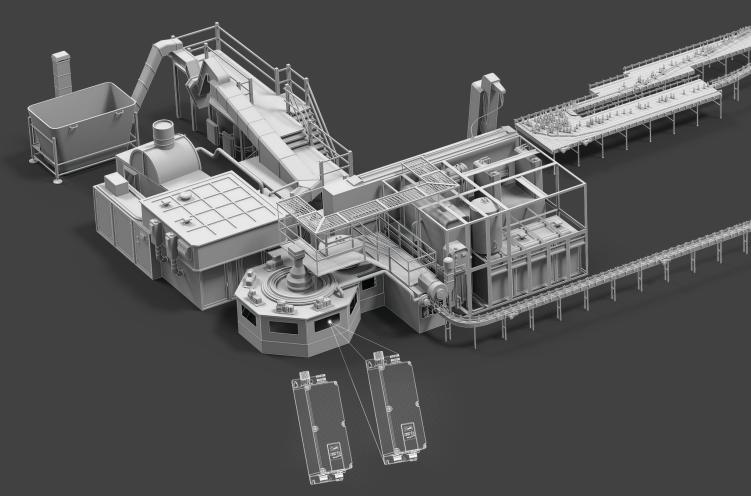
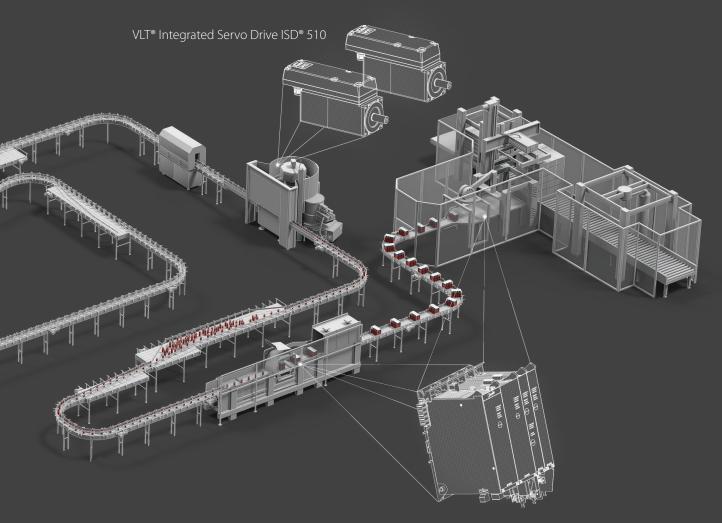
ENGINEERING TOMORROW

Guida alla scelta | VLT® FlexMotion™

Massima libertà – un unico sistema per soluzioni servo centralizzate e decentralizzate


VLT® Multiaxis Servo Drive MSD 510, VLT® Integrated Servo Drive ISD® 510 e VLT® Decentral Servo Drive DSD 510

Il futuro della macchina intelligente: la flessibilità


Cerchi un sistema modulare nella progettazione della tua macchina che si adatti nel migliore dei modi al tuo business?

Dai un'occhiata a Danfoss VLT® FlexMotion™. Un sistema di servoazionamento universale progettato per soddisfare oggi le esigenze di progettazione delle macchine di domani. Combina e dimensiona i moduli in base alle tue specifiche esigenze. I moduli centralizzati e decentralizzati ti permetteranno di ottenere innumerevoli funzioni. L'architettura aperta del sistema ti offre la massima libertà di integrazione con motori e PLC più adatti alle tue esigenze. Risparmia su tempo e costi grazie a numerose finiture che rendono più **veloce** l'installazione e la messa in funzione. Tutto è progettato per un funzionamento assolutamente affidabile in ambienti gravosi. Nel complesso, un sistema in grado di offrirti la massima libertà nella progettazione delle tue macchine.

VLT® Decentral Servo Drive DSD 510

SCALABILE APERTO VELOCE AFFIDABILE

VLT® Multiaxis Servo Drive MSD 510

Massima **flessibilità** nella progettazione delle macchine

Danfoss può supportarti in ogni fase della progettazione e realizzazione di «macchine per un processo produttivo intelligente». Puoi raggiungere un elevato grado di personalizzazione e precisione che ti consentirà di ottenere di più con meno. La combinazione di moduli centralizzati e decentralizzati di VLT® FlexMotion™ assicura la massima flessibilità nella progettazione della macchina e nell'integrazione dei sistemi.

Pensa in grande. Be smart. Realizza la tua macchina in modo da soddisfare oggi le esigenze di domani.

Lascia che Danfoss supporti il tuo business.

Realizza macchine modulari utilizzando un sistema versatile. Design scalabile

I sistemi moderni devono essere estremamente flessibili in termini di adattabilità ed estensioni. Questo criterio vale anche per tutti i componenti di sistema utilizzati nella progettazione della macchina VLT® FlexMotion™, appositamente pensati per darti la massima libertà nei tuoi progetti.

Ogni modulo consente ai produttori di macchine di mantenere la massima flessibilità nel caso in cui si renda necessario aggiungere una nuova linea, o ampliarne una esistente con convertitori di frequenza aggiuntivi.

Combina i seguenti moduli VLT® FlexMotion™ in base alle tue esigenze:

- VLT® Multiaxis Servo Drive MSD 510
- VLT® Integrated Servo Drive ISD® 510
- VLT® Decentral Servo Drive DSD 510

Utilizza VLT® Multiaxis Servo Drive MSD 510 come servo hub e abbinalo a motori a magneti permanenti (PM) o asincroni (ASM), servoazionamenti decentralizzati (DSD 510) o motori con servoazionamenti integrati (ISD 510). Questo sistema riduce al minimo l'ingombro all'interno nel quadro, la lunghezza del cavo e i tempi di installazione. Inoltre è in grado di massimizzare le prestazioni, la precisione e la modularità.

Il sistema VLT® Integrated Servo Drive ISD® 510 è adatto a una vasta gamma di applicazioni, come, ad esempio, piattaforme girevoli, etichettatrici, tappatrici, sistemi di confezionamento alimentari e farmaceutici.

Puoi personalizzare il convertitore di frequenza per rispondere alle esigenze specifiche del cliente grazie a:

- varianti standard e avanzate del convertitore di frequenza
- quattro dimensioni della flangia
- freno meccanico opzionale
- diverse opzioni di personalizzazione

VLT® Decentral Servo Drive DSD 510 migliora la flessibilità del tuo sistema fornendo una vasta gamma di opzioni di feedback e la compatibilità con motori PM e ASM.

Tutte queste caratteristiche ti permettono di creare macchine facilmente ampliabili e adattabili.

Definisci gli altri elementi del sistema in base alle tue esigenze. Libertà di scelta grazie ad una piattaforma aperta

Sappiamo che sei nella posizione di decidere quali siano le migliori tecnologie per il tuo sistema. È per questo che ti lasciamo aperte tutte le possibilità e non ti vincoliamo a un unico protocollo. Non sarai tu a dover cambiare i protocolli per adattarli ai drives; bensì sono i drives che dovranno adattarsi al sistema da te scelto. Sentiti libero di utilizzare le piattaforme di comunicazione e di ingegneria più adatte alle tue esigenze.

Il tuo protocollo preferito

Il sistema aperto di VLT® FlexMotion™ supporta i protocolli Ethernet PROFINET®, POWERLINK® ed EtherCAT® in tempo reale. Ti consente inoltre di utilizzare controllori master di terze parti. La programmazione master mediante IEC 61131-3 e le librerie motion conformi a PLCopen rendono il sistema ancora più flessibile e facile da integrare in diversi ambienti di progettazione. La comunicazione

bus di campo senza gateway consente una comunicazione senza problemi utilizzando un numero inferiore di apparecchiature. Puoi collegare altri dispositivi bus di campo presenti nella macchina direttamente ai convertitori di frequenza decentralizzati e avanzati.

Il tuo motore ideale

Quali che siano le tue esigenze, puoi scegliere la tecnologia motore che meglio si adatta alla tua applicazione. Supportando una gamma più ampia di encoder di retroazione, avrai sempre possibilità di scelta, che si tratti di un ISD® 510 con coppia fino a 11,2 Nm, di una combinazione di DSD 510 e motore PM o ASM fino a 4,4 kW di potenza, o anche di un motore con potenza nominale fino a 20 kW combinato con uno dei moduli di servoazionamento centralizzato (SDM 511 o SDM 512).

Risparmio di tempo grazie ad un'installazione Veloce e sicura

Risparmia tempo con strumenti efficaci che saranno apprezzati dall'elettricista dell'impianto. Con un approccio originale e innovativo, VLT® FlexMotion™ riduce le complessità di montaggio e di messa in funzione. E non ci sono compromessi: il risultato soddisfa gli standard più elevati di sicurezza e qualità.

Montaggio Click and Lock

Approfitta della facilità di montaggio e installazione sicura grazie all'esclusivo sistema Click and Lock, in cui il collegamento CC e la tensione di controllo sono integrati nella piastra posteriore di ogni modulo. Risparmia tempo: non sono necessari componenti aggiuntivi come cavi e barre collettrici.

Interfaccia utente intelligente

Approfitta del software VLT® Servo Toolbox con la sua efficace interfaccia multifunzione: È semplice, intuitiva e mette a disposizione una vasta gamma di strumenti integrati per la messa in servizio, il CAM editing, il debug e l'esecuzione di test.

VLT® Local Control Panel LCP 102 rende più rapide le operazioni di messa in servizio, risoluzione dei problemi e svolgimento delle attività di manutenzione. Aumenta la velocità di accesso ai servoazionamenti decentralizzati avanzati e a tutti i moduli centralizzati del sistema. Per cicli di lavoro veloci, dispone di un display grafico, un menu ad accesso rapido, una chiara struttura dei parametri e LFD di stato di facile lettura

Cablaggio semplificato e sicuro

La decentralizzazione dei convertitori di freguenza nel sistema VLT® FlexMotion™ riduce il numero di cavi. VLT® Decentral Access Module DAM 510 si collega al primo servoazionamento mediante un cavo ibrido preconfigurato. Questo cavo singolo combina l'alimentazione da 565-680 V CC, da 24-48 V CC, il segnale STO e il bus di comunicazione. Il cavo ibrido trasmette questi segnali a ciascun servoazionamento collegato nel formato daisy-chain.

Con VLT® Integrated Servo Drive ISD® 510, questa architettura di cablaggio semplificata elimina la necessità di apparecchiature aggiuntive, come cavi di feedback separati e scatole di derivazione. Il sistema di cablaggio «Plug and Twist» garantisce un'installazione rapida e sicura.

Quando è in gioco il tuo nome, l'affidabilità è fondamentale

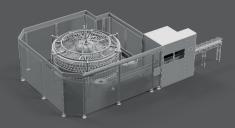
Prestazioni affidabili

Se c'è il tuo nome sulla macchina è essenziale la qualità. Sappiamo quanto sia importante mantenere la fiducia che hai conquistato negli anni con i tuoi clienti. Non sprecare tempo cercando combinazioni complesse di apparecchiature diverse che ti permettano di ottenere esattamente le prestazioni di cui hai bisogno. Con VLT® FlexMotion[™] puoi contare su un sistema coerente dalla formulazione modulare con compatibilità e prestazioni comprovate. Per ogni sistema che scegli di realizzare, il risultato è un'affidabilità assoluta combinata alla massima operatività.

Resistenza in ambienti gravosi

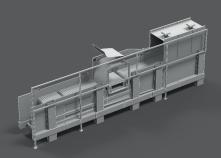
Avendo collaborato per anni con le industrie del settore food and beverage, comprendiamo benissimo l'importanza di prestazioni solide basate su un impianto perfettamente protetto. Per questo motivo, i servoazionamenti decentralizzati ISD® 510 e DSD 510 sono disponibili con frame fino a IP67*. Una superficie completamente liscia e facile da pulire, priva di alette o ventole di raffreddamento, rende questi convertitori di frequenza totalmente affidabili dal punto di vista igienico e resistenti agli agenti chimici. La classe di vibrazione 3M7 assicura un funzionamento affidabile e rende questi convertitori di frequenza ideali per le parti rotanti delle macchine.

Progettazione semplice e rapida

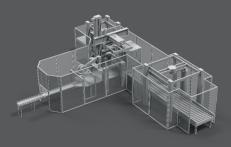

I costi di manutenzione possono essere ridotti al minimo perché i moduli VLT® FlexMotion™ sono praticamente esenti da manutenzione, essendo concepiti per garantire affidabilità e solidità. I convertitori di freguenza utilizzano cuscinetti di alta qualità e l'unico ricambio necessario è l'anello di tenuta dell'albero. Il fatto che non siano necessari utensili per lavorare con i cavi ibridi comporta un notevole risparmio di tempo.

Rilevamento rapido degli errori grazie a LED luminosi su tutti i moduli centralizzati e decentralizzati.

Le versioni avanzate dei convertitori di frequenza forniscono tre porte extra per:


- I/O ed encoder esterni, ad esempio interruttori di riferimento e di finecorsa
- Interfaccia utente: VLT® Local Control Panel LCP 102 Ethernet completamente funzionale** (per il collegamento diretto di bus di campo di terzi)

Applicazioni tipiche


Beverage

- Stampaggio per soffiaggio di PET
- Stampa digitale di bottiglie

Sistemi di confezionamento per il settore food and beverage

- Avvolgitrici
- Produzione di sacchetti
- Sigillatrici di vaschette
- Pellicolatrici

Sistemi di confezionamento per il settore farmaceutico e industriale

- Pallettizzazione
- Coperchiatrici
- Incartonatrici
- Riempitrici di tubi
- Confezionatrici di blister
- Dosatrici di liquidi
- Dosatrici di solidi

^{*} Per i dettagli si prega di controllare i codici d'ordine alle pagine 15 e 17.

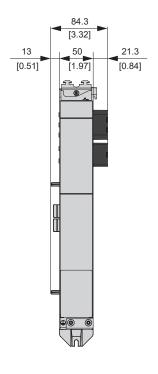
^{**} Disponibile per convertitori di frequenza EtherCAT e POWERLINK.

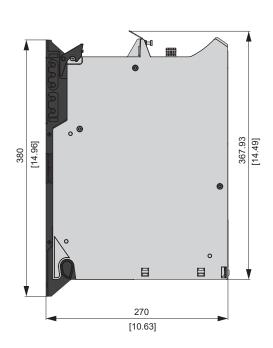
VLT® Multiaxis Servo Drive MSD 510

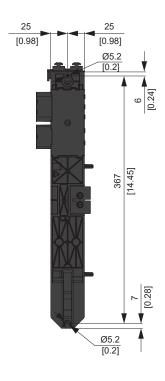
Il sistema MSD 510 è una soluzione generica servo centrale e costituisce la base del design VLT® FlexMotion™. La flessibilità e la modularità hardware e software ti lasciano la libertà di progettare macchine in base alle esigenze applicative.

- VLT® Power Supply Module PSM 510
- VLT® Servo Drive Module SDM 511 per asse singolo e SDM 512 per asse doppio
- VLT® Decentral Access Modules DAM 510
- VLT® Auxiliary Capacitor Module ACM 510
- VLT® Expansion Module EXM 510

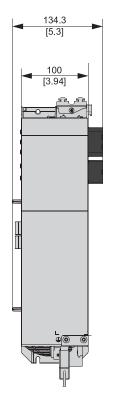
Per ottimizzare lo spazio necessario, alcuni moduli sono disponibili in due taglie: 50 mm (1,97") o 100 mm (3,94").

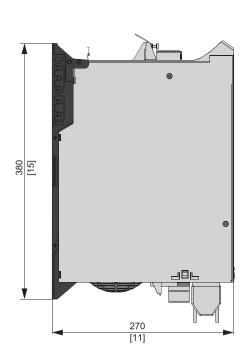

Approfitta della facilità di montaggio e dell'installazione sicura grazie a un esclusivo sistema Click and Lock, in cui il collegamento CC e la tensione di controllo sono integrati nella piastra posteriore di ogni modulo. A seconda del tipo di macchina, è possibile utilizzare l'MSD 510 come sistema centrale unico oppure come sistema misto con VLT® Integrated Servo Drive ISD® 510 e VLT® Decentral Servo sono facili da implementare: sarà sufficiente aggiungere o scambiare moduli.

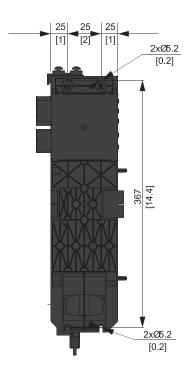

- > VLT® Power Supply Module PSM 510
- > VLT® Servo Drive Modules SDM 511 e SDM 512
- VLT® Decentral Access Module DAM 510
- > VLT® Auxiliary Capacitors Module ACM 510
- > VLT® Expansion Module EXM 510


Tensione di ingresso nominale	3 ~ 400–480 V CA +/-10%			
Frequenza di alimentazione	50 / 60 Hz			
Tensione circuito intermedio	565–680 V CC +/-10%			
Tensione di controllo	24 / 48 V CC +/-10%			
Temperatura ambiente	5–40 °C, max 55 °C con declassamento (41–104 °F, max 131 °F con declassamento)			
Bus di campo	PROFINET®, POWERLINK®, EtherCAT®			
Classe di protezione IP	IP20			
Struttura modulare con due taglie disponibili	FS1 50 mm (1,97") o FS2 100 mm (3,94")			
Montaggio	Montaggio a muro su piastra posteriore, sistema «Click and Lock»			
EMC secondo la normativa 61800-3	C3, C2 con filtro esterno			
Certificati/Approvazioni	CE, UL			
Sicurezza funzionale	STO SIL 2 PI d			

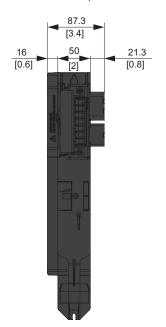
Dimensioni

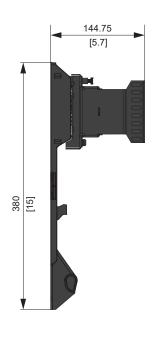

Taglia frame 1 (FS1)

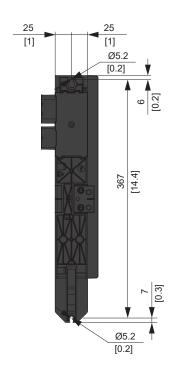




Taglia frame 2 (FS2)







Le dimensioni sono espresse in mm (pollici)

Modulo di espansione (EXM 510)

Le dimensioni sono espresse in mm (pollici)

VLT® Power Supply Module PSM 510

Il modulo PSM 510 genera una tensione sul circuito intermedio di 565-680 V ed è disponibile in tre taglie di potenza da 10, 20 o 30 kW e capacità di sovraccarico del 200%. Per ottenere un'uscita nominale fino a 60 kW, installare due unità PSM 510 in parallelo.

		PSM 510 10 kW	PSM 510 20 kW	PSM 510 30 kW
	PROFINET®	175G0162	175G0165	175G0168
Codice d'ordine relativo alla variante bus di campo	POWERLINK®	175G0160	175G0163	175G0166
ana variante bus di campo	EtherCAT®	175G0161	175G0164	175G0167
Tensione di ingresso nominale	VCA		3 x 400-480 +/-10%	
Tensione circuito intermedio	VCC		565-680 +/-10%	
Corrente di uscita nominale	A	20	40	60
Potenza di uscita nominale	kW (cv)	10 (13,4)	20 (26,8)	30 (40,2)
Corrente di picco i _{max}	A	40	80	120
Potenza di picco P _{max}	kW (cv)	20 (26,8)	40 (53,6)	60 (80,4)
Resistenza di frenatura interna				
Potenza di picco P _{max}	kW		8	
Potenza nominale P _N	W		150	
Resistenza nominale	Ω		15	
Resistenza di frenatura esterna				
Potenza di picco P _{max}	kW		60	
Potenza nominale P _N	kW		7,5	
Resistenza minima	Ω		10	
Raffreddamento			Ventola integrata	
Larghezza modulo	mm (pollici)		100 (3,94)	
Dimensioni frame			FS 2	
Peso	kg (libbre)		6 (13,2)	

VLT® Servo Drive Modules SDM 511 e SDM 512

Il modulo SDM 511 è un servoazionamento ad asse singolo, disponibile in cinque taglie di potenza. Il modulo SDM 512 è un servoazionamento ad asse doppio, disponibile in tre taglie di potenza.

Un'ampia gamma di opzioni di retroazione consente di scegliere il motore PM o ASM preferito. In alternativa, è anche possibile far funzionare il motore senza feedback. Inoltre, i moduli convertitori sono dotati di I/O digitali, uscite a relè e STO (Safe Torque Off) integrata.

Specifiche

		SDM511-xx	SDM511-xx	SDM511-xx	SDM511-xx	SDM511-xx	SDM512-xx	SDM512-xx	SDM512-xx	
Circuito intermedio	V CC		565-680 +/-10%							
Corrente nominale I _N	А	2,5	5	10	20	40	2 x 2,5	2 x 5	2 x 10	
Potenza nominale P _N	kW (cv)	1,4 (1,9)	2,8 (3,8)	5,7 (7,6)	11,3 (15,2)	22,6 (30,3)	2 x 1,4 (1,9)	2 x 2,8 (3,8)	2 x 5,7 (7,6)	
Corrente di picco	А	10	20	30	40	80	2 x 10	2 x 15	2 x 20	
Potenza di picco	kW (cv)	5,7 (7,6)	11,3 (15,2)	17,0 (22,8)	22,6 (30,3)	45,2 (60,6)	2 x 5,7 (7,6)	2 x 8,4 (11,3)	2 x 11,3 (15,2)	
Frequenza di commutazione nominale	kHz		4/5							
Frequenza di commutazione possibile	kHz				8/	10				
Frequenza di uscita massima	Hz		590							
Numero di collegamenti del motore		1 2								
Raffreddamento		Ventola integrata								
Larghezza modulo	mm (pollici)		50 (1,97)	100 (3,94)		50 (1,97)			
Dimensioni frame		FS 1 FS 2						FS 1		
Peso	kg (libbre)		3,9	(8,6)		6,4 (14,1)		3,9 (8,6)		

Codice d'ordine

VLT® Decentral Access Module DAM 510

Il modulo DAM 510 collega VLT® Integrated Servo Drive ISD® 510 e VLT® Decentral Servo Drive DSD 510 al sistema MSD 510 mediante un cavo di alimentazione ibrido. Questo ti offre una grande flessibilità, la possibilità di progettare il servosistema in base alle tue esigenze applicative e supporta la progettazione di macchine modulari.

Specifiche

		DAM 510 15 A	DAM 510 25 A		
- " " "	PROFINET®	175G0171	175G0174		
Codice d'ordine relativo alla variante bus di campo	POWERLINK®	175G0169	175G0172		
and variance bus at campo	EtherCAT®	175G0170	175G0173		
Circuito intermedio	V CC	565–680	+/-10%		
Corrente di uscita del circuito intermedio	А	15	25		
Larghezza modulo	mm (pollici)	50 (1,97)			
Dimensioni frame		FS 1			
Peso	kg (libbre)	3,1 (6,8)			

VLT® Auxiliary Capacitors Module ACM 510

Collega ACM 510 al sistema per immagazzinare energia. Questo ti consente di effettuare un arresto controllato della macchina in situazioni di emergenza.

Specifiche

	ACM 510	
	PROFINET®	175G0177
Numero d'ordine per variante con bus di campo	POWERLINK®	175G0175
con bus ar campo	EtherCAT®	175G0176
Circuito intermedio	V CC	565-680 +/-10%
Energia immagazzinabile	J	max. 770
Larghezza modulo	mm (pollici)	50 (1,97)
Dimensioni frame		FS 1
Peso	kg (libbre)	3,1 (6,8)

VLT® Expansion Module EXM 510

Per supportare il design modulare della macchina, l'EXM 510 può essere utilizzato per suddividere il sistema MSD 510 in due quadri. La distanza massima tra i quadri (lunghezza del cavo) è di 5 metri.

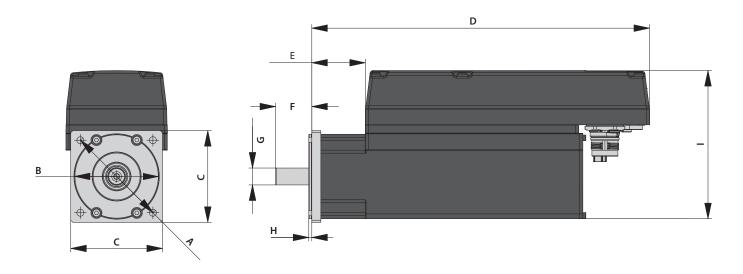
EXM 510							
Codice d'ordine	175G0194						
Circuito intermedio	VCC	565-680 +/-10%					
Corrente massima del circuito intermedio	А	62					
Larghezza modulo	mm (pollici)	50 (1,97)					
Peso	kg	0,6					

VLT® Integrated Servo Drive ISD® 510

VLT® Integrated Servo Drive ISD® 510 combina un servomotore e un servoazionamento in un'unità compatta. Offre grandi vantaggi in varie applicazioni, quali piattaforme girevoli, etichettatrici, tappatrici e confezionamento di alimenti e farmaci.

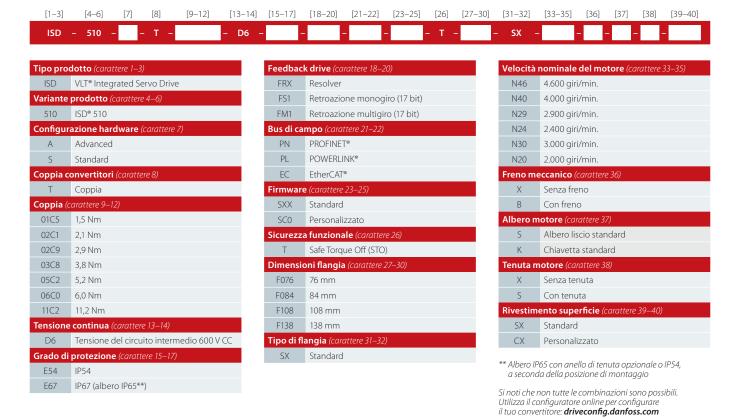
L'ISD 510 è alimentato da una combinazione di VLT® Power Supply Module PSM 510 e VLT® Decentral Access Module DAM 510. Il sistema di cablaggio ibrido Plug and Twist, che comprende alimentazione e tensione di controllo nonché i cavi di sicurezza funzionale e di bus di campo, rende l'installazione veloce, semplice, sicura ed economica. Poiché più convertitori di frequenza decentralizzati possono DAM 510 mediante un semplice cablaggio daisy-chain, non sono necessarie scatole di distribuzione e i cavi possono essere ridotti al minimo.

La superficie completamente liscia e facile da pulire, l'elevato grado di protezione IP67 e la classe di resistenza alle vibrazioni 3M7 assicurano la perfetta adattabilità a tutti i tipi di applicazioni rotanti in ambienti gravosi.



Specifiche

		Taglia 1 1,5 Nm	Taglia 2 2,1 Nm	Taglia 2 2,9 Nm	Taglia 2 3,8 Nm	Taglia 3 5,2 Nm	Taglia 3 6,0 Nm	Taglia 4 11,2 Nm
Velocità nominale n _N	giri/min.	4600	4000	2900	2400	3000	3000	2000
Coppia nominale M _N	Nm	1,5	2,1	2,9	3,8	5,2	6,0	11,2
Corrente nominale I _N	А	1,4	1,	,7	1,8	3,6	3,4	4,7
Potenza nominale P _N	kW (cv)	0,72 (0,98)	0,88	(1,20)	0,94 (1,28)	1,6 (2,18)	1,9 (2,58)	2,3 (3,13)
Coppia di arresto (stallo) M0	Nm	2,3	2,8	3,6	4,6	6,6	8,6	13,3
Corrente di arresto (stallo) 10	А	2,1	2,3	2,1	2,2	4,6	4,9	5,6
Coppia di picco M _{max}	Nm	6,1	7,8	10,7	12,7	21,6	29,9	38,6
Corrente di picco (valore rms) I _{max}	А	5,7	6,4				19,8	21,2
Frequenza di commutazione nominale	kHz	4/5						
Frequenza di commutazione possibile	kHz	8/10						
Tensione nominale	V CC	565-680 +/-10%						
Induttanza L a due fasi	mH	18,5	26,8	32,6	33,9	11,9	11,4	18,0
Resistenza R a due fasi	Ω	9,01	7,78	8,61	8,64	2,35	2,10	2,26
Costante di tensione EMK	V/krpm	70,6	80,9	111,0	132,0	92,7	112,0	158,8
Coppia costante Kt	Nm/A	1,10	1,26	1,72	2,04	1,22	1,51	1,82
Inerzia	kgm²	0,000085	0,00015	0,00021	0,00027	0,00062	0,00091	0,0024
Diametro albero	mm (pollici)	14 (0,55)		19 (0,75)		24 ((0,94)	32 (1,26)
Coppie di poli		4		5			5	
Dimensioni flangia	mm (pollici)	76 (2,99)	84 (3,31)			108 ((4,25)	138 (5,43)
Peso	kg (libbre)	3,5 (7,7)	4,0 (8,8)	5,0 (11,0)	6,0 (13,2)	8,3 (18,3)	10,0 (22,0)	13,8 (30,4)
Inerzia freno	kgm²	0,0000012		0,0000068		0,00	0021	0,000072
Peso freno	kg (libbre)	0,34 (0,75)		0,63 (1,39)		1,1 (2,42)	2,0 (4,41)


Per ulteriori dati tecnici, consultare la Guida alla progettazione

Dimensioni

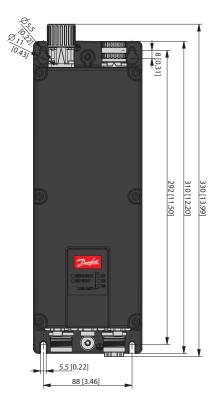
		A	ا	В		C	ı	D		E		F	(G		Н		l .
	mm	pollici	mm	pollici	mm	pollici	mm	pollici	mm	pollici	mm	pollici	mm	pollici	mm	pollici	mm	pollici
Taglia 1 (1,5 Nm)	85	3,35	70	2,76	76	2,99	280	11,02	44,4	1,75	30	1,18	14	0,55	2,5	0,10	123	4,84
Taglia 2 (2,1 Nm)	100	3,94	80	3,15	84	3,31	252	9,92	16,2	0,64	40	1,57	19	0,75	3	0,12	137	5,39
Taglia 2 (2,9 Nm)	100	3,94	80	3,15	84	3,31	281	11,06	45,2	1,78	40	1,57	19	0,75	3	0,12	137	5,39
Taglia 2 (3,8 Nm)	100	3,94	80	3,15	84	3,31	310	12,2	74,2	2,92	40	1,57	19	0,75	3	0,12	137	5,39
Taglia 3 (5,2 Nm)	130	5,12	110	4,33	108	4,25	276,3	10,88	21,3	0,84	50	1,97	24	0,94	3	0,12	179	7,05
Taglia 3 (6,0 Nm)	130	5,12	110	4,33	108	4,25	307,3	12,10	52,3	2,06	50	1,97	24	0,94	3	0,12	179	7,05
Taglia 4 (11,2 Nm)	165	6,5	130	5,12	138	5,43	301,5	11,87	46,5	1,83	58	2,28	32	1,26	3,5	0,14	209	8,23

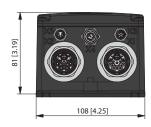
Codice d'ordine

VLT® Decentral Servo Drive DSD 510

VLT® Decentral Servo Drive DSD 510 amplia il sistema di servoazionamento decentralizzato. Grazie a una potenza nominale fino a 4,4 kW in grado di supportare una vasta gamma di encoder di retroazione, il design aperto ti consente di scegliere il motore PM o ASM più adatto.

Il DSD 510 è alimentato da una combinazione di VLT® Power Supply Module PSM 510 e VLT® Decentral Access Module DAM 510. Il sistema di cablaggio ibrido Plug and Twist, che comprende alimentazione e tensione di controllo nonché i cavi di sicurezza funzionale e di bus di campo, rende l'installazione veloce, semplice, sicura ed economica. Poiché più convertitori di frequenza decentralizzati possono essere alimentati da un solo modulo VLT® Decentral Access Module DAM 510 mediante un semplice cablaggio daisy-chain, non sono necessarie scatole di distribuzione e puoi ridurre i cavi al minimo.

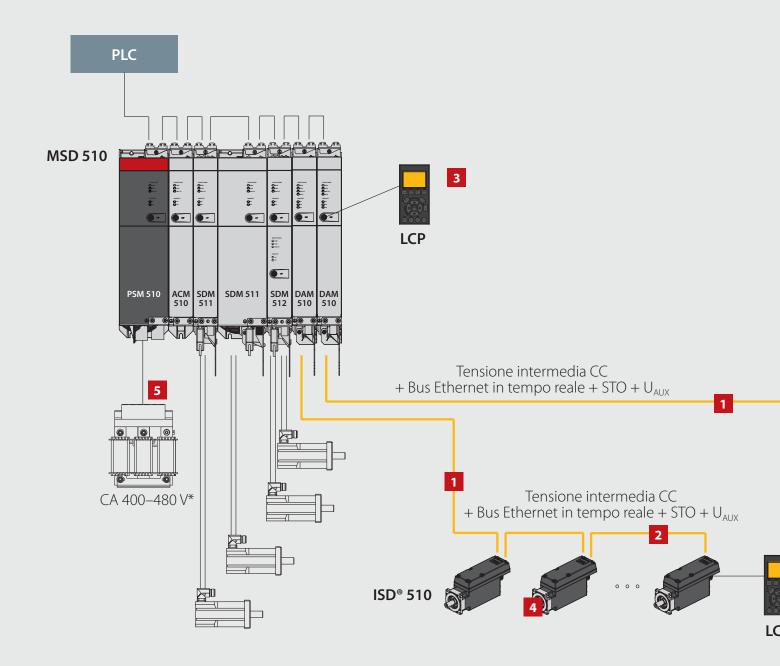

La superficie completamente liscia e facile da pulire, l'elevato grado di protezioe IP67 e la classe di resistenza alle vibrazioni 3M7 assicurano la perfetta adattabilità a tutti i tipi di applicazioni rotanti in ambienti gravosi.



DSD 510							
Tensione nominale	V CC	565-680 +/-10%					
Corrente nominale I_N	А	12,0 con piastra di montaggio* 8,0 standalone					
Corrente massima I _{max}	А	21,5					
Potenza nominale P _N	kW (cv)	4,4 (5,9)					
Frequenza di commutazione nominale	kHz	4/5					
Frequenza di commutazione possibile	kHz	8/10					
Grado di protezione		IP67					
Peso	kg (libbre)	2,85 (6,28)					

^{*} Dimensioni della piastra di montaggio: 470 x 270 x 10 mm (18,5 x 10,6 x 0,4 pollici)

Dimensioni



Le dimensioni sono espresse in mm (pollici)

Codice d'ordine

Accessori e opzioni

^{*}È obbligatorio utilizzare un'induttanza di linea CA trifase vicino al PSM 510. Per i dettagli tecnici, fare riferimento alla Guida operativa MSD 510.

■ Cavo di alimentazione ibrido

December	Lung	hezza	Codice		
Descrizione	(m)	(piedi)	d'ordine		
	2	6,6	175G8920		
	4	13,1	175G8921		
	6	19,7	175G8922		
	8	26,2	175G8923		
Cavo di alimentazione	10	32,8	175G8924		
ibrido M23, connettore con angolo a 90°	15	49,2	175G8925		
	20	65,6	175G8926		
	25	82,0	175G8927		
	30	98,4	175G8928		
	40	131,2	175G8929		
	2	6,6	175G8930		
	4	13,1	175G8931		
	6	19,7	175G8932		
	8	26,2	175G8933		
Cavo di alimentazione	10	32,8	175G8934		
ibrido M23, connettore diritto	15	49,2	175G8935		
	20	65,6	175G8936		
	25	82,0	175G8937		
	30	98,4	175G8938		
	40	131,2	175G8939		

2 Cavo di alimentazione ibrido

Descrizione	Lung	hezza	Codice
Descrizione	(m)	(piedi)	d'ordine
	0,5	1,6	175G8900
	1	3,3	175G8901
	2	6,6	175G8902
	4	13,1	175G8903
Cavo di alimentazione	6	19,7	175G8904
ibrido M23, connettore ad angolo a 90°	8	26,2	175G8905
	10	32,8	175G8906
	15	49,2	175G8907
	20	65,6	175G8908
	25	82,0	175G8909
	0,5	1,6	175G8910
	1	3,3	175G8911
	2	6,6	175G8912
	4	13,1	175G8913
Cavo di alimentazione ibrido	6	19,7	175G8914
M23, connettore dritto	8	26,2	175G8915
	10	32,8	175G8916
	15	49,2	175G8917
	20	65,6	175G8918
	25	82,0	175G8919

DSD 510

■ VLT® Local Control Panel LCP 102

Descrizione	Codice d'ordine
VLT® Local Control Panel LCP 102 (Grafico)	130B1107
Cavo LCP (da SUB-D a M8), 3 m (9,8 piedi)	175G8942
Kit di montaggio remoto LCP (IP21) comprendente LCP, dispositivi di fissaggio, cavo da 3 m (9,8 piedi) e guarnizione	130B1170
Kit di montaggio remoto LCP (IP21) senza LCP ma comprendente dispositivi di fissaggio, cavo da 3 m (9,8 piedi) e guarnizione	130B1117

■ Anello di tenuta dell'albero per ISD® 510

Descrizione	Codice d'ordine
Set per servoazionamento taglia 1 (10 pezzi)	175G8192
Set per servoazionamento taglia 2 (10 pezzi)	175G8191
Set per servoazionamento taglia 3 (10 pezzi)	*
Set per servoazionamento taglia 4 (10 pezzi)	*

^{*} In fase di rilascio

Induttanza della linea CA

Descrizione	Codice d'ordine
Reattanza di linea trifase 20A	175G0179
Reattanza di linea trifase 63A	175G0178
Reattanza di linea trifase 40A	175G0192

Soluzione servo universale

VLT® FlexMotion™ è un sistema servo drive universale, progettato per soddisfare oggi le esigenze delle macchine di domani.

Combina drives centralizzati e decentralizzati per ottenere la massima flessibilità nella progettazione della macchina e nell'integrazione dei sistemi. Il sistema di piattaforma intelligente offre interfacce utente identiche e rende l'installazione, la programmazione e la manutenzione

semplici e veloci. Il sistema modulare consente di ampliare o adattare la macchina senza problemi anche in una fase successiva.

La connettività aperta ai più comuni sistemi Ethernet in tempo reale, la programmazione basata su IEC 61131-3, PLCopen® e Motion Function Blocks, rendono il sistema ancora più versatile e facile da integrare in diversi ambienti di progettazione.

Scopri di più su VLT® FlexMotion™: drives.danfoss.it/flexmotion

Seguici e scopri di più sui convertitori di frequenza Danfoss Drives

La Danfoss non si assume alcuna responsabilità circa eventuali errori nei cataloghi, pubblicazioni o altri documenti scritti. La Danfoss si riserva il diritto di modificare i suoi prodotti senza previo avviso, anche per i prodotti già in ordine sempre che tali modifiche si possano fare senza la necessità di cambiamenti nelle specifiche che sono già state concordate.

Tutti i marchi di fabbrica citati sono di proprietà delle rispettive società. Il nome Danfoss e il logotipo Danfoss sono marchi depositati della Danfoss A/S. Tutti i diritti riservati.