pour commander le voyant LED indicateur de mise sous/hors tension.

La variante PVEO-DI comprend un capteur LVDT de position du tiroir et un circuit électrique plus avancé avec microcontrôleur embarqué et alimentation électrique distincte pour la fonction d'indication de direction.




La mise sous tension de l'électrovanne SV1 et la mise hors tension simultanée de l'électrovanne SV2 font bouger le tiroir principal vers la droite, et inversement. Si les électrovannes SV1 et SV2 sont toutes les deux mises sous ou hors tension en même temps, le tiroir principal reste bloqué en position neutre.

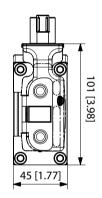

Schéma PVEO/PVEO-DI

Schéma PVEO-R

Hauteur et poids des connecteurs

DEUTSCH	АМР	DIN	Poids
30 mm [1,2"]	38 mm [1,5"]	40 mm [1,6"]	0,7 kg [1,54 lb]

Caractéristiques techniques des PVEO

Caractéristiques de la commande

Description	Туре	12 V _{CC}	24 V _{CC}
Tension d'alimentation	Plage	11 à 15 V _{CC}	22 à 30 V _{CC}
(U _{DC})	Ondulation maximale	5%	5%
Consommation de courant	Typique	480 mA	250 mA
	Minimum	430 mA	220 mA
	Maximum	950 mA	480 mA

Pression de pilotage

Minimum	Nominale	Maximum
10 bar [145 psi]	13,5 bar [196 psi]	15 bar [218 psi]

Consommation de fluide

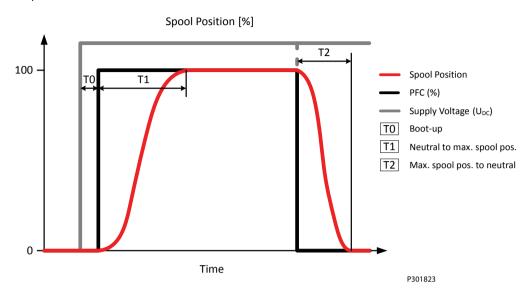
Position neutre/verrouillée	Commande (PVEO-R)	Commande
0 l/min	0,3 l/min	0,9 l/min
	[0,08 gal US/min]	[0,24 gal US/min]

Spécifications techniques

Paramètre	Minimum Plage recommandée		Maximum	
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]	
Propreté du fluide	18/16/13 (selon ISO 4406)			
Température de stockage	Ambiante : -50 à 90 °C [-58 à 194 °F]			
Température de fonctionnement	Ambiante : -40 à 90 °C [-40 à 194 °F]			

Caractéristiques du voyant LED

Couleur	Caractéristiques du voyant LED	Description
Vert constant		Dispositif sous tension


Temps de réaction PVEO/PVEO-CI

Temps de réaction	Direction A	Direction B
De la position neutre à la course complète	173 ms	105 ms
Course max. du tiroir jusqu'à position neutre	396 ms	565 ms

Temps de réaction des PVEO

Temps de réaction

Définition de réponse échelonnée

Réaction	PVG 32		PVG 128/256	
	PVEO PVEO-DI	PVEO-R	Port A	Port B
T0 – Démarrage	0	0	0	0
T1 – Position neutre jusqu'à la course max. du tiroir à la mise sous tension/à U _{DC} constante	110 ms	325 ms	375 ms	520 ms
T2 – Course max. du tiroir jusqu'à la position neutre lors de la mise hors tension/à U _{DC} constante	110 ms	340 ms	350 ms	600 ms

Références PVEO

Références pour les PVEO et PVEO-DI

Référence	Туре	Connecteur	Classe de protection	Tension	Interface
11166843		1x4 DEU	IP 67	12 V _{CC}	
11166838		1x4 DEU	IP 67	24 V _{CC}	
11166866	PVEO	1x4 AMP	IP 66	12 V _{CC}	
11166837		1x4 AMP	IP 66	24 V _{CC}	Standard
11166836		1x4 DIN	IP 65	12 V _{CC}	Stanuaru
11166743		1x4 DIN	IP 65	24 V _{CC}	
11168740*	PVEO-DI	2x4 AMP	IP 66	12 V _{CC}	
11166869*		2x4 AMP	IP 66	24 V _{CC}	

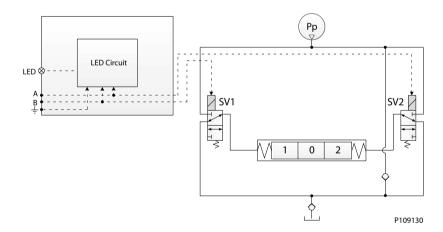
Références pour les PVEO et PVEO-DI (suite)

Référence	Туре	Connecteur	Classe de protection	Tension	Interface
11166753		1x4 DEU	IP 67	12 V _{CC}	
11166754		1x4 DEU	IP 67	24 V _{CC}	
11166867	PVEO-R	1x4 AMP	IP 66	12 V _{CC}	Rampe
11166776	- FVEO-R	1x4 AMP	IP 66	24 V _{CC}	rampe
11166831		1x4 DIN	IP 65	12 V _{CC}	
11166908		1x4 DIN	IP 65	24 V _{CC}	

^{*} Comprend la fonction spéciale indication de direction.

PVEO-HP

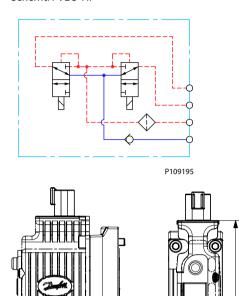
La commande PVEO-HP est une commande tout ou rien (ON/OFF) non proportionnelle en boucle ouverte utilisée principalement pour piloter des fonctions de travail ON/OFF simples n'exigeant pas une commande proportionnelle de la vitesse ou du débit d'huile.


PVEO-HP

Toutes les variantes sont disponibles avec les caractéristiques suivantes :

- Position neutre ou course max. du tiroir selon le signal de commande
- Alimentation électrique de 12 V_{CC} ou 24 V_{CC}
- Connecteurs DEUTSCH, AMP ou DIN/Hirschman
- Pression d'huile pilote PVH/PVHC de 25 bar [362,6 psi]
- · LED indiquant uniquement si le dispositif est sous ou hors tension

Schéma fonctionnel du PVEO-HP


Le fonctionnement du PVEO/PVEO-HP standard comprend le circuit électrique le plus simple de la gamme de commandes, utilisant une tension de signal ou une tension d'alimentation fixe de 12 V _{CC} ou 24 V _{CC} et un circuit LED simple pour commander le voyant LED indicateur de mise sous/hors tension.

La mise sous tension de l'électrovanne SV1 et la mise hors tension simultanée de l'électrovanne SV2 font bouger le tiroir principal vers la droite, et inversement. Si les électrovannes SV1 et SV2 sont toutes les deux mises sous ou hors tension en même temps, le tiroir principal reste bloqué en position neutre.

© Danfoss | Mai 2021

Schéma PVEO-HP

Hauteur et poids des connecteurs

89 [3.5]

DEUTSCH	АМР	DIN	Poids
30 mm [1,2"]	38 mm [1,5"]	40 mm [1,6"]	0,7 kg [1,54 lb]

45 [1.77]

Caractéristiques techniques de la PVEO-HP

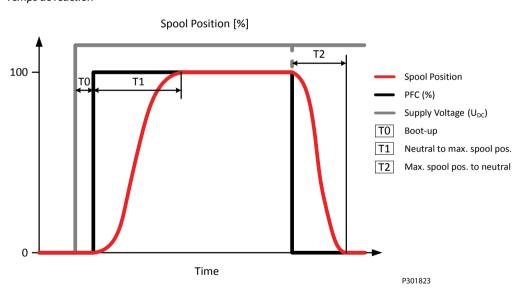
Caractéristiques de la commande

Description	Туре	12 V _{CC}	24 V _{CC}
Tension d'alimentation	Plage	11 à 15 V _{CC}	22 à 30 V _{CC}
(U _{DC})	Ondulation maximale	5	%
Consommation de courant	Typique	1 093 mA	555 mA
	Minimum	660 mA	340 mA
	Maximum	1 458 mA	740 mA

Caractéristiques techniques

Pression de pilotage	Nominale	25 bar [363 psi]	
	Minimum	21 bar [305 psi]	
	Maximum 25 bar [363 psi]		
Consommation de fluide	Neutre	0 l/min [0 gal US/min]	
	Position bloquée	0 l/min [0 gal US/min]	
	Commande	0,9 l/min [0,24 gal US/min]	

Spécifications techniques


Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)		23/19/16 (selon ISO 4406)	
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -40 à 90 °C [-40 à 194 °F]		
Pression max. du port T (statique)	25 bar [365 psi]		
Pression max. du port T (intermittente)	40 bar [580 psi]		

Caractéristiques du voyant LED

Couleur	Caractéristiques du voyant LED	Description
Vert constant		Dispositif sous tension

Temps de réponse de la PVEO-HP

Temps de réaction

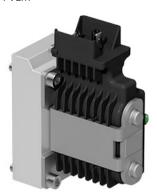
Définition de réponse échelonnée

Réaction	PVEO-HP
T0 – Démarrage	0
T1 – Position neutre jusqu'à la course max. du tiroir à la mise sous tension/à U _{DC} constante	90 ms
T2 – Course max. du tiroir jusqu'à la position neutre lors de la mise hors tension/à U _{DC} constante	70 ms

Références PVEO-HP

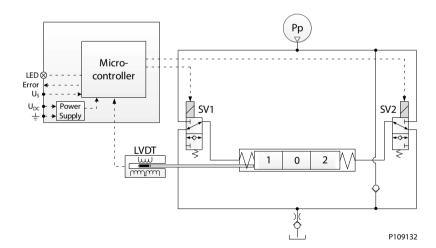
Références standard PVEO-HP

Référence	Connecteur	IP	U _{DC}	Fonctionnalité
11166765	1x4 DEUTSCH	IP 67	12 V _{CC}	
11166766	1x4 DEUTSCH	IP 67	24 V _{CC}	
11166763	1x4 AMP	66	12 V _{CC}	Standard
11187524	1x4 AMP	66	24 V _{CC}	
11187551	1x4 DIN	65	12 V _{CC}	
11187562	1x4 DIN	65	24 V _{CC}	


174 | [©] Danfoss | Mai 2021 BC152886483664fr-001401

PVEM

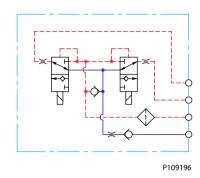
La commande PVEM est une commande électrohydraulique proportionnelle en boucle fermée utilisée principalement pour piloter des fonctions de travail exigeant des performances modérées. Le PVEM est disponible dans trois niveaux de performances : le PVEM standard, le PVEM-R avec rampe et le PVEM-Q avec réaction rapide.


PVEM

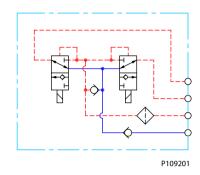
Les variantes sont disponibles avec les caractéristiques suivantes :

- Alimentation électrique à variation de tension de 11-32 V_{CC}
- Signal analogique de régulation de tension de 25-75 % de la tension d'alimentation
- Connecteurs DIN/Hirschman
- Pression d'huile de pilotage du PVE standard de 13,5 bar [196 psi]
- LED indiquant l'état d'erreur et surveillance passive des défaillances
- Position flottante (-F), rampe rapide (-R) ou réaction rapide (-Q)

Fonctionnement du PVEM

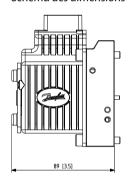

La fonctionnalité du PVE comprend un circuit électrique avec logique à boucle fermée. Un microcontrôleur embarqué traite la tension de signal et le signal de rétroaction du LVDT et ajuste les électrovannes en conséquence.

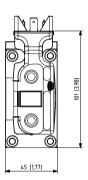
La mise sous tension de l'électrovanne SV1 et la mise hors tension simultanée de l'électrovanne SV2 font bouger le tiroir principal vers la droite, et inversement. Si les électrovannes SV1 et SV2 sont toutes les deux mises sous ou hors tension en même temps, le tiroir principal reste bloqué en position neutre.



Schémas

PVEM




PVEM-Q

Dimensions

Schéma des dimensions

Hauteur et poids des connecteurs

DEUTSCH	AMP	DIN	Poids
30 mm [1,2"]	38 mm [1,5"]	40 mm [1,6"]	0,7 kg [1,54 lb]

Caractéristiques techniques des PVEM

Caractéristiques de la commande

Description	Туре	Valeur
Tension d'alimentation (U _{DC})	Plage nominale	11 à 32 V _{CC}
	Ondulation maximale	5%
Tension de signal PWM (U _S)	Neutre	$U_S = 0.5 \ U_{DC} = 50 \ \% \ DUT$
	Q:PàA	U _S = (0,5 à 0,25) U _{DC} = 50 % à 25 % DUT
	Q:PàB	U _S = (0,5 à 0,75) U _{DC} = 50 % à 75 % DUT
Impédance d'entrée	Nominal	12 kΩ
Capacité d'entrée	Nominal	1 nF

Consommation de courant

Description	à 12 V _{CC}	à 24 V _{CC}
Fréquence PWM (U _S) recommandée	> 200 Hz	> 200 Hz
Consommation de courant	690 mA	350 mA

Pression de pilotage

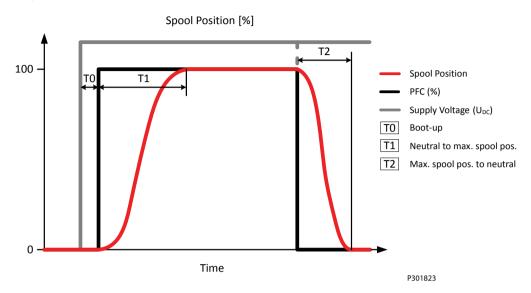
Minimum	Nominale	Maximum
10 bar [145 psi]	13,5 bar [196 psi]	15 bar [218 psi]

Consommation de fluide

Position neutre/ verrouillée	Commande (PVEM-R)	Commande (PVEM-Q)	Commande
0 l/min	0,3 l/min	1,0 l/min [0,26 gal US/min] [0,08 gal US/min]	0,5 l/min [0,13 gal US/min]

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)		
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)		
Température de fonctionnement	Ambiante : -40 à 90 °C [-40 à 194 °F]		
Pression max. du port T statique/intermittente	20 / 40 bar [365 / 580 psi]		


Caractéristiques du voyant LED

Couleur	Caractéristiques du voyant LED	Description
Vert constant		Aucune erreur - Actionnement
Vert clignotant à 1,5 Hz		Position neutre - Économie d'énergie
Rouge constant		Erreur interne
Rouge clignotant à 1,5 Hz		Erreur externe ou de flottement

Temps de réaction des PVEM

Temps de réaction

Définition de réponse échelonnée

Réaction	PVEM-R	PVEM/PVEM-FLB	PVEM-Q
T0 – Démarrage	15 ms	15 ms	15 ms
T1 – Position neutre jusqu'à la course max. du tiroir lors de la mise sous tension	325 ms	225 ms	125 ms
T2 – Course max. du tiroir jusqu'à la position neutre lors de la mise hors tension	110 ms	110 ms	110 ms
T1 – Position neutre jusqu'à la course max. du tiroir à U _{DC} constante	310 ms	210 ms	110 ms
T2 – Course max. du tiroir jusqu'à la position neutre à U _{DC} constante	90 ms	90 ms	90 ms

Hystérésis et ondulation des PVE

Aperçu de l'hystérésis des PVE

Type de PVE	PVEP, PVES PVEH	PVEA	PVEM
Hystérésis (h)	<0,5 %	2 %	15 %
Ondulation constante à Us constant	0,2 mm	0,3 mm	0,0 mm

Références des PVEM

Références pour les variantes de PVEM avec surveillance passive des défaillances ; indice IP65 et connecteur DIN 1x4.

Références pour les variantes de PVEM

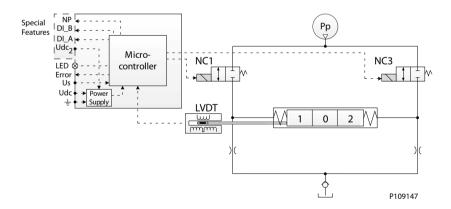
Référence	Туре	Fonctionnalité
11166829	PVEM	Standard
11166852	PVEM-FLB	Position flottante - port B

Références pour les variantes de PVEM (suite)

Référence	Туре	Fonctionnalité
11166845	PVEM-R	Rampe
11166853	PVEM-Q	Réaction rapide

PVEA

La commande PVEA est une commande électrohydraulique proportionnelle en boucle fermée utilisée principalement pour piloter des fonctions de travail exigeant des performances supérieures à la moyenne.


PVEA

- Alimentation électrique à variation de tension de 11-32 V_{CC}
- Signal analogique de régulation de tension de 25-75 % de la tension d'alimentation
- Pression d'huile de pilotage du PVE standard de 13,5 bar [196 psi]
- · Connecteurs DEUTSCH ou AMP
- LED indiquant l'état d'erreur et surveillance active ou passive des défaillances
- Sortie d'indication de direction (-DI) ou mise hors tension en position neutre (-NP)

Fonctionnalité du PVEA-DI

Fonctionnalité du PVEA-DI

La fonctionnalité du PVE comprend un circuit électrique avec logique à boucle fermée. Un microcontrôleur embarqué traite la tension de signal et le signal de rétroaction du LVDT et ajuste les électrovannes en conséquence.

La modulation continue de l'électrovanne NC1 et la mise hors tension simultanée de l'électrovanne NC3 déplacent le tiroir principal vers la droite, et inversement. Lorsque le tiroir principal est déplacé en butée à droite, la modulation simultanée des deux électrovannes NC1 et NC3 le bloque dans cette position. Le tiroir principal oscille dans sa position de course à une fréquence correspondant à la fréquence de modulation. Lorsque les deux électrovannes NC1 et NC3 sont mises hors tension, le tiroir principal retourne en position neutre à l'aide de son ressort de remise en position neutre et du principe hydraulique.

Caractéristiques techniques des PVEA

Caractéristiques de la commande

Description	Туре	Valeur
Tension d'alimentation (U _{DC})	Plage nominale	11 à 32 V _{CC}
	Ondulation maximale	5%
Tension de signal PWM (U _S)	Neutre	$U_S = 0.5 \ U_{DC} = 50 \ \% \ DUT$
	Q:PàA	U _S = (0,5 à 0,25) U _{DC} = 50 % à 25 % DUT
	Q:PàB	U _S = (0,5 à 0,75) U _{DC} = 50 % à 75 % DUT
Impédance d'entrée	Nominal	12 kΩ
Capacité d'entrée	Nominal	1 nF

Consommation de courant

Description	à 12 V _{CC}	à 24 V _{CC}
Fréquence PWM (U _S) recommandée	> 1 000 Hz	> 1 000 Hz
Consommation de courant	290 mA	150 mA

Pression de pilotage

Minimum	Nominale	Maximum
10 bar [145 psi]	13,5 bar [196 psi]	15 bar [218 psi]

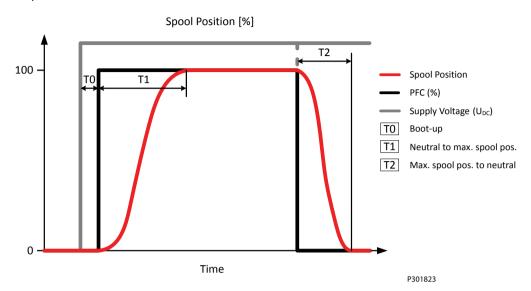
Consommation de fluide

Neutre	Position bloquée	Commande
0 l/min	0 l/min	1,0 l/min
		[0,26 gal US/min]

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide		18/16/13 (selon ISO 4406)	
Température de stockage	Ambiante : -50 à 90 °C [-58 à 194 °F]		
Température de fonctionnement	Ambiante : -40 à 90 °C [-40 à 194 °F]		
Pression max. du port T statique/intermittente	25 / 40 bar [365 / 580 psi]		

Caractéristiques du voyant LED


Couleur	Caractéristiques du voyant LED	Description
Vert constant		Aucune erreur - Actionnement
Vert clignotant à 1,5 Hz		Position neutre - Économie d'énergie
Rouge constant		Erreur interne
Rouge clignotant à 1,5 Hz		Erreur externe ou de flottement

© Danfoss | Mai 2021 BC152886483664fr-001401 | 181

Temps de réaction des PVEA

Temps de réaction

Réaction	PVG 32 (PVEA)
T0 – Démarrage [ms]	50 ms
T1 – Position neutre jusqu'à la course max. du tiroir lors de la mise sous tension	355 ms
T2 – Course max. du tiroir jusqu'à la position neutre lors de la mise hors tension	260 ms
T1 – Position neutre jusqu'à la course max. du tiroir à U _{DC} constante	305 ms
T2 – Course max. du tiroir jusqu'à la position neutre à U _{DC} constante	210 ms

Hystérésis et ondulation des PVE

Aperçu de l'hystérésis des PVE

Type de PVE	PVEP, PVES PVEH	PVEA	PVEM
Hystérésis (h)	<0,5 %	2 %	15 %
Ondulation constante à Us constant	0,2 mm	0,3 mm	0,0 mm

Références PVEA

Références pour les variantes de PVEA avec fonctionnalité standard.

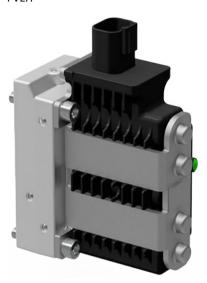
Références pour les variantes de PVEA

Référence	Туре	Connecteur	Indice de protection IP	Surveillance des défaillances
11177346	PVEA	1x4 DEU	IP67	Passif
11177347	PVEA		IP67	Actif
11177353	PVEA	1x4 AMP	IP66	Passif
11177348	PVEA		IP66	Actif
11177345	PVEA-NP ¹⁾	1x6 DEU	IP67	Passif
11177357	PVEA-DI ²⁾	2x4 DEU	IP67	Actif

Références pour les variantes de PVEA (suite)

Référence	Туре	Connecteur	Indice de protection IP	Surveillance des défaillances
11177356	PVEA-DI ²⁾	2x4 AMP	IP66	Passif
11177355	PVEA-DI ²⁾		IP66	Actif

¹⁾ Caractéristiques spéciales de mise hors tension en position neutre.


²⁾ Fonction spéciale d'indication de direction.

PVEH

La commande PVEH est une commande proportionnelle du tiroir en boucle fermée utilisée principalement pour piloter des fonctions de travail exigeant des performances élevées.

PVEH

- Alimentation électrique à variation de tension de 11-32 V_{CC}
- Signal analogique de régulation de tension de 25-75 % de la tension d'alimentation
- Pression d'huile de pilotage du PVE standard de 13,5 bar [196 psi]
- · Connecteurs DEUTSCH, AMP ou DIN/Hirschman
- LED indiquant l'état d'erreur et surveillance active ou passive des défaillances
- Position flottante (-F), indication de direction (-DI), mise hors tension en position neutre (-NP), sortie de position du tiroir (-SP) ou signal de commande 0-10 V_{CC} (-U)

Fonctionnalité du PVEH

La fonctionnalité du PVE comprend un circuit électrique avec logique à boucle fermée. Un microcontrôleur embarqué traite la tension de signal et le signal de rétroaction du LVDT et ajuste les électrovannes en conséquence.

La modulation continue des électrovannes NC1 et NO4 associée à la mise sous tension simultanée de la NO2 et à la mise hors tension de la NC3 fait bouger le tiroir principal vers la droite, et inversement. Lorsque le tiroir principal est en butée à droite, la mise sous tension simultanée des électrovannes NO2 et NO4 et la mise hors tension des électrovannes NC1 et NC3 le bloquent dans cette position. L'activation de l'arrêt d'urgence pendant le déplacement du tiroir entraîne la mise hors tension de toutes les électrovannes et donc le retour du tiroir principal à sa position neutre via son ressort de rappel au neutre et le principe hydraulique.

Caractéristiques techniques des PVEH

Caractéristiques de la commande

Description	Туре	Valeur
Tension d'alimentation (U _{DC})	Plage nominale	11 à 32 V _{CC}
	Ondulation maximale	5%
Tension de signal PWM (U _S)	Neutre	U _S = 0,5 U _{DC} = 50 % DUT
	Q:PàA	U _S = (0,5 à 0,25) U _{DC} = 50 % à 25 % DUT
	Q:PàB	U _S = (0,5 à 0,75) U _{DC} = 50 % à 75 % DUT

Caractéristiques de la commande (suite)

Description	Туре	Valeur
Impédance d'entrée	Nominal	12 kΩ
Capacité d'entrée	Nominal	1 nF

Consommation de courant

Description	à 12 V _{CC}	à 24 V _{CC}
Fréquence PWM (U _S) recommandée	> 1 000 Hz	> 1 000 Hz
Consommation de courant	540 mA	270 mA
Courant DI max.	200 mA	200 mA

Pression de pilotage

Minimum	Nominale	Maximum
10 bar [145 psi]	13,5 bar [196 psi]	15 bar [218 psi]

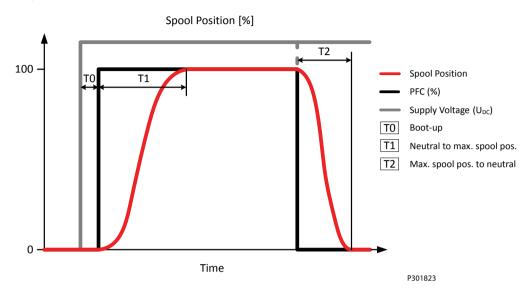
Consommation de fluide

Neutre	Position bloquée	Commande
0,0 l/min	0,0 l/min	0,7 l/min [0,18 gal US/min]

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]
Propreté du fluide		18/16/13 (selon ISO 4406)	
Température de stockage	Ambiante : -50 à 90 °C [-58 à 194 °F]		
Température de fonctionnement	Ambiante : -40 à 90 °C [-40 à 194 °F]		
Pression max. du port T statique/intermittente	25 / 40 bar [365 / 580 psi]		

Caractéristiques du voyant LED


Couleur	Caractéristiques du voyant LED	Description
Vert constant		Aucune erreur - Actionnement
Vert clignotant à 1,5 Hz		Position neutre - Économie d'énergie
Rouge constant		Erreur interne
Rouge clignotant à 1,5 Hz		Erreur externe ou de flottement
Jaune		Mode désactivation

© Danfoss | Mai 2021 BC152886483664fr-001401 | 185

Temps de réaction des PVEH

Temps de réaction

Réaction	PVG 32	PVG 128/256
T0 – Démarrage [ms]	40 ms	40 ms
T1 – Position neutre jusqu'à la course max. du tiroir lors de la mise sous tension [ms]	155 ms	400 ms
T2 – Course max. du tiroir jusqu'à la position neutre lors de la mise hors tension [ms]	130 ms	300 ms
T1 – Position neutre jusqu'à course max. du tiroir à U _{DC} constante [ms]	115 ms	380 ms
T2 – Course max. du tiroir jusqu'à position neutre à U _{DC} constante [ms]	90 ms	270 ms

Hystérésis et ondulation des PVE

Aperçu de l'hystérésis des PVE

Type de PVE	PVEP, PVES PVEH	PVEA	PVEM
Hystérésis (h)	<0,5 %	2 %	15 %
Ondulation constante à Us constant	0,2 mm	0,3 mm	0,0 mm

Références PVEH

Références pour les variantes de PVEH

Référence	Туре	Connecteur	Classe IP	Surveillance des défaillances	Fonctionnalité
11166732	PVEH	1x4 DEUTSCH	IP67	Passif	
11166775	PVEH	1x4 DEUTSCH	IP67	Actif	
11166825	PVEH	1x4 AMP	IP66	Passif	Standard
11166818	PVEH	1x4 AMP	IP66	Actif	Staridard
11166824	PVEH	1x4 DIN	IP65	Passif	
11166817	PVEH	1x4 DIN	IP65	Actif	

Références pour les variantes de PVEH (suite)

Référence	Туре	Connecteur	Classe IP	Surveillance des défaillances	Fonctionnalité
11166832 ¹⁾	PVEH-U	1x4 AMP	IP66	Passif	
11166821 ¹⁾	PVEH-U	1x4 AMP	IP66	Actif	U _S 0-10 V _{CC} fixe
11166770 ¹⁾	PVEH-U	1x4 DIN	IP65	Passif	OS 0-10 VCC like
11166772 ¹⁾	PVEH-U	1x4 DIN	IP65	Actif	
11166840	PVEH-FLB	1x4 DEUTSCH	IP67	Passif	
11166742	PVEH-FLB	1x4 DEUTSCH	IP67	Actif	Position flottante - port B
11166839	PVEH-FLB	1x4 DIN	IP65	Actif	, poile
11166841 ²⁾	PVEH-FLA	1x6 DEUTSCH	IP67	Actif	
11168738 ²⁾	PVEH-FLA	1x6 AMP	IP66	Passif	Position flottante - port A
11168739 ²⁾	PVEH-FLA	1x6 AMP	IP66	Actif	porex
11166773 ³⁾	PVEH-SP	1x6 DEUTSCH	IP67	Actif	
11166750 ⁴⁾	PVEH-NP	1x6 DEUTSCH	IP67	Rapidement active	
11166835 ⁵⁾ .	PVEH-DI	2x4 DEUTSCH	IP67	Actif	Standard
11166820 ⁵⁾	PVEH-DI	2x4 AMP	IP66	Passif	1
11166819 ⁵⁾	PVEH-DI	2x4 AMP	IP66	Actif	1

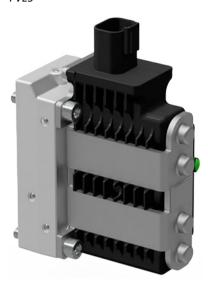
¹⁾ Comprend la fonction spéciale mode désactivation

© Danfoss | Mai 2021

²⁾ Comprend la fonction spéciale broche de position **flottante dédiée** (UF)

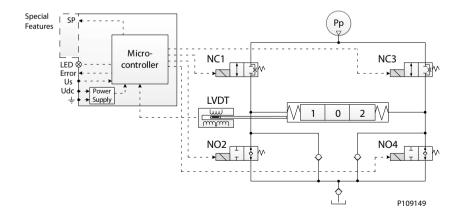
³⁾ Comprend la fonction spéciale **position du tiroir**

⁴⁾ Comprend la fonction spéciale **mise hors tension en position neutre**


⁵⁾ Comprend la fonction spéciale **indication de direction**

PVES

La commande PVES est une commande proportionnelle en boucle fermée utilisée principalement pour piloter des fonctions de travail exigeant des performances très élevées.


PVES

- Alimentation électrique à variation de tension de 11-32 V_{CC}
- Signal analogique de régulation de tension de 25-75 % de la tension d'alimentation
- Pression d'huile de pilotage du PVE standard de 13,5 bar [196 psi]
- Connecteurs DEUTSCH, AMP ou DIN/Hirschman
- LED indiquant l'état d'erreur et surveillance active ou passive des défaillances
- Fonctionnalité de position du tiroir (-SP) ou de signal de commande 0-10 V_{CC} (-U)

Fonctionnalité du PVES

Fonctionnalité du PVES

La fonctionnalité du PVE comprend un circuit électrique avec logique à boucle fermée. Un microcontrôleur embarqué traite la tension de signal et le signal de rétroaction du LVDT et ajuste les électrovannes en conséquence.

La modulation continue des électrovannes NC1 et NO4 associée à la mise sous tension simultanée de la NO2 et à la mise hors tension de la NC3 fait bouger le tiroir principal vers la droite, et inversement. Lorsque le tiroir principal est en butée à droite, la mise sous tension simultanée des électrovannes NO2 et

NO4 et la mise hors tension des électrovannes NC1 et NC3 le bloquent dans cette position. L'activation de l'arrêt d'urgence pendant le déplacement du tiroir entraîne la mise hors tension de toutes les électrovannes et donc le retour du tiroir principal à sa position neutre via son ressort de rappel au neutre et le principe hydraulique.

Caractéristiques techniques des PVES

Caractéristiques de la commande

Description	Туре	Valeur
Tension d'alimentation (U _{DC})	Plage nominale	11 à 32 V _{CC}
	Ondulation maximale	5%
Tension de signal PWM (U _S)	Neutre	$U_S = 0.5 \ U_{DC} = 50 \ \% \ DUT$
	Q:PàA	U _S = (0,5 à 0,25) U _{DC} = 50 % à 25 % DUT
	Q:PàB	U _S = (0,5 à 0,75) U _{DC} = 50 % à 75 % DUT
Impédance d'entrée	Nominal	12 kΩ
Capacité d'entrée	Nominal	1 nF

Consommation de courant

Description	à 12 V _{CC}	à 24 V _{CC}
Fréquence PWM (U _S) recommandée	> 1 000 Hz	> 1 000 Hz
Consommation de courant	560 mA	280 mA

Pression de pilotage

Minimum	Nominale	Maximum
10 bar [145 psi]	13,5 bar [196 psi]	15 bar [218 psi]

Consommation de fluide

Neutre	Position bloquée	Commande
0,03 l/min	0,01 l/min	0,8 l/min
[0,106 gal US/min]	[0,026 gal US/min]	[0,21 gal US/min]

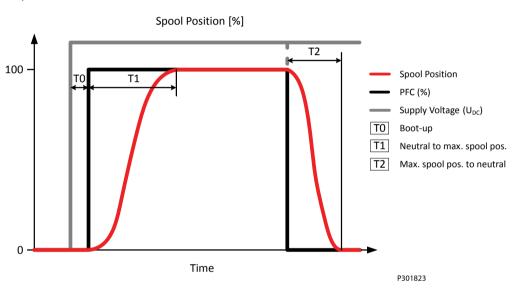
Spécifications techniques

Paramètre	Minimum	Maximum			
Viscosité du fluide	4 mm ² /s [39 SUS] 12 à 75 mm ² /s [65 à 347 SUS]		460 mm ² /s [2 128 SUS]		
Propreté du fluide	18/16/13 (selon ISO 4406)				
Température de stockage	Ambiante : -50 à 90 °C [-58 à 194 °F]				
Température de fonctionnement	Ambiante : -40 à 90 °C [-40 à 194 °F]				
Pression max. du port T statique/intermittente	25 / 40 bar 265 / 580 psi				

Caractéristiques du voyant LED

Couleur	Caractéristiques du voyant LED	Description
Vert constant		Aucune erreur - Actionnement
Vert clignotant à 1,5 Hz		Position neutre - Économie d'énergie

© Danfoss | Mai 2021



Caractéristiques du voyant LED (suite)

Couleur	Caractéristiques du voyant LED	Description
Rouge constant		Erreur interne
Rouge clignotant à 1,5 Hz		Erreur externe ou de flottement
Jaune		Mode désactivation

Temps de réaction des PVES

Temps de réaction

Réaction	PVES
T0 – Démarrage [ms]	45 ms
T1 – Position neutre jusqu'à la course max. du tiroir lors de la mise sous tension	170 ms
T2 – Course max. du tiroir jusqu'à la position neutre lors de la mise hors tension	135 ms
T1 – Position neutre jusqu'à la course max. du tiroir à U _{DC} constante	125 ms
T2 – Course max. du tiroir jusqu'à la position neutre à U _{DC} constante	90 ms

Hystérésis et ondulation des PVE

Aperçu de l'hystérésis des PVE

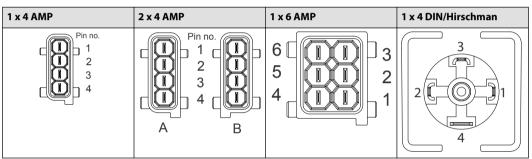
Type de PVE	PVEP, PVES PVEH	PVEA	PVEM
Hystérésis (h)	<0,5 %	2 %	15 %
Ondulation constante à Us constant	0,2 mm	0,3 mm	0,0 mm

Références PVES

Références pour les variantes de PVES

Référence	Туре	Connecteur	IP	Surveillance des défaillances	Fonctionnalité
11166748	PVES	1x4 DEUTSCH	IP67	Passif	
11166864	PVES	1x4 DEUTSCH	IP67	Actif	
11166859	PVES	1x4 AMP	IP66	Passif	- Standard
11166858	PVES	1x4 AMP	IP66	Actif	
11166849	PVES	1x4 DIN	IP65	Passif	
11166857	PVES	1x4 DIN	IP65	Actif	
11166745 ¹⁾	PVES-U	1x4 DEUTSCH	IP67	Passif	- U _S 0-10 V _{CC} fixe
11166747 ¹⁾	PVES-U	1x4 AMP	IP66	Actif	
11166752 ²⁾	PVES-SP	1x6 DEUTSCH	IP67	Passif	Standard

¹⁾ Comprend la fonction spéciale **mode désactivation**


²⁾ Comprend la fonction spéciale **position de la bobine**

Aperçu des connecteurs

Connecteur 4 broches AMP PVEO-DI

Brochage	Broche 1	Broche 2	Broche 3	Broche 4
2x4 AMP (A)	U _{DC} _A	U _{DC} B	GND	GND
2x4 AMP (B)	DI-B	DI-A	GND	U _{DC2}

Connecteur DIN 4 broches PVEM

Brochage	Broche 1	Broche 2	Broche 3	Broche 4
1x4 DIN	U _{DC}	U _S	Erreur	GND

Connecteur 4 broches PVEO, PVEO-R et PVEO-HP

Brochage	Broche 1	Broche 2	Broche 3	Broche 4
1x4 AMP	U _{DC} _A	U _{DC} B	GND	GND
1x4 DEUTSCH	U _{DC} _A	GND	GND	U _{DC} B
1x4 DIN	U _{DC} _A	U _{DC} _B	-	GND

PVEA/PVEH/PVES

Brochage	Broche 1	Broche 2	Broche 3	Broche 4
1x4 AMP	U _S	U _{DC}	GND	Erreur
1x4 DEUTSCH	U _S	Erreur	GND	U _{DC}
1x4 DIN	U _{DC}	U _S	Erreur	GND

Connecteur 4 broches PVEA-DI et PVEH-DI

Brochage	Broche 1	Broche 2	Broche 3	Broche 4
2x4 AMP (A)	U _S	U _{DC}	GND	Erreur
2x4 AMP (B)	DI-A	DI-B	GND	U _{DC2}
2x4 DEUTSCH (A)	U _S	Erreur	GND	U _{DC}
2x4 DEUTSCH (B)	U _{DC2}	GND	DI-A	DI-B

Connecteur 6 broches PVEH-FLA

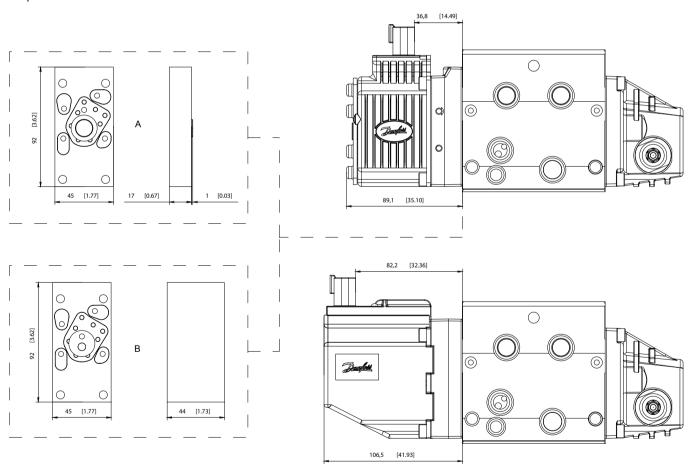
Brochage	Broche 1	Broche 2	Broche 3	Broche 4	Broche 5	Broche 6
1x6 AMP	U _S	U _{DC}	GND	Erreur	Position flottante	-
1x6 DEUTSCH	Us	Erreur	-	SP	GND	U _{DC}

Connecteur 6 broches PVEH-SP et PVES-SP

Brochage	Broche 1	Broche 2	Broche 3	Broche 4	Broche 5	Broche 6
1x6 DEUTSCH	U _S	Erreur	-	SP	GND	U _{DC}

© Danfoss | Mai 2021 BC152886483664fr-001401 | 193

Plaques d'extension pour PVE série 7


Les plaques d'extension pour PVE série 7 sont destinées à être utilisées en cas de conflit avec des tuyaux externes ou, si une PVBD (dérivation) est montée sur le PVB, lors du remplacement d'un PVE série 4 par un PVE série 7.

Les plaques d'extension sont compatibles avec toutes les versions du PVE série 7 et sont disponibles dans deux tailles différentes pour différents objectifs :

- A) 17 mm [0,67] Déplace le PVE série 7 plus loin du module PVB de sorte que la longueur totale de la plaque et du PVE série 7 soit similaire à la longueur d'un PVE série 4
- B) 44 mm [1,73] Déplace le PVE série 7 plus loin du module PVB de sorte que la distance entre le connecteur du PVE série 7 et le module PVB soit similaire à la distance entre le connecteur et le module PVB lors de l'utilisation d'un PVE série 4

Si vous utilisez un PVE série 7 avec un connecteur 2x4 DEUTSCH, la distance sera plus courte de 12,9 mm entre le module PVB et le connecteur, par rapport à un PVE série 4.

Plaques d'extension PVE série 7

Référence	Description	Lettre
11189080	Bloc d'aluminium 17 mm + kit d'étanchéité + vis	Α
11189081	Bloc d'aluminium 44 mm + kit d'étanchéité + vis	В

Surveillance et réaction aux défaillances

Toutes les commandes proportionnelles PVG 32 comprennent :

- Surveillance des défaillances intégrée
- Détection des incohérences de course du tiroir
- Détection des défauts internes de matériel
- Détection des incohérences de signal de commande
- Réactions aux défaillances, selon le type de surveillance des défaillances
 - Générique
 - Spécifique

Surveillance passive des défaillances

La surveillance passive des défaillances ne désactive pas les électrovannes lorsqu'une erreur est détectée. Celles-ci continuent de fonctionner malgré la détection d'une erreur. Une fois que l'erreur n'est plus enregistrée, la surveillance passive des défaillances l'« oublie » et continue comme si elle n'était jamais survenue.

Avec la surveillance passive des défaillances, la détection/survenue d'une erreur a les conséquences suivantes :

- Le voyant LED passe du vert au rouge et la sortie de broche d'erreur s'élève
- Les électrovannes continuent de fonctionner au point de consigne donné au moment de l'erreur
 - Seules exceptions: si l'erreur est causée par une tension d'alimentation (U_{DC}) inférieure ou supérieure à la plage autorisée ou si la température mesurée sur la carte électronique interne est supérieure à la valeur autorisée. Les électrovannes sont alors désactivées.

Réaction générique à une défaillance

Toutes les commandes PVE avec surveillance des défaillances sont déclenchées par les événements principaux suivants :

Surveillance du signal de commande	La tension de signal de commande (U_S) est contrôlée en continu. La plage autorisée se situe entre 15 et 85 % de la tension d'alimentation (U_{DC}). Toute valeur extérieure à cette plage fera passer le PVE en état d'erreur. Une broche U_S déconnectée (flottante) est reconnue comme un point de consigne neutre.
Supervision du LVDT/transducteur	Les câbles internes du LVDT sont surveillés. Si les signaux sont interrompus ou court-circuités, le PVE passe en état d'erreur.
Supervision de la position du tiroir	La position effective doit toujours correspondre à la position requise (U_S). Si la position réelle du tiroir s'éloigne de la position neutre par rapport à la position requise ou en direction opposée, le PVE passe à un état d'erreur. Un tiroir plus proche de la position neutre et dans la même direction n'entraîne pas d'état d'erreur ; la situation est considérée comme sous contrôle.
Surveillance de la position flottante	Il faut arriver à la position flottante ou la quitter pendant un délai défini. Sur les PVE à position flottante à 1x6 broches, un délai trop long entraîne un état d'erreur ; cela vaut pour les commandes PVEH-F à 1x6 broches uniquement.
Surveillance de la température	Si la température est trop élevée, le voyant LED du PVE devient rouge fixe et les électrovannes sont désactivées.

© Danfoss | Mai 2021 BC152886483664fr-001401 | 195

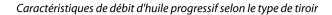
Surveillance et réaction aux défaillances

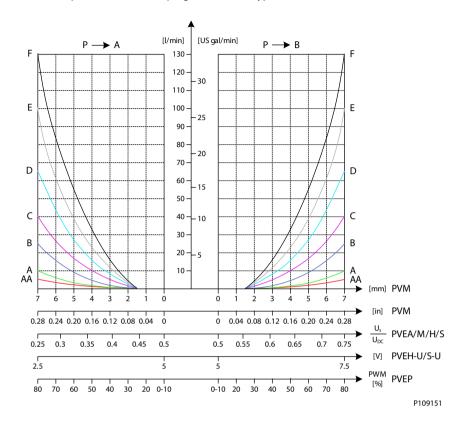
Aperçu des réactions en cas de défaillance

toutes les entrées sont dotées d'une fonction d'autorécupération sauf mention contraire.

Description	Surveillanc LED e	es	Sortie de broche	Temps de réaction à une défaillance		
				d'erreur	PVEM/H/S	PVEA
Tiroir pas au point de	Active*		Désactivée	High	500	750
consigne	Passive		-	High	250	750
Impossible d'atteindre	Active*		Désactivée	High	1000	1000
la position flottante	Passive		-	High	1000	1000
U dc > max.	Active		Désactivée	-	-	-
	Passive		Désactivée	-	-	-
U dc < min.	Active		Désactivée	-	-	-
	Passive		Désactivée	-	-	-
Us hors plage	Active*		Désactivée	High	500	750
	Passive		-	High	250	750
Erreur du LVDT	Active*		Désactivée	High	500	750
	Passive		-	High	250	750
Temp > max.	Active*		Désactivée	High	250	750
	Passive		Désactivée	High	250	750

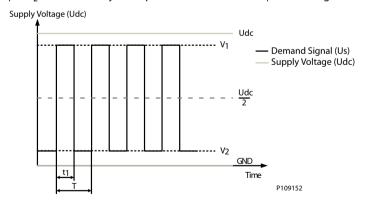
^{*} Sans fonction d'autorécupération


Caractéristiques de la broche d'erreur


Toutes les commandes proportionnelles de type PVE série 7 sont munies d'une broche d'erreur qui signale la détection/survenue d'une erreur, conformément au tableau Aperçu des réactions en cas de défaillance. Le tableau ci-dessous indique les caractéristiques de la broche d'erreur.

Description	Pas d'erreur	Erreur
État de la sortie	Low	High
Tension de sortie	< 2 V CC	~Udc
Courant de sortie	Max. 100 mA	

Aperçu des fonctionnalités



Régulation de tension PWM

Les variantes de commandes PVEM/PVEA/PVEH/PVES peuvent être contrôlées par une tension de signal contrôlée PWM (Us) proportionnelle à la tension d'alimentation (Udc).

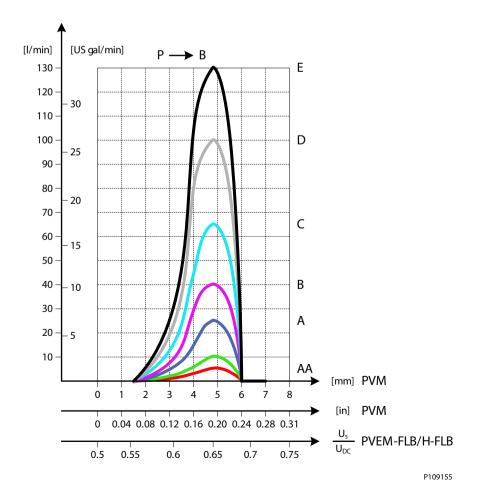
 V_1 et V_2 doivent être symétriques autour d'Udc/2 et V_1 doit être égal ou inférieur à Udc.

© Danfoss | Mai 2021

Aperçu des fonctionnalités

Position flottante - port A (-FLA)

La position flottante - port A permet aux variantes de commande proportionnelle PVEH-FLA de faire passer le tiroir principal en position flottante. Les commandes PVE avec position flottante - port A sont compatibles avec les tiroirs principaux dédiés avec position flottante électronique dans le port A.


Type de PVE	Type de PVBS	Régulation de débit standard	Régulation de position flottante
PVEH-FLA (1x6 broches)	Bande morte 0,8 mm	$Us = (0,25 \to 0,75) \cdot Udc$	U dc vers broche de
	Débit max. de port A 5,5 mm		position flottante dédiée (UF)

Position flottante port B (-FLB)

La position flottante du port B permet aux commandes proportionnelles PVEM-FLB/PVEH-FLB de faire passer le tiroir principal en position flottante. Les commandes PVE avec position flottante en port B sont compatibles avec les tiroirs principaux dédiés comprenant une position flottante électronique dans le port B.

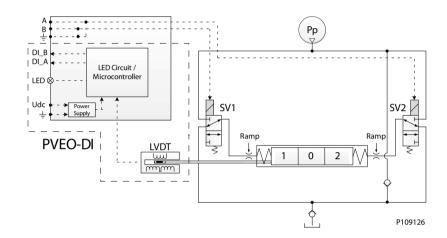
Type de PVE	Type de PVBS	FC standard	Commande du flotteur
PVEM-FLB (1x4 broches)	Bande morte 1,5 mm		
PVEH-FLB (1x4 broches)	Débit max. de port B 4,8 mm	$Us = (0,35 \rightarrow 0,65) \cdot U_{DC}$	$Us = 0,75 \cdot U_{DC}$

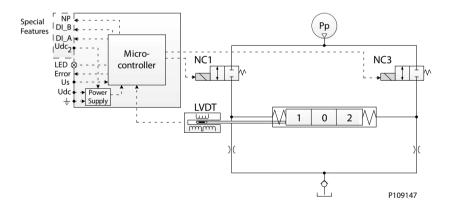
Fonctionnalité position flottante sur port B

Aperçu des fonctionnalités

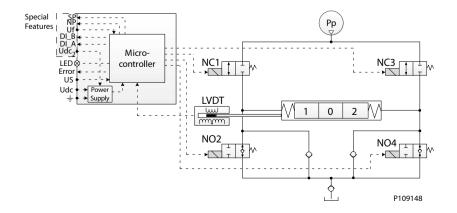
Économie d'énergie du PVE

Toutes les variantes de commandes proportionnelles sont dotées d'un mode économie d'énergie qui met hors tension le pont d'électrovannes. Le dispositif passe en mode économie d'énergie lorsque la tension de signal (Us) et le capteur de position LVDT du tiroir sont en position neutre depuis 750 ms. Dès que la tension de signal (Us) ou le capteur de position LVDT du tiroir quitte cette position neutre, le PVE sort du mode économie d'énergie et remet sous tension le pont d'électrovannes.


Le mode économie d'énergie permet une meilleure efficacité énergétique en réduisant la consommation de courant des commandes PVE en position neutre. Le mode économie d'énergie n'a aucune incidence sur les performances de la commande PVE.

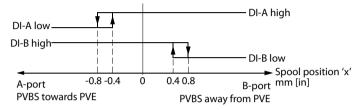

Indication de direction (-DI)

Les commandes PVEO-DI/PVEA-DI/PVEH-DI sont dotées d'une sortie d'indication de direction intégrée dérivée du capteur de position LVDT et indiquant l'état du tiroir principal (position neutre, port A ou port B).


Fonctionnalité du PVEO-DI

Fonctionnalité du PVEA-DI

Fonctionnalité du PVEH



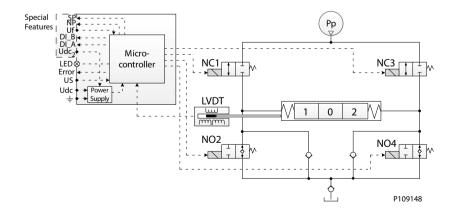
L'indication de direction utilise une alimentation électrique à deux sources avec les connecteurs à 2x4 broches AMP et DEUTSCH, comme indiqué au chapitre *Aperçu des connecteurs* à la page 192.

Lorsque les deux signaux DI_A et DI_B sont élevés, le tiroir principal est en position neutre.

Lorsque le signal DI_A devient faible et que le signal DI_B reste élevé, le tiroir principal se déplace en direction du port A, et inversement. La relation entre la rétroaction d'indication de direction et le signal de sortie est présentée ci-dessous.

Rétroaction d'indication de direction

157-435.10

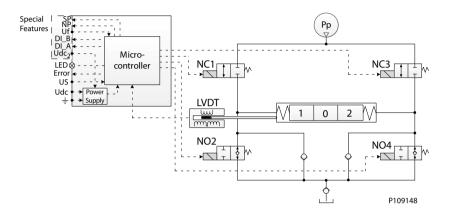

	Port A	Port B		
Signaux DI a1, a2	-0,8 mm ± 0,4 mm 0,8 mm ± 0,4 mm			
Charge DI max.	200 mA			
DI élevé à 20 mA	> U _{DC} – 1,5 V _{CC}			
DI élevé à 100 mA	> U _{DC} - 2,0 V _{CC}			
DI faible	< 0,2 V _{CC}			

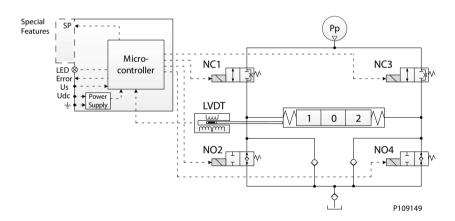
Broche de position flottante dédiée (UF)

La broche de position flottante (UF) dédiée est liée à la variante de commandes PVEH-FLA permettant à l'utilisateur de déplacer le tiroir principal dans sa position flottante par actionnement. Le PVEH-FLA utilise des connecteurs à 1x6 broches AMP ou DEUTSCH.

- Fonctionnement normal : Faible ou pas connecté
- Flottement élevé
- Plage d'entrée : U_{DC}
- Tension maximale: 32 V_{CC}

Schéma fonctionnel du PVEH-FLA


© Danfoss | Mai 2021 BC152886483664fr-001401 | 201


Position du tiroir (-SP)

La position du tiroir (SP) disponible sur les commandes PVEH-SP/PVES-SP permet à l'utilisateur d'obtenir la position du tiroir LVDT à partir du tiroir principal à l'aide d'un signal de tension analogique sur la broche de sortie dédiée de la position du tiroir (SP).

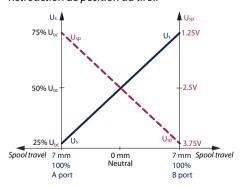
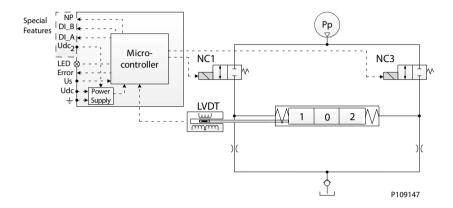
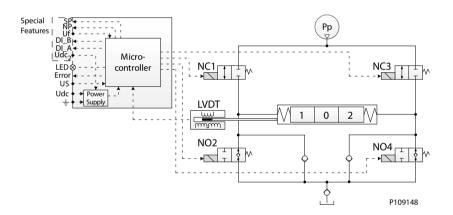

Schéma fonctionnel du PVEH-SP

Schéma fonctionnel du PVES-SP

Rétroaction de position du tiroir

Signal de rétroaction de position du tiroir (SP) de 0,5 à 4,0 V_{CC} dont la direction est inversée par rapport à U_5 , 2,5 V_{CC} en tant que valeur neutre Position de tiroir de neutre à course maximale (mm) La charge maximale de la SP est de 0,5 mA Plage de sortie pour le port A : 2,5 – 1,25 V_{CC} et pour le port B : 2,5 – 3,75 V_{CC}


Le PVEH-SP/PVES-SP utilise un connecteur à 1x6 DEUTSCH. Pour plus d'informations, voir *Aperçu des connecteurs* à la page 192.


Mise hors tension en position neutre (-NP)

La fonction de mise hors tension en position neutre (NP) disponible sur les commandes PVEA-NP et PVEH-NP permet à l'utilisateur de savoir si les électrovannes de la commande sont sous ou hors tension via une broche de sortie dédiée de mise hors tension en position neutre (NP).

Schéma fonctionnel du PVEA-NP

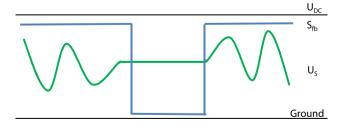


Schéma fonctionnel du PVEH-NP

Le signal de mise hors tension en position neutre (NP) est défini comme indiqué ci-dessous :

Courbes de la fonction de désactivation des électrovannes (-NP)

Fonctionnement normal de > U_{DC} à 2 V_{CC} Économie d'énergie < 1 V_{CC} (électrovannes hors tension) La charge maximale de NP est de 50 mA

Le PVEA-NP/PVEH-NP utilise un connecteur à 1x6 DEUTSCH. Pour plus d'informations, voir *Aperçu des connecteurs* à la page 192.

Mode désactivation

Les variantes de commandes PVEH-U et PVES-U contrôlées par une tension de signal (U_S) fixe de 0-10 V $_{CC}$ sont dotées d'un mode désactivation. Ce mode désactive la force de réaction sur le tiroir principal créée par le pont d'électrovannes lors de l'utilisation du contournement manuel (MOR).

Le mode désactivation se lance par l'envoi d'une tension de signal (Us) de 16,2 % de 10 V $_{\rm CC}$ en mode économie d'énergie.

Les plaques d'extrémité PVS PVG 32 ferment la section de bloc de vannes placée entre les plaques positionnées aux extrémités. En outre, la plaque d'extrémité garantit que la détection de charge (LS) est déchargée vers la pression du réservoir lorsque la vanne n'est pas actionnée.

Les variantes de plaque d'extrémité PVS sont basées sur une plateforme générique dotée d'une sélection de fonctions supplémentaires pour vous permettre d'adapter le PVS aux exigences de n'importe quel système hydraulique.

La plateforme de plaques d'extrémité PVS génériques comprend les variantes principales suivantes :

- PVS/PVSI aluminium ou fonte
- PVS/PVSI avec raccord LX aluminium ou fonte
- PVSI avec raccords P, T, LX et M fonte
- Plaque de départ PVSI Fonte
- PVSD Fonte
- PVSI avec PPRV PVE Fonte
- PVST avec raccord T Acier
- PVST avec PPRV PVE et décompression PP Acier

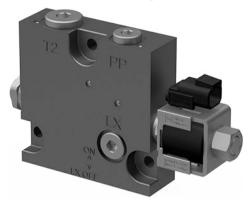
PVS/PVSI

PVSI avec raccords P, T, LX et M

PVS/PVSI avec raccord LX

PVST avec raccord T

Plaque de départ PVSI


Plaque d'extrémité PVSD

PVSI avec PVE PPRV

PVST avec PPRV PVE et décompression PP

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum		
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]		
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]		
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)				
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)				
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]			

Pour plus d'informations sur les plaques d'extrémité PVS, voir :

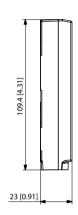
PVS/PVSI à la page 208
PVS/PVSI avec raccord LX à la page 210
PVSI avec raccords P, T, LX et M à la page 212
PVST avec raccord T à la page 214
Plaque de départ PVSI à la page 215
Plaque d'extrémité PVSD à la page 216

PVSI avec PVE PPRV à la page 218
PVST avec PPRV PVE et décompression PP à la page 220

PVS/PVSI

Les PVS/PVSI sont composées d'aluminium ou de fonte et font office de plaque d'extrémité.

Les plaques de départ PVSI comprennent :


- Décharge de pression LS intégrée vers le réservoir
- Orifice thermique intégré en option
- Version sans joints en option

PVS/PVSI

Dimensions PVS/PVSI

Poids: 0,47 kg [1,05 lb]

Schéma des PVS/PVSI

Pression maximale pour les ports P et T

Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
210 bar [3 045 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]

Se référer au tableau des références pour obtenir les détails sur la capacité de pression maximale

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum		
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]		
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]		
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)				
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)				
Température de fonctionnement		Ambiante : -30 à 60 °C [-22 à 140 °F]			

Références pour les plaques d'extrémité PVS

Référence	Pression maximale	Matériau	Poids kg [lb]	Joints	Montage
157B2000	300 bar [4 351 psi]	Aluminium	0,475 [1,05]	Oui	M8
157B2020	300 bar [4 351 psi]	Aluminium	0,475 [1,05]	Oui	5/16-18 UNC

Références pour les plaques d'extrémité PVS (suite)

Référence	Pression maximale	Matériau	Poids kg [lb]	Joints	Montage
157B2004	350 bar [5 076 psi]	Fonte	1,745 [3,85]	Oui	5/16-18 UNC
157B2014	350 bar [5 076 psi]	Fonte	1,745 [3,85]	Oui	M8
157B2017	350 bar [5 076 psi]	Fonte	1,745 [3,85]	Oui	M10
157B2018	350 bar [5 076 psi]	Fonte	1,745 [3,85]	Non ¹	M8
157B2902 ²	350 bar [5 076 psi]	Fonte	1,745 [3,85]	Oui	M8

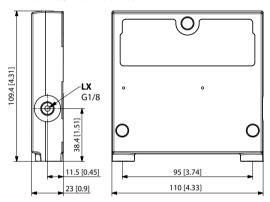
¹ Pour une utilisation avec des modules prioritaires.

² Orifice thermique 0,8 mm.

PVS/PVSI avec raccord LX

Les plaques d'extrémité PVS PVG 32 sont placées à la fin de la section de bloc de vannes. En outre, la plaque d'extrémité garantit que la détection de charge (LS) est déchargée vers la pression du réservoir lorsque la vanne n'est pas actionnée. Le port LX permet la connexion d'autres vannes à distance sur le réseau de sélecteur de circuit de détection de charge.

Les plaques d'extrémité de type PVS sont composées d'aluminium alors que les plaques de type PVSI sont composées de fonte afin de pouvoir soutenir une pression plus élevée.


La PVS/PVSI avec raccord LX comprend:

- Décharge de pression LS intégrée vers le réservoir
- Port LX fileté pour la connexion d'une autre vanne au réseau LS

PVS/PVSI avec raccord LX

Dimensions des PVS/PVSI avec raccord LX

Schéma des PVS/PVSI avec raccord LX

Pression maximale pour les ports P et T

Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
210 bar [3 045 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]

Se référer au tableau des références pour obtenir les détails sur la capacité de pression maximale

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum	
Température du fluide	-30 °C [-22 °F]	30 à 60 ℃ [86 à 140 ℉]	90 °C [194 °F]	
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]	
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)			
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]			

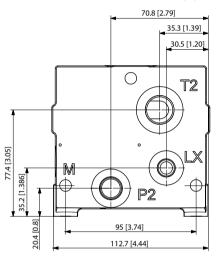
Références pour les PVS/PVSI avec raccordement au port LX

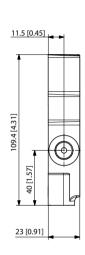
Référence	Pression max.	Matériau	Poids kg [lb]	Port LX	Montage
157B2005	350 bar [5 076 psi]	Fonte		1/2-20 UNF	5/16-18 UNC
157B2015			1,695 [3,74]	G1/4"	- M8
157B2910				M12x1,5 ISO 6149	
157B2011	300 bar	Aluminium	0,495 [1,09]	G1/8"	M8
157B2021	[4 351 psi]	Aluminum	JULIULI 0,493 [1,09]	3/8-24 UNF	5/16-18 UNC

© Danfoss | Mai 2021 BC152886483664fr-001401 | 211

PVSI avec raccords P, T, LX et M

La PVSI est en fonte et fait office de plaque d'extrémité. La PVSI avec raccordement LX permet de déplacer la pression LS d'une autre vanne vers la pompe en cas de besoin. Les raccords avec ports P et T supplémentaires permettent un débit de pompe supplémentaire vers une vanne PVG 32.

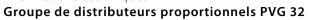

La PVSI avec raccords P, T, LX et M comprend:


- Décharge de pression LS intégrée vers le réservoir
- Ports filetés pour manomètre P/T/LS/LX et M

PVSI avec raccords P, T, LX et M

Dimensions de la PVSI avec raccords P, T, LX et M

Schéma de la PVSI avec raccords P, T, LX et M



Pression maximale pour les ports P et T

Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
350 bar [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]

Spécifications techniques

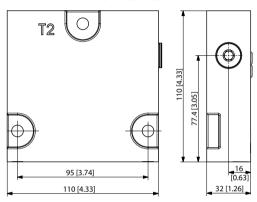
Paramètre	Minimum	Plage recommandée	Maximum	
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]	
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]	
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)			
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]			

Référence pour PVSI avec ports P, T, LX et M

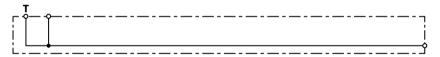
Référence	Port P	Port T	Port LX	Port M	Pattes de fixation	Poids
157B2920	G3/8	G1/2	G1/4	G1/4	M8	2,5 kg [5,51 lb]

PVST avec raccord T

La plaque d'extrémité PVST ferme la section de bloc de vannes placée entre les plaques positionnées aux extrémités. En outre, la plaque d'extrémité garantit que la détection de charge (LS) est déchargée vers la pression du réservoir lorsque la vanne n'est pas actionnée.


Les plaques de départ PVSI comprennent :

- Décharge de pression LS intégrée vers le réservoir
- Port T fileté
- Orifice thermique intégré en option


PVST avec raccord T

Dimensions de la PVST avec raccord T

Schéma de la PVST avec raccord T

Pression maximale pour les ports P et T

Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
350 bar [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]

Spécifications techniques

Paramètre	Minimum	Plage recommandée	Maximum	
Température du fluide	-30 °C [-22 °F]	30 à 60 °C [86 à 140 °F]	90 °C [194 °F]	
Viscosité du fluide	4 mm ² /s [39 SUS]	12 à 75 mm ² /s [65 à 347 SUS]	460 mm ² /s [2 128 SUS]	
Propreté du fluide (activation mécanique)	23/19/16 (selon ISO 4406)			
Propreté du fluide (Activation PVE)	18/16/13 (selon ISO 4406)			
Température de fonctionnement	Ambiante : -30 à 60 °C [-22 à 140 °F]			

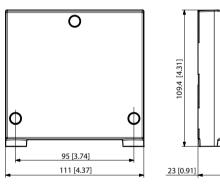
Lors de l'utilisation d'une PVST avec raccord T, il n'est pas possible d'utiliser le raccord A/B LS au bas de la section PVG à côté de la PVST.

Références pour PVST avec raccord T

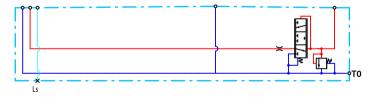
Référence	Matériau	Port T	Pattes de fixation	Poids	
157B2500	Acier	G1/2	M8	0,47 kg [1,05 lb]	
157B2520	Aciei	7/8–14	5/16–18	0,47 kg [1,03 lb]	
157B2912	Fonte	M22x1,5 DIN 3852-1	M8	0.6 kg [1.22 lb]	
11004462	Fonte	M22x1,5 ISO 6149	IVIO	0,6 kg [1,32 lb]	

Plaque de départ PVSI

La plaque de départ PVSI PVG 32 en fonte est destinée à être utilisée avec un PVPM dans une configuration à centre fermé pour une utilisation avec des pompes à cylindrée variable.


Les plaques de départ PVSI comprennent :

- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE
- Joint d'étanchéité intégré pour groupes avec/sans port T0
- Ports filetés pour port T0 et LS


Plaque de départ PVSI

Dimensions

Schéma

Pression maximale pour les ports P et T

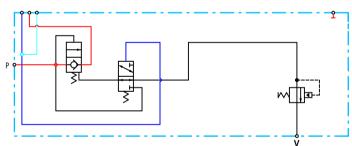
Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
350 bar [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]

Références pour les plaques de départ PVSI

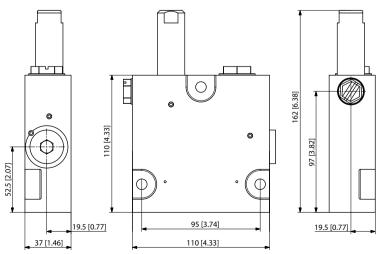
Référence	Port LS, T0	Montage	Poids
11091772	9/16–18-UNF	5/16-18 UNC	- 1,6 kg [3,53 lb]
11091773	G1/4"	M8	

Plaque d'extrémité PVSD

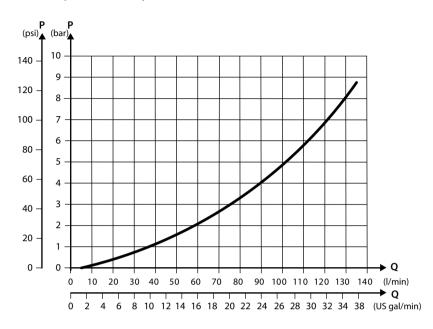
Les plaques d'extrémité PVSD en fonte sont utilisées pour prévenir les pics et débordements sur la ligne T et pour fermer la section de bloc de vannes à l'extrémité.


En outre, la plaque d'extrémité garantit que la détection de charge (LS) est déchargée vers la pression du réservoir lorsque la vanne n'est pas actionnée et comporte des ports P et V (débordements) filetés.

Le port ventilé (port V) doit être raccordé à un réservoir de débordement.


Plaque d'extrémité PVSD

Schéma



Dimensions

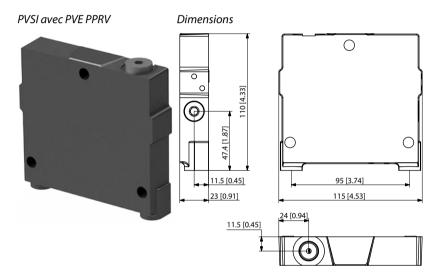
Caractéristiques de chute de pression P à P

Pression, débit et fuite maximale

Port P continu max.	Port T statique/ dynamique max.	Débit de pompe nominal max.	Fuite port V
210 bar [3 046 psi]	50 bar [725 psi]	120 l/min [31,7 gal US/min]	1 cm ³ [0,06 po ³]/heure

Référence pour la plaque d'extrémité PVSD

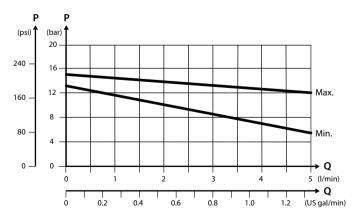
Référence	Port P	Port V	Poids	Montage
157B2904	G1/2"	G1/4"	3,01 kg [6,64 lb]	M8


PVSI avec PVE PPRV

Les plaques d'extrémité PVS PVG 32 ferment la section de bloc de vannes placée entre les plaques positionnées aux extrémités. En outre, la plaque d'extrémité garantit que la détection de charge (LS) est déchargée vers la pression du réservoir lorsque la vanne n'est pas actionnée.

Le régulateur de pression de pilotage (PPRV) est destiné à un groupe de distributeurs avec sections de travail à commande électrohydraulique.

Le PVSI avec PPRV PVE comprend:


- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE
- Port T0 fileté

Schéma

Caractéristiques du régulateur de pression de pilotage

Pression maximale pour les ports P et T

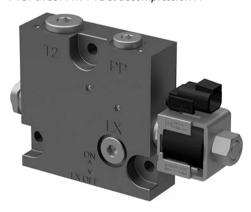
Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
350 bar [5 076 psi]	400 bar [5 800 psi]	25/40 bar [365/580 psi]

Référence pour PVSI avec plaque PPRV PVE

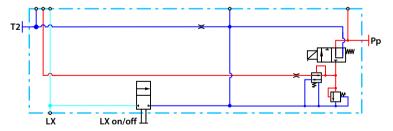
Référence	Port T0	Poids	Montage
157B2917	M14x1,5	0,48 kg [1,05 lb]	M8

PVST avec PPRV PVE et décompression PP

Les plaques d'extrémité PVS PVG 32 ferment la section de bloc de vannes placée entre les plaques positionnées aux extrémités. En outre, la plaque d'extrémité garantit que la détection de charge (LS) est déchargée vers la pression du réservoir lorsque la vanne n'est pas actionnée.

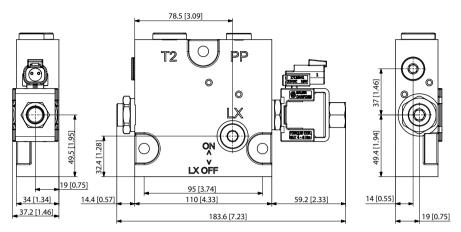

Le régulateur de pression de pilotage (PPRV) est destiné à un groupe de distributeurs avec sections de travail à commande électrohydraulique. La pression pilote peut être déchargée afin de prévenir toute activation électrique des sections de travail.

Le port LX sélectionnable permet la connexion d'autres vannes à distance sur le réseau de sélecteur de circuit de détection de charge.

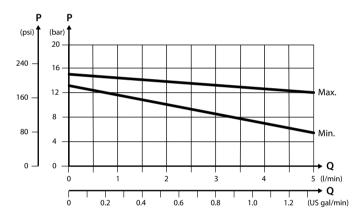

Le PVST avec PPRV PVE et décharge PP comprend :

- Vanne de réduction de la pression de pilotage (PPRV) intégrée pour PVE
- Vanne de décharge d'huile pilote intégrée
- Port T et LX intégré
- Sélecteur pour modes LX ou non LX

PVST avec PPRV PVE et décompression PP



Schéma



Dimensions

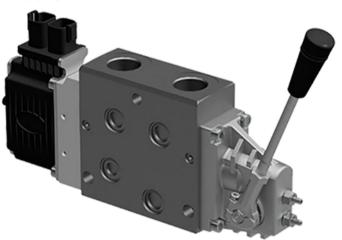
Caractéristiques du régulateur de pression de pilotage

Pression maximale pour les ports P et T

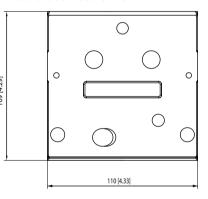
Port P continu max.	Port P intermittent max.	Port T statique/dynamique max.
210 bar [3 045 psi]	280 bar [4 061 psi]	25/40 bar [365/580 psi]

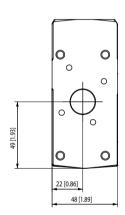
Référence pour PVST avec décharge PPRV/PP

Référence	Port T0, LX	Port T	Décharge PP	Poids	Montage
11050065	M14x1,5	M22x1,5	12 V _{CC}	3,2 kg [7,05 lb]	M8
11067069	M14x1,5	M22x1,5	24 V _{CC}	3,2 kg [7,05 lb]	M8


La vanne d'arrêt plein débit PVSKM a été conçue pour répondre aux nouvelles normes de sécurité fonctionnelle. PVSKM constitue une manière économique de mettre en œuvre une architecture hydraulique redondante pour les fonctions de sécurité de catégorie 2 ou 3. L'utilisation de PVSKM dans une vanne PVG offrira deux possibilités indépendantes d'arrêt hydraulique pour les fonctions de débit de travail. La PVSKM peut être placée n'importe où dans le bloc de vannes PVG pour fermer le groupe de vannes dans son intégralité ou seulement une partie de celui-ci, selon la position. Une ou plusieurs vanne(s) PVSKM peu(ven)t être placée(s) dans la vanne PVG 32 pour rendre le système redondant.

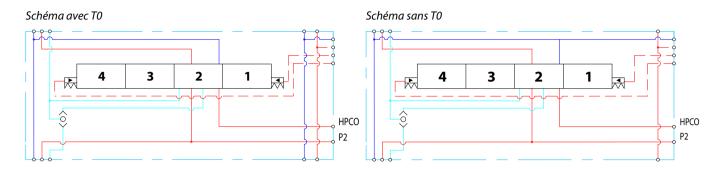
Le module PVSKM peut être utilisé dans toutes les combinaisons : centre fermé et ouvert, au niveau du bloc PVG satellite et du bloc PVG intégré. Les tiroirs sont divisés en deux catégories principales, l'une prenant en charge un système à centre ouvert à partir de la connexion HPCO et une autre prenant en charge un système à centre fermé à partir de la connexion HPCO. Les deux catégories de tiroirs prennent en charge les systèmes à centre fermé et à centre ouvert dans le bloc PVG intégré.


Le module PVSKM peut envoyer un débit allant jusqu'à 125 l/min à travers le PVG intégré et jusqu'à 200 l/min à partir du port HPCO. Le débit du port HPCO peut varier en fonction des propriétés du tiroir choisi.


Les modules PVSKM seront disponibles avec différentes dimensions de connexion de port : 3/4 BSP, 3/4 BSP avec T0, 1-1/6 UNF avec T0 et 1" BSP. N'oubliez pas que si le PVSKM est choisi avec un port 1" et si le PVP ont un port 1", une entretoise intermédiaire est nécessaire.

Tranche PVSKM

Dimensions du module PVSKM


Modules disponibles

Description	Référence en fonction du type de port					
Port	3/4" BSP 1-1/16 UNF					
Module sans T0	11133574	11133592	-			
Module avec T0	11150521	-	11133580			

Plaque d'écartement

Référence	Pression maximale	Matériau	Poids	Largeur	Fonctionnalité T0
11234385	350 bar [5 076 psi]	Fonte	0,47 kg [1,05 lb]	23 mm [0,91"]	Oui

Tous les tiroirs sont adaptés aux systèmes à centre fermé et à centre ouvert dans le bloc PVG intégré. Les tiroirs doivent être choisis en fonction du système PVG satellite raccordé au port HPCO.

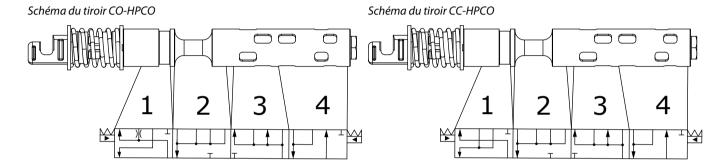
Tiroirs à montage standard à commande électrique

Description	Référence en fonction du débit HPCO				
l/min [gal US/min]	25 [6,6]	50 [13,2]	100 [26,4]	Max.	
Connexion du système à centre ouvert à HPCO	11149045	11149047	11149049	11149053	
Connexion du système à centre fermé à HPCO	11149046	11149048	11149050	11149054	

Tiroirs à montage en option à commande électrique

Description	Référence en fonction du débit HPCO			
l/min [gal US/min]	25 [6,6]	50 [13,2]	100 [26,4]	Max.
Connexion du système à centre ouvert à HPCO	11175360	-	-	11175362
Connexion du système à centre fermé à HPCO	11175361	-	-	11175363

Tiroirs à montage standard à commande hydraulique


Description	Référence en fonction du débit HPCO			
l/min [gal US/min]	25 [6,6]	50 [13,2]	100 [26,4]	Max.
Connexion du système à centre ouvert à HPCO	-	-	-	11175365
Connexion du système à centre fermé à HPCO	-	-	-	11175368

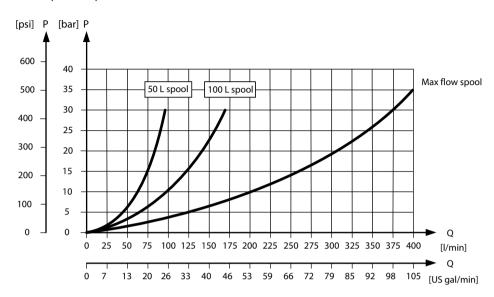
Caractéristiques techniques

Pression max.	Port P continu		350 bar [5 075 psi]
	Port HPCO continu		
Débit d'huile nominal	P-PVG	P-PVG Système à centre ouvert	
		Système à centre fermé	125 l/min [33 gal US/min]
Débit d'huile nominal	uile nominal P- HPCO Système à centre ouvert		210 l/min [55,48 gal US/ min]
		Système à centre fermé	210 l/min [55,48 gal US/ min]
Débit d'huile nominal	Débit d'huile nominal P- P2 Système à centre d		85 l/min [22,5 gal US/min]
		Système à centre fermé	125 l/min [33 gal US/min]

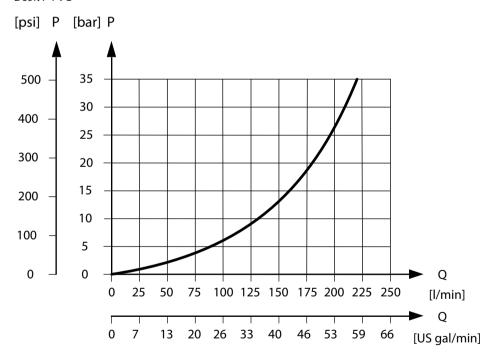
Température de l'huile	Température recommandée	30 à 60 °C [86 à 140 °F]
(température d'entrée)	Température min.	-30 °C [-22 °F]
	Température max.	90 °C [194 °F]
Température ambiante	Recommandée	-30 à 70 °C [-22 à 158 °F]
Viscosité de l'huile	Plage de fonctionnement	12 - 75 mm/s [65-347 SUS]
	Viscosité min.	4 mm/s [39 SUS]
	Viscosité max.	460 mm/s [2 128 SUS]
Filtrage	Contamination max. (ISO 4406)	23/19/16

Les tiroirs PVSKM ont quatre positions (voir l'illustration ci-dessus)

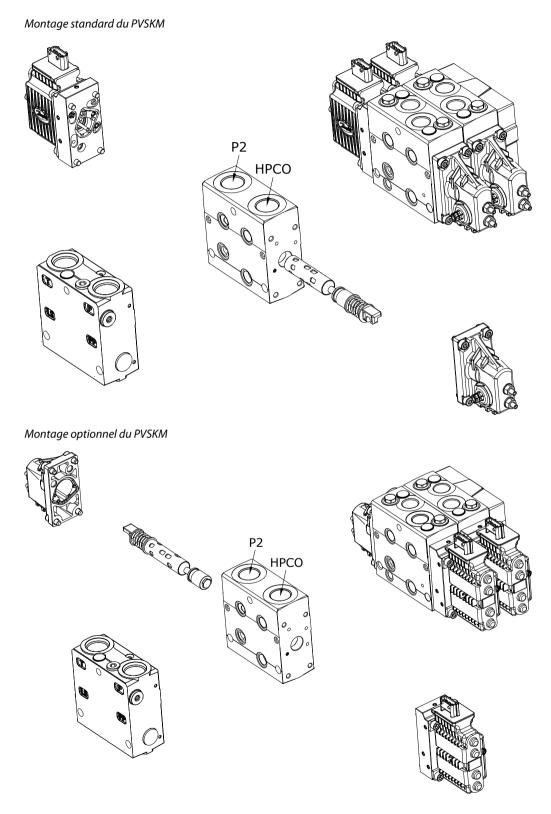
Position	Description	Position du tiroir	Contrôle caractéristique
1	PORT HPCO	De -1,8 mm à -7 mm	Proportionnel
2	Neutre	De -1,8 mm à 2,3 mm	aucun
3	4e position	De 2,3 mm à 4,5 mm	Position de sécurité ON/OFF*
4	PVG/P2	De 4,5 mm à 7 mm	ON/OFF**


^{*} Position de sécurité qui ouvre simultanément les ports HPCO et PVG pour un contournement manuel en cas d'urgence

^{**} Doit être activé rapidement dans la bonne position



Caractéristiques des tiroirs


Débit à partir du port HPCO

Débit P-PVG

Kit de boulons d'ancrage PVAS pour diverses combinaisons PVG composées de trois tirants, six rondelles, six écrous et un joint torique. Utilisez le guide et les tableaux de référence pour choisir un kit PVAS.

Les tirants sont insérés sur toute la longueur du bloc de vannes PVG. Les écrous sont serrés côté pompe et à la plaque d'extrémité.

Pour trouver le kit PVAS adapté à votre bloc de distributeurs PVG 16, référez-vous au tableau *Longueur totale des modules PVG 32* à la page 228 et trouvez la longueur appropriée. Consultez ensuite le tableau *Références PVAS* à la page 227 et trouvez la référence correspondante.

Pour les boulons d'ancrage pour une combinaison PVG 32/16, référez-vous aux *Combinaisons PVG 32/16* à la page 228.

Les boulons d'ancrage pour PVG 256/128/32/16 sont composés de deux kits différents. Référez-vous aux *Combinaisons PVG 256/128/32/16* à la page 229 pour trouver les kits adaptés à votre combinaison.

Les combinaisons avec PVG 100 et PVG 120 requièrent des kits PVAS spéciaux. Ces kits ne sont pas inclus dans le tableau PVAS.

Références PVAS

Références PVAS selon la longueur d'intervalle PVG 32 accumulée.

Références PVAS

Longueur, mm [po]	Référence	Longueur, mm [po]	Référence
20 – 48 [0,79 – 1,89]	11188219	361 – 372 [14,21 – 14,65]	11188205
49 – 60 [1,93 – 2,36]	11188218	373 – 384 [14,69 – 15,12]	157B8026
61 – 72 [2,40 – 2,83]	157B8000	385 – 396 [15,16 – 15,59]	11188204
73 – 84 [2,87 – 3,31]	11188217	397 – 408 [15,63 – 16,06]	157B8007
85 – 96 [3,35 – 3,78]	157B8031	409 – 420 [16,10 – 16,54]	11188203
97 – 108 [3,82 – 4,25]	11188216	421 – 432 [16,58 – 17,01]	157B8027
109 – 120 [4,29 – 4,72]	157B8001	433 – 444 [17,05 – 17,48]	11188202
121 – 132 [4,76 – 5,20]	11188215	445 – 456 [17,52 – 17,95]	157B8008
133 – 144 [5,24 – 5,67]	157B8021	457 – 468 [17,99 – 18,43]	11188201
145 – 156 [5,71 – 6,14]	11188214	469 – 480 [18,47 – 18,90]	157B8028
157 – 168 [6,18 – 6,61]	157B8002	481 - 492 [18,94 – 19,37]	11188200
169 – 180 [6,65 – 7,09]	11188213	493 – 504 [19,41 – 19,84]	157B8009
181 – 192 [7,13 – 7,56]	157B8022	505 – 516 [19,88 – 20,31]	11188199
193 – 204 [7,60 – 8,03]	11188212	517 – 528 [20,35 – 20,79]	157B8029
205 – 216 [8,07 – 8,50]	157B8003	529 – 540 [20,83 – 21,26]	11188198
217 – 228 [8,54 – 8,98]	11188211	541 – 552 [21,30 – 21,73]	157B8010
229 – 240 [9,02 – 9,45]	157B8023	553 – 564 [21,77 - 22,20]	11188197
241 – 252 [9,49 – 9,92]	11188210	565 – 576 [22,24 – 22,68]	157B8030
253 – 264 [9,96 – 10,39]	157B8004	577 – 588 [22,72 – 23,15]	11188196
265 – 276 [10,43 – 10,87]	11188209	589 – 600 [23,19 – 23,62]	157B8061
277 – 288 [10,91 – 11,34]	157B8024	601 – 612 [23,66 – 24,09]	11188195
289 – 300 [11,38 – 11,81]	11188208	613 – 624 [24,13 – 24,57]	157B8081
301 – 312 [11,85 – 12,28]	157B8005	625 – 636 [24,61 – 25,04]	11188194
313 – 324 [12,32 – 12,76]	11188207	637 – 648 [25,08 – 25,51]	157B8062
325 – 336 [12,80 – 13,23]	157B8025	649 – 660 [25,55 – 25,98]	11188189
337 – 348 [13,27 – 13,70]	11188206	661 - 672 [26,02 – 26,46]	157B8082
349 – 360 [13,74 – 14,17]	157B8006		

Longueur totale des modules PVG 32

Tableau avec longueur totale du PVG 32 selon le nombre de modules PVB.

Nº de PVB 32	1	2	3	4	5	6	7	8	9	10	11	12
Longue ur mm [po]	[4,69]	167 [6,57]	215 [8,46]	263 [10,35]	311 [12,24]	359 [14,13]	407 [16,02]	455 [17,91]	503 [19,80]	551 [21,69]	599 [23,58]	647 [25,47]

Combinaisons PVG 32/16

Tableau d'une combinaison de modules PVG 32/16, la longueur totale dépend du nombre de groupes de vannes.

	PVB 16													
Modules	en mm [po]	1	2	3	4	5	6	7	8	9	10	11		
	1	159 [6,26]	199 [7,83]	239 [9,41]	279 [10,98]	319 [12,56]	359 [14,13]	399 [15,71]	439 [17,28]	479 [18,86]	519 [20,43]	559 [22,01]		
	2	207 [8,15]	247 [9,72]	287 [11,30]	327 [12,87]	367 [14,45]	407 [16,02]	447 [17,60]	487 [19,17]	527 [20,74]	567 [22,32]	607 [23,90]		
	3	255 [10,04]	295 [11,61]	335 [13,19]	375 [14,76]	415 [16,34]	455 [17,91]	495 [19,49]	535 [21,06]	575 [22,64]	615 [24,21]	655 [25,79]		
	4	303 [11,93]	343 [13,50]	383 [15,08]	423 [16,65]	463 [18,23]	503 [19,80]	543 [21,38]	583 [22,95]	623 [24,53]	663 [26,10]	-		
	5	351 [13,82]	391 [15,39]	431 [16,97]	471 [18,54]	511 [20,12]	551 [21,69]	591 [23,27]	631 [24,84]	671 [26,42]	-	-		
PVB 32	6	399 [15,71]	439 [17,28]	479 [18,86]	519 [20,43]	559 [22,01]	599 [23,58]	639 [25,16]	-	-	-	-		
	7	447 [17,60]	487 [19,17]	527 [20,75]	567 [22,32]	607 [23,90]	647 [25,47]	-	-	-	-	-		
	8	495 [19,49]	535 [21,06]	575 [22,64]	615 [24,21]	655 [25,79]	-	-	-	-	-	-		
	9	543 [21,38]	583 [22,95]	623 [24,53]	663 [26,10]	-	-	-	-	-	-	-		
	10	591 [23,27]	631 [24,84]	671 [26,42]	-	-	-	-	-	-	-	-		
	11	639 [25,16]	-	-	-	-	-	-	-	-	-	-		

Combinaisons PVG 256/128/32/16

Tableaux de modules PVB 256/128, 32/16, la longueur totale dépend du nombre de groupes de vannes.

Les boulons d'ancrage pour combinaisons de PVG 128/256/32/16 sont composés de 2 kits différents :

- 1. Pour les PVAS contenant 2 boulons d'ancrage reportez-vous au tableau 1 et utilisez la référence de pièce avant le symbole +.
- 2. Pour les PVAS contenant 3 boulons d'ancrage reportez-vous au tableau 1 et écrivez la longueur en millimètres, c'est-à-dire le chiffre après le symbole +. Ensuite, ajoutez le chiffre du tableau 2 cidessous. À présent, trouvez la référence pour les boulons d'ancrage nécessaires dans le tableau Références PVAS à la page 227.

Les kits PVAS contiennent des joints toriques – aucune référence de pièce supplémentaire n'est nécessaire.

ATTENTION

Il n'est pas possible de procéder à des combinaisons dépassant 672 mm.

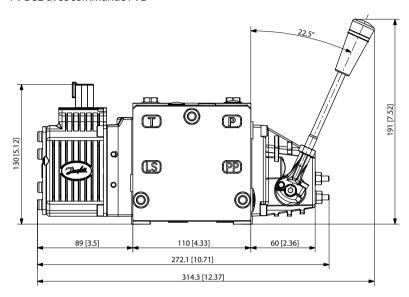
Exemple

Pour 2 PVB 256 et 1 PVB 128 et 1 PVB 32 et 2 PVB 16: PVAS 1 référence de pièce = **11187681** du tableau 1.

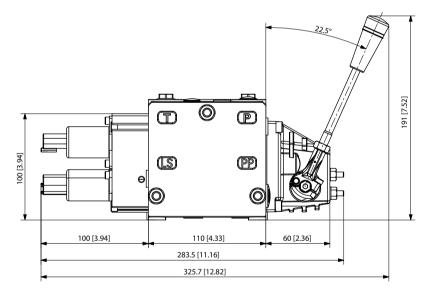
PVAS 2 = **278** mm du *tableau 1* + **152** mm du *tableau 2* = 278 + 152 = 430 mm, ce qui équivaut à 157B8027 dans le tableau PVAS.

Tableau 2 – Combinaisons PVG 256/128

				PV	B 256				
Modules (mn	n)	0	1	2	3	4	5	6	7
	0	11187676+ 40	11187672+ 126	11187673+ 212	11187656+ 298	11187675+ 384	11187696+ 470	11187697+ 556	11187698+ 642
	1	11187320+ 106	11187677+ 192	11187681+ 278	11187658+ 364	11187685+ 450	11187687+ 536	11187690+ 622	
	2	11187617+ 172	11187678+ 258	11187682+ 344	11187686+ 430	11187691+ 516	11187704+ 602		
	3	11187655+ 238	11187679+ 324	11187683+ 410	11187705+ 496	11187694+ 582	11187695+ 668		
PVB 128	4	11187684+ 304	11187680+ 390	11187696+ 476	11187697+ 562	11187689+ 648			
P V D 120	5	11187658+ 370	11187699+ 456	11187688+ 542	11187710+ 628				
	6	11187693+ 436	11187703+ 522	11187704+ 608					
	7	11187705+ 502	11187694+ 588						
	8	11187692+ 568	11187709+ 654						
	9	11187710+ 634							


Tableau 2 – Combinaisons PVG 32/16

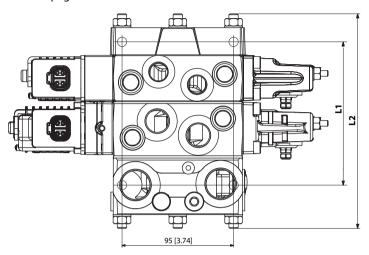
	PVB 16													
Modules (mm)		0	1	2	3	4	5	6	7	8	9	10		
	0	-	64	104	144	184	224	264	304	344	384	424		
_	1	72	112	152	192	232	272	312	352	392	432	-		
	2	120	160	200	240	280	320	360	400	440	-	-		
	3	168	208	248	288	328	368	408	448	-	-	-		
	4	216	256	296	236	276	416	456	-	-	-	-		
PVB 32	5	264	304	344	384	424	464	-	-	-	-	-		
	6	312	352	392	432	472	-	-	-	-	-	-		
	7	360	400	440	480	-	-	-	-	-	-	-		
	8	408	448	488	-	-	-	-	-	-	-	-		
	9	456	496	-	-	-	-	-	-	-	-	-		
	10	504	-	-	-	-	-	-	-	-	-	-		



Dimensions PVG 32

PVG 32 avec commande PVE

PVG 32 avec PVHC


Nombr 32	e de PVB	1	2	3	4	5	6	7	8	9	10	11	12
L1	mm [po]	82 [3,23]		178 [7,01]130 [5,12]	226 [8,90]	274 [10,79]	322 [12,68]	370 [14,57]	418 [16,46]	466 [18,35]	514 [20,24]	562 [22,13]	610 [24,02]
L2	130 [5,12]	141 [5,55]	190 [7,48]	238 [9,37]	287 [11,30]	335 [13,19]	384 [15,12]	432 [17,01]	481 [18,94]	529 [20,83]	578 [22,76]	626 [24,65]	675 [26,57]
Poids	kg [lb]	8,33 [18,36]	11,46 [25,26]	14,53 [32,03]	17,66 [38,93]	20,74 [45,72]	23,81 [52,49]	26,94 [59,39]	30,01 [66,16]	33,09 [72,95]	36,21 [79,83]	39,29 [86,62]	42,26 [93,17]

Le poids correspond à un PVG 32 avec un PVEO série 7 sur chaque section de travail et ne constitue qu'une approximation.

Dimensions des PVG 32/16

Tableau d'aperçu des dimensions de blocs de vannes d'une combinaison PVB 32/16 avec schéma d'accompagnement.

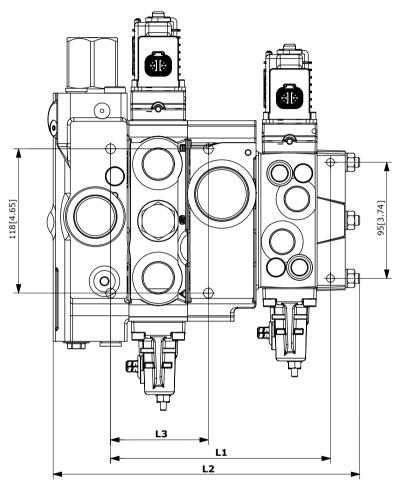
Dimensions des combinaisons de blocs de vannes PVB 32/16, mm [po]

Nom						Nombre o	de modul	es PVB 16	5			
de P' (ci- dess	VB 32 ous)	1	2	3	4	5	6	7	8	9	10	11
1	L1	122 [4,80]	162 [6,38]	202 [7,95]	242 [9,53]	282 [11,10]	322 [12,68]	362 [14,25]	402 [15,83]	442 [17,40]	482 [18,98]	522 [20,55]
	L2	189 [7,44]	238 [9,37]	262 [10,31]	311 [12,24]	360 [14,17]	385 [15,16]	434 [17,09]	483 [19,02]	507 [19,96]	551 [21,69]	600 [23,62]
2	L1	170 [6,69]	210 [8,27]	250 [9,84]	290 [11,42]	330 [12,99]	370 [14,57]	410 [16,14]	450 [17,72]	490 [19,29]	530 [20,87]	570 [22,44]
	L2	238 [9,37]	287 [11,30]	311 [12,24]	360 [14,17]	409 [16,10]	434 [17,09]	483 [19,02]	507 [19,96]	551 [21,69]	600 [23,62]	646 [25,43]
3	L1	218 [8,58]	258 [10,16]	298 [11,73]	338 [13,31]	378 [14,88]	418 [16,46]	458 [18,03]	498 [19,61]	538 [21,18]	578 [22,76]	-
	L2	287 [11,30]	336 [13,23]	360 [14,17]	409 [16,10]	458 [18,03]	483 [19,02]	527 [20,75]	576 [22,68]	600 [23,62]	646 [25,43]	-
4	L1	266 [10,47]	306 [12,05]	346 [13,62]	386 [15,20]	426 [16,77]	466 [18,35]	506 [19,92]	546 [21,50]	586 [23,07]	-	-
	L2	336 [13,23]	385 [15,16]	409 [16,10]	458 [18,03]	483 [19,02]	527 [20,75]	576 [22,68]	622 [24,49]	646 [25,43]	-	-
5	L1	314 [12,36]	354 [13,94]	394 [15,51]	434 [17,09]	474 [18,66]	514 [20,24]	554 [21,81]	594 [23,39]	-	-	-
	L2	385 [15,16]	434 [17,09]	458 [18,03]	507 [19,96]	551 [21,69]	576 [22,68]	622 [24,49]	670 [26,38]	-	-	-
6	L1	362 [14,25]	402 [15,83]	442 [17,40]	482 [18,98]	522 [20,55]	562 [22,13]	602 [23,70]	-	-	-	-
	L2	434 [17,09]	483 [19,02]	507 [19,96]	551 [21,69]	600 [23,62]	622 [24,49]	670 [26,38]	-	-	-	-
7	L1	410 [16,14]	450 [17,72]	490 [19,29]	530 [20,87]	570 [22,44]	610 [24,02]	-	-	-	-	-
	L2	483 [19,02]	527 [20,75]	551 [21,69]	600 [23,62]	646 [25,43]	670 [26,38]	-	-	-	-	-

Dimensions des combinaisons de blocs de vannes PVB 32/16, mm [po] (suite)

Nom					ı	Nombre o	de modul	es PVB 16	5			
(ci- dess	/B 32 ous)	1	2	3	4	5	6	7	8	9	10	11
8	L1	458 [18,03]	498 [19,61]	538 [21,18]	578 [22,76]	-	-	-	-	-	-	-
	L2	527 [20,75]	576 [22,68]	600 [23,62]	646 [25,43]	-	-	-	-	-	-	-
9	L1	506 [19,92]	546 [21,50]	586 [23,07]	-	-	-	-	-	-	-	-
	L2	576 [22,68]	622 [24,49]	646 [25,43]	-	-	-	-	-	-	-	-
10	L1	554 [21,81]	594 [23,39]	-	-	-	-	-	-	-	-	-
	L2	622 [24,49]	670 [26,38]	-	-	-	-	-	-	-	-	-
11	L1	602 [23,70]	-	-	-	-	-	-	-	-	-	-
	L2	670 [26,38]	-	-	-	-	-	-	-	-	-	-

Poids d'un bloc de vannes PVG 32/16


Le poids combiné d'un bloc de vannes PVG 32/16 peut être défini comme suit :

(Nombre de PVB 32 x 4,42) + (nombre de PVB 16 x 3,67) + 3,6 = poids en kg (Nombre de PVB 32 x 9,75) + (nombre de PVB 16 x 8,09) + 7,95 = poids en lb

Dimensions PVG 100/32

Tableau d'aperçu des dimensions de blocs de vannes PVB 100 et PVB 32 combinés avec schéma d'accompagnement.

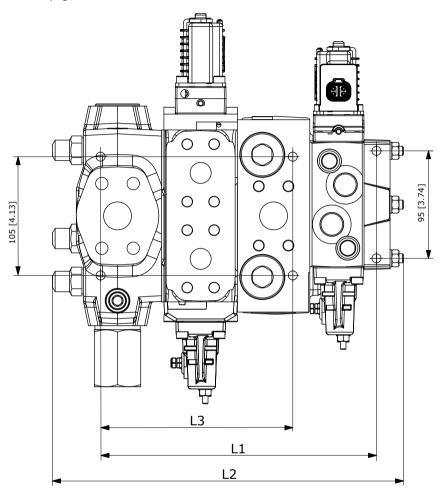
Dimensions des combinaisons de blocs de vannes PVB 100/32, mm [po]

Nombre de	e PVB 100				N	ombre d	le modu	les PVB	32			
(bas)		1	2	3	4	5	6	7	8	9	10	11
1	L1	168	216	264	312	360	408	456	504	552	600	648
	LI	[6,61]	[8,50]	[10,39]	[12,28]	[14,17]	[16,06]	[17,95]	[19,84]	[21,73]	[23,62]	[25,51]
	L3					80 r	nm [3,15	po]				
2	L1	216	264	312	360	408	456	504	552	600	648	696
	LI	[8,50]	[10,39]	[12,28]	[14,17]	[16,06]	[17,95]	[19,84]	[21,73]	[23,62]	[25,51]	[27,40]
	L3					128	mm [5,0	4 po]				
3	L1	264	312	360	408	456	504	552	600	648	696	744
	LI	[10,39]	[12,28]	[14,17]	[16,06]	[17,95]	[19,84]	[21,73]	[23,62]	[25,51]	[27,40]	[29,29]
	L3					176	mm [6,9	3 po]				
4	L1	312	360	408	456	504	552	600	648	696	744	792
	LI	[12,28]	[14,17]	[16,06]	[17,95]	[19,84]	[21,73]	[23,62]	[25,51]	[27,40]	[29,29]	[31,18]
	L3					224	mm [8,8	2 po]				

Dimensions des combinaisons de blocs de vannes PVB 100/32, mm [po] (suite)

Nombre de	e PVB 100				N	ombre d	e modu	les PVB	32			
(bas)		1	2	3	4	5	6	7	8	9	10	11
5	L1	360	408	456	504	552	600	648	696	744	792	840
		[14,17]	[16,06]	[17,95]	[19,84]	[21,73]	[23,62]	[25,51]	[27,40]	[29,29]	[31,18]	[33,07]
	L3					272 r	nm [10,7	'1 po]				
6	L1	408	456	504	552	600	648	696	744	792	840	888
	[]	[16,06]	[17,95]	[19,84]	[21,73]	[23,62]	[25,51]	[27,40]	[29,29]	[31,18]	[33,07]	[34,96]
	L3				•	320 r	nm [12,6	0 po]		•		
7	L1	456	504	552	600	648	696	744	792	840	888	936
	LI	[17,95	[19,84	[21,73	[23,62	[25,51	[27,40	[29,29	[31,18	[33,07	[34,96	[36,85
	L3				•	368 r	nm [14,4	9 po]		•		
8	L1	504	552	600	648	696	744	792	840	888	936	984
	LI	[19,84]	[21,73]	[23,62]	[25,51]	[27,40]	[29,29]	[31,18]	[33,07]	[34,96]	[36,85]	[38,74]
	L3					416 r	nm [16,3	8 po]				

Poids d'un bloc de vannes PVG 100/32


Le poids combiné d'un bloc de vannes PVG 100/32 peut être défini comme suit :

(Nombre de PVB 100 x 7) + (nombre de PVB 32 x 4,42) + 10 = poids en kg (Nombre de PVB 100 x 9,37) + (nombre de PVB 32 x 9,75) + 22 = poids en lb

Dimensions PVG 120/32

Tableau d'aperçu des dimensions de blocs de vannes PVB 120 et PVB 32 combinés avec schéma d'accompagnement.

Il existe une différence horizontale de 62,5 mm [2,46 po] sur le plan de montage du PVG 120/PVG 16. En raison de la taille importante du module d'interface PVG 120, il est nécessaire de disposer d'au moins un module PVG 32 entre le PVGI et la première tranche PVG 32.

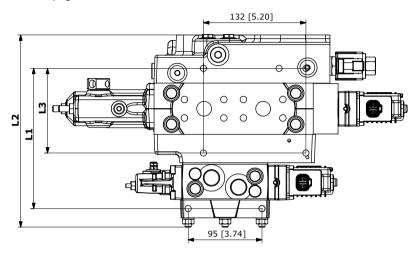
Dimensions des combinaisons de blocs de vannes PVB 120/32, mm [po]

Nombre de	e PVB 120				N	ombre d	le modu	les PVB	32				
(bas)		1	2	3	4	5	6	7	8	9	10	11	
1	L1	292	340	388	436	484	532	580	628	676	724	772	
	L'	[11,50]	[13,39]	[15,28]	[17,17]	[19,06]	[20,94]	[22,83]	[24,72]	[26,61]	[28,50]	[30,39]	
	L3	170 mm [6,69 po]											
2	L1	359	407	455	503	551	599	647	695	743	791	839	
	LI	[14,13]	[16,02]	[17,91]	[19,80]	[21,69]	[23,58]	[25,47]	[27,36]	[29,25]	[31,14]	[33,03]	
	L3					237	mm [9,3	3 po]					
3	L1	426	474	522	570	618	666	714	762	810	858	906	
	LI	[16,77]	[18,66]	[20,55]	[22,44]	[24,33]	[26,22]	[28,11]	[30,00]	[31,89]	[33,78]	[35,67]	
	L3		304 mm [11,91 po]										

Dimensions des combinaisons de blocs de vannes PVB 120/32, mm [po] (suite)

Nombre d	e PVB 120				N	ombre d	e modu	les PVB	32				
(bas)		1	2	3	4	5	6	7	8	9	10	11	
4	L1	493	541	589	637	685	733	781	829	877	925	973	
	-	[19,41]	[21,30]	[23,19]	[25,08]	[26,97]	[28,86]	[30,75]	[32,64]	[34,53]	[36,42]	[38,31]	
	L3	371 mm [14,61 po]											
5	L1	560	608	656	704	752	800	848	896	944	992	1040	
	LI	[22,05]	[23,94]	[25,83]	[27,72]	[29,61]	[31,50]	[33,39]	[35,28]	[37,17]	[39,06]	[40,94]	
L3		438 mm [17,24 po]											
6	L1	627	675	723	771	819	867	915	963	1011	1059	1107	
		[24,69]	[26,57]	[28,46]	[30,35]	[32,24]	[34,13]	[36,02]	[37,91]	[39,80]	[41,69]	[43,58]	
	L3	505 mm [19,88 po]											
7	L1	694	742	790	838	886	934	982	1030	1078	1126	1174	
		[27,32]	[29,21]	[31,10]	[32,99]	[34,88]	[36,77]	[38,66]	[40,55]	[42,44]	[44,33]	[46,22]	
	L3					572 r	nm [22,5	2 po]					
8	1.1	761	809	857	905	953	1001	1049	1097	1145	1193	1241	
	L1	[29,96]	[31,85]	[33,74]	[35,63]	[37,52]	[39,41]	[41,30]	[43,19]	[45,08]	[46,97]	[48,86]	
	L3					639 r	nm [25,1	6 po]					

Poids d'un bloc de vannes PVG 120/32


Le poids combiné d'un bloc de vannes PVG 120/32 peut être défini comme suit :

(Nombre de PVB 120 x 13,5) + (nombre de PVB 32 x 4,42) + 11,5 = poids en kg (Nombre de PVB 120 x 29,76) + (nombre de PVB 32 x 9,75) + 25,4 = poids en lb

Dimensions PVG 128/32

Tableau d'aperçu des dimensions de blocs de vannes PVB 128 et PVB 32 combinés avec schéma d'accompagnement.

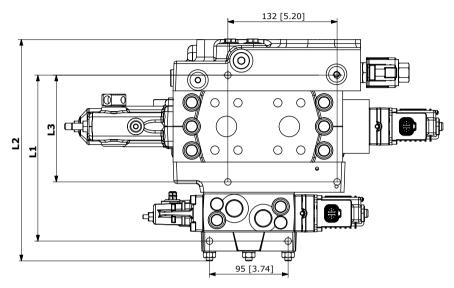
Dimensions des combinaisons de blocs de vannes PVB 128/32, mm [po]

Nom					ı	Nombre o	le modul	es PVB 32	2						
de P 128 dess		1	2	3	4	5	6	7	8	9	10	11			
1	L1	181 [7,13]	229 [9,02]	277 [10,91]	325 [12,80]	373 [14,69]	421 [16,57]	469 [18,46]	517 [20,35]	565 [22,24]	613 [24,13]	661 [26,02]			
	L2	249,5 [9,82]	297,5 [11,71]	346,5 [13,64]	394,5 [15,53]	417,5 [16,44]	443,5 [17,46]	540,5 [21,28]	588,5 [23,17]	637,5 [25,10]	685,5 [26,99]	734,5 [28,92]			
	L3		98,5 mm [3,88 po]												
2	L1	247,0 [9,72]	295,0 [11,61]	343,0 [13,50]	391,0 [15,39]	439,0 [17,28]	487,0 [19,17]	535,0 [21,06]	583,0 [22,95]	631,0 [24,84]	-	-			
	L2	321,5 [12,66]	370,5 [14,59]	418,5 [16,48]	467,5 [18,41]	515,5 [20,30]	564,5 [22,22]	612,5 [24,11]	661,5 [26,04]	709,5 [27,93]	-	-			
	L3		164,5 mm [6,48 po]												
3	L1	313,0 [12,32]	361,0 [14,21]	409,0 [16,10]	457,0 [17,99]	505,0 [19,88]	553,0 [21,77]	601,0 [23,66]	649,0 [25,55]	-	-	-			
	L2	382,5 [15,06]	431,5 [16,99]	479,5 [18,88]	528,5 [20,81]	576,5 [22,70]	625,5 [24,63]	673,5 [26,52]	722,5 [28,44]	-	-	_			
	L3					230,5	mm [9,0]	7 po]	•	·		'			
4	L1	379,0 [14,92]	427,0 [16,81]	475,0 [18,70]	523,0 [20,59]	571,0 [22,48]	619,0 [24,37]	667,0 [26,26]	-	_	_	-			
	L2	455,5 [17,93]	503,5 [19,82]	552,5 [21,75]	600,5 [23,64]	649,5 [25,57]	697,5 [27,46]	746,5 [29,39]	-	_	-	-			
	L3	296,5 mm [11,67]													
5	L1	445,0 17,52	493,0 19,41	541,0 21,30	589,0 23,19	637,0 25,08	-	-	-	-	-	-			
	L2	515,5 [20,30]	564,5 [22,22]	612,5 [24,11]	661,5 [26,04]	709,5 [27,93]	-	-	-	-	-	-			
	L3		•	•	•	362	,5 mm [14	,27]	•		•	•			

Dimensions des combinaisons de blocs de vannes PVB 128/32, mm [po] (suite)

Non		Nombre de modules PVB 32										
de P 128 dess	(ci-	1	2	3	4	5	6	7	8	9	10	11
6	L1	511,0 20,12	559,0 22,01	607,0 23,90	655,0 25,79	-	_	-	-	-	_	-
	L2	588,5 [23,17]	637,5 [25,10]	685,50 [26,99]	734,50 [28,92]	-	-	-	-	-	-	-
	L3	428,5 mm [16,87]										
7	L1	577,0 22,72	625,0 24,61	673,0 26,50	-	-	-	-	-	-	-	_
	L2	649,5 [25,57]	697,5 [27,46]	746,5 [29,39]	-	-	-	-	-	-	-	-
	L3		•	•		494	,5 mm [19	,47]	•		•	
8	L1	643,0 25,31	_	_	-	-	_	-	-	-	-	_
	L2	722,50 [28,44]	-	-	-	-	-	-	-	-	-	-
	L3		560,5 mm [22,07]									

Poids d'un bloc de vannes PVG 128/32


Le poids correspond à un bloc de vannes PVG 128/32 avec un PVEO série 7 sur chaque section de travail et ne constitue qu'une approximation. Il peut être défini comme suit :

(Nombre de PVB 128 x 16,9) + (nombre de PVB 32 x 4,42) + 17,5 = poids en kg (Nombre de PVB 128 x 37,26) + (nombre de PVB 32 x 9,75) + 38,6 = poids en lb

Dimensions PVG 256/32

Tableau d'aperçu des dimensions de blocs de vannes PVB 256 et PVB 32 combinés avec schéma d'accompagnement.

Dimensions des combinaisons de blocs de vannes PVB 256/32, mm [po]

	de PVB				Nom	bre de m	odules P\	/B 32				
256 (ba	s)	1	2	3	4	5	6	7	8	9	10	
1	L1	201 [7,91]	249 [9,80]	297 [11,69]	345 [13,58]	393 [15,47]	441 [1,36]	489 [19,25]	537 [21,14]	585 [23,03]	633 [24,92]	
	L2	273,5 [10,77]	321,5 [12,66]	370,5 [14,59]	418,5 [16,48]	467,5 [18,41]	515,5 [20,30]	564,5 [22,22]	612,5 [24,11]	661,5 [26,04]	709,5 [27,93]	
	L3					118,5 mm	[4,67 po]					
2	L1	287 [11,30]	335 [13,19]	383 [15,08]	431 [16,97]	479 [18,86]	527 [20,75]	575 [22,64]	623 [24,53]	671 [26,42]	-	
	L2	358,5 [14,11]	406,5 [16,0]	455,5 [17,93]	503,5 [19,82]	552,5 [21,75]	600,5 [23,64]	649,5 [25,57]	697,5 [27,46]	746,5 [29,9]	-	
	L3			'		204,5 mm [8,05 po]						
3	L1	373 [14,69]	421 [16,57]	469 [18,46]	517 [20,35]	565 [22,24]	613 [24,13]	661 [26,02]	-	-	_	
	L2	443,5 [17,46]	491,5 [19,35]	540,5 [21,28]	588,5 [23,17]	637,5 [25,10]	685,5 [26,99]	734,5 [28,92]	-	-	-	
	L3					290,5 mm [11,44 po]						
4	L1	459 [18,07]	507 [19,96]	555 [21,85]	603 [23,74]	651 [25,63]	-	-	-	-	_	
	L2	528,5 [20,81]	576,5 [22,70]	625,5 [24,63]	673,5 [26,52]	722,5 [28,44]	-	-	-	-	-	
	L3			•		376,5 mm	[14,82 po]				
5	L1	545 [21,46]	593 [23,35]	641 [25,24]	-	-	-	-	-	-	-	
	L2	625,5 [24,63]	673,5 [26,52]	722,5 [28,44]	-	-	-	-	-	-	-	
	L3					462,5 mm	[18,21 po]				

Dimensions des combinaisons de blocs de vannes PVB 256/32, mm [po] (suite)

Nombre de PVB 256 (bas)			Nombre de modules PVB 32											
		1	2	3	4	5	6	7	8	9	10			
6	L1	631 [24,84]	-	-	-	-	-	-	-	-	_			
	L2	709,5 [27,93]	_	-	-	-	-	-	-	-	-			
L3 548,5 mm [21,59 po]										•				

Poids d'un bloc de vannes PVG 256/32

Le poids correspond à un bloc de vannes PVG 256/32 combiné avec un PVEO série 7 sur chaque section de travail et ne constitue qu'une approximation. Il peut être défini comme suit :

(Nombre de PVB 256 x 20,9) + (nombre de PVB 32 x 4,42) + 17,5 = poids en kg (Nombre de PVB 256 x 46,08) + (nombre de PVB 32 x 9,75) + 38,6 = poids en lb

Schéma PVG et exemples de spécifications

Schémas

Schéma PVG avec PVP à centre ouvert pour les pompes à cylindrée fixe

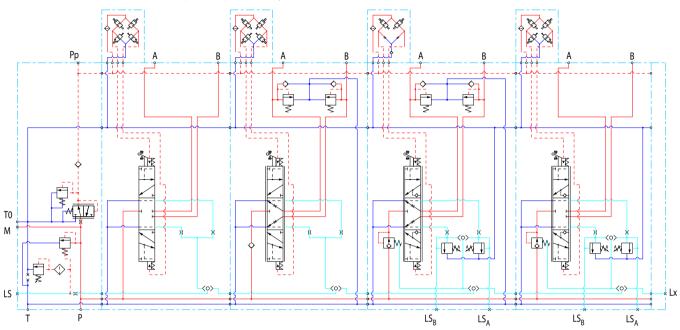
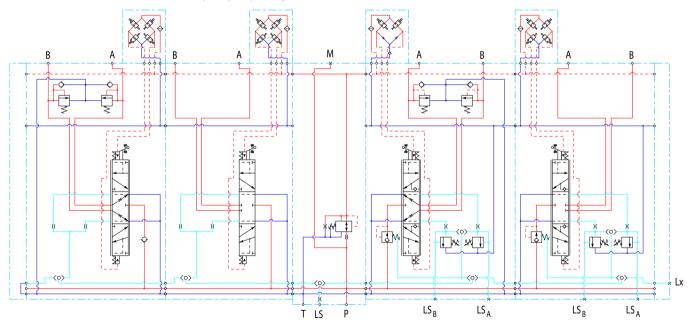



Schéma PVG avec PVPVM à centre fermé pour pompes à cylindrée variable

None

Schéma PVG et exemples de spécifications

Spécifications

PVG avec PVP à centre ouvert pour les pompes à cylindrée fixe

alve type:			PV	G 32			_		Do	<u>infost</u>
ubsidiary / Dealer			Danfo	ss Sold-To Party No.			Customer		10.00	
alve No.			Customer	Part No.			Application			
lled in by			Date		Revisio	n No		EAU		
Function	А	-Port					-		B-Pe	ort
1				157B5130	PVP32	- 112 - 12				
1				200	bar					
9 200		- 10 N						2 70/8/2		100
	PVM	157B3171		157B6410	PVB32		157B7000	PVBS32	157B4292	PVEC
2			LSA=		bar	LSB=		bar		
	0.04	15702171	_	15706140	D) (D22		15707100	D) (DC22	15704000	DVC
	PVM	157B3171		157B6140	PVB32		157B7100	PVBS32	157B4092	PVEH
3	PVLP	157B2230	LSA=		bar	LSB=		bar	157B2160	PVLP
	PVM	157B3171	-	157B6243	PVB32		15787123	PVBS32	157B4792	PVEA
4	PVLP		I CA-			LCD				PVLF
4	PVLP	157B2210	LSA=	180	bar	LSB=	180	bar	157B2250	PVLF
(4) (4)	PVM	157B3171		157B6213	PVB32		15787021	PVBS32	157B4093	PVEH
5		20700272	LSA=		bar	LSB=		bar	2010100	
								-		
1				157B2015	PVS32					
6	i	* * *	LSA=		bar	LSB=		bar	-	
			COA-					- Cui		
7			LSA=		bar	LSB=		bar		
						26 0		100000000000000000000000000000000000000		100
8			LSA=		bar	LSB=		bar		10 10
9			LSA=		bar	LSB=		bar		
- 10										
10			LSA=		bar	LSB=		bar		
	·									
11			LSA=		bar	LSB=		bar		
12			I CA-		har	100		har		
			LSA=		bar	LSB=		bar		
	_									
13			LSA=		bar	LSB=		bar		
			COTT					-		-
1										
14			LSA=		bar	LSB=		bar	+	-
	 								1	
		105								
15	i		LSA=		bar	LSB=		bar		
			1							
18 PVAS	1.	157B8004	2.	7		3.			Business Type:	
19 Painting (write no if pai	nt not wanted)		1	no	No p				1	
20 Customer Text on Grou					-				PVE Programm	ning:
21 Customer Text on Pack	aging Label (Box)		1							.0.
22 Comment:			•						EX Certification	n:

Schéma PVG et exemples de spécifications

PVG avec PVPVM à centre fermé pour les pompes à cylindrée variable

1000	fication Sheet type:			PV	G 32		_		Do	<u>infoss</u>
Subsid	liary / Dealer	1		Danfo	ss Sold-To Party No.	T	Customer	T		
Valve	A STATE OF THE PARTY OF THE PAR	1		Customer		1	Application	1		
Filled		1		Date		Revision No		EAU		
	Function	Α.	Port						B-Pc	ort
		1			157B2000	PVS32				
1		·	****			bar				
-		 				201	-1.17			
		PVM	157B3171		157B6140	PVB32	157B7000	PVBS32	15784092	PVEH
2		PVLP		ICA-	13700140					
4		PVLP	157B2230	LSA=		bar LS	5=	bar	157B2160	PVLP
_		01/11	45702474		45705440	01/022	45707400	D1 (DC 2.2	15704000	DVEO
-		PVM	157B3171		157B6410	PVB32	157B7100	PVBS32	157B4292	PVEO
3				LSA=		bar LS	B=	bar		
					157B5937	PVPVM32				
4				LSA=		bar LS	B=	bar		
					3.00		0.00		2.0	
		PVM	157B3171		157B6243	PVB32	157B7123	PVBS32	15784792	PVEH
5		PVLP	157B2210	LSA=	180	bar LS		bar	157B2250	PVLP
00000							detail and the second			
		PVM	157B3171		15786213	PVB32	157B7020	PVBS32	157B4093	PVEH
6		- F VIVI	13753171	LSA=	180				15754055	FVEII
٠				LSA=	100	bar LS	B= 180	bar		
				_	45700045	01/022				
_					157B2015	PVS32				
7				LSA=		bar LS	B=	bar		
8				LSA=		bar LS	B=	bar		
					100					
9				LSA=	The State of the S	bar LS	B=	bar		
•	-	 							-	
_		_								
10				I CA-		har IC	2-	has		
10	5			LSA=	, and a second	bar LS	B=	bar		
_				_						
200		ļ								
11	-			LSA=		bar LS	B=	bar		
		3 60 600 60	100				7200		102-101 700 700 111	20 20 20
12				LSA=	1000	bar LS	B=	bar		
										Victoria de la compansión de la compansi
13				LSA=		bar LS	B=	bar		
		 								
		_	3				R.			
14				LSA=		bar LS	D=	har		
14				LSA=		bar LS	0-	bar		
		_		-						
							<u> </u>			
15				LSA=		bar LS	B=	bar		
18	PVAS	1.	157B8024	2.		3.			Business Type:	ė.
19	Painting (write no if paint r	not wanted)			no	No paint				
20	Customer Text on Group La	abel							PVE Programm	ning:
21	Customer Text on Packagir	ng Label (Box)								9.
22	Comment:								EX Certification	0:
	- Continuence									
									Nor	1e

Products we offer:

- Cartridge valves
- DCV directional control valves
- Electric converters
- Electric machines
- Electric motors
- Gear motors
- Gear pumps
- Hydraulic integrated circuits (HICs)
- Hydrostatic motors
- Hydrostatic pumps
- Orbital motors
- PLUS+1® controllers
- PLUS+1® displays
- PLUS+1® joysticks and pedals
- PLUS+1® operator interfaces
- PLUS+1® sensors
- PLUS+1® software
- PLUS+1[®] software services, support and training
- Position controls and sensors
- PVG proportional valves
- Steering components and systems
- **Telematics**

Hydro-Gear www.hydro-gear.com

Daikin-Sauer-Danfoss www.daikin-sauer-danfoss.com **Danfoss Power Solutions** est un fabricant et fournisseur mondial de composants électroniques et hydrauliques de grande qualité. Nous sommes spécialisés dans la fourniture de solutions et de technologies de pointe excellant dans les conditions de fonctionnement difficiles du marché mobile hors route. Forts de notre grande expertise des applications, nous travaillons en étroite collaboration avec nos clients afin de leur garantir des performances exceptionnelles pour une large gamme de véhicules hors route.

Nous aidons les fabricants OEM du monde entier à accélérer leurs processus de développement de systèmes et à réduire leurs coûts et leurs délais de mise sur le marché.

Danfoss – Votre partenaire le plus performant dans le domaine de l'hydraulique mobile.

Rendez-vous sur www.danfoss.com pour en savoir plus sur nos produits.

Là où des véhicules hors route sont à l'œuvre, vous trouverez Danfoss. Nous offrons notre assistance et notre expertise à nos clients dans le monde entier, en leur garantissant les meilleures solutions possibles pour des performances exceptionnelles. Et avec l'appui d'un vaste réseau mondial de partenaires de services, nous fournissons également un service complet au niveau international pour tous nos composants.

N'hésitez pas à contacter le représentant local de Danfoss Power Solutions pour votre région.

Ac	resse	local	le i

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000

Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany

Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +49 4321 871 0 Phone: +45 7488 2222

Danfoss

Danfoss **Power Solutions Trading** (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 2080 6201

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed alteration of the provided provided by the provided prL'ensemble des marques commerciales reprises dans ce document sont la propriété des sociétés respectives. Danfoss et le logo Danfoss sont des marques commerciales de Danfoss A/S. Tous droits réservés,