PVG is a hydraulic, load-sensing proportional valve, designed for optimal machine performance and maximum design flexibility.

The PVG 128 and PVG 256 are new members of the PVG product platform.

PVG 128 and PVG 256 controls work port flow up to 500 l/min and up to 420 bar work port pressure.

The PVG valve design is based on a modular concept that enables machine designers to specify a valve solution suitable for multiple market segments across multiple applications.

The load independent proportional control valve and high performance actuator technology combined with a low pressure drop design improves the machine performance and efficiency—Increasing productivity and reducing energy consumption.

Features

- Inlet flow up to 1200 l/min [317 US gal/min]
- Maximum work port flow 500 l/min
- Compact sectional platform solution for easy integration with PVG 16 and PVG 32
- High precision, reliability, and ultimate performance with closed loop technology and CAN bus
- Optimized for lower pressure drop and higher efficiency
- New compensator design for enhanced load independency
- Configurable with shock valves or anti-cavitation valves
- Load sense relief valves for A and B port enables reduced energy loss at target pressure
- Load sense auxiliary ports for external adjustment of target pressure
- Port connections available: Flange (Metric), SAE Flange (UNF), UNF (threaded ports) and BSP (threaded ports)

Spool/flow options

- Closed or Throttled open in neutral position
- Electrical, mechanical or hydraulic actuation
 - 65, 95, 130, 180, 240, 320, 400
 - 500 l/min with turbo upgrade module

Control options

- PVM, manual control with spool limiting adjustment screws
- PVH for hydraulic actuation
- Electro-hydraulic control options with PVEO, PVEH, PVHC, PVEH-U and PVED actuators

System/application protective features

- Pilot Pressure Shut Off

Comprehensive technical literature available at powersolutions.danfoss.com
Flow Performance Graph for Spools with Float Function

Flow Performance Graph

Flow Performance Graph for Spools with Float Function
Technical data

<table>
<thead>
<tr>
<th>Maximum pressure</th>
<th>Port P continuous</th>
<th>350 bar</th>
<th>[5000 psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Port A/B intermittent</td>
<td>400 bar</td>
<td>[5800 psi]</td>
</tr>
<tr>
<td></td>
<td>Port A/B continuous</td>
<td>350 bar</td>
<td>[5000 psi]</td>
</tr>
<tr>
<td></td>
<td>Port A/B intermittent</td>
<td>420 bar</td>
<td>[6000 psi]</td>
</tr>
<tr>
<td></td>
<td>Port T, static/dynamic</td>
<td>25/40 bar</td>
<td>[360/580 psi]</td>
</tr>
<tr>
<td>Oil flow rated</td>
<td>Port P (PVPV/PVSI)</td>
<td>600/600 l/min</td>
<td>[158/158 US gal/min]</td>
</tr>
<tr>
<td></td>
<td>Port A/B (128)</td>
<td>275 l/min</td>
<td>[73 US gal/min]</td>
</tr>
<tr>
<td></td>
<td>Port A/B (256)</td>
<td>400 l/min</td>
<td>[105 US gal/min]</td>
</tr>
<tr>
<td></td>
<td>Port A/B (256 turbo)</td>
<td>500 l/min</td>
<td>[132 US gal/min]</td>
</tr>
<tr>
<td>Spool travel</td>
<td>Deadband</td>
<td>± 1.7 mm</td>
<td>± 0.067 in</td>
</tr>
<tr>
<td></td>
<td>Proportional control range</td>
<td>± 10 mm</td>
<td>± 0.39 in</td>
</tr>
<tr>
<td></td>
<td>Float position A</td>
<td>± 12 mm</td>
<td>± 0.47 in</td>
</tr>
</tbody>
</table>