

Data Sheet

U-Bend Garnitures for Steel-Pipe Convector - Used with Valves Type RA-N and RA-G

Application

U-bend 013L1922

U-bend 013L1921

Danfoss U-bend garnitures are designed for incorporation into steel-pipe convectors as housing for the Danfoss integrated valves types with reinforced stuffing box to avoid damage on the valve at low temperature:

- RA-N 013G8370
- RA-G 013G8670

As the U-bend garnitures are made of steel, the connection to the convector pipes can be done by a simple welding process.

This means that the thermostatic valve function will be integrated into the convector and by that offer a compact, simple and nice installation.

System

Convector

U-bend

Valve

Codes and Technical Data

U-bend garnitures

Type	Sensor connection	Max. water temperature	Code no.
U-bend, to be used with RA-N 013G8370	RA 2000	120°C	013L1922
U-bend, to be used with RA-G 013G8670	RA 2000	120°C	013L1921

Integrated valves for U-bend garnitures

Valve type	Differential pressure ¹⁾		Test pressure	Work pressure	Max water temperature	Code no.
	Recomm.	Technical				
Integrated valve type RA-N	0.05 - 0.2 bar	0.6 bar	16 bar	10 bar	120°C	013G8370
Integrated valve type RA-G	0.05 - 0.1 bar	0.15 bar	16 bar	10 bar	120°C	013G8670

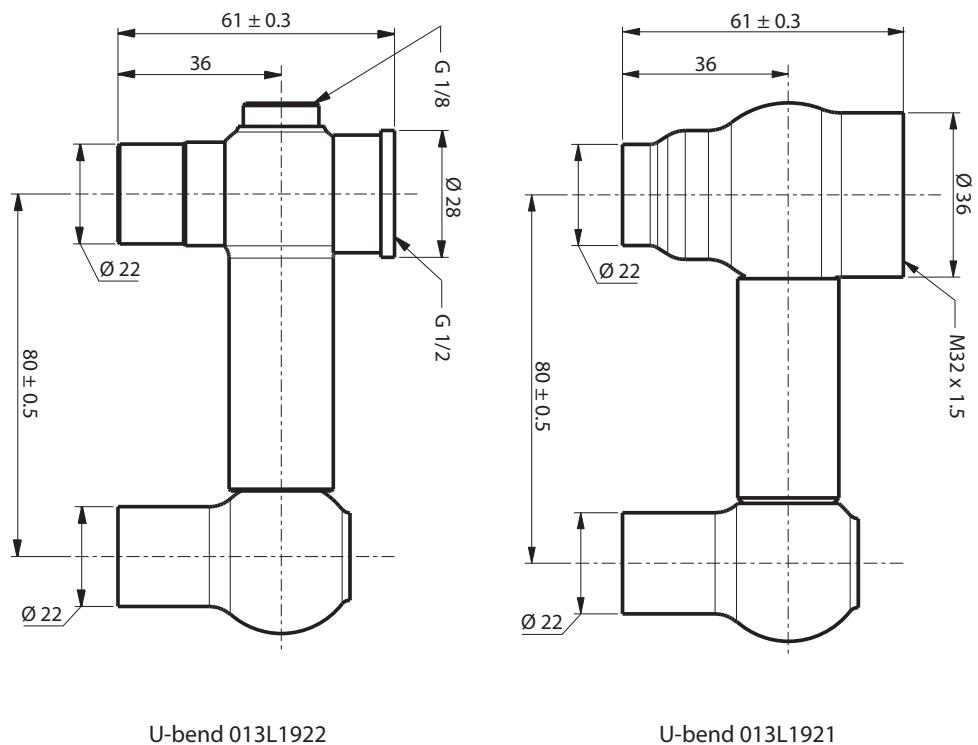
- ¹⁾ The technical differential pressure indicates the upper limit for a proper valve function. In most two-pipe systems the recommended differential pressure is sufficient. In order to achieve a noiseless function we recommend in smaller systems to apply automatic bypass valves or automatic balancing valves. If pump differential pressure exceeds the recommended max. valve differential pressure it is recommended that an automatic balancing valve type ASV-P/PV is added to the system.

Accessories and Spare Parts

Part	Code no.
Cover cap, black, for 013G8370	013G8439
Cover cap, green, for 013G8670	013G8469

Technical Data, Flow
**Pre-setting values, U-bend 013L1922 + RA-N
013G8370**

U-bend + integrated valve	Presetting								
	k _v -values ²⁾							k _{vs}	
	1	2	3	4	5	6	7		
U-bend 013L1922 + RA-N 013G8370	0.14	0.21	0.26	0.32	0.46	0.59	0.73	0.87	1.05


- ²⁾ kv-values indicate the flow volume (Q) in m³/h at a pressure loss (Δp) across the valve of 1 bar. $kv = Q / \sqrt{\Delta p}$. At setting N, the kv-value in accordance with EN 215 can be stated as $Xp = 2$ K. At lower preset values, Xp will be reduced until approximately $Xp = 0.5$ at presetting 1. The table shows the average measured values for integrated valves with radiator. The kvs-values indicate the valve capacity, when the valve is fully open. If a remote temperature adjuster is used, the P-band is increased by a factor of 1.1. If an RAW sensor is used, the P-band is increased by a factor of 1.2.

k_v-values, U-bend 013L1921 + RA-G 013G8670

U-bend + integrated valve	k _v -value ³⁾ (m ³ /h at $\Delta p = 1$ bar)					
	P-band (K)					
	0.5	1.0	1.5	2.0	3.0	
U-bend 013L1921 + RA-N 013G8670	0.55	1.11	1.63	2.14	3.07	4.56

- ³⁾ The kv-value indicates the flow volume (Q) in m³/h at a given lift and a pressure drop (p) across the valve at 1 bar. $kv = Q / \sqrt{\Delta p}$. The kvs-value states the flow Q at a maximum lift, i.e. at fully open valve. If a remote temperature adjuster is used, the P-band is increased by a factor of 1.1. If an RAW sensor is used, the P-band is increased by a factor of 1.2.

Design and Dimensions

U-bend 013L1922

U-bend 013L1921

Danfoss A/S
Heating Solutions
Haarupvaenget 11
8600 Silkeborg
Denmark
Phone: +45 7488 8000
Fax: +45 7488 8100
Email: heating.solutions@danfoss.com
www.heating.danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.