

Data Sheet

Pressure transmitter Type DST **P310**

Pressure transmitter for cooling applications

The DST P310 pressure sensor is equipped with a powerful ARM processor enabling enhanced calibration accuracy and self diagnostic features. This hermetically sealed sensor is suitable for use with all refrigerants and can be applied to the most demanding of applications, such as :

- Chillers
- Transport refrigeration
- Commercial refrigeration
- Variable speed HVAC
- Heat pumps
- Food Retail

This flexible pressure transmitter program covers different output signals, absolute or gauge (relative) versions, measuring ranges and a wide range of pressure and electrical connections.

A robust design with an excellent vibration stability and a high degree of EMC / EMI protection equip the pressure transmitter to meet the most demanding refrigeration requirements.

Features

- Robust and reliable Piezo Silicon MEMS technology
- Fully welded, hermetically-tight media interface & stainless steel design for improved long-term reliability & use with known and future refrigerants
- ATEX Zone 2 (depending upon operating temperature)
- High default accuracy (typically ±1% TEB) enabling precise system control.
- Self-diagnostic feature allows for sensor failure detection and improved machine up-time.
- Excellent long-term stability and reliability of sensor signal over lifetime
- Flexible product platform allowing user defined configurations (i.e. output signal, connections, cables) & custom sensor calibration

Applications

Figure 1: Pulse-snubber

Pulse-snubber

1

Cavitation, liquid hammer and pressure peaks may occur in liquid filled systems when valves either open or close and compressors start and stop. This is especially the case in high pressure applications, such as when using CO_2 as a refrigerant. Selection of the pulse snubber protects the pressure sensor diaphragm from these high pressure peaks. A pulse snubber should be considered for pressure sensor ranges above 50 bar when used in liquid applications. Where possible the sensor should be mounted vertically to prevent particulate contamination of the pulse snubber.

Product specification

Technical data

Table 1: Performance (EN 60770)

Accuracy @ 20°C	≤ ± 1% FS (max), ≤0,5%FS (typ.)
Total Error Band (see graph below) ⁽¹⁾	Default TEB profile - see ordering
Response time ⁽¹⁾	< 2 ms
Overload pressure (static)	6 × FS (max. 1500 bar)
Burst pressure	6 × FS (max. 2000 bar)
Power-up time	< 50 ms
Durability, P: 10% – 90% FS	> 10 mil. cycles

⁽¹⁾ Programmable filtering available

Total Error Band (TEB)												
B Re				Accuracy BFSL est fit straight line at ference temperature					Thermal effects			
Offset	Full scale span	• • • • • • • • • • • • • • • • • • •	Pressure non-linearity		Pressure hysteresis		Pressure non-repeatability		Thermal effect on offset	Thermal effect		Thermal hysteresis
Table 2: Electric	cal specificatio	ons										
Nom. output signal (short-circuit protected))	4 – 20 mA			0 – 5, 1 – 5, 1– 6 V		0 – 10 V, 1 – 10 V		Ratiometric 10 – 90% of [U _B]	
Supply voltage [U _B]	, polarity protected	d			9 – 32 V DC		9 – 32 V DC		15 – 32 V DC 4.5 – 5.5 V D			5 – 5.5 V DC
Supply – current co	nsumption			-			≤ 5 mA		≤ 8 mA		\leq 5 mA at 5 V DC	
Supply voltage dependency				< 0.1% FS / 10 V			< 0.05%		5% FS / 10 V			
Ratiometricity				-					-		< 0.05% FS / 4.5 - 5.5 V	
Output limitation				22.4 mA			0-5V: 5.75 V 1-5V: 5.6 V 1-6V: 6.75 V		0-10V: 11.5 V		≈ supply voltage	
Sink / Source					-				< 1 mA			
Load [R _L] (load conr	nected to 0 V)			$R_{L} \leq$	(U _B - 9V) / 0.02 A		$R_L \ge 10 \ k\Omega$		$R_L \ge 1$	5 kΩ	$R_L \ge 1$	0 kΩ at 5 V DC

Table 3: Environmental conditions

Sensor operating temperature ⁽¹⁾		4 - 20 mA	-40 – 100 °C
		10 - 90% of Vs and abs. voltage	-40 – 125 °C
Media temperature range			-40 – 125 °C
Ambient temperature			-40 – 85 °C
EMC – Emission			EN 61000-6-3
EMC – Immunity (Output > 1 GHz - devia	tion < 3%)		EN 61000-6-2
Insulation resistance			> 100 MΩ at 500 V DC
Vibration stability	Random	7.5 grms , 5 Hz – 1 kHz	IEC 60068-2-64
Shock resistance	Shock	500 g / 1 ms	IEC 60068-2-27
Enclosure (depending on electrical conn	ection)		See Electrical connections

⁽¹⁾ Operating temperature is a result of influence from media temperature, ambient temperature and self-heating contribution from the internal electronics.

Table 4: Explosive atmospheres

Zone	2	ap	plica	noite	1S ⁽¹⁾

Ex nA IIA T3 Gc

EN60079-0; EN60079-15

⁽¹⁾ When used in ATEX Zone 2 areas at low temperatures the cable and plug must be protected against impact.

Table 5: Mechanical characteristics

	Wetted parts	EN 10088-1; 1.4404 (AISI 316 L)
Materials	Enclosure	EN 10088-1; 1.4404 (AISI 316 L)
Materials	Electrical connections	Glass filled polyamid, PA 6.6
	Pressure connections	EN 10088-1; 1.4404 (AISI 316 L)
Net weight (depending on pressure connection and el	0.2 – 0.3 kg	

Output and diagnostics

Figure 2: Self-diagnostic default levels (*programmable filtering available)

Pressure output signal

• Defines the measuring range of the sensor.

Output clamp levels

• Limit the pressure output signal if the pressure rises above or falls below the normal range.

Sensor fault signal

- Output at this level signals a sensor fault. The fault signal setting can be high or low.
- Flexible output clamping and flexible fault signal error level to application fit available.
- · Contact Danfoss for detailed information and requirements.

Ratiometric % of supply voltage Feature 4-20mA 0-5V 1-6V 0-10V Zero 4mA 0V 1V 1V 0V 10% FS 90% 5V 5V 10V 20mA 6V Span 80% 16mA 5V 4V 5V 10V 0.5V Output clamp level Lo 4% 3.8mA NA 0.5V N/A Output clamp level Hi 99% 20.5mA 5.5V 5.5V 6.5V 11V Fault signal Lo 2% Fault signal Hi 21.5mA 5.8V 5.8V 6.8V 11.5V

Table 6: Self-diagnostic default levels

1V

10V

9V

0.5V

11V

11.5V

Dimensions

Table 8: Dimensions for pressure connection

Pressure connection	L [mm]
NPT	16
G ½ A ISO 228/1	21
1/4 in. flare 7/16 - 20 UNF	16.5
3/8 solder	30
7/16 UNF flare female with valve deflator	21.5

Electrical connections

Table 9: Plug connections (EN 175301-803-A)

Ordering

Table 10: Ordering (Ratio metric 10-90 % output)

				Commented	Code no.						
	Туре	Operating range [bar]	Permissible working pres- sure PB [bar]	temperature range °C +/- 1% Total Error Band	¹ ⁄4-18 NPT ANSI B1.20.1	G 3⁄8A EN837	7/16-20 UNF SAE J513 45° flare	³ ⁄8 solder	⁷ ∕16-20 ∖ UNF, Female flare with depressor	Supply voltage [UB]	Output Signal
		-1 – 12	33	-30 - 40	-	-	-	-	-		
		-1 – 12	33	-30 - 40	-	-	076G1016 (1)	-	-		
		-1 – 34	55	0 - 80	-	-	-	-	-		
Ţ	DST P310	-1 – 34	55	0 - 80	-	-	076G1017 (1)	-	-		
		-1 – 59	100	-30 – 40	-	076G1014 (2)	-	076G1018 (2)	-		
		-1 – 99	150	-30 - 40	-	-	-	-	-	4.5 – 5.5 V	Ratiometric
		-1 – 159	250	0 - 80	-	076G1015 (2)	-	-	-	DC	10 – 90% of [UB]
	Connecting plug with 5 m cable (mounted on pressure transmitter obtains IP67)					060G	i1034	-			
	Plug Pg 9				060G0008			_			

⁽¹⁾ Incl. Plug Pg9 ⁽²⁾ incl. pulse snubber

Certificates, declarations, and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Table 11: Certificates, declarations and approvals

File name	Document type	Document topic	Approval Authority
E227388	Explosive - Safety Certificate	HazLoc Refrigeration	UL
E31024	Electrical - Safety Certificate		UL
064G9615	EU Declaration	ATEX/EMCD/RoHS	Danfoss
060R3160	Manufacturers Declaration	China RoHS	Danfoss
E494625	Electrical - Safety Certificate		UL

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Spare Parts

Get access to the Danfoss spare parts and service kit catalog right from your smartphone. The app contains a wide range of components for air conditioning and refrigeration applications, such as valves, strainers, pressure switches, and sensors.

Download the Spare Parts app for free at www.danfoss.com/en/service-and-support/downloads.

Danfoss

ENGINEERING TOMORROW