Data sheet

Hot gas bypass regulator Type KVC

KVC hot gas bypass regulator are used to adapt compressor capacity to actual evaporator load by supplying a replacement capacity in form of hot / cool gas.

It is installed in a bypass line between the high and low pressure sides of the refrigeration system and is designed for direct gas injection into the suction line.

Features

- Accurate, adjustable pressure regulation
- Wide capacity and operating range
- Pulsation damping design
- Stainless steel bellows
- Compact angle design for easy installation
- "Hermetic" brazed construction
- Available with flare or ODF solder connections
- May be used in the following EX range: Category 3 (Zone 2)

Data sheet | Hot gas bypass regulator, type KVC

Note:

The connection dimensions chosen must not be too small, as gas velocities in excess of $130 \mathrm{ft} / \mathrm{s}$ at the inlet of the regulator can result in flow noise.

If the temperature in the discharge gas line is too high according to the compressor specifications, it is recommanded to install a liquid injection valve in a bypass from the liquid line to the suction line.

Data sheet | Hot gas bypass regulator, type KVC

Replacement capacity
(Maximum regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{\text {' }}$)

Type	Offset Δp	Regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$) [TR] suction gas temperature t_{s} after pressure / temperature reduction [${ }^{\circ} \mathrm{F}$]						
	[psi]	-50	-40	-25	-10	10	30	50
KVC 12	1.5	-	0.68	0.70	0.71	0.73	0.75	0.77
	2.0	-	0.93	0.95	0.97	1.00	1.03	1.05
	3.0	-	1.33	1.36	1.39	1.43	1.47	1.51
	5.0	-	1.75	1.79	1.83	1.88	1.93	1.98
	7.5	-	1.93	1.97	2.01	2.07	2.12	2.18
	10.0	-	2.00	2.04	2.08	2.14	2.20	2.26
	15.0	-	2.19	2.24	2.28	2.35	2.41	2.48
	20.0	-	2.62	2.67	2.72	2.80	2.87	2.94
KVC 15	1.5	-	1.01	1.03	1.06	1.09	1.12	1.15
	2.0	-	1.20	1.23	1.25	1.29	1.32	1.35
	3.0	-	1.73	1.77	1.80	1.85	1.90	1.95
	5.0	-	2.64	2.69	2.75	2.83	2.90	2.98
	7.5	-	3.39	3.46	3.54	3.63	3.73	3.83
	10.0	-	3.90	3.98	4.06	4.17	4.28	4.39
	15.0	-	4.76	4.66	4.75	4.88	5.01	5.14
	20.0	-	5.05	5.16	5.27	5.42	5.57	5.72
KVC 22	1.5	-	1.09	1.12	1.14	1.17	1.21	1.24
	2.0	-	1.38	1.41	1.44	1.48	1.52	1.56
	3.0	-	1.89	1.93	1.97	2.02	2.07	2.12
	5.0	-	2.88	2.94	3.00	3.08	3.16	3.24
	7.5	-	4.02	4.11	4.19	4.31	4.43	4.54
	10.0	-	4.98	5.09	5.20	5.35	5.50	5.64
	15.0	-	6.35	6.49	6.63	6.82	7.01	7.20
	20.0	-	7.10	7.25	7.40	7.60	7.79	7.99

${ }^{1}$) The capacities are based on: Condensing temperature $\mathrm{t}_{1}=77^{\circ} \mathrm{F}$

Correction factors for condensing temperature t_{t}.
When liquid temperature t_{1} is other than $77^{\circ} \mathrm{F}$, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table.

Correction factors for condensing temperature t_{1}

$\mathbf{t}_{1}\left[{ }^{\circ} \mathrm{F}\right]$	$\mathbf{5 0}$	$\mathbf{5 9}$	$\mathbf{6 8}$	$\mathbf{7 7}$	$\mathbf{8 6}$	$\mathbf{9 5}$	$\mathbf{1 0 4}$	$\mathbf{1 1 3}$	$\mathbf{1 2 2}$
R22	0.9	0.93	0.96	1.00	1.05	1.1	1.13	1.18	1.24

[^0]Data sheet | Hot gas bypass regulator, type KVC

Replacement capacity (continued)

Maximum regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$)

Type	Offset Δp	Regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$) [TR] suction gas temperature t_{s} after pressure / temperature reduction [${ }^{\circ} \mathrm{F}$]						
	[psi]	-50	-40	-25	-10	10	30	50
KVC 12	1.5	-	-	0.41	0.43	0.46	0.48	0.50
	2.0	-	-	0.58	0.60	0.62	0.66	0.70
	3.0	-	-	0.83	0.86	0.91	0.95	1.00
	5.0	-	-	1.09	1.14	1.20	1.25	1.31
	7.5	-	-	1.20	1.25	1.31	1.37	1.44
	10.0	-	-	1.25	1.30	1.36	1.42	1.49
	15.0	-	-	1.36	1.42	1.49	1.56	1.63
	20.0	-	-	1.62	1.69	1.78	1.86	1.94
KVC 15	1.5	-	-	0.62	0.65	0.68	0.72	0.76
	2.0	-	-	0.74	0.78	0.82	0.86	0.90
	3.0	-	-	1.08	1.13	1.18	1.24	1.28
	5.0	-	-	1.64	1.72	1.79	1.87	1.96
	7.5	-	-	2.12	2.21	2.30	2.41	2.51
	10.0	-	-	2.45	2.54	2.65	2.77	2.88
	15.0	-	-	2.87	2.96	3.11	3.25	3.40
	20.0	-	-	3.13	3.26	3.44	3.61	3.79
KVC 22	1.5	-	-	0.67	0.70	0.73	0.78	0.82
	2.0	-	-	0.86	0.90	0.94	0.97	1.02
	3.0	-	-	1.18	1.22	1.28	1.33	1.39
	5.0	-	-	1.80	1.86	1.96	2.04	2.12
	7.5	-	-	2.52	2.62	2.74	2.87	2.99
	10.0	-	-	3.13	3.25	3.41	3.55	3.71
	15.0	-	-	4.00	4.15	4.34	4.54	4.74
	20.0	-	-	4.43	4.61	4.82	5.05	5.28

${ }^{1}$) The capacities are based on: Condensing temperature $t_{l}=77{ }^{\circ} \mathrm{F}$

Correction factors for condensing temperature t_{1}.
When liquid temperature t_{1} is other than $77^{\circ} \mathrm{F}$, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table.

Correction factors for condensing temperature t_{1}

$\mathrm{t}_{1}\left[{ }^{\circ} \mathrm{F}\right]$	$\mathbf{5 0}$	$\mathbf{5 9}$	$\mathbf{6 8}$	$\mathbf{7 7}$	$\mathbf{8 6}$	$\mathbf{9 5}$	$\mathbf{1 0 4}$	$\mathbf{1 1 3}$	$\mathbf{1 2 2}$
R 134 a	0.88	0.92	0.96	1.00	1.05	1.1	1.16	1.23	1.31

[^1]Data sheet | Hot gas bypass regulator, type KVC

Replacement capacity (continued)

Maximum regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$)
R404A/R507

Type	Offset Δp	Regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$) [TR] suction gas temperature t_{s} after pressure / temperature reduction [${ }^{\circ} \mathrm{F}$]						
	[psi]	-50	-40	-25	-10	10	30	50
KVC 12	1.5	0.57	0.58	0.62	0.64	0.67	0.70	0.74
	2.0	0.79	0.81	0.85	0.88	0.92	0.97	1.01
	3.0	1.16	1.19	1.23	1.28	1.34	1.40	1.46
	5.0	1.54	1.58	1.64	1.69	1.77	1.85	1.93
	7.5	1.68	1.73	1.79	1.86	1.96	2.05	2.13
	10.0	1.74	1.78	1.85	1.93	2.02	2.11	2.21
	15.0	1.89	1.94	2.01	2.10	2.20	2.31	2.41
	20.0	2.27	2.33	2.42	2.51	2.62	2.74	2.85
KVC 15	1.5	0.86	0.89	0.92	0.96	1.01	1.06	1.10
	2.0	1.05	1.07	1.11	1.16	1.21	1.27	1.32
	3.0	1.51	1.55	1.61	1.66	1.74	1.82	1.90
	5.0	2.29	2.34	2.44	2.53	2.65	2.77	2.89
	7.5	2.94	3.01	3.14	3.26	3.42	3.58	3.74
	10.0	3.38	3.47	3.61	3.75	3.93	4.11	4.30
	15.0	3.95	4.06	4.22	4.39	4.61	4.82	5.04
	20.0	4.36	4.48	4.66	4.85	5.09	5.34	5.58
KVC 22	1.5	0.92	0.96	0.99	1.02	1.08	1.12	1.18
	2.0	1.19	1.22	1.27	1.31	1.38	1.44	1.51
	3.0	1.71	1.75	1.83	1.89	1.98	2.08	2.17
	5.0	2.63	2.71	2.81	2.92	3.06	3.20	3.34
	7.5	3.58	3.67	3.82	3.96	4.17	4.35	4.54
	10.0	4.33	4.46	4.63	4.81	5.04	5.28	5.51
	15.0	5.49	5.64	5.86	6.08	6.39	6.69	6.99
	20.0	6.31	6.49	6.74	7.01	7.35	7.70	8.04

${ }^{1}$) The capacities are based on: Condensing temperature $\mathrm{t}_{1}=77^{\circ} \mathrm{F}$

Correction factors for condensing temperature t_{t}.
When liquid temperature t_{1} is other than $77^{\circ} \mathrm{F}$, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table.

Correction factors for condensing temperature t_{1}

$\mathrm{t}_{1}\left[{ }^{\circ} \mathrm{F}\right]$	$\mathbf{5 0}$	$\mathbf{5 9}$	$\mathbf{6 8}$	$\mathbf{7 7}$	$\mathbf{8 6}$	$\mathbf{9 5}$	$\mathbf{1 0 4}$	$\mathbf{1 1 3}$	$\mathbf{1 2 2}$
$\mathrm{R} 404 \mathrm{~A} / \mathrm{R} 507$	0.84	0.89	0.94	1.00	1.07	1.06	1.26	1.4	1.57

[^2]Data sheet | Hot gas bypass regulator, type KVC

Replacement capacity (continued)

Maximum regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$)

Type	Offset Δp	Regulator capacity $\mathrm{Q}_{\mathrm{e}}{ }^{1}$) [TR] suction gas temperature t_{s} after pressure / temperature reduction [${ }^{\circ} \mathrm{F}$]						
	[psi]	-50	-40	-25	-10	10	30	50
KVC 12	1.5	-	0.73	0.76	0.77	0.79	0.81	0.83
	2.0	-	1.00	1.03	1.05	1.08	1.11	1.13
	3.0	-	1.44	1.47	1.50	1.54	1.59	1.63
	5.0	-	1.89	1.93	1.98	2.03	2.08	2.14
	7.5	-	2.08	2.13	2.17	2.24	2.29	2.35
	10.0	-	2.16	2.20	2.25	2.31	2.38	2.44
	15.0	-	2.37	2.42	2.46	2.54	2.60	2.68
	20.0	-	2.83	2.88	2.94	3.02	3.10	3.18
KVC 15	1.5	-	1.09	1.11	1.14	1.18	1.21	1.24
	2.0	-	1.30	1.33	1.35	1.39	1.43	1.46
	3.0	-	1.87	1.91	1.94	2.00	2.05	2.11
	5.0	-	2.85	2.91	2.97	3.06	3.13	3.22
	7.5	-	3.66	3.74	3.82	3.92	4.03	4.14
	10.0	-	4.21	4.30	4.38	4.50	4.62	4.74
	15.0	-	4.92	5.03	5.13	5.27	5.41	5.55
	20.0	-	5.45	5.57	5.69	5.85	6.02	6.18
KVC 22	1.5	-	1.18	1.21	1.23	1.26	1.31	1.34
	2.0	-	1.49	1.52	1.56	1.60	1.64	1.68
	3.0	-	2.04	2.08	2.13	2.18	2.24	2.29
	5.0	-	3.11	3.18	3.24	3.33	3.41	3.50
	7.5	-	4.34	4.44	4.53	4.65	4.78	4.90
	10.0	-	5.38	5.50	5.62	5.78	5.94	6.09
	15.0	-	6.86	7.01	7.16	7.37	7.57	7.78
	20.0	-	7.67	7.83	7.99	8.21	8.41	8.63

${ }^{1}$) The capacities are based on: Condensing temperature $\mathrm{t}_{1}=77^{\circ} \mathrm{F}$

Correction factors for condensing temperature $t_{\text {. }}$.
When liquid temperature t_{1} is other than $77^{\circ} \mathrm{F}$, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table.

Correction factors for condensing temperature t_{1}

$\mathrm{t}_{1}\left[{ }^{\circ} \mathrm{F}\right]$	$\mathbf{5 0}$	$\mathbf{5 9}$	$\mathbf{6 8}$	$\mathbf{7 7}$	$\mathbf{8 6}$	$\mathbf{9 5}$	$\mathbf{1 0 4}$	$\mathbf{1 1 3}$	$\mathbf{1 2 2}$
R407C	0.88	0.91	0.95	1.00	1.05	1.11	1.18	1.26	1.35

[^3]Data sheet | Hot gas bypass regulator, type KVC

Sizing	For optimum performance, it is important to select a KVC valve according to system conditions and application. The following data must be used when sizing a KVC valve:		
Metric conversions:			
1 psi $=0.07$ bar			
$5 / 9\left(\mathrm{t}_{1}{ }^{\circ} \mathrm{F}-32=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}\right.$			
$1 \mathrm{TR}=3.5 \mathrm{~kW}$			
1 in $=25.4 \mathrm{~mm}$		\quad	
:---			

Valve selection Example

Note:

When selecting the appropriate valve, it may be necessary to convert the actual capacity using a correction factor for condensing temperature. This is due to differences between the table rated conditions and the design conditions.
The following example illustrates how this is done.

- Refrigerant: HCFC, HFC and HC
- Suction temperature at maximum compressor / evaporator load ts in [$\left.{ }^{\circ} \mathrm{F}\right]$ / [psig]
- Minimum suction temperature ts in [$\left.{ }^{\circ} \mathrm{F}\right]$ / [psig]
- Compressor capacity in [TR]
- Evaporating load in [TR]
- Condensing temperature t_{1} in $\left[{ }^{\circ} \mathrm{F}\right]$
- Connection type: flare or solder
- Connection size [in]

Conditions:

- Refrigerant type: R134a
- Suction temperature at maximum compressor / evaporator load $\mathrm{t}_{\mathrm{s}}: 0^{\circ} \mathrm{F} \sim 7 \mathrm{psi}$.
- Minimum suction temperature t : $10^{\circ} \mathrm{F} \sim 12$ psi.
- Compressor capacity at $10^{\circ} \mathrm{F}: 4.4 \mathrm{TR}$
- Evaporating load at $10^{\circ} \mathrm{F}: 2.85 \mathrm{TR}$
- Condensing temperature ti: $95^{\circ} \mathrm{F}$
- Connection type: solder
- Connection size: $5 / 8$ in

Step 1:

Determine the correction factor for the condensing temperature $t_{\text {. }}$.

From the correction factors table (see below) a condensing temperature of $95^{\circ} \mathrm{F}, \mathrm{R} 134$ a corresponds to a factor of 1.1.

Correction factors for condensing temperature t_{1}

$\mathrm{t}_{1}\left[{ }^{\circ} \mathrm{F}\right]$	$\mathbf{5 0}$	$\mathbf{5 9}$	$\mathbf{6 8}$	$\mathbf{7 7}$	$\mathbf{8 6}$	$\mathbf{9 5}$	$\mathbf{1 0 4}$	$\mathbf{1 1 3}$	$\mathbf{1 2 2}$
R 134 a	0.88	0.92	0.96	1.00	1.05	1.1	1.16	1.23	1.31
R22	0.9	0.93	0.96	1.00	1.05	1.1	1.13	1.18	1.24
R404A/R507	0.84	0.89	0.94	1.00	1.07	1.16	1.26	1.4	1.57
R407C	0.88	0.91	0.95	1.00	1.05	1.11	1.18	1.26	1.35

Step 2:
The required replacement capacity is defined as the (compressor capacity - the evaporator load) divided by the correction factor is equal:
$(4.4-2.85) / 1.1=1,41$ TR

Step 3:

Now select the appropriate capacity table and choose the column for minimum suction temperature $\mathrm{t}_{\mathrm{s}}=10^{\circ} \mathrm{F}$.
Using the corrected replacement capacity, select a valve that provides an equivalent or greater capacity than required.
From the correction factors table (see below) a condensing temperature of $95^{\circ} \mathrm{F}$, R134a corresponds to a factor of 1.1.

Step 4:

KVC 15, $5 / 8$ in ODF
Code no 034L0147.

Data sheet | Hot gas bypass regulator, type KVC

Hot gas bypass regulator type KVC opens on a fall in pressure on the outlet side, i.e. when the pressure in the evaporator reaches the set value.

Type KVC regulates on outlet pressure (suction pressure) only. Pressure variations on the inlet side of the regulator do not affect the degree of opening as the valve is equipped with equalization bellows (6). The bellows has an effective area corresponding to that of the valve seat neutralizing any affect to the setting.

The regulator is also equipped with a damping device (9) providing protection against pulsations which can normally arise in a refrigeration system. The damping device helps to ensure long life for the regulator without impairing regulation accuracy.

P-band and Offset

Proportional band:

The proportional band or P-band is defined as the amount of pressure required to move the valve plate from closed to full open position.
If the setting is 80 psig and the p -band is 29 psi, the pressure at which the valve gives maximum capacity will be 51 psig.

Offset:

The offset is defined as the permissible pressure variation in suction line pressure (temperature). It is calculated as the difference between the required working pressure and the minimum allowable pressure.
The offset is always a part of the P-band.

Example with R 404A:

A suction temperature ahead of the compressor of $25^{\circ} \mathrm{F} \sim 61 \mathrm{psig}$ is required, and the temperature must not drop below $14^{\circ} \mathrm{F} \sim 48$ psig. The offset will then be 13 psi.

Dimensions and weights

KVC

Metric conversions
$1 \mathrm{in}=25.4 \mathrm{~mm}$
$1 \mathrm{lb}=0.454 \mathrm{~kg}$

Type	Connection		NV ${ }_{1}$	NV_{2}	H_{1}	H_{2}	B_{1}	C solder	øD	Net weight
	Flare	Solder ODF								
	[in]	[lbs]								
KVC 12	1/2	1/2	$3 / 4$	15/16	7.047	3.898	2.520	0.394	1.181	0.88
KVC 15	5/8	5/8	15/16	15/16	7.047	3.898	2.520	0.472	1.181	0.88
KVC 22	-	7/8	-	-	7.047	3.898	2.520	0.669	1.181	0.88

[^0]: System capacity \times correction factor $=$ table capacity

[^1]: System capacity \times correction factor $=$ table capacity

[^2]: System capacity \times correction factor $=$ table capacity

[^3]: System capacity \times correction factor $=$ table capacity

