

ENGINEERING TOMORROW

Planner handbook for Danfoss flat stations

Whether for **new buildings** or **renovations**, you can rely on **efficiency**

CONTENTS

1. Introduction

Innovative energy conce	ots for residential buildings5
2. Benefits	
	tical central heating system to a modern າ 6
3. System solution	
3.1 The most important p	arts of decentralized systems8
3.2 The most important p	arts of decentralized systems9
3.3 Heat meter	
3.4 Design, features and t	he most important components11
3.4.1 Brazed plate heat	exchanger12
	ter quality13
3.4.3 The PTC2+P cont	roller

3.4.4 The TPC-M controller	15
3.4.5 The PTC controller	16
3.4.6 The PM controller	17
3.4.7 The ClickFit connection technology	18
3.4.8 Pre-selection of the stations	19

4. Product portfolio

Application overview – Product range	20
4.1 Akva Lux II + Akva Les	22
4.2 EvoFlat [™] WSS	23
4.3 Akva Lux + Vita WSS	24
4.4 EvoFlat [™] FSS / FSS-StS	26
4.5 EvoFlat [™] MSS / MSS-StS	28
4.6 EvoFlat™ FSF	30
4.7 EvoFlat™ Reno	31
4.8 Akva Lux II Reno Eco	32
4.9 Akva Lux / Vita FSS	34
4.10 Akva Lux / Vita MSS	36
4.11 CDM cooling module	38
4.12 Akva Lux II VX-F	

5. Performance curves

5.1 Akva Lux II type 1 + Reno Eco capacity curves 37 kW	42
5.2 Akva Lux II type 2 + Reco Eco capacity curves 55 kW	43
5.3 Akva Les type 3 + Reco Eco capacity curves 60 kW	44
5.4 EvoFlat™ FSS/MSS/WSS/FSF/Reno capacity curves 37 kW	45
5.5 EvoFlat™ FSS/MSS/WSS/FSF/Reno capacity curves 45 kW	46
5.6 EvoFlat™ FSS/MSS/WSS/FSF/Reno capacity curves 55 kW	47
5.5 EvoFlat™ FSS/MSS/WSS/FSF/Reno capacity curves 51 kW	48
5.8 Akva Vita FSS/WSS/MSS capacity curves 58 kW	49
5.9 Akva Lux capacity curves 78 kW	50
6.0 Sizing	51

CONTENTS

6.1 Sizing acc. to Danfoss-Redan

The basics of sizing flat stations	52
6.2 Sizing system components	55

7. Recess boxes

7.1 Details	56
7.3 Accessories range	58
7.4 Mounting	60
7.5 Distribution systems SG, SGC and SGCi	61
7.6 Distribution systems Akva Lux II VX-F	62
7.7 Wiring diagram MSS / Distributor SGC with Icon [™] master controller	63
7.8 Application description and wiring diagram CDM cooling module	64

8 Query

8.1	Flat stations	query	56
-----	----------------------	-------	----

1

1

-

-

1. A. C.

-11

.

Real III

-

and the

2**1** 4 THE

Fully future-compatible

נו איינג גם איידע בם גם איינו

!! -

1

EvoFlat™ systems are suitable for all residential buildings – regardless of the type of energy used

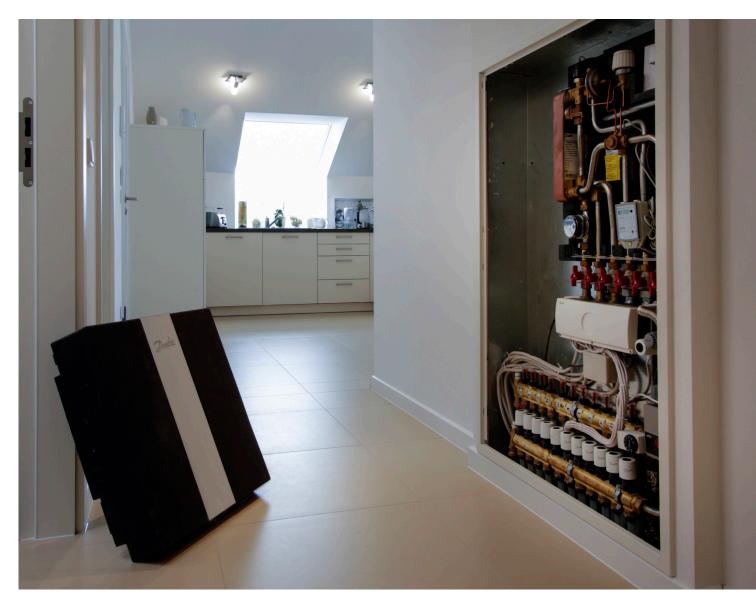
INTRODUCTION

Innovative energy concepts for residential buildings

Decentralized DHW heating pays off

In Germany and Austria, more than 1.5 million apartments will have to be built in the next few years and around 1 million will have to be renovated. Such an energy requirement reduction and the legally prescribed inclusion of renewable energy sources require new energy concepts – for renovations and new buildings alike.

Integration of renewable energy sources


Regardless of whether it is a new building or renovation of an existing building, alternative energy sources and the use of flat stations require a buffer storage, which collects the heat as heating water and distributes it to individual apartments. At the same time, the capacity of the heat generator can be reduced. In decentralized heating systems, each apartment has its own hydraulic interface unit to make sure hot water with the required temperature is distributed to the different heating emitters or heating surfaces throughout the apartment. Each interface unit is also equipped with DHW heating, so that the hot water can be heated at any time, as required, in sufficient quantities and, above all, hygienically.

Benefits for all

Decentralized heating systems in new buildings and renovation projects offer many benefits for owners and tenants alike.

Building renovations in combination with decentralized systems reduce heat losses and thus heating costs. They increase comfort, convenience and domestic water hygiene. At the same time, the separate meters in each apartment also ensure more consumption transparency and better control over heating and hot water bills for tenants. This makes the building more attractive for all concerned.

* Depending on regional regulations

2.1 BENEFITS

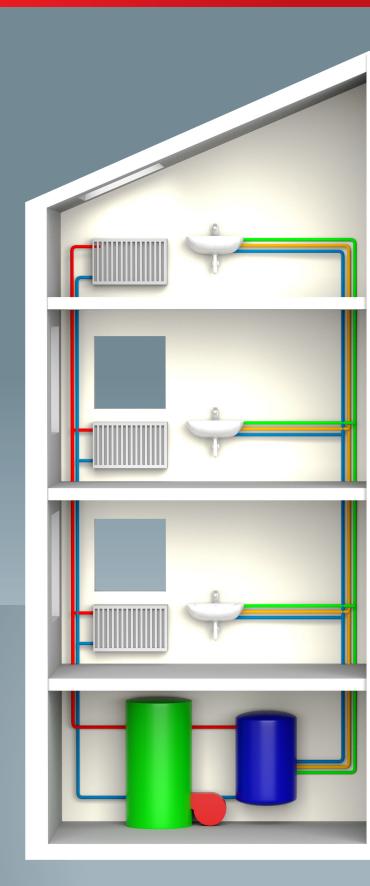
From traditional central heating... ... to a modern decentralized solution

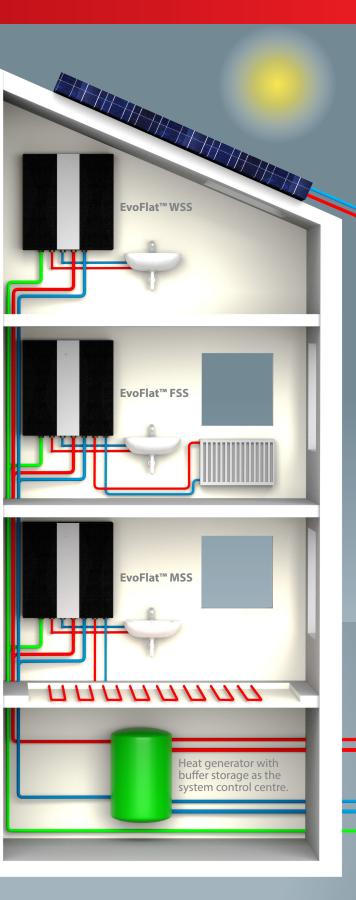
Energy-efficient and individually controlled

EvoFlat[™] systems consist of hydraulic interface units and horizontal pipe runs in each apartment, supplied with hot water from a central heat source.

These systems can be connected via a buffer storage to any heat source. Changes and modernizations on the heat supply have no effect on the efficiency of the flat stations.

Flat stations contain a compact MicroPlate[™] heat exchanger with a pressure-controlled proportional volume regulator and a differential pressure controller. The heat exchanger delivers DHW immediately if required.


The differential pressure controller prevents mutual interference from flat stations in heating mode and during DHW tapping, while also compensating for the high pressure fluctuations that come from the supply network and ensuring a constant operating pressure.


EvoFlat[™] systems are the modern replacement for traditional centralized heating and DHW solutions, such as:

- Central heating systems with central domestic water heating, which are heated via district heating, oil or gas boilers.
- Gas-fired combi-heaters installed decentralized in the apartment for generating thermal heat and for heating domestic water.
- Electrical night-storage heaters, where the DHW is generated by small electrical flow heaters.

Traditional solution

Traditional arrangement of a central heating system with central domestic water heating

What makes EvoFlat™ flat stations efficient

Lowest return temperatures Up to 28°C in the case of panel heating systems or radiators with connected underfloor temperature control

No heat loss due to circulation In traditional systems, up to 30% energy is lost through supply and circulation lines

Only 3 instead of 5 supply lines Drinking water, heating supply and heating return. DHW and circulation line are not required

Highest utilization levels in solar systems and condensing boiler technology Thanks to the low return temperatures, condensing boilers work in economical condensation operation

Energy savings through transparency Tenants who know their consumption level are more energy-conscious

EvoFlat solution

The EvoFlat[™] system with decentralized heat distribution and DHW heating Independent of the energy source

District heating

Solar thermal energy/ heat pump

Biomass/ CHP system

3.1 SYSTEM SOLUTION

The most important parts of decentralized systems

The demand for and acceptance of flat stations has increased significantly in recent years. As a result of the many advantages that this system brings with it, more than half of all newly built apartment buildings are already equipped with flat stations. The use of modern materials ensures a long service life of the system.

With the help of flat stations, these systems, which are fed via a buffer tank, ensure both efficient heat distribution and safe, hygienic DHW heating as required.

Due to the low water content in the heat exchanger, the piping within the flat station and the flat itself, the hygienic aspect is fulfilled without any problems.

Stations with DHW heating performance capacities up to max. 80 kW (corresponds to approx. 30 l/min at 50°C) are provided for as-required drinking water heating.

The usual circulation line in hot water systems performs a temperaturecontrolled summer bypass in the flat station, which provides a hot water temperature of 40°C at all times. Hot domestic water is therefore very quickly available as soon as a tap is turned on.

This bypass remains closed in the heating season, when the station distributes heat constantly. Compared with the circulation lines of central domestic water heaters, heat loss is prevented.

All station variants also have a zone valve, which opens and closes on a time and temperature-controlled basis via a reference room thermostat. It is also possible to use stations with thermostatic fixed value control.

PWH: Capacity examples 10/50°C

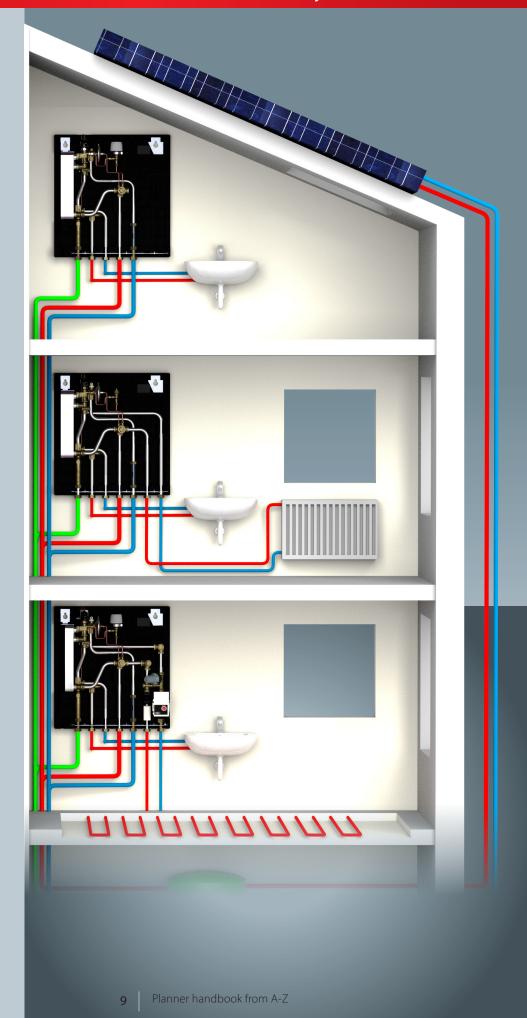
Station type	Type name HEX	PWH capacity [kW]	Primary supply line/ return line [°C]	Pressure loss primary* [kPa]	Flow primary [l/h]	Tapping rate [l/min]
	XB06H-1 26 Cu/StS (type 1)	43	65 / 22	40	850	15.3
	XB06H-1 40 Cu/StS (type 2)	49	65 / 21	30	950	17.5
EvoFlat:	XB06H-1 56 StS (type 3)	51	65 / 19	28	950	18.3
EVOFIAL:	XB06H-1 56 StS (type 3)	34	55 / 24	28	950	12.5
	XB06H+ 60 Cu (type 3)	55	65 / 16	27	950	19.4
	XB06H+ 60 Cu (type 3)	38	55 / 21	27	950	13.6
	XB06H-1 26 Cu/StS (type 1)	48	65 / 22	40	963	17.2
	XB06H-1 40 Cu/StS (type 2)	52	65 / 21	43	1017	18.6
Akva Lux II	XB06H+ 60 Cu (type 3)	60	65 / 19	49	1110	21.2
	XB06H+ 60 Cu (type 3)	38	55/21	42	1010	14.3
Akva Lux	XB37H-1 30 Cu/StS	60	65 / 14	33	996	21.5
(PTC controller)	XB37H-1 30 Cu/StS	78	70/13	50	1180	28
Akva Vita	XB37H-1 30 Cu/StS	45	55 / 17	28	1020	16.2
(PM controller)	XB37H-1 30 Cu/StS	58	55 / 18	36	1020	20.8

without heat meter (HM)

SYSTEM SOLUTION

The most important parts of decentralized systems

3.2


Centralized heat generation and decentralized distribution

For systems with decentralized DHW heating, all available energy sources are suitable which can be integrated into the system individually or in combination via a buffer tank. This offers the opportunity to react to the development of energy prices and availability with energy-efficient technology.

By reducing the costs for so-called second rent (ancillary costs), tenants' living costs will generally also decrease, even if the basic rent increases.

Complete system

Section differential pressure controllers or section regulator valves are not required with EvoFlat[™] stations. The heat source flow rate for DHW heating is determined by the capacity of the plate heat exchanger. The heat source flow rates are determined by considering the simultaneity factors for apartment buildings. The hot water controller in the respective flat station balances pressure and temperature fluctuations on the supply side with its integrated differential pressure controller, together with the temperature controller.

3.3 SONOSELECT 10

Heat meter

SonoSelect 10 heat meters

Basic features:

- SonoSelect is available as a heat meter, cooling meter or combined heat/cooling meter
- No calming sections necessary before inlet and after outlet

• Measuring cycle:

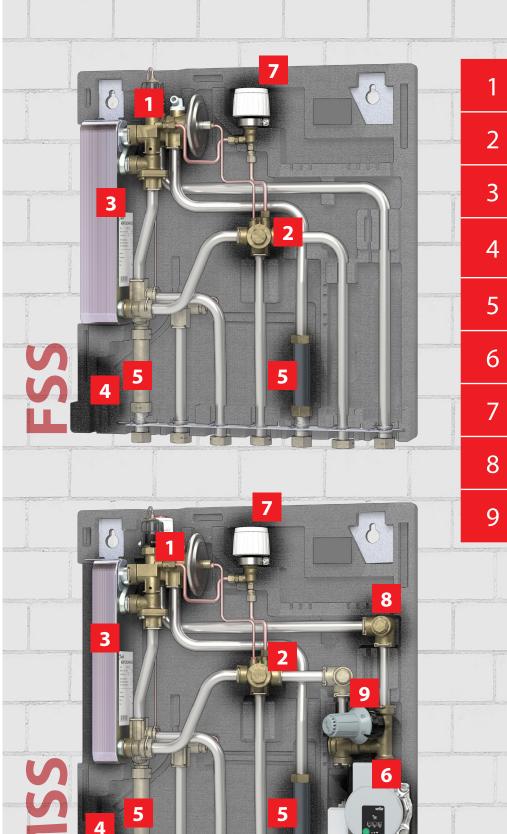
Flow:	0.5 sec.
Temperature:	4 sec.
Energy calculation:	0.5 sec.

- IP65 protection class
- Communication via M-bus, radio (868 MHz OMS version 4.0.2) or pulse interfaces
- Power supply, options: 3.6 V DC lithium battery or 230 V AC mains supply module (in the calculator)
- Ultrasonic sensor covers made of stainless steel (durable and vacuum-resistant design)
- Overhead installation possible, removable calculator

DN		15	15
Nominal flow rate qp	[m³/h]	0.6	1.5
Max. flow rate qs	[m ³ /h]	1.2	3
Min. flow rate (1:100) qi*	[m³/h]	0.006	0.015
Startup flow rate q _C	[m³/h]	0.0012	0.003
Overload flow rate qss	[m³/h]	1.32	3.3

* (1:250) q_i on request

DN		15	15	
Connection		G¾A", 110 mm		
Nominal pressure PN	[bar]	10	б	
Pressure drop (at qp and 50°C)	[mbar]	30	150	
IP protection class [E	N60529]	6	5	
Temperature limits	[°C]	0 to	105	



Recommendation for short measurement intervals

The heat volumes are billed via a heat meter to be installed in the primary return side of the station. This means that the energy consumption for DHW heating and heating per residential unit is recorded as required by law. For this purpose, ultrasonic heat meters with a sampling rate of max. 4 seconds can be used. Conventional devices work with a sampling rate of 15-30 seconds.

3.4

SYSTEM SOLUTION Design, features and the most important components

Main components of EvoFlat™ flat stations from Danfoss

The TPC-M controller is a differential pressure and flow controller, zone valve, thermostat and air vent, all in one unit
The strainer with a mesh size of 0.6 mm is installed in the centre of the crosspiece (supply flow)
The Micro Plate heat exchanger for energy-efficient DHW heating based on the counterflow principle
The thermally insulated rear wall with the insulation hood available as an option (EPP Å 0.039 W/(m*K)) for the lowest heat losses
Inserts ($34" \times 110$ mm) for hot and cold water meters
Mixing loop including STM 55°C and circulation pump for panel heating units
Summer bypass ensures rapid DHW heating outside the heating season
High temperature circuit connection for bathroom radiators
Thermostatic sensor element with FTC-type contact thermostat, regulating range 15-50°C

All in all, the built-in components make up the quality of the flat station. The standard components from Danfoss, which are tailored to the functions, guarantee safe and reliable operation.

11

3.4.1 SYSTEM SOLUTION Brazed plate heat exchanger

Brazed plate heat exchanger for as-required DHW heating based on the continuous flow principle.

Type XB06-Cu brazing

Type XB06-StS brazing

MicroPlate[™] plate embossing

The lowest possible return temperature with simultaneous provision of the required tapping capacity is critical for the energy efficiency domestic water systems in flat stations.

Heat exchangers with a particularly high level of efficiency are required for this purpose. Danfoss uses the new EvoFlat[™] heat exchanger for its MicroPlate[™] flat stations. These are configured and dimensioned in accordance with the requested tapping capacity. The hot water temperature depends here on the available temperature of the primary side heat medium. The heat medium and the domestic water to be heated flow by each other in opposite directions in the heat exchanger. The Danfoss heat exchanger connections and plates are produced from stainless steel 1.4404 or 1.4504 and connected to one another. They are ideal for all standard heating water and use in domestic water systems.

Water hammers can occur when a water tap is closed. Since these pressure surges can have an impact on the service life of plate heat exchangers, we recommend installing a water hammer damper on site, especially when using heat exchangers with pressure class PN16 (e.g. XB-06 with StS brazing).

Features:

- Energy and cost savings
- Efficient heat transfer
- Low pressure loss
- Long service life
- Patented micro plate technology
- Better CO₂ footprint
- High load safety

10%

better heat transfer

Thanks to an innovative plate design with optimized flow properties

Guidelines for water quality for brazed plate heat exchangers with plate material EN 1.4404 ~ AISI 316L

Danfoss has created these guidelines for water quality of tap water (drinking water) and district heating water (heating water), which are used in plate heat exchangers with stainless steel

plates (EN 1.4404 ~ AISI 316L) with the brazing materials copper (Cu) or stainless steel (StS). At this point it is important to emphasize that these guide values are not a guarantee against any form of corrosion, but are to be seen as an aid in achieving maximum service life of the devices and recognizing and avoiding critical operating conditions in advance.

Danfoss also provides a detailed guide to corrosion problems with additional explanations (see 'Water quality guide for copper-brazed plate heat exchangers').

		Value or		Plate material	Brazing material	
Parameter	Unit	concentration	W.Br. 1.4404	Cu	StS	
		< 6.0	0	-	0	
		6.0-7.5	+	O/-	+	
рН		7.5-10.5	+	+	+	
		> 10.5	+	0	+	
		< 10	+	+	+	
	<i>c</i> /	10-500	+	+	+	
Conductivity	μS/cm	500-1000	+	0	+	
		> 1000	+	-	+	
		< 0.5	+	+	+	
	4	0.5-1	0	+	+	
Free chlorine	mg/l	1-5	-	0	0	
		> 5	-	-	-	
		< 2	+	+	+	
	mg/l	2-20	+	0	+	
(NH3, NH4 ⁺)	-	> 20	+	-	+	
		< 60	+	+	+	
Alkalinity (HCO₃)	mg/l	60-300	+	+	+	
(HCU3)	5	> 300	+	0	+	
		< 100	+	+	+	
Sulphate (SO4 ²⁻)	mg/l	100-300	+	O/-	+	
(504-)	5	> 300	+	-	+	
	4	> 1.5	+	+	+	
HCO3 / SO4 ²⁻	mg/l	< 1.5	+	O/-	+	
Nitrate	4	< 100	+	+	+	
(NO ₃)	mg/l	> 100	+	0	+	
	4	< 0.1	+	+	+	
Manganese	mg/l	> 0.1	+	0	+	
Iron	mg/l -	< 0.2	+	+	+	
(Fe)		> 0.2	+	0	+	
		0-0.3	+	-	+	
[Ca ²⁺ , Mg ²⁺]/[HCO ₃]*	/	0.3-0.5	+	O/-	+	
. , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/	> 0.5	+	+	+	

Good corrosion protection +

0 Corrosion or reduced service life if multiple parameters are evaluated as 'O' **

O/- Risk of corrosion

Use not recommended _

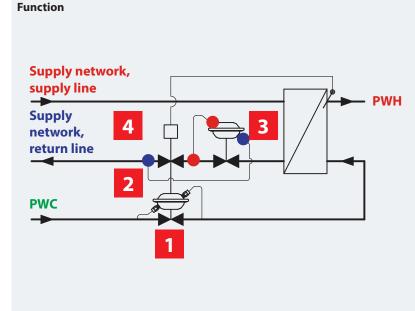
**

Hardness ratio limit values were determined using empirical values and internal Danfoss laboratory tests If 3 or more parameters were evaluated with 'O', it is recommended that Danfoss be contacted for advice

Recommended chloride concentration to avoid stress corrosion cracking (SCC) of the stainless steel plates:

Application temperature	Chloride concentration
T ≤ 20°C	max 1000 mg/l
T ≤ 50°C	max 400 mg/l
T ≤ 80°C	max 200 mg/l
T ≥ 100°C	max 100 mg/l

Multifunctional controller for DHW heating - PTC2+P


When tapping of hot water starts, the control valve for the DHW heating opens. The water now flows through the heat exchanger and the domestic water is heated to the set temperature between 45 and 65°C.

The controller automatically balances primary side pressure and temperature fluctuations here. When the tap process is finished the controller closes the heating and domestic water supply. As both the primary and secondary hot lines are connected at the bottom of the heat exchanger, the heat exchanger quickly cools off to the tapping end. This largely prevents scaling on the heat exchanger and bacteria growth.

The $e_{save^{TM}}$ function of the domestic water systems in the Danfoss flat stations is based on the combined hydraulic and thermostatic regulation of the PTC2+P controller.

As described above, its hydraulic part ensures that the heating medium and drinking water only flow through the heat exchanger when hot water is tapped. This means that the heat exchanger remains cold the rest of the time. There is no heat loss during the stand-by operation.

1	Proportional valve
2	Valve, temperature controller
3	Differential pressure controller
4	Temperature controller

When hot water is tapped, there is a pressure drop at the proportional valve (1) so that this valve opens. The thermostat valve (2) is also opened. The thermostat (4) controls the hot water temperature according to the target value set. The differential pressure controller (3) compensates for the high pressure fluctuations that come from the mains and ensures a constant operating pressure. If tapping is stopped, the proportional and thermostatic valves close immediately.

The TPC-M controller **3.4.4**

The TPC-M combination controller

A key element of the flat station is the Danfoss TPC-M controller. It combines the following perfectly coordinated features in a single component:

Volume regulator:

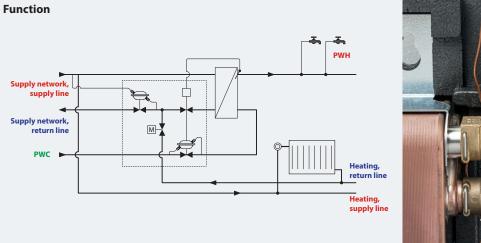
It takes in the required hot water draw through a membrane and provides the heat exchanger with the required hot water volume using a spindle and the valve.

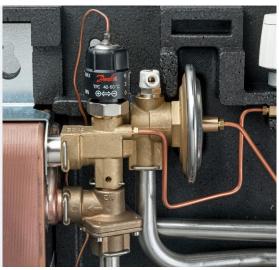
Hot water thermostat:

A thermostatic control function for the hot water temperature installed upstream of the heat exchanger, functioning in addition to the volume regulator; it provides stable hot water temperatures even at low tapping rates by modifying the hot water volume. This feature ensures the lowest return temperatures and prevents unnecessarily high hot water volumes, thereby ensuring the energy efficiency of the entire system for DHW heating.

Differential pressure controller heating and hot water provision:

Differential pressure controller integrated into the TPC-M controller prevents mutual interference from stations in heating mode and during hot water tapping.


Zone valve, heating side:


The built-in zone valve, in combination with the optional thermal electrical actuator 'TWA-Z' and a clock thermostat, enables individualized, comfortable and energy-optimized control of both heating times and room temperature.

The requirements of the EnEV and Austrian standard (Ö-Norm) B2531 are thus met.

For all EvoFlat stations: at the 'consumer' connection, the available differential pressure is between 220-165 mbar, depending on the volume flow (40-645 l/h).

3.4.5 SYSTEM SOLUTION

The PTC controller

Application

The PTC controller is used to control the hot water temperature in connection with a plate heat exchanger.

The controller operates pressure- and thermostat-controlled. The pressurecontrolled part ensures that both a primary (heating water) and secondary (drinking water) flow through the heat exchanger is only possible when hot water is tapped, and that the flow is closed after the tapping process has ended. The thermostat controls the hot drinking water temperature.

No-load losses are completely avoided through the functionality of the controller. After the tapping process has ended, the controller closes immediately and no longer allows flow in the heat exchanger.

Data for the PTC controller:

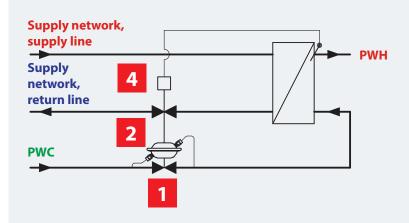
Dimensions, weight

Packaging dimensions: Weight:

Materials

Controller casting: Regulating element (DH): Regulating element (DCW): Spindle / control: O-rings / membrane: Sensors:

Pressure, temperatures, Kvs


Kvs: KvR: Pressure class: Max. Δp primary (closing): Max. Δp primary (control): Max. temperature, primary: Min. CW pressure: Regulation range: H60 × W 90 × L 230 mm 1.32 kg. (incl. packing)

Brass (UBA-compliant) Dezincification resistant brass Noryl Acid-proof stainless steel / Teflon EPDM Acid-proof stainless steel

3.5 m³/h 0.06 m³/h PN 16 6.0 bar 2.0 bar 110°C 2.0 bar 20-70°C

Function

1	Proportional valve
2	Valve, temperature controller
4	Temperature controller

When hot water is tapped, there is a pressure drop at the proportional valve (1) so that this valve opens. The thermostat valve (2) is also opened. The thermostat (4) controls the hot water temperature according to the target value set. If tapping is stopped, the proportional and thermostatic valves close immediately.

SYSTEM SOLUTION

The PM controller **3.4.6**

Application

The PM controller is used to control the hot drinking water temperature in connection with a plate heat exchanger.

The controller is pressure-controlled, i.e. it ensures that both a primary (heating water) and secondary (drinking water) flow through the heat exchanger is only possible when hot water is tapped. There is a proportional relationship between the heating water flow and the tapping of water. The temperatures are approximately the same for both low and high tapping rates.

No-load losses are completely avoided through the functionality of the controller. After the tapping process has ended, the controller closes immediately and no longer allows flow in the heat exchanger.

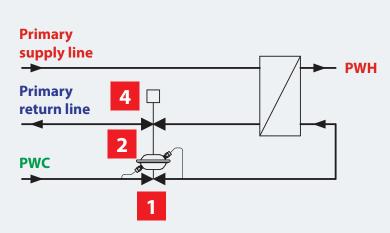
Data for PM controller:

Dimensions, weight Packaging dimensions: Weight:

Materials

Controller casting: Regulating element (HZ): Regulating element (DCW): Spindle / control: O-rings / membrane:

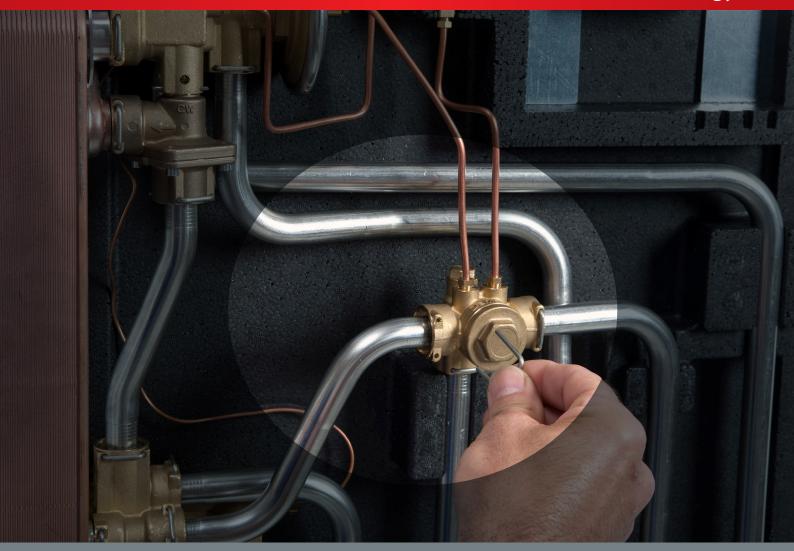
Pressure, temperatures, Kvs


Kvs: Pressure class: Max. differential pressure: Max. temp. (primary): Min. CW pressure: H60 × W 90 × L 230 mm 1.32 kg. (incl. packing)

Brass (UBA-compliant) Dezincification resistant brass Noryl Acid-proof stainless steel / Teflon EPDM

2.5 m³/h PN 16 2.0 bar 90°C 2.0 bar

Function



1	Proportional valve
2	Valve, temperature controller
4	Temperature controller

When hot water is tapped, there is a pressure drop at the proportional valve (1) so that this heating-side valve opens. The hot water valve (2) opens at the same time. If tapping is stopped, the proportional and hot water valves close immediately.

3.4.7 SYSTEM SOLUTION

The ClickFit connection technology

Traditional flat stations whose internal pipes are connected with flat-sealing threaded joints face the regular occurrence of loosening during transportation and are therefore not watertight. In order to ensure that the stations are watertight for the commissioning, service technicians have to tighten every single threaded joint manually. That costs time. This is not necessary with the new EvoFlat[™] stations, type FSS, WSS, FSF and MSS, because the Click-Fit-System is used for their internal connections. A system which has also proved itself in the car and boiler-based heating industries. The pipes are put together with fastening elements, sealed with O-rings and retained with an insert bracket. These connections can withstand pressures up to 200 bar as proved in laboratory tests, and will not loosen during transportation. Furthermore, they compensate for thermal expansion occurring during operation as well as water hammers. Leaks are therefore eliminated to the greatest possible extent.

ClickFit connection technology features

- No compression fittings
- Pre-engineered moulded components
- O-ring seal
- Mounting bracket
- Tight even without tightening and in the event of pressure surges

SYSTEM SOLUTION Pre-selection of the stations **3.4.8**

Water Heaters

Akva Lux/Vita WSS

Akva Lux II

EvoFlat[™] WSS

DHW heater and heating direct

EvoFlat™ MSS

Akva Lux/Vita

EvoFlat™ Reno

DHW heater and heating indirect

VX-F

All Danfoss flat stations are available with different cover variants for on-wall and in-wall mounting. Their thermally insulated housings ensure a significant reduction in heat loss and considerable energy savings.

PRODUCT PORTFOLIO

Product type/

application

EvoFlat[™] flat stations are the hydraulic interfaces between heat generation and heat distribution in modern decentralized heating systems of large residential buildings. Danfoss offers an extensive product range for any application with a heating circuit and integrated DHW heating, for on-wall, shaft or in-wall mounting.

].		Akva Lux / Les II	EvoFlat™ WSS	Akva Lux / Vita WSS	EvoFlat™ FSS	
	Flow water heater (PWH)	х	x	X	10	
	Direct heating + PWH				x	
	Direct heating with mixing loop substations + PWH	5				
	Indirect heating + PWH				1110	
	Indirect heating with mixing loop STM + PWH					
	PWH capacity (kW)	37-60	37-55	37-80	37-55	
	Heating capacity (kW)	-			15	
	PWH control	Hydronic/ thermostatic	Thermostatic/ hydronic	Hydronic or hydronic/ thermostatic	Hydronic/ thermostatic	
	HE control	-			Diff. pressure	
	Туре	Wall-mounted	Wall-mounted/ in-wall	Wall-mounted/ in-wall	Wall-mounted/ in-wall	
	Nominal maximal pressure PN (bar)	16	10	10	10	
	Max. Flow T (°C)	110	95	Akva Lux - 95 Akva Vita - 55	95	
	Version	Threaded	Inserted	Threaded	Inserted	
	Description	Page 22	Page 23	Page 24	Page 26	
	Performance curves	Page 42 - 44	Page 45 - 48	Page 49 - 50	Page 45 - 48	

less motive power for pumps

Thanks to the new MicroPlate™ heat exchangers with flowoptimized plate design.

Application overview – Product range

			22 24				
EvoFlat™ MSS	EvoFlat™ FSF	EvoFlat™ Reno	Akva Lux II Reno Eco	Akva Lux / Vita FSS	Akva Lux / Vita MSS	VX-F FSS	VX-F MSS
	х						Х
		х	Х	х			
х	x				х		
1	9-4					x	
19 10	1.110		2				х
37-55	38	37-55	37-55	Akva Lux - 80 Akva Vita - 57	Akva Lux - 80 Akva Vita - 57	52	52
15	5		15	15	15	10	10
Hydronic/ thermostatic	Hydronic/ thermostatic	Hydronic/ thermostatic	Thermostatic/ hydronic	Hydronic or hydronic/ thermostatic	Hydronic or hydronic/ thermostatic	Thermostatic/ hydronic	Thermostatic/ hydronic
Thermostatic	Central	Diff. pressure	Diff. pressure	Diff. pressure	Diff. pressure	Diff. pressure	Diff. pressure
Vall-mounted/ in-wall	Wall-mounted/ in-wall	Wall-mounted	Wall-mounted	Wall-mounted/ in-wall	Wall-mounted/ in-wall	Wall-mounted/ in-wall	Wall-mounted/ in-wall
10	10	10	10	10	10	16/10	16/10
95	PWH 95 FBHZ 45	95	95	Akva Lux - 95 Akva Vita - 55	Akva Lux - 95 Akva Vita - 55	95	95
Inserted	Inserted	Inserted	Threaded	Threaded	Threaded	Threaded	Threaded
Page 28	Page 30	Page 31	Page 32	Page 34	Page 36	Page 40	Page 40
Page 45 - 48	Page 47 - 48	Page 45 - 48	Page 42 - 44	Page 49 - 50	Page 49 - 50	Page 43	Page 43

4.1 AKVA LUX II + AKVA LES

The Akva Lux II instantaneous water heater for high performance and maximum ease of use is particularly suitable for heating drinking water in single-family houses and flats in apartment buildings. The drinking water is heated in the heat exchanger according to the continuous flow principle. The PTC2+P controller from Danfoss ensures reliable and convenient hydronic control of the hot water supply.

The Akva Lux II already achieves the standard capacity for a residential unit at a primary flow temperature of 60°C and is therefore particularly suitable for local heating and micro networks.

Capacity curves and pressure diagrams Page 42 - 44

Circuit diagram 2 2 Plate heat exchanger θ Ð 38 Akva Lux II = XB06H-1 26 or 40 Akva Les = XB06 + 6038 Danfoss PTC2 controller 40 Danfoss F JVR for by-pass/circulation pass 40 Å G Ó PWC PWH Supply network

FEATURES AND BENEFITS:

Instantaneous water heaters substations
instantancous water neaters substations
Capacity: up to 55 kW PWH
Compact and space-saving
Pipe connections and plate heat exchanger made of stainless steel
Lime and bacteria formation are largely avoided
Equipment:
Housing made of white-lacquered steel
Prepared for hot water circulation set
Fully insulated

Technical parameters:

Nominal pressure: PN 16 Mains, flow temp.: T_{max} = 110°C Brazing (heat exchanger): Copper

Weight incl. cover:

(incl. packing) Type 1: Type 2:

Cover:

8 kg 9 kg

> White-lacquered steel sheet version

Dimensions (mm): With insulation:

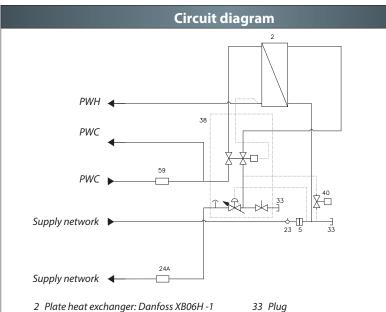
H 463 \times W 306 \times D 190

With insulation and cover: H463 \times W 310 \times D 210

Connection dimensions:

HZ + PWC + PWH: Circulation: R $\frac{3}{4}$ " (ext. thread) R $\frac{1}{2}$ " (ext. thread)

	Akva Lux II P\	NH: Capacity exa	amples 10/50°C	:	
Name HEX	Power PWH [kW]	Supply network, heating, flow/return [°C]	Flow, supply network* [l/h]	Pressure loss supply network* [kPa]	Tapping rate [l/min]
	43	65/22	856	37	15.4
XB06H-1 26 Cu/StS (type 1)	48	65/22	963	40	17.2
	45	65/20	867	22	16.1
XB06H-1 40 Cu/StS (type 2)	52	65/21	1017	43	18.6
	55	65/19	1025	43	19.7
XB06H+ 60 Cu/StS (type 3)	60	65/19	1110	49	21.2
	38	55/21	1008	42	14.3


* without heat meter (HM)

EvoFlat[™] WSS

The EvoFlat[™] WSS freshwater station was specially developed for buildings that are heated with district heating, boilers or CHP systems. It requires a flow temperature of at least 55°C for DHW heating.

Capacity curves and pressure loss diagrams Page 47 - 48

- 5 Strainer MS 0.6 mm
- 17 De-air function
- 23 Sensor pocket
- 24 Fitting piece for HM: $\frac{3}{4}$ " \times 110 mm
- 38 Multi-functional controller TPC-M
- 40 Summer bypass
- *59 Fitting piece for DCW meter:*
- 34"×110 mm

FEATURES AND BENEFITS:

PWH based on the continuous flow principle

Newly developed, energy-saving TPC-M controller and high-performance heat exchanger

Only requires energy for PWH tapping - no no-load losses

Capacity: 55 kW PWH

Insulated backplate

Wall-mounted or built-in

No tightening of internal screw connections thanks to ClickFit connection technology

Pipe connections and plate heat exchanger made of stainless steel

Lime and bacteria formation are largely avoided

Differential pressure controller incl.

Equipment:

Ball valves

Mounting rail for on-wall variant

Built-in cabinet for in-wall mounting

Cover, on-wall mounted

With circulation

Technical parameters

lechnical parameters:	
Nominal pressure:	PN 10
Max. supply temperature:	95°C
Static pressure (CW):	$P_{min} = 1.5 \text{ bar}$
Brazing (heat exchanger):	Copper /
	stainless steel
Weight without	
5	
housing:	10 kg
Insulation:	EPP λ 0.039
Power supply:	230 V AC

Dimensions (mm): With connections:

 $H\,590\,{\times}\,W\,550\,{\times}\,D\,150$

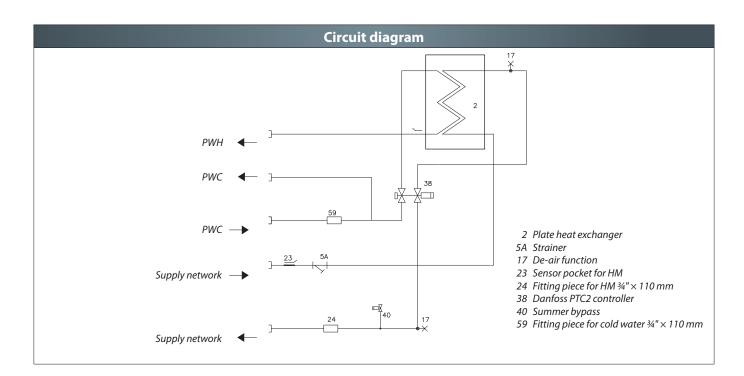
Connection dimensions: IG 3/4"

PWH: Capacity examples 10/50°C					
Type name HEX	DHW capacity [kW]	Supply network, flow/return [°C]	Pressure loss supply network* [kPa]	Flow, supply network [l/h]	Tapping rate [l/min]
	37	65/21	23	730	13.3
XB06H-1 26 Cu/StS (type 1)	43	65/22	40	850	15.3
XB06H-1 40 Cu/StS (type 2)	45	65/20	22	867	16.1
	49	65/21	30	950	17.5
	55	65/16	27	950	19.4
XB06H+ 60 Cu (type 3)	38	55/21	27	950	13.6
VP06H 1 56 5+5 (turno 2)	51	65/19	28	950	18.3
XB06H-1 56 StS (type 3)	34	55/14	28	950	12.5

* without heat meter (HM)

4.3 Akva Lux + Vita WSS

The Akva Lux WSS + Akva Vita WSS are compact and easy-to-use drinking water heaters. They are especially designed for 2-pipe systems in residential buildings supplied with hot water from a central heat source (district heating station, boiler, CHP or solar system) via a central buffer accumulator. The high-performance WSS stations are available as an in-wall version with a recess box or for wall mounting with a protective hood.


> Capacity curves and pressure loss diagrams Page 49 - 50

FEATURES AND BENEFITS:

Hydronic and thermostatic control of the WW using PTC2 controller for on-demand DHW heating for Akva Lux WSS
Hydronic control of the PWH
using PM controller for on-demand
DHW heating for Akva Vita WSS
Minimum space required for installation
Build-in or wall-mounted variant
Pipes and plate heat exchanger
made of stainless steel
Minimum risk of lime scale and
bacterial growth
Capacity: up to 80 kW for PWH

Technical parameters:	
Nominal pressure:	PN 10
Max. supply temperature:	95°C*
Static pressure (CW):	$P_{min} = 2.0 \text{ bar}$
Brazing:	Copper / stainless steel
-	
Weight without	
protective hood:	12 kg
	-
Insulation:	Pipe insulation (Akva Lux)
Power supply:	230 V AC
Dimensions (mm): Without cover:	H 616 × W 556 × D 145*
With cover:	$H740 \times W600 \times D200^{*}$
With recess box:	H910 × W610 × D150
* Depth incl. Mounting plate	
Connections sizes:	IG ¾"

* for Akva Lux only. The Akva Vita can be used for systems with low flow temperatures.

Water Heaters

PWH: Capacity examples 10/50°C							
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Flow, supply network* [l/h]	Pressure loss supply network* [kPa]	Tapping rate [l/min]		
	45	55/17	1020	28	16.2		
Akva Vita WSS	50	55/17	1140	36	18.0		
XB37H-1 30 55 58	55/18	1270	44	19.7			
	55/18	1350	50	20.8			
	60	65/13	996	36	21.5		
	60	70/12	890	30	21.5		
Akva Lux WSS 70 XB37H-1 30 75	70	70/13	1047	40	25.0		
	75	70/13	1125	42	27.0		
	78	70/13	1180	50	28.7		

* without heat meter (HM)

4.4 EvoFlat[™] FSS / FSS-StS

Flat station for decentralized heat distribution in apartment buildings with directly connected heating and an integrated hydronically controlled instantaneous water heater.

There are EvoFlat[™] FSS flat stations ready for installation in a recess box or prepared for wall mounting for combination with Danfoss distribution systems for open heating surfaces and integrated heating surfaces.

> Capacity curves and pressure loss diagrams Page 45 - 48

FEATURES AND BENEFITS:

Direct heating, PWH based on the continuous flow principle

Newly developed, energy-saving TPC-M controller and high-performance heat exchanger; only requires energy for PWH tapping - no no-load losses

Capacity: 15 kW HE, 55 kW PWH

Insulated backplate

Wall-mounted or built-in

No tightening of internal screw connections thanks to ClickFit connection technology

Pipe connections and plate heat exchanger made of stainless steel

Lime and bacteria formation are largely avoided

Differential pressure controller incl.

Equipment options:

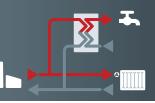
Room thermostat

Actuator for the available zone valve

Ball valves

Mounting rail for on-wall variant

Built-in cabinet for in-wall mounting


Cover, on-wall mounted

With circulation

EvoFlat[™] flat stations direct heating + PWH

Technical parameters:

Nominal pressure:PN 10Max. flow temp.: $T_{max} = 95^{\circ}C$ Max. differential pressure:4 bar

Weight without housing: max 16 kg

Insulation: EPP λ 0.039

Power supply: 230 V AC / 24 V AC/DC

Dimensions without circulation

incl. insulation (mm):With connections:H 590 × W 550 × D 150

Connection dimensions: IG ³/₄"

PWH: Capacity examples 10/50°C						
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Pressure loss supply network* [kPa]	Flow, supply network [l/h]	Tapping rate [l/min]	
VP06H 1 26 Cu/StS (turns 1)	37	65/21	23	730	13.3	
XB06H-1 26 Cu/StS (type 1)	43	65/22	40	850	15.3	
XB06H-1 40 Cu/StS (type 2)	45	65/20	22	867	16.1	
	49	65/21	30	950	17.5	
	55	65/16	27	950	19.4	
XB06H+ 60 Cu (type 3)	38	55/21	27	950	13.6	
XB06H-1 56 StS (type 3)	51	65/19	28	950	18.3	
	34	55/14	28	950	12.5	

* without heat meter (HM)

Heating: Capacity example							
Heating capacity [kW]	Heating circuit ∆t [°C]	Pressure loss supply network [kPa]	Flow, supply network* [l/h]				
10	20	3	430				
10	30	1	287				
10	40	1	215				
15	20	8	645				
15	30	3	430				
15	40	2	323				

* without heat meter (HM) and drinking water

4.5 EvoFlat[™] MSS / MSS-StS

Directly heated flat station with mixing loop and an integrated instantaneous domestic hot water system for flats, single-family houses and apartment buildings with underfloor heating. Equipped with the MicroPlate[™] heat exchanger and the innovative self-acting TPC-M controller for a constant hot water and DHW temperature, even with fluctuating temperatures and pressures on the primary side. The station is optionally available for on-wall or in-wall mounting.

> Capacity curves and pressure loss diagrams Page 45 - 48

FEATURES AND BENEFITS:

Direct heating, PWH based on the continuous flow principle

Newly developed, energy-saving TPC-M controller and high-performance heat exchanger; only requires energy for PWH tapping - no no-load losses

Capacity: 15 kW HE, 55 kW PWH

Insulated backplate

Wall-mounted or built-in

No tightening of internal screw connections thanks to ClickFit connection technology

Pipe connections and plate heat exchanger made of stainless steel

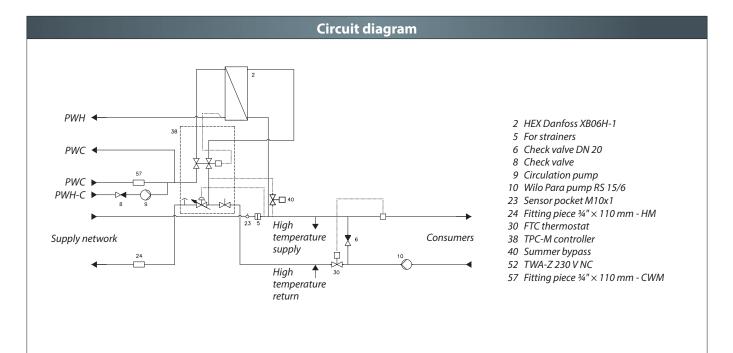
Lime and bacteria formation are largely avoided

Differential pressure controller incl.

Equipment options:

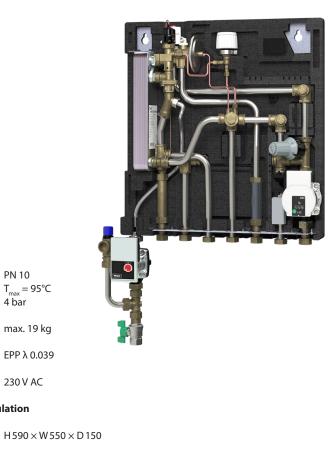
Room thermostat

Actuator for the available zone valve


Ball valves

Mounting rail for on-wall variant

Cover, on-wall mounted


With circulation

28 Planner handbook from A-Z

Technical parameters:Nominal pressure:PN 10Max. flow temp.:Tmax = 95°CMax. differential pressure:4 barWeight without housing:max. 19 kgInsulation:EPP λ 0.039

Power supply: 230 V AC

Dimensions without circulation incl. insulation (mm): With connections: H 590 × V

Connection dimensions: IG ³/₄"

PWH: Capacity examples 10/50°C					
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Pressure loss supply network* [kPa]	Flow, supply network [l/h]	Tapping rate [l/min]
	37	65/21	23	730	13.3
XB06H-1 26 Cu/StS (type 1)	43	65/22	40	850	15.3
XB06H-1 40 Cu/StS (type 2)	45	65/20	22	867	16.1
	49	65/21	30	950	17.5
	55	65/16	27	950	19.4
XB06H+ 60 Cu (type 3)	38	55/21	27	950	13.6
XB06H-1 56 StS (type 3)	51	65/19	28	950	18.3
	34	55/14	28	950	12.5

* without heat meter (HM)

Heating: Capacity example							
Heating capacity [kW]	Heating circuit ∆t [°C]	Pressure loss supply network [kPa]	Flow, supply network* [l/h]				
10	20	3	430				
10	30	1	287				
10	40	1	215				
15	20	8	645				
15	30	3	430				
15	40	2	323				

* without heat meter (HM)

EvoFlat™ FSF

4-pipe flat station

This 4-pipe flat station was developed to increase the efficiency of systems with heat pumps. The concept includes the use of two different temperature levels. A flow temperature of 55°C is required for DHW heating and a flow temperature of 35-45°C is required for the surface heating system.

Capacity curves and pressure loss diagrams Page 47 - 48

FEATURES AND BENEFITS:

Instantaneous water heaters substations
Capacity: up to 55 kW PWH
Compact and space-saving
Pipe connections and plate heat exchanger made of stainless steel
Lime and bacteria formation are largely avoided
Equipment:
Cover, on-wall mounted
Fully insulated
Built-in cabinet for in-wall mounting

Circuit diagram PWH ← Supply network LT PWC 🗲 <u>\$</u>----Ж PWC ۶õ î **Ş**erdiyê 0 [] 23 5 Supply network HT Consumers 2 Plate heat exchanger: Danfoss XB06H -1 24B Fitting piece for HM: 3/4" × 110 mm 5 Strainer 29 Actuator HE

- 30 AB-PM DN 15 HF
 - 38 Multi-functional controller TPC-M

Technical parameters:

reenneur purumeters.	
Nominal pressure:	PN 10
Static pressure (CW):	$P_{min} = 1.5 \text{ bar}$
Brazing (heat exchanger):	
	stainless steel
Weight without	
housing:	14 kg
nousing.	14 Kg
Insulation:	EPP λ 0.039
Power supply:	230 V AC
Dimensions (mm):	
With connections:	H 590 × W 550 × D 150
with connections:	U 290 X W 250 X D 150

Connection dimensions: IG 3/4"

23 Sensor pocket

7 Ball valve DN 20

17 De-air function

24A Fitting piece for HM: 3/4" × 110 mm

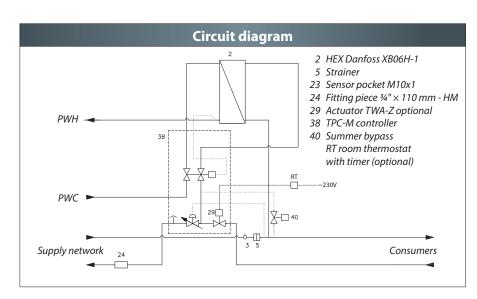
1	59	Fitting	piece	for DC	W mete	er: ¾" ×	<110) mm)
	40	Summ	er byp	ass					

PWH: Capacity examples 10/50°C					
PWH capacity [kW]	Supply network, flow/return [°C]	Pressure loss supply network* [kPa]	Flow, supply network [l/h]	Tapping rate [l/min]	
55	65/16	27	950	19.4	
38	55/21	27	950	13.6	
51	65/19	28	950	18.3	
34	55/14	28	950	12.5	
	PWH capacity [kW] 55 38 51	PWH capacity [kW] Supply network, flow/return [°C] 55 65/16 38 55/21 51 65/19	PWH capacity [kW]Supply network, flow/return [°C]Pressure loss supply network* [kPa]5565/16273855/21275165/1928	PWH capacity [kW]Supply network, flow/return [°C]Pressure loss supply network* [kPa]Flow, supply network [[/h]5565/16279503855/21279505165/1928950	

* without heat meter (HM)

Heating: Capacity example						
Heating capacity [kW]	[K]	Pressure loss supply network [kPa]	Flow, supply network* [l/h]			
2.5	7	20	300			
3.5	10	20	300			
5	15	20	300			

* without heat meter (HM)


EvoFlat™ Reno

Flat stations to replace old gas boilers - direct heating + PWH

The EvoFlat[™] Reno is a flat station for direct heating and a pressure and temperature controlled instantaneous domestic hot water heater for two-pipe systems, designed for decentralized heat distribution and is especially suitable for apartment buildings, where existing gas boilers should be replaced.

> Capacity curves and pressure loss diagrams Page 45 - 48

NEW

FEATURES AND BENEFITS:

Flat station for replacing existing gas boilers

Direct heating and PWH based on the continuous flow principle

Capacity: 15 kW / 55 kW PWH

Compact, space-saving design

Also suitable for LT systems with 55°C flow

Flow-compensated thermostat with integrated differential pressure controller TPC-M

Pipes and plate heat exchanger made of stainless steel

Extensive protection against limescale and bacteria formation

With pipe insulation

Technical parameters:

PN 10
$T_{max} = 95^{\circ}C$
e: 4 bar
max. 18 kg
230 V AC / 24 V AC/DC
$\rm H685\timesW410\timesD205$
H 760 \times W 455 \times D 225

Connection dimensions: IG 3/4"

PWH: Capacity examples 10/50°C					
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Pressure loss supply network* [kPa]	Flow, supply network [l/h]	Tapping rate [l/min]
	37	65/21	23	730	13.3
XB06H-1 26 Cu/StS (type 1)	43	65/22	40	850	15.3
XB06H-1 40 Cu/StS (type 2)	45	65/20	22	867	16.1
	49	65/21	30	950	17.5
XB06H+ 60 Cu (type 3)	55	65/16	27	950	19.4
	38	55/21	27	950	13.6
	51	65/19	28	950	18.3
XB06H-1 56 StS (type 3)	34	55/14	28	950	12.5

* without heat meter (HM)

Heating: Capacity example					
Heating capacity [kW]	Heating circuit ∆t [°C]	Pressure loss supply network [kPa]	Flow, supply network* [l/h]		
10	20	3	430		
10	30	1	287		
10	40	1	215		
15	20	8	645		
15	30	3	430		
15	40	2	323		

* without heat meter (HM) and drinking water

4.8 Akva Lux II Reno Eco

The Akva Lux II Reno Eco is a Flat station for heating and DHW heating in 2-pipe systems, which was specially developed for replacing gas boilers. While the existing connections for hot and cold water and the flow and return of the secondary heating circuits can continue to be used without major changes, it is advisable to route the connections for the primary-side heating water supply and return through the chimney. Optionally, the cold water supply can also be connected from above.

> Capacity curves and pressure loss diagrams Page 42 - 44

FEATURES AND BENEFITS:

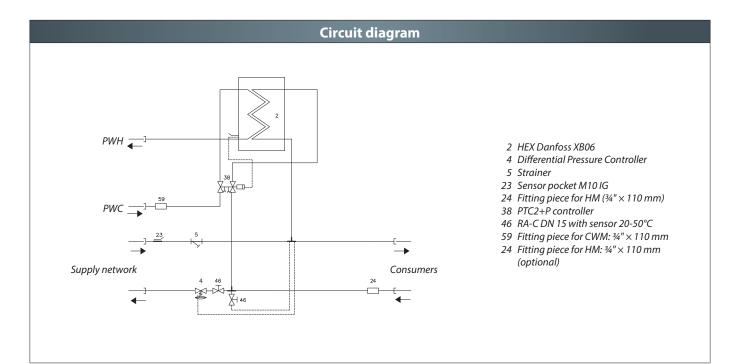
Flat station for replacing existing gas boilers

Direct heating and PWH based on the continuous flow principle

With integrated freshwater system for decentralized DHW heating

Capacity: 15 kW / 56 kW PWH

Compact, space-saving design


Also suitable for LT systems with 55°C flow

Flow-compensated temperature controller with integrated differential pressure controller PTC2+P

Pipes and plate heat exchanger made of stainless steel

Extensive protection against limescale and bacteria formation

With pipe insulation

Technical parameters:

Pressure class: DH network, flow temp.: Brazing:	PN 10 T _{max} = 95°C Copper or stainless steel
Weight incl. cover:	22.0 kg
Cover:	White-lacquered steel sheet version
Electrical connection:	230 V AC +/- 1%; 50 Hz
Dimensions (mm): Without cover: With cover:	H810 × W470 × D147 H1120 × W480 × D150

Connection dimensions: IG 3/4

PWH: Capacity examples 10/50°C					
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Flow, supply network* [l/h]	Pressure loss supply network* [kPa]	Tapping rate [l/min]
XB06H-1 26 Cu/StS (type 1)	43	65/22	856	37	15.4
	48	65/22	963	40	17.2
XB06H-1 40 Cu/StS (type 2)	45	65/20	867	22	16.1
	52	65/21	1017	43	18.6
XB06H+ 60 Cu/StS (type 3)	55	65/19	1025	43	19.7
	60	65/19	1110	49	21.2
	38	55/21	1008	42	14.3

* without heat meter (HM)

Heating: Capacity example					
Heating capacity [kW]	Heating circuit ∆t [°C]	Pressure loss supply network [kPa]	Flow, supply network* [l/h]		
10	20	22	430		
10	30	10	287		
10	40	6	215		
15	20	49	645		

* without heat meter (HM)

4.9 Akva Lux / Vita FSS

The Akva Lux FSS + Akva Vita FSS are directly heated, compact and easyto-use flat stations for radiator heating systems with an integrated instantaneous domestic hot water system. They are especially designed for 2-pipe heating systems in residential buildings supplied with hot water from a central heat source (district heating, boiler, CHP or solar system) via a central buffer accumulator. The FSS stations are available as an in-wall version with a recess box or for wall mounting with a cover.

> Capacity curves and pressure loss diagrams Page 49 - 50

Directly heated flat station for heating and PWH based on the continuous flow principle

Hydronic and thermostatic control of the WW using PT°C controller for on-demand DHW heating for Akva Lux FSS

Hydronic control of the WW using PM controller for on-demand DHW heating for Akva Lux FSS

Minimum space required for installation

Build-in or wall-mounted variant Pipes and plate heat exchanger

made of stainless steel

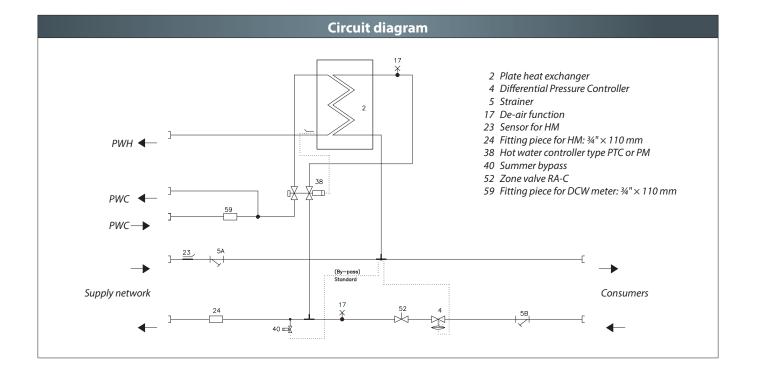
Heat exchanger in copper or stainless steel version

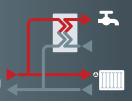
Capacity: up to 78 kW for PWH / up to 15 kW for heating

OPTIONS:

Mounting rail for wall mounted variant

Hydronic and thermostatic control of the WW using PTC controller for on-demand DHW heating for Akva Lux FSS


Built-in cabinet for in-wall mounting incl. mounting rail


Cover for on-wall mounting

Circulation kit

Room thermostat

Technical parameters:

Nominal pressure: Max. supply temperature: Static pressure (CW): Brazing (HEX):	PN 10 95 °C** P _{min} = 2.0 bar Copper / stainless steel
Weight without protective hood:	20 kg
Insulation:	Pipe insulation (Akva Lux)
Power supply:	230 V AC
Dimensions (mm): Without cover: With cover: With recess box:	$H616 \times W576.9 \times D150^{*}$ $H740 \times W600 \times D200^{*}$ $H910 \times W610 \times D150$ * Depth incl. mounting plate
Connections sizes:	IG 34"

 $\ast\ast$ for Akva Lux only. The Akva Vita can be used for systems with low flow temperatures.

PWH: Capacity examples 10/50°C					
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Flow, supply network* [l/h]	Pressure loss supply network* [kPa]	Tapping rate [l/min]
	45	55/17	1020	28	16.2
Akva Lux FSS XB37H-1 30	50	55/17	1140	36	18.0
	55	55/18	1270	44	19.7
	58	55/18	1350	50	20.8
	60	65/13	996	36	21.5
Akva Vita FSS XB37H-1 30	60	70/12	890	30	21.5
	70	70/13	1047	40	25.0
	75	70/13	1125	42	27.0
	78	70/13	1180	50	28.0

* without heat meter (HM)

Heating: Capacity example					
Heating capacity [kW]	Heating circuit ∆t [°C]	Pressure loss supply network [bar]	Flow, supply network* [l/h]		
2.5	15	26	143		
10.0	15	36	573		
2.5	20	26	108		
10.0	20	29	430		
15.0	20	41	645		

* without heat meter (HM)

4.10 Akva Lux / Vita MSS

The Akva Lux MSS + Akva Vita MSS are directly heated, compact and easyto-use flat stations for surface heating systems with an integrated instantaneous domestic hot water system. They are especially designed for 2-pipe heating systems in residential buildings supplied with hot water from a central heat source (district heating, boiler, CHP or solar system) via a central buffer accumulator. The MSS stations are available as an in-wall version with a recess box or for wall mounting with a protective hood.

> Capacity curves and pressure loss diagrams Page 49 - 50

Flat station for direct heating with mixing loop and PWH based on the continuous flow principle

Hydronic and thermostatic control of the WW using PT°C controller for on-demand DHW heating, Akva Lux MSS

Hydronic control of the WW using PM controller for on-demand DHW heating, Akva Lux MSS

Minimum space required for installation

Build-in or wall-mounted variant Pipes and plate heat exchanger

made of stainless steel

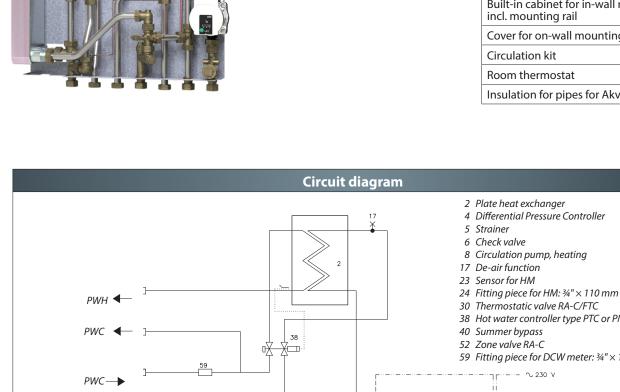
Heat exchanger in copper or stainless steel version

Capacity: up to 80 kW for PWH / up to 15 kW for heating

OPTIONS:

Mounting rail for wall mounted variant

Hydronic and thermostatic control of the WW using PTC controller for on-demand DHW heating for Akva Lux FSS


Built-in cabinet for in-wall mounting incl. mounting rail

Cover for on-wall mounting

Circulation kit

Room thermostat

Insulation for pipes for Akva Vita FSS

40

30 Thermostatic valve RA-C/FTC

- 38 Hot water controller type PTC or PM

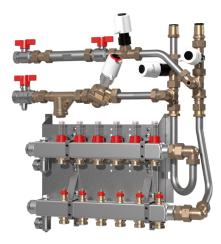
Consumers

Supply network

Technical parameters:

Nominal pressure: Max. supply temperature: Static pressure (CW): Brazing (HEX):	PN 10 95 °C** P _{min} = 2.0 bar Copper / stainless steel
Weight without protective hood:	20 kg
Insulation:	Pipe insulation (Akva Lux)
Power supply:	230 V AC
Dimensions (mm):	
Without cover:	$H616 \times W572 \times D150^{*}$
With cover:	$\rm H740\timesW600\timesD200^{*}$
With recess box:	$H910 \times W610 \times D150$ * Depth incl. mounting plate
Connections sizes:	IG ¾"

 $\ast\ast$ for Akva Lux only. The Akva Vita can be used for systems with low flow temperatures.


PWH: Capacity examples 10/50°C						
Type name HEX	PWH capacity [kW]	Supply network, flow/return [°C]	Flow, supply network* [l/h]	Pressure loss supply network* [kPa]	Tapping rate [l/min]	
	45	55/17	1020	28	16.2	
Akva Vita MSS	50	55/17	1140	36	18.0	
XB37H-1 30	55	55/18	1270	44	19.7	
	58	55/18	1350	50	20.8	
	60	65/13	996	36	21.5	
	60	70/12	890	30	21.5	
Akva Lux MSS XB37H-1 30	70	70/13	1047	40	25.0	
	75	70/13	1125	42	27.0	
	78	70/13	1180	50	28.0	

* without heat meter (HM)

Heating: Capacity example						
Heating capacity [kW]	Heating circuit ∆t [°C]	Pressure loss supply network [bar]	Flow, supply network* [l/h]			
10.0	20	26	430			
10.0	30	9	287			
10.0	40	6	215			
15.0	20	43	645			
15.0	30	20	430			

* without heat meter (HM)

4.11 CDM cooling module

Picture: CDM standard module with optional CSG distributor, 6-way

In buildings with central heating and cooling supply, Danfoss flat stations are used in combination with a cooling module from the CD series. The station is supplied via separate risers for heating and cooling. The flat station is supplied with energy for heating and hot water on the heating side and with energy for cooling rooms in summer via the cooling supply. The operating mode is switched via zone valves. In this setup, a common distribution system for heating and cooling is used. Energy consumption can be recorded using a cooling meter.

More details on page 64

FEATURES AND BENEFITS:

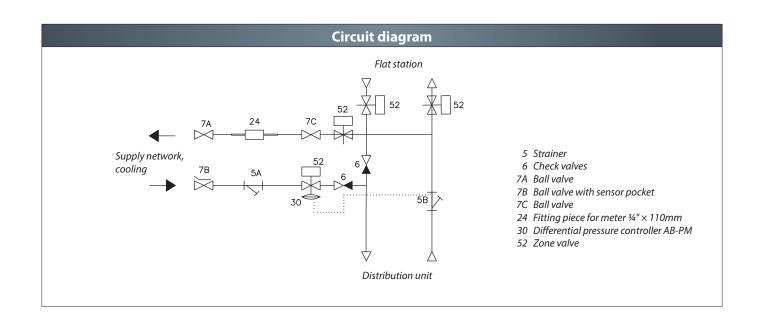
Direct cooling supply of a flat

Hydronic balance and flow limitation of the cooling circuit

- Max. 4 kW cooling capacity (dT=6K) - Standard
- Max. 8 kW cooling capacity (dT=6K) - HighFlow

Minimum space required for installation

Pre-assembled module for easy connection to Danfoss flat stations


Consumption recording using a cooling meter.

OPTIONS:

Heating manifold type CSG or CSGCi

Technical parameters:

Nominal pressure CDM module:	PN 10
Nominal pressure, manifold:	PN 6
Weight:	5 kg
Dimensions (mm):	H 255 \times W 500 \times D 149
Connections sizes:	G ¾"

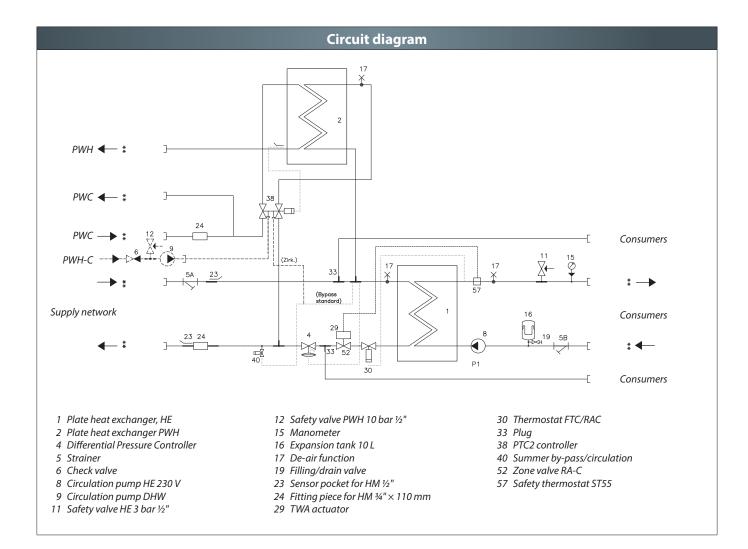
Number of circuits	Manifold for DM module type CSG	Manifold for CDM module type CSGCi with ICON™ 24V
2	145H0862	145H0882
3	145H0863	145H0883
4	145H0864	145H0884
5	145H0865	145H0885
6	145H0866	145H0886
7	145H0867	145H0887
8	145H0868	145H0888
9	145H0869	145H0889
10	145H0870	145H0890
11	145H0871	145H0891
12	145H0872	145H0892

Prefabricated Danfoss stainless steel distribution systems, suitable for combined installation with Danfoss flat stations in Danfoss recess boxes.

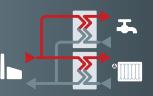
Type CSG:	Distributor system for CDM cooling module without admixture circuit, with flow meter.
Type CSGCi:	Distributor system for CDM cooling module without admixture circuit with flow meter and with hardwired heating circuit controller ICON™ 24V and actuators according to the number of circuits.

Cooling capacity [kW]	At 4 K spread flow [l/h]	At 5 K spread flow [I/h]	At 6 K spread flow [I/h]	At 7 K spread flow [I/h]	At 8 K spread flow [I/h]			
	CDM 'Standard'							
0.5	107							
1.0	215	172	143	123	107			
1.5	322	258	215	184	161			
2.0	430	344	287	246	215			
2.5	537	430	358	307	269			
3.0		516	430	369	322			
3.5		602	502	430	376			
4.0			573	491	430			
4.5				553	484			
5.0				614	537			
5.5					591			
		CDM 'Hi	ghFlow'					
1.5	322	258						
2.0	430	344	287					
2.5	537	430	358	307				
3.0	645	516	430	369	322			
3.5	752	602	502	430	376			
4.0	860	688	573	491	430			
4.5	967	774	645	553	484			
5.0	1075	860	717	614	537			
5.5	1182	946	788	676	591			
6.0		1032	860	737	645			
6.5		1118	931	798	699			
7.0		1204	1003	860	752			
7.5			1075	921	806			
8.0			1146	983	860			
8.5				1044	914			
9.0				1106	967			
9.5				1167	1021			
10.0					1075			
10.5					1129			
11.0					1182			

4.12 Akva Lux II VX-F



The Akva Lux II VX-F are indirectly heated flat stations with an integrated instantaneous domestic hot water system for decentralized DHW heating. There is one version for surface heating and one for radiator heating. Both stations are optionally available as an in-wall version for mounting in a flush-mounted cabinet in the sizes W 690 \times H 1350 \times D 150 and W 850 \times H 1350 \times D 150. The recess box can also accommodate an underfloor distributor.


> Capacity curves and pressure diagrams Page 42

for radiator heating

for underfloor heating

Flat stations Akva Lux II Indirect underfloor heating + PWH

FEATURES AND BENEFITS:

Indirectly heated flat station for heating and PWH based on the continuous flow principle

For separate installation or for assembly together with a VX-F distributor system for underfloor or radiator heating

In recess box, directly heated flat station for heating and PWH based on the continuous flow principle

Equipment options:

Circulation kit

Technical parameters:

HZ + PWC + PWH:

Circulation:

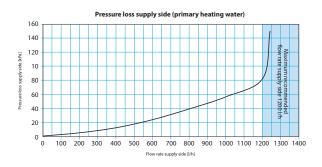
Nominal pressure:	PN 16
Max. flow temp.:	95°C
Brazing (heat exchanger): PWH Heater	Copper or stainless steel Copper
Weight without housing:	: 30.0 kg
Electrical connection:	230 V AC / 24 V AC/DC
Dimensions (mm):	H945 $ imes$ W 561 $ imes$ D 150
Connection dimensions:	

G ¾" (ext. thread)

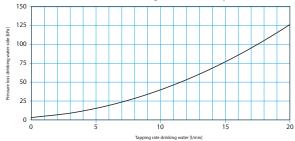
R 1/2" (int. thread)

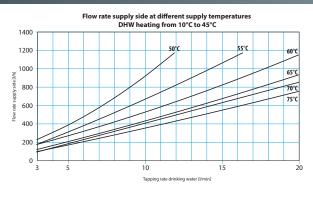
PWH: Capacity examples, 10°C/50°C						
Туре	PWH capacity [kW]	Primary supply [°C]	Primary return [°C]	Pressure loss primary* [kPa]	Flow primary [l/h]	Tapping rate [l/min]
	37	60	18	27	762	13.3
XB06H-1 40	45	60	19	40	943	16.1
	55	60	20	59	1177	19.7

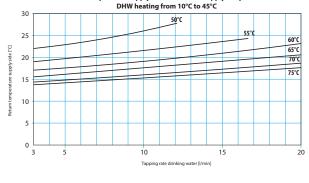
* without heat meter (HM)

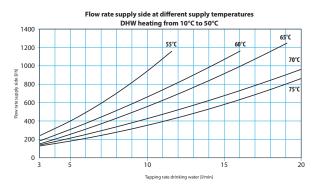

	Heating: Capacity examples						
Туре	Heating capacity [kW]	Temp. primary [℃]	Temp. secondary [°C]	Pressure loss primary* [kPa]	Flow primary [l/h]	Flow secondary [l/h]	Pressure loss secondary [kPa]
VDOCU 110	10	70/40	35/60	38	287	347	5
XB06H-1 16	10	60/31	30/40	62	294	865	27

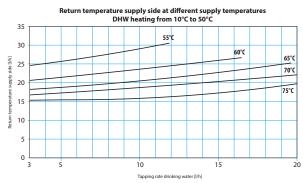
* without heat meter (HM) and drinking water capacity


5.1 AKVA LUX II type 1 + Reno Eco Capacity curves for capacity stage 37 kW


Pressure losses

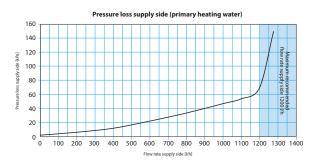

Pressure loss drinking water side (secondary)

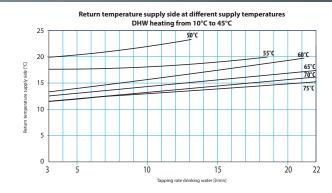

Flow volumes and tap capacity PWH - 45°C:



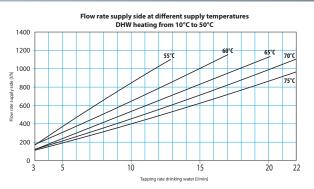
Return temperature supply side at different supply temperatures

Flow volumes and tap capacity PWH - 50°C:




5.2

Pressure losses

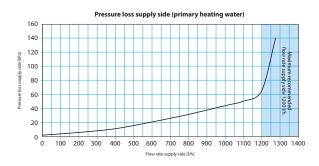


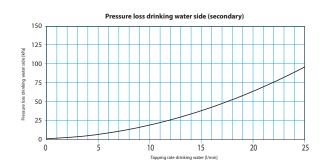
Flow volumes and tap capacity PWH - 45°C:

Flow rate supply side at different supply temperatures DHW heating from 10°C to 45°C 55°C 60°C 60°C 60°C 75°C 75°C 75°C

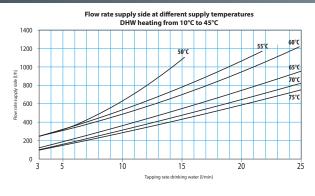
15 Ding rate drinking water (1/min 20 22

10

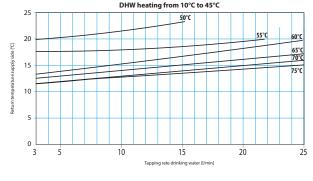

3

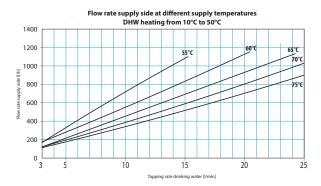

43 Planner handbook from A-Z

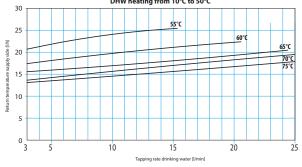
5.3 AKVA LES type 3 + Reno Eco Capacity curves for capacity stage 60 kW



Pressure losses




Flow volumes and tap capacity PWH - 45°C:


Return temperature supply side at different supply temperatures

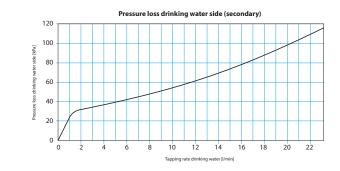
Flow volumes and tap capacity PWH - 50°C:

Return temperature supply side at different supply temperatures DHW heating from 10°C to 50°C

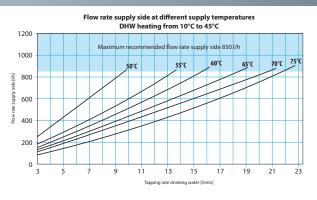
EvoFlat[™] FSS/MSS/WSS/Reno type1 Capacity curves for capacity stage 37 kW

Maximum recommended flow rate supply side 850 I/F

ide [°C]


lddns

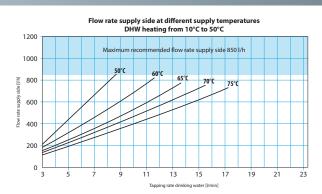
Seturn

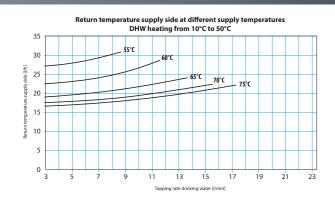


Pressure losses

5.4

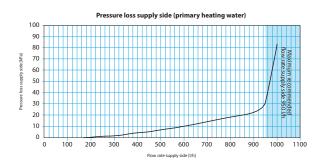
Pressure loss supply side (primary heating water)

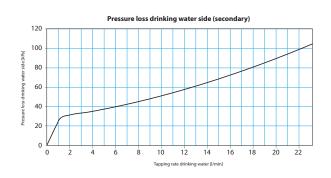

supply side [kPa]


supply side [l/h]

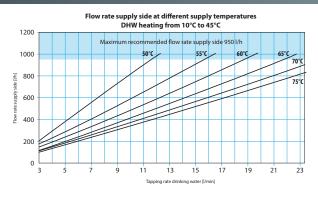
Return temperature supply side at different supply temperatures DHW heating from 10°C to 45°C 50°C 55°C 60°C 65°C 70°C 75°C

Flow volumes and tap capacity PWH - 50°C:

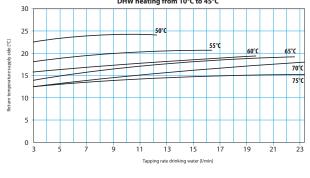


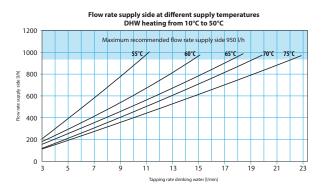


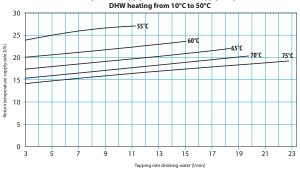
5.5 EvoFlat[™] FSS/MSS/WSS/Reno type2 Capacity curves for capacity stage 45 kW



Pressure losses



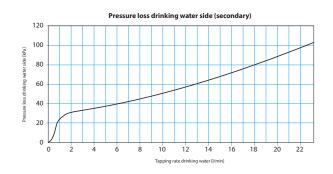

Flow volumes and tap capacity PWH - 45°C:


Return temperature supply side at different supply temperatures DHW heating from 10°C to 45°C

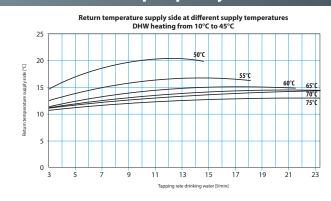
Flow volumes and tap capacity PWH - 50°C:

Return temperature supply side at different supply temperatures

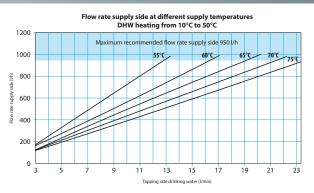
46

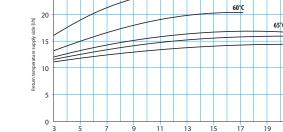

EvoFlat[™] FSS/MSS/WSS/FSF/Reno type3 Capacity curves for capacity stage 55 kW

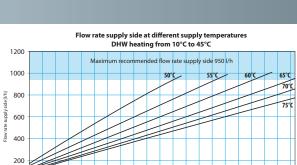
950 1/1



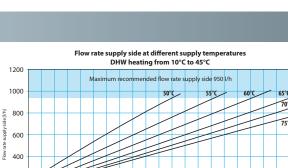
Pressure losses


5.6


Flow volumes and tap capacity PWH - 45°C:

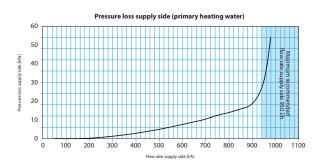


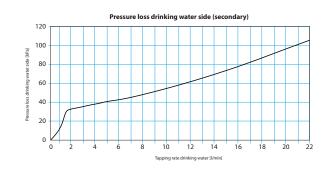
Flow volumes and tap capacity PWH - 50°C:


Return temperature supply side at different supply temperatures DHW heating from 10°C to 50°C 55°C 60°0 65°C 70°C 75°C

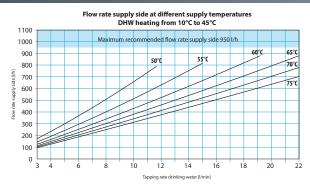
Pressure loss supply side (primary heating water)

 [69]

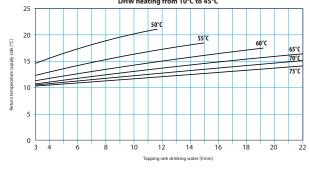


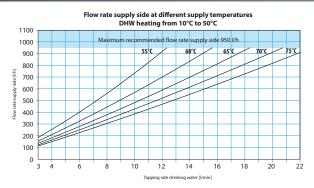

Flow rate supply side [l/h]

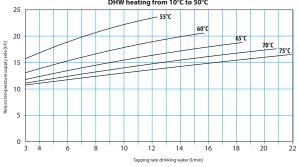
5.7 EvoFlat[™] FSS/MSS/WSS/FSF/Reno type E3 Capacity curves for capacity stage 51 kW



Pressure losses

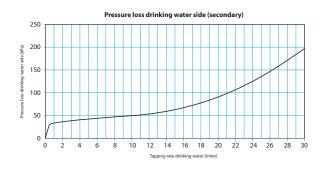


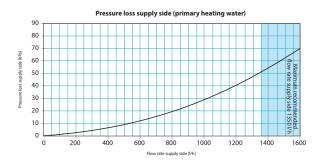

Flow volumes and tap capacity PWH - 45°C:


Return temperature supply side at different supply temperatures DHW heating from 10°C to 45°C

Flow volumes and tap capacity PWH - 50°C:

Return temperature supply side at different supply temperatures DHW heating from 10°C to 50°C




Akva Vita FSS/WSS/MSS Capacity curves for capacity stage 58 kW

Pressure losses

5.8

Flow rate supply side at different supply temperatures DHW heating from 10°C to 45°C

50°C

55°C

35

60°C

65°C

70°C

75°

40

2200

2000 1800

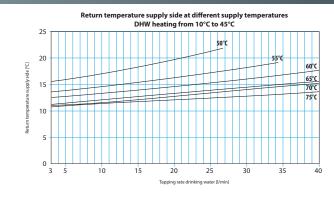
1600

1400

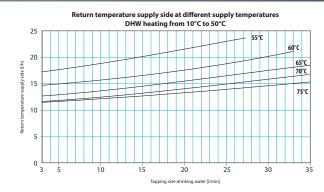
1200

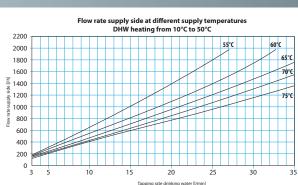
1000

800 600


400

200 0


10


15

Flow volumes and tap capacity PWH - 45°C:

Flow volumes and tap capacity PWH - 50°C:

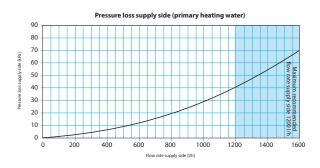
20

ping rate drinkin

25

water (I/min)

30


49 Planner handbook from A-Z

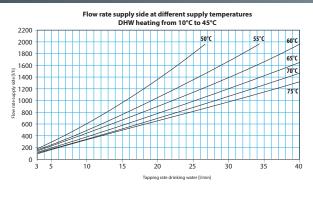

5.9 Akva Lux

Capacity curves for capacity stage 78 kW

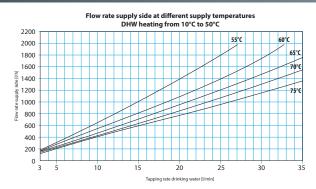
Pressure losses

Return temperature supply side at different supply temperatures DHW heating from 10°C to 45°C

50°C


60°0

65°C 70°C

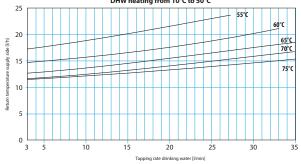

75°(

40

Flow volumes and tap capacity PWH - 45°C:

Flow volumes and tap capacity PWH - 50°C:

Return temperature supply side at different supply temperatures DHW heating from 10°C to 50°C


20

Tanning rate drinki

25

30

35

25

20

15

10

5

0

3

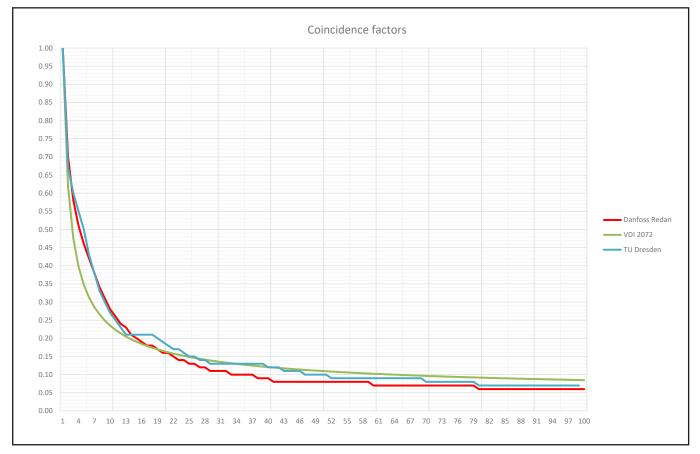
5

10

15

[]

Retur


Sizing

Calculation of the capacity of the PWH heat exchanger

The selection of a heat transfer station is based on the heat capacity required for DHW and space heating. The heating capacity for space heating is to be determined in accordance with the applicable national or international standards. The determination of the heat capacity for the DHW heating of the individual heat transfer station is based on the hot water demand that can occur in an apartment at any one time. Based on DIN 1988-300, it applies here that for simultaneity a maximum of the two hot water tapping points with the greatest capacity demands are open at the same time. These are, for example, the fittings on the shower and kitchen sink or the kitchen sink and bathtub. The capacity demands for DHW heating are determined using the equation below. Detailed information must be specified with the client in the room book. If no capacity requirements have been agreed, a normal capacity of 35 kW (this corresponds to requirement level II of VDI 6003) can be used for an apartment's calculation.

The simultaneity factor

Since it is impossible for all drinking water heaters to be in operation at the same time, a simultaneity factor (GLZ) is used in the calculation. There are simultaneity factors according to TU Dresden, Danfoss-Redan and more recently (for Germany) VDI 2072 (to name just three).

According to VDI 2072, the simultaneity factor is calculated as follows:

$$\varphi = 0.03 + \frac{0.5}{\sqrt{N}} + 0.45 \cdot \frac{1}{N}$$

Here:

 φ = Simultaneity of DHW heating in all residential units

N = Number of residential units with the same capacity (max. 10 kW difference)

Determination of the capacity of a flat station depends on two factors:

- 1. Heat requirement for space heating
- 2. DWH heat capacity

The heating capacity for space heating must be calculated in accordance with EN 12831-1. The heat capacity for DHW heating can be determined as follows based on DIN 1988-300. The largest consumer within every bathroom is determined and the required capacity of the sink is added.

If no capacity is specified, we assume a capacity of 37 kW. This corresponds to requirement level II described in VDI6003.

The size of the heating water tank (buffer) and the capacity of the heat generator are now calculated using a sample calculation.

The peak load (in minutes) is required to calculate the size of the heating water tank. This peak load time depends on the heat generator. If the heat generator reaches its nominal capacity in a short time (e.g. district heating, oil or gas boiler, etc.), a peak load time of 7-10 minutes can be set. For heat generators that are heated with biomass (pellets, logs, wood chips, etc.) or for heat pumps, significantly longer peak load times should be selected. In our experience, values of 15-20 minutes are realistic here.

The following data were set as given in the calculation example:

Apartment building with 12 flats	
Hot water capacity:	37 kW
Heat load:	2.4 kW per flat
Supply:	Supply line-65°C
Consumers:	Return line-50°C
PWH:	Return line-20°C
Simultaneity factor (with 12 res. units according to TU Dresden):	0.25
Peak load:	10 min
Supply: Consumers: PWH: Simultaneity factor (with 12 res. units according to TU Dresden):	Supply line-65°C Return line-50°C Return line-20°C 0.25

1. Hot water tank (buffer)

To calculate the heating water tank, the heat source flow rate for DHW heating must be determined as follows:

$$V_{PWH} = \frac{Q_{PWH} \times GLZ * Number of res. units}{c * \Delta t} * 1000 = \frac{37 \text{ kW} \times 0.25 * 12 \text{ res. units}}{1.163 * (65-20)} * 1000 = 2121 \text{ l/h}$$

Since mixing occurs in the lower area of the heating water tank, based on many years of experience, we assume a real usage of 66%

 $\left(\frac{1}{0.66} = 1.5\right).$

In this calculation, the heating water in the supply lines of the pipe network (V_{vL}) is subtracted from the calculated quantity of heating water.

 $V_{\text{buffer}} = (1.5 * V_{\text{PWH}} * \frac{10}{60} \text{ min}) - V_{\text{VL}} = (1.5 * 2,121 \text{ I/h} * \frac{10}{60}) - 63 \text{ I} = 467 \text{ I}$

Selected buffer size: 500 l

The basics of sizing flat stations

×

2. Capacity of the heat generator

The proportionate capacity that the heat generator must provide in addition to the space heating is calculated as follows:

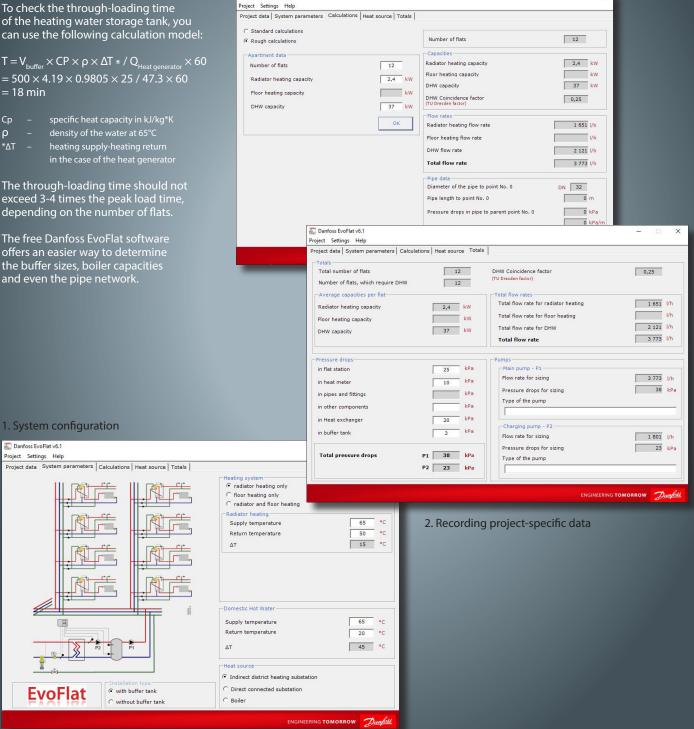
 $Q_{PWHges} = Q_{PWH} * Number of res. units * GLZ * Peak load = 37 kW * 12 res. units * 0.25 * <math>\frac{10}{60}$ min = 18.5 kW

Danfoss EvoFlat v6.1

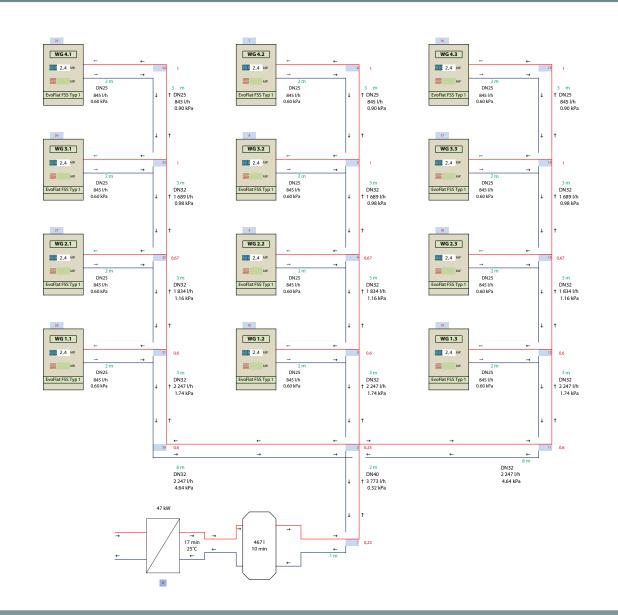
Space heating amounted to 2.4 kW per flat. This will give you:

Capacity of the heat generator = $(2.4 \text{ kW/res. unit} \times 12 \text{ res. units} + 18.5 \text{ kW}) = 47.3 \text{ kW}$

3. Calculation of through-loading time


To check the through-loading time of the heating water storage tank, you can use the following calculation model:

 $T = V_{\text{buffer}} \times CP \times \rho \times \Delta T * / Q_{\text{Heat opperator}} \times 60$ = 500 × 4.19 × 0.9805 × 25 / 47.3 × 60 = 18 min


- ρ

The through-loading time should not exceed 3-4 times the peak load time, depending on the number of flats.

The free Danfoss EvoFlat software offers an easier way to determine the buffer sizes, boiler capacities and even the pipe network.

The simple 'copy & paste' function allows complex blocks of characters to be inserted. This allows a riser diagram to be created without CAD experience. The saved file is read in using the EvoFlat software and the finished dimensioned pipe network including information about the buffer volume and heat generator capacity is then available as a printout.

Safety-relevant components as well as pumps, safety valves, etc. are not shown in this diagram.

VDI 2072 (flow DHW heating with water/water-heat exchanger), which has been valid since 1 November 2019, includes a method for calculating the pipe network. This is not shown in the planning manual. You will find this in the dimensioning tool EvoFlat[™], version 8.0, which will appear shortly.

6.2 SIZING

Sizing system components

Coincidence factors

Coincidence factors						
Number	Danfoss	TU	VDI			
of flats	Redan	Dresden	2072			
1	1.00	1.00	1.00			
2	0.70	1.00	0.62			
3	0.58	0.67	0.48			
4	0.51	0.60	0.40			
5	0.46	0.55	0.35			
6	0.42	0.50	0.31			
7	0.38	0.43	0.29			
8	0.34	0.38	0.27			
9	0.31	0.33	0.25			
10	0.28	0.30	0.24			
11	0.26	0.27	0.22			
12	0.24	0.25	0.21			
13	0.23	0.23	0.20			
14	0.21	0.21	0.20			
15	0.20	0.21	0.19			
16	0.19	0.21	0.18			
17	0.18	0.21	0.18			
18	0.18	0.21	0.17			
19	0.17	0.21	0.17			
20	0.16	0.20	0.17			
21	0.16	0.19	0.16			
22	0.15	0.18	0.16			
23	0.14	0.17	0.15			
24	0.14	0.17	0.15			
25	0.13	0.17	0.15			
26	0.13	0.10	0.15			
20	0.13	0.15	0.13			
28	0.12	0.13	0.14			
20	0.12	0.14	0.14			
30	0.11	0.14	0.14			
31	0.11	0.13	0.14			
32	0.11	0.13	0.13			
33						
	0.10	0.13	0.13			
34	0.10	0.13	0.13			
35	0.10	0.13	0.13			
36	0.10	0.13	0.13			
37	0.10	0.13	0.12			
38	0.09	0.13	0.12			
39	0.09	0.13	0.12			
40	0.09	0.13	0.12			
41	0.08	0.12	0.12			
42	0.08	0.12	0.12			
43	0.08	0.12	0.12			
44	0.08	0.11	0.12			
45	0.08	0.11	0.11			
46	0.08	0.11	0.11			
47	0.08	0.11	0.11			
48	0.08	0.10	0.11			
49	0.08	0.10	0.11			
50	0.08	0.10	0.11			
51	0.08	0.10	0.11			
52	0.08	0.10	0.11			

Number	Danfoss	TU	VDI
of flats	Redan	Dresden	2072
53	0.08	0.09	0.11
54	0.08	0.09	0.11
55	0.08	0.09	0.11
56	0.08	0.09	0.11
57	0.08	0.09	0.10
58	0.08	0.09	0.10
59	0.08	0.09	0.10
60	0.07	0.09	0.10
61	0.07	0.09	0.10
62	0.07	0.09	0.10
63	0.07	0.09	0.10
64	0.07	0.09	0.10
65	0.07	0.09	0.10
66	0.07	0.09	0.10
67	0.07	0.09	0.10
68	0.07	0.09	0.10
69	0.07	0.09	0.10
70	0.07	0.09	0.10
71	0.07	0.08	0.10
72	0.07	0.08	0.10
73	0.07	0.08	0.09
74	0.07	0.08	0.09
75	0.07	0.08	0.09
76	0.07	0.08	0.09
77	0.07	0.08	0.09
78	0.07	0.08	0.09
79	0.07	0.08	0.09
80	0.06	0.08	0.09
81	0.06	0.07	0.09
82	0.06	0.07	0.09
83	0.06	0.07	0.09
84	0.06	0.07	0.09
85	0.06	0.07	0.09
86	0.06	0.07	0.09
87	0.06	0.07	0.09
88	0.06	0.07	0.09
89	0.06	0.07	0.09
90	0.06	0.07	0.09
91	0.06	0.07	0.09
92	0.06	0.07	0.09
93	0.06	0.07	0.09
94	0.06	0.07	0.09
95	0.06	0.07	0.09
96	0.06	0.07	0.09
97	0.06	0.07	0.09
98	0.06	0.07	0.09
99	0.06	0.07	0.08
100	0.06	0.07	0.08
101	0.06	0.07	0.08
102	0.06	0.07	0.08
103	0.06	0.07	0.08
104	0.06	0.07	0.08

Number of flats	Danfoss Redan	TU Dresden	VDI 2072
105	0.06	0.07	0.08
106	0.06	0.07	0.08
107	0.06	0.07	0.08
108	0.06	0.07	0.08
100	0.06	0.06	0.08
110	0.06	0.06	0.08
111	0.06	0.06	0.08
112	0.06	0.06	0.08
112	0.06	0.06	0.08
114	0.06	0.06	0.08
115	0.06	0.06	0.08
116	0.06	0.06	0.08
117	0.06	0.06	0.08
117	0.06	0.06	0.08
119	0.06	0.06	0.08
119	0.06	0.06	0.08
120	0.06	0.06	0.08
121	0.06	0.06	0.08
122	0.06	0.06	0.08
123	0.06	0.06	0.08
124	0.06	0.06	0.08
125	0.06	0.06	0.08
120	0.06	0.06	0.08
	0.06	0.00	0.08
128 129			
129	0.06	0.05	0.08
130	0.06	0.05	0.08 0.08
131			
132	0.06	0.05	0.08
135	0.06	0.05	0.08
	0.06	0.05	0.08
135	0.06	0.05	0.08
136	0.06	0.05	0.08
137		0.05	0.08
138	0.06		0.08
139	0.06	0.05	0.08
140	0.06	0.05	0.08
141	0.06	0.05	0.08
142	0.06	0.05	0.08
143	0.06	0.05	0.08
144	0.06	0.05	0.07
145	0.06	0.05	0.07
146	0.06	0.05	0.07
147	0.06	0.05	0.07
148	0.06	0.05	0.07
149	0.06	0.05	0.07
150	0.06	0.05	0.07
151	0.06	0.05	0.07
152	0.06	0.05	0.07
153	0.06	0.05	0.07
154	0.06	0.05	0.07
155	0.06	0.05	0.07
156	0.06	0.05	0.07

7.1 RECESS BOXES

A D Q Ε 666666 1.000 mm B Wall С 6 Floor covering Screen with underfloor heating Footfall sound insulation Insulation Raw concrete with vapour barrier

Code no.	Name	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	Mounting rail incl. mounting rail
145H4900	Recess box	610	910	150				included
145H4901	Frame with door				662	790	10	
145H4902	Recess box	690	910	150				included
145H4903	Frame with door				742	790	10	
145H4904	Recess box	610	1350	150				included
145H4905	Frame with door				662	1230	10	
145H4906	Recess box	690	1350	150				included
145H4907	Frame with door				742	1230	10	
145H4908	Recess box	850	1350	150				included
145H4909	Frame with door				920	1230	10	

Details

RECESS BOXES

Recess box made of galvanized sheet steel in a robust design. The box is closed on all sides, open at the bottom. It can be installed in masonry or in a drywall. Mounting rail incl. ball valves already integrated in the housing. Suitable for installation of Danfoss DHW heaters* and flat stations. Visible part with frame in an elegant design. Removable and made of galvanized sheet steel, powder-coated white (RAL 9016).

Details

* except Akva Lux II / Akva Les with 190 mm installation depth

Danfoss in-wall cabinets for professional and cost-effective wall installation of flat stations and underfloor distributors.

Туре	Code No.
Danfoss recess box 610×910×150, with ball valve rail	145H4900
Frame with door for in-wall box 610×910×150, RAL 9016	145H4901
Danfoss recess box 690×910×150, with ball valve rail	145H4902
Frame with door for in-wall box 690×910×150, RAL 9016	145H4903
Danfoss recess box 610×1350×150, with ball valve rail, max. 8 heating circuits	145H4904
Frame with door for in-wall box 610×1350×150, RAL 9016	145H4905
Danfoss recess box 690×1350×150, with ball valve rail, max. 9 heating circuits	145H4906
Frame with door for in-wall box 690×1350×150, RAL 9016	145H4907
Danfoss recess box 850×1350×150, with ball valve rail, max. 12 heating circuits	145H4908
Frame with door for in-wall box 850×1350×150, RAL 9016	145H4909

Accessories selection list

Code No.	Item description, accessory	Akva Lux II & Akva Les	EvoFlat WSS
144H1461	Ball valve, DVGW ¾" × 76 mm int. thread/ext. thread	x	
145H4313	Ball valve, heating $\frac{3}{4}$ " \times 76 mm int. thread/ext. thread	x	
145H4537	Ball valves set incl. mounting rail incl. 5 BV (3xDVGW, 2xheating), $3/3^{"} \times 76$ mm int. thread/ext. thread for WSS models		х
145H4195	Ball valves set incl. mounting rail incl. 7 BV (3xDVGW, 4xheating), $\frac{3}{4}$ " \times 76 mm int. thread/ext. thread		
145H4015	Ball valves set for RENO (2xDVGW, 4xheating)		
144B2420	DCW connection from top - pipe set, with 110 mm fitting piece ¾"		
145H4920	Pipe set, insulated for primary connection from the top		
145H4202	Connection set for underfloor heating distributor system with base plate for third-party distributor, suitable for rail 145H4195 (BV with int. thread)		
145H4900	Recess box W=610 × H=910 × D=150 mm for EvoFlat [™] incl. mounting rail		х
145H4901	Door with frame for recess box $W=610 \times H=910 \text{ mm}$		х
145H4902	Recess box W=690 × H=910 × D=150 mm for EvoFlat™ incl. mounting rail		х
145H4903	Door with frame for recess box W=690 × H=910 mm		х
145H4904	Recess box W=610 × H=1350 × D=150 mm for EvoFlat™ MSS and underfloor heating distributor (up to 8 circuits) incl. mounting rail		
145H4905	Door with frame for recess box W=610 \times H=1350 mm		
145H4906	Recess box W=690 × H=1350 × D=150 mm for EvoFlat [™] and underfloor heating distributor (up to 9 circuits)		
145H4907	Door with frame for recess box W=690 \times H=1350 mm		
145H4908	Recess box W=850 × H=1350 × D=150 mm for EvoFlat [™] and underfloor heating distributor (up to 12 circuits)		
145H4909	Door with frame for recess box W=850 \times H=1350 mm		
004U8578	Cover RAL 9010 white without door W=600 \times H=780 \times D=200 mm		х
193B1397	Cover with door; RAL 9010 white W=630 \times H=1300 \times D=180 mm, open at the bottom		
193B1398	Cover with door; white RAL 9010 W=1000 \times H=1300 \times D=180 mm, open at the bottom		
145H4927	Cover, white-lacquered RAL 9016 without door W=455 × H=760 × D=220 mm		
145H4779	Circulation set for Akva Lux WSS, FSS and MSS (set includes Wilo Star Z Nova pump, SV, piping and seals)		
088H3112	Thermal actuator TWA-A/NC 230 V suitable for RA valves		
082F1266	Thermal actuator TWA-A/NC 230 V suitable for EvoFlat [™] zone valve		
082F1262	Thermal actuator TWA-A/NC 24 V suitable for EvoFlat™ zone valve		
088U1025	Danfoss Icon [™] room thermostat with display, programmable, 230 V, wall-mounted		
088U1020	Danfoss Icon [™] room thermostat with display, programmable, 230 V, in-wall 80×80 mm		

 $^{\ast}1$ in conjunction with heating manifold type SG, SGC or SGCi

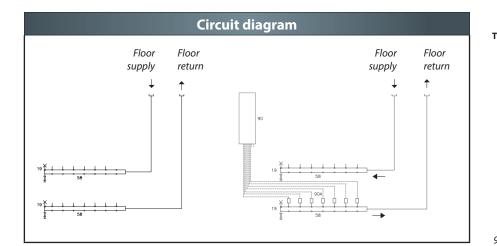
*2 in conjunction with heating manifold for VX-F stations

Accessories

Akva Lux WSS Akva Vita WSS	EvoFlat FSS	EvoFlat MSS	EvoFlat FSF	EvoFlat Reno	Akva Lux II Reno Eco	Akva Lux FSS Akva Vita FSS	Akva Lux MSS Akva Vita MSS	VX-FSS	VX-MSS
х									
	х	х	х			x	х	x	x
					Х				
					х				
				х					
		x	x				x		
х	х	х	х			х	х		
х	х	х	х			х	х		
х	х	х	х			х	х		
х	х	х	х			х	х		
		X ^{*1}	X ^{*1}				X ^{*1}		
		X ^{*1}	X ^{*1}				X ^{*1}		
		X *1	X *1				X ^{*1}	x	X ^{*2}
		X ^{*1}	X ^{*1}				X ^{*1}	x	X ^{*2}
		X *1	X *1				X ^{*1}	x	X*2
		X ^{*1}	X ^{*1}				X ^{*1}	х	X ^{*2}
х	х	х	х			х	х		
		X ^{*1}	X ^{*1}				X ^{*1}	x	x*2
		X ^{*1}	X ^{*1}				X ^{*1}	x	X ^{*2}
				х					
х						х	x		
					х			x	
	х			х					
	х			х					
	х	х	х	х	х	х	х	x	x
	х	x	x	x	X	x	X	x	X

7.4 RECESS BOXES

Mounting



7.5

Distribution system SG, SGC + SGCi

Prefabricated Danfoss stainless steel distribution systems of underfloor heating, suitable for separate or combined installation with Danfoss flat stations in Danfoss recess boxes.

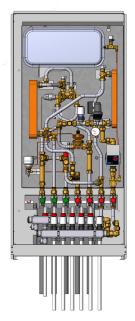
Heating manifold type	Code No.
Type SG with 2 heating circuits	145H0352
Type SG with 3 heating circuits	145H0353
Type SG with 4 heating circuits	145H0354
Type SG with 5 heating circuits	145H0355
Type SG with 6 heating circuits	145H0356
Type SG with 7 heating circuits	145H0357
Type SG with 8 heating circuits	145H0358
Type SG with 9 heating circuits	145H0359
Type SG with 10 heating circuits	145H0360
Type SG with 11 heating circuits	145H0361
Type SG with 12 heating circuits	145H0362
Type SGC with 2 heating circuits and Icon [™] master controller 230 V	145H0342
Type SGC with 3 heating circuits and Icon [™] master controller 230 V	145H0323
Type SGC with 4 heating circuits and Icon [™] master controller 230 V	145H0324
Type SGC with 5 heating circuits and Icon [™] master controller 230 V	145H0325
Type SGC with 6 heating circuits and Icon [™] master controller 230 V	145H0326
Type SGC with 7 heating circuits and Icon [™] master controller 230 V	145H0327
Type SGC with 8 heating circuits and Icon [™] master controller 230 V	145H0328
Type SGC with 9 heating circuits and Icon [™] master controller 230 V	145H0329
Type SGC with 10 heating circuits and Icon [™] master controller 230 V	145H0330
Type SGC with 11 heating circuits and Icon [™] master controller 230 V	145H0331
Type SGC with 12 heating circuits and Icon [™] master controller 230 V	145H0332
Heating manifold type SGCi with 2 heating circuits and Icon™ 24 V	145H0752
Heating manifold type SGCi with 3 heating circuits and Icon [™] 24 V	145H0753
Heating manifold type SGCi with 4 heating circuits and Icon™ 24 V	145H0754
Heating manifold type SGCi with 5 heating circuits and Icon™ 24 V	145H0755
Heating manifold type SGCi with 6 heating circuits and Icon [™] 24 V	145H0756
Heating manifold type SGCi with 7 heating circuits and Icon™ 24 V	145H0757
Heating manifold type SGCi with 8 heating circuits and Icon [™] 24 V	145H0758
Heating manifold type SGCi with 9 heating circuits and Icon [™] 24 V	145H0759
Heating manifold type SGCi with 10 heating circuits and Icon™ 24 V	145H0760
Heating manifold type SGCi with 11 heating circuits and Icon [™] 24 V	145H0761
Heating manifold type SGCi with 12 heating circuits and $Icon^{\texttt{m}}24V$	145H0762

Technical parameters: Nominal pressure:	PN 6
Weight: incl. packing:	20-30 kg
Door in front of recess box: (optional)	Steel sheet, white- lacquered RAL 9010
Electrical connection:	230 V AC / 24 AC/DC
Dimensions (mm):	H 590 \times W 550 \times D 150
Connection dimensions	G ¾" (ext. thread)

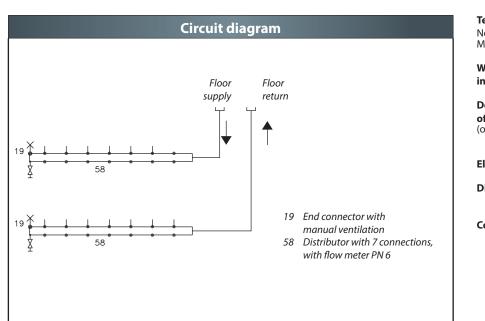
Type SG:	Distributor system for underfloor heating without admixture circuit, with flow meter.
Type SGC:	Distributor system for underfloor heating without admixture circuit with flow meterand with hardwired Icon™ master controller 230 V and actuators according to the number of heating circuits.
Type SGCi:	Distributor system for underfloor heating without admixture circuit, with flow meter and with hardwired Icon [™] heating circuit controller 24 V and actuators according to the number of heating circuits.

- 58 Distributor with 7 connections,
 - with flow meter
- 90 Danfoss Icon[™] master controller
- 90A Actuator Danfoss TWA-A NC

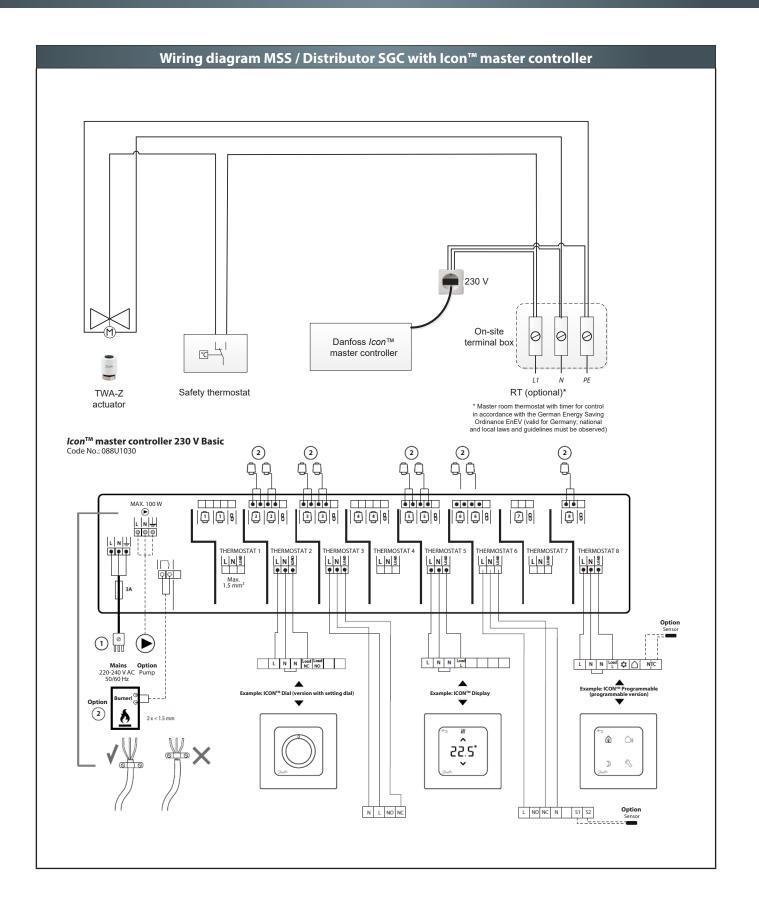
¹⁹ End connector with manual ventilation


Distributor for Akva Lux II VX-F

The Danfoss stainless steel distribution systems are prefabricated heating circuit distributors for underfloor heating which are prepared for separate installation or for combined installation with the well-known Danfoss flat stations type VX-F. The systems are available as standard solutions for 3 to 12 heating circuits. The systems can be installed as an in-wall version with built-in cabinet or as a wall-mounted version.


Code No.
145H0503
145H0504
145H0505
145H0506
145H0507
145H0508
145H0509
145H0510
145H0511
145H0512

Recess box	Code No.
Recess box H 1350 \times W 690 \times D 150 mm, incl. mounting rail and ball valves (<i>up to 8 heating circuits</i>)	145H4906
Door with frame recess box 1350×690, powder-coated RAL 9016	145H4907
Recess box H1350 \times W850 \times T 150 mm, incl. mounting rail and ball valves (<i>up to 11 heating circuits</i>)	145H4908
Door with frame recess box 1350×850, powder-coated RAL 9016	145H4909
Mounting rail incl. ball valves	145H4195

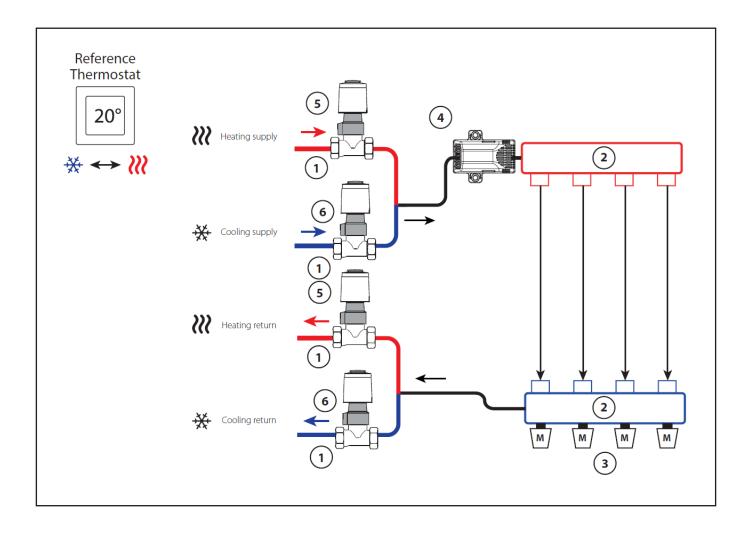

VX-F station with distribution system

echnical parameters: Iominal pressure: Nax. flow temp.:	PN 6 55℃
Veight: ncl. packing:	20-30 kg
Door in front f recess box: optional)	Steel sheet, white- lacquered RAL 9016
lectrical connection:	230 V AC / 24 V AC/DC
Dimensions (mm):	H 227 × W 478 - 810.5 × D 153
connection dimensions	: G ¾" (ext. thread)

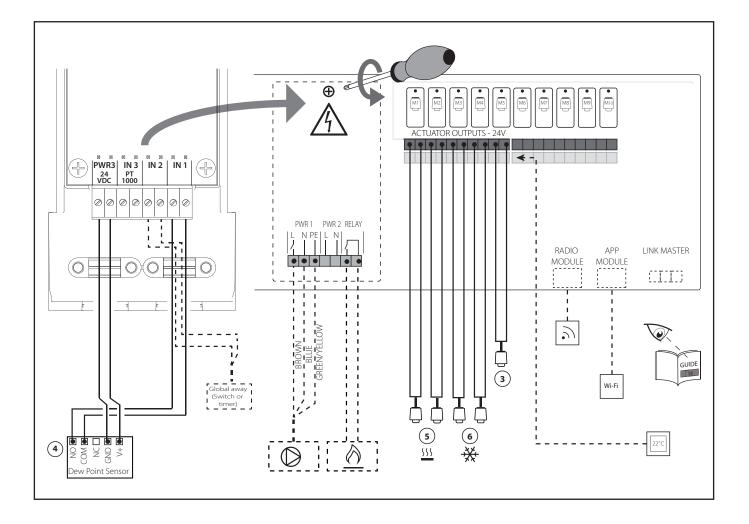
Manifolds

7.7

63 Planner handbook from A-Z


Application Description

Four-pipe system with 2-way valves on the inlets and automatic switching for cooling, controlled by reference room thermostat. The system activates the cooling mode via 2-way valves with thermal actuators on the supply and return lines by activating the corresponding outputs (**M1 - M4**). Note: In this application, outputs 1, 2, 3 and 4 on the *Danfoss lcon*[™] Master are used for the application and cannot be assigned to any thermostats.


For cooling applications, it is always advisable to have a condensation switch installed in the system to prevent moisture damage to the floor and installations if the relative humidity exceeds the dew point. Four conditions must be fulfilled before cooling is permitted in a room:

- The reference room temperature must exceed the room setpoint and the cooling hysteresis.
- No room has required heating within the neutral period.
- The condensation switch must not be active/there must be no risk of condensation.
- The cooling must be activated on the room thermostat (default = activated).

Global standby is a potential-free input with which the system can be remotely switched to global presence mode, e.g. using an external GSM module from a third party provider. When the global standby input is active, all rooms receive a setpoint of 15 degrees Celsius.

Wiring diagram, CDM module with CSGCi distributor

7.8

Wiring diagram

8.1 FLAT STATIONS QUERY

Consumer											
Company:			Post code / city:								
Contact:			Street:								
Project											
Project:			Post code / city:								
Number of flats:			Street:								
Design data:											
Use:	Residential										
Heat generator:	Boiler	District heating	Heat Pump								
Buffer tank:	no	yes (if available, capa	icity:l)								
Space heating:	Radiators	Floor heating	Panel heating with	g with bathroom radiator							
Network or buffer te	mperature supply line / ret	urn line:	65°C	°C)							
Dimensioning tempe	eratures, floor heating:	°C/°C)									
Dimensioning tempe	eratures, radiators:	°C/°C)									
Tap load (PWH):	_	15 l/min (37 kW at 65°C supply line) 17 l/min (45 kW at 65°C supply line)									
	_	19 l/min (55 kW at 65°C supply line)									
Number of underfloo	or heating circuits:	3 circuits4 circuits5 circuits6 circuits7 circuit									
	_	8 circuits 9	circuits 10 circuits	11 circuits 12 circuits							
Number of room the	rmostats:										
Circulation:		no (PWH - 50°C)	yes (PWH - 60°C, PWH-C - 55	5°C)							
Brazing of plate heat	exchanger:	Copper	Stainless steel								
Installation type:		Recess	Wall-mounted								

A riser diagram is required with details of the heating demand of the heating circuits or the flats and the DHW capacity PWH, if possible in kW. Without this information, pipe network dimensioning is not possible!

Customer requ	ests:		
	Planning sugges	tion, pipe network	Technical documents
	Texts, specificati	ons	Visit from SR/BDM
	Quote	Gross Net	

Notes

L	: :		 	: 1	 	 : 1				-	 	 	 	 	-	-			

Energy efficiency experience - worldwide

Danfoss is more than a household name in heating. For more than 75 years, we have been supplying customers across the world with everything from components to complete district heating system solutions. For generations, we have made it our business to help you

optimize yours, and that remains our goal both now and in the future. Driven by our customers' needs, we build on years of experience to be at the forefront of innovation, continually supplying components, expertise and complete systems for climate and energy applications. Energy-efficient products from Danfoss help our customers all over the world to increase the comfort of their own customers with less energy consumption, thereby reducing their costs and the burden on our environment.

We make most of them ourselves

All important components of EvoFlat[™] flat stations are developed and manufactured by Danfoss itself. This also includes the new MicroPlate[™] heat exchangers, thermostatic and safety valves, thermostatic and electronic controllers. All parts are assembled in our own factories in Denmark according to quality standards that are certified according to DIN ISO 9001. This enables us to ensure that everything harmonizes and works together during assembly and during customer operation. This results in technically high-quality products that you and your customers can rely on.

If a fault does arise, our comprehensive service will be at your side to help fix this.

Danfoss Redan A/S

redan.danfoss.dk • +45 8743 8943 • E-Mail: redan@danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and all Danfoss logotypes are trademarks of Danfoss A/S. All rights reserved.