

Data Sheet

Pressure transmitter Type **EMP 2**

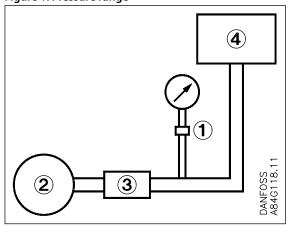
For monitoring and control in marine and industial applications

The high accuracy pressure transmitter EMP 2 is designed for monitoring and control in marine and industial applications and offers a reliable pressure measurement, even under harsh environmental conditions.

The flexible pressure transmitter programme covers absolute or gauge (relative) versions with zero and span adjustment with a 4-20 mA output signal.

It has all the necessary marine approvals. Special versions with integrated pulse-snubber available, designed for use in hydraulic applications with severe medium influences like cavitation, liquid hammer or pressure peaks.

Features


• For use in Zone 2 explosive atmosphere

Applications

Application and media conditions

Figure 1: Pressure range

1 Surge damper 2 Pump 3 Valve Tank

In cases where valves are closed momentarily, surges of a value in excess of that for which the pressure element is designed can occur. To avoid damage to the pressure element, a damper should be fitted.

The device can consist of a flexible pipe, a throttle, a shock valve, or a combination of these items. The amplitude of surges should never exceed the maximum pressure range of the pressure transmitter.

Product specification

Technical data

Table 1: Performance (EN 60770)

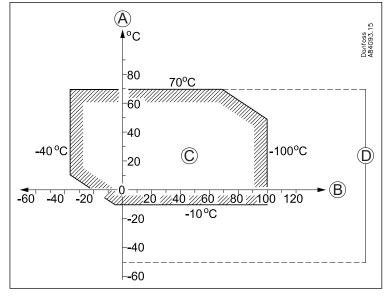
•	_ •				
Sensor temperature range	Normal	-10 – 70 °C, (Ref. Figure 2: Max. ambient temperature as a function of temperature)			
	ATEX Zone 2	-10 – 85 °C			
Transport / storage temperature		-50 − 70 °C			
Media temperature		-40 – 100 °C, (Ref. Figure 2: Max. ambient temperature as a function of temperature)			
Media		Water, fuel, oil, lubricating oil, refrigerants, ammonia, gas etc.			
Voltage supply		Max. 32 V and min. 12 V DC between term	minals N and P		
Load resistance		A. max. 410 Ω at 24 V DC 50% / -20%			
Load resistance		B. max. 650 Ω at 24 V DC 50% / 0%			
Zero point adjustment		- 5 – 20% range span; but max1–1.5 ba	r (kp/cm²)		
Span adjustment		\pm 5% of range span; max. \pm 5 bar (kp/cm	2)		
Combination of span and zero point adju	ustments	- 5 – 20% of range span			
Noise – immunity		Complies with the standard for industrial apparatus EN 61000-6-2. The standard contains tests for the following: HF fields, mains transmitted HF, voltage transients, electrostatic immunity, supply voltage variations, low-frequency radiation and transient protection in accordance with Germanischer Lloyd			
Noise – emission		Complies with standard EN 61000-6-3			
A			< 0.3 % of FS		
Accuracy		In vacuum (below 0 bar)	< 2.3 % of FS		
Tanananatana dan sa dan sa	Thermal zero point shift	≤ ± 0.06 % FS / °C			
Temperature dependence	Thermal sensitivity (span) shift	\leq ± 0.06 % FS / °C			
Voltage dependence		\leq ± 0.1% FS / 10 V			
Vibration stability		3-30 Hz amplitude 1.13 mm and $30-300$ Hz acceleration 4G according to IEC 60068-2-6. The requirements of the ship classification societies are up to 100 Hz, acceleration 4G. Extended specifications by prior arrangement			
Time constant		Liquids with viscosity < 100 cSt	< 4 ms		
		Air and gas in combination with pulse snubber:	< 35 ms		
Shock stability		500 g for 1 ms to IEC 60068-2-27			

Pressure transmitter, Type EMP 2

Enclosure	IP65, Housings are made of enamelled pressure-die-cast aluminium (GD-AISI 12)
Pressure connection	G ¼, G ½ A standard, G ¾ A mano
Net weight	approx. 1 kg
Cable entry	Pg 13.5 for cable diameters 5 – 14 mm

Table 2: Explosive atmospheres

Zone 2 applications ⁽¹⁾	C € ⟨Ex⟩ _{II 3G} Ex nA IIA T3 Gc -20C <ta<+85c< th=""><th>EN60079-0; EN60079-15</th></ta<+85c<>	EN60079-0; EN60079-15
	-20C<1d<+03C	


⁽¹⁾ When used in ATEX Zone 2 areas at temperatures <-10 °C the cable and plug must be protected against impact

Identification

The type designation and code number of the transmitter is embossed on the side of the housing at the bottom close to the pressure connector.

Installation conditions

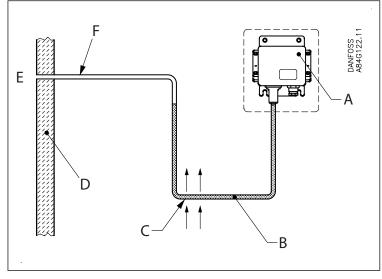
Figure 2: Max. ambient temperature as a function of temperature

Ambient temperature Α В Temperature and medium C Operating range Transport and storage temperature

Mounting

Type EMP 2 is equipped with a 3 mm stell bracket for mounting.

Pressure connection


Connector with outside cylindrical thread G ½, some types available with G ¾ A mano, and inside cylindrical thread G ¼, to ISO 228.

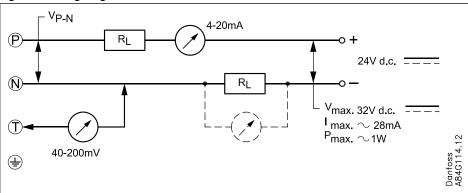
The primary insertion length of the connector corresponds to EN 837. Connection to the transmitter is made through a connector with a spanner flat, 14 mm across flats.

When fitting or removing pressure lines, the spanner flats on the pressure connector should be used to apply counter-torque.

Figure 3: Insulation against radiant heat

- Α max. 70 °C
- В Condensed liquid
- C Reliable, good convection
- D Insulation against radiant heat
- Ε Steam 170 °C
- F Thin (=low heat conductivity) uninsulated tube

Water systems

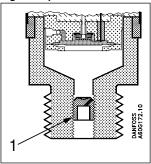

Water in the pressure element is not harmful, but in the event of frost a water-filled pressure element may burst. To prevent this the transmitter should be allowed to operate on an air cushion.

Steam plant

To protect the pressure element against temperatures in excess of the maximum temperature for the medium (100 °C), the insertion of a water-filled loop is recommended. In the example, Figure 3: Insulation against radiant heat, insulation against radiant heat is also shown.

Electrical connection

Figure 4: Wiring diagram


The transmitter has a wiring diagram, see above figure. Terminals P (positive) and N (negative) are connection terminals for the supply voltage.

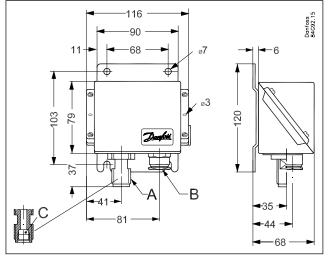
The same leads are used for supply voltage and output signal. A function test can be performed between terminals N and T without cutting off the current loop.

Pulse snubber

Figure 5: pulse snubber

Pulse-snubber

EMP 2 with the pressure range 0 – 6 bar and 0 – 10 bar at extended test pressure is provided with an integrated pulse snubber for protection of the sensor element against cavitations and air bubbles in the media due to extreme pressure peaks and pulsations. Such conditions may be caused by pumps or fast operation valves in both high and low pressure systems.


The integrated pulse snubber is designed as an 0.3 mm orifice mounted in the pressure connection. The medium should not contain particles which may clog up in the orifice.

The viscosity has only little effect on the response time. Even at liquid viscosities up to 100 Cst the response time will not exceed 4 ms.

Dimensions and weight

Net weight 1 kg

Figure 6: Dimensions diagram

- Α G ½ A (G 3/8 A mano)
- В Pg 13.5
- C G 1/4

Ordering

Table 3: Pressure in bar

Operating pressure	Test pressure	Min. burst pressure	Code no. EMP 2	
p _e [bar]	p _e [bar]	p _e [bar]	G ½ A	G % A
-1 – 1.5 ⁽¹⁾	5	100	084G2100	-
-1 – 5 ⁽¹⁾	35	200	084G2101	-
0.2 – 1	3.2	100	084G2102	-
0 – 1.6	3.2	100	084G2104	-
0 – 2.5	5	200	084G2105	-
0 – 4	8	200	084G2106	084G2206
0 – 6	18	400	084G2107	084G2207
0 – 6	60 ⁽²⁾	400	084G2108	-
0 – 10	20	400	084G2109	084G2209
0 – 10	60 ⁽²⁾	400	084G2110	-
0 – 16	32	400	084G2111	084G2211
0 – 25	50	400	084G2112	-
0 – 40	80	400	084G2113	084G2213
0 – 60	120	400	084G2114	-
0 – 100	200	400	084G2115	-
0 – 160	260	640	084G2116	-
0 – 250	375	1000	084G2117	-
-1 – 9 ⁽¹⁾	20	400	084G2120	-

Table 4: Pressure in kp/cm²

Operating pressure	Test pressure	Min. burst pressure	Code no. EMP 2	
p _e [kp/cm²]	p _e [kp/cm²]	p _e [kp/cm²]	G ½ A	G % A
-1 - 5 ⁽¹⁾	35	200	084G2131	-
0 – 4	8	200	084G2136	084G2157
0 – 6	18	400	084G2137	084G2158
0 – 10	20	400	-	084G2179
0 – 15	32	400	084G2141	084G2159
0 – 25	50	400	084G2142	-
0 – 40	80	400	084G2143	084G2169
0 – 50	120	400	084G2144	-
0 – 20	50	400	084G2154	-

• NOTE:

When ordering please state type and code number

⁽¹⁾ Sealed gauge (2) With pulse snubber

Accessories

Table 5: Accessories list

Part	Symbol	Description	Material	Code no.
Damping coil		Damping coil with G 3/8 unions and 1.5 m copper capillary tube.	Copper	060-104766
Damping coil		Damping coil with G ½ unions and 1 m capillary tube. Standard washers supplied	Stainless steel	060-016966
Damping coil, arm- oured		Damping coil with G ³ 8 unions and 1 m armoured copper capillary tube. Standard washers supplied	Copper	060-333366
		G $^{1/\!\!4}$ A \times G 3/8A with copper washer	Brass	060-333266
Nipple		G $^{1/4}$ A \times M10 ext. \times 1 with copper washer	Brass	060-333866

Conversion table

Table 6: Conversion values

	Pascal (= Newton per square me- tre)	Newton per square [mm]	[bar]	Kilopond per square metre [mm] H ₂ O	Meter water gauge	Technical at- mosphere [kp/cm²]	Physical at- mosphere	Torr [0 °C]	Inches Hg [0 °C]	Poundforce per Square inch
	[N/m ²] Pa	[N/mm ²]		[kp/m²]	[m] H ₂ O	[at]	[atm]	[mm] Hg	[in] Hg	[lbf/in²] psi
1 Pa	1	10 ⁻⁶	10 ⁻⁵	0.1020	1.020 • 10-4	1.020 • 10-5	9.869 • 10 ⁻⁵	7.500 • 10 ⁻³	2.953 • 10 ⁻⁴	1.450 • 10-4
1 N/mm ²	10 ⁶	1	10	1.020 •105	10.20	10.20	9.869	7.5 • 10 ³	295.3	145.0
1 bar	10 ⁵	0.1	1	10.197 • 10 ³	10.20	1.020	0.9869	750	29.53	14.50
1 kp/m ²	9.80665	9.807 • 10 ⁻⁶	9.807 • 10-5	1	10-3	10 ⁻⁴	0.9678 • 10-4	0.07355	2.896 • 10 ⁻³	1.422 • 10-3
1 m H ₂ O	9806.7	9.807 • 10 ³	0.09807	1000	1	0.1	0.09678	73.55	2.896	1.422
1 at	98.066 • 10 ³	0.09807	0.9807	104	10	1	0.9678	735.5	28.96	14.22
1 atm	101.325 • 10 ³	0.1013	1.013	10.333 • 10 ³	10.33	1.033	1	760	29.92	14.70
1 mm Hg	133.32	1.333 • 10-4	1.333 • 10 ⁻³	13.60	0.01360	1.360 •10-3	1.316 • 10 ⁻³	1	0.03937	1.934 • 10-2
1 in Hg	3387	3.387 •10-3	0.03387	345.3	0.3453	0.03453	0.03342	25.4	1	0.4912
1 psi	6895	6.895 • 10 ⁻³	0.06895	703.1	0.7031	0.07031	0.06804	51.71	2.036	1

Certificates, declarations, and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Table 7: Certificates and declarations

File name	Document type	Document topic	Approval authority
RU Д-DK.БЛ08.В.00302_18	EAC Declaration	EMC	EAC
DLN 34014-AE003	Marine - Safety Certificate	-	KR
ELE071320XP	Marine - Safety Certificate	-	RINA
2002547TA	Marine - Safety Certificate	-	LR
TJ18T00028	Marine - Safety Certificate	-	CCS
TAA000012U	Marine - Safety Certificate	-	DNV GL
18.10316.266	Marine - Safety Certificate	-	RMRS
TA19494M	Marine - Safety Certificate	-	NKK
02280-H0 BV	Marine - Safety Certificate	-	BV
15-LD1339318-PDA	Marine - Safety Certificate	-	ABS
DK.C.30.018.A 31316	Measuring - Performance Certificate	-	GOST
064G9615.06	EU Declaration	ATEX/EMCD/RoHS	Danfoss
UA.1O146.D.00075-19	UA Declaration	EMCD/LVD	LLC CDC EURO TYSK
CRN.0F18477.5123467890YTN	Pressure - Safety Certificate	CRN	TSSA
064R9402.00	Manufacturers Declaration	PED	Danfoss
SMS.W.II-2179-B.0	Marine - Manufacturing Permission	-	BV
E494625	Electrical - Safety Certificate	-	UL

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Spare Parts

Get access to the Danfoss spare parts and service kit catalog right from your smartphone. The app contains a wide range of components for air conditioning and refrigeration applications, such as valves, strainers, pressure switches, and sensors.

Download the Spare Parts app for free at www.danfoss.com/en/service-and-support/downloads.

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.