

Folleto técnico

Válvula solenoide de dos posiciones Tipo ICSH 25-80

La válvula solenoide de dos posiciones ICSH pertenece a la familia ICV y se compone de un cuerpo ICV, un módulo de función ICS y una tapa superior para ICSH equipada con 2 válvulas solenoides piloto EVM normalmente cerradas.

En líneas de gas caliente, la válvula ICSH se usa para controlar el flujo de gas caliente al evaporador en 2 etapas como parte del proceso de desescarche. BAmbas etapas se activan mediante un controlador o un PLC que energiza las bobinas magnéticas según una secuencia retardada.

La etapa 1 (aproximadamente el 20% del flujo total) permite incrementar suavemente la presión en el evaporador, mientras que la etapa 2 da paso al 100% del flujo para aumentar al máximo la capacidad de desescarche

La válvula ICSH está diseñada para grandes sistemas de refrigeración industrial con amoníaco, refrigerantes fluorados o CO₂.

Posee 2 opciones de configuración que se pueden ajustar in situ.

Una de ellas corresponde a la configuración dependiente, que impide que se inicie la etapa 2 antes de que se active mecánicamente la etapa 1.

La segunda corresponde a la configuración independiente, que permite el inicio de la etapa 2 sin tener en cuenta el estado de la etapa 1. Si se elige la opción independiente, deberá prestarse especial atención al riesgo de golpe de ariete en caso de que se ignore la etapa 1 por cualquier razón.

Características

- Diseñada para instalaciones de Refrigeración Industrial para una presión de trabajo máxima de 52 bar g / 754 psig.
- Compatible con refrigerantes HCFC, HFC, R-717 (amoníaco) y R-744 (CO₂).
- Conexiones directas para soldar acero.
- Tipos de conexión: soldar acero a tope, soldar acero a encaje y soldar cobre.
- Cuerpo de acero de baja temperatura.
- · Bajo peso y diseño compacto.
- Control mediante 2 hilos para uso con un relé de tiempo o mediante 4 hilos para conexión a un controlador o un PLC.
- La tapa superior de la válvula principal ICSH se puede orientar en cualquier dirección sin que ello afecte al funcionamiento de las válvulas piloto.
- Estabiliza las condiciones de trabajo y elimina las fluctuaciones de presión durante el inicio del flujo de gas caliente.
- Puede abrirse manualmente.
- El asiento de PTFE proporciona a la válvula una excelente estanqueidad.
- Su diseño facilita el mantenimiento.

Folleto técnico | Válvula solenoide de dos posiciones, tipo ICSH 25-80

Contents

Características	
El concepto ICSH	
Diseño (válvula)	
Datos técnicos	
Funcionamiento	
Controlador y cableado	
Especificaciones de los materiales	
Capacidades nominales	
Pedidos a partir del programa por partes	
Accesorios	
Dimensiones	20
Coneviones	22

Homologaciones

La válvula ICV está diseñada para cumplir los requisitos que se exigen a los sistemas de refrigeración en todos los países del mundo.

Válvulas ICSH					
Diámetro interno nominal DN ≤ 25 (1 in) DN 32-80 (1¼-3 in)					
Clasificación	Grupo de fluidos I				
Categoría	Artículo 4, apartado 3	II			

El concepto ICSH

El diseño conceptual de las válvulas ICSH se ha desarrollado con el objetivo de conseguir una flexibilidad máxima de las conexiones directas para soldar acero. Las válvulas ICV 25-65 están disponibles

con una amplia variedad de conexiones de distintos tamaños y tipos. Las conexiones directas para soldar acero (sin bridas) minimizan el riesgo de fugas.

• Existen cinco cuerpos de válvula disponibles (la válvula ICSH 80 utiliza el cuerpo ICV 65).

D	A	SOC	SD	SA
00 -	00 -		<u>-</u> - L'-	<u>-</u> - L'-
Soldar acero a tope DIN	Soldar acero a tope ANSI	Soldar acero a encaje ANSI	Soldar cobre DIN	Soldar cobre ANSI

Diseño (válvula)

Conexiones

Las válvulas ICSH admiten una amplia variedad de tipos de conexión:

- D: Soldar acero a tope (EN 10220)
- A: Soldar acero a tope ANSI (B 36.10)
- SOC: Soldar acero a encaje ANSI (B 16.11)
- SD: Conexión para soldar cobre (EN 1254-1)
- SA: Conexión para soldar cobre ANSI (B 16,22)

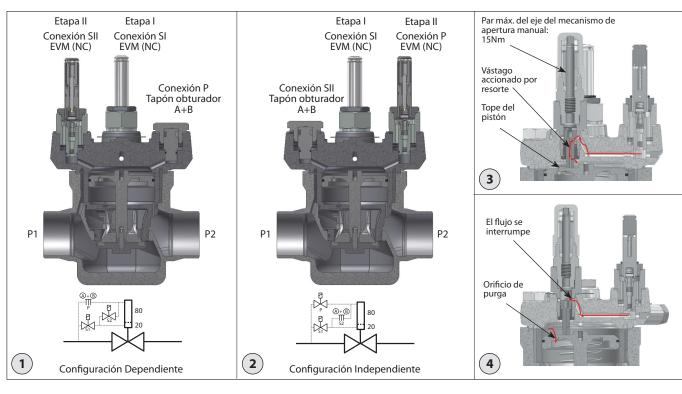
Las válvulas ICSH están homologadas según los requisitos de la norma europea especificada en la Directiva de Equipos a Presión (PED) y poseen marcado CE.

Para obtener información detallada o conocer las posibles restricciones, consulte las instrucciones de instalación.

Material del cuerpo de la válvula y la tapa superior Acero de baja temperatura.

Datos técnicos

Refrigerantes
 Compatible con refrigerantes HCFC, HFC, R-717
 (amoníaco) y R-744 (CO₂).


 Rango de temperatura

Medio: -60 – 120 °C / -76 – 248 °F.

- Presión
 - El diseño de la válvula admite una presión de trabajo máxima de 52 bar g / 754 psi g.
- Etapa 1: 20% de la capacidad de la etapa 2 (plena capacidad).
- Protección superficial
 - La superficie externa de las válvulas ICSH está tratada con cromato de zinc, lo que le proporciona una protección adecuada contra la corrosión.
- Presión diferencial de apertura mínima
 Presión de entrada 0,2 bar / 2,9 psi superior a la presión de salida para apertura completa.
- Requisitos de las bobinas Ambas bobinas deben contar con protección IP67.

	ICSH 25-25	ICSH 32	ICSH 40	ICSH 50	ICSH 65	ICSH 80
K _v (m³/h) (plena capacidad)	11,5	17	27	44	70	85
C _v (gal EE. UU./min) (plena capacidad)	13,3	20	31	51	81	98

Funcionamiento

La válvula ICSH está diseñada para la apertura en 2 etapas del flujo de gas caliente como parte del desescarche de un evaporador.

La étapa 1 (20% de la capacidad) permite incrementar suavemente la presión en el evaporador; la etapa 2 abre hasta alcanzar la plena capacidad.

La válvula se controla mediante 2 válvulas piloto EVM estándar normalmente cerradas; ambas se controlan, a su vez, mediante un controlador externo (por ejemplo, un controlador PLC).

El controlador externo sólo tiene que activar las 2 bobinas de las válvulas EVM según un orden determinado, con un cierto retardo.

Dicho retardo depende de las condiciones específicas de la válvula ICSH y debe determinarse *in situ*.

La apertura de la válvula ICSH tiene lugar mediante una diferencia de presión entre la presión de entrada P1 y la presión de salida P2; para que la válvula principal se abra completamente, se requiere una Δp de 0,2 bar / 2,9 psi.

La válvula principal ICSH se puede configurar en 2 modos diferentes: Dependiente o Independiente.

En el modo Dependiente (fig. 1), la apertura completa (etapa 2) sólo puede tener lugar si la etapa 1 se lleva a cabo correctamente. Si la etapa 1 falla por cualquier razón, la válvula no se abre en absoluto.

La secuencia de control correspondiente, en este caso, debe ser: activar la bobina de la etapa 1 y, a continuación, activar la bobina de la etapa 2.

El modo Dependiente se configura instalando las 2 válvulas piloto EVM en la conexión SI (etapa 1) y la conexión SII (etapa 2), condenando la conexión P con el tapón obturador A+B.

El modo Independiente (fig. 2) ofrece la posibilidad de abrir la etapa 2 de manera forzada, independientemente del estado de la etapa 1.

La secuencia de control correspondiente, en este caso, también debe ser: activar la bobina de la etapa 1 y, a continuación, activar la bobina de la etapa 2. Cuando se activa la etapa 2, se da paso inmediatamente al flujo total.

Atención:

Puede que el sistema presente riesgo de golpe de ariete.

El modo Independiente se configura instalando las 2 válvulas piloto EVM en la conexión SI (etapa 1) y la conexión P (etapa 2), condenando la conexión SII con el tapón obturador A+B.

La estructura interna de canales permite el flujo directo hacia la válvula EVM correspondiente a la etapa 1 en ambas configuraciones. Al activarse la etapa 1, el flujo continúa a través del vástago accionado por resorte que descansa sobre el tope del pistón (consulte la fig. 3).

El flujo creará así una cierta presión encima del pistón, que empieza a bajar, abriendo de este modo la válvula principal. El vástago accionado por resorte sigue el desplazamiento del pistón hacia abajo y, tras recorrer una distancia predefinida, alcanza su límite, donde interrumpe el flujo de entrada (consulte la fig. 4).

El orificio de purga del tope del pistón da paso entonces a un cierto flujo de salida desde la cámara presurizada que permite al pistón desplazarse hacia arriba; no obstante, todo desplazamiento del pistón viene controlado a partir de este momento por el vástago, que lo compensa abriendo el flujo de entrada.

El vástago equilibra los flujos de entrada / purga y mantiene el pistón en la misma posición. El flujo correspondiente a la etapa l (equivalente aproximadamente a un 20% de la capacidad) queda así fijado.

Tras un período predeterminado de tiempo, se activa la bobina de la etapa II.

En el modo Dependiente, el flujo sólo alcanza la válvula EVM de la etapa Il si la válvula EVM de la etapa I está abierta (y funciona correctamente).

En el modo Independiente, el flujo alcanza la válvula EVM de la etapa II independientemente del estado de la etapa I. Una vez que el flujo atraviesa la válvula EVM de la etapa II, continúa hasta el tope del pistón y lo desplaza hasta la posición de apertura completa.

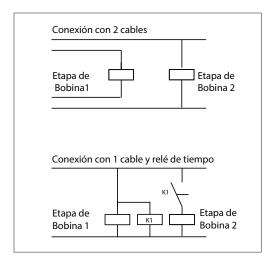
En ambos modos, la válvula se cierra y permanece cerrada cuando se desenergizan ambas bobinas.

El cierre se consigue por drenaje mediante el orificio de purga.

Al igual que todas las demás válvulas de la familia ICV, la válvula ICSH incorpora un mecanismo de apertura manual. El mecanismo de apertura se acciona girando el eje en el sentido de las agujas del reloj (para abrir la válvula) o en sentido contrario a las agujas del reloj (para cerrar la válvula).

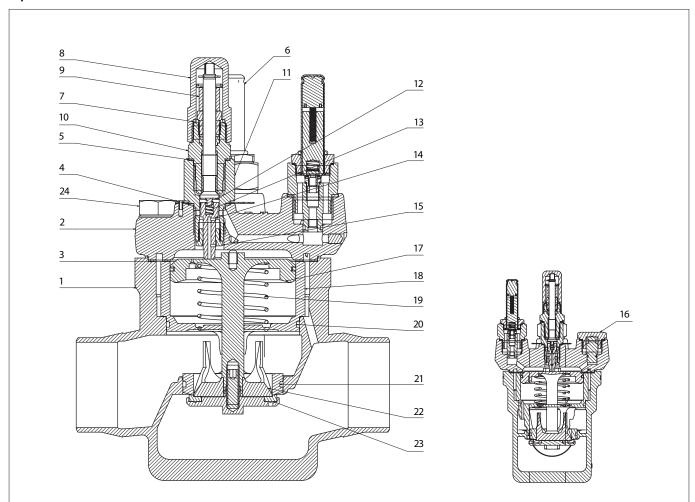
Debe prestarse atención al par máximo aplicado al eje al girar, **que no debe ser superior a 15 N·m en ningún sentido.**

Folleto técnico | Válvula solenoide de dos posiciones, tipo ICSH 25-80

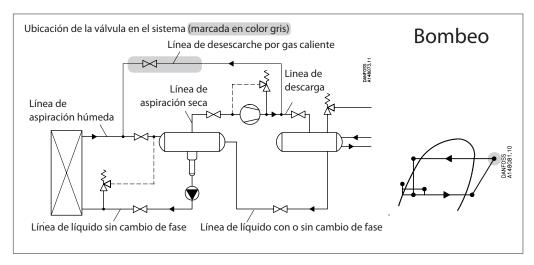

Controlador y cableado

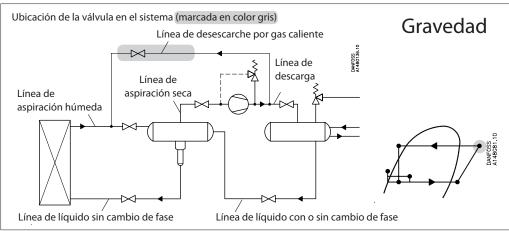
Las 2 etapas deben activarse mediante un controlador PLC según una secuencia retardada. El retardo exacto debe determinarse *in situ*, dado el carácter decisivo de las condiciones locales.

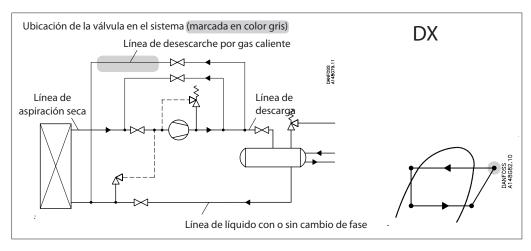
El cableado entre el controlador y las 2 bobinas se puede llevar a cabo mediante uno o dos cables.


La configuración con un cable sólo necesita una señal; no obstante, requiere la conexión de un relé de tiempo adicional según el esquema de la derecha.

La configuración con dos cables requiere dos señales de salida sucesivas procedentes del controlador PLC.


Especificaciones de los materiales




N.º	Pieza	Material	EN	ASTM
1	Cuerpo	Acero de baja temperatura	G20Mn5QT (EN 10213-3)	LCC (A352)
2	Tapa superior	Acero de baja temperatura	P285QH (EN 10222-4)	LF2 (A350)
3	Junta	Fibra sin amianto		
4	Junta	Aluminio		
5	Junta	Aluminio		
6	EVM (NC)			
7	Junta	Nailon		
8	Tapa	Acero		
9	Tope	Nailon		
10	Mecanismo de apertura manual	Acero		
11	Cuerpo del vástago	Acero inoxidable		
12	Casquillo con muelle	Acero inoxidable		
13	Muelle	Acero		
14	Vástago	Acero inoxidable		
15	Boquilla	Fundición		
16	Tapón	Acero		
17	Pistón	Acero		
18	Cilindro	Acero		
19	Muelle	Acero		
20	Junta tórica	Cloropreno (Neopreno)		
21	Junta tórica	Cloropreno (Neopreno)		
22	Cono	Acero		
23	Plato de la válvula	PTFE		
24	Perno	Acero inoxidable	A2-70 (EN 1515-1)	A2-70 (B1054)

Línea de gas caliente

Unidades SI

Ejemplo de cálculo (capacidades para R-717):

Una aplicación presenta las siguientes condiciones de funcionamiento:

$$\begin{split} T_e &= -20 \text{ °C} \\ Q_o &= 90 \text{ kW} \\ T_{liq.} &= 10 \text{ °C} \\ \Delta p \text{ máx.} &= 0,4 \text{ bar} \\ T_{desc.} &= 60 \text{ °C} \end{split}$$

Las tablas de capacidad se basan en las condiciones nominales

(
$$\Delta p = 0.2$$
 bar; $T_{liq.} = 30$ °C; $P_{desc.} = 12$ bar; $T_{desc.} = 80$ °C).

La capacidad real, por tanto, debe corregirse teniendo en cuenta las condiciones nominales mediante la aplicación de factores de corrección.

Línea de gas caliente

Factor de corrección para $\Delta p=0.4$ bar: $f_{\Delta p}=0.71$ Factor de corrección para la temperatura del líquido $f_{Tliq.}=0.92$ Factor de corrección para $T_{desc.}=60$ °C: $f_{desc.}=0.97$

$$\begin{aligned} Q_n &= Q_o \times f_{\Delta p} \times f_{Tliq.} \times f_{Tdesc.} = \\ 90 \times 0,71 \times 0,92 \times 0,97 = 57 \text{ kW} \end{aligned}$$

A partir de las tablas de capacidad, se elige un módulo de función ICS 25-15 con una capacidad Q_n de 73 kW.

Unidades US

Ejemplo de cálculo (capacidades para R-717):

Una aplicación presenta las siguientes condiciones de funcionamiento:

$$\begin{split} &T_e=0~^\circ\text{F}\\ &Q_o=18~\text{TR}\\ &T_\text{liq.}=50~^\circ\text{F}\\ &\Delta p~\text{máx.}=5,8~\text{psi}\\ &T_\text{desc.}=120~^\circ\text{F} \end{split}$$

Las tablas de capacidad se basan en las condiciones nominales ($\Delta p=3$ psi; $T_{liq.}=90$ °F; $P_{desc.}=185$ psi; $T_{desc.}=180$ °F).

La capacidad real, por tanto, debe corregirse teniendo en cuenta las condiciones nominales mediante la aplicación de factores de corrección. Factor de corrección para $\Delta p = 5.8$ psi: $f_{\Delta p} = 0.72$ Factor de corrección para la temperatura del líquido $f_{\text{Tliq.}} = 0.92$ Factor de corrección para $T_{\text{desc.}} = 120\,^{\circ}\text{F}$: $f_{\text{desc.}} = 0.95$

$$\begin{aligned} Q_n &= Q_o \times f_{\Delta p} \times f_{Tliq.} \times f_{Tdesc.} = \\ 18 \times 0.72 \times 0.92 \times 0.95 = 11.3 \, TR \end{aligned}$$

A partir de las tablas de capacidad, se elige un módulo de función ICS 25-10 con una capacidad Q_n de 12,0 TR.

P_717

Línea de gas caliente

Unidades SI

Tabla de capacidad para condiciones nominales (Q_N [kW]):

 $T_{liq.} = 30 \,^{\circ}\text{C}$ $P_{desc.} = 12 \, \text{bar}$ $\Delta P = 0.2 \, \text{bar}$ $T_{desc.} = 80 \,^{\circ}\text{C}$

Recalentamiento = 8 °C

K-/ I /										
Módulo de	Tamaño del	K _v			Temp	eratura de	evaporacić	n [°C]		
función	cuerpo de la válvula	[m³/h]	-50	-40	-30	-20	-10	0	10	20
ICS 25-5		1,7	19,8	20,2	20,5	20,7	20,9	21,1	21,3	21,5
ICS 25-10		3,5	40,8	41,5	42,0	42,5	43,0	43,5	44,0	44,2
ICS 25-15	25	6	70,0	71,0	72,0	73,0	74,0	74,8	75,4	76,0
ICS 25-20		8	93,0	95,0	96,0	97,5	99,0	99,7	101	101
ICS 25-25		11,5	134	136	138	140	142	143	144	145
ICS 32	32	17	199	201	205	207	209	211	213	215
ICS 40	40	27	315	320	325	329	333	336	339	341
ICS 50	50	44	514	521	529	536	542	548	553	556
ICS 65	65	70	817	829	843	854	864	872	879	885
ICS 80	80	85	991	1007	1022	1035	1048	1058	1067	1074

Factor de corrección según $\Delta P (f_{\Delta P})$

ΔP [bar]	Factor de corrección
0,2	1,00
0,25	0,89
0,3	0,82
0,4	0,71
0,5	0,63
0,6	0,58

Factor de corrección según la temperatura de descarga (T_{clesc})

(I desc.)	
Temperatura de descarga [°C]	Factor de corrección
50	0,96
60	0,97
80	1,00
90	1,01
100	1,03
110	1,04
120	1,06

Factor de corrección según la temperatura del líquido (T_{liq})

(· IIq./	
Temperatura del líquido [°C]	Factor de corrección
-20	0,82
-10	0,86
0	0,88
10	0,92
20	0,96
30	1,00
40	1,04
50	1,09

Unidades US

Tabla de capacidad para condiciones nominales (Q_N [TR]):

$$\begin{split} &T_{\text{liq.}} = 90 \text{ °F} \\ &\Delta P = 2,9 \text{ psi} \\ &P_{\text{desc.}} = 185 \text{ psi} \\ &T_{\text{desc.}} = 180 \text{ °F} \end{split}$$

Recalentamiento = 12 °F

R-717

Módulo de	Tamaño del	C_v			Temp	eratura de	evaporació	n [°F]		
función	cuerpo de la válvula	[gal EE. UU./min]	-60	-40	-20	0	20	40	60	80
ICS 25-5		2	5,6	5,7	5,8	5,8	5,9	6,0	6,0	6,0
ICS 25-10		4,1	11,4	11,6	11,8	12,0	12,1	12,3	12,3	12,4
ICS 25-15	25	7	19,6	20,0	20,3	20,6	20,8	21,0	21,2	21,3
ICS 25-20		9,3	26,2	26,6	27,0	27,4	27,8	28,0	28,2	28,3
ICS 25-25		13,3	37,6	38,3	39,0	39,4	39,9	40,3	40,5	40,8
ICS 32	32	20	55,5	56,5	57,5	58,3	59,0	59,5	60,0	60,3
ICS 40	40	31	88,0	90,0	91,0	92,5	94,0	94,5	95,0	95,7
ICS 50	50	51	144	146	149	151	153	154	155	156
ICS 65	65	81	229	233	237	240	243	245	247	248
ICS 80	80	98	275	280	285	289	292	295	297	298

Factor de corrección según ΔP ($f_{\Delta P}$)

ΔP [psi]	Factor de corrección
3	1,00
4	0,87
5	0,79
6	0,72
7	0,66
8	0,62

Factor de corrección según la temperatura de descarga

(I desc.)	
Temperatura de	Factor de
descarga [°F]	corrección
120	0,95
140	0,97
180	1,00
200	1,02
210	1,02
230	1,04
250	1,06

Factor de corrección según la temperatura del líquido $(T_{\text{líq}})$

Temperatura del Factor de líquido [°F] corrección -10 0,82 0,85 30 0,88 50 0,92 70 0,96 90 1,00 110 1.04 130 1,09

R-744

Línea de gas caliente

Unidades SI

Tabla de capacidad para condiciones nominales (Q_N [kW]):

 $T_{\text{líq.}} = 10\,^{\circ}\text{C}$ $P_{\text{desc.}} = 10 \text{ bar}$

 $\Delta P = 0.2 \text{ bar}$ $T_{desc.} = 80 \, ^{\circ}C$

Recalentamiento = 8 °C

N-/44											
Módulo de	Tamaño del		Temperatura de evaporación [°C]								
función	cuerpo de la válvula		-50	-40	-30	-20	-10	0	10	20	
ICS 25-5		1,7	12,5	12,7	12,8	12,9	12,9	12,9	12,5	12,8	
ICS 25-10		3,5	25,7	26,2	26,5	26,6	26,6	26,3	25,8	26,4	
ICS 25-15	25	6	44,0	45,0	45,3	45,6	45,5	45,1	44,2	45,0	
ICS 25-20		8	59,0	60,0	60,2	60,7	60,7	60,1	59,0	60,0	
ICS 25-25		11,5	85,0	86,0	87,0	87,4	87,3	86,5	85,0	87,0	
ICS 32	32	17	125	127	128	129	129	128	125	128	
ICS 40	40	27	199	202	204	205	205	203	199	203	
ICS 50	50	44	324	329	332	334	334	331	324	331	
ICS 65	65	70	515	523	529	532	531	526	516	527	
ICS 80	80	85	626	636	642	646	645	640	626	640	

Factor de corrección según $\Lambda P (f_{AB})$

ΔΓ (IΔP)	
ΔP [bar]	Factor de corrección
0,2	1,00
0,25	0,89
0,3	0,82
0,4	0,71
0,5	0,63
0,6	0,58

Factor de corrección según la temperatura de descarga

 $(T_{desc.})$

(0000)	
Temperatura de	Factor de
descarga [°C]	corrección
50	0,96
60	0,97
80	1,00
90	1,01
100	1,03
110	1,04
120	1,06

Factor de corrección según la temperatura del líquido (T_{lía})

temperatura del figura (Tilq.)						
Temperatura del	Factor de					
líquido [°C]	corrección					
-20	0,52					
-10	0,67					
0	0,91					
10	1,00					
15	1,09					

R-744

Unidades US

Tabla de capacidad para condiciones nominales (Q $_{N}$ [TR]):

 $T_{liq.} = 90 \text{ °F}$ $\Delta P = 3 \text{ psi}$

 $P_{desc.} = 120 \text{ psi}$

 $T_{desc.} = 180 \, ^{\circ}F$

Recalentamiento = 12 °F

Módulo de	Tamaño del	C _v	Temperatura de evaporación [°F]							
función	cuerpo de la válvula	[gal EE. UU./min]	-60	-40	-20	0	20	40	60	80
ICS 25-5		2	3,4	3,4	3,5	3,5	3,4	3,3	3,2	3,1
ICS 25-10		4,1	6,9	7,0	7,1	7,1	7,0	6,8	6,6	6,4
ICS 25-15	25	7	11,9	12,1	12,2	12,2	12,0	11,7	11,3	11,0
ICS 25-20		9,3	15,8	16,1	16,2	16,2	16,0	15,6	15,1	14,7
ICS 25-25		13,3	22,8	23,1	23,3	23,3	23,0	22,4	21,8	21,1
ICS 32	32	20	33,7	34,1	34,5	34,5	34,0	33,1	32,2	31,2
ICS 40	40	31	53,4	54,3	54,7	54,7	54,0	52,5	51,0	49,6
ICS 50	50	51	87,0	88,4	89,0	89,0	88,0	85,5	83,3	80,8
ICS 65	65	81	138	141	142	142	140	136	132	129
ICS 80	80	98	167	169	171	171	168	164	159	154

Factor de corrección según

$\Delta P (I_{\Delta P})$	
ΔP [psi]	Factor de corrección
3	1,00
4	0,87
5	0,79
6	0,72
7	0,66
8	0,62

Factor de corrección según la temperatura de descarga $(T_{desc.})$

Temperatura de descarga [°F]	Factor de corrección
120	0,95
140	0,97
180	1,00
200	1,02
210	1,02
230	1,04
250	1,05

Factor de corrección según la temperatura del líquido (T_{lía.})

	- 1 (nq.)
Temperatura del líquido [°F]	Factor de corrección
-10	0,48
10	0,64
30	0,88
50	1,00

R-134a

ICS 80

Línea de gas caliente

Unidades SI

Tabla de capacidad para condiciones nominales (Q_N [kW]):

 $T_{liq.} = 30 \,^{\circ}\text{C}$ $P_{desc.} = 8 \, \text{bar}$ $\Delta P = 0.2 \, \text{bar}$ $T_{desc.} = 80 \,^{\circ}\text{C}$

Recalentamiento = 8 °C

11-12-	a									
Módulo de	Tamaño del	Κ _ν	Temperatura de evaporación [°C]							
función cuerpo de la válvula	[m³/h]	-40	-30	-20	-10	0	10	20		
ICS 25-5		1,7	5,1	5,4	5,6	5,9	6,1	6,3	6,5	
ICS 25-10		3,5	10,6	11,0	11,6	12,0	12,5	13,0	13,4	
ICS 25-15	25	6	18,1	19,0	19,8	20,6	21,5	22,3	23,0	
ICS 25-20		8	24,1	25,3	26,4	27,5	28,6	29,7	30,7	
ICS 25-25		11,5	34,7	36,0	38,0	39,6	41,0	42,7	44,0	
ICS 32	32	17	51,0	54,0	56,0	58,5	61,0	63,0	65,0	
ICS 40	40	27	82,0	85,0	89,0	93,0	97,0	100	104	
ICS 50	50	44	133	139	145	151	157	163	169	
ICS 65	65	70	211	221	231	241	251	260	269	

Factor de corrección según $\Delta P (f_{\Delta P})$

80

85

256

ΔP [bar]	Factor de corrección
0,2	1,00
0,25	0,89
0,3	0,82
0,4	0,71
0,5	0,63
0,6	0,58

Factor de corrección según la temperatura de descarga (T_{desc.})

268

280

293

304

(I desc./	
Temperatura de	Factor de
descarga [°C]	corrección
50	0,96
60	0,97
80	1,00
90	1,01
100	1,03
110	1,04
120	1,06

Factor de corrección según la temperatura del líquido (T_{liq})

315

326

(• IIq./	
Temperatura del líquido [°C]	Factor de corrección
-20	0,66
-10	0,70
0	0,76
10	0,82
20	0,90
30	1,00
40	1,13
50	1,29

Unidades US

Tabla de capacidad para condiciones nominales (Q_N [TR]):

 $T_{liq.} = 90 \text{ °F}$ $\Delta P = 3 \text{ psi}$

 $P_{desc.} = 120 \text{ psi}$

 $T_{desc.} = 180 \, ^{\circ}F$ Recalentamiento = 12 $^{\circ}F$

R-134a

Módulo de	Tamaño del	C _v	Temperatura de evaporación [°F]							
función	cuerpo de la válvula	[gal EE. UU./min]	-40	-20	0	20	40	60	80	
ICS 25-5		2	1,4	1,5	1,5	1,6	1,7	1,7	1,8	
ICS 25-10		4,1	2,3	3,0	3,1	3,3	3,4	3,6	3,7	
ICS 25-15	25	7	4,9	5,1	5,4	5,6	5,9	6,1	6,3	
ICS 25-20		9,3	6,5	6,8	7,2	7,5	7,8	8,1	8,4	
ICS 25-25		13,3	9,3	9,8	10,3	10,8	11,3	11,7	12,1	
ICS 32	32	20	13,8	14,5	15,2	16,0	16,6	17,3	18,0	
ICS 40	40	31	21,9	23,0	24,2	25,3	26,5	27,5	28,5	
ICS 50	50	51	35,6	37,5	39,4	41,3	43,0	44,8	46,5	
ICS 65	65	81	56,7	59,7	62,9	65,7	68,5	71,3	74,0	
ICS 80	80	98	67	72	75	79	83	86	89	

Factor de corrección según $\Delta P (f_{\Delta P})$

· /	
ΔP [psi]	Factor de corrección
3	1,00
4	0,87
5	0,79
6	0,72
7	0,66
8	0,62

Factor de corrección según la temperatura de descarga (T_{desc.})

(i desc./	
Temperatura de descarga [°F]	Factor de corrección
120	0,95
140	0,97
180	1,00
200	1,02
210	1,02
230	1,04
250	1,05

Factor de corrección según la temperatura del líquido

(I liq.)	
Temperatura del	Factor de
líquido [°F]	corrección
-10	0,64
10	0,68
30	0,74
50	0,81
70	0,89
90	1,00
110	1,15
130	1,35

R-404A

Línea de gas caliente

Unidades SI

Tabla de capacidad para condiciones nominales (Q_N [kW]):

$$\begin{split} &T_{\text{líq.}} = 30 \text{ °C} \\ &P_{\text{desc.}} = 12 \text{ bar} \\ &\Delta P = 0,2 \text{ bar} \\ &T_{\text{desc.}} = 80 \text{ °C} \end{split}$$

Recalentamiento = 8 °C

Módulo de	Tamaño del	K_v	Temperatura de evaporación [°C]								
función	cuerpo de la válvula		-50	-40	-30	-20	-10	0	10	20	
ICS 25-5		1,7	4,8	5,1	5,4	5,7	6,0	6,3	6,6	6,8	
ICS 25-10		3,5	9,8	10,4	11,1	11,8	12,4	13,0	13,6	14,1	
ICS 25-15	25	6	16,7	18,0	19,0	20,2	21,3	22,3	23,3	24,2	
ICS 25-20] [8	22,3	24,0	25,4	27,0	28,3	29,7	31,0	32,0	
ICS 25-25] [11,5	32,0	34,0	36,5	38,5	40,7	42,7	44,6	46,0	
ICS 32	32	17	48,0	51,0	54,0	57,0	60,0	63,0	66,0	69,0	
ICS 40	40	27	75,0	81,0	86,0	91,0	96,0	100	105	109	
ICS 50	50	44	123	131	140	148	156	163	171	177	
ICS 65	65	70	195	208	222	235	248	260	271	282	
ICS 80	80	85	238	254	270	286	301	315	330	342	

Factor de corrección según $\Delta P (f_{AP})$

Δι (ιΔΡ)	
ΔP [bar]	Factor de corrección
0,2	1,00
0,25	0,89
0,3	0,82
0,4	0,71
0,5	0,63
0,6	0,58

Factor de corrección según la temperatura de descarga

(I desc.)	
Temperatura de descarga [°C]	Factor de corrección
50	0,96
60	0,97
80	1,00
90	1,01
100	1,03
110	1,04
120	1.06

Factor de corrección según la temperatura del líquido

 $(T_{liq.})$

(· iiq.)	
Temperatura del líquido [°C]	Factor de corrección
-20	0,55
-10	0,60
0	0,66
10	0,74
20	0,85
30	1,00
40	1,23
50	1,68

R-404A

Unidades US

Tabla de capacidad para condiciones nominales (Q_N [TR]):

 $T_{líq.} = 90~^{\circ}F$

 $\Delta P = 3 \text{ psi}$

 $P_{desc.} = 120 \text{ psi}$

 $T_{desc.} = 180 \, {}^{\circ}F$

Recalentamiento = 12 °F

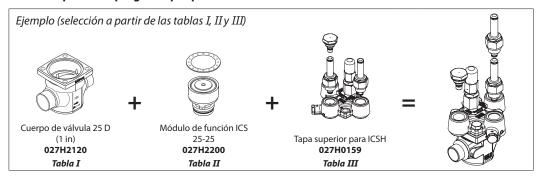
Módulo de T

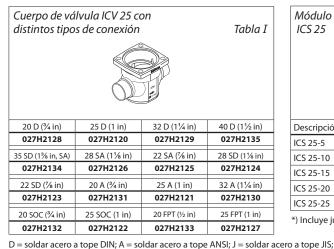
Módulo de	Tamaño del	C_v		Temperatura de evaporación [°F]						
función	cuerpo de la válvula	[gal EE. UU./min]	-60	-40	-20	0	20	40	60	80
ICS 25-5		2	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,8
ICS 25-10		4,1	2,5	2,7	2,9	3,1	3,3	3,5	3,7	3,8
ICS 25-15	25	7	4,4	4,7	5,0	5,4	5,7	6,0	6,3	6,5
ICS 25-20		9,3	5,8	6,2	6,7	7,2	7,6	8,0	8,4	8,7
ICS 25-25		13,3	8,4	8,9	9,6	10,3	10,9	11,5	12,0	12,5
ICS 32	32	20	12,4	13,2	14,2	15,2	16,1	17,0	17,8	18,4
ICS 40	40	31	19,6	21,0	22,6	24,1	25,6	27,0	28,2	29,3
ICS 50	50	51	32,0	34,2	36,8	39,3	41,7	44,0	46,0	47,7
ICS 65	65	81	51,0	54,3	58,5	62,5	66,3	70,0	73,0	76,0
ICS 80	80	98	61	65	70	75	80	84	88	91

Factor de corrección según $\Delta P (f_{\Delta P})$

—· (·Δi /	
ΔP [psi]	Factor de corrección
3	1,00
4	0,87
5	0,79
6	0,72
7	0,66
8	0,62

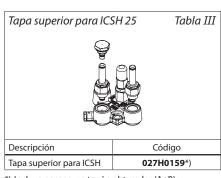
Factor de corrección según la temperatura de descarga (Tdesc)


(I desc.)			
Temperatura de	Factor de		
descarga [°F]	corrección		
120	0,95		
140	0,97		
180	1,00		
200	1,02		
210	1,02		
230	1,04		
250	1,05		


Factor de corrección según la temperatura del líquido (T_{lín})

(i liq./	
Temperatura del líquido [°F]	Factor de corrección
-10	0,52
10	0,57
30	0,63
50	0,72
70	0,83
90	1,00
110	1,29
130	1,92

Pedidos a partir del programa por partes



^{*)} Incluye junta de unión y juntas tóricas

027H2307

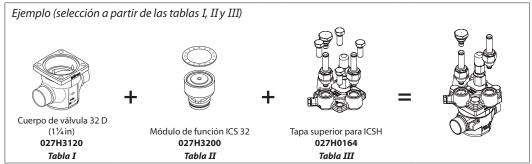
^{*)} Incluye pernos, un tapón obturador (A+B) y 2 válvulas piloto EVM (NC)

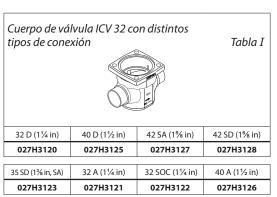
Pedidos de válvulas completas montadas en fábrica

(cuerpo, módulo de función y tapa superior)

SOC = soldar acero a encaje ANSI; SD = soldar cobre DIN; SA = soldar cobre ANSI; FPT = rosca hembra para tubería

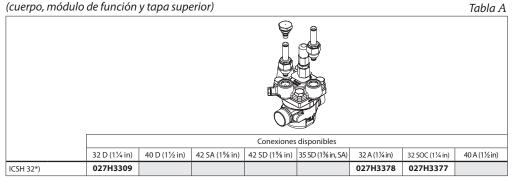
027H2308


ICSH 25-25*)


Debe seleccionarse a partir del programa por partes

^{*)} Incluye un tapón obturador (A+B) y 2 válvulas EVM (NC)

Pedidos a partir del programa por partes

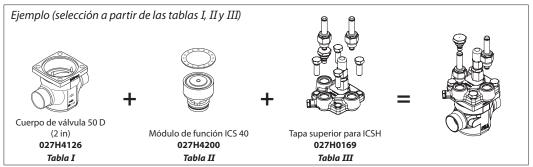


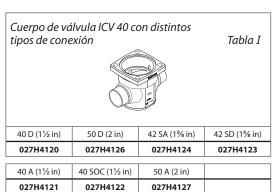
^{*)} Incluye pernos, un tapón obturador (A+B) y 2 válvulas piloto EVM (NC)

 $\label{eq:defD} D = soldar acero a tope DIN; A = soldar acero a tope ANSI; J = soldar acero a tope JIS; SOC = soldar acero a encaje ANSI;$

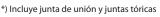
 $\mathsf{SD} = \mathsf{soldar} \ \mathsf{cobre} \ \mathsf{DIN}; \mathsf{SA} = \mathsf{soldar} \ \mathsf{cobre} \ \mathsf{ANSI}; \mathsf{FPT} = \mathsf{rosca} \ \mathsf{hembra} \ \mathsf{para} \ \mathsf{tuber\'ia}$

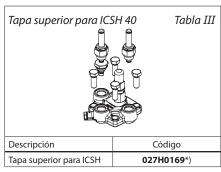
Pedidos de válvulas completas montadas en fábrica



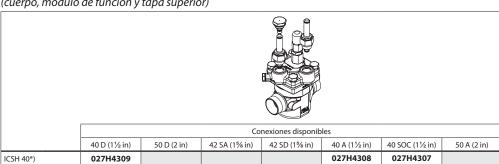

Debe seleccionarse a partir del programa por partes

^{*)} Incluye un tapón obturador (A+B) y 2 válvulas EVM (NC)




Pedidos a partir del programa por partes

^{*)} Incluye pernos, un tapón obturador (A+B) y 2 válvulas piloto EVM (NC)

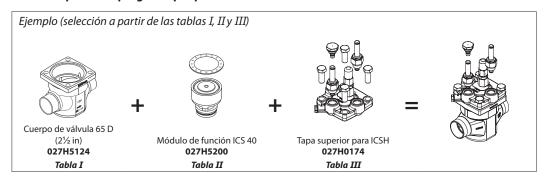

Tabla A

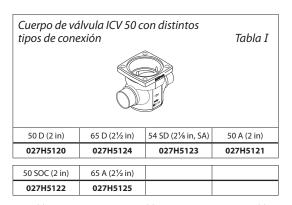
D = soldar acero a tope DIN; A = soldar acero a tope ANSI; J = soldar acero a tope JIS;

SD = soldar cobre DIN; SA = soldar cobre ANSI; FPT = rosca hembra para tubería

Pedidos de válvulas completas montadas en fábrica (cuerpo, módulo de función y tapa superior)

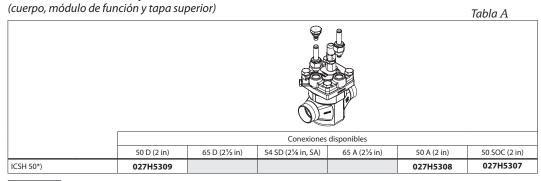
SOC = soldar acero a encaje ANSI;




Debe seleccionarse a partir del programa por partes

^{*)} Incluye un tapón obturador (A+B) y 2 válvulas EVM (NC)

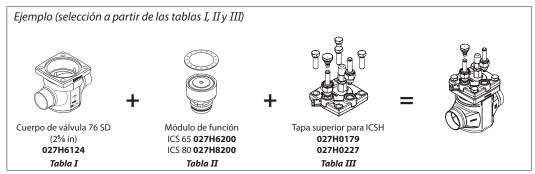
Pedidos a partir del programa por partes

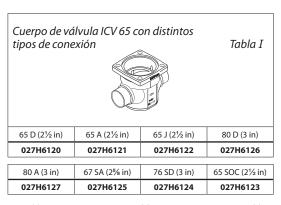


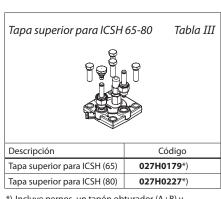
^{*)} Incluye pernos, un tapón obturador (A+B) y 2 válvulas piloto EVM (NC)

 $D = soldar\ acero\ a\ tope\ DIN;\ A = soldar\ acero\ a\ tope\ ANSI;\ J = soldar\ acero\ a\ tope\ JIS;$ SOC = soldar acero a encaje ANSI; SD = soldar cobre DIN; SA = soldar cobre ANSI; FPT = rosca hembra para tubería

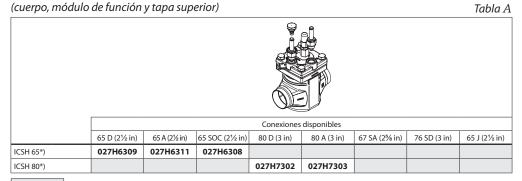
Pedidos de válvulas completas montadas en fábrica


Debe seleccionarse a partir del programa por partes


^{*)} Incluye un tapón obturador (A+B) y 2 válvulas EVM (NC)


ICSH 65 e ICSH 80

Pedidos a partir del programa por partes



^{*)} Incluye pernos, un tapón obturador (A+B) y 2 válvulas piloto EVM (NC)

D = soldar acero a tope DIN; A = soldar acero a tope ANSI; J = soldar acero a tope JIS; SOC = soldar acero a encaje ANSI;

SD = soldar cobre DIN; SA = soldar cobre ANSI; FPT = rosca hembra para tubería

Pedidos de válvulas completas montadas en fábrica

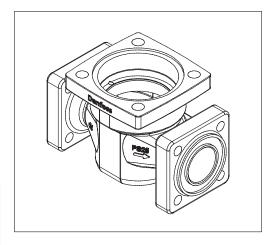
Debe seleccionarse a partir del programa por partes

^{*)} Incluye un tapón obturador (A+B) y 2 válvulas EVM (NC)

Nota

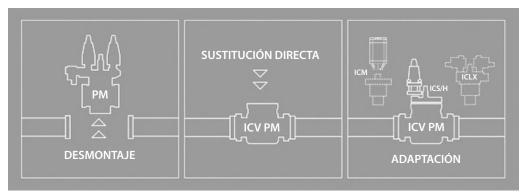
La capacidad total del módulo de función ICS 80 sólo se consigue en conjunto con un cuerpo de válvula con conexiones 80 D o A (3 in).

Con cualquier otro cuerpo de válvula ICV 65, la capacidad de la válvula completa se reduce en un 6%.


Accesorios

Cuerpos de válvula ICV PM con bridas Pueden emplearse cuerpos de válvula ICV PM con bridas en sustitución de las válvulas PM ya instaladas en un sistema de refrigeración.

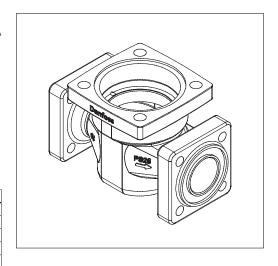
Rango de presión


Los cuerpos de válvula ICV PM están diseñados para una presión de trabajo máxima de 28 bar g / 406 psi g, por lo que resultan idóneas como sustitutas de las válvulas PM en el sector de los servicios. Además, ofrecen las mismas dimensiones que las válvulas PM, lo cual facilita su sustitución directa.

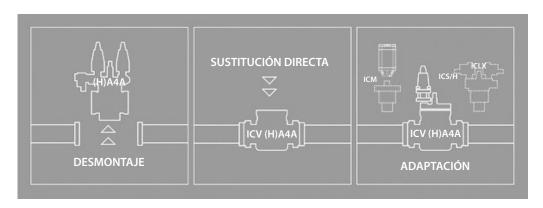
Descripción	Código
Cuerpo de válvula ICV 25 PM	027H2119 *)
Cuerpo de válvula ICV 32 PM	027H3129 *)
Cuerpo de válvula ICV 40 PM	027H4128 *)
Cuerpo de válvula ICV 50 PM	027H5127**)
Cuerpo de válvula ICV 65 PM	027H6128**)

- *) Incluye cuerpo de válvula ICV PM, juntas para brida y pernos para brida.
- **) Incluye cuerpo de válvula ICV PM, juntas para brida, pernos para brida y tuercas para brida.

Los módulos de función y tapas superiores deben adquirirse por separado (consulte la sección "Pedidos").

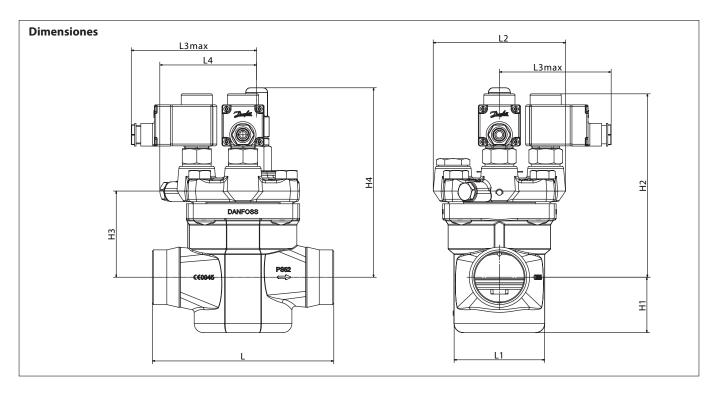

Accesorios

Cuerpos de válvula ICV (H)A4A con bridas Pueden emplearse cuerpos de válvula ICV (H)A4A con bridas en sustitución de las válvulas (H)A4A ya instaladas en un sistema de refrigeración.


Rango de presión

Los cuerpos de válvula ICV (H)A4A están diseñados para una presión de trabajo máxima de 28 bar g / 406 psi g, por lo que resultan idóneas como sustitutas de las válvulas (H)A4A en el sector de los servicios. Además, ofrecen las mismas dimensiones que las válvulas (H)A4A, lo cual facilita su sustitución directa.

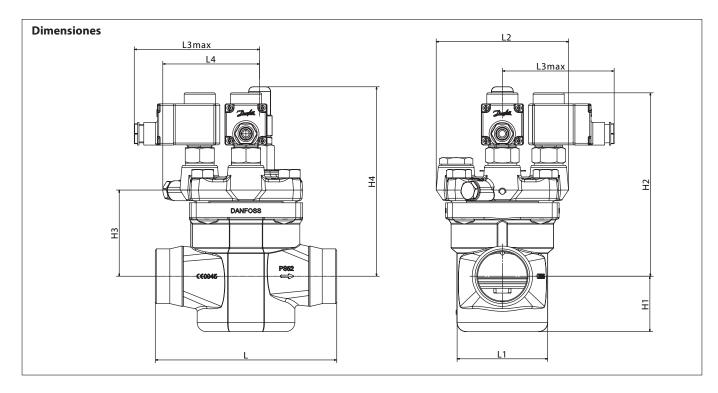
Descripción	Código
Cuerpo de válvula ICV 25 (H)A4A	027H2304 *)
Cuerpo de válvula ICV 32 A4A	027H3130 *)
Cuerpo de válvula ICV 32 HA4A	027H3131 *)
Cuerpo de válvula ICV 40 (H)A4A	027H4129 *)
Cuerpo de válvula ICV 50 (H)A4A	027H5128 *)
Cuerpo de válvula ICV 65 (H)A4A	027H6129 *)


*) Incluye cuerpo de válvula ICV (H)A4A, juntas para brida, pernos para brida y tuercas para brida. Los módulos de función y tapas superiores deben adquirirse por separado (consulte la sección "Pedidos").

Tapón obturador A+B para válvulas piloto

ICSH 25-25	L							
	DIN	Α	SOC					
mm	135	135	147					
in	5,31	5,31	5,79					

ICSH 25-25	L1	L2	L3 máx. (s1)	L3 máx. (S-2)	L4	H1	H2	H3	H4	Peso
mm	65	146,5	138	123	100,5	39,5	168,5	61	174	3,8 kg
in	2,56	5,77	5,43	4,84	3,96	1,56	6,63	2,40	6,85	7,93 lb


ICSH 32	L							
	DIN	Α	SOC					
mm	145	145	148					
in	5,71	5,71	5,83					

ICSH 32	L1	L2	L3 máx. (s1)	L3 máx. (S-2)	L4	H1	H2	H3	H4	Peso
mm	75	146,5	138	123	102	42,5	182	72	187,6	5,1
in	2,95	5,77	5,43	4,84	4,02	1,67	7,17	2,83	7,39	11,1 lb

ICSH 40	L							
	DIN	Α	SOC					
mm	160	160	180					
in	6,30	6,30	7,09					

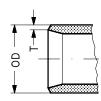
ICSH 40	L1	L2	L3 máx. (s1)	L3 máx. (S-2)	L4	H1	H2	Н3	H4	Peso
mm	86	146	138	123	102	51,5	186,5	78	193	6,5 kg
in	3,39	5,75	5,43	4,84	4,02	2,03	7,34	3,07	7,60	14 lb

ICSH 50	L							
	DIN	Α	SOC					
mm	200	200	216					
in	7,87	7,87	8,50					

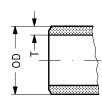
ICSH 50	L1	L2	L3 máx. (s1)	L3 máx. (S-2)	L4	H1	H2	Н3	H4	Peso
mm	100	146	138	123	107	61	202	95	209	9,4 kg
in	3,94	5,75	5,43	4,84	4,21	2,40	7,95	3,74	8,23	20,3 lb

ICSH 65	L							
	DIN	Α	SOC					
mm	230	230	230					
in	9,06	9,06	9,06					

ICSH 65	L1	L2	L3 máx. (s1)	L3 máx. (S-2)	L4	H1	H2	H3	H4	Peso
mm	130	145,6	138	123	106,7	69	222,5	114,5	232	13,7 kg
in	5,12	5,73	5,43	4,84	4,20	2,72	8,76	4,51	9,13	29,8 lb


ICSH 80	L						
	DIN	Α					
mm	245	245					
in	9,65	9,65					

ICSH 80	L1	L2	L3 máx. (s1)	L3 máx. (S-2)	L4	H1	H2	Н3	H4	Peso
mm	130	145,6	138	123	106,7	69	222,5	112,5	232	13,7 kg
in	5,12	5,73	5,43	4,84	4,20	2,72	8,76	4,43	9,13	29,8 lb


Conexiones

D: Soldar acero a tope (EN 10220)

Tamaño mm	Tamaño in	OD mm	T mm	OD in	T in
20	(3/4)	26,9	2,3	1,059	0,091
25	(1)	33,7	2,6	1,327	0,103
32	(11/4)	42,4	2,6	1,669	0,102
40	(1½)	48,3	2,6	1,902	0,103
50	(2)	60,3	2,9	2,37	0,11
65	(2½)	76,1	2,9	3	0,11
80	(3)	88,9	3,2	3,50	0,13

A: Soldar acero a tope ANSI (B 36.10)

Tamaño mm	Tamaño in	OD mm	T mm	OD in	T in	Calibre
(20)	3/4	26,9	4,0	1,059	0,158	80
(25)	1	33,7	4,6	1,327	0,181	80
(32)	11/4	42,4	4,9	1,669	0,193	80
(40)	1½	48,3	5,1	1,902	0,201	80
(50)	2	60,3	3,9	2,37	0,15	40
(65)	2½	73,0	5,2	2,87	0,20	40
(80)	3	88,9	5,5	3,50	0,22	40

SOC: Soldar acero a encaje ANSI (B 16.11)

Tamaño	Tamaño	ID	Т	ID	Т	L	L
mm	in	mm	mm	in	in	mm	in
(20)	3/4	27,2	4,6	1,071	0,181	13	0,51
(25)	1	33,9	7,2	1,335	0,284	13	0,51
(32)	11/4	42,7	6,1	1,743	0,240	13	0,51
(40)	1½	48,8	6,6	1,921	0,260	13	0,51
(50)	2	61,2	6,2	2,41	0,24	16	0,63
(65)	2½	74	8,8	2,91	0,344	16	0,63

SD: Soldar cobre (EN 1254-1)

Tamaño mm	Tamaño in	ID mm	ID in	L mm	L in
22		22,08		16,5	
28		28,08		26	
35		35,07		25	
42		42,07		28	
54		54,09		33	
76		76,1		33	

SA: Soldar cobre, ANSI (B 16.22)

Tamaño		ID		L
in		in		in
7/8		0,875		0,650
11//8		1,125		1,024
1 ³ / ₈		1,375		0,984
15⁄8		1,625		1,102
21/8		2,125		1,300
21/2		2,625		1,300

ENGINEERING TOMORROW

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso, reservándose el derecho de alterar sus productos sin previo aviso, incluyéndose los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.