ENGINEERING TOMORROW

Folleto técnico

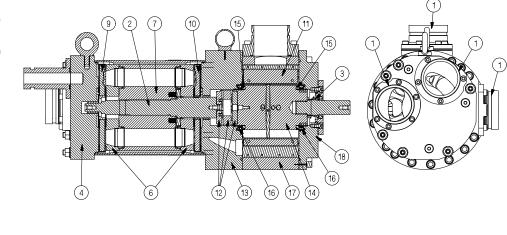
Dispositivo de recuperación de energía iSave® iSave 50/iSave 70

ĺn	A	:	-	_

Contents 1. 2. Ventajas3 3. 4. 4.1 4.2 4.3 iSave con motor NEMA......7 5. 5.1 Caudal a diferentes velocidades (rpm)8 5.2 Curvas de caudal, iSave 50 Caudal [m³/h]......8 5.3 Curvas de caudal, iSave 70 Caudal [m³/h]......8 Curva de par para unidades iSave 50 e iSave 709 5.4 5.5 Curva de mezcla9 6. 6.1 7. 7.1 7.2 7.3 Conexión a los puertos de entrada o descarga:.....11 7.4 Ruido......11 7.5 7.5 8. 8.1 iSave 50-70 con motor IE3 de 18.5 Kw montado verticalmente sobre parte frontal del 8.2 8.3 iSave 50-70 con motor IE3 de 18.5 Kw montado verticalmente sobre parte posterior del \dots bastidor16 8.4 iSave 50-70 con motor NEMA 30 HP montado verticalmente sobre parte frontal del 8.5 8.6 iSave 50-70 con motor NEMAde 30 HP montado verticalmente sobre 8.7 iSave 50-70 con motor NEMA de 30 HP en bancada horizontal..................................20 9. 10. 9.1 9.2 9.3 9.4 Asistencia para la reparación21 10 11

1. Información general

Los dispositivos de recuperación de energía (ERD) se usan en sistemas de ósmosis inversa (RO) para reciclar la energía contenida en la salmuera descargada por las membranas. Los modelos iSave 50 e iSave 70 están diseñados para el uso con fluidos poco viscosos y corrosivos, como el agua de mar.


Todos los dispositivos de recuperación de energía iSave de Danfoss se componen de un intercambiador de presión isobárico y una bomba de desplazamiento positivo, ambos combinados en una unidad caracterizada por sus dimensiones compactas. La bomba, de tipo booster y alta presión, se basa en el principio de bomba de paletas, lo cual le confiere un diseño ligero y compacto. Las bombas de paletas son bombas de desplazamiento fijo cuyo caudal es proporcional al número de revoluciones (rpm)

del eje propulsor, lo cual permite controlar el caudal. El control de velocidad se lleva a cabo mediante un VFD. El diseño de las unidades iSave garantiza la lubricación de las piezas móviles mediante el propio fluido.

Todas las piezas que incorporan las unidades iSave 50 y 70 están diseñadas para proporcionar una prolongada vida útil y la máxima eficiencia con el mínimo mantenimiento.

A diferencia de las bombas centrífugas, estas unidades generan el mismo caudal a una determinada velocidad, independientemente de la presión de descarga.

- 1. Conexiones Victaulic de 3"
- 2. Eje
- 3. Sello del eje de baja presión
- 4. Brida de conexión
- 6. Disco de válvula
- 7. Camisa cilíndrica
- 9. Placa de conexión (salmuera)
- 10. Placa de conexión (agua de mar)
- 11. Paletas
- 12. Acoplamiento
- 13. Brida intermedia
- 14. Rotor
- 15. Elemento rotor
- 16. Placa de sellado
- 17. Estátor
- Brida del extremo del motor

2. Ventajas

- Notable ahorro energético y bajo consumo de energía específica (SEC)
- Instalación sencilla y compacta, con la bomba y el intercambiador de presión en una sola unidad
- Sistema de diseño sencillo y funciones de monitorización sin necesidad de caudalímetros de alta presión
- Funcionamiento sencillo con diseño que impide el exceso de revoluciones/descarga
- Inspección modular sencilla

- Resistencia a la corrosión (todas las piezas en contacto con el medio se fabrican en materiales resistentes a la corrosión, como Super Duplex o Duplex)
- Menor número de componentes

3. Aplicaciones

Los ERD iSave de Danfoss forman parte en la actualidad de numerosas plantas de desalinización por ósmosis inversa de todo el mundo. A continuación se recogen algunas de las aplicaciones típicas de las unidades iSave 50-70:

- Soluciones contenedorizadas para hoteles y complejos de ocio en islas y regiones costeras
- Sistemas a bordo de buques
- Plataformas marítimas pertenecientes a los sectores del petróleo y el gas
- Redes de suministro de agua municipales y privadas

4. Datos técnicos

4.1 iSave sin motor

Tamaño de la unidad iSave		iSave 50	iSave 70
Código		180F7020	180F7021
Presión			
Presión diferencial máx. (salida HP - entrada HP)	bar(g)	5	5
	psi(g)	72	72
Presión mín., salida HP (presión de trabajo mín.	bar(g)	40	40
permitida)	psi(g)	580	580
Presión máx., salida HP (presión de trabajo	bar(g)	83	83
máx. permitida, MAWP)¹¹	psi(g)	1200	1200
Presión mín., entrada HP	bar(g)	2	2
(intermitente) ²⁾³⁾	psi(g)	29	29
Presión máx., entrada LP (MAWP) ¹⁾	bar(g)	5	5
riesion max., entrada Er (MAWF)	psi(g)	72	72
Proción máy, ontrada I B (nico)	bar(g)	10	10
Presión máx., entrada LP (pico)	psi(g)	145	145
Dración da trabaja mín narmitida antrada LD	bar(g)	2	2
Presión de trabajo mín. permitida, entrada LP	psi(g)	29	29
Duratión diferencial más y (ambre de LD, antida LD)	bar(g)	0,53	0,79
Presión diferencial máx. (entrada LP - salida LP)	psi(g)	7,69	11,46
Presión de prueba estática máx.	bar(g)	108	108
(entrada HP y salida HP)	psi(g)	1566	1566
Presión de prueba estática máx.	bar(g)	13	13
(entrada LP y salida LP)	psi(g)	189	189
Velocidad			
Velocidad mín.	rpm	525	625
Velocidad máx.	rpm	650	875
Caudal típico ⁴⁾			
Canadal a contact de director callida LID	m³/h	42	50
Caudal a velocidad mín., salida HP	gpm	184	220
Caudal a velocidad máx., salida HP	m³/h	52	70
Caudai a velocidad iliax., sailda Fir	gpm	228	308
Caudal de lubricación máx. a 60 bar(g) (871 psi(g))	l/min	25	25
caudal de labricación max. a 00 bar(g) (67 i psi(g))	gpm	6,6	6,6
Caudal de pico, entrada LP ¹⁰⁾	m³/h	120	120
Caddal de pico, elitiada Er	gpm	528	528
Caudal de trabajo máx. permitido, entrada LP ⁷⁾	m³/h	57,2	70
cadadi de trabajo max. permidao, entrada Er	gpm	252	308

Especificaciones técnicas			
Temperatura del medio ⁵⁾	°C	2-35	2-35
	°F	36-95	36-95
	°C	0-50	0-50
Temperatura ambiente	°F	32-122	32-122
Requisitos de filtración (nominal) ⁶⁾		3 μm, melt-blown	
Incremento de la salinidad en la membrana con una tasa de recuperación del 40 % y caudal compensado ⁹		2-3 %	
Dose (on sess)	kg	164	164
Peso (en seco)	lb	362	362
Poso (on funcionamiento con agua)	kg	172	172
Peso (en funcionamiento con agua)	lb	379	379
Ruido			
Nivel de presión sonora L _{PA} , 1 m ⁸⁾	dB(A)	83	86
Datos de par			
Par de trabajo máx. permitido	N⋅m	170	190
	lbf-ft	125	140
Par de arranque máx. (sacudida/fricción)	N⋅m	180	180
rai de arranque max. (sacudida/mccion)	lbf-ft	132	132

- Presión de trabajo máx. permitida en funcionamiento continuo. Para presiones inferiores o superiores, póngase en contacto con Danfoss.
 Nivel de presión típico durante el arranque y la
- Nivel de presión típico durante el arranque y la descarga de permeado.
- 3) La presión intermitente es aceptable durante menos de 10 minutos durante un período de 6
- Caudal medio típico con una presión diferencial de 60 bar(g) y 3 bar(g).
- 5) Según la concentración de NaCl.
- 6) Consulte la sección 7.4 Filtración.
- 7) Funcionamiento continuo: las unidades iSave pueden funcionar de manera continua con un exceso de descarga del 10 % siempre que el caudal en la entrada LP no sea superior a 70 m³/h.
- Nivel de presión sonora ponderado A a 1 m de las superficies de la unidad de la bomba (caja de referencia), según la norma EN ISO 20361, sección 6.2. Los ensayos de ruido se han realizado según la norma EN ISO 3744:2010 con una unidad de motor/ bomba funcionando a máxima presión/velocidad (rpm).
- ⁹⁾ Caudal compensado: la tasa de mezcla se define al caudal compensado cuando la salida HP es igual a la entrada LP.
- Durante el arranque del sistema: las unidades iSave pueden funcionar durante un máx. de 10 min con un 150 % del caudal nominal máx. en la entrada LP. El tiempo durante el que se supere el límite máx. de caudal nominal debe reducirse tanto como sea posible para minimizar el desgaste.

4.2 iSave con motor IEC

Tamaño de la unidad iSave		iSave 50	iSave 70
Código (vertical)		180F7038	180F7040
Código (horizontal)		180F7023	180F7025
Presión, velocidad, caudal, temperatura y pa	r idénticos con	180F7020 y	/ 180F7021
Eficiencia			
Eficiencia a la velocidad máx., a 60 bar(g) (871 psi(g))	%	93,7	92,4
Especificaciones técnicas			
Temperatura del medio⁵)	°C	2-35	2-35
remperatura der medio	°F	36-95	36-95
Requisitos de filtración (nominal) ⁶⁾		3 μm, melt-blown	
Peso (en seco), vertical/horizontal	kg	441/463	441/463
reso (en seco), vertical/honzontal	lb	972/1021	972/1021
Peso (en funcionamiento con agua), vertical/	kg	470/471	470/471
horizontal	lb	1036/1038	1036/1038
Ruido			
Nivel de presión sonora L _{PA} , 1 m ²⁾	dB(A)	83	86
Ocupación en superficie			
Ocupación en superficie (posición vertical) ³⁾	m²	0,44	0,44
ocupación en superneie (posición verticul)	ft²	4,71	4,71
Ocupación en superficie (posición horizontal) ³⁾	m ²	0,76	0,76
ocupación en superneie (posición nonzontar)	ft ²	8,14	8,14
Datos de par			
Par de trabajo máx. permitido	N⋅m	170	177
Tarac accept man permittee	lbf-ft	125	130,5
Par de arranque máx. (sacudida/fricción)	N⋅m	180	180
Taracananyac mam (sacaanaa, meelen,	lbf-ft	132	132
Datos del Motor			
Velocidad Nominal	rpm	985	985
Corriente nominal a 400 V	Α	37	37
Potencia del motor	kW	18,5	18,5
	HP	30,0	30,0
Tamaño del bastidor	IEC	200L	200L
	Polos	6	6
Par nominal del motor a la velocidad nominal	N⋅m	177	177
	lbf-ft	130,5	130,5
Temperatura ambiente nominal del motor ⁴⁾	°C	40	40
	°F	104	104
Aislamiento del motor	Clase	В	В
Grados de protección del motor	IP	55	55

- Nivel de presión sonora ponderado A a 1 m de las superficies de la unidad ERD (caja de referencia), según la norma EN ISO 20361, sección 6.2. Los ensayos de ruido se han realizado según la norma EN ISO 3744:2010 con un ERD con motor (unidad de motor/bomba), con presión y velocidad variables entre los niveles mín. y máx.
- ³⁾ Área cubierta por las configuraciones recomendadas con motor IE3 (sin incluir el espacio necesario para la inspección del ERD).
- ⁴⁾ Para temperaturas superiores, póngase en contacto con Danfoss.

- 5) Según la concentración de NaCl.
- 6) Consulte la sección 7.4 Filtración.
- Eficiencia típica del intercambiador de calor, la bomba *booster*, el motor eléctrico y el VFD a una presión diferencial de 3 bar(g) tras la puesta en servicio y el rodaje de un sistema.

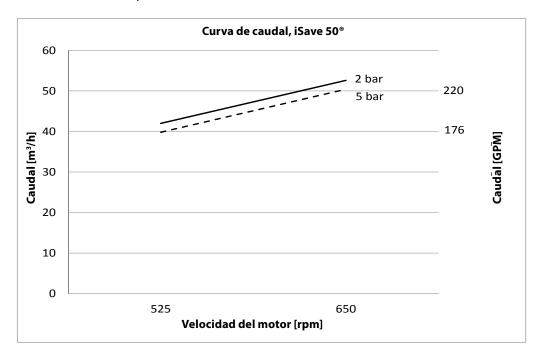
4.3 iSave con motor NEMA

Tamaño de la unidad iSave		iSave 50	iSave 70
Código (vertical)		180U0062	180U0064
Código (horizontal)		180U0003	180U0005
Presión, velocidad, caudal, temperatura y par i	dénticos con	180F7020	180F7021
Eficiencia			
Eficiencia a la velocidad máx., a 60 bar(g) (871 psi(g)) ⁷⁾	%	93,7	92,4
Especificaciones técnicas			
Towns and manding	°C	2-35	2-35
Temperatura del medio ⁵⁾	°F	36-95	36-95
Requisitos de filtración (nominal) ⁶⁾		3 μm, melt-blown	
Dana (an agas) wanting the minamatal	kg	484/506	484/506
Peso (en seco), vertical/horizontal	lb	1067/1116	1067/1116
Peso (en funcionamiento con agua),	kg	513/535	513/535
vertical/horizontal	lb	1131/1179	1131/1179
Ruido			
Nivel de presión sonora L _{PA} , 1 m ²⁾	dB(A)	83	86
Ocupación en superficie			
Ocupación en superficie (posición vertical) ³⁾	m²	0,44	0,44
ocupacion en superficie (posicion vertical)	ft²	4,71	4,71
Ocupación en superficie (posición horizontal) ³⁾	m²	0,76	0,76
ocupacion en supernicie (posicion nonzontal)	ft²	8,14	8,14
Datos de par			
Par de trabajo máx. permitido	N⋅m	170	177
rai de trabajo max. permitido	lbf-ft	125	130,5
Par de arranque máx. (sacudida/fricción)	N⋅m	180	180
r al de all'allique max. (sacudida/mccion)	lbf-ft	132	132
Datos del Motor			
Velocidad Nominal	rpm	1180	1180
Corriente nominal a 400 V	A	36,2	36,2
Potencia del motor	kW	22,5	22,5
Totelicia del motor	HP	30,0	30,0
Tamaño del bastidor	NEMA	324/6T	324/6T
Tamano dei bastidoi	Polos	6	6
Par nominal del motor a la velocidad nominal	N⋅m	179	179
Tar Homiliai dei motor a la velocidad nomiliai	lbf-ft	132	132
Temperatura ambiente nominal del motor ⁴⁾	°C	40	40
remperatura ambiente nominai dei motor	°F	104	104
Aislamiento del motor	Clase	В	В
Grados de protección del motor	IP	55	55

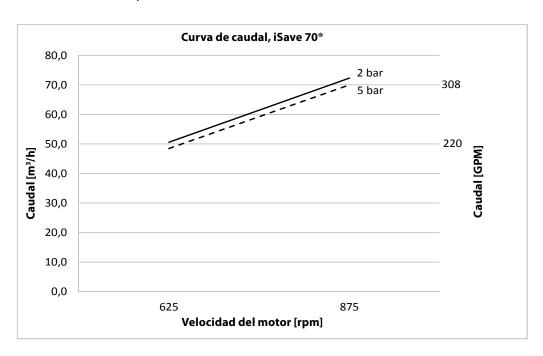
- Nivel de presión sonora ponderado A a 1 m de las superficies de la unidad ERD (caja de referencia), según la norma EN ISO 20361, sección 6.2. Los ensayos de ruido se han realizado según la norma EN ISO 3744:2010 con un ERD con motor (unidad de motor/ bomba), con presión y velocidad variables entre los niveles mín. y máx.
- ³⁾ Área cubierta por las configuraciones recomendadas con motor IE3 (sin incluir el espacio necesario para la inspección del ERD).
- ⁴⁾ Para temperaturas superiores, póngase en contacto con Danfoss.
- Según la concentración de NaCl.

- 6) Consulte la sección 7.4 Filtración.
- ⁷⁾ Eficiencia típica del intercambiador de calor, la bomba booster, el motor eléctrico y el VFD a una presión diferencial de 3 bar(g) tras la puesta en servicio y el rodaje de un sistema.

5. Curvas de rendimiento

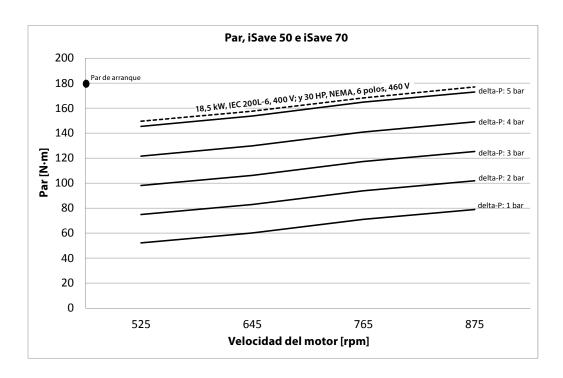

5.1 Caudal a diferentes velocidades (rpm)

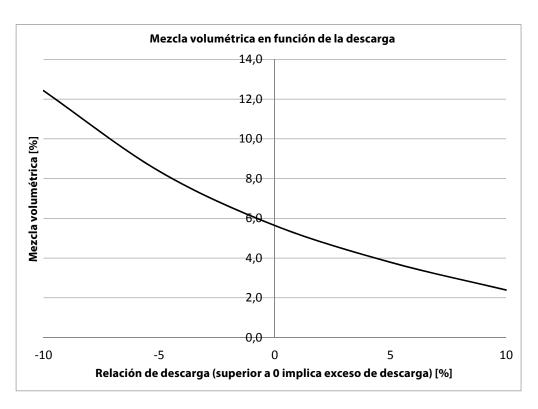
Los gráficos muestran que es posible alterar el caudal HP modificando la velocidad de rotación de la unidad iSave. La relación caudal/rpm permanece constante, por lo que el caudal necesario se puede obtener modificando la velocidad de rotación hasta el valor requerido.


Si desea obtener datos precisos o asesoramiento, póngase en contacto con Danfoss High Pressure Pumps.

Las unidades iSave se entregan con un certificado de rendimiento 3.1, según la norma EN 10204.

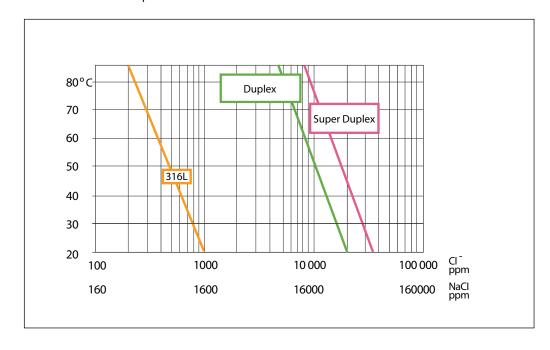
5.2 Curvas de caudal, iSave 50


5.3 Curvas de caudal, iSave 70



5.4 Curva de par para unidades iSave 50 e iSave 70

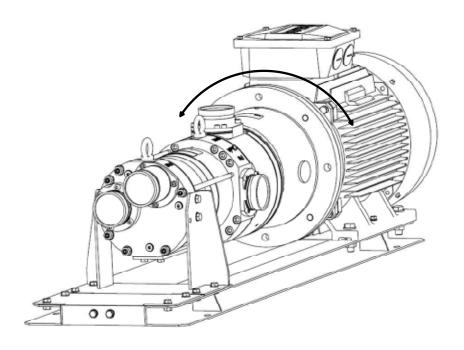
La curva siguiente ilustra los valores típicos.


5.5 Curva de mezcla

6. Temperatura y corrosión

6.1 Funcionamiento

El gráfico siguiente ilustra la resistencia corrosiva de diferentes tipos de acero inoxidable en relación con la concentración de NaCl y la temperatura. Todas las piezas críticas de las unidades iSave se fabrican en Super Duplex 1.4410/UNS 32 750 o Duplex 1.4462/UNS 32803. Lave siempre la unidad iSave con agua dulce al detenerla para minimizar el riesgo de corrosión a través de las fisuras.


7. Instalación

7.1 Funcionamiento y montaje

Las unidades iSave 50 e iSave 70 se pueden montar en posición horizontal o vertical. Si el montaje tiene lugar en posición vertical, el motor eléctrico deberá quedar situado por encima de la unidad iSave.

7.2 Montaje horizontal

Las unidades iSave se entregan con los puertos orientados en direcciones estándar. El cliente puede modificar la orientación de los puertos girando la carcasa combinada de la unidad iSave y la campana alrededor del centro del eje del motor.

El siguiente ejemplo muestra cómo instalar la bomba y conectarla a un motor eléctrico. Nota: Debe evitarse toda carga axial o radial sobre el eje.

7.3 Conexión a los puertos de entrada o descarga:

- Si se usan tuberías rígidas, es importante respetar la directriz 180R9367 sobre la conexión de tuberías.
- Si se usan mangueras flexibles, se recomienda usar dispositivos de sujeción de mangueras. Debe respetarse también la directriz 180R9084 sobre el montaje correcto e incorrecto de mangueras.

7.4 Filtración

El agua de alta calidad prolonga la vida útil del sistema.

El agua suministrada a la unidad iSave debe filtrarse a 3 µm (valor nominal) mediante un filtro *melt-blown* bien sellado por los extremos. Póngase en contacto con Danfoss si necesita ayuda para elegir el filtro correcto.

Además de elegir un filtro adecuado con una carcasa idónea, es importante garantizar el buen sellado de los extremos del cartucho. Si existe un alto riesgo de *by-pass* de agua, se recomienda usar una segunda etapa de filtración.

7.5 Ruido

Dado que las unidades iSave se montan en una campana con un motor eléctrico, el nivel de ruido debe determinarse para el sistema al completo. Para minimizar las vibraciones y el ruido generados por el sistema, es importante montar correctamente las unidades iSave destinadas a la instalación horizontal en un bastidor con amortiguadores.

Los diseños rígidos con tuberías metálicas causan vibraciones y ruido. Se recomienda, por tanto, instalar mangueras flexibles de alta presión entre la red de tuberías rígidas de la planta de ósmosis inversa y la unidad iSave, o bien emplear múltiples conexiones con abrazaderas Victaulic siempre que sea posible.

Factores que influyen en el nivel de ruido: Velocidad:

 Una alta velocidad de rotación (rpm) da lugar a más caudal/pulsaciones soportadas por la estructura/vibraciones que una baja velocidad de rotación (rpm) como resultado de la mayor frecuencia. Dada la amplia variedad de filtros disponibles en el mercado, Danfoss High Pressure Pumps recomienda usar cartuchos que ofrezcan un rendimiento constante y fiable, así como una elevada eficiencia, alrededor de un núcleo de soporte central. Danfoss High Pressure Pumps no recomienda cartuchos que requieran aglutinantes o resinas de tipo alguno.

Puede adquirir filtros a través de Danfoss High Pressure Pumps. Para más información sobre la importancia de una filtración adecuada, consulte nuestra publicación "Filtración" (código 521B1009), en la que se explican las definiciones de filtración y se proporciona orientación para seleccionar el filtro más apropiado.

Presión:

 Una presión alta da lugar a más ruido que una presión baja.

Montaje:

 Las instalaciones rígidas generan más ruido que las instalaciones flexibles, ya que la estructura debe soportar más vibraciones.

Conexiones a la unidad iSave:

- La conexión directa de las tuberías a la unidad iSave genera más ruido que el uso de mangueras flexibles, ya que la estructura debe soportar más vibraciones.
- Variadores de frecuencia (VFD): Los motores controlados mediante VFD pueden incrementar el nivel de ruido si el VFD no se ajusta correctamente.

(22) **(4)** (25) (B) (c) (5) Medio filtrante Filtro de Filtro de PI **(6)** 10 μm (valor absoluto) 3 um (valor 4 PS nominal) (PI) Permeado (1) 12 Limpieza a pleno caudal/CLP Entrada LP **8 №** (7) Salida HP Salida HP (PS **2**1 (11) 9 Descarga de iSave PI permeado de Entrada HP ᢍ agua dulce (≥) (16) (28) (23) (20) (15) **(27)** Drenaje (19)

* Segunda etapa de filtración: si no se emplean el diseño de carcasa y los cartuchos recomendados, se requerirá una segunda etapa de filtración.

7.5 Sistemas de ósmosis inversa con una unidad iSave

Descripción del diagrama de tuberías e instrumentación

A. Filtro de entrada:

Instale filtros de entrada en la línea LP, antes de la unidad iSave (11). Consulte la directriz 210B1009 sobre filtración.

Si no se emplean el diseño de carcasa y los cartuchos recomendados, se requerirá una segunda etapa de filtración. Consulte la nota anterior (*).

Limpie a fondo las tuberías y el sistema de descarga antes del arranque.

B. Presión de entrada:

Debe garantizarse que la unidad iSave funcione según las especificaciones. Consulte el folleto técnico de la unidad iSave correspondiente. Requerido: debe garantizarse la presión mín. para evitar fenómenos de cavitación. Recomendado: debe garantizarse la presión máx. para evitar sobrecargas hidráulicas y mecánicas.

(13) para iSave 21 e iSave 40.

(24) para iSave 50 e iSave 70.

C. Tuberías y mangueras:

Las tuberías deben dimensionarse de manera que se minimicen las pérdidas de presión (máximo caudal, mínima longitud y mínimo número de codos/conexiones y uniones para evitar pérdidas de presión y turbulencias). Se recomienda el uso de mangueras flexibles para reducir las vibraciones y el ruido. Si desea obtener más información, consulte los folletos técnicos de Danfoss 521B0909 sobre mangueras

y uniones de manguera, y 180R9084 sobre montaje incorrecto de mangueras.

D. Control del caudal de entrada y mezcla:

Para compensar el caudal LP contra el caudal HP en la unidad iSave y la mezcla de control, instale un caudalímetro en la entrada de baja presión (12) o la salida de baja presión (20) de la unidad iSave.

E. Control de la presión de salida:

Para controlar la presión de entrada necesaria, debe instalarse una válvula de contrapresión (15) en la tubería de salida común de las unidades iSave. La válvula debe estar diseñada para controlar el caudal. Se recomienda usar una válvula manual con función de bloqueo o una válvula con función de control automático.

F. Velocidad variable y protección contra sobrecarga:

Instale un VFD para controlar la velocidad de la unidad iSave y protegerla contra sobrecargas mecánicas. Consulte el manual de instrucciones 180R9372 si necesita ayuda para ajustar el VFD.

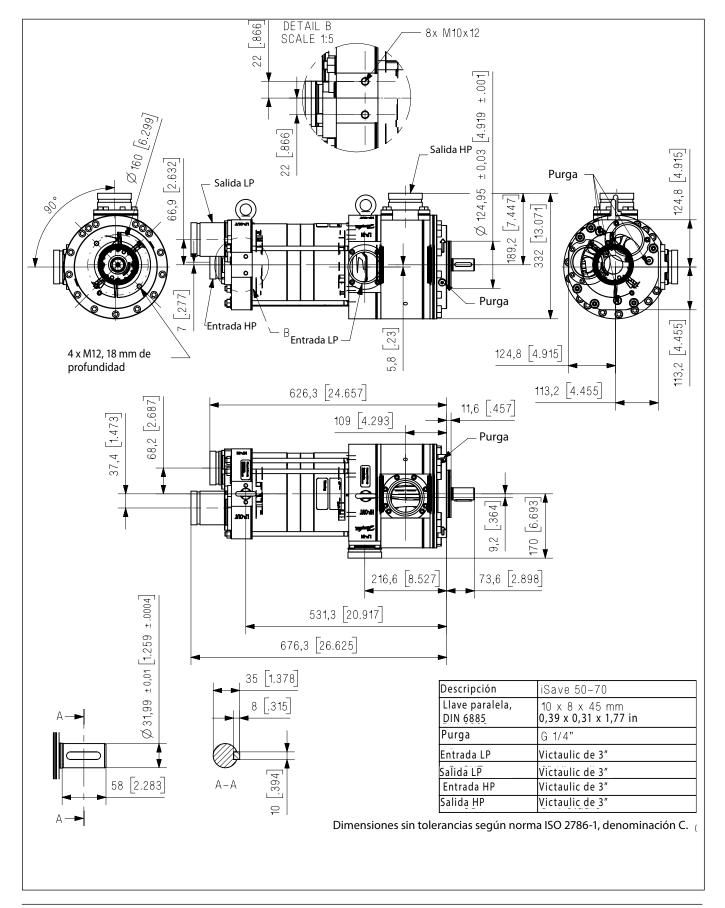
G. Control del caudal de descarga LP: Consulte el apartado "E".

H. Purga de aire:

Instale una válvula de purga de aire (8) en el punto más alto de la red de tuberías de alta presión para garantizar la purga de aire del sistema antes del arranque.

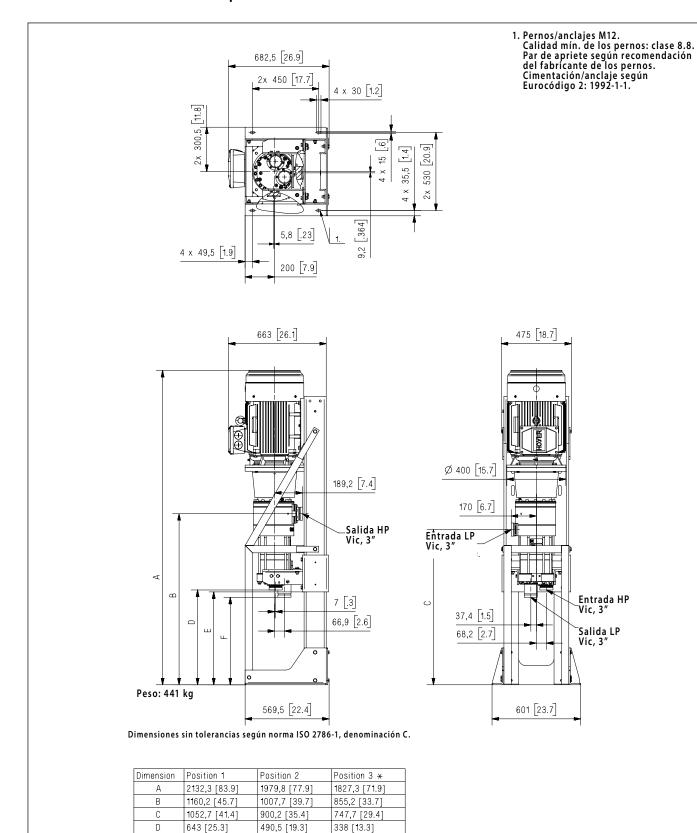
I. Alivio de presión (alta presión):

La válvula de alivio de presión (6) protege el sistema al completo frente a sobrecargas de presión y libera agua cuando la presión supera la presión máxima establecida. Si la bomba de alta presión es una bomba de desplazamiento positivo, esta puede generar una presión muy elevada, superando incluso la resistencia mecánica de la carcasa de la membrana, las tuberías y otros accesorios. Si se usan bombas APP con válvulas de retención VCM de Danfoss, se recomienda instalar una válvula de alivio de presión o una válvula de seguridad, como muestra la ilustración. Si no se usan válvulas de retención Danfoss, la válvula deberá situarse entre la bomba y la válvula de retención. Si desea obtener más información, consulte la quía de diseño 180R9371 sobre el uso de válvulas de seguridad en sistemas de ósmosis inversa de agua de mar.


J. Válvula de alivio de presión (baja presión): La válvula de alivio de presión o válvula de seguridad (19) protege las tuberías de baja presión frente a sobrecargas de presión y libera agua cuando la presión supera la presión máxima permitida.

Si necesita una descripción más detallada del diagrama de tuberías e instrumentación, consulte la guía de diseño 180R9370 de Danfoss sobre diagramas de tuberías e instrumentación, o póngase en contacto con Danfoss.

Las unidades iSave 50 e iSave 70 se pueden montar en paralelo. Para más información, consulte la guía de diseño 180R9354 sobre la instalación en paralelo de bombas APP y unidades iSave, o póngase en contacto con Danfoss.


8. Dimensiones y conexiones

8.1 iSave 50-70 sin motor eléctrico

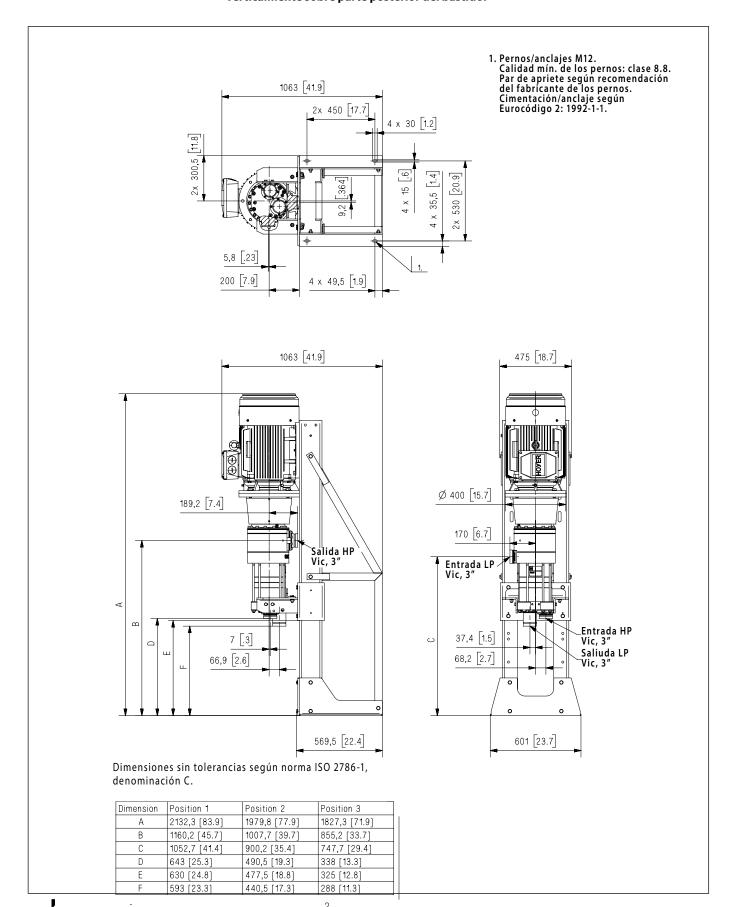
8.2 iSave 50-70 con motor IE3 de 18.5 Kw montado verticalmente sobre parte frontal del bastidor

325 [12.8]

288 [11.3]

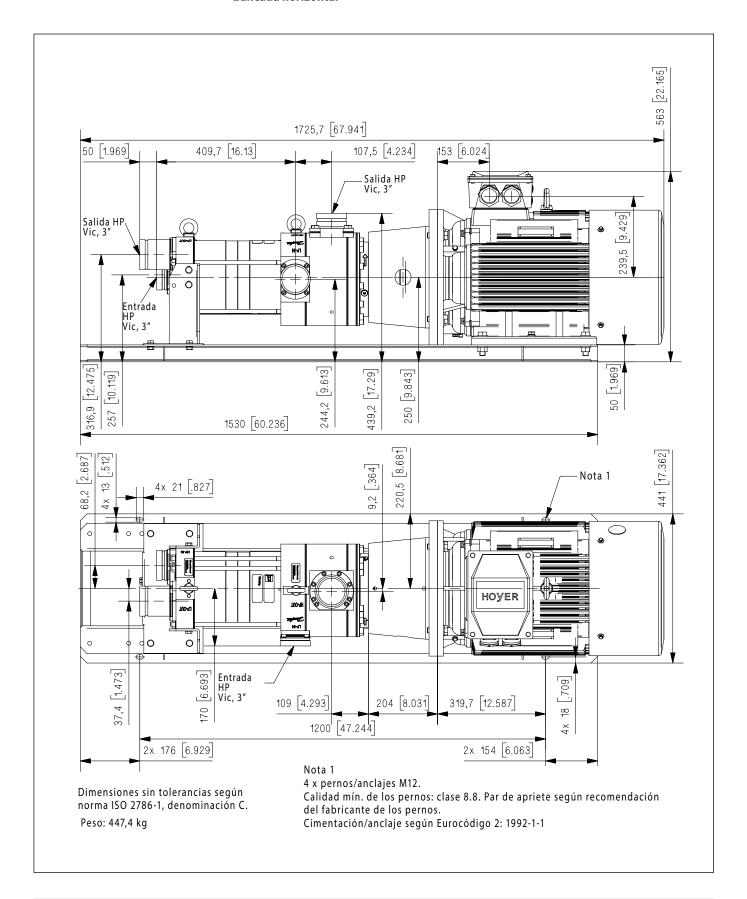
477,5 [18.8]

440,5 [17.3]

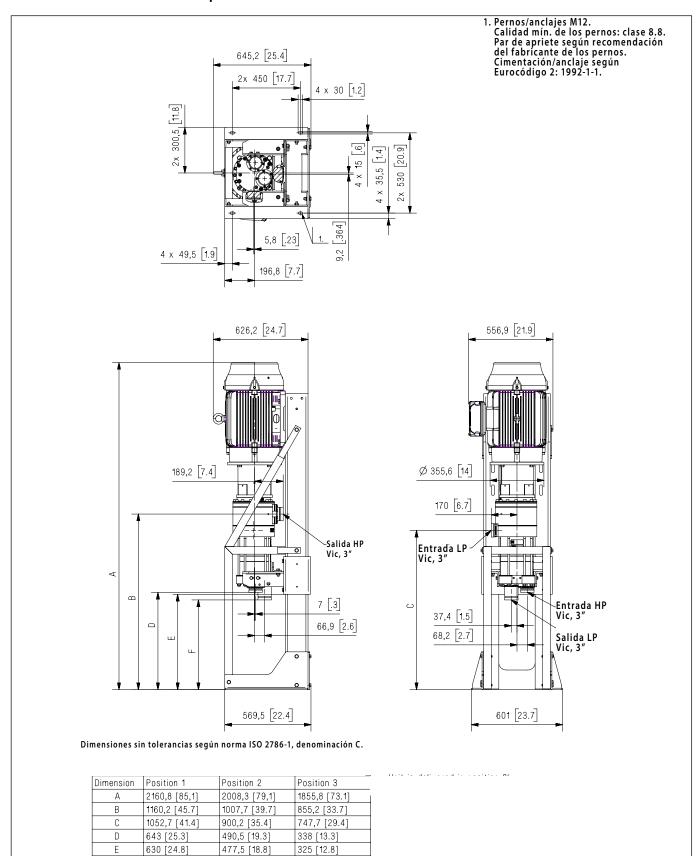

630 [24.8]

593 [23.3]

Ε

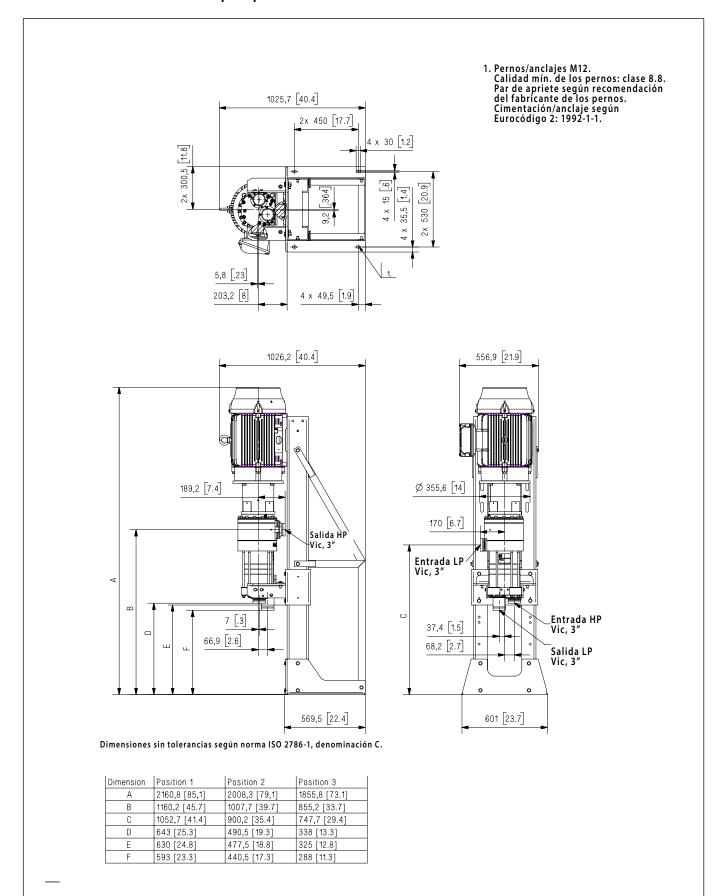


8.3 iSave 50-70 con motor IE3 de 18.5 Kw montado verticalmente sobre parte posterior del bastidor



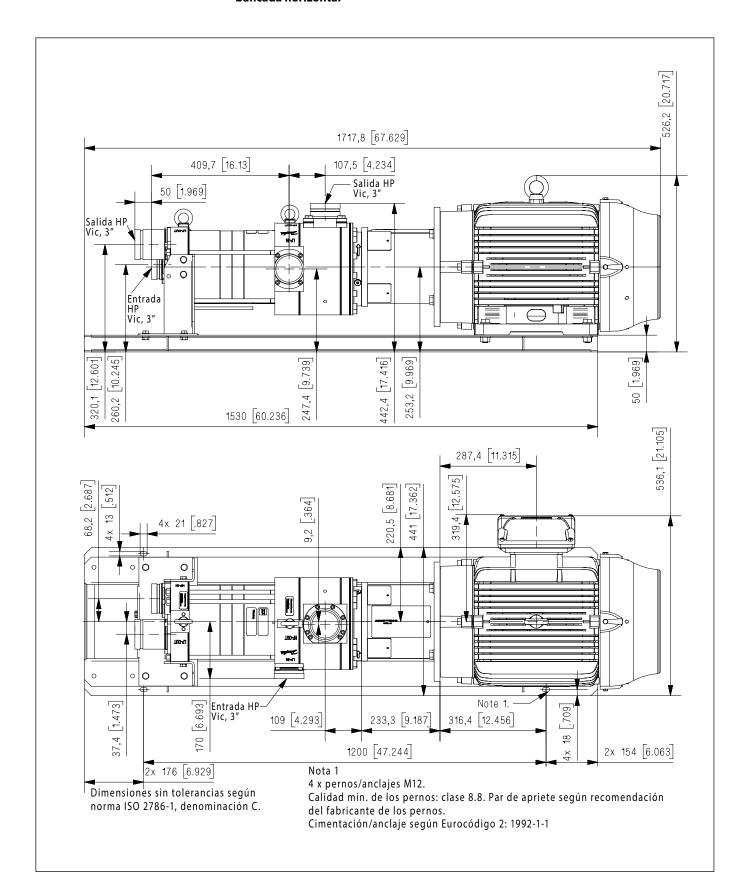
8.4 iSave 50-70 con motor IE3 de 18,5 kW en bancada horizontal

8.5 iSave 50-70 con motor NEMA 30 HP montado verticalmente sobre parte frontal del bastidor


288 [11.3]

440,5 [17.3]

593 [23.3]



8.6 iSave 50-70 con motor NEMAde 30 HP montado verticalmente sobre parte posterior del bastidor

8.6 iSave 50-70 con motor NEMA de 30 HP en bancada horizontal

9. Inspección

9.1 Garantía

Las unidades iSave de Danfoss están diseñadas para proporcionar una prolongada vida útil con el mínimo mantenimiento y reducidos costes asociados al ciclo de vida.

Siempre que la unidad iSave funcione según las especificaciones, Danfoss garantiza un año de funcionamiento sin mantenimiento (hasta un máximo de 18 meses a partir de la fecha de fabricación).

9.2 Consideraciones acerca de las condiciones de funcionamiento

Debe prestarse especial atención a los siguientes factores para minimizar el deterioro y la inversión en piezas de repuesto:

- Filtración insuficiente
- Purga y ventilación insuficientes
- Velocidades de funcionamiento fuera de los límites especificados
- Sentido de rotación incorrecto
- Descarga insuficiente o períodos de inactividad con agua de mar en el interior de la unidad iSave

9.3 Mantenimiento

Deben realizarse inspecciones periódicas para garantizar la sustitución puntual de las piezas deterioradas (si corresponde). Asimismo, deben tomarse en consideración las condiciones de funcionamiento (por ejemplo, en materia de calidad del agua) al determinar la frecuencia de las inspecciones. Danfoss recomienda que las inspecciones tengan lugar anualmente.

Se recomienda adquirir el kit de herramientas destinado al fin indicado.

9.4 Asistencia para la reparación

En caso de funcionamiento irregular de los componentes de ósmosis inversa fabricados por Danfoss, póngase en contacto con Danfoss High Pressure Pumps.

10. Accesorios

Descripción	Tipo	Código
Kit de manguera de entrada de 3", 2 m (79"), 6 bar(g) (87 psi(g))	Victaulic de 3", estilo 77	180Z0144
Manguera de salida de 3", 1 m (39,4"), 80 bar(g) (1160 psi(g))	Victaulic de 3", estilo 77	180Z0611
Manguera de salida de 3", 1,79 m (70,0"), 80 bar(g) (1160 psi(g))	Victaulic de 3", estilo 77	180Z0612
Acoplamiento, iSave 50-70	Softex 55H7-32H7	180Z4003
Plataforma horizontal	IEC 200/NEMA 324TC	180Z4007
Plataforma vertical	IEC 200/NEMA 324TC	180Z4025

11. Documentos útiles

Número de documento	Descripción
180R9213	Arranque y parada del sistema de ósmosis inversa de agua de mar con la unidad iSave
180R9214	Limpieza de las membranas del sistema de ósmosis inversa con la unidad iSave
180R9354	Bombas APP y unidades iSave acopladas en paralelo
180R9367	Conexiones de tuberías
180R9371	Válvula de seguridad en el sistema de ósmosis inversa de agua de mar
180R9372	Protección contra sobrecarga de bombas APP y unidades iSave
180R9370	Hoja de revisión del diagrama de tuberías e instrumentación
521B1009	Filtración
	Herramienta de selección de unidades iSave (hpp.danfoss.com)

ENGINEERING TOMORROW

Danfoss A/S

High Pressure Pumps DK-6430 Nordborg Dinamarca

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso, reservándose el derecho de alterar sus productos sin previo aviso, incluyéndose los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.