

Рекомендации по выбору

Серия VLT® AutomationDrive FC 300, VLT® Decentral Drive FCD 302

Универсальность, надежность и неизменное **превосходство**

Содержимое

Готовность к будущему	. 4
Неизменное превосходство	
Простота интеграции в любую систему	. 6
Ориентация на быстрый и легкий запуск	7
Обширный спектр функций для высокопроизводительной работы Использование перехода на цифровые технологии	8
для сокращения затрат на обслуживание	9
Гибкая, модульная, адаптируемая конструкция,	
созданная для длительной эксплуатации	10
VLT® FlexConcept®: более быстрое внедрение	
при меньших затратах	12
Гибкость применения для быстрого развития вашего бизнеса	13
Интегрированный контроллер перемещения для приложений	
позиционирования и синхронизации	14
Повышенная точность, улучшенное управление	
и более высокая скорость	16
Безопасность, сбалансированная с вашими потребностями Максимальная эксплуатационная готовность системы	17
благодаря мониторингу технического состояния	18

Возможность использования в качестве контроллера	20
Самая совершенная из всех технологий двигателей двигателей	21
Простота установки	
– Экономия времени на ввод в эксплуатацию благодаря SmartStart	22
– Беспроводное подключение к преобразователю частоты	23
Удаленный доступ к преобразователю частоты	24
Адаптируемая процедура ввода в эксплуатацию	25
FCD 302 — концепция одной коробки	
снижает совокупную стоимость владения	26
FCD 302 — концепция одной коробки	
Все, что вам нужно, в одной «коробке»	28
Простота модульного подхода	
— VLT® AutomationDrive в корпусах A, B и C	30
Модули высокой мощности	
— VLT® AutomationDrive в корпусах D, E и F	32
Обширный спектр функций для высокопроизводительной работы	
— преобразователи частоты шкафного исполнения	
VLT® AutomationDrive	34
Экономичность за счет интеллектуального управления,	
компактности и защиты	36

Неизменно высокие характеристики, надежность, универсальность.

И вся мощность, которая вам необходима.

Выбираемые за свою универсальность и заслужившие уважение благодаря высокой надежности, преобразователи частоты VLT® AutomationDrive уже почти половину столетия обеспечивают неизменно превосходные рабочие характеристики.

Семейство VLT® AutomationDrive, в которое входят преобразователи частоты VLT® AutomationDrive FC 301/302 и VLT® Decentral Drive FCD 302, выпускается уже достаточно давно. Но это не означает, что оно не эволюционировало. Даже наоборот! Сегодня семейство VLT® AutomationDrive стало еще надежнее и интеллектуальнее, чем когда-либо ранее.

Разработанные с расчетом на долгие годы службы, эти надежные преобразователи частоты стабильно и эффективно работают даже в самых требовательных ситуациях и самых сложных окружающих условиях. Далее речь пойдет о нашем новом поколении корпусов типоразмера Е и пониженных номиналах температуры.

Как и все преобразователи частоты Danfoss, VLT® AutomationDrive может работать с любыми двигателями, что позволяет заказчику использовать двигатели, наилучшим образом подходящие для его условий применения.

В этих преобразователях частоты реализован ряд инновационных технологий; более совершенное аппаратное и программное обеспечение позволило максимально улучшить рабочие характеристики, а использование новой платформы Ethernet позволило расширить возможности связи.

В семействе VLT® AutomationDrive в полной мере реализованы все возможности современных цифровых технологий, благодаря чему преобразователи частоты, входящие в него, могут полностью соответствовать требованиям вашего применения, одновременно обеспечивая оптимизацию ваших рабочих процессов.

Когда требуется установить преобразователь частоты рядом с двигателем, отличным решением станет предлагаемая VLT® Decentral Drive FCD 302 высокопроизводительная децентрализованная компоновка со всеми функциями управления и производительностью более крупных централизованных преобразователей частоты. Корпус со степенью защиты IP66 разработан специально для применения в системах с несколькими двигателями и самых разных отраслях промышленности.

Тыльный канал охлаждения: эффективное и экономичное	
управление теплоотводом для VLT® AutomationDrive	37
Оптимизация рабочих характеристик и защита сети	39
Подавление гармонических искажений:	
небольшие затраты, большая экономия	
Подавление гармонических искажений	42
Экономичное подавление гармонических искажений	44
MyDrive® Suite: доступ к цифровым инструментам	
одним щелчком мыши	46
Сервисное обслуживание DrivePro® Life Cycle	48
Схема соединений	
Технические характеристики	51
Электрические характеристики	
— VLT® AutomationDrive (корпуса А, В и С)	53
Код типа для заказа VLT® AutomationDrive в корпусах A, B и C	
Электрические характеристики — VLT® Decentral Drive FCD 302	60
Код типа для заказа VLT® Decentral Drive FCD 302	61
Электрические характеристики	
– VLT® Automation Drive (корпуса D, E и F)	62

Электрические характеристики и габариты	
– VLT® AutomationDrive, 12-импульсные	66
Код типа для оформлении заказа	
– VLT® AutomationDrive (корпуса D, E и F)	68
Электрические характеристики и габариты VLT® Enclosed Drive	70
Код типа для оформлении заказа VLT® AutomationDrive	
Преобразователи частоты шкафного исполнения	74
Электрические характеристики — VLT® AutomationDrive	
Преобразователь частоты с низкими гармониками Low Harmonic	
Drive и активный фильтр VLT® Advanced Active Filter	76
Дополнительные устройства в гнездо А: Сетевые шины	78
Дополнительные устройства в гнездо В:	
Функциональные расширения	80
Дополнительные устройства в гнездо С:	
Релейная плата и плата управления перемещением	82
Дополнительные устройства в гнездо D:	
Резервный источник питания 24 В и часы реального времени (RTC)	83
Дополнительные устройства питания	84
Принадлежности	86

Готовность к будущему

Четвертая промышленная революция («Промышленность 4.0») развивает успехи, достигнутые в области автоматизации, обучения и интеллектуального применения частоты играют важную и мощную роль датчиками в технологическом процессе

Компания Danfoss Drives направляет все силы на дальнейшее развитие «Промышленности 4.0» и позиционирует Выбирая эти преобразователи частоты,

вы можете рассчитывать на интеллектуальные на «Промышленность 4.0» и более высокие стандарты.

Семейство VLT® AutomationDrive предлагает:

- настройку через веб-интерфейс, прозрачное управление запросами;
- доступ к чертежам, инженерным
- средства моделирования, такие как и MyDrive® ecoSmart™ для расчета КПД систем «двигатель/
- и периферийных шин;

- встроенные интеллектуальные функции
- гибкий интерфейс получения данных доступа, в том числе непосредственно на преобразователе, через мобильные

VLT® AutomationDrive FC 302

Неизменное превосходство

Качества преобразователя частоты VLT® AutomationDrive можно легко охарактеризовать всего в двух словах «неизменное превосходство».

В течение всего срока службы оборудования VLT® AutomationDrive будет не только обеспечивать экономию времени и средств, но и поможет оптимизировать технологический процесс; гибкость и надежность этого преобразователя частоты будут соответствовать и сегодняшним, и завтрашним требованиям.

Впечатляющая универсальность

Модульные и адаптируемые преобразователи семейства VLT® AutomationDrive будут успешно работать в любой среде. Вы можете быть уверены: они удовлетворят все ваши потребности и в случае, если у вас всего один тип задач, и в случае множества разнотипных применений.

Благодаря прогрессивной конструкции системы охлаждения и уникальной схеме охлаждения через тыльный канал для преобразователей мощностью выше 90 кВт семейство VLT® AutomationDrive предлагает одни из самых компактных и экономически эффективных преобразователей на рынке.

Простота пусконаладки

Преобразователи VLT® AutomationDrive отличаются высокой надежностью и разнообразием программируемых функций, но при этом легко и быстро устанавливаются и настраиваются, после чего безотказно работают многие годы.

Интеллектуальная работа

Преобразователи частоты семейства VLT® AutomationDrive оснащаются «большим мозгом», готовым к решению ваших задач: он будет работать эффективно, результативно и надежно.

Высокая степень готовности к работе

После монтажа вы можете быть уверены: семейство VLT® AutomationDrive обеспечит непрерывную и безотказную работу. Новые интеллектуальные функции технического обслуживания и ряд услуг DrivePro® проактивно повышают производительность, улучшают эксплуатационные характеристики, увеличивают время бесперебойной работы.

Действуйте по-новому Ноу-хау и опыт Проверенное качество Сервисное обслуживание DrivePro®

Впечатляющая универсальность

причин для **выбора** VLT® AutomationDrive или VLT® Decentral Drive

- 1. Работает в любых условиях эксплуатации
- 2. Модульная адаптируемая конструкция
- 3. Гибкость применения
- 4. Пониженное воздействие гармонических искажений
- 5. Компактность и эффективность

Простота интеграции в любую систему

Еще до подключения первых проводов и подачи питания ваши ожидания от преобразователя частоты определят, подойдет ли он удачно для вашей конкретной задачи. Великолепное сочетание функциональности, пригодности для использования в вашей среде и доступности комплексных инженерных инструментов означает, что, какими бы ни были ваши потребности, вы можете абсолютно уверенно выбрать для себя преобразователь частоты из этого семейства.

Работает в любых условиях эксплуатации

Преобразователи частоты VLT® можно устанавливать там, где это лучше всего соответствует вашим задачам: рядом с двигателем, в помещении диспетчерской в монтажном шкафу, снаружи здания. Широкий ассортимент типоразмеров корпусов, конформных покрытий и опций дополнительной защиты сокращает затраты на обслуживание и обеспечивает надежность работы в ряде самых проблемных сред. Широкий диапазон рабочих температур (от -25 до +50 °C) гарантирует дополнительное спокойствие в случае, когда ваша система будет работать в экстремальных условиях.

Модульная и адаптируемая конструкция

Эти преобразователи частоты построены на основе концепции гибкой модульной конструкции, обеспечивающей чрезвычайную универсальность технических решений для управления двигателями. Каждый преобразователь частоты оснащен широким спектром функций для работы в различных отраслях промышленности, что обеспечивает оптимальное управление технологическим процессом, улучшают качество на выходе и сокращают затраты, связанные с запасными частями и сервисом. Одним из преимуществ этого модульного принципа является возможность установки преобразователей частоты VLT® AutomationDrive вплотную бок о бок, что позволяет размещать больше преобразователей в меньшем пространстве.

Гибкость применения

Если ваше производство состоит из ряда систем, будет лучше выбрать преобразователь частоты, который точно сможет удовлетворить всем вашим требованиям. При работе с насосами, конвейерами, укладчиками поддонов или обрабатывающим оборудованием семейство VLT® AutomationDrive обеспечит оптимальные функции управления, нужные вам для надежной эксплуатации в режиме 24/7.

Пониженное воздействие гармоник

Для снижения расходов важно спрогнозировать последствия добавления преобразователей частоты на ваши объекты. Программное обеспечение Danfoss Harmonic Calculation позволяет рассчитать ожидаемый уровень содержания гармоник перед монтажом преобразователя и сэкономить на дополнительных затратах, связанных с гармониками и оборудованием для подавления гармоник на вашем объекте. Доступные преобразователи с пониженными гармониками, 12-импульсные преобразователи и опции для подавления гармоник дополнительно снижают воздействие гармонических колебаний.

Компактность и эффективность даже при децентрализованной установке

Благодаря прогрессивной конструкции системы охлаждения семейство VLT® AutomationDrive предлагает одни из самых компактных преобразователей с воздушным охлаждением на рынке в диапазоне мощностей от 90 до 800 кВт при 500 В. Сочетание этой лучшей в своем классе удельной мощности с уникальной схемой охлаждения через тыльный канал дополнительно снижает связанные с охлаждением затраты при минимальных требованиях к занимаемому пространству. В концепции оптимальная эффективность системы и минимизация затрат на обслуживание VLT® FlexConcept достигается за счет сочетания централизованных и децентрализованных преобразователей частоты. Подробнее o VLT® FlexConcept

Подробнее о VLT® FlexConcept

Когда требуется установить преобразователь частоты рядом с двигателем, отличным решением станет высокопроизводительный децентрализованный преобразователь частоты VLT® Decentral Drive FCD 302, предлагающий в корпусе с защитой IP66 все функции управления и производительность более крупных централизованных преобразователей частоты. Хорошо полхолит лля применения с несколькими двигателями.

Ориентация на быстрый и легкий запуск

Удачный выбор преобразователя частоты сокращает время, нужное для ввода решения в эксплуатацию, причем без компромиссов по функциональности или оснащению. Преобразователи VLT® Automation Drive и VLT® Decentral Drive созданы так, чтобы упростить каждый шаг процесса первоначальной установки и настройки — от подключения проводки и программирования до начала эксплуатации – и надежно обеспечить все, что нужно для решения задач конкретного применения.

Простота монтажа

Все клеммы ввода/вывода в преобразователе штепсельные с подпружиненными контактами, каждая реализована в конфигурации со сдвоенным разъемом, за счет чего проводка прокладывается легко и гибко. Преобразователи с высокими уровнями защиты от окружающих условий также можно заказать с заранее нарезанной резьбой в отверстиях под кабельные уплотнения, что позволит легко и надежно установить преобразователь в неблагоприятной среде эксплуатации.

Специальные функции для различных применений

Гибкость и универсальность преобразователя не обязательно означает, что его пусконаладка будет сложной. Ориентированные на конкретные варианты применения функции идеально сочетают простоту и стабильность, обеспечивая надежную работу с высокими характеристиками вне зависимости от сферы применения. Такие возможности, как функция ослабления регулирования для разделения нагрузки, управление встроенным тормозом для безопасной эксплуатации подъемников и встроенный регулятор процесса для работы насосов по запросу, помогают сэкономить время и средства при пусконаладке.

Оптимизированное управление двигателем

Автоматическая адаптация двигателя (ААД) представляет собой мощный алгоритм, осуществляющий проверку и подстройку преобразователя к уникальным особенностям вашего двигателя и улучшающий общее управление и эффективность работы. Усовершенствованная функция ААД обеспечивает запуск асинхронных двигателей, двигателей с постоянными магнитами и синхронных реактивных (SynRM) двигателей всего за несколько миллисекунд, без раскрутки двигателя.

Выполнение улучшенного варианта адаптации, ААД II, перед каждый запуском обеспечивает калибровку параметров двигателя в соответствии с текущими условиями работы, что повышает точность управления двигателем. Узнать больше об интеллектуальном

Заводские адаптация и тестирование

управлении

Каждый преобразователь частоты поставляется с завода в точности в той конфигурации, в которой вы его заказали. Преобразователи изготавливаются с особой тщательностью и перед поставкой, уже после установки заказанных вами опций, полностью тестируются при полной нагрузке с двигателем переменного тока — это гарантирует, что преобразователь будет работать именно так, как вы ожидаете.

Средства цифрового проектирования

Практически все владельцы и эксплуатанты преобразователей частоты стремятся уменьшить количество потребляемой на своих объектах электроэнергии. Поэтому понимание и документирование показателей энергоэффективности и мер по экономии электроэнергии – это критически важные шаги при разработке системы, а также при измерении ее показателей, когда она уже реализована и работает. Используйте цифровые средства Danfoss и интеллектуальные функции, встроенные в преобразователь для облегчения процесса разработки и упрощения процесса документирования:

Инструмент MyDrive® ecoSmart вычисляет и документирует класс эффективности как преобразователя частоты, так и системы в целом согласно стандарту IEC/EN 61800-9.

Узнать больше о средствах цифрового проектирования

Простота пусконаладки

причин для выбора VLT® AutomationDrive или VLT® Decentral Drive

- 1. Простота монтажа
- 2. Специальные функции для различных применений
- 3. Оптимизированное управление двигателем
- 4. Заводские адаптация и тестирование
- 5. Мощные инструменты для работы с ПК

Интеллектуальная работа

причин для выбора VLT® AutomationDrive или VLT® Decentral Drive

- 1. Встроенный контроллер перемещения
- 2. Мощное управление в четырех квадрантах
- 3. Низкий уровень шума
- 4. Простая интеграция с ПЛК
- 5. Высокий КПД

Обширный спектр функций для высокопроизводительной работы

Преобразователи частоты семейства VLT® AutomationDrive могут устанавливаться в системах с самыми высокими требованиями и в самых разных условиях эксплуатации. Каковы бы ни были требования конкретного применения, вы можете рассчитывать, что эти преобразователи частоты обеспечат высокие характеристики и длительную бесперебойную службу даже в самых требовательных средах.

Встроенный контроллер перемещения

Реализация функций управления перемещением, высокоточного масштабируемого позиционирования и синхронизации проста как при наличии обратной связи от энкодера, так и без нее, а ввод в эксплуатацию производится быстро и безопасно. Встроенный контроллер перемещения настраивается путем указания параметров, использовать особый язык программирования не нужно. Не требуются также дополнительные модули или аппаратные средства.

Мощное управление в четырех квадрантах

Некоторые варианты применения, например экструдеры и сепараторы, предъявляют высокие требования к преобразователю частоты. Эти преобразователи частоты смогут удовлетворить эти требования, обеспечив надежную работу и на фазе движения, и на фазе генерации. Точное управление крутящим моментом, особенно в области нулевых скоростей, которая представляет ключевую сложность, обеспечивает плавную и непрерывную работу, экономя время и деньги.

Низкий уровень шума

Преобразователи частоты без фильтрации испускают электромагнитные помехи, причем как кондуктивные, так и излучаемые. Такие помехи могут негативно влиять на чувствительное к ним оборудование. Встроенная защита от ЭМ/ВЧ-помех с экранированными кабелями двигателей, соответствующими требованиям категории жилых районов С1 (до 50 м) или С2 (до 150 м), обеспечивает возможность работы без дополнительных дорогостоящих фильтров, дополнительно повышая надежность и снижая помехи в чувствительных электронных схемах.

Простая интеграция в ПЛК

Преобразователи частоты VLT® Automation Drive совместимы со следующими протоколами: PROFINET, PROFIBUS DP-V1, DeviceNet, EtherNet/IP, EtherCAT, POWERLINK, CANopen и Modbus TCP. Все опции Ethernet поддерживают сдвоенные порты со встроенным коммутатором или ХАБОМ (POWERLINK). Некоторые из технологий Ethernet также поддерживают топологию «кольцо», которая повышает доступность и ускоряет монтаж. Заранее проверенные блоки функций и дополнительные инструкции можно легко интегрировать в ваш ПЛК с минимальным риском.

Высокая эффективность эксплуатации

Новые стандарты по экологичному дизайну сосредоточены на энергоэффективности преобразователей частоты и систем «преобразователь частоты — двигатель». Поскольку по всему миру эти стандарты требуют уделять больше внимания КПД преобразователей частоты, важно отметить, что преобразователи VLТ® могут быть надежной основой, которая поможет обеспечить соблюдение будущих требований. С помощью MyDrive® ecoSmart™ можно быстро определить класс ІЕ вашего преобразователя частоты, класс IES вашей конкретной системы «преобразователь — двигатель», а также КПД преобразователя при частичной загрузке.

Использование перехода на цифровые технологии для сокращения затрат на обслуживание

Внеплановые простои могут быть дорогостоящими — и в связи с затратами на обслуживание, и в связи с нарушением производственных процессов. Усовершенствования, реализованные в VLT® AutomationDrive, обеспечивают дополнительную информацию о ваших устройствах и показателях их работы, в то время как ряд сервисов оптимизирует их эксплуатационную готовность.

Интеллектуальное устранение неисправностей

В случае нарушений технологического процесса, чем больше будет данных, тем легче будет точно определить причины и быстро устранить неисправности. Новые интеллектуальные функции обслуживания задействуют различные датчики преобразователя VLT® AutomationDrive для записи и сохранения в течение 2-3 секунд информации в реальном времени в случае поступления сигнала тревоги, предупреждения или другого определенного триггера. Такие данные о последних 20 событиях сохраняются в памяти преобразователя частоты, после чего их можно проверить с помощью МСТ 10. Добавление опции часов реального времени позволит отмечать дату и время событий, что даст еще больше данных для принятия решений.

Беспроводная связь

Новая панель VLT® Wireless Communication Panel LCP 103 обеспечивает беспроводное подключение к преобразователю VLT® AutomationDrive с помощью программы MyDrive® Connect для устройств на основе iOS и Android. Она обеспечивает: полный и защищенный доступ к преобразователю для упрощения ввода в эксплуатацию, работу и обслуживание интеллектуальных устройств. Используйте функцию расширенного копирования LCP для копирования параметров в память LCP 103 или на интеллектуальное устройство.

Удаленный доступ

Возможность доступа извне упрощает и облегчает доступ как к удаленным объектам, так и к большому количеству локально установленных преобразователей. При использовании встроенного, модернизированного интерфейса веб-сервера в дополнительных устройствах для обмена данными на основе Ethernet можно получать удаленный доступ к каждому из преобразователей, отслеживать их работу и проводить диагностику, экономя время и средства.

Мониторинг технического состояния

B VLT® Automation Drive реализованы функции мониторинга технического состояния, которые помогают обеспечить бесперебойную работу, сократить затраты на обслуживание, уменьшить длительность незапланированных простоев. Функции мониторинга технического состояния позволяют создавать расписания подачи сигналов профилактического обслуживания по данным счетчиков часов эксплуатации, а также могут использоваться для вывода на панель управления и передачи по периферийной шине соответствующих предупреждений. Благодаря функциям мониторинга технического состояния преобразователь частоты превращается в настраиваемый интеллектуальный датчик, который непрерывно отслеживает состояние двигателя и нагрузки в соответствии с такими стандартами и рекомендациями, как стандарт ISO 13373 «Контроль состояния и диагностика машин» или рекомендации VDMA 24582 по мониторингу состояния.

Узнать больше о мониторинге технического состояния

Сервисное обслуживание DrivePro®

Обширный набор услуг, предлагаемых Danfoss Drives, охватывает весь жизненный цикл преобразователей частоты. Наряду с традиционными функциями обслуживания, которые повышают производительность, характеристики и время бесперебойной работы, переход к цифровым технологиям и Интернет вещей играют большие роли в нашем ассортименте услуг поддержки и дополнительных услуг. Сами преобразователи тесно взаимодействуют с окружающими их системами и процессами. Встроенные функции позволяют преобразователям собирать данные и предоставлять к ним доступ обслуживающему персоналу, группам технического обслуживания Danfoss, а также сторонним поставщикам услуг для быстрого удаленного мониторинга.

Оптимизированные рабочие характеристики

причин для выбора VLT® AutomationDrive или VLT® Decentral Drive

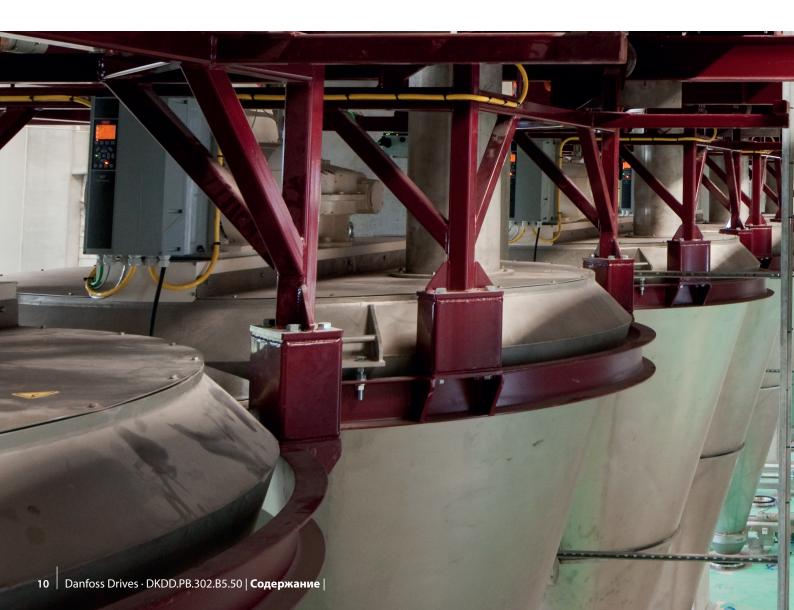
- 1. Интеллектуальное устранение неисправностей
- 2. Беспроводное подключение
- Удаленный доступ
 Интуитивное обслуживание
- 5. Сервисное обслуживание DrivePro®

Гибкая, модульная, адаптируемая конструкция, созданная для длительной эксплуатации

Преобразователь частоты VLT ® AutomationDrive построен на основе концепции гибкой модульной конструкции, способной обеспечить чрезвычайную универсальность технических решений для управления двигателями. Преобразователь оснащен широким спектром отраслевых функций, которые обеспечивают оптимальное управление технологическим процессом, улучшают качество на выходе и сокращают затраты, связанные с запасными частями и сервисом.

Свобода выбора оборудования

Преобразователи частоты VLT® AutomationDrive могут управлять электродвигателями практически всех стандартных промышленных технологий, включая асинхронные двигатели, явнополюсные (IPM) и неявнополюсные двигатели (SPM) с постоянными магнитами, синхронные реактивные двигатели и синхронные реактивные двигатели с постоянными магнитами. Это означает, что разработчики систем, производители комплектного оборудования и конечные


пользователи могут свободно подключать преобразователь частоты к выбранному электродвигателю и быть уверенными, что система будет работать по самым высоким стандартам.

Как независимый производитель решений с использованием преобразователей частоты, компания Danfoss поддерживает все распространенные типы двигателей и ведет разработки с учетом появления новых технологий.

Говорит на вашем языке

Когда речь заходит о работе с такими сложными технологиями, как преобразователи частоты, можно легко запутаться в сотнях различных параметров. Процесс настройки становится намного проще при использовании графического интерфейса, особенно если названия параметров указаны на вашем родном языке. В интерфейсе наших преобразователей частоты доступно до 28 языков, включая несколько кириллических, арабский (с письмом справа налево) и языки Азии.

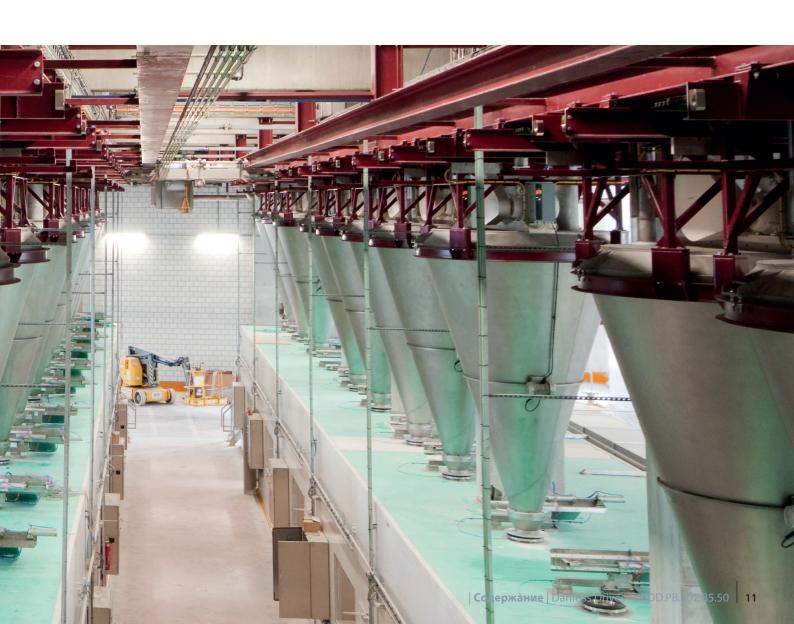
Кроме того, возможность сохранения до 50 выбираемых пользователем параметров дополнительно упрощает работу по настройке основных параметров для решения уникальных задач.

690 B

Преобразователи частоты VLT * AutomationDrive FC 302 мощностью от 1,1 до 1400 кВт, предназначенные для работы от сети напряжением 690 В, могут управлять двигателями с потребляемой мощностью от 0,37 кВт и выше без понижающего трансформатора. Это дает возможность выбрать компактный, надежный и эффективный преобразователь частоты для работающих от сети 690 В объектов с повышенными требованиями.

Снижение расходов благодаря компактным преобразователям частоты

Компактная конструкция и эффективный отвод тепла позволяют преобразователю занимать меньше места в диспетчерских и щитах, что уменьшает капитальные затраты. Компактные размеры также являются преимуществом при использовании в условиях ограниченного пространства, что дает конструкторам возможность


разрабатывать небольшие системы без поиска компромисса по защите и качеству сети. Например, преобразователь частоты VLT® AutomationDrive FC 302 с корпусом размера D или E имеет габариты на 25–68 % меньшие, чем у преобразователей эквивалентной мощности других конструкций.

Несмотря на компактные размеры, все преобразователи оснащены встроенной дроссельной вставкой цепи постоянного тока и фильтрами ЭМС, которые способствуют уменьшению электромагнитного загрязнения сети и снижению затрат и усилий при монтаже внешних компонентов и проводки, соответствующих требованиям ЭМС.

Версия IP20 имеет защищенные покрытием силовые клеммы для предотвращения случайного контакта, оптимизирована для монтажа в шкафах, размещаемых вплотную друг к другу, и может работать при температуре до 50 °C без снижения

номинальных характеристик. Кроме того, можно заказать преобразователь частоты того же размера с опцией тормозного прерывателя. Кабели цепи питания и цепи управления подводятся отдельно к нижней части преобразователя.

Преобразователи частоты оснащены единым для всех классов мощности пользовательским интерфейсом и отличаются гибкой архитектурой системы, что позволяет им адаптироваться к конкретным условиям применения. Это обеспечивает возможность адаптировать преобразователь частоты к требованиям конкретной области применения и снизить таким образом расходы на проектные работы. Легкий в использовании интерфейс снижает требования к обучению. Встроенная программа SmartStart помогает пользователям быстро и эффективно пройти процесс настройки, что приводит к сокращению неполадок из-за ошибок конфигурации и параметризации.

VLT® FlexConcept®: более быстрое внедрение при меньших затратах

Для эффективного и непрерывного сокращения затрат необходимы такие решения для преобразователей частоты, которые позволят значительно снизить эксплуатационные расходы и предоставят оператору и изготовителю систем возможность использовать новейшие, высокоэффективные технологии.

Кроме того, такие решения должны быть нацелены на оптимизацию затрат на установку, ввод в эксплуатацию, техническое обслуживание и ремонт за счет оптимизации ресурсов персонала и максимального увеличения доступности системы. VLT® FlexConcept® предоставляет

РЕШЕНИЕ **VLT®** FlexConcept[®] ЦЕЛИ Высокий КПД Гибкость Оптимизация затрат Меньшее количество вариантов ЭЛЕМЕНТЫ VLT® OneGearDrive® VLT® AutomationDrive FC 302 соответствующие

пользователю компоненты на основе энергоэффективных преобразователей частоты, идеально адаптированные для всех систем, где они могут применяться. Это такие компоненты, как VLT® OneGearDrive®, VLT® Decentral Drive FCD 302 и VLT® AutomationDrive FC 302.

4 точки оптимизации затрат

стандартное

Высокий КПД

Все преобразователи частоты, используемые в решении VLT® FlexConcept®, отличаются высоким уровнем энергосбережения и КПД. КПД используемых в решении двигателей самому высокому классу, определенному в стандарте IEC TS 60034-30-2, — при меньшем типоразмере по сравнению с индукционными двигателями тока. Эффективность системы в целом повышается за счет согласованной конструкции двигателей и инверторов.

Меньше вариантов

Благодаря тщательному выбору двигателей и оптимальной адаптации для конвейеров могут предлагаться с гораздо меньшим количеством вариантов даже в больших системах.

Это, в свою очередь, позволяет сократить номенклатуру запасных частей — особенно для больших систем, — а также снизить затраты на хранение по сравнению с существующими стандартными решениями на основе преобразователей частоты.

стандартное исполнение

Меньшие расходы на обучение и техническое обслуживание

Расходы на обучение и требования к обслуживающему персоналу значительно снижаются благодаря единому рабочему дизайну и стандартным рабочим характеристикам преобразователей частоты VLT®, а также простому подключению двигателей VLT® OneGearDrive® Hygienic через разъемы из нержавеющей стали.

Гибкость

легко и надежно комбинироваться с существующими решениями от других производителей как централизованных,

Открытая архитектура системы VLT® FlexConcept® означает, что под управлением преобразователей частоты Danfoss VLT® могут с высокой эффективностью работать как стандартные двигатели, так мотор-редукторы

Гибкость применения для быстрого развития вашего бизнеса

Преобразователь частоты VLT® AutomationDrive оптимизирован под требуемые задачи, обеспечивая максимальную производительность во всех основных применениях независимо от отрасли.

Области применения	Отрас	ли											
	ОВК	Производство продуктов питания и напитков, упаковка	Водоочистка и водоподготовка	Холодильная промышленность	Судовое оборудование и оборудование для морских добывающих платформ	Горнодобывающая промышленность	Металлургия	Химическая промышленность	Краны и подъемные механизмы	Лифты и эскалаторы	Механическая обработка материалов	Нефтегазовая промышленность	Текстильная промышленность
		Ē		*	<u>الم</u>	D X 2	-	Д	1	↑ ↓		T	Î
Насосы					•								
Вентиляторы	•	•		•	•						•		
Компрессоры	•	•	•	•	•	•	•						
Конвейеры		•			•	•					•		
Технологические процессы, обработка материалов		•	•			•	•	•				•	•
Мельницы, барабаны, сушильные печи						•							
Наматывание, разматывание							•						
Бурение						•							
Движители, подруливающие устройства					•								
Лебедки					•								
Вертикальное и горизонтальное перемещение		•	•		•	•	•	•	•	•		•	•
Генерация и преобразование мощности, интеллектуальные энергосистемы					•				•	•			
Позиционирование, синхронизация							•						

Интегрированный контроллер перемещения для приложений позиционирования и синхронизации

Высокоточное позиционирование и синхронизация просто за счет использования преобразователя частоты. Благодаря наличию функции интегрированного контроллера перемещения (ІМС) преобразователи частоты VLT® AutomationDrive FC 302 и VLT® Decentral Drive FCD 302

может использоваться как более сложный контроллер позиционирования и синхронизации, что позволяет экономить время и средства.

Операции позиционирования и синхронизации обычно выполняются с помощью сервоприводов и/или контроллеров перемещения. Однако во многих областях применения высокие динамические характеристики, обеспечиваемые сервоприводом, просто не требуются.

Поэтому преобразователи частоты VLT® AutomationDrive FC 302 или FCD 302 с IMC являются экономичной и высокоэффективной альтернативой сервоприводу в системах позиционирования по одной оси и синхронизации.

Функцию ІМС можно использовать во множестве систем, которые до настоящего времени работали с сервоприводами, например:

- Поворотные столы
- Режущие машины
- Упаковочные машины

FC 302 или FCD 302 могут использоваться для управления асинхронным двигателем или двигателем с постоянными магнитами с обратной связью или без обратной связи от двигателя без необходимости в дополнительном оборудовании. При использовании бессенсорного управления (обратная связь от двигателя отсутствует) наилучшая производительность достигается с двигателями с постоянными магнитами. При использовании с индукционными двигателями эффективность бессенсорного управления достаточна для менее требовательных применений.

Благодаря функции ІМС вы экономите время и средства:

- Отсутствие необходимости в сложном программировании и меньшее количество компонентов означает, что требуется меньше часов для проектирования, монтажа и ввода в эксплуатацию
- Благодаря наличию бессенсорного управления дополнительно экономятся средства на оборудовании для обратной связи, кабелях и монтаже
- Чтобы сэкономить на датчике возвращения в нулевое положение и кабелях, можно использовать функцию «Возвращения в нулевое положение по пределу крутящего момента»

Решение ІМС гарантирует простую и безопасную настройку:

- Конфигурация через параметры, без сложного программирования. Пониженная сложность минимизирует риск ошибок
- Для добавления дополнительных функций используется интеллектуальное логическое управление (SLC), полностью совместимое с ІМС
- Для перенастройки нулевого положения во время работы используется функция «синхронизации нулевого положения»

Отказ от использования энкодера

для экономии и снижения усложненности

Позиционирование

В режиме позиционирования преобразователь частоты управляет перемещением на определенное расстояние (относительное позиционирование) или перемещением в определенное целевое положение (абсолютное позиционирование). Преобразователь вычисляет профиль перемещения исходя из целевой позиции, заданной скорости и параметров изменения скорости (см. примеры на рис. 1 и рис. 2 справа).

Существует три режима позиционирования, в которых для определения целевой позиции используются разные заданные параметры.

- Абсолютное позиционирование Целевое положение зависит от заданной нулевой точки машины
- Относительное позиционирование Целевое положение зависит от текущей позиции машины
- Позиционирование с помощью контактного датчика Целевое положение зависит от сигнала на цифровом входе

Ha *puc. 3* показаны разные результирующие целевые позиции при заданной целевой позиции (задании) 1000 и начальном положении 2000 для каждого из типов позиционирования.

Синхронизация

В режиме синхронизации преобразователь следует за положением главного устройства. Несколько преобразователей могут следовать за одним и тем же главным устройством. Сигнал главного устройства может быть внешним сигналом, например, от энкодера, виртуальным сигналом главного устройства, генерируемым преобразователем частоты, или сигналом позиции главного устройства, переданным по сетевой шине. Передаточное отношение и смещение положения регулируются соответствующими параметрами.

Возврат в нулевое положение

При бессенсорном управлении и управлении с замкнутым контуром с инкрементным энкодером должно быть указано нулевое положение, чтобы создать точку отсчета для физического

Читать руководство по программированию IMC

Рис. 1. Профиль перемещения с линейным изменением скорости

Рис. 2. Профиль перемещения с S-образным изменением скорости

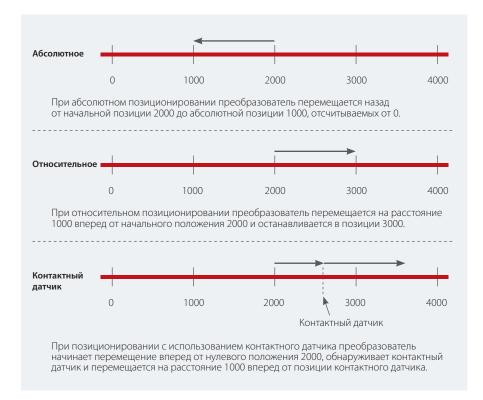


Рис. 3. ІМС поддерживает три режима позиционирования

положения машины после включения питания. Существует несколько функций возвращения в нулевое положение, с датчиком и без него. Функция синхронизации нулевого положения может использоваться для постоянной перенастройки нулевого положение во время работы при наличии в системе какого-либо смещения (например, в случае бессенсорного управления асинхронным двигателем или при проскальзывании механической коробки передач).

Повышенная точность, лучшее управление и более высокая скорость

Стандартный функционал преобразователя частоты VLT® Automation Drive может быть расширен с помощью дополнительных энергосберегающих устройств управления перемещением.

Повышение производительности и улучшение рабочих характеристик

Замена механических элементов управления интеллектуальными, энергосберегающими электронными решениями — это эффективный способ сократить затраты как при установке, так и при повседневной эксплуатации.

Возможность настраивать систему упаковки и управлять ею с большей точностью также сокращает количество ошибок при упаковке и частоту поломок оборудования.

Результат: надежный, высококачественный процесс, повышение производительности и лучшая рентабельность.

Сокращение затрат на установку

Замена механики на электронную синхронизацию или кулачковое управления повышает гибкость и снижает затраты. Например, электронное кулачковое управление — стандартная для VLT® Motion Control Option MCO 305 функция — расширяет функционал преобразователя и устраняет необходимость в использовании механических кулачковых дисков и коробок.

Увеличение производительности

В некоторых случаях может понадобиться повысить производительность упаковочных систем. Такого увеличения можно достичь с помощью дополнительного устройства VLT® Synchronizing Controller MCO 350, которое обеспечивает исключительно точное управление синхронизацией и может быть легко настроено с помощью удобной панели управления на VLT® AutomationDrive.

Контроллер не только повышает производительность, но и обладает дополнительным преимуществом — он делает систему управления более простой.

Независимо от того, какое дополнительное устройство вы выберете, такие преимущества, как свобода управления и эффективность работы, обеспечат быструю отдачу от ваших инвестиций.

Повысьте гибкость таких систем, как:

- печатные линии.
- моечные машины для бутылок,
- конвейерные ленты,
- системы упаковки,
- системы обработки материалов,
- паллетизаторы,
- делительные столы,
- системы хранения,
- системы захвата и позиционирования,
- оперативное позиционирование,
- намотка фольги,
- упаковка жидких продуктов,
- заполнение и запечатывание контейнеров,
- подъемные краны, лифты и подъемники,
- системы отбраковки,
- системы намотки

Безопасность, сбалансированная с вашими потребностями

	FC 302,	FCD 302	FC 302	FC 302	
Плата обеспечения безопасности	MCB 108	MCB 152	MCB 150 MCB 151	MCB 151 + MCB 159	
Дополнительные безопасные входы		Ø	Ø		
Гальванически изолированные входы	Ø				
Шина обеспечения безопасности (PROFIsafe)		Ø			
STO	Ø	Ø	Ø	•	
SS1 (SS1-t, SS1-r)			Ø		
SLS/SMS			Ø		
SS1, SLS, SMS без датчиков				•	

Защита оборудования и операторов

Преобразователи частоты семейства VLT® AutomationDrive поставляются в стандартной комплектации с функцией STO (Safe Torque Off) в соответствии с ISO 13849-1 PL d и SIL 2 и IEC 61508/ IEC 62061. Дополнительное устройство VLT® Safety Option MCB 150 позволяет добавить функции SS1, SLS, SMS, безопасный толчковый режим и т. д. Функции управления скоростью доступны как с обратной связью, так и без нее.

VLT® Safety Option MCB 150 и MCB 151

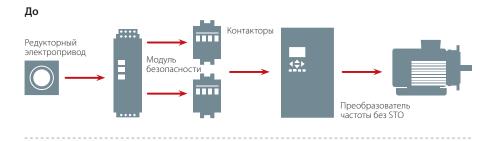
МСВ 150 и МСВ 151 могут встраиваться непосредственно в преобразователь частоты и готовы для последующего подсоединения к общим системам безопасности с шинами. Модули сертифицированы в соответствии с ISO 13849-1, вплоть до PL d,

а также в соответствии с IEC 61508/IEC 62061, вплоть до SIL 2, и обеспечивают работу функций SS1 и SLS (SMS). Данные дополнительные устройства могут использоваться в применениях высокими и низкими требованиями. Функция SS1 обеспечивает линейное регулирование и управление по времени. При активации функция SLS может быть сконфигурирована с линейно снижающейся характеристикой или без таковой.

Если МСВ 151 используется в сочетании со встроенной опцией VLT® Sensorless Safety MCB 159, для контроля безопасной скорости внешний датчик больше не требуется.

VLT® Safety Option MCB 152

При использовании в сочетании с дополнительной платой периферийной шины VLT® PROFINET MCA 120 плата VLT® Safety Option MCB 152 управляет


работой функций безопасности преобразователя частоты по шине PROFIsafe. Центральные и децентрализованные преобразователи частоты, расположенные в разных машинных отсеках, могут быть легко связаны между собой с помощью шины безопасности PROFIsafe. Такая связь позволяет активировать Safe Torque Off (STO) независимо от того, где возникает опасность. Функции безопасности в МСВ 152 реализованы в соответствии c EN IEC 61800-5-2.

MCB 152 поддерживает функции PROFIsafe и обеспечивает активацию встроенных функций защиты в VLT® AutomationDrive с любого хоста PROFIsafe, вплоть до уровня SIL 2, в соответствии с EN IEC 61508 и EN IEC 62061 и категории 3-го уровня PL d согласно EN ISO 13849-1.

Быстрый ввод в эксплуатацию

Для упрощения запуска и обслуживания возможность конфигурации параметров полностью интегрирована в VLT® Motion Control Tool MCT 10. Визуальные инструкции в МСТ 10 обеспечивают как безошибочное подключение проводки, так и правильную передачу параметров безопасности с ПК на преобразователь частоты.

Программное обеспечение также предлагает простую диагностику и динамический отчет о вводе в эксплуатацию, который может быть использован для предоставления сертификационной документации, необходимой для проведения приемочных испытаний системы безопасности.

После

Максимальная эксплуатационная готовность системы благодаря

мониторингу технического состояния

Особенность

Интеллектуальные функции мониторинга превращают преобразователь частоты VLT® в интеллектуальный датчик, который может в реальном времени отслеживать состояние двигателя и системы, в которой тот используется, обнаруживать смещение текущего рабочего состояния за предварительно заданные пределы и предупреждать оператора до того, как это повлияет на технологический процесс.

Мониторинг технического состояния

Во время установки функция мониторинга технического состояния (СВМ) устанавливает базовый уровень, определяющий зарегистрированные рабочие условия для каждого отслеживаемого элемента системы, и определяет пороговые значения. Во время работы СВМ контролирует обмотки статора двигателя, датчики и условия диапазона нагрузки, регулируемые в соответствии с фактической скоростью системы. Когда при фактической эксплуатации определенные пределы оказываются превышены, СВМ отправляет предупреждения, чтобы уведомить персонал о необходимости принять меры.

Функция СВМ соответствует определенным стандартам и рекомендациям, таким как:

- Стандарт ISO 13373, касающийся мониторинга состояния и диагностики машин
- Рекомендации VDMA 24582, касающиеся мониторинга состояния
- Стандарты ISO 10816/20186, касающиеся измерения и оценки механической вибрации.

Уникальность этой встроенной функции заключается в том, что преобразователь частоты VLT® выполняет мониторинг технического состояния внутри преобразователя частоты. При необходимости пользователь может активировать подключение к облаку или ПЛК, чтобы задействовать мониторинг множества состояний или, если потребуется, отправить оповещение.

– Не требуется подключение к облаку: высокий уровень

Функция мониторинга состояния, встроенная в преобразователь частоты	безопасности и отсутствие абонентской платы – Снижение затрат на установку, поскольку для генерации наблюдения и отправки уведомлений СВМ не требуется внешний контроллер или ПЛК – Документирование стабильности системы
Мониторинг обмотки статора двигателя	 Увеличение времени безотказной работы благодаря раннему обнаружению и устранению неисправностей в обмотке статора двигателя до того, как неисправность перерастет в серьезный отказ и незапланированный останов
Мониторинг нагрузочного периметра Базовый уровень системы (работа/онлайн-режим)	 Оптимизация технологического процесса/достижение максимального КПД благодаря функции сравнения фактической эффективности системы с базовыми данными с последующим инициированием

Преимущество

- Мониторинг системы с помощью датчика (внешнего) Базовый уровень системы (работа/онлайн-режим)
- Более продолжительное время безотказной работы благодаря быстрому обнаружению признаков механического смещения, износа и разбалтывания и принятия соответствующих мер

действий по техобслуживанию

 Более высокая точность, поскольку мониторинг с использованием датчика влияет на скорость двигателя

Мониторинг состояния обмотки статора двигателя

Отказы обмотки двигателя не происходят внезапно; они развиваются со временем. Проблемы начинаются с небольшого короткого замыкания в пределах одного витка обмотки, которое вызывает дополнительный нагрев. Затем повреждение распространяется до уровня, при котором активируется зашита от перегрузки по току, и двигатель останавливается, что приводит к нежелательным простоям.

Уникальная функция контроля состояния обмотки позволяет перейти от практики проведения восстановительных ремонтов неисправных двигателей к практике обнаружения нарушений изоляции двигателя на ранней стадии и устранению неполадок во время планового технического обслуживания. Это позволяет избежать нежелательных и потенциально дорогостоящих простоев оборудования из-за сгоревших двигателей.

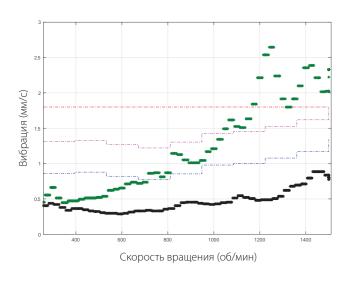
Выбор датчика

Четыре входа для датчиков мониторинга технического состояния определяются в настройках аналоговых входов. Используя параметризацию мониторинга технического состояния, можно масштабировать входы для мониторинга сигналов датчиков, наиболее часто это применяется в отношении датчика вибрации. Также можно выбрать датчики давления и расхода, при условии, что величина, измеряемая выбранным датчиком, зависит от скорости преобразователя частоты системы.

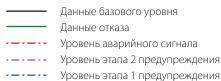
Мониторинг механических вибраций

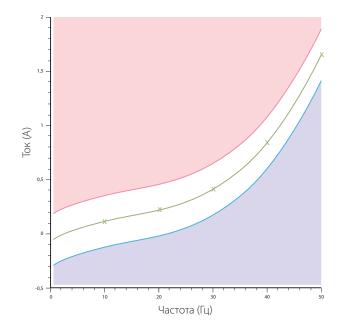
Ускоренного износа механических деталей системы преобразователя частоты можно избежать, используя СВМ в сочетании с внешним датчиком вибрации для контроля уровня вибрации в двигателе или системе, связанной с фактической скоростью или скоростью вращения системы.

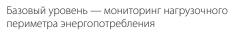
Мониторинг вибрации выполняется с использованием стандартизированных методов и пороговых уровней, определенных в таких стандартах. как ISO13373 «Контроль состояния и диагностика машин» или ISO10816/20816 «Вибрация механическая. Измерение и оценка вибрации машин».

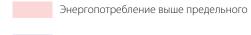

Базовые значения, полученные при измерении минимальных/максимальных и средних значений, указывают на стабильность системы на разных скоростях и очень полезны в качестве тестовых показателей при сдаче/ приемке от системного интегратора к конечному пользователю.

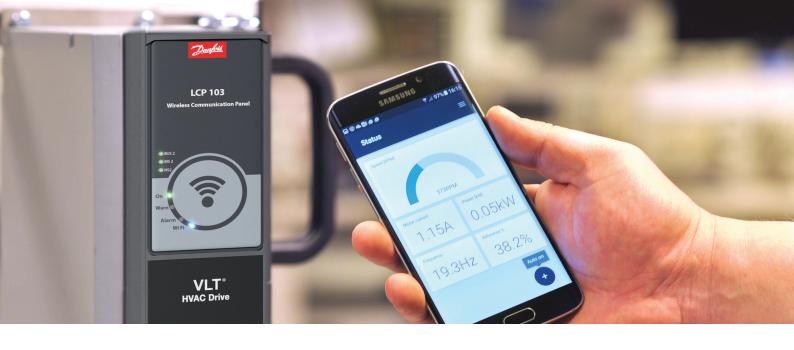
Мониторинг нагрузочного периметра


Преобразователь частоты VLT® позволяет сравнивать кривую фактической нагрузки с исходными значениями, определенными во время ввода в эксплуатацию, что дает возможность обнаруживать нештатные рабочие состояния, например:


- Утечку в системе ОВК. Недостаточное или чрезмерное потребление энергии указывает на проблему, определяемую на отдельных скоростях
- Засор насоса грязью или песком
- Засор воздушных фильтров в вентиляторных системах


Когда деталь изнашивается, кривая нагрузки изменяется по сравнению с исходной базовой линией и выдается предупреждение о необходимости технического обслуживания, что дает возможность быстро и эффективно устранить проблему. Благодаря тому, что оборудование поддерживается в оптимальном рабочем состоянии, эта функция также помогает экономить энергию.




Пример применения, показывающий изменения сигнала вибрации

Возможность использования в качестве контроллера

Настройка с помощью SLC

Встроенный интеллектуальный логический контроллер (SLC) может использоваться для настройки функций преобразователя частоты и оптимизации совместной работы преобразователя частоты, двигателя и применения. В преобразователе частоты VLT® четыре различных контура SLC работают независимо друг от друга. Создавайте новые функции с помощью простых, интуитивно понятных раскрывающихся списков, предоставляющих множество вариантов настройки преобразователя частоты для нужд конкретного применения. Большинство логических функций работают независимо от управления последовательностью, то есть преобразователь частоты отслеживает переменные или события, определенные сигналом, гибко и непосредственно, независимо от управления двигателем.

Используйте свободно программируемые дополнительные устройства и модули входов/выходов, чтобы еще больше увеличить зону управления преобразователя частоты. Используйте эти программируемые параметры для управления функциями подготовки воздуха с помощью вентиляторов, клапанов и заслонок, чтобы уменьшить и освободить ценные ресурсы управления для системы управления зданием. Использование расширенных возможностей локального программирования и программирования с помощью панели управления в отношении функций интерактивного взаимодействия с пользователем позволяют снизить общую сложность установки AHU/RTU и обеспечить ее готовность к интеграции с ІоТ и облаком в будущем.

Функции, зависящие от времени, и часы реального времени

Интегрированные функции даты, дня недели и времени позволяют программировать преобразователь частоты на изменение режима работы, запуск функций или даже выполнение определенных действий в точно определенный момент. Опция часов реального времени гарантирует, что вы всегда будете знать время и дату событий даже в случае выключения/включения питания преобразователя частоты.

Функциональная безопасность

Преобразователь частоты VLT® HVAC Drive может поставляться с функцией Safe Torque Off (STO) в соответствии с ISO 13849-1 PL d и SIL 2 и IEC 61508/IEC 62061. Опциональный встраиваемый запираемый на замок разъединитель сети защищает персонал, работающий внутри установки.

Расширенные входы/выходы

Для расширения набора доступных интерфейсов ввода-вывода можно воспользоваться широким ассортиментом дополнительных устройств, подходящих для различных прикладных задач, таких как стандартные цифровые входы/выходы и реле, аналоговые входы/выходы и специальные интерфейсы для датчиков температуры. Дополнительные устройства подключаются либо внутри корпуса преобразователя частоты, либо по системе шины к внешним модулям ввода-вывода со степенью защиты от IP20 до IP66.

Преобразователь частоты как интерфейс ввода-вывода на дистанционно размещенных установках

Защищенный корпус VLT® делает возможным полностью открытый монтаж преобразователя частоты в неблагоприятных условиях эксплуатации: рядом с электродвигателями, датчиками и другими компонентами систем управления. Использование интерфейса ввода-вывода и функций управления в преобразователе частоты позволяет уменьшить сложность установок. Преобразователь частоты подключается напрямую ко всем локальным компонентам установки, а по сетевой шине подсоединяется к системе BMS или другим системам SCADA, которые управляют установкой в целом. Локальное подключение вводов-выводов может быть реализовано с использованием широкого набора интерфейсов: это и встроенные функции ввода-вывода, и опциональные внутренние и внешние модули ввода-вывода, подключаемые по протоколу BACnet или Modbus. Такие установки часто используются в проектах тоннелей или в проектах реновации, когда автономные системы интегрируются в более крупную систему BMS, которая контролирует конкретную установку.

ПИД-контроллеры и автоматическая настройка

В преобразователь частоты встроено четыре пропорционально-интегральнодифференциальных контроллера (ПИД-контроллеры), которые обеспечивают оптимальное внутреннее и внешнее управление, а также устраняют необходимость в дополнительных управляющих устройствах. ПИД-контроллеры обеспечивают постоянное управление системами с обратной связью, давая преобразователю частоты возможность корректировать скорость работы двигателя, чтобы регулировать давление, расход, температуру или другие характеристики системы.

Самая совершенная

из всех технологий двигателей

Сэкономьте время на пусконаладочных работах и займитесь тонкой подстройкой для оптимального управления системой. Выбор двигателя остается за вами — преобразователь частоты VLT® можно использовать с любой предпочитаемой вами технологией двигателей.

Свободный выбор двигателя

Компания Danfoss дает вам возможность свободно выбирать поставщика электродвигателя и поддерживает все распространенные типы двигателей. Преобразователь частоты VLТ® предлагает алгоритмы управления, которые обеспечивают высокую эффективность и бесперебойную работу стандартных асинхронных электродвигателей, двигателей на постоянных магнитах и синхронизированных реактивных двигателей. Это означает, что вы можете совмещать преобразователи VLT® с предпочитаемой вами технологией электродвигателей и достигать выдающихся рабочих показателей.

Немедленный переход к действию с автоматической адаптацией к двигателю

Функция адаптации двигателя (АМА) позволяет достичь оптимальной и динамичной производительности двигателя всего за несколько щелчков мыши, благодаря чему экономится время и трудозатраты при настройке системы. Пользователю необходимо лишь, руководствуясь подсказками мастера начальной установки SmartStart, ввести базовые данные о двигателе, такие как ток и напряжение (они указаны на заводской табличке двигателя), — и преобразователь частоты готов к работе.

Управление двигателем в общих и расширенных применениях

В преобразователе частоты используется простое стандартное управление двигателем VVC+; это идеальный выбор для большинства применений с переменным крутящим моментом. Однако в некоторых случаях, чтобы получить более быстрое управление двигателем в применении и справиться с нестабильным питанием от сети, требуется более сложное управление двигателем в режиме магнитного потока. Такое усовершенствованное управление в режиме магнитного потока также требует более высокой степени согласования параметров двигателя, и для создание оптимальной рабочей платформы используется функция ААД.

Автоматическая оптимизация энергопотребления

Функция автоматической оптимизации энергопотребления (АЕО) сделала ранее сложную задачу легко выполнимой и настраиваемой всего за несколько щелчков мыши. Встроенная функция АЕО снижает энергопотребление путем оптимального и энергоэффективного управления скоростью работы насосов с точной подстройкой напряжения под фактическую нагрузку в текущий момент.

Сверхлегкий ввод в эксплуатацию с автоматической настройкой

Функция автоматической настройки производит тонкую подстройку системы для оптимальной производительности, олновременно сокращая объем необходимого программирования. Функция автоматической настройки измеряет ряд характеристик системы и автоматически определяет параметры контроллера технологического процесса, которые обеспечат стабильное и точное управление системой.

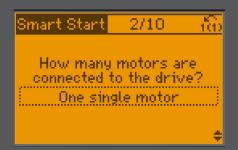
Простота установки: экономия времени на ввод в эксплуатацию с помощью SmartStart

Мастер настройки SmartStart активируется при первом включении преобразователя частоты или после сброса к заводским настройкам. Выдавая указания на простом для понимания языке, SmartStart проводит пользователя через ряд простых шагов, обеспечивающих правильное и эффективное управление двигателем и его настройку для работы системы.

Мастер запускается непосредственно из быстрого меню на графической панели управления; прежде всего пользователю предлагается выбрать предпочтительный язык из 27 языков.

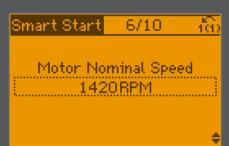
Кроме того, возможность сохранения до 50 выбираемых пользователем параметров дополнительно упрощает работу по настройке основных параметров для решения уникальных задач. Графическая панель управления (GLCP) для преобразователей частоты VLT® может подключаться во время работы или монтироваться дистанционно, если этого потребуют ваши задачи.

Дистанционно


устанавливаемая панель LCP

Когда доступ к преобразователю частоты затруднен, часто бывает удобно установить дистанционную панель управления для удобства эксплуатации и программирования. Комплект для удаленного монтажа панели управления специально разработан для простой установки в шкафы, имеющие стенки толщиной до 90 мм.

Кроме того, крышка комплекта фиксируется в поднятом положении, защищая экран от солнечных лучей во время программирования панели управления (LCP), или же можно закрыть и заблокировать ее, при этом светодиоды питания, аварийного сигнала и предупреждения остаются видны. Подробнее см. в разделе «Принадлежности».



Простота установки: беспроводное подключение к преобразователю частоты

Если преобразователи частоты оснащены защитой и установлены вне помещения или в труднодоступных местах, беспроводное подключение к преобразователю частоты через смартфон упрощает и ускоряет процесс ввода в эксплуатацию или устранения неисправностей.

Беспроводная панель VLT® Wireless Communication Panel LCP 103 взаимодействует с приложением MyDrive® Connect, которое можно загрузить на устройства iOS и Android. MyDrive® Connect обеспечивает полный доступ к преобразователю частоты, что упрощает выполнение задач ввода в эксплуатацию. эксплуатации, мониторинга и обслуживания.

Мгновенный доступ к важной информации

Беспроводная панель VLT® Wireless Communication Panel LCP 103 показывает текущее состояние преобразователя частоты (включено, предупреждение, аварийный сигнал, подключение к Wi-Fi) с помощью встроенных светодиодов. Через МСТ 10 на ноутбуке или через приложение MyDrive® Connect пользователь может работать с подробной информацией, такой как сообщения о состоянии, меню запуска и события аварийных сигналов/ предупреждений. Поэтому настройку преобразователя частоты со степенью защиты IP55 и IP66 проще выполнить по беспроводной сети, не открывая корпуса для подключения USB-кабеля. Для документирования поведения преобразователя частоты во времени

приложение может также визуализировать различные данные с помощью графиков. Используя беспроводное соединение (прямое или посредством точки доступа в локальной сети), обслуживающий персонал может получать через приложение сообщения об ошибках в режиме реального времени, что позволяет быстро реагировать на потенциальные проблемы и сокращать время простоя.

Обмен данными

Усовершенствованная функция копирования позволяет сохранять копии параметров преобразователя частоты во внутренней памяти панели управления VLT® Wireless Communication Panel LCP 103 либо на смарт-устройстве. Журнал с зарегистрированными данными можно передать через MyDrive® Connect сервисной группе, которая на основании этих данных может предоставить соответствующую поддержку для устранения неполадок. Параметр безопасного управления позволяет пользователю определять поведение преобразователя частоты на случай отказа/ потери соединения между приложением на смартфоне и преобразователем частоты.

Свобода подключения

Значение информации, поступающей в реальном времени, все более возрастает в системах управления зданиями (BMS) и промышленных приложениях с Industry 4.0. Немедленный доступ к данным повышает прозрачность производственных объектов, в то же время позволяя оптимизировать производительность систем, собирать и анализировать данные о системах и круглосуточно обеспечивать дистанционную поддержку в любой точке мира.

Сегодня преобразователя частоты - это больше, чем просто устройства управления электропитанием. Благодаря способности действовать в качестве датчиков и концентраторов датчиков, обрабатывать, хранить, анализировать данные и обмениваться ими с другими устройствами, преобразователи частоты являются жизненно важными

элементами в современных BMS и системах автоматизации, использующих Industrial IoT. Это означает, что преобразователи частоты Danfoss — это ценные инструменты для мониторинга состояния.

Вне зависимости от сферы применения преобразователи частоты Danfoss отличаются исключительно широким разнообразием доступных для выбора протоколов связи. Это позволяет без проблем интегрировать преобразователь частоты в выбранную систему и обеспечить свободу проведения обмена данными любым подходящим способом.

Увеличение производительности

Связь по сетевым шинам снижает капитальные затраты на производственных объектах. Помимо первоначальной экономии, обеспечиваемой за счет снижения затрат на прокладку проводки

и блоки управления, сети на основе сетевых шин проше в обслуживании и в то же время обеспечивают улучшенные характеристики работы систем.

Удобство для пользователя и быстрота настройки

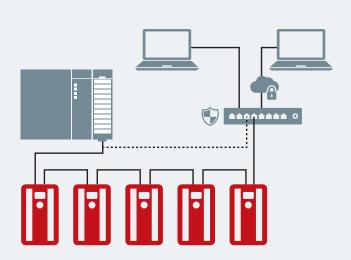
Сетевые шины Danfoss настраиваются с панели управления, в которой удобный интерфейс пользователя реализован на множестве языков. Преобразователь частоты и сетевую шину также можно настраивать с помощью программного обеспечения, разработанного для всех семейств преобразователей частоты. Чтобы еще больше облегчить интеграцию своего оборудования в ваши системы, компания Danfoss Drives предоставляет драйверы сетевых шин и примеры для ПЛК, которые можно бесплатно загрузить с веб-сайта компании.

Удаленный доступ к преобразователю частоты

Для ввода в эксплуатацию и эксплуатации преобразователя частоты можно использовать либо локально расположенную панель управления, либо удаленный доступ с помощью инструмента MyDrive® Connect. Сегодня для удаленного доступа принято подключать преобразователь частоты через сетевую шину или беспроводное сетевое соединение.

Подключение через беспроводную сеть

Для беспроводного подключения можно с помощью панели управления VLT® Wireless Control Panel LCP 103 создать сеть Wi-Fi и подключить смарт-устройство напрямую к преобразователю частоты. Можно также подключаться через точку доступа; в этом случае к преобразователю частоты можно предоставить доступ нескольким смарт-устройствам, причем в конкретную единицу времени может быть подключено только одно устройство. Преобразователи частоты, доступные в сети, отображаются в приложении MyDrive® Connect с пользовательским именем, созданным при настройке параметров. И LCP 103, и MyDrive® Connect предоставляют вам полный доступ ко всей информации, хранящейся в преобразователе частоты. Вы можете изменять настройки параметров, а также дистанционно управлять пуском и остановом преобразователя частоты.


Встроенный веб-сервер в сетевых шинах на базе Ethernet

Интерфейс веб-сервера доступен во всех дополнительных платах сетевых шин VLT® на базе Ethernet. Используя стандартный браузер, после ввода правильного ІР-адреса и пароля вы можете получить доступ к преобразователю частоты. Этот интерфейс идеально подходит для экранов смартфонов, планшетов и настольных компьютеров, где веб-сервер поддерживает различные интерфейсы браузера. Для улучшения взаимодействия с пользователем информация, к которой вы можете получить доступ, заранее определена в меню и виджетах. Сюда входит информация о нормальном состоянии преобразователя частоты (считывание, ввод/вывод, журнал аварийных сигналов, графики трендов, статистика), а также информация и тренды, относящиеся к техническому обслуживанию и энергоэффективности. Если почтовый сервер подключен к той же сети, что и преобразователь частоты, можно также подписаться на уведомления, отправляемые по электронной почте.

Облачное решение для умных зданий

Создавайте сети ІоТ и интеллектуальные облачные решения в соответствии с вашими потребностями. В индустрии ОВК на смену традиционным системам BMS, где главный контроллер BMS контролирует все приложения здания, постепенно приходит тенденция «умного здания» с подключением MQQT. Этот новый подход направлен на использование множества «полуглавных» систем, каждая из которых контролирует работу небольшого приложения. Хорошим примером полуглавной системы является использование VLТ® для управления всеми установками подготовки воздуха (AHU). Затем можно

полностью интегрировать AHU в новое поколение решений BMS, предоставив различным системам управления прямой доступ к преобразователю частоты. Одна из экспертных систем может фокусироваться на комфорте в здании, вторая — на потреблении энергии, а третья — на обслуживании и замене фильтров. Danfoss предлагает решения для преобразователей частоты с возможностью поддержки этих различных облачных решений и встроенной системой безопасности очень высокого уровня для защиты соединения между преобразователем частоты, «брокером» и облачными серверами; все зависит от концепции интернет-облака, которую выбрал пользователь.

Панель управления веб-сервера

Возможность адаптации

процедуры ввода в эксплуатацию

VLT® Motion Control Tool MCT 10 это интерактивный инструмент для быстрой и простой конфигурации (в оперативном/автономном режиме) преобразователя частоты VLT® или устройства плавного пуска с помощью ПК. Этот инструмент можно также использовать для настройки сети связи и резервного копирования любых параметров. МСТ 10 позволяет одновременно контролировать и настраивать систему, а также обеспечивает более эффективный мониторинг всей системы для выполнения диагностики, выявления неполадок (с помощью аварийных сигналов/предупреждений) и улучшения профилактического обслуживания. Начиная с версии 4.00, МСТ 10 включает в себя еще больше функций, повышающих удобство использования.

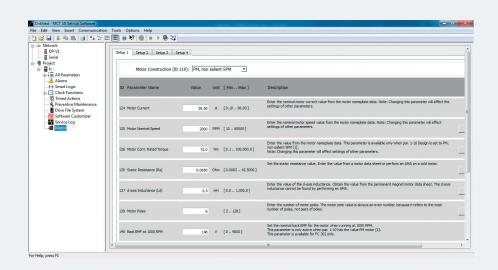
Подключаемый модуль отслеживания состояния

Возможности считывания через периферийную шину различных слов состояния и командных слов для входов и выходов реле были значительно усовершенствованы. Мы объединили эти сигналы в одном подключаемом модуле, который теперь показывает гораздо больше информации: можно сразу увидеть, включены или выключены определенное реле или бит или какова точная команда, на которую настроен преобразователь частоты, и это экономит ваше время.

VLT® Software Customizer

Программный модуль VLT® Software Customizer позволяет настроить параметры ввода в эксплуатацию в соответствии с вашими потребностями. Этот инструмент поможет быстро создать и протестировать с помощью симулятора набор параметров перед загрузкой на реальный преобразователь частоты.

VLT® Software Customizer содержит три основные функции:


- SplashScreen. Позволяет создать пользовательский экран, отображаемый при запуске преобразователя. Можно использовать встроенный редактор для создания изображения с нуля или импортировать существующее изображение из библиотеки или из компьютера и адаптировать его к VLT®.
- InitialValues. Позволяет установить новое значение по умолчанию для практически любого параметра.
- SmartStart. Позволяет создать собственный мастер запуска, проводящий оператора через настройку именно тех параметров, которые нужны.

Подключаемый программный модуль двигателя

Программный модуль двигателя облегчает выбор необходимого типа двигателя и помогает настроить параметры в соответствии с выбранным типом. Нужно выбрать требуемый тип двигателя, и на экране отобразится перечень параметров с описанием, которое поможет вам установить правильные значения. Подключаемый программный модуль двигателя поддерживает двигатели следующих типов:

- асинхронные (IM);
- неявнополюсные
- с постоянными магнитами; явнополюсные с внутренними постоянными магнитами;
- синхронные реактивные (SynRM);
- синхронные реактивные с постоянными магнитами (PMSynRM).

FCD 302 — концепция одной коробки снижает совокупную стоимость владения

Совокупная стоимость владения является основным фактором в процессе принятия решений при покупке сложного технического оборудования. Более низкая первоначальная цена больше не является разумным аргументом для покупки. Первоначальная цена должна быть разумной, но наряду с ней существует множество факторов, влияющих на общую стоимость оборудования в течение срока его службы. Эти факторы, от стоимости заказа до расходов на эксплуатацию и техническое обслуживание, могут в совокупности превышать первоначальную цену покупки, превращая дешевые покупки в очень дорогостоящую собственность.

Новый децентрализованный преобразователь частоты VLT® Decentral Drive FCD 302 завершает переход преобразователя частоты VLT® к «концепции одной коробки», обеспечивающей минимальную совокупную стоимость владения.

Концепция действительно проста – все, что необходимо для управления двигателем, находится внутри корпуса преобразователя частоты с защитой IP66. Нужно просто вставить сетевой кабель в корпус, подключить к корпусу соединительный кабель, подключить кабель к двигателю, — и система готова к работе. Добавьте высокоскоростной кабель промышленной шины — и ваши преобразователи частоты станут неотъемлемой частью всей сети управления преобразователями частоты. Не требуется внешний источник питания 24 В пост. тока, не требуется внешний контроллер или выключатель двигателя — все это уже есть в FCD 302.

Каждый аспект FCD 302 вносит вклад в снижение совокупной стоимости владения до минимума.

Уникальная конструкция этого продукта ориентирована на упрощение процессов заказа, установки, ввода в эксплуатацию, эксплуатации и технического обслуживания.

Рабочие характеристики и эксплуатация

FCD 302 и VLT® AutomationDrive разаботаны на одной и той же платформе Danfoss, что с точки зрения рабочих характеристик и удобства эксплуатации означает отсутствие необходимости в новом обучении и сокращение времени, затрачиваемого на обсуждение применения со специалистами по преобразователям частоты Danfoss.

Документация и детали

Меньше документации, меньше деталей, нет необходимости в системе распределения или использовании внесистемных устройств. Конструкция сертифицирована для применения по всему миру, местные разрешения и документация доступны на различных языках.

Простой интерфейс

Интерфейс между монтажным корпусом и секцией управления прост и понятен. Поэтому для описания электрического монтажа/монтажного корпуса нужен всего один чертеж.

Работа с заказами

Процесс заказа упрощается благодаря ограниченному количеству заказываемых позиций. В связи с этим сокращается объем работы по оформлению заказов на покупку и снижается риск заказа неправильных деталей или того, что какую-то позицию вообще забудут заказать.

При поставке меньше деталей требуют регистрации, меньше времени уходит на сверки поступивших деталей с исходным заказом, снижается риск того, что некоторых деталей будет недоставать, требуется меньше складов и меньше места для хранения.

Установка

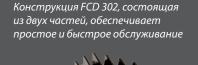
Меньшее количество устанавливаемых корпусов в меньшем количестве мест позволяет экономить время и трудозатраты. Меньшее количество кабелей экономит время и деньги, а также снижает расходы на кабеленесущие системы. Внешнее питание 24 В пост. тока не требуется, и это позволяет отказаться от еще одного кабеля и сэкономить на стоимости центрального источника постоянного тока. Меньшее количество соединений и выводов также снижает трудозатраты при установке и снижает вероятность отказа из-за плохого или неправильного подключения.

Ввод в эксплуатацию

Концепция одной коробки позволяет значительно сократить время ввода в эксплуатацию. Многоязыковой графический дисплей со встроенным руководством означает, что вы не будете тратить время на поиск бумажного руководства. Интерфейс «человек-машина» на основе удостоенного наград дисплея VLT® позволяет отображать только тех параметры, которые важны пользователю.

Преобразователи частоты FCD 302 могут также работать с VLT® Motion Control Tool MCT 10, проверенным инструментом, доказавшим свою эффективность при работе с тысячами преобразователей частоты VLT®. Программы можно хранить, а также загружать с одного преобразователя частоты на другой; производители комплектного оборудования могут выполнять пусконаладочные работы до отгрузки, благодаря чему заказчик может ускорить ввод в эксплуатацию собранной установки на месте эксплуатации.

Гибкое подключение к ПК через USB, RS485 и HPFP, а также возможность загрузки программы через Интернет позволяют обновлять заводские настройки, установленные производителем, на предприятии конечного пользователя, что упрощает и снижает затраты на ввод в эксплуатацию.


Обслуживание

Возможно, FCD 302 является самым простым и удобным в обслуживании преобразователем частоты, когда-либо разработанным компанией Danfoss. Средства самодиагностики в сочетании с электронным руководством, которое открывается на графическом дисплее, облегчают поиск и устранение неисправностей. Все аварийные сигналы и операции регистрируются в журнале для быстрого доступа и интерпретации произошедших событий.

Благодаря тому, что конструкция состоит всего из двух частей, значительно сокращается время, необходимое для локализации зоны отказа, и появляется возможность просто заменить неисправную деталь, что сводит простои к минимуму. Неисправная деталь может быть заменена необученным персоналом, а номенклатура запасных частей значительно сокращается. Больше не нужно содержать бесконечные стеллажи с хрупкими и уязвимыми печатными платами (особенно бесполезные, когда выясняется, что именно нужной платы нет в наличии). Для быстрого и надежного обслуживания есть всего две части — верхняя и нижняя.

Шесть светодиодов показывают текущее состояние устройства. Для дальнейшего программирования и настройки можно, не открывая корпус, подключить графическую панель управления с интерфейсом пользователя, аналогичным дисплеям серии FC.

FCD 302 — концепция One Box Все, что вам нужно — в одной коробке

Встроенное питание 24 В

Питание 24 В постоянного тока для цепей управления обеспечивается блоком преобразователя частоты через удаленные входы-выходы распределительной системы.

Силовая цепь

В новом FCD 302 упрощена прокладка внутренних сетей питания. Клеммы внутри корпуса для кабелей питания с сечением 6 мм² (большой корпус) или 4 мм² (малый корпус) позволяют подключать несколько блоков на одном ответвлении.

Коммутатор Ethernet

В преобразователе частоты предусмотрен встроенный Ethernet-коммутатор/хаб с двумя портами RJ-45 для простого гирляндного подключения коммуникационной сети Ethernet. Прокладка сетевых шин не увеличивает . время ввода в эксплуатацию и осуществляется путем подключения сетевых шин на базе Ethernet или Profibus к штекерному интерфейсу M12.

Связь PROFIBUS

Прямой и легкий доступ к полпружиненным клеммам лля последовательного подключения.

Децентрализованные входы/выходы

Все входные/выходные устройства подключаются к FCD 302 через разъемы М12 со степенью защиты ІР67.

Клеммы управления

Специальные подпружиненные клеммные зажимы типа Cage Clamp повышают надежность и упрощают пусконаладочные работы и обслуживание.

ЭМС и сетевое воздействие

VLT® Decentral Drive в стандартном исполнении соответствует ограничениям ЭМС А1 в соответствии со стандартом EN 55011. В стандартной комплектации встроенные катушки постоянного тока обеспечивают низкие гармонические нагрузки на сеть в соответствии с EN 61000-3-12 и увеличивают срок службы преобразователя частоты.

Разъем для подключения дисплея

Отмеченная наградами панель управления, используемая с преобразователями частоты серии FC, может также использоваться с FCD 302. Подключение можно выполнить, не открывая корпус, воспользовавшись встроенным разъемом для панели управления.

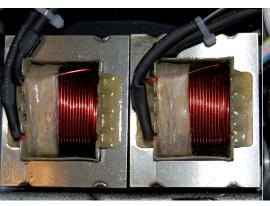
Информационная кнопка делает печатное руководство практически ненужным. Функция автоматической адаптации двигателя, меню быстрой настройки и большой графический дисплей делают пусконаладочные работы и эксплуатацию забавой.

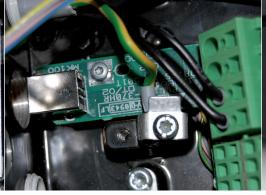
Встроенный интеллектуальный логический контроллер

Интеллектуальное логическое управление это простой и рациональный способ обеспечить совместную работу преобразователя частоты, двигателя и приложения. Контроллер отслеживает определенное событие. При возникновении события контроллер инициирует определенное действие и начинает отслеживать следующее событие, которое может содержать до 20 шагов, а затем возвращается к первому шагу.

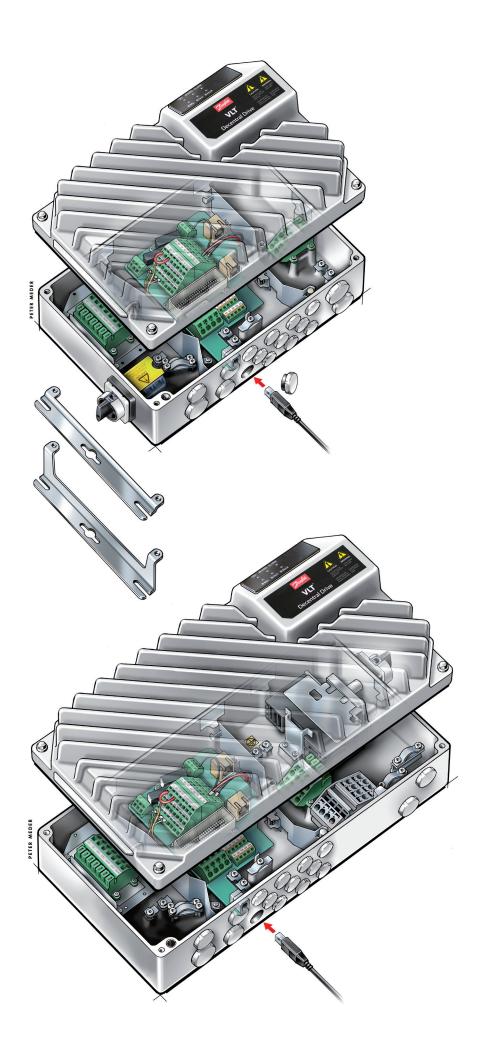
Безопасность

Преобразователь частоты поставляется в стандартной комплектации с функцией Safe Torque Off (Безопасный останов) в соответствии с категориями 3 PL d и SIL 2 стандарта ISO 13849-1 и требованиями к режимам низкого и высокого потребления стандарта ІЕС 61508.

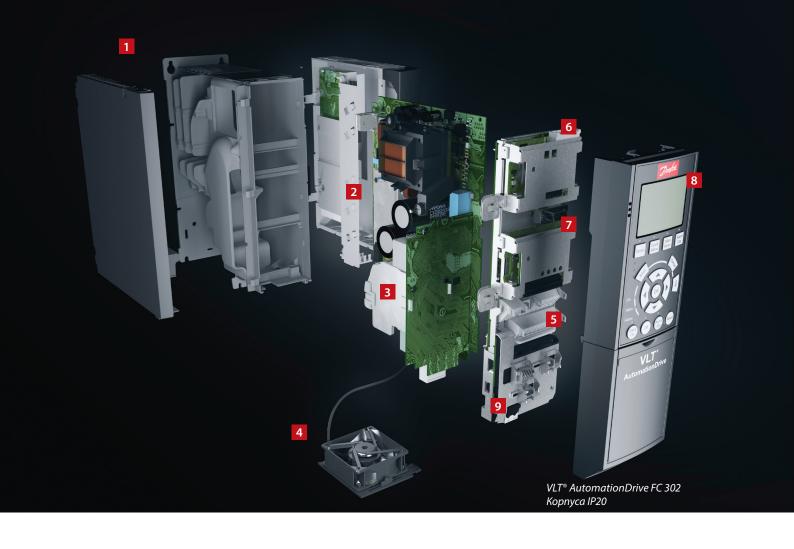

Эта функция предотвращает самопроизвольный запуск преобразователя частоты. Дополнительные функции безопасности предлагаются в качестве опций.


Программное обеспечение для работы с ПК

С помощью служебной программы управления движением VLT® Motion Control Tool MCT 10 можно осуществлять ввод преобразователя частоты в эксплуатацию через встроенный разъем USB/RS485 или промышленную шину. Доступ к USB-порту возможен снаружи, без необходимости открывать корпус, необходимо просто снять заглушку со специального отверстия.


Встроенные катушки постоянного тока для ограничения гармонических искажений Легко доступные клеммы для прокладки внутренней проводки

Простой доступ для подключения ПК



Два варианта габаритов Преобразователь частоты VLT® Decentral Drive FCD 302 доступен в двух размерах корпуса.

Простота модульного подхода

— VLT® AutomationDrive в корпусах A, B и C

Преобразователь частоты поставляется в полностью собранном виде с сертификатом успешного прохождения испытаний на соответствие техническим требованиям.

1. Корпус

Преобразователь частоты отвечает требованиям степени защиты корпуса IP20/шасси, IP21/UL тип 1, IP54/UL тип 12, IP55/UL тип 12 или IP66/UL тип 4X.

2. ЭМС и сетевое воздействие

Все версии VLT® AutomationDrive в стандартной комплектации в отношении ЭМС удовлетворяют нормам B, A1 или A2 стандарта EN 55011 и требованиям категорий С1, С2 и С3 стандарта ІЕС61800-3. В стандартной комплектации встроенные катушки постоянного тока обеспечивают низкие гармонические нагрузки на сеть в соответствии с EN 61000-3-12 и увеличивают срок службы конденсаторов цепи постоянного тока.

3. Защитное покрытие

Электронные компоненты в стандартной комплектации имеют покрытие в соответствии с классом 3С2 стандарта IEC 60721-3-3. Для жестких и агрессивных сред может наноситься покрытие в соответствии с классом 3С3 стандарта IEC 60721-3-3.

4. Съемный вентилятор

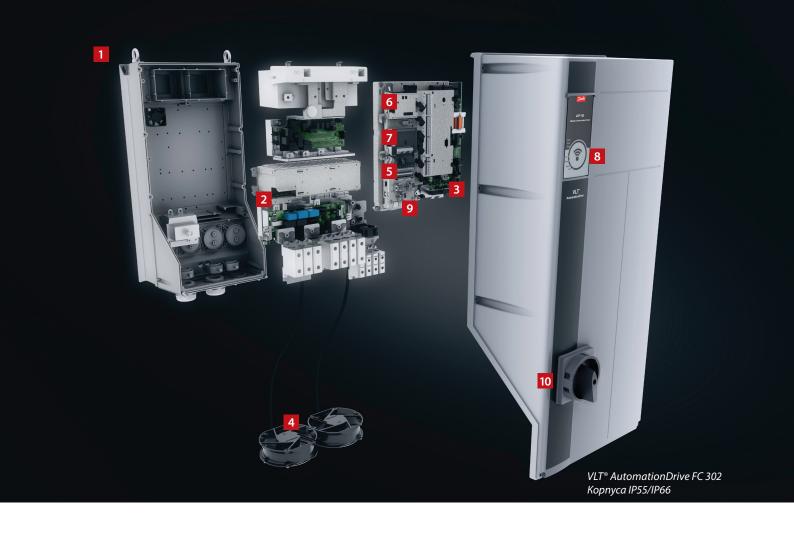
Подобно большинству компонентов, вентилятор легко снимается для чистки и вновь устанавливается на место.

5. Клеммы управления

Специальные съемные подпружиненные клеммные зажимы типа Cage Clamp повышают надежность и упрощают пусконаладочные работы и обслуживание.

6. Варианты сетевых шин

Поддерживаются все основные промышленные сетевые шины (см. полный перечень доступных вариантов сетевых шин на стр. 41).


7. Платы ввода/вывода

Платы ввода/вывода общего назначения, реле, безопасности и термистора повышают гибкость преобразователей частоты.

8. Средства отображения

Выпускаемая компанией Danfoss съемная панель управления (Local Control Panel, LCP) имеет улучшенный пользовательский интерфейс. Вы можете выбрать один из 28 предустановленных языков (включая китайский) или заказать специальный пакет с требуемыми языками. Язык интерфейса может изменяться пользователем. Доступна беспроводная версия панели.

Как вариант, пусконаладку преобразователя частоты можно проводить через встроенный разъем USB/RS485 или через дополнительные сетевые платы с помощью служебной программы VLT® Motion Control Tool MCT 10.

9. Источник питания 24 В или часы реального времени (RTC)

Для поддержания работы секции управления и иных дополнительных устройств в случае сбоя сетевого питания используется дополнительный источник 24 В. В расширенной версии встроенные часы реального времени и аккумуляторная батарея размещены на одной дополнительной плате для гнезда D.

10. Сетевой выключатель

Этот выключатель прерывает питание от сети и имеет свободно используемый дополнительный контакт.

Безопасность

Широкий ассортимент интегрированных средств функциональной безопасности (см. раздел «Адаптируемый уровень безопасности» на стр. 17).

VLT® Real-time Clock MCB 117

Опция VLT® Real-time Clock MCB 117 обеспечивает функции точного контроля времени и проставления метки времени для регистрируемых данных.

Модули высокой мощности

— VLT® AutomationDrive в корпусах D, E и F

Преобразователи частоты VLT® Automation Drive высокой мощности построены на модульной платформе, позволяющей максимально учитывать запросы конкретного заказчика при производстве, испытании и поставке серийных преобразователей частоты.

Модернизация и установка дополнительного оборудования для использования в конкретной отрасли выполняются по технологии plug-and-play. Как только вы ознакомитесь с работой одного преобразователя частоты, вы сможете пользоваться всеми остальными.

1. Средства отображения

Выпускаемая компанией Danfoss съемная панель управления (Local Control Panel, LCP) имеет улучшенный пользовательский интерфейс. Вы можете выбрать один из 28 предустановленных языков (включая китайский) или заказать специальный пакет с требуемыми языками. Язык интерфейса может изменяться пользователем.

2. Панель управления (LCP) с «горячим» подключением

Панель управления может подсоединяться и отсоединяться во время работы (у корпусов D and E). С помощью панели управления настройки могут легко переноситься на преобразователь частоты с другого преобразователя или с ПК, на котором установлена программа настройки МСТ-10.

3. Интегрированное руководство пользователя

Информационная кнопка делает печатное руководство практически ненужным. К процессу разработки и оптимизации общей функциональности преобразователя частоты привлекались группы пользователей. Их отзывы существенно повлияли на дизайн и функциональность LCP.

Функция автоматической адаптации двигателя (ААД), меню быстрой настройки и большой графический дисплей делают пусконаладочные работы и эксплуатацию забавой.

4. Дополнительные сетевые интерфейсы

(См. полный перечень доступных вариантов сетевых шин на стр. 46).

5. Платы ввода/вывода

Платы ввода/вывода общего назначения, реле и термистора повышают гибкость преобразователей частоты.

6. Клеммы управления

Специальные съемные подпружиненные клеммные зажимы типа Cage Clamp повышают надежность и упрощают пусконаладочные работы и обслуживание.

7. Питание 24 В

Источник питания 24 В обеспечивает работоспособность логических цепей преобразователя частоты VLT® в случае отключения источника переменного тока. Этот источник питания доступен в расширенной версии, поддерживающей функцию часов реального времени (RTC).

8. Фильтр ВЧ-помех, подходящий для сетей IT

Все преобразователи частоты высокой мощности оснащаются в стандартной комплектации фильтрами ВЧ-помех в соответствии с EN 61800-3, кат. C3/EN 55011, класс A2. Фильтры ВЧ-помех класса А1/С2 в соответствии со стандартами IEC 61000 и EN 61800 поставляются в качестве интегрированных опций.

9. Модульная конструкция и простота технического обслуживания

Ко всем компонентам имеется удобный доступ с передней стороны преобразователя частоты, что упрощает обслуживание и позволяет устанавливать преобразователи частоты вплотную друг к другу. Преобразователи частоты выпускаются в модульном исполнении, что позволяет легко заменять модульные компоненты.

10. Программируемые устройства

Свободно программируемое дополнительное устройство управления перемещением используется для создания пользовательских алгоритмов и программ и позволяет интегрировать ПЛК-программы.

11. Конформное покрытие и защищенное исполнение печатных плат

Все печатные платы в преобразователях частоты высокой мощности в стандартном исполнении имеют конформное покрытие, выдерживающее испытание в солевом тумане. Они соответствуют требованиям стандарта IEC 60721-3-3, класс 3С3. Конформное покрытие соответствует стандарту ISA (Международной ассоциации автоматизации) S71.04 1985, классу G3. Кроме того, преобразователи частоты в корпусах D и E поставляются с дополнительной защитой от вибрации.

12. Тыльный канал охлаждения

Для подачи охлаждающего воздуха на радиаторы охлаждения используется уникальная конструкция с тыльным каналом. Такая конструкция позволяет немедленно отводить за пределы корпуса до 90 % теплопотерь и до минимума ограничить

количество воздуха, проходящего через отсеки с электроникой. При этом снижается температура и уменьшается загрязнение электронных компонентов, повышается надежность и увеличивается срок службы. Кроме того, использование тыльного канала значительно снижает температуру воздуха в помещении диспетчерской и позволяет сэкономить на установке дополнительных компонентов системы охлаждения. Для перенаправления воздушного потока в зависимости от требований применения доступны различные комплекты для устройства тыльного канала охлаждения.

Комплект охлаждения через тыльный канал доступен в коррозионностойком исполнении. Эта опция обеспечивает защиту от агрессивной среды, например, океанского воздуха, содержащего соль.

13. Корпус

Преобразователь частоты отвечает требованиям для всех возможных условий установки. Корпуса имеют степени защиты IP20/шасси, IP21/UL тип 1 и IP54/UL тип 12. Доступен комплект, повышающий степень защиты корпусов преобразователей частоты с размером корпуса D и E до уровня UL тип 3R.

14. Входной реактор линии постоянного тока

Встроенный реактор постоянного тока обеспечивает низкий уровень помех от гармоник питающего напряжения в соответствии с требованиями стандарта IEC-61000-3-12. Как результат, наша компактная конструкция имеет более высокую эффективность, чем системы конкурентов с наружными дросселями переменного тока.

15. Опция подключения сетевого питания

Мы предлагаем различные варианты входных устройств питания, включая предохранители, разъединитель сети или ВЧ-фильтр.

16. Передний USB-разъем

Защищенный в соответствии со степенью защиты ІР54 передний USB-разъем обеспечивает доступ к данным преобразователя частоты, не влияя на его работу. Чтобы получить доступ к внутреннему USB-порту, нужно открыть переднюю дверь.

КПД — главная характеристика у преобразователей частоты высокой мощности

В конструкции высокомощных преобразователей частоты серии VLТ® ключевое внимание уделяется КПД. Непревзойденная энергоэффективность явилась результатом применения новаторской конструкции и использования исключительно высококачественных компонентов.

Преобразователи частоты VLT® передают на двигатель до 98 % полученной электроэнергии. В силовой электронике в виде тепла, подлежащего удалению, остается примерно 2 %.

Сберегается энергия, а электронные устройства работают дольше, потому что они не подвергаются воздействию высоких температур внутри корпуса.

Безопасность

См. раздел «Безопасная интеграция».

VLT® AutomationDrive FC 302, размер корпуса Т5

- Шкаф входных фильтров
- Шкаф преобразователя частоты
- Шкаф выходных фильтров

VLT® Enclosed Drive (PLV 302) с дополнительным шкафом для дополнительных входов и выходов в корпусах размера D9H

Преобразователи частоты шкафного исполнения VLT® AutomationDrive: расширенный набор функций для высокопроизводительной работы

Когда к функциональной гибкости, надежности, компактности и простоте обслуживания предъявляются самые жесткие требования, следует обратить внимание на преобразователи частоты шкафного исполнения VLT® AutomationDrive. Прежде чем поступить потребителю, каждый преобразователь частоты шкафного исполнения тщательно конфигурируется, изготавливается на гибкой поточной линии и подвергается индивидуальному тестированию на заводе.

1. Отсек управления, устанавливаемый на двери

отдельно от клемм сетевого питания, обеспечивает безопасный доступ к клеммам управления, в том числе во время работы преобразователя частоты.

2. VLT® AutomationDrive

представляет собой мощный преобразователь частоты в корпусе размера D или E с возможностью выбора дополнительных устройств управления.

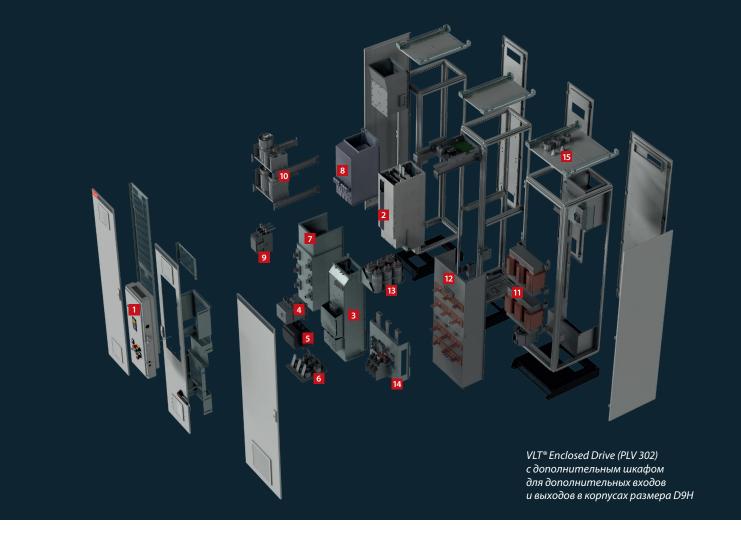
3. Узел охлаждения дополнительных устройств сетевого питания

задействует имеющийся в шкафу преобразователя частоты тыльный канал.

4. Сетевой контактор

предусмотрен в качестве опции сетевого питания.

5. Разъединитель сети


предусмотрен в качестве опции сетевого питания.

6. Блок ввода снизу

позволяет подключать клеммы сети питания преобразователя частоты шкафного исполнения к источнику питания и обеспечить при этом степень защиты IP54/NEMA12.

7. Блок токоограничивающего реактора

для выбираемого пассивного фильтра гармоник обеспечивает абсолютно минимальное содержание гармоник в токах сети: **THDi < 5** %.

8. Автоматика пассивного фильтра

и токоограничивающий реактор пассивного фильтра интегрированы в расположенный в шкафу блок охлаждения через тыльный канал.

9. Контактор

предназначен для управления пассивным гармоническим фильтром преобразователя частоты.

10. Блок конденсаторов

для пассивного гармонического фильтра сетевого тока.

11. Автоматика выходного синусоидного фильтра

доступна как опция питания.

12. Узел охлаждения через тыльный канал

для охлаждения автоматики выходного синусоидного фильтра.

13. Блок конденсаторов для синусоидного фильтра.

14. Клеммы подключения двигателя

расположены в шкафу синусоидного фильтра.

15. Блок ввода сверху

обеспечивает возможность верхнего подключения кабелей двигателя со степенью защиты IP54/NEMA12.

Экономичность за счет интеллектуального управления, компактности и защиты

Все преобразователи частоты Danfoss VLT® соответствуют единому принципу проектирования, что обеспечивает быстрый, гибкий и беспроблемный монтаж и эффективное охлаждение.

Преобразователи частоты выпускаются в широком диапазоне размеров корпусов со степенью защиты от IP20 до IP66 (от NEMA шасси до типа 4X), что обеспечивает их простую установку в любых рабочих условиях: их можно устанавливать в щитах, в электрощитовых или отдельно стоящими блоками в производственных помещениях.

Длительное время безотказной работы благодаря программному обеспечению

Преобразователь частоты является важной частью производственных систем, требующих абсолютной надежности. Преобразователь частоты должен обладать высокой устойчивостью к непредвиденным колебаниям в сети питания. Такая устойчивость является одним из ключевых приоритетов при выборе преобразователя частоты. Для улучшения работы при

скачках напряжения преобразователь частоты имеет надежный контроллер защиты от перенапряжения, схему возврата кинетической энергии, запасенной в нагрузке, и функцию подхвата двигателя, что обеспечивает надежную работу в моменты, когда это нужнее всего.

Дизайн, обеспечивающий защиту

Интеллектуальные алгоритмы гарантируют правильную работу преобразователя частоты, несмотря на скачки и падения напряжения. Рабочие характеристики преобразователя частоты подтверждены сертификатом SEMI F47. Рабочие характеристики преобразователя частоты подтверждены сертификатом SEMI F47.

Поскольку в системе, к которой подключен преобразователь частоты, может произойти короткое замыкание, которое потенциально может вывести его из строя, для надежной работы вне зависимости от возникающих сбоев преобразователь частоты VLT® оснащен защитой от коротких замыканий с расчетным током короткого замыкания 100 кА.

Конструкция, рассчитанная на эксплуатацию без замены деталей в течение 10 и более лет В конструкции преобразователей частоты VLT® используются высококачественные компоненты, что позволяет обеспечить не менее 10 лет нормальной работы до первой замены обслуживаемых компонентов. Встроенная программа технического обслуживания помогает контролировать установленный преобразователь частоты и обеспечивать его работу в соответствии с установленными техническими характеристиками.

Печатные платы с покрытием

Чтобы обеспечить долгий срок службы даже в неблагоприятных средах, преобразователи частоты имеют защиту класса 3С3 (IEC 60721-3-3) в стандартной комплектации. Однако преобразователи частоты мощностью менее 75 кВт в станлартном исполнении соответствуют стандарту 3С2, а 3С3 предлагается в качестве опции.

Защищенное исполнение для дополнительной долговечности

Чтобы уменьшить потенциальные негативные влияния вибрации, преобразователи частоты выпускаются в защищенном исполнении. В результате критические компоненты на печатной плате имеют повышенную защиту, что значительно снижает риск возникновения неполадок

Все печатные платы в преобразователях частоты также имеют покрытие в соответствии с требованиями класса 3С3 стандарта ІЕС 60721-3-3, что обеспечивает дополнительную защиту от влаги и пыли.

Надежная работа при температуре в машинном отделении до 55 °C (130 °F)

Преобразователи частоты VLT® могут работать при полной нагрузке в машинных отделениях с температурой 50 °C;

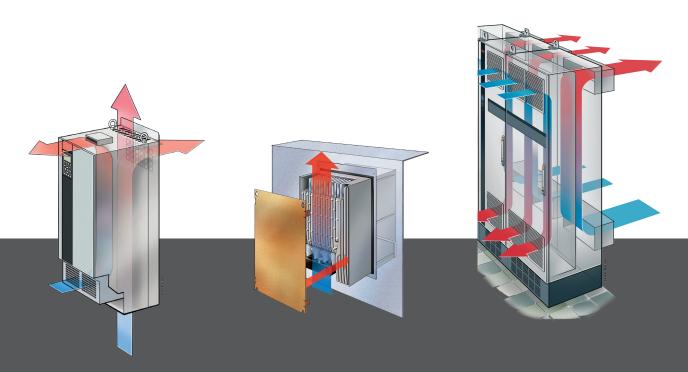
с пониженной мощностью преобразователи могут работать при температуре 55 °C, например, вблизи насосов и подруливающих двигателей. Установка в кондиционируемых помещениях и использование длинных кабелей двигателя не требуются.

Безыскровый дизайн

Преобразователи частоты VLT® соответствуют требованиям к ограничению взрывоопасности в рамках Европейского соглашения о международной перевозке опасных грузов по внутренним водным путям, поскольку при нормальной эксплуатации они не создают искр и температура не превышает 200 °C (390 °F).

Тыльный канал охлаждения: эффективное и экономичное управление теплоотводом для VLT® Automation Drive

Система охлаждения с тыльным каналом Danfoss — это урок мастерства в области термодинамики, демонстрирующий возможности эффективного охлаждения с минимальным потреблением энергии.


Экономичная система отвода тепла

Компактная конструкция выводит 90% выделяемого системой тепла за пределы здания и позволяет уменьшить размеры системы охлаждения в щитовой или аппаратной комнате. Такая выдающаяся экономия достигается благодаря используемой компанией Danfoss технологии охлаждения с отводом тепла за пределы электрощитовой или исключительно эффективного охлаждения через тыльный канал. Оба метода существенно сокращают затраты

на монтаж щитовой или аппаратной, поскольку проектировщики могут уменьшить размеры системы кондиционирования воздуха или даже полностью исключить ее. При каждодневной эксплуатации преимущества столько же очевидны, поскольку энергопотребление, связанное с охлаждением, сводится до абсолютного минимума. Суммарно сокращение затрат на монтаж и на электроэнергию может составить до 30 % за первый год после покупки преобразователя частоты.

Революционная конструкция

Собственная разработка компании, концепция охлаждения через тыльный канал в преобразователях частоты VLT® основывается на уникальной конструкции радиатора с тепловыми трубками, теплопроводность которых в 20 000 раз выше, чем у традиционных решений. Эта технология использует разности в температуре материалов и воздуха для эффективного охлаждения высокопроизводительных электронных компонентов и требует лишь минимального потребления энергии.

VLT® Automation Drive FC 302

Снижение инвестиций в системы кондиционирования на 90 % Снижение энергопотребления системами кондиционирования на 90 %

- 1 Уменьшение количества пыли, контактирующей с электроникой Полное разделение охлаждающего воздуха и внутренней электроники
- Охлаждение с отводом тепла за пределы электрощитовой Комплект монтажных креплений для преобразователей частоты малого и среднего диапазона
- 3 Тыльный канал охлаждения Благодаря направлению воздуха через тыльный канал за пределы помещения сразу отводится до 90 % теплопотерь преобразователя частоты.

Оптимизация рабочих характеристик и защита сети

Встроенная защита

Преобразователь частоты оснащен всеми модулями, необходимыми для обеспечения соответствия стандартам ЭМС.

Встроенный масштабируемый фильтр ВЧ-помех уменьшает электромагнитные помехи, а интегрированные дроссели цепи постоянного тока снижают гармонические искажения в электросети в соответствии с IEC 61000-3-12. Кроме того, они увеличивают срок службы конденсаторов

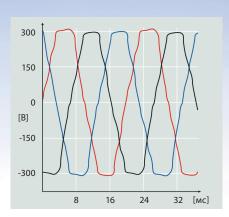
цепи постоянного тока и, следовательно, общую эффективность преобразователя частоты.

Эти компоненты занимают в шкафу минимум места, так как встроены в преобразователь частоты на заводе-изготовителе. Эффективные меры по обеспечению ЭМС также дают возможность использовать кабели с меньшим поперечным сечением, что дополнительно снижает затраты на монтаж.

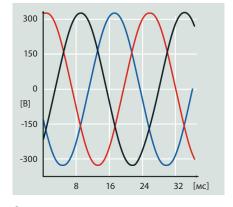
Дополнительная защита сети и двигателя с помощью фильтров

Компания Danfoss может предложить широкий ассортимент технических решений для устранения гармоник, обеспечения чистого энергоснабжения и оптимальной защиты оборудования. Среди таких решений:

- VLT® Advanced Harmonic Filter AHF
- VLT® Advanced Active Filter AAF
- VLT® Low Harmonic Drive
- VLT® 12-pulse Drive


Обеспечить дополнительную защиту двигателей можно, установив:

- VLT® Sine-wave Filter
- VIT® dU/dt Filter
- VLT® Common Mode Filter


Эти технические решения позволяют достичь оптимальных рабочих характеристик в любых конкретных условиях применения, даже в слабых или неустойчивых сетях.

Использование кабелей электродвигателя длиной до 300 м

Конструкция преобразователей частоты делает их идеальным решением в ситуациях, когда необходимо использовать длинные кабели электродвигателя. Преобразователь обеспечивает беспроблемную работу при длине экранированного кабеля до 150 м, неэкранированного кабеля - до 300 м, не требуя использования какихлибо дополнительных компонентов. Это позволяет устанавливать преобразователь в центральной диспетчерской на удалении от обслуживаемого оборудования без снижения рабочих характеристик электродвигателя.

Гармонические искажения Электрические помехи уменьшают эффективность и создают риски повреждения оборудования.

Оптимизированные гармонические характеристики

Эффективное подавление гармоник защищает электронику и повышает КПД оборудования.

Стандарты ЭМС		Кондуктивные помехи							
Стандарты и требования	EN 55011 Операторы объектов должны соблюдать требования EN 55011	Класс В Жилищно-коммунальные объекты и предприятия легкой промышленности	Класс А, группа 1 Промышленные условия	Класс А, группа 2 Промышленные условия					
и греоования	EN/IEC 61800-3 Изготовители преобразователей должны выполнять требования стандарта EN 61800-3	Категория С1 Условия эксплуатации 1, жилые и офисные помещения	Категория С2 Условия эксплуатации 1, жилые и офисные помещения	Категория СЗ Вторые условия эксплуатации					
Соответствие 1)		•	•	•					

¹⁾ Соответствие указанным классам ЭМС зависит от выбранного фильтра. Дополнительную информацию см. в руководствах по проектированию.

Подавление гармонических искажений:

небольшие затраты, большая экономия

Эталонное решение Danfoss для подавления гармоник отличается простотой, компактностью и экономичностью и при этом повышает эффективность системы, гарантирует долгосрочную экономию энергии и обеспечивает бесперебойную работу.

Как работает усовершенствованный активный фильтр: просто и надежно

Активный фильтр работает аналогично тому, как шумоподавляющие наушники отфильтровывают лишние звуки.

С помощью внешних трансформаторов тока активный фильтр отслеживает ток питания, в том числе любые искажения.

По этому сигналу система управления определяет необходимую компенсацию и создает метод коммутации для переключателей IGBT.

Это создает в фильтре путь с низким импедансом и обеспечивает протекание гармоник через фильтр, а не в направлении источника питания.

Почти полное устранение гармонических искажений тока позволяет практически пренебречь проблемой искажений напряжения трансформатором или генератором.

Фильтр выполняет оценку и подавление гармоник непрерывно, поэтому изменения нагрузки производственной установки, будь то происходящие ежесекундно или ежедневно, не влияют на производительность активного фильтра.

Соответствие новым стандартам

Эффективное подавление гармоник защищает электронику и повышает КПД системы. Стандарт в отношении подавления гармоник, такой, например, как Руководство IEEE-519, определяет пределы гармонических искажений напряжения и формы токовых колебаний, которые могут существовать в системе, с целью минимизировать взаимные помехи электрического оборудования. В последнем обновлении этого руководства (2014) основное внимание уделяется снижению затрат и поддержанию в допустимых пределах общего гармонического искажения напряжения (THD) в точке общего присоединения, определяемой как граница сопряжения между источниками и нагрузками. Эталонное решение Danfoss для подавления гармонических искажений разработано в соответствии со стандартами, указанными, например, в Руководстве IEEE-519 2014.

Минимизация затрат благодаря использованию усовершенствованных активных фильтров

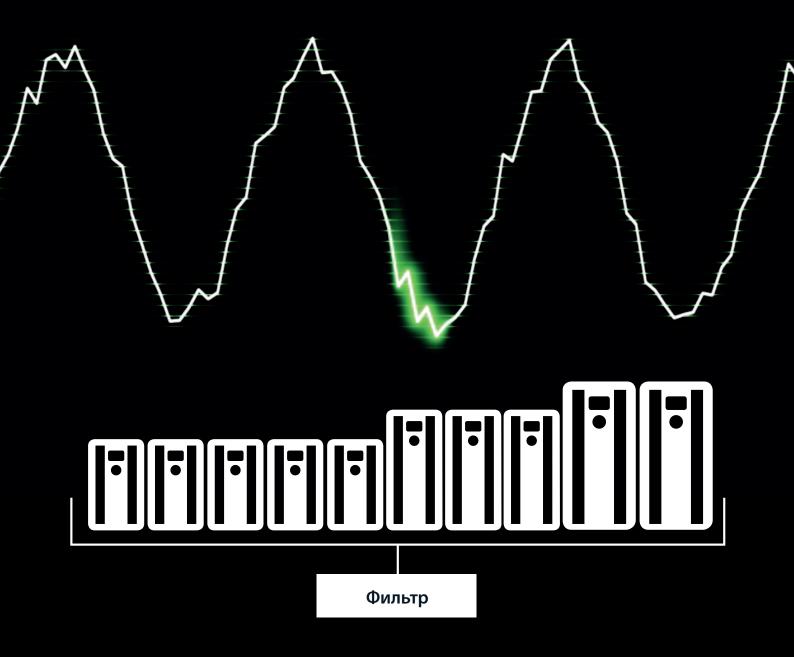
Компания Danfoss предлагает решения для подавления гармоник на основе активного или пассивного фильтра, которые могут успешно выполнять свою работу в некоторых областях применения. Но для достижения цели снижения гармоник при одновременной минимизации затрат и энергопотребления в большинстве областей применения рекомендуется использовать преимущества нашего централизованного решения на основе технологии усовершенствованных активных фильтров (AAF):

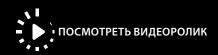
- Меньшие требования к занимаемому пространству
- Меньшая стоимость установки
- Меньшее энергопотребление
- Снижение теплопотерь
- Гарантированное увеличение времени бесперебойной работы

Меньшее энергопотребление благодаря подавлению гармоник с помощью централизованного усовершенствованного активного фильтра (ААF)

Наше решение на основе централизованного усовершенствованного активного фильтра может обслуживать до 50 преобразователей частоты, обеспечивая снижение уровня гармонических искажений до уровня ниже 3 % для всех преобразователей частоты в системе. Подключенные параллельно и работающие аналогично наушникам с функцией шумоподавления, усовершенствованные активные фильтры активны только тогда, когда это необходимо для удержания гармонических искажений в этих пределах. Это позволяет экономить значительное количество энергии по сравнению с активным выпрямителем (AFE), устанавливаемым в самом преобразователе частоты и требующим повышения напряжения примерно на 10 %.

Минимизация теплопотерь для максимальной эффективности установки


Эталонный для целей подавления гармоник дизайн Danfoss сочетает в себе технологию ААГ с нашей уникальной концепцией охлаждения через тыльный канал, что позволяет сократить потери тепла в системе на 50 % по сравнению с традиционной схемой, использующей AFE.


Решение, соответствующее требованиям завтрашнего дня

В ближайшее дополнение к руководству IEEE-519, скорее всего, будут включены требования к гармоническим составляющим, порядок которых превышает 50-ю. Уже в руководстве 2014 года говорится, что «при необходимости в величины THD и TDD могут быть включены гармоники более чем 50-го порядка». Вооруженные решением Danfoss AAF, вы будете готовы к этому, так как проблемы с гармониками высокого порядка уже решены.

Устанавливайте фильтры только там, где это необходимо

Сокращение расходов на монтаж и высокая эффективность эталонных решений Danfoss для подавления гармоник обеспечивают экономию, которая превышает выгоду от перехода с двигателей IE2 на более энергоэффективные двигатели IE3.

Сертифицированные решения для контроля

гармоник

- Усовершенствованные активные фильтры
- Усовершенствованные фильтры гармоник
- Преобразователи частоты с низкими гармониками
- 12-импульсные преобразователи
- Преобразователи частоты с устройствами активной фильтрации

Отрицательное влияние гармоник

- Ограничения на использование питающих и управляющих сетей
- Повышенный нагрев трансформатора, двигателя и кабелей
- Сокращение срока службы оборудования
- Дорогостоящие простои
- Неполадки системы управления
- Пульсации и снижение крутящего момента
- Низкочастотный шум

Подавление гармоник

Хотя преобразователи частоты переменного тока увеличивают точность, экономят электроэнергию и продлевают срок службы установки, они также создают гармонические токи в корабельной сети. Если их не контролировать, они могут отрицательно повлиять на производительность и надежность генераторов и другого оборудования и, в конце концов, снизить безопасность.

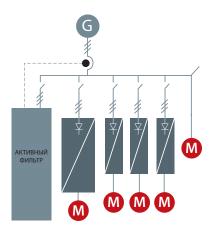
Компания Danfoss предлагает решения для подавления гармоник, соответствующие нормативным требованиям.

Danfoss предлагает для компенсации проблем широкий спектр решений, которые могут помочь восстановить работоспособность слабых сетей, повысить пропускную способность сети, удовлетворить требования к компактной модернизации существующего оборудования или защитить чувствительные среды.

Преобразователи частоты с низкими гармониками

Преобразователи частоты с низкими гармониками VLT® постоянно регулируют нагрузку и условия сетевого питания, не затрагивая подключенный двигатель. Хорошо известные производительность и надежность стандартных преобразователей частоты VLT® сочетаются с преимуществами использования усовершенствованного активного фильтра. В результате получается мощное, хорошо адаптированное под двигатель решение, которое обеспечивает максимально возможное подавление гармоник с общим гармоническим искажением тока (THDi) не более 5 %.

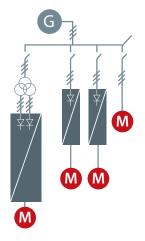
Требования IEC 61000-2-4 к гармоникам до 9 кГц


Чтобы обеспечить соответствие требованиям IEC 61000-2-4 к гармоникам до 9 кГц, оптимальным выбором будет преобразователь частоты шкафного исполнения VLT® со встроенным пассивным фильтром.

Усовершенствованные активные фильтры

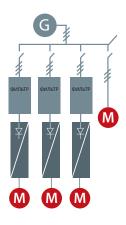
Усовершенствованные активные фильтры выявляют гармонические искажения от нелинейных нагрузок и подают гармоники и реактивные токи в противофазе в линию переменного тока для устранения таких искажений. В результате искажение не превышает уровня в 5 % ТНОі. Оптимальный синусоидальный сигнал переменного тока восстанавливается, коэффициент мощности системы возвращается к значению 1.

Усовершенствованные активные фильтры создаются в соответствии с теми же принципам проектирования, что и все остальные наши преобразователи частоты. Модульная платформа обеспечивает высокую энергоэффективность, удобство в эксплуатации, эффективное охлаждение и высокие степени защиты шкафов.



12-импульсные преобразователи частоты

Мощное и экономичное решение для подавления гармоник в более мощном диапазоне, 12-импульсные варианты преобразователей частоты Danfoss обеспечивают низкий уровень гармоник для требовательных промышленных применений мощностью свыше 250 кВт.


12-импульсные преобразователи частоты VLT® — это высокоэффективные устройства, построенные на основе той же модульной конструкции, что и популярные 6-импульсные преобразователи частоты. 12-импульсный вариант предлагается с аналогичными дополнительными устройствами и принадлежностями, и может быть сконфигурирован в соответствии с вашими требованиями.

12-импульсные преобразователи частоты VLT® снижают гармоники без добавления емкостных или индуктивных компонентов, которые часто требуют дополнительных расчетов во избежание резонанса.

Усовершенствованные фильтры гармоник

Гармонические фильтры Danfoss специально разработаны для подключения перед преобразователем частоты VLT® и гарантируют, что гармонические искажения тока, возвращаемые в сеть, сведены к минимуму. Простота ввода в эксплуатацию экономит затраты на установку, а благодаря конструкции, не требующей технического обслуживания, устраняются эксплуатационные расходы.

VLT® Enclosed Drive

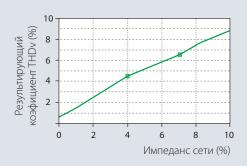
Преобразователи частоты шкафного исполнения VLT® обеспечивают подавление гармоник двумя способами. В зависимости от условий применения, для получения преобразователя частоты с низкими гармониками можно использовать либо встроенный пассивный фильтр, либо дополнительные дроссели переменного тока.

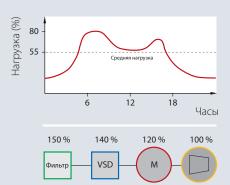
Преобразователи с активной фильтрацией

Система AFE представляет собой рекуперативный преобразователь мощности, расположенный на входе общей шины постоянного тока и подходящий для применений, где:

- требуется производство энергии за счет рекуперации мощности;
- необходимо снижение гармоник;
- нагрузка инвертора частоты составляет до 100 % от общей мощности генератора.

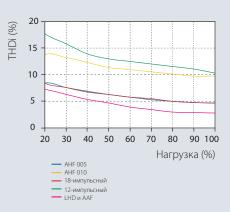
Система активного выпрямителя (AFE) состоит из двух идентичных инверторов с общей шиной постоянного тока. Один инвертор относится к двигателю, а другой — к питанию. Инвертор питания работает вместе с настроенным синусоидным фильтром, и ток искажения (THDi) на источнике питания составляет около 3-4 %. При установленной системе AFE напряжение на двигателе может быть увеличено выше уровня напряжения в сети, поскольку включается регулировка напряжения цепи постоянного тока. Любая излишняя энергия может быть возвращена в сеть как чистая (активная) мощность, а не как реактивная мощность, которая только выделяет тепло.


Экономичное подавление

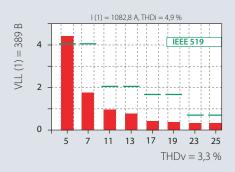

гармоничесикх искажений

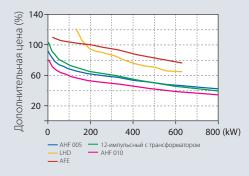
ВО 1 1 12-имл. АНЕ ТНОІ 5 % ТНОІ 5 % ТНОІ 5 % ТОІ 10 % Т

Асимметрия и предыскажение


Эффективность подавления гармоник при использовании различных решений зависит от качества сети. Чем выше асимметрия и предыскажение, чем больше гармоник приходится подавлять оборудованию. На графике показано, при каком уровне предыскажения и асимметрии каждая технология может обеспечить гарантированную эффективность по значению THDi.

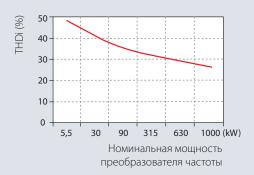
Избыточный размер


Опубликованные данные по фильтрам приведены при нагрузке 100 %, однако фильтры редко работают при полной нагрузке из-за избыточного типоразмера и колебаний в профиле нагрузки. Серийно выпускаемое оборудование для подавления гармоник должно всегда выбираться по максимальному току, но при этом следует учитывать продолжительность работы при частичной нагрузке и, оценивать различные типы фильтров с учетом этого параметра. Избыточный размер приводит к ухудшению эффективности подавления и высоким эксплуатационным расходам. Кроме того, оборудование избыточного размера стоит дороже, соответственно, тратятся лишние деньги.



Соответствие стандартам

Поддержание помехозащищенности оборудования на более высоком уровне по сравнению с уровнем искажений в системе обеспечивает беспроблемную работу. Большинство стандартов устанавливают ограничения по общему искажению напряжения, обычно на уровне от 5 до 8 %. В большинстве случаев помехозащищенность оборудования намного выше: для преобразователей частоты это обычно 15–20 %. Однако это отрицательно сказывается на сроке службы изделий.


Сравнение уровня мощности и первоначальных инвестиций

В зависимости от типоразмера по мощности преобразователя частоты, различные решения имеют разную дополнительную стоимость. В целом пассивные решения обеспечивают наименьшую первоначальную стоимость, а по мере усложнения решений растет и цена.

Импеданс системы

Например, преобразователь частоты FC 202 мощностью 400 кВт, питаемый от трансформатора 1000 кВА с импедансом 5 %, дает общее гармоническое искажение напряжения (THDv) ~5 % при идеальных условиях в сети; у того же преобразователя частоты, питаемого от трансформатора 1000 кВА с импедансом 8 %, THDv увеличивается на 50 %, то есть до значения 7,5 %.

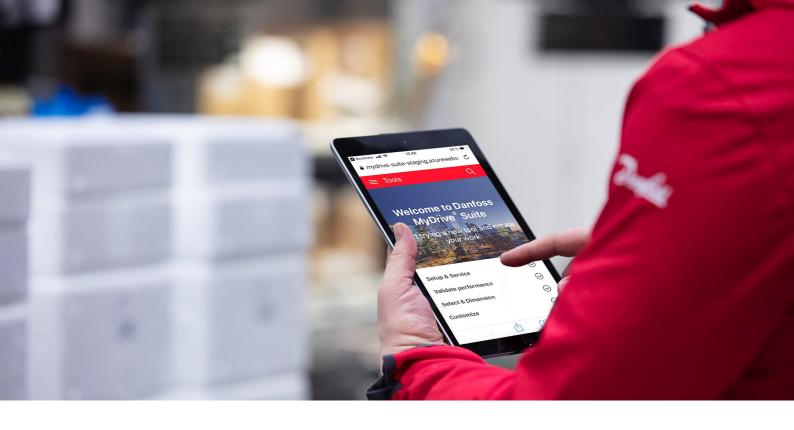
Общее гармоническое искажение

Каждый преобразователь частоты генерирует собственное общее гармоническое искажение тока (THDi), зависящее от условий сети. Чем больше размер преобразователя частоты по отношению к трансформатору, тем меньше ТНОі

Характеристики подавления гармоник

Каждая технология подавления гармоник имеет свою собственную характеристику ТНОі, зависящую от нагрузки. Эти характеристики устанавливаются в идеальных условиях сети без предыскажения и со сбалансированными фазами. Вариации этих факторов приводят к увеличению значений ТНОі.

Пространство, занимаемое при настенном монтаже


Во многих областях применения доступное пространство на стене ограничено и должно использоваться в максимально возможной степени. Каждая из технологий для подавления гармоник реализована в оборудовании, имеющем оптимальный размер, зависящий от мощности.

Соответствие стандартам

Чтобы определить, превышает ли гармоническое загрязнение конкретного применения/сети требования определенного стандарта, необходимо выполнить множество сложных расчетов. С помощью бесплатного программного обеспечения для расчета гармоник Danfoss MCT 31 эти расчеты становятся простыми и менее трудозатратными.

КПД системы

Эксплуатационные расходы в основном определяются общей эффективностью системы. Она зависит от отдельных продуктов, их коэффициентов реальной мощности и эффективности. Активные решения обычно ориентированы на поддержание коэффициента реальной мощности независимо от нагрузки и колебаний сети. С другой стороны, активные решения менее имеют меньший КПД, чем пассивные.

Пакет **MyDrive®Suite** дает пользователю возможность иметь все цифровые инструменты на расстоянии одного щелчка мыши

В пакете MyDrive® Suite собраны все инструменты, необходимые на этапах проектирования, эксплуатации и обслуживания. Что такое MyDrive® Suite? Этот программный инструмент представляет собой единую точку доступа к другим цифровым инструментам, необходимым на этапах проектирования, эксплуатации и обслуживания; сфера его применения охватывает весь жизненный цикл преобразователя частоты.

Инструменты, необходимые конкретному пользователю, могут быть доступны на разных платформах. Но пользователь может интегрировать их в свою систему и бизнес-процессы и пользоваться инструментарием мирового класса с полной гибкостью и на всех этапах жизненного цикла. Все данные синхронизируются между инструментами, и благодаря тому, что данные хранятся в общем пуле, информация всегда верна и актуальна.

Этот набор программных инструментов призван обеспечить простоту эксплуатации и высочайший уровень пользовательской адаптации преобразователей частоты под необходимые задачи. И начинающий

пользователь, и профессионал найдут в этом пакете все необходимые инструменты для самого широкого спектра задач — выбора преобразователей частоты до их программирования.

Попробуйте MyDrive® Suite сегодня: https://mydrive.danfoss.com/

Простота в эксплуатации

- Единый набор инструментов
- Единый и знакомый внешний вид и пользовательский интерфейс
- Единые учетные данные для доступа ко всем инструментам
- Беспроблемное использование на разных устройствах и интерфейсах
- Согласованность рабочих процессов благодаря единой платформе
- Синхронизация данных между инструментами. Нет необходимости вводить информацию дважды, а это значит, что информация всегда верна и актуальна
- Функции поиска и интеллектуальной фильтрации
- Встроенные учебные руководства и документация

Сохранность и защита данных

- Безопасность данных за счет системы уровней пользователей и аутентификации
- Безопасный обмен данными между всеми элементами системы

Соответствие вашим потребностям

- Интеграция данных в ваши инструменты и системы
- Простота использования сторонних приложений или брендированных версий благодаря АРI и открытым интерфейсам
- Инструменты доступны в виде веб-приложения, приложения для настольного ПК, специального приложения для планшета и смартфона и работают в автономном режиме. После установки инструмента на ваше устройство подключение к Интернету не требуется

Расширенные возможности цифровых инструментов: удобство и скорость

Нужна поддержка в разработке системы или выборе, настройке и обслуживании преобразователя частоты? Danfoss предоставляет набор цифровых инструментов для оперативного доступа к необходимой информации. И неважно, на какой стадии проекта вы находитесь.

Выбор и конфигурирование преобразователей частоты

- Выберите подходящий преобразователь частоты в зависимости от характеристик двигателя и нагрузки
- Найдите общую информацию о продукте, сегменте и применении для преобразователей частоты VLT® и VACON®

Доступные инструменты:

■ MyDrive® Select

Выберите преобразователь частоты и определите его характеристики, исходя из расчетных токов нагрузки двигателя и ограничений по току. температуре и условиям окружающей среды. MyDrive® Select подберет продукты Danfoss Drives в соответствии с потребностями вашего бизнеса.

■ MyDrive® Portfolio

В этом приложении для смарт-устройств представлены полные описания всех продуктов Danfoss Drives и их документация.

Настройка и обслуживание преобразователей частоты

- Настройте преобразователи частоты для работы в соответствии с вашими требованиями
- Контролируйте производительность преобразователя частоты на протяжении всего жизненного цикла

Доступные инструменты:

■ MyDrive® Connect

Подключайтесь к одному или нескольким преобразователям частоты через безопасное соединение Wi-Fi. Воспользуйтесь простым и интуитивно понятным интерфейсом для легкого ввода в эксплуатацию.

■ VLT® Motion Control Tool MCT 10

Выполняйте настройку преобразователя частоты с ПК. Безопасный подключаемый программный модуль обеспечивает возможность обновления прошивки и настройки функциональной безопасности.

Пользовательская настройка преобразователей частоты

- Оптимизируйте производительность и режимы работы
- Подчеркните особенности бренда. определив собственные названия параметров
- Настройте функциональность ПЛК на основе ІЕС61131-3
- Подключите лицензируемые функции

Доступные инструменты:

■ VLT® Software Customizer

Сделайте акцент на своем бренде, изменив заставку и создав собственный мастер умного запуска.

Проверка производительности преобразователей частоты

- Анализируйте характеристики преобразователей частоты с точки зрения гармоник
- Рассчитывайте экономию энергии от использования преобразователей частоты
- Выполняйте проверки на соответствие нормам и стандартам

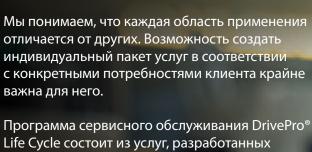
Доступные инструменты:

MyDrive® ecoSmart™

Теперь можно без труда определить классы IE и IES в соответствии с IEC/ EN 61800-9 для преобразователей частоты VLT® и VACON® по отдельности и в сочетании с двигателем. Приложение MyDrive® ecoSmart™ рассчитывает энергоэффективность на основе данных с паспортной таблички и создает PDF-отчет для документации.

Онлайн-инструмент: ecosmart.danfoss.com

Приложение: MyDrive® ecoSmart™


MyDrive® Harmonics

Оцените преимущества различных решений для подавления гармоник, имеющихся в портфеле продуктов Danfoss, и рассчитайте гармонические искажения. Этот инструмент обеспечивает быструю проверку соответствия установки признанным нормам в отношении гармоник и предоставляет рекомендации по снижению гармонических искажений.

■ VLT® EnergyBox

Этот усовершенствованный инструмент собирает для документирования фактические данные об энергопотреблении преобразователей частоты и отслеживает общую эффективность системы.

DrivePro® Life Cycle Services Индивидуальный подход к обслуживанию

Программа сервисного обслуживания DrivePro® Life Cycle состоит из услуг, разработанных специально для вас. Каждая услуга направлена на поддержку вашего бизнеса на разных этапах жизненного цикла преобразователя частоты.

Наши услуги могут быть адаптированы для достижения ваших бизнес-целей по широкому спектру параметров — от оптимизации пакетов запасных частей до решений по мониторингу состояния.

Услуги, входящие в программу, позволяют нам повысить ценность вашей системы и обеспечить максимальную отдачу от вашего преобразователя частоты.

Чтобы помочь вам в планировании и подготовке, мы также предлагаем доступ к обучению и информации по вашей области применения. Наши специалисты всегда к вашим услугам.

You're covered

DrivePro® Life Cycle

DrivePro® Site Assessment

Оптимизация планирования на основе инспекции системы в целом

DrivePro® Site Assessment позволяет получить подробный обзор всех установленных у заказчика преобразователей частоты, давая заказчику четкое представление о текущих и будущих потребностях обслуживания. В сотрудничестве с заказчиком мы проверяем и оцениваем его преобразователи частоты на месте их установки, анализируем и оцениваем данные, составляем отчеты с оценкой рисков и рекомендуем услуги, а затем совместно с заказчиком адаптируем сервисное решение к выбранной стратегии обслуживания. Наши рекомендации позволяют заказчику планировать техническое обслуживание, а также частичную и будущую полную модернизацию, с тем чтобы оптимизировать производство и обеспечить его рентабельность предприятия заказчика.

DrivePro® Retrofit

Минимум вмешательства, максимум преимуществ

Эта программа позволяет эффективно вывести оборудование из эксплуатации и заменить преобразователи предыдущего поколения с помощью специалистов. Услуга DrivePro® Retrofit гарантирует оптимальные показатели бесперебойной работы и производительности благодаря отлаженному процессу замены.

DrivePro® Spare Parts

Долгосрочное планирование поставок запасных частей

В критической ситуации не должно быть задержек. Благодаря программе DrivePro® Spare Parts вы всегда будете иметь нужные запасные части. Ваши преобразователи частоты будут работать максимально эффективно, обеспечивая оптимальную работу системы.

DrivePro® Extended Warranty

Отсутствие любых забот в течение длительного времени

Самый продолжительный в отрасли гарантийный срок даст вам уверенность в завтрашнем дне и исключит непредвиденные расходы. Ежегодные расходы на обслуживание преобразователей известны на шесть лет вперед.

DrivePro® Exchange

Быстрая и самая экономичная альтернатива ремонту

Когда время имеет первостепенное значение, вы будете иметь самую быструю и экономичную альтернативу ремонту. Оперативная и корректная замена преобразователя частоты позволит вам увеличить время работы без простоев.

DrivePro® Start-up

Точная настройка для оптимальной производительности

Эта программа позволяет сэкономить средства при установке и вводе оборудования в эксплуатацию. В процессе запуска наши специалисты помогут вам оптимизировать технические характеристики, обеспечивающие безопасность, эксплуатационную готовность и производительность.

DrivePro® Preventive Maintenance

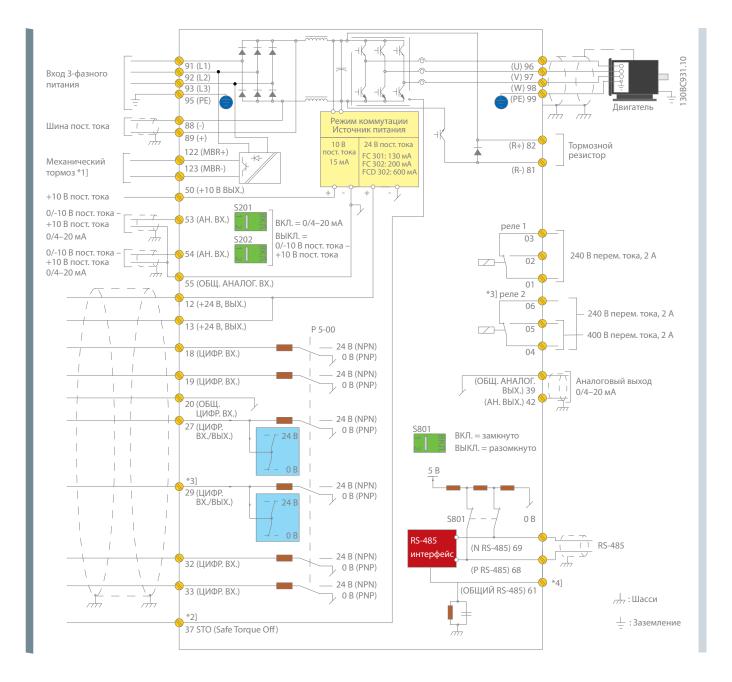
Профилактическое обслуживание

По результатам аудита системы вы получаете план обслуживания и смету. Затем наши специалисты выполняют задачи по обслуживанию согласно этому плану.

DrivePro® Remote Expert Support

Вы можете положиться на нас на любом этапе

Благодаря своевременному доступу к точной информации в рамках программы дистанционной экспертной поддержки DrivePro® Remote Expert Support мы можем предложить быстрое решение проблем, возникших в ходе эксплуатации. Наши эксперты по преобразователям частоты могут проанализировать проблему удаленно по защищенному каналу связи, что позволит сократить время и затраты и лелает ненужным физическое посещение специалистом места установки оборудования.


DrivePro® Remote Monitoring Быстрое решение проблем

Система DrivePro® Remote Monitoring делает информацию мониторинга доступной в режиме реального времени. Сбор всех релевантных данных и их анализ позволяют решать проблемы до того, как они повлияют на технологические процессы.

Чтобы узнать, какие программы доступны в вашем регионе, обратитесь в местный офис продаж Danfoss Drives или посетите наш веб-сайт по адресу

Схема подключения

Цифрами обозначены номера клеммы преобразователя частоты

A = аналоговый, D = цифровой

- 1] Опция, доступна только для FCD 302
- 2) Подробнее об этой функции см. в инструкциях по эксплуатации функции Safe Torque Off для преобразователей частоты Danfoss VLT®
- 3] В FC 301 для реле 2 с клеммами 04, 05, 06 и цифрового входа/выхода с клеммой 29 не предусмотрено никаких функций
- 4] Не подключайте экран кабеля.

Питающая сеть подключена к клеммам 91 (L1), 92 (L2) и 93 (L3), двигатель подключается к клеммам 96 (U), 97 (V) и 98 (W).

Клеммы 88 и 89 используются для разделения нагрузки между преобразователями частоты. Аналоговые сигналы могут быть подключены к клемме 53 и/или клемме 54. Оба входа могут быть сконфигурированы в качестве входов задания, обратной связи или термистора.

Имеется 6 цифровых входов для подключения к клеммам 18, 19, 27, 29, 32 и 33. Две клеммы цифрового входа/выхода

(27 и 29) могут настраиваться в качестве цифровых выходов для сигналов предупреждений и текущего состояния либо для импульсных сигналов задания.

Клемма 42 (аналоговый выход) может служить для индикации значений процесса, таких как $0-I_{max}$.

Интерфейс RS 485 с клеммами 68 и 69 может использоваться для управления и мониторинга преобразователя частоты по последовательной связи.

Технические характеристики

Базовый комплект без расширений

Питание от сети (L1, L2, L3)	FC 301	FCD 302						
Диапазон мощности для 200–240 В пер. тока	0,25–37 кВт/0,35–50 л. с.	0,25–150 кВт/0,35–200 л. с.	-					
Диапазон мощности для 380–(480) 500 В пер. тока	0,37–75 кВт/0,5–100 л. с.		0,37–3 кВт/0,5–4 л. с.					
Диапазон мощности для 380–500 В пер. тока	_	0,25–150 кВт/0,35–200 л. с.	-					
Диапазон мощности для 525–600 В пер. тока	_	0,75–75 кВт/1,0–100 л. с.	_					
Диапазон мощности 525–690 В пер. тока	_	1,1–1200 кВт/1,5–1600 л. с.	_					
Частота сети								
Коэффициент реактивной мощности (cos φ) близок к единице	> 0,98							
Частота подачи питания L1, L2, L3	1–2 pas	а в минуту	2 раза в минуту					
Выходные параметры (U, V, W)								
Напряжение на выходе	0-	–100 % от напряжения питания						
Выходная частота	0-590 Гц (іотока)						
Выходная частота (OL)	0,2-590 Гц	0-590 Гц (600-1000 Гц)*	0-590 Гц (600-1000 Гц)*					
Частота вкл./выкл. вых. напряжения		Без ограничения						
Управление двигателем и поддерживаемые типы двигат	елей							
Время изменения скорости		0,01–3600 c						
ЭМС и длина кабеля двигателя	L (()							
Длина экранированного/неэкранированного кабеля Функциональная безопасность	25/50 м (только А1), 50/75 м	150/300 м	10/10 м					
Функциональная оезопасность Функция защиты Safe Torque Off (STO — EN 61800-5-2)	Опция (только А1)	стандартное исполнение	стандартное исполнение					
Цифровые входы	Спции (только ит)	стандартное исполнение	стандартное исполнение					
Программируемые цифровые входы	5	6						
Переключаемый цифровой выход	1 (клемма 27)	2 (клемма	27, 29)					
Логика	, ,	PNP или NPN	, ,					
Уровень напряжения		0–24 В пост. тока						
Максимальное напряжение на входе		28 В пост. тока						
Входное сопротивление, R _i		Приблизительно 4 кОм						
Интервал сканирования	5 MC	1 MC						
*Для получения информации о частоте более 590 Гц обратип		_						
Аналоговые входы	теев кинееттому парттеру Ваг							
Аналоговые входы		2						
Режимы		Напряжение или ток						
Уровень напряжения	От 0 до +10 В (масштабируемый)	От -10 до (масштабир	+10 B veмый)					
Уровень тока		: 0/4 до 20 мА (масштабируемый)	,					
Точность аналоговых входов	Макс. г	погрешность: 0,5 % от полной шк	алы					
Импульсные входы/входы с энкодера								
Программируемые импульсные входы	1	2						
Уровень напряжения	0-24 В п	' ост. тока (положительная логика	PNP)					
Точность на импульсном входе (0,1–1 кГц)	Макс. г	погрешность: 0,1 % от полной шк	алы					
*Два цифровых входа могут использоваться в качестве импул	пьсных.							
Цифровые выходы								
Программируемые цифровые/импульсные выходы		2						
Уровень напряжения на цифровом/частотном выходе		0–24 В пост. тока						
Макс. выходной ток (сток или источник)		40 mA						
Максимальная выходная частота на частотном выходе		32 кГц						
Точность на частотном выходе	Макс. погрешность: 0,1 % от полной шкалы							
	1							

Технические характеристики

Базовый комплект без расширений

Аналоговые выходы	FC 301	FC 302	FCD 302
Программируемые аналоговые выходы		1	
Диапазон тока аналогового выхода		0/4-20 mA	
Макс. нагрузка относительно общего провода на аналоговом выходе (клемма 30)		500 Ом	
Точность на аналоговом выходе	Макс.	погрешность: 0,5 % полной шка	ЛЫ
Релейные выходы			
Программируемые релейные выходы	1	2	
Макс. нагрузка (переменный ток) на клеммах силовой платы питания 1–3 (нормально замкнутый контакт), 1–2 (нормально разомкнутый контакт), 4–6 (нормально замкнутый контакт)		240 В пер. тока, 2 А	
Макс. нагрузка (АС-1) на клеммах силовой платы питания 4–5 (нормально разомкнутый контакт)		400 В перем. тока, 2 А	
Мин. нагрузка на клеммах силовой платы питания 1–3 (нормально замкнутый контакт), 1–2 (нормально разомкнутый контакт), 4–6 (нормально замкнутый контакт), 4–5 (нормально разомкнутый контакт) Плата управления	24 В пос	ст. тока, 10 мА, 24 В перем. тока, 2	0 мА
Интерфейс USB		1.1 (DOBLING SKOPOSTI)	
Разъем USB		1.1 (полная скорость) Тип В	
Интерфейс RS485			
• •		До 115 кБод	
Макс. нагрузка 10 В	130 мА	15 MA 200 MA	600 MA
Макс. нагрузка 24 В Защита от окружающей среды/внешних воздействий	130 MA	200 MA	000 MA
защита от окружающей среды/внешних воздействий			IP: 66
Степень защиты от проникновения посторонних предметов		/54/55/66 cu/1/12/3R/4X	тг. оо Тип UL: 4X (для установки внутри помещения)
Испытание на вибрацию	0	,7 g	1,7 g
Макс. относительная влажность		5–95 % (IEC 721-3-3); класс 3С3 з конденсации) во время работы	
Температура окружающей среды	диапазон рабочих тем снижения номинальны:	номинальных характеристик: ператур от -25 до 50°С без х характеристик; макс. 55°С инальных характеристик	Макс. 40 °С без снижения номинальных характеристик
Гальваническая развязка всех	устройс	ств ввода/вывода соответствует	PELV
Агрессивная среда	Рассчитано в Для	соответствии с классом 3С3 (IEC корпусов А, В, С — опционально	60721-3-3) o
Связь по сетевой шине			
Встроенные стандартные протоколы: FC-протокол Modbus RTU	Опционально при условии использования соответствующей отдельной платы, поддерживающей следующие протоколы промышленной шины: PROFIBUS DP V1 DeviceNet CANopen PROFINET EtherNet/IP Modbus TCP POWERLINK EtherCAT	Опционально при условии использования соответствующей отдельной платы, поддерживающей следующие протоколы промышленной шины: PROFIBUS DP V1 DeviceNet CANopen PROFINET EtherNet/IP Modbus TCP POWERLINK EtherCAT VLT® 3000 PROFIBUS Converter VLT® 5000 DeviceNet Converter VLT® 5000 DeviceNet Converter	Опция устанавливается на заводе как вариант платы управления: PROFIBUS DP V1 PROFINET EtherNet/IP POWERLINK EtherCAT VLT® FCD 300 PROFIBUS Converter
Встроенная защита			
 Электронная тепловая защита электродвигателя от пере. 	грузки		
– Защита от перегрева			
 Преобразователь частоты имеет защиту от коротких замы 	ыканий на клеммах пвигателя I I \/	W	
 Защита преобразователя частоты от короткого замыкани 			
Samma ripedopasobarenin raciotibi of Ropotrolo Salvibiranii	THE SCHOOL HE INTERNITION ABOUT A LEVIA	∪, v, v v	

Сертификация уполномоченных органов

– Защита от обрыва фазы сети питания

Электрические характеристики — VLT® AutomationDrive, корпуса A, B и C

[T2] 3×200 –240 В перем. тока

	Высокая	я перегрузка	(160 % в	течение	1 минуты за п	ериод 10 м	инут)		Размер корпуса						
Код типа	Выходн (3 × 200	ной ток)–240 В)	Типи выхо мощі на в	дная ность	Непрерывный входной ток	Расчетное значение потерь мощности	IP20 без доп. платы для гнезд C/D	IP20	IP21	IP55 без доп. платы для гнезд C/D	IP55	IP66 без доп. платы для гнезд C/D	IP66		
FC-301	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	кВт при 208 В	л. с. при 230 В	[A]	[Вт]	Шасси	Шасси	Тип 1	Тип 12	Тип 12	Тип 4Х	Тип 4Х		
PK25	1,8	2	0,25	0,34	1,6	21	A1	A2		A4	A5	A4	A5		
PK37	2,4	2,6	0,37	0,5	2,2	29	A1	A2		A4	A5	A4	A5		
PK55	3,5	3,6	0,55	0,75	3,2	42	A1	A2		A4	A5	A4	A5		
PK75	4,6	5,1	0,75	1	4,1	54	A1	A2		A4	A5	A4	A5		
P1K1	6,6	7,3	1,1	1,5	5,9	63	A1	A2		A4	A5	A4	A5		
P1K5	7,5	8,3	1,5	2	6,8	82	A1	A2		A4	A5	A4	A5		
P2K2	10,6	11,7	2,2	3	9,5	116		A2		A4	A5	A4	A5		
P3K0	12,5	13,8	3	4	11,3	155		A3			A5		A5		
P3K7	16,7	18,4	3,7	5	15	185		A3			A5		A5		
P5K5	30,8	33,9	5,5	7,5	28	310		В3	B1		B1		B1		
P7K5	46,2	50,8	7,5	10	42	514		В3	B1		B1		B1		
P11K	59,4	65,3	11	15	54	602		B4	B2		B2		B2		
P15K	74,8	82,3	15	20	68	737		B4	C1		C1		C1		
P18K	88	96,3	18,5	25	80	845		C3	C1		C1		C1		
P22K	115	127	22	30	104	1140		C3	C1		C1		C1		
P30K	143	157	30	40	130	1353		C4	C2		C2		C2		
P37K	170	187	37	50	154	1636		C4	C2		C2		C2		

[T4] 3×380 –480 В перем. тока

	Высокая	я перегрузка	(160 % E	течение	е 1 минуты за п	ериод 10 м	инут)		Размер корпуса					
Код типа	Выходн (3 × 380		Типичная выходная мощность на валу		Непрерывный входной ток	Расчетное значение потерь мощности	IP20 без доп. платы для гнезд C/D	IP20	IP21	IP55 без доп. платы для гнезд C/D	IP55	IP66 без доп. платы для гнезд C/D	IP66	
FC-301	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	кВт при 400 В	л. с. при 460 В	[A]	[Βτ]	Шасси	Шасси	Тип 1	Тип 12	Тип 12	Тип 4Х	Тип 4Х	
PK25														
PK37	1,3	2,1	0,37	0,5	1,2	35	A1	A2	A5	A4	A5	A4	A5	
PK55	1,8	2,9	0,55	0,75	1,6	42	A1	A2	A5	A4	A5	A4	A5	
PK75	2,4	3,8	0,75	1	2,2	46	A1	A2	A5	A4	A5	A4	A5	
P1K1	3	4,8	1,1	1,5	2,7	58	A1	A2	A5	A4	A5	A4	A5	
P1K5	4,1	6,6	1,5	2	3,7	62	A1	A2	A5	A4	A5	A4	A5	
P2K2	5,6	9	2,2	3	5	88		A2	A5	A4	A5	A4	A5	
P3K0	7,2	11,5	3	4	6,5	116		A2	A5	A4	A5	A4	A5	
P3K7	10	16	4	5	9	124		A2	A5	A4	A5	A4	A5	
P5K5	13	20,8	5,5	7,5	11,7	187		A3	A5		A5		A5	
P7K5	16	25,6	7,5	10	14,4	255		A3	A5		A5		A5	
P11K	24	38,4	11	15	22	291		B3	B1		B1		B1	
P15K	32	51,2	15	20	29	379		В3	B1		B1		B1	
P18K	37,5	60	18,5	25	34	444		B4	B2		B2		B2	
P22K	44	70,4	22	30	40	547		В4	B2		B2		B2	
P30K	61	91,5	30	40	55	570		B4	C1		C1		C1	
P37K	73	110	37	50	66	697		C3	C1		C1		C1	
P45K	90	135	45	60	82	891		C3	C1		C1		C1	
P55K	106	159	55	75	96	1022		C4	C2		C2		C2	
P75K	147	221	75	100	133	1232		C4	C2		C2		C2	

Электрические характеристики — VLT® AutomationDrive, корпуса A, B и C

[T2] 3×200 –240 В пер. тока — высокая перегрузка

	Высокая перегрузка (160 % в течение 1 минуты за период 10 минут)								Размер корпуса					
Код типа	Выходн	ной ток	Типичная	выходная	Непрерывный	Расчетное значение потерь		Класс зац	циты [IEC/UL]					
код гипа	(3 × 200)-240 B)	мощност	гь на валу	входной ток	мощности	IP20/21	IP21	IP55	IP66				
FC 302	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 208 В	л. с. при 230 В	[A]	[Вт]	Шасси	Тип 1	Тип 12	Тип 4Х				
PK25	1,8	2,9	0,25	0,35	1,6	21	A2	A2	A4/A5	A4/A5				
PK37	2,4	3,8	0,37	0,5	2,2	29	A2	A2	A4/A5	A4/A5				
PK55	3,5	5,6	0,55	0,75	3,2	42	A2	A2	A4/A5	A4/A5				
PK75	4,6	7,4	0,75	1	4,1	54	A2	A2	A4/A5	A4/A5				
P1K1	6,6	10,6	1,1	1,5	5,9	63	A2	A2	A4/A5	A4/A5				
P1K5	7,5	12	1,5	2	6,8	82	A2	A2	A4/A5	A4/A5				
P2K2	10,6	17	2,2	3	9,5	116	A2	A2	A4/A5	A4/A5				
P3K0	12,5	20	3	4	11,3	155	А3	А3	A5	A5				
P3K7	16,7	26,7	3,7	5	15	185	А3	А3	A5	A5				
P5K5	24,2	38,7	5,5	7,5	22	239	В3	B1	B1	B1				
P7K5	30,8	49,3	7,5	10	28	371	В3	B1	B1	B1				
P11K	46,2	73,9	11	15	42	463	B4	B2	B2	B2				
P15K	59,4	89,1	15	20	54	624	B4	C1	C1	C1				
P18K	74,8	112	18,5	25	68	740	C3	C1	C 1	C1				
P22K	88	132	22	30	80	874	С3	C1	C1	C1				
P30K	115	173	30	40	104	1143	D3h	C2	C2	C2				
P37K	143	215	37	50	130	1400	D3h	C2	C2	C2				

[T2] 3×200 –240 В пер. тока — нормальная перегрузка

	Нормальная перегрузка (110 % в течение 1 минуты за период 10 минут)								Размер корпуса					
V	Выход	ной ток	Типичная	выходная	Непрерывный	Расчетное		Класс защі	иты [IEC/UL]					
Код типа	(3 × 200	0-240 B)	мощност	гь на валу	входной ток	значение потерь мощности	IP20/21	IP21	IP55	IP66				
FC 302	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 208 В	л. с. при 230 В	[A]	[Вт]	Шасси	Тип 1	Тип 12	Тип 4Х				
PK25	1,8	2,9	0,25	0,35	1,6	21	A2	A2	A4/A5	A4/A5				
PK37	2,4	3,8	0,37	0,5	2,2	29	A2	A2	A4/A5	A4/A5				
PK55	3,5	5,6	0,55	0,75	3,2	42	A2	A2	A4/A5	A4/A5				
PK75	4,6	7,4	0,75	1	4,1	54	A2	A2	A4/A5	A4/A5				
P1K1	6,6	10,6	1,1	1,5	5,9	63	A2	A2	A4/A5	A4/A5				
P1K5	7,5	12	1,5	2	6,8	82	A2	A2	A4/A5	A4/A5				
P2K2	10,6	17	2,2	3	9,5	116	A2	A2	A4/A5	A4/A5				
P3K0	12,5	20	3	4	11,3	155	А3	А3	A5	A5				
P3K7	16,7	26,7	3,7	5	15	185	А3	А3	A5	A5				
P5K5	30,8	33,9	7,5	10	28	310	В3	B1	B1	B1				
P7K5	46,2	50,8	11	15	42	514	В3	B1	B1	B1				
P11K	59,4	65,3	15	20	54	602	B4	B2	B2	B2				
P15K	74,8	82,3	18,5	25	68	737	B4	C1	C1	C1				
P18K	88	96,8	22	30	80	845	C3	C1	C1	C1				
P22K	115	127	30	40	104	1140	С3	C1	C1	C1				
P30K	143	157	37	50	130	1353	C4	C2	C2	C2				
P37K	170	187	45	60	154	1636	C4	C2	C2	C2				

[T5] 3×380 –500 В пер. тока — высокая перегрузка

	Высог	кая перегруз	зка (160 % в т	ечение 1 ми	нуты за	период	10 минут)			Размер	корпуса	
		Выход	ной ток			ічная		Расчетное		Класс защі	иты [IEC/UL]	
Код типа	(3×380)-440 B)	(3 × 441	–500 B)	мощ	одная ность залу	Непрерывный входной ток	значение потерь мощности	IP20/21	IP21	IP55	IP66
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	Шасси	Тип 1	Тип 12	Тип 4Х
PK37	1,3	2,1	1,2	1,9	0,37	0,5	1,2	35	A2	A2	A4/A5	A4/A5
PK55	1,8	2,9	1,6	2,6	0,55	0,75	1,6	42	A2	A2	A4/A5	A4/A5
PK75	2,4	3,8	2,1	3,4	0,75	1	2,2	46	A2	A2	A4/A5	A4/A5
P1K1	3	4,8	2,7	4,3	1,1	1,5	2,7	58	A2	A2	A4/A5	A4/A5
P1K5	4,1	6,6	3,4	5,4	1,5	2	3,7	62	A2	A2	A4/A5	A4/A5
P2K2	5,6	9	4,8	7,7	2,2	3	5	88	A2	A2	A4/A5	A4/A5
P3K0	7,2	11,5	6,3	10,1	3	4	6,5	116	A2	A2	A4/A5	A4/A5
P4K0	10	16	8,2	13,1	4	5	9	124	A2	A2	A4/A5	A4/A5
P5K5	13	20,8	11	17,6	5,5	7,5	11,7	187	А3	А3	A5	A5
P7K5	16	25,6	14,5	23,2	7,5	10	14,4	255	А3	А3	A5	A5
P11K	24	38,4	21	33,6	11	15	22	291	В3	B1	B1	B1
P15K	32	51,2	27	43,2	15	20	29	379	В3	B1	B1	B1
P18K	37,5	60	34	54,4	18,5	25	34	444	B4	B2	B2	B2
P22K	44	70,4	40	64	22	30	40	547	B4	B2	B2	B2
P30K	61	91,5	52	78	30	40	55	570	В4	C1	C1	C1
P37K	73	110	65	97,5	37	50	66	697	C3	C1	C1	C1
P45K	90	135	80	120	45	60	82	891	С3	C1	C1	C1
P55K	106	159	105	158	55	75	96	1022	C4	C2	C2	C2
P75K	147	221	130	195	75	100	133	1232	C4	C2	C2	C2

[T5] 3×380 –500 В пер. тока — нормальная перегрузка

	Нормал	ьная перегр	узка (110 % і	в течение 1 м	инуты :	за перис	од 10 минут)			Размер	корпуса	
		Выході	ной ток			чная		Расчетное		Класс защі	иты [IEC/UL]	
Код типа	(3×380)-440 B)	(3 × 441–500 B)		выходная мощность на валу		Непрерывный входной ток	значение потерь мощности	IP20/21	IP21	IP55	IP66
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	Шасси	Тип 1	Тип 12	Тип 4Х
PK37	1,3	2,1	1,2	1,9	0,37	0,5	1,2	35	A2	A2	A4/A5	A4/A5
PK55	1,8	2,9	1,6	2,6	0,55	0,75	1,6	42	A2	A2	A4/A5	A4/A5
PK75	2,4	3,8	2,1	3,4	0,75	1	2,2	46	A2	A2	A4/A5	A4/A5
P1K1	3	4,8	2,7	4,3	1,1	1,5	2,7	58	A2	A2	A4/A5	A4/A5
P1K5	4,1	6,6	3,4	5,4	1,5	2	3,7	62	A2	A2	A4/A5	A4/A5
P2K2	5,6	9	4,8	7,7	2,2	3	5	88	A2	A2	A4/A5	A4/A
P3K0	7,2	11,5	6,3	10,1	3	4	6,5	116	A2	A2	A4/A5	A4/A
P4K0	10	16	8,2	13,1	4	5	9	124	A2	A2	A4/A5	A4/A
P5K5	13	20,8	11	17,6	5,5	7,5	11,7	187	А3	А3	A5	A5
P7K5	16	25,6	14,5	23,2	7,5	10	14,4	255	А3	А3	A5	A5
P11K	32	35,2	27	29,7	15	20	29	392	В3	B1	B1	B1
P15K	37,5	41,3	34	37,4	18,5	25	34	465	В3	B1	B1	B1
P18K	44	48,4	40	44	22	30	40	525	B4	B2	B2	B2
P22K	61	67,1	52	57,2	30	40	55	739	B4	B2	B2	B2
P30K	73	80,3	65	71,5	37	50	66	698	В4	C1	C1	C 1
P37K	90	99	80	88	45	60	82	843	C3	C1	C1	C1
P45K	106	117	105	116	55	75	96	1083	С3	C1	C1	C1
P55K	147	162	130	143	75	100	133	1384	C4	C2	C2	C2
P75K	177	195	160	176	90	125	161	1474	C4	C2	C2	C2

[T6] 3×525 –600 В пер. тока — высокая перегрузка

	Высокая п	ерегрузка (160	0 % в течени	≘ 1 минуты за	а период 10 мин	ут)		Размер	корпуса	
V	Выході	ной ток	Типичная	выходная	Непрерывный	Расчетное		Класс защі	иты [IEC/UL]	
Код типа	(3 × 525	5–600 B)	мощност	ъ на валу	входной ток	значение потерь мощности	IP20	IP21	IP55	IP66
FC 302	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 575 В	л. с. при 575 В	[А] при 575 В	[Вт]	Шасси	Тип 1	Тип 12	Тип 4Х
PK75	1,7	2,7	0,75	1	1,7	35	А3	А3	A5	A5
P1K1	2,4	3,8	1,1	1,5	2,4	50	А3	А3	A5	A5
P1K5	2,7	4,3	1,5	2	2,7	65	А3	А3	A5	A5
P2K2	3,9	6,2	2,2	3	4,1	92	А3	А3	A5	A5
P3K0	4,9	7,8	3	4	5,2	122	А3	А3	A5	A5
P4K0	6,1	9,8	4	5	5,8	145	А3	А3	A5	A5
P5K5	9	14,4	5,5	7,5	8,6	195	А3	А3	A5	A5
P7K5	11	17,6	7,5	10	10,4	261	А3	А3	A5	A5
P11K	18	29	11	15	16	220	В3	B1	B1	B1
P15K	22	35	15	20	20	300	В3	B1	B1	B1
P18K	27	43	18,5	25	24	370	B4	B2	B2	B2
P22K	34	54	22	30	31	440	B4	B2	B2	B2
P30K	41	62	30	40	37	600	B4	C1	C1	C1
P37K	52	78	37	50	47	740	C3	C1	C1	C1
P45K	62	93	45	60	56	900	С3	C1	C1	C1
P55K	83	125	55	75	75	1100	C4	C2	C2	C2
P75K	100	150	75	100	91	1500	C4	C2	C2	C2

[T6] 3×525 -600 В пер. тока — нормальная перегрузка

	Нормальная	я перегрузка (1	10 % в течен	ие 1 минуты	за период 10 мі		Размер	корпуса		
V	Выході	ной ток	Типичная	выходная	Непрерывный	Расчетное		Класс защі	ıты [IEC/UL]	
Код типа	(3 × 525	5–600 B)	мощност	ъ на валу	входной ток	значение потерь мощности	IP20	IP21	IP55	IP66
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	кВт при 575 В	л. с. при 575 В	[А] при 575 В	[Вт]	Шасси	Тип 1	Тип 12	Тип 4Х
PK75	1,7	2,7	0,75	1	1,7	35	А3	А3	A5	A5
P1K1	2,4	3,8	1,1	1,5	2,4	50	А3	А3	A5	A5
P1K5	2,7	4,3	1,5	2	2,7	65	А3	А3	A5	A5
P2K2	3,9	6,2	2,2	3	4,1	92	А3	А3	A5	A5
P3K0	4,9	7,8	3	4	5,2	122	А3	А3	A5	A5
P4K0	6,1	9,8	4	5	5,8	145	А3	А3	A5	A5
P5K5	9	14,4	5,5	7,5	8,6	195	А3	А3	A5	A5
P7K5	11	17,6	7,5	10	10,4	261	А3	А3	A5	A5
P11K	22	24	15	20	20	300	В3	B1	B1	B1
P15K	27	30	18,5	25	24	370	В3	B1	B1	B1
P18K	34	37	22	30	31	440	B4	B2	B2	B2
P22K	41	45	30	40	37	600	B4	B2	B2	B2
P30K	52	57	37	50	47	740	B4	C1	C1	C1
P37K	62	68	45	60	56	900	C3	C1	C 1	C1
P45K	83	91	55	74	75	1100	C3	C1	C1	C1
P55K	100	110	75	100	91	1500	C4	C2	C2	C2
P75K	131	144	90	120	119	1800	C4	C2	C2	C2

[T7] 3×525 –690 В пер. тока — высокая перегрузка

	В	ысокая пере	егрузка (160 ^с	% в течение	д 10 минут)		Pa	змер корп	yca		
W		Выході	ной ток			чная	Непрерывный	Расчетное	Кл	асс защиты	IEC
Код типа	(3 × 525	–550 B)	(3 × 551	–690 B)		дная ь на валу	входной ток	значение потерь мощности	IP20	IP21	IP55
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]	*	*	*
P1K1	2,1	3,4	1,6	2,6	1,1	1,5	1,4	44	А3	А3	A5
P1K5	2,7	4,3	2,2	3,5	1,5	2	2	60	А3	А3	A5
P2K2	3,9	6,2	3,2	5,1	2,2	3	2,9	88	А3	А3	A5
P3K0	4,9	7,8	4,5	7,2	3	4	4	120	А3	А3	A5
P4K0	6,1	9,8	5,5	8,8	4	5	4,9	160	А3	А3	A5
P5K5	9	14,4	7,5	12	5,5	7,5	6,7	220	А3	А3	A5
P7K5	11	17,6	10	16	7,5	10	9	300	А3	А3	A5
P11K	14	22,4	13	20,8	11	10	14,5	150	B4	B2	B2
P15K	19	30,4	18	28,8	15	15	19,5	220	B4	B2	B2
P18K	23	36,8	22	35,2	18,5	20	24	300	B4	B2	B2
P22K	28	44,8	27	43,2	22	25	29	370	B4	B2	B2
P30K	36	54	34	51	30	30	36	600	B4	C2	C2
P37K	43	64,5	41	61,5	37	40	48	740	C3	C2	C2
P45K	54	81	52	78	45	50	58	900	C3	C2	C2
P55K	65	97,5	62	93	55	60	70	1100	C4	C2	C2
P75K	87	130,5	83	124,5	75	75	129	1500	C4	C2	C2

^{*} Примечание. Преобразователи частоты Т7 не сертифицированы по UL. Если необходима сертификация по UL, выбирайте Т6.

[T7] 3×525 –690 В пер. тока — нормальная перегрузка

	Нор	омальная пе	регрузка (11	0 % в течени	е 1 минут	ы за пери	іод 10 минут)		Pa	змер корп	yca
V		Выході	ной ток			чная	Непрерывный	Расчетное	Кл	асс защиты	IEC
Код типа	(3 × 525	–550 B)	(3 × 551–690 B)		выходная мощность на валу		входной ток	значение потерь мощности	IP20	IP21	IP55
FC 302	Непрерывн. $I_{\scriptscriptstyle N}$	Прерывист. І _{макс.} (60 с)	Непрерывн. $I_{\rm N}$	Прерывист. I _{макс.} (60 c)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]	*	*	*
P1K1	2,1	3,4	1,6	2,6	1,1	1,5	1,4	44	А3	А3	A5
P1K5	2,7	4,3	2,2	3,5	1,5	2	2	60	А3	А3	A5
P2K2	3,9	6,2	3,2	5,1	2,2	3	2,9	88	А3	А3	A5
P3K0	4,9	7,8	4,5	7,2	3	4	4	120	А3	А3	A5
P4K0	6,1	9,8	5,5	8,8	4	5	4,9	160	А3	А3	A5
P5K5	9	14,4	7,5	12	5,5	7,5	6,7	220	А3	А3	A5
P7K5	11	17,6	10	16	7,5	10	9	300	А3	А3	A5
P11K	19	20,9	18	19,8	15	15	19,5	220	B4	B2	B2
P15K	23	25,3	22	24,2	18,5	20	24	300	B4	B2	B2
P18K	28	30,8	27	29,7	22	25	29	370	B4	B2	B2
P22K	36	39,6	34	37,4	30	30	36	440	B4	B2	B2
P30K	43	47,3	41	45,1	37	40	48	740	B4	C2	C2
P37K	54	59,4	52	57,2	45	50	58	900	С3	C2	C2
P45K	65	71,5	62	68,2	55	60	70	1100	C3	C2	C2
P55K	87	95,7	83	91,3	75	75	86	1500	C4	C2	C2
P75K	105	115,5	100	110	90	100	98	1800	C4	C2	C2

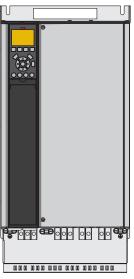
^{*} Примечание. Преобразователи частоты Т7 не сертифицированы по UL. Если необходима сертификация по UL, выбирайте Т6.

Габаритные размеры VLT® AutomationDrive, корпуса A, B и C

								VLT® A	lutomati	onDrive						
Размер	корпуса	A1	А	.2	A	.3	A4	A5	B1	B2	В3	B4	C1	C2	C3	C4
Класс за	іщиты [IEC/UL]	IP20, шасси	IP20, шасси	IP21 Type 1	IP20, шасси	IP21 Type 1		тип 12 тип 4X		тип 1 гип 12 гип 4X	IP20/i	шасси	IP55/	тип 1 гип 12 гип 4X	IP20/	шасси
	Высота	200	268	375	268	375	390	420	480	650	399	520	680	770	550	660
	Высота с развязывающей панелью	316	374	_	374	-	-	-	_	-	420	595	-	_	630	800
	Ширина	75	90	90	130	130	200	242	242	242	165	230	308	370	308	370
	Ширина с одним доп. устройством С	-	130	130	170	170	-	242	242	242	205	230	308	370	308	370
[MM]	Ширина с двумя доп. устройствами С	-	150	150	190	190	-	242	242	242	225	230	308	370	308	370
	Глубина	207	205	207	205	207	175	200	260	260	249	242	310	335	333	333
	Глубина с доп. устройством A, B	222	220	222	220	222	175	200	260	260	262	242	310	335	333	333
	Глубина с разъединителем сети	-	-	-	-	-	206	224	289	290	-	-	344	378	-	_
[кг]	Bec	2,7	4,9	5,3	6	7	9,7	14,2	23	27	12	23,5	45	64	35	50
	Высота	7,9	10,6	14,8	10,6	14,8	15,4	16,6	18,9	25,6	15,8	20,5	26,8	30,4	21,7	26
	Высота с развязывающей панелью	12,4	14,8	_	14,8	_	-	-	_	-	16,6	23,5	_	_	24,8	31,5
	Ширина	3,0	3,6	3,6	5,2	5,2	7,9	9,6	9,6	9,6	6,5	9,1	12,2	14,6	12,2	14,6
	Ширина с одним доп. устройством С	-	5,2	5,2	6,7	6,7	-	9,6	9,6	9,6	8,1	9,1	12,2	14,6	12,2	14,6
[дюйм]	Ширина с двумя доп. устройствами С	-	6	6	7,5	7,5	-	9,6	9,6	9,6	8,9	9,1	12,2	14,6	12,2	14,6
	Глубина	8,1	8,1	18,2	8,1	8,2	6,9	7,9	10,3	10,3	9,8	9,6	12,3	13,2	13	13
	Глубина с доп. устройством А, В	8,7	8,7	8,8	8,7	8,8	6,9	7,9	10,3	10,3	10,4	9,6	12,3	13,2	13	13
	Глубина с разъединителем сети	-	-	_	-	_	8,2	8,9	11,4	11,5	-	-	13,6	14,9	-	-
[фунт]	Bec	6,0	10,8	11,7	14,6	15,5	21,5	31,5	50,7	59,6	26,5	52	99,3	143,3	77,2	110,2

Примеры различных вариантов корпуса:

АЗ ІР 20 с доп. платой в гнезде С


А3 с комплектом IP21/тип 12/NEMA 1

A4 IP55 с разъединителем сети

B4 IP20

C3 IP20

Код типа для оформлении заказа VLT® AutomationDrive, корпуса A, B и C

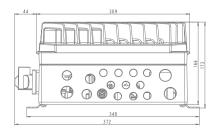
[1] 06	пасть применения (символы 4–6)
301	VLT® AutomationDrive FC 301
302	VLT® AutomationDrive FC 302
PK25	1 оразмер по мощности (символы 7–10)
PK37	0,25 кВт/0,33 л. с.
	0,37 кВт/0,50 л. с.
PK55	0,55 кВт/0,75 л. с.
PK75	0,75 кВт/1,0 л. с.
P1K1	1,1 кВт/1,5 л. с.
P1K5	1,5 кВт/2,0 л. с.
P2K2	2,2 кВт/3,0 л. с.
P3K0	3,0 кВт/4,0 л. с.
P3K7	3,7 кВт/5,0 л. с.
P4K0	4,0 кВт/5,5 л. с.
P5K5	5,5 кВт/7,5 л. с.
P7K5	7,5 кВт/10 л. с.
P11K	11 кВт/15 л. с.
P15K	15 кВт/20 л. с.
P18K	18,5 кВт/25 л. с.
P22K	22 кВт/30 л. с.
P30K	30 кВт/40 л. с.
P37K	37 кВт/50 л. с.
P45K	45 кВт/60 л. с.
P55K	55 кВт/75 л. с.
P75K	75 кВт/100 л. с.
P90K	90 кВт/125 л. с.
	пряжение сети переменного тока иволы 11–12)
T2	3 × 200–240 В пер. тока
T4	3 × 380–480 В пер. тока <i>(только FC 301)</i>
T5	3 × 380–500 В пер. тока
T6	3 × 525–600 В пер. тока
T7	3 × 525–690 В пер. тока ²⁾
[4] Кла	ассы защиты IP/UL (символы 13–15)
	ca IP20/waccu
Z20	IP20/шасси (корпус А1, только FC 301)
E20	IP20/шасси
P20	IP20/шасси + задняя панель
	ca IP21/UL mun 1
E21	IP21/тип 1
P21	IP21/тип 1 + задняя панель
	ca IP55/UL mun 12
E55	IP55/Тип 12
P55	IP55/тип 12 + задняя панель
Y55	IP55/тип 12 + задняя панель (корпус А4, без доп. плат в гнезде С)
Z55	IP55/тип 12 (корпус А4, без доп. плат в гнезде С)
Корпу	ca UL mun 3R
E3R	UL тип 3R (только для Северной Америки)
P3R	UL тип 3R + задняя панель (только для Северной Америки)
Kopny	ca IP66/UL mun 4X
E66	IР66/тип 4X
Y66	IP66/тип 4X + задняя панель (корпус A4, без доп. плат в гнезде C)
Z66	IP66/тип 4X (корпус А4, без доп. плат в гнезде С)

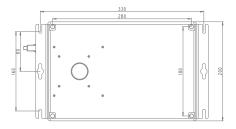
[5] () (льтр ВЧ-помех, опции клемм и функций
KO	нтроля, EN/IEC 61800-3 (символы 16–17)
H1	Фильтр ВЧ-помех, класс А1/В (С1)
H2	Фильтр ВЧ-помех, класс А2 (С3)
НЗ	Фильтр ВЧ-помех, класс А1/В 1)
H4	Фильтр ВЧ-помех, класс А1 (С2)
H5	Фильтр ВЧ-помех, класс А2 (С3) В защищенном исполнении для морских применений
HX	Без фильтра ВЧ-помех
	оможение и безопасность (символ 18)
χ	Без тормозного IGBT
В	Тормозной IGBT
T	Safe Torque Off без тормозного IGBT
U	Тормозной IGBT + Safe Torque Off
	сплей панели управления (символ 19)
X	Пустая лицевая панель, LCP не установлена
N	VLT® Control Panel LCP 101 (цифровая)
G	VLT® Control Panel LCP 102 (графическая)
W	VLT® Wireless Communication Panel LCP 103
[8] По	крытие печатных плат IEC 721-3-3
	мвол 20)
X	Печатные платы со стандартным покрытием в соответствии с классом 3C2
С	Покрытие печатных плат класса 3С3
	одные устройства сети питания (символ 21)
X	Без доп. устройства сетевого питания
1	Разъединитель сети (только корпуса А4, А5, В1, В2, С1 и С2)
8	Разъединитель сети и разделение нагрузки (только корпуса В1, В2, С1 и С2)
D [10] [1	Клеммы распределения нагрузки (только корпуса В1, В2, В4, С1, С2)
χ Х	оп. устройство А (символ 22)
0	Стандартные точки ввода кабеля Кабельные вводы с метрическими размерами (резьба)
S	Кабельные вводы с британскими
[11] [1	размерами
Х	оп. устройство В (символ 23) Без адаптации
	пециальная версия (символы 24–27)
SXXX	Стандартное ПО последнего выпуска
S067	Встроенный контроллер перемещения
LX1X	
	Мониторинг состояния вык панели управления (символ 28)
[19] //3	Типовой набор языков в составе пакета:
X	типовои надор языков в составет пакета. английский, немецкий, французский, датский, испанский, итальянский, финский и др.
Для ус на зав	тановки других языков обращайтесь юд
	оп. платы в гнездо А: Сетевая шина ымволы 29–30)
AX	Без доп. устройств
AL	VLT® PROFINET MCA 120
AN	VLT® EtherNet/IP MCA 121
/111	VIT® Modbus TCD MCA 122

AQ VLT® Modbus TCP MCA 122 AY VLT® POWERLINK MCA 123 A8 VLT® EtherCAT MCA 124

A0	VLT® PROFIBUS DP V1 MCA 101										
A4	VLT® DeviceNet MCA 104										
A6	VLT® CANopen MCA 105										
AT	VLT® 3000 PROFIBUS Converter MCA 113										
AU	VLT® 5000 PROFIBUS Converter MCA 114										
AV	VLT® 5000 DeviceNet Converter MCA 194										
[15] Д	оп. устройства В (символы 31–32)										
BX	Без доп. устройств										
BK	VLT® General Purpose MCB 101										
BR	VLT® Encoder Input MCB 102										
BU	VLT® Resolver Input MCB 103										
BP	VLT® Relay Option MCB 105										
BZ	VLT® Safety PLC I/O MCB 108										
B2	VLT® PTC Thermistor Card MCB 112										
B4	VLT® Sensor Input Card MCB 114										
B5	VLT® Programmable I/O MCB 115										
В6	VLT® Safety Option MCB 150 TTL										
В7	VLT® Safety Option MCB 151 HTL										
В8	VLT® Safety Option MCB 152 PROFIsafe STO										
[16] Д	оп. плата в гнездо СО (символы 33–34)										
CX	Без доп. устройств										
C4											
[17] Д	оп. плата в гнездо С1 (символ 35)										
Χ	Без доп. устройств										
R	VLT® Extended Relay Card MCB 113										
7	VLT® Sensorless Safety MCB 159										
	рограммное обеспечение доп. паты в гнезде С (символы 36–37)										
XX	Без опции программного обеспечения Примечание. Дополнительная плата в гнезде С4 в пункте [16] без ПО для управления перемещением в пункте [18] потребует программирования квалифицированным специалистом										
10	VLT® Synchronizing Controller MCO 350 (необходимо выбрать С4 в пункте [16])										
11	VLT® Positioning Controller MCO 351 (необходимо выбрать С4 в пункте [16])										
[19] Д	оп. платы в гнездо D (символы 38–39)										
DX	Без доп. устройств										
D0	VLT® 24 V DC Supply Option MCB 107										
D1	VLT® Real-time Clock Option MCB 117										
1) Умен	ьшенная длина кабеля двигателя										
не се	иечание. Преобразователи частоты Т7 ртифицированы по UL. Если необходима ификация по UL, выбирайте Тб.										
возмож преобр интера	димо учесть, что не все сочетания ны. Для облегчения конфигурации азователя частоты можно использовать активное средство конфигурации caŭme vitconfig.danfoss.com										

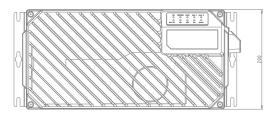
Электрические характеристики — VLT® Decentral Drive FCD 302

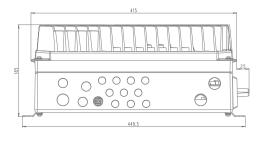

[T4] 3×380 –500 В пер. тока — высокая перегрузка

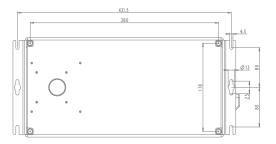

		Высокая	перегрузка (160 % в течені	ие 1 минуты за	период 10 мин	ут)		Корпус
		Выходн	юй ток		Типичная	выходная	Непрерывный	Расчетное	Защита
Код типа	(3×380-	-440 B)	(3 × 44	1–500 B)		ъ на валу	входной ток	значение потерь мощности	IP66
FCD 302	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	Тип 4Х
PK37	1,3	2,1	1,2	1,9	0,37	0,5	1,2	35	MF1/MF2
PK55	1,8	2,9	1,6	2,6	0,55	0,75	1,6	42	MF1/MF2
PK75	2,4	3,8	2,1	3,4	0,75	1	2,2	46	MF1/MF2
P1K1	3	4,8	3,0	4,3	1,1	1,5	2,7	58	MF1/MF2
P1K5	4,1	6,6	3,4	5,4	1,5	2	3,7	62	MF1/MF2
P2K2	5,2	8,3	4,8	7,7	2,2	3	5	88	MES
P3K0	7,2	11,5	6,3	10,1	3	4	6,5	116	MF2

Габаритные размеры VLT® Decentral Drive FCD 302

Размер корпуса MF1 (0,37-2,2 кВт/0,5-3,0 л. с.)







Размеры даны в [мм]

Размер корпуса MF2 (0,37–3 кВт/0,5–4,0 л. с.)

Код типа для заказа VLT® Decentral Drive FCD 302

[01-03]	Группа изделия		Монтажный корпус, малый	[26]	Разъем сети питания
FCD	VLT® Decentral Drive FCD 302	R	корпус, автономная установка (без секции преобразователя	X	Без разъема сети питания
[04-06]	Серия преобразователей частоты		частоты)	[27]	Разъемы промышленной шины
302	VLT® Decentral Drive	Т	Монтажный корпус, большой корпус, автономная установка (без секции преобразователя	Х	Нет разъема промышленной шины
[07-10]	Типоразмер по мощности		частоты)	E	M12 Ethernet
PK37	0,37 кВт/0,5 л. с.	[20]	V	Р	M12 Profibus
PK55	0,55 кВт/0,75 л. с.	[20] X	Кронштейны	[28]	2200200000000000
PK75	0,75 кВт/1,0 л. с.	E	Без кронштейнов	[26] X	Зарезервировано
P1K1	1,1 кВт/1,5 л. с.	F	Плоские кронштейны Кронштейны 40 мм	^	
P1K5	1,5 кВт/2,0 л. с.	г	кронштейны 40 мм	[29-30]	Доп. устройства А:
P2K2	2,2 кВт/3,0 л. с.	[21]	Тип резьбы		Сетевой протокол
P3K0	3,0 кВт/4,0 л. с.	X	Монтажный корпус отсутствует	AX	Без доп. устройств
PXXX	Только монтажный корпус	M	Метрическая резьба	AL	PROFINET
PAAA	(без силовой секции)	N	Вариант 1 NPT	AN	EtherNet/IP
[11-12]	Фазы, напряжение сети	0	Вариант 2 NPT	AY	POWERLINK
Т.	Три фазы	[22]	Опция переключателя	A8	EtherCAT
4	380–480 B	X	Без опции переключателя	A0	PROFIBUS DP V1
			Сервисный выключатель	AR	FCD 300 PROFIBUS Converter
[13-15]	Корпус	E	на входе сети питания	[31-32]	Доп. устройства В
B66	Стандартный черный — IP66/NEMA 4X	F	Сервисный выключатель	BX	Без доп. устройств
		F	на выходе сети питания	BR	VLT® Encoder Input MCB 102
W66	Стандартный белый — IP66/NEMA 4X	S	Малый автоматический	BU	VLT® Resolver Input MCB 103
14/60	Гигиенический белый		выключатель	BZ	VLT® Safe PLC I/O MCB 108
W69	— IP66/NEMA 4X	M	Средний автоматический выключатель	B8	VLT ProfiSafe MCB 152
[16-17]	Фильтр ВЧ-помех	L	Большой автоматический	[33-37]	Опции программного
H1	Фильтр ВЧ-помех, класс А1/С2	_	выключатель		обеспечения
[18]	Тормоз		Сервисный выключатель на входе сети питания	XXXXX	Стандартное ПО последнего выпуска
X	Нет тормоза Тормоз + питание механического	K	с дополнительными клеммами для подключения	S067X	Встроенный контроллер перемещения
S	тормоза		нескольких проводов (только для корпуса MF2)	LX1XX	Мониторинг состояния
[19]	Аппаратная конфигурация			[38-39]	Доп. устройство D
1	Изделие в сборе, небольшой	[23]	Дисплей	DX	Без доп. устройств
'	корпус, автономная установка	C	С коннектором дисплея	D0	VLT® 24 V DC Supply MCB 107
3	Изделие в сборе, большой корпус, автономная установка	[24]	Разъемы датчика		
	Секция преобразователя	X	Нет разъемов датчика		
X	частоты, малый корпус	E	Прямой монтаж, 4 × M12		
	(монтажный корпус отсутствует)	F	Прямой монтаж, 6 × M12		
Υ	Секция преобразователя частоты, большой корпус	[25]	Разъем двигателя		
	(монтажный корпус отсутствует)	X	Без штекера двигателя		

ПРИМЕЧАНИЕ. Для получения информации об опциях и конфигурациях воспользуйтесь средством конфигурации преобразователей частоты по adpecy http://driveconfig.danfoss.com

Электрические характеристики — VLT® Automation Drive, корпуса D, E и F

[T2] 3×200 –240 В пер. тока — высокая перегрузка

	Высок	ая перегрузка (1	50 % в течение 1	минуты за пери	од 10 минут)		Pa	змер корпу	rca e
Код типа		ной ток	Типичная	**	Непрерывный	Расчетное значение потерь	Класс защиты [IEC/UL]		
	(3 × 200	0–240 B)	мощность на валу		входной ток	мощности	IP20	IP21	IP54
FC 302	Непрерывн. I _№	Прерывист. I _{макс.} (60 c)	кВт	л. с.	[A]	[Вт]	Шасси	Тип 1	Тип 12
N45K	160	240	45	60	154	1482	D3h	D	1h
N55K	190	285	55	75	183	1794	D3h	D	1h
N75K	240	360	75	100	231	1990	D4h	D:	2h
N90K	302	453	90	120	291	2613	D4h	D:	2h
N110	361	542	110	150	348	3195	D4h	D:	2h
N150	443	665	150	200	427	4103	D4h	D:	2h

[T2] 3×200 –240 В пер. тока — нормальная перегрузка

	Нормал	ьная перегрузка	(110 % в течение	е 1 минуты за пе	риод 10 минут)		Размер корпус		
V	Выход	ной ток	Типичная выходная мощность на валу		Непрерывный	Расчетное	Класс защиты [IEC/UL]		
Код типа	(3 × 200	D-240 B)			входной ток	значение потерь мощности	IP20	IP21	IP54
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	кВт	л. с.	[A]	[Вт]	Шасси	Тип 1	Тип 12
N45K	190	209	55	75	183	1505	D3h	D1	lh
N55K	240	264	75	100	231	2398	D3h	D1	lh
N75K	302	332	90	120	291	2623	D4h	D	2h
N90K	361	397	110	150	348	3284	D4h	D	2h
N110	443	487	150	200	427	4117	D4h	D	2h
N150	535	589	160	215	516	5209	D4h	D2	2h

[T5] 3×380 –500 В пер. тока — высокая перегрузка

		Высокая пер	егрузка (150	% в течение	1 минуты	за период	10 минут)		Раз	мер корп	ıyca
.,		Выход	ной ток		Типичная	выходная	Непрерывный	Расчетное	Класс защиты [IEC/UL]		
Код типа	(3×380)-440 B)	(3 × 441–500 B)		мощность на валу		входной ток	значение потерь мощности	IP20	IP21	IP54
FC 302	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	Шасси	Тип 1	Тип 12
N90K	177	266	160	240	90	125	171	2031	D3h	D1h/D	5h/D6h
N110	212	318	190	285	110	150	204	2289	D3h	D1h/D	5h/D6h
N132	260	390	240	360	132	200	251	2923	D3h	D1h/D	5h/D6h
N160	315	473	302	453	160	250	304	3093	D4h	D2h/D	7h/D8h
N200	395	593	361	542	200	300	381	4039	D4h	D2h/D	7h/D8h
N250	480	720	443	665	250	350	463	5005	D4h	D2h/D	7h/D8h
N315	600	900	540	810	315	450	578	6178	E3h	E1h	E1h
N355	658	987	590	885	355	500	634	6851	E3h	E1h	E1h
N400	695	1043	678	1017	400	550	670	7297	E3h	E1h	E1h
N450	800	1200	730	1095	450	600	771	8352	E4h	E2h	E2h
N500	880	1320	780	1170	500	650	848	9449	E4h	E2h	E2h
P450	800	1200	730	1095	450	600	771	9031	-	F1/F3	F1/F3
P500	880	1320	780	1170	500	650	848	10 146	_	F1/F3	F1/F3
P560	990	1485	890	1335	560	750	954	10 649	-	F1/F3	F1/F3
P630	1120	1680	1050	1575	630	900	1079	12 490	-	F1/F3	F1/F3
P710	1260	1890	1160	1740	710	1000	1214	14 244	-	F2/F4	F2/F4
P800	1460	2190	1380	2070	800	1200	1407	15 466	-	F2/F4	F2/F4

[T5] 3×380 –500 В пер. тока — нормальная перегрузка

	Но	рмальная п	ерегрузка (1	10 % в течени	ие 1 минут	ы за перис	од 10 минут)		Раз	мер корп	yca
V		Выход	ной ток		Типичная	выходная	Непрерывный	Расчетное	Класс	защиты [ІІ	C/UL]
Код типа	(3×380)-440 B)	(3 × 441	–500 B)	мощност	ъ на валу	входной ток	значение потерь мощности	IP20	IP21	IP54
FC 302	Непрерывн. $I_{\scriptscriptstyle N}$	Прерывист. І _{макс.} (60 с)	Непрерывн. I _№	Прерывист. I _{макс.} (60 c)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	Шасси	Тип 1	Тип 12
N90K	212	233	190	209	110	150	204	2559	D3h	D1h/D	5h/D6h
N110	260	286	240	264	132	200	251	2954	D3h	D1h/D	5h/D6h
N132	315	347	302	332	160	250	304	3770	D3h	D1h/D	5h/D6h
N160	395	435	361	397	200	300	381	4116	D4h	D2h/D	7h/D8h
N200	480	528	443	487	250	350	463	5137	D4h	D2h/D	7h/D8h
N250	588	647	535	588	315	450	567	6674	D4h	D2h/D	7h/D8h
N315	658	724	590	649	355	500	634	6928	E3h	E1h	E1h
N355	745	820	678	746	400	600	718	8036	E3h	E1h	E1h
N400	800	880	730	803	450	600	771	8783	E3h	E1h	E1h
N450	880	968	780	858	500	650	848	9473	E4h	E2h	E2h
N500	990	1089	890	979	560	750	771	11102	E4h	E2h	E2h
P450	880	968	780	858	500	650	848	10 162	-	F1/F3	F1/F3
P500	990	1089	890	979	560	750	954	11 822	_	F1/F3	F1/F3
P560	1120	1232	1050	1155	630	900	1079	12 512	-	F1/F3	F1/F3
P630	1260	1386	1160	1276	710	1000	1214	14 674	_	F1/F3	F1/F3
P710	1460	1606	1380	1518	800	1200	1407	17 293	-	F2/F4	F2/F4
P800	1720	1892	1530	1683	1000	1350	1658	19 278	_	F2/F4	F2/F4

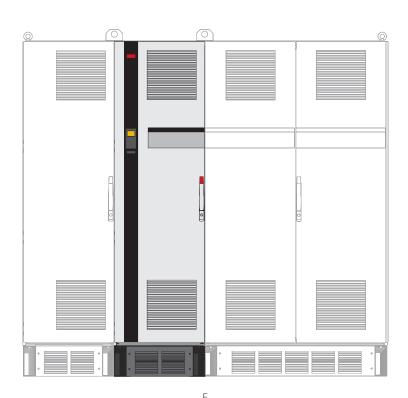
[T7] 3×525 –690 В пер. тока — высокая перегрузка

		Высокая пер	егрузка (150	% в течение	1 минуты	за период	10 минут)		Раз	мер корп	уса
Код типа		Выход	ной ток		Типичная	выходная	Непрерывный	Расчетное значение потерь	Класс	: защиты [II	EC/UL]
код гипа	(3 × 525	5–550 B)	(3 × 551	-690 B)	мощност	ъ на валу	входной ток	мощности	IP20	IP21	IP54
FC 302	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	Непрерывн. I_{N}	Прерывист. I _{макс.} (60 c)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]	Шасси	Тип 1	Тип 12
N55K	76	114	73	110	55	60	70	1056	D3h	D1h/D	5h/D6h
N75K	90	135	86	129	75	75	83	1204	D3h	D1h/D	5h/D6h
N90K	113	170	108	162	90	100	104	1479	D3h	D1h/D	5h/D6h
N110	137	206	131	197	110	125	126	1798	D3h	D1h/D	5h/D6h
N132	162	243	155	233	132	150	149	2157	D3h	D1h/D	5h/D6h
N160	201	302	192	288	160	200	185	2443	D4h	D2h/D	7h/D8h
N200	253	380	242	363	200	250	233	3121	D4h	D2h/D	7h/D8h
N250	303	455	290	435	250	300	279	3768	D4h	D2h/D	7h/D8h
N315	360	540	344	516	315	350	332	4254	D4h	D2h/D	7h/D8h
N355	395	593	380	570	355	400	366	4917	E3h	E1h	E1h
N400	429	644	410	615	400	400	395	5329	E3h	E1h	E1h
N500	523	785	500	750	500	500	482	6673	E3h	E1h	E1h
N560	596	894	570	855	560	600	549	7842	E3h	E1h	E1h
N630	659	989	630	945	630	650	607	8357	E4h	E2h	E2h
N710	763	1145	730	1095	710	750	704	10 010	E4h	E2h	E2h
P630	659	989	630	945	630	650	607	7826	-	F1/F3	F1/F3
P710	763	1145	730	1095	710	750	704	8983	_	F1/F3	F1/F3
P800	889	1334	850	1275	800	950	819	10 646	-	F1/F3	F1/F3
P900	988	1482	945	1418	900	1050	911	11 681	-	F2/F4	F2/F4
P1M0	1108	1662	1060	1590	1000	1150	1022	12 997	-	F2/F4	F2/F4
P1M2	1317	1976	1260	1890	1200	1350	1214	15 763	-	F2/F4	F2/F4

[T7] 3×525 –690 В пер. тока — нормальная перегрузка

	Н	рмальная п	ерегрузка (1	10 % в течени	ие 1 минут	ы за перис	од 10 минут)		Pas	мер корп	уса
V		Выход	ной ток		Типичная	выходная	Непрерывный	Расчетное	Класс	: защиты [II	EC/UL]
Код типа	(3 × 525	5-550 B)	(3 × 551	-690 B)	мощност	ъ на валу	входной ток	значение потерь мощности	IP20	IP21	IP54
FC 302	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	Непрерывн. I _№	Прерывист. I _{макс.} (60 c)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]	Шасси	Тип 1	Тип 12
N55K	90	99	86	95	75	75	83	1203	D3h	D1h/D	5h/D6h
N75K	113	124	108	119	90	100	104	1476	D3h	D1h/D	5h/D6h
N90K	137	151	131	144	110	125	126	1796	D3h	D1h/D	5h/D6h
N110	162	178	155	171	132	150	149	2165	D3h	D1h/D	5h/D6h
N132	201	221	192	211	160	200	185	2738	D3h	D1h/D	5h/D6h
N160	253	278	242	266	200	250	233	3172	D4h	D2h/D	7h/D8h
N200	303	333	290	319	250	300	279	3848	D4h	D2h/D	7h/D8h
N250	360	396	344	378	315	350	332	4610	D4h	D2h/D	7h/D8h
N315	418	460	400	440	400	400	385	5150	D4h	D2h/D	7h/D8h
N355	470	517	450	495	450	450	434	5935	E3h	E1h	E1h
N400	523	575	500	550	500	500	482	6711	E3h	E1h	E1h
N500	596	656	570	627	560	600	549	7846	E3h	E1h	E1h
N560	630	693	630	693	630	650	607	8915	E3h	E1h	E1h
N630	763	839	730	803	710	750	704	10 059	E4h	E2h	E2h
N710	889	978	850	935	800	950	819	12 253	E4h	E2h	E2h
P630	763	839	730	803	710	750	704	9212	-	F1/F3	F1/F3
P710	889	978	850	935	800	950	819	10 659	-	F1/F3	F1/F3
P800	988	1087	945	1040	900	1050	911	12 080	-	F1/F3	F1/F3
P900	1108	1219	1060	1166	1000	1150	1022	13 305	-	F2/F4	F2/F4
P1M0	1317	1449	1260	1386	1200	1350	1214	15 865	-	F2/F4	F2/F4
P1M2	1479	1627	1415	1557	1400	1550	1364	18 173	-	F2/F4	F2/F4

Габаритные размеры (корпус D)


						VLT® Auton	nationDrive				
Размер	корпуса	D1h	D2h	D3h	D3h ⁽¹⁾	D4h	D4h ⁽¹⁾	D5h ⁽²⁾	D6h ⁽³⁾	D7h ⁽⁴⁾	D8h ⁽⁵⁾
Класс за	ащиты [IEC/UL]	IP21/ IP54/1	тип 1 гип 12		IP20/i	шасси		IP21/тип 1 IP54/тип 12			
	Высота	901,0	1107,0	909,0	1027,0	1122,0	1294,0	1324,0	1663,0	1978,0	2284,0
[MM]	Ширина	325,0	420,0	250,0	250,0	350,0	350,0	325,0	325,0	420,0	420,0
	Глубина	378,4	378,4	375,0	375,0	375,0	375,0	381,0	381,0	386,0	406,0
[кг]	Bec	62,0	125,0	62,0	108,0	125,0	179,0	99,0	128,0	185,0	232,0
	Высота	35,5	43,6	35,8	39,6	44,2	50,0	52,1	65,5	77,9	89,9
[дюйм]	Ширина	12,8	12,8	19,8	9,9	14,8	13,8	12,8	12,8	16,5	16,5
	Глубина	14,9	14,9	14,8	14,8	14,8	14,8	15,0	15,0	15,2	16,0
[фунт]	Bec	136,7	275,6	136,7	238,1	275,6	394,6	218,3	282,2	407,9	511,5

Габаритные размеры (корпуса Е и F)

					VLT® Auton	nationDrive				
Типораз	вмер	E1h	E2h	E3h	E4h	F1	F2	F3	F4	
Класс за	ащиты [IEC/UL]	IP21/тип 1 IP54/тип 12		IP20/u	IP20/шасси *		IP21/тип 1 IP54/тип 12			
	Высота	2043,0	2043,0	1578,0	1578,0	2204,0	2204,0	2204,0	2204,0	
[MM]	Ширина	602,0	698,0	506,0	604,0	1400,0	1800,0	2000,0	2400,0	
	Глубина	513,0	513,0	482,0	482,0	606,0	606,0	606,0	606,0	
[кг]	Bec	295,0	318,0	272,0	295,0	1017,0	1260,0	1318,0	1561,0	
	Высота	80,4	80,4	62,1	62,1	86,8	86,8	86,8	86,8	
[дюйм]	Ширина	23,7	27,5	199,9	23,9	55,2	70,9	78,8	94,5	
	Глубина	20,2	20,2	19,0	19,0	23,9	23,9	23,9	23,9	
[фунт]	Bec	650,0	700,0	600,0	650,0	2242,1	2777,9	2905,7	3441,5	

^{*} IP00 при заказе с клеммами разделения нагрузки или клеммами рекуперации

D3h/D4h

 ⁽¹⁾ Размеры с клеммами цепи разделения нагрузки или рекуперации
 (2) DSh используется с опциями разъединителя и/или тормозного прерывателя
 (3) D6h используется с опциями контактора и/или автоматического выключателя
 (4) D7h используется с опциями разъединителя и/или тормозного прерывателя
 (5) D8h используется с опциями контактора и/или автоматического выключателя

Электрические характеристики и габариты — VLT® AutomationDrive, 12-импульсный

[T5] 6×380 –500 В пер. тока — высокая перегрузка

	Высог	кая перегруз	ка (150 % в т	ечение 1 мин	іуты за	перио	д 10 минут)			Размер	корпуса	
V		Выход	ной ток			чная		Расчетное		Класс защи	ты [IEC/UL]	
Код типа	(3×380)-440 B)	(3 × 441	-500 B)	мощі	дная ность залу	Непрерывный входной ток	значение потерь мощности	IP21	/тип 1	IP54/тип 12	
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	преобра- зователь частоты	+ допол- нительные устройства	преобра- зователь частоты	+ допол- нительные устройства
P250	480	720	443	665	250	350	472	5164	F8	F9	F8	F9
P315	600	900	540	810	315	450	590	6960	F8	F9	F8	F9
P355	658	987	590	885	355	500	647	7691	F8	F9	F8	F9
P400	695	1043	678	1017	400	550	684	8178	F8	F9	F8	F9
P450	800	1200	730	1095	450	600	779	9492	F10	F11	F10	F11
P500	880	1320	780	1170	500	650	857	10 631	F10	F11	F10	F11
P560	990	1485	890	1335	560	750	964	11 263	F10	F11	F10	F11
P630	1120	1680	1050	1575	630	900	1090	13 172	F10	F11	F10	F11
P710	1260	1890	1160	1740	710	1000	1227	14 967	F12	F13	F12	F13
P800	1460	2190	1380	2070	800	1200	1422	16 392	F12	F13	F12	F13

[T5] 6×380 –500 В пер. тока — нормальная перегрузка

	Нормал	ьная перегр	узка (110 % в	течение 1 м	инуты	за пері	иод 10 минут)			Размер	корпуса	
W		Выход	ной ток			чная		Расчетное		Класс защи	ıты [IEC/UL]	
Код типа	(3×380)-440 B)	(3 × 441	-500 B)	мощі мощі		Непрерывный входной ток	значение потерь мощности	IP21	/тип 1	IP54/тип 12	
FC 302	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]	преобра- зователь частоты	+ допол- нительные устройства	преобра- зователь частоты	+ допол- нительные устройства
P250	600	660	540	594	315	450	590	6790	F8	F9	F8	F9
P315	658	724	590	649	355	500	647	7701	F8	F9	F8	F9
P355	745	820	678	746	400	600	733	8879	F8	F9	F8	F9
P400	800	880	730	803	450	600	787	9670	F8	F9	F8	F9
P450	880	968	780	858	500	650	857	10 647	F10	F11	F10	F11
P500	990	1089	890	979	560	750	964	12 338	F10	F11	F10	F11
P560	1120	1232	1050	1155	630	900	1090	13 201	F10	F11	F10	F11
P630	1260	1386	1160	1276	710	1000	1227	15 436	F10	F11	F10	F11
P710	1460	1606	1380	1518	800	1200	1422	18 084	F12	F13	F12	F13
P800	1720	1892	1530	1683	1000	1350	1675	20 358	F12	F13	F12	F13

[T7] 6×525 –690 В пер. тока — высокая перегрузка

	Высо	кая перегруз	вка (150 % в т	ечение 1 мин	нуты за	период	д 10 минут)			Размер	корпуса	
И		Выход	ной ток			чная	11×	Расчетное		Класс защи	ты [IEC/UL]	l
Код типа	(3 × 525	5–550 B)	(3 × 551	-690 B)	мощі	дная ность залу	Непрерывный входной ток	значение потерь мощности	IP21/тип 1		IP54/тип 12	
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]	АС частоты	+ допол- нительные устройства	АС частоты	+ допол- нительные устройства
P355	395	593	380	570	355	400	366	4589	F8	F9	F8	F9
P450	429	644	410	615	400	400	395	4970	F8	F9	F8	F9
P500	523	785	500	750	500	500	482	6707	F8	F9	F8	F9
P560	596	894	570	855	560	600	549	7633	F8	F9	F8	F9
P630	659	989	630	945	630	650	613	8388	F10	F11	F10	F11
P710	763	1145	730	1095	710	750	711	9537	F10	F11	F10	F11
P800	889	1334	850	1275	800	950	828	11 291	F10	F11	F10	F11
P900	988	1482	945	1418	900	1050	920	12 524	F12	F13	F12	F13
P1M0	1108	1662	1060	1590	1000	1150	1032	13 801	F12	F13	F12	F13
P1M2	1317	1976	1260	1890	1200	1350	1227	16 719	F12	F13	F12	F13

[T7] 6×525 –690 В пер. тока — нормальная перегрузка

	Нормал	пьная перегр	узка (110 % і	в течение 1 м	инуты	за пери	іод 10 минут)			Размер	корпуса	
И		Выход	ной ток			ічная		Расчетное		Класс защи	ты [IEC/UL]	l
Код типа	(3 × 525	5–550 B)	(3 × 551	I-690 B)	мощ	дная ность залу	Непрерывный входной ток	значение потерь мощности	IP21/тип 1		IP54/тип 12	
FC 302	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	Непрерывн. I _N	Прерывист. I _{макс.} (60 c)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]	АС частоты	+ допол- нительные устройства	АС частоты	+ допол- нительные устройства
P355	470	517	450	495	450	450	434	5529	F8	F9	F8	F9
P450	523	575	500	550	500	500	482	6239	F8	F9	F8	F9
P500	596	656	570	627	560	600	549	7653	F8	F9	F8	F9
P560	630	693	630	693	630	650	607	8495	F8	F9	F8	F9
P630	763	839	730	803	710	750	711	9863	F10	F11	F10	F11
P710	889	978	850	935	800	950	828	11 304	F10	F11	F10	F11
P800	988	1087	945	1040	900	1050	920	12 798	F10	F11	F10	F11
P900	1108	1219	1060	1166	1000	1150	1032	13 801	F12	F13	F12	F13
P1M0	1317	1449	1260	1386	1200	1350	1227	16 821	F12	F13	F12	F13
P1M2	1479	1627	1415	1557	1400	1550	1378	19 247	F12	F13	F12	F13

Габаритные размеры (корпус F)

				VLT® Auton	nationDrive						
Размер	корпуса	F8	F9	F10	F11	F12	F13				
Класс за	іщиты [IEC/UL]	IP21/тип 1 IP54/тип 12									
	Высота	2204,0	2204,0	2204,0	2204,0	2204,0	2204,0				
[MM]	Ширина	800,0	1400,0	1600,0	2400,0	2000,0	2800,0				
	Глубина	606,0	606,0	606,0	606,0	606,0	606,0				
[кг]	Bec	447,0	669,0	893,0	1116,0	1037,0	1259,0				
	Высота	86,8	86,8	86,8	86,8	86,8	86,8				
[дюйм]	Ширина	31,5	55,2	63,0	94,5	78,8	110,2				
	Глубина	23,9	23,9	23,9	23,9	23,9	23,9				
[фунт]	Bec	985,5	1474,9	1968,8	2460,4	2286,4	2775,7				

Коды типа для заказа VLT® AutomationDrive в корпусах D, E и F

[1] 06	пасть применения (символы 4–6)
302	VLT® AutomationDrive FC 302
[2] Тиг	поразмер по мощности (символы 7–10)
N55K	55 кВт/75 л. с.
N75K	75 кВт/100 л. с.
N90K	90 кВт/125 л. с.
N110	110 кВт/150 л. с.
N132	132 кВт/200 л. с.
N160	160 кВт/250 л. с.
N200	200 кВт/300 л. с.
N250	250 кВт/350 л. с.
N315	315 кВт/450 л. с.
P315	315 кВт/450 л. с.
N355	355 кВт/500 л. с.
P355	355 кВт/500 л. с.
N400	400 кВт/550 л. с.
P400	400 кВт/550 л. с.
N450	450 кВт/600 л. с.
P450	450 кВт/600 л. с.
N500	500 кВт/650 л. с.
P500	500 кВт/650 л. с.
N560	560 кВт/750 л. с.
P560	560 кВт/750 л. с.
N630	630 кВт/900 л. с.
P630	630 кВт/900 л. с.
N710	710 кВт/1000 л. с.
P710	710 кВт/1000 л. с.
N800	800 кВт/1200 л. с.
P800	800 кВт/1200 л. с.
P900	900 кВт/1250 л. с.
P1M0	1,0 МВт/1350 л. с.
P1M2	1,2 МВт/1600 л. с.
[3] Hai	пряжение сети (символы 11–12)
T5	3 × 380–500 В пер. тока
T7	3 × 525–690 В пер. тока 690 В (кВт). См. руководства для типоразмеров по мощности для 575 В
[4] Кла	ассы защиты IP/UL (символы 13–15)
Корпу	ca IP20/waccu
E20	IР20/шасси
E2S	IP20/шасси <i>(корпус D3h)</i>
C20	IP20/шасси с тыльным каналом из нержавеющей стали
C2S	IP20/шасси с тыльным каналом из нержавеющей стали (корпус D3h)

Kopny	ca IP21/UL mun 1
E21	IP21/тип 1
E2M	IP21/тип 1 + экран сети питания
E2D	IP21/тип 1 (корпуса D1h, D5h, D6h)
H21	IP21/тип 1 + обогреватель
C21	IP21/тип 1 — тыльный канал из нержавеющей стали
C2M	IP21/тип 1 — тыльный канал из нержавеющей стали + экран сети питания
C2H	IP21/тип 1 — тыльный канал из нержавеющей стали + обогреватель
L2A	IP21/тип 1 + подсветка шкафа + розетка 115 В
L2X	IP21/тип 1 + подсветка шкафа + розетка 230 В
R2A	IP21/тип 1 + обогреватель + подсветка шкафа + розетка 115 В
R2X	IP21/тип 1 + обогреватель + подсветка шкафа + розетка 230 В
C2E	IP21/тип 1 + тыльный канал из нержавеющей стали + охлаждение задней стенки
Kopny	ca IP54/UL mun 12
E54	IP54/тип 12
E5M	IP54/тип 12 + экран сети питания
LJIVI	
E5S	IP54/тип 12, NEMA 3R ready — винты из нержавеющей стали + обогреватель (корпуса D1h, D2h)
H54	IP54/тип 12 + обогреватель + термостат
C54	IP54/тип 12 + тыльный канал из нержавеющей стали
C5M	IP54/тип 12 + тыльный канал из нержавеющей стали + экран сети питания
C5H	IP54/тип 12 + тыльный канал из нержавеющей стали + обогреватель
L5A	IP54/тип 12 + подсветка шкафа + розетка 115 В
L5X	IP54/тип 12 + подсветка шкафа + розетка 230 В
R5A	IP54/тип 12 + обогреватель + подсветка шкафа + розетка 115 В
R5X	IP54/тип 12 + обогреватель + подсветка шкафа + розетка 230 В
[5] Фи кон	льтр ВЧ-помех, опции клемм и функций нтроля, EN/IEC 61800-3 (символы 16–17)
H2	Фильтр ВЧ-помех, класс А2 (С3)
H4	Фильтр ВЧ-помех, класс А1 (С2) (только корпуса D и F)
HG	IRM для сети IT с фильтром ВЧ-помех класса A2(<i>kopnyca F1, F2, F3, F4</i>)
HE	Датчик остаточного тока (RCD) для сетей TN/TT с фильтром ВЧ-помех класса А2 (корпуса F1, F2, F3, F4)
НХ	Без фильтра ВЧ-помех
HF	Датчик остаточного тока (RCD) для сетей TN/TT и фильтр ВЧ-помех класса А1 (корпуса F1, F2, F3, F4)
НН	IRM для сети IT и фильтр ВЧ-помех класса А1 (корпуса F1, F2, F3, F4)

VLT® L	ow Harmonic Drive
N2	VLT® Low Harmonic Drive, активный фильтр на основе фильтра ВЧ-помех класса A2
N4	VLT® Low Harmonic Drive, активный фильтр на основе фильтра BЧ-помех класса A1
VLT® 1.	2-Pulse, корпуса F8, F9, F10, F11, F12, F13
B2	12-импульсный с фильтром ВЧ-помех класса А2
В4	12-импульсный с фильтром ВЧ-помех класса А1
BE	12-импульсный с RCD/фильтром BЧ-помех A2
BF	12-импульсный с RCD/фильтром BЧ-помех A1
BG	12-импульсный с IRM/фильтром BЧ-помех A2
ВН	12-импульсный с IRM/фильтром BЧ-помех A1
[6] Top	оможение и безопасность (символ 18)
Χ	Без тормозного IGBT
В	Тормозной IGBT
С	Safe Torque Off с реле безопасности Pilz (корпуса F1, F2, F3, F4)
D	Safe Torque Off с реле безопасности Pilz и тормозным IGBT (корпуса F1, F2, F3, F4)
Е	Safe Torque Off реле безопасности Pilz и клеммами рекуперации (корпуса F1, F2, F3, F4)
Т	Safe Torque Off без тормозного IGBT
R	Клеммы рекуперации <i>(корпуса D u F)</i>
S	Клеммы рекуперации и тормозной прерыватель
U	Тормозной IGBT + Safe Torque Off
Корпу	ca F3, F4
М	Кнопка аварийного останова IEC (вместе с реле Pilz)
N	Кнопка аварийного останова IEC с тормозным IGBT и клеммами тормоза (вместе с реле безопасности Pilz)
Р	Кнопка аварийного останова IEC с клеммами рекуперации (вместе с реле безопасности Pilz)
[7] Ди	сплей панели управления (символ 19)
Χ	Пустая лицевая панель, LCP не установлена
Ν	VLT® Control Panel LCP 101 (цифровая)
G	VLT® Control Panel LCP 102 (графическая)
W	VLT® Wireless Communication Panel LCP 103
Kopny	са размеров D и E, только IP21/IP54
J	Без панели управления + разъем USB в двери
L	Графическая панель управления (LCP 102) + USB-порт с подключением через дверь
	Цифровая панель управления (LCP101)

	крытие печатных плат IEC 721-3-3 ивол <i>20)</i>
C	Покрытие печатных плат класса 3С3
R	Печатная плата с покрытием 3C3 + защищенное исполнение
[9] Bxc	одные устройства сети питания (символ 21)
Χ	Без доп. устройства сетевого питания
7	Предохранители
А	Предохранители и клеммы разделения нагрузки (только корпуса D/IP20 u F3, F4, F9, F11, F14, F18)
D	Клеммы распределения нагрузки (только корпуса D/IP20 и F3, F4, F9, F11, F14, F18)
3	Разъединитель сети + предохранитель (корпуса D, E u F3, F4, F9, F11, F14, F18)
4	Сетевой контактор + предохранитель (размер корпуса D)
5	Разъединитель сети, предохранитель и разделение нагрузки (не поставляется для корпуса F18)
E	Разъединитель сети + контактор + плавкий предохранитель (корпуса D, E u F3, F4, F9, F11, F14, F18)
J	Автоматический выключатель + плавкий предохранитель (корпуса D, E u F3, F4, F9, F11, F14, F18)
F	Сетевые автоматический выключатель, контактор и предохранители (корпуса F3, F4, F9, F11, F14, F18)
G	Разъединитель сети, контактор, клеммы разделения нагрузки и предохранители (корпуса F3, F4, F9, F11, F14, F18)
Н	Сетевой автоматический выключатель, контактор, клеммы разделения нагрузки и предохранители (корпуса F3, F4, F9, F11, F14, F18)
K	Сетевой автоматический выключатель, клеммы разделения нагрузки и предохранители (корпуса F3, F4, F9, F11, F14, F18)
Т	Шкаф подключения кабелей (только корпуса D5h/D7h)
W	Кабельное соединение, шкаф и предохранитель (только корпуса D5h/D7h)
[10] До	оп. устройство А (символ 22)
Χ	Стандартные точки ввода кабеля

^	Стандартные точки	ввода кабеля	
Kopny	ca F1, F2, F3, F4, F10,	F11, F12, F13, F18	

Ε	Силовые клеммы на 30 A с защитой предохранителем
F	Силовые клеммы на 30 А с защитой предохранителем и ручной пускатель двигателя 2,5–4 А
G	Силовые клеммы на 30 A с защитой предохранителем и ручной пускатель двигателя на 4–6,3 A
Н	Силовые клеммы на 30 A с защитой предохранителем и ручной пускатель двигателя на 6,3–10 A
J	Силовые клеммы на 30 A с защитой предохранителем и ручной пускатель двигателя на 10–16 A
Κ	Два ручных пускателя двигателя 2,5–4 А
L	Два ручных пускателя двигателя 4–6,3 А
М	Два ручных пускателя двигателя 6,3—10 А

N Два ручных пускателя двигателя 10–16 A

[11] До	оп. устройство В (символ 23)
Χ	Без адаптации
Q	Съемная панель радиатора (только корпуса D и E)
Kopny	ca F1, F2, F3, F4, F10, F11, F12, F13, F18
G	Источник питания 5 А, 24 В (для оборудования заказчика) и внешнее устройство контроля температуры
Н	Источник питания 5 A, 24 B (для оборудования заказчика)
J	Внешнее устройство контроля температуры
K	Общие клеммы двигателя
L	Источник питания 5 A, 24 B + общие клеммы двигателя
М	Внешнее устройство контроля температуры + общие клеммы двигателя
N	Источник питания 5 А, 24 В + внешнее устройство контроля температуры + общие клеммы двигателя
[12] Cr	пециальная версия (символы 24–27)
SXXX	Стандартное ПО последнего выпуска
SXXX	Стандартное ПО последнего выпуска
SXXX S067 LX1X	Стандартное ПО последнего выпуска Встроенный контроллер перемещения
SXXX S067 LX1X	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния
SXXX S067 LX1X [13] Яз	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др.
SXXX S067 LX1X [13] Яз X Для ус на зав [14] Дс	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др.
SXXX S067 LX1X [13] Яз X Для ус на зав [14] Дс	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь од
SXXX S067 LX1X [13] Яз X Для усна зав	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь вод оп. платы в гнездо А: Сетевая шина вимолы 29–30)
SXXX S067 LX1X [13] Яз X Для ус на зав [14] До	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь вод вод, платы в гнездо А: Сетевая шина имволы 29–30) Без доп. устройств
SXXX S067 LX1X [13] Яз X Для ус на зав [14] Дс (сс AX AL	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь од од. платы в гнездо А: Сетевая шина имволы 29–30) Без доп. устройств VLT® PROFINET MCA 120
SXXX S067 LX1X [13] Яз X Для ус на зав [14] Дс (сс AX AL AN	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь од од. платы в гнездо А: Сетевая шина имволы 29–30) Без доп. устройств VLT® PROFINET MCA 120 VLT® therNet/IP MCA 121 VLT® Modbus TCP MCA 122 VLT® POWERLINK MCA 123
SXXX S067 LX1X [13] Яз X Для усна зав [14] Дс (сс AX AL AN AQ AY A8	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь од од. платы в гнездо А: Сетевая шина имволы 29—30) Без доп. устройств VLT® PROFINET MCA 120 VLT® EtherNet/IP MCA 121 VLT® Modbus TCP MCA 122 VLT® POWERLINK MCA 123 VLT® EtherCAT MCA 124
SXXX S067 LX1X [13] Яз X Для усна зав [14] Дс (сс AX AL AN AQ AY A8 A0	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь од од. платы в гнездо А: Сетевая шина имволы 29—30) Без доп. устройств VLT® PROFINET MCA 120 VLT® EtherNet/IP MCA 121 VLT® Modbus TCP MCA 122 VLT® POWERLINK MCA 123 VLT® EtherCAT MCA 124 VLT® PROFIBUS DP V1 MCA 101
SXXX S067 LX1X [13] Яз X Для ус на зав [14] Дс (сс АХ АL AN AQ AY A8 A0 A4	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, финский и др. становки других языков обращайтесь од од. платы в гнездо А: Сетевая шина мволы 29–30) Без доп. устройств VLT® PROFINET MCA 120 VLT® EtherNet/IP MCA 121 VLT® Modbus TCP MCA 122 VLT® POWERLINK MCA 123 VLT® PROFIBUS DP V1 MCA 101 VLT® DeviceNet MCA 104
SXXX S067 LX1X [13] Яз X Для усна зав [14] Дс (сс AX AL AN AQ AY A8 A0	Стандартное ПО последнего выпуска Встроенный контроллер перемещения Мониторинг состояния вык панели управления (символ 28) Типовой набор языков в составе пакета: английский, немецкий, французский, датский, испанский, итальянский, финский и др. становки других языков обращайтесь од од. платы в гнездо А: Сетевая шина имволы 29—30) Без доп. устройств VLT® PROFINET MCA 120 VLT® EtherNet/IP MCA 121 VLT® Modbus TCP MCA 122 VLT® POWERLINK MCA 123 VLT® EtherCAT MCA 124 VLT® PROFIBUS DP V1 MCA 101

AU VLT® 5000 PROFIBUS Converter MCA 114 AV VLT® 5000 DeviceNet Converter MCA 194

BX	оп. устройства В (символы 31–32) Дополнительные устройства отсутствуют
BK	
BR	VLT® General Purpose MCB 101
D.1.	VLT® Encoder Input MCB 102
BU	VLT® Resolver Input MCB 103
BP	VLT® Relay Option MCB 105
BZ	VLT® Safety PLC I/O MCB 108
B2	VLT® PTC Thermistor Card MCB 112
B4	VLT® Sensor Input Card MCB 114
B5	VLT® Programmable I/O MCB 115
B6	VLT® Safety Option MCB 150 TTL
B7	VLT® Safety Option MCB 151 HTL
В8	VLT® Safety Option MCB 152 PROFIsafe STO
	оп. плата в гнездо СО (символы 33–34)
CX	Без доп. устройств
C4	VLT® Motion Control MCO 305
	оп. плата в гнездо C1 (символ 35)
X	Без доп. устройств
R	VLT® Extended Relay Card MCB 113
7	VLT® Sensorless Safety MCB 159
	рограммное обеспечение доп. паты в гнезде С (символы 36–37)
XX	Без опции программного обеспечения Примечание. Дополнительная плата в гнезде С4 в пункте [16] без ПО для управления перемещением в пункте [18] потребует программирования квалифицированным специалистом
10	VLT® Synchronizing Controller MCO 350 (необходимо выбрать C4 в пункте [16])
11	VLT® Positioning Controller MCO 351 (необходимо выбрать C4 в пункте [16])
[19] Д	оп. плата в гнездо D (символы 38–39)
DX	Вход для постоянного тока не установлен
D0	VLT® 24 V DC Supply Option MCB 107
D1	VLT® Real-time Clock Option MCB 117
озмож реобр	- димо учесть, что не все сочетания ны. Для облегчения конфигурации азователя частоты можно использовать активное средство конфигурации

Электрические характеристики и габариты VLT® Enclosed Drive

[T5] 3×380 –500 В пер. тока — высокая перегрузка

		Высокая пер	регрузка (150 ^с	% в течение 1	минуты за	период 10	минут)			
Код типа	Выходной ток				Типичная выходная		Непрерывный	Расчетное	Класс защиты IEC	
	(3×380)-440 B)	(3 × 441–500 B)		мощность на валу		входной ток	значение потерь мощности	IP21	IP54
FC 302	Непрерывн. $I_{\scriptscriptstyle N}$	Прерывист. І _{макс.} (60 с)	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]		
N90K	177	266	160	240	90	125	171	2031	D9h	D9h
N110	212	318	190	285	110	150	204	2289	D9h	D9h
N132	260	390	240	360	132	200	251	2923	D9h	D9h
N160	315	473	302	453	160	250	304	3093	D10h	D10h
N200	395	593	361	542	200	300	381	4039	D10h	D10h
N250	480	720	443	665	250	350	463	5005	D10h	D10h
N315	600	900	540	810	315	450	578	6178	E5h	E5h
N355	658	987	590	885	355	500	634	6851	E5h	E5h
N400	695	1043	678	1017	400	550	718	7297	E5h	E5h
N450	800	1200	730	1095	450	600	771	8352	E6h	E6h
N500	880	1320	780	1170	500	650	848	9449	E6h	E6h

[T5] 3×380 –500 В пер. тока — нормальная перегрузка

	Нормальная перегрузка (110 % в течение 1 минуты за период 10 минут)												
И	Выходной ток				Типичная выходная		Непрерывный	Расчетное	Класс защиты IEC				
Код типа	(3×380)-440 B)	(3 × 441	I-500 B)	мощность на валу					входной ток	значение потерь мощности	IP21	IP54
FC 302	Непрерывн. $I_{\scriptscriptstyle N}$	Прерывист. І _{макс.} (60 с)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[А] при 400 В	[Вт]					
N90K	212	233	190	209	110	150	204	2559	D9h	D9h			
N110	260	286	240	264	132	200	251	2954	D9h	D9h			
N132	315	347	302	332	160	250	304	3770	D9h	D9h			
N160	395	435	361	397	200	300	381	4116	D10h	D10h			
N200	480	528	443	487	250	350	463	5137	D10h	D10h			
N250	588	647	535	588	315	450	578	6674	D10h	D10h			
N315	658	724	590	649	355	500	634	6928	E5h	E5h			
N355	745	820	678	746	400	600	718	8036	E5h	E5h			
N400	800	880	730	803	450	600	771	8783	E5h	E5h			
N450	880	968	780	858	500	650	848	9473	E6h	E6h			
N500	990	1089	890	979	560	750	954	11102	E6h	E6h			

[T7] 3×525 –690 В пер. тока — высокая перегрузка

		Высокая пер	регрузка (150 ⁹	% в течение 1 і	минуты за	период 10	минут)			
W	Выходной ток				Типичная выходная		Непрерывный	Расчетное	Класс защиты IEC	
Код типа	(3 × 525	5–550 B)	(3 × 551–690 B)		мощность на валу		входной ток	значение потерь мощности	IP21	IP54
FC 302	Непрерывн. I _№	Прерывист. І _{макс.} (60 с)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]		
N90K	113	170	108	162	90	100	109	1479	D9h	D9h
N110	137	206	131	197	110	125	132	1798	D9h	D9h
N132	162	243	155	233	132	150	156	2157	D9h	D9h
N160	201	302	192	288	160	200	193	2443	D10h	D10h
N200	253	380	242	363	200	250	244	3121	D10h	D10h
N250	303	455	290	435	250	300	292	3768	D10h	D10h
N315	360	540	344	516	315	350	347	4254	D10h	D10h
N355	395	593	380	570	355	400	381	4989	E5h	E5h
N400	429	644	410	615	400	400	413	5419	E5h	E5h
N500	523	785	500	750	500	500	504	6833	E5h	E5h
N560	596	894	570	855	560	600	574	8069	E5h	E5h
N630	659	989	630	945	630	650	635	8543	E6h	E6h
N710	763	1145	730	1095	710	750	735	10 319	E6h	E6h

[T7] 3×525 –690 В пер. тока — нормальная перегрузка

	Нормальная перегрузка (110 % в течение 1 минуты за период 10 минут)									
И	Выходной ток				Типичная выходная		Непрерывный	Расчетное	Класс защиты IEC	
Код типа	(3 × 525	5–550 B)	(3×551-690 B)		мощность на валу		входной ток	значение потерь мощности	IP21	IP54
FC 302	Непрерывн. $I_{\scriptscriptstyle N}$	Прерывист. І _{макс.} (60 с)	Непрерывн. $I_{\scriptscriptstyle N}$	Прерывист. І _{макс.} (60 с)	кВт при 690 В	л. с. при 575 В	[А] при 690 В	[Вт]		
N90K	137	151	131	144	110	125	132	1796	D9h	D9h
N110	162	178	155	171	132	150	156	2165	D9h	D9h
N132	201	221	192	211	160	200	193	2738	D9h	D9h
N160	253	278	242	266	200	250	244	3172	D10h	D10h
N200	303	333	290	319	250	300	292	3848	D10h	D10h
N250	360	396	344	378	315	350	347	4610	D10h	D10h
N315	418	460	400	440	400	400	381	5150	D10h	D10h
N355	470	517	450	495	450	450	413	6062	E5h	E5h
N400	523	575	500	550	500	500	504	6879	E5h	E5h
N500	596	656	570	627	560	600	574	8076	E5h	E5h
N560	630	693	630	693	630	650	635	9208	E5h	E5h
N630	763	839	730	803	710	750	735	10 346	E6h	E6h
N710	889	978	850	935	800	950	857	12 723	E6h	E6h

Габариты преобразователей частоты шкафного исполнения VLT® AutomationDrive

VLT® AutomationDrive									
	D9h	D10h	E5h	E6h					
Преобразователь частоты шкафного исполнения									
Номинальная мощность при 380–500 В [кВт (л. с.)]	90–132 (125–200)	160–250 (250–350)	315–400 (450–550)	450–500 (600–650)					
Номинальная мощность при 525–690 В [кВт (л. с.)]	90–132 (100–150)	160–315 (200–350)	355–560 (400–600)	630–710 (650–950)					
Класс защиты	IP21/тип 1 IP54/тип 12	IP21/тип 1 IP54/тип 12	IP21/тип 1 IP54/тип 12	IP21/тип 1 IP54/тип 12					
Шкаф преобразователя частоты									
Высота [мм (дюйм)] 1)	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)					
Ширина [мм (дюйм)] ²⁾	400 (15,8)	600 (23,6)	600 (23,6)	800 (31,5)					
Глубина [мм (дюйм)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)					
Масса [кг (фунт)] ²⁾	280 (617)	355 (783)	400 (882)	431 (950)					
Шкаф входных фильтров									
Высота [мм (дюйм)] 1)	-	2100 (82,7)	2100 (82,7)	2100 (82,7)					
Ширина [мм (дюйм)]	-	600 (23,6)	600 (23,6)	600 (23,6)					
Глубина [мм (дюйм)]	_	600 (23,6)	600 (23,6)	600 (23,6)					
Масса [кг (фунт)]	-	380 (838)	380 (838)	380 (838)					
Шкаф синусоидного фильтра									
Высота [мм (дюйм)] 1)	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)					
Ширина [мм (дюйм)]	600 (23,6)	600 (23,6)	1200 (47,2)	1200 (47,2)					
Глубина [мм (дюйм)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)					
Масса [кг (фунт)]									
Шкаф фильтра dU/dt									
Высота [мм (дюйм)] 1)	-	-	2100 (82,7)	2100 (82,7)					
Ширина [мм (дюйм)] ³⁾	-	-	400 (15,8)	400 (15,8)					
Глубина [мм (дюйм)]	-	-	600 (23,6)	600 (23,6)					
Масса [кг (фунт)]	-	-	240 (529)	240 (529)					
Шкаф с верхним вводом/выводом									
Высота [мм (дюйм)] ¹⁾	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)					
Ширина [мм (дюйм)] ³⁾	400 (15,8)	400 (15,8)	400 (15,8)	400 (15,8)					
Глубина [мм (дюйм)]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)					
Масса [кг (фунт)]	164 (362)	164 (362)	164 (362)	164 (362)					

Высота шкафа считается со стандартной подставкой высотой 100 мм (3,9 дюйма).
 Подставка высотой 200 мм (7,9 дюйма) или 400 мм (15,8 дюйма) поставляется по заказу.
 Без доп. устройств.
 Корпуса E5h и E6h содержат 2 шкафа с синусоидными фильтрами. Указанная ширина — суммарная ширина обоих шкафов.

Код типа для заказа VLT® AutomationDrive Преобразователи частоты шкафного исполнения

[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

[1] 06	пасть применения (символы 4–6)
302	VLT® AutomationDrive FC 302
[2] On	ция фильтра низких гармоник (символ 7)
Т	Нет
Р	Пассивный фильтр, THDi = 5 %, 50 Гц
Н	Пассивный фильтр, THDi = 8 %, 50 Гц
L	Пассивный фильтр, THDi = 5 %, 60 Гц
U	Пассивный фильтр, THDi = 8 %, 60 Гц
[3] Hai	тряжение сети (символ 8)
4	380–480 B
5	380–500 B
7	525-690 B (UL 525-600 B)
[4] Ho	рмы и стандарты (символ 9)
- 1	IEC
[5] Тиг	оразмер по мощности (символы 10–12)
90	90 кВт/125 л. с.
110	110 кВт/150 л. с.
132	132 кВт/200 л. с.
160	160 кВт/250 л. с.
200	200 кВт/300 л. с.
250	250 кВт/350 л. с.
315	315 кВт/450 л. с.
355	355 кВт/500 л. с.
400	400 кВт/550 л. с.
450	450 кВт/600 л. с.
500	500 кВт/650 л. с.
560	560 кВт/750 л. с.
630	630 кВт/900 л. с.

[6] По (си	крытие печатных плат — IEC 721-3-3 мвол 13)
С	Покрытие печатных плат класса 3С3
R	Печатная плата с покрытием 3C3 + защищенное исполнение
[7] По	дставка (символ 14)
1	Высота 100 мм
2	Высота 200 мм
3	Высота 400 мм
[8] Top	оможение и безопасность (символ 15)
Χ	Без тормозного IGBT
В	Тормозной IGBT
Т	Safe Torque Off
U	Тормозной IGBT + Safe Torque Off
	гройства на входе сети питания мволы 16–17)
MX	Нет
M1	Разъединитель с предохранителем
M2	Разъединитель без предохранителя
M3	Автоматический выключатель (МССВ)
M4	Контактор
MA	Разъединитель с предохранителем + контактор
МВ	Разъединитель без предохранителя + контактор
МС	Реактор переменного тока + разъединитель с предохранителем
MD	Реактор переменного тока + разъединитель с предохранителем + контактор
ME	Реактор переменного тока + разъединитель без предохранителя

MF	Реактор переменного тока + автоматический выключатель (МССВ)
MG	Реактор переменного тока + контактор
МН	Реактор переменного тока + разъединитель без предохранителя + контактор
[10] Be	ыходной фильтр (символ 18)
Χ	Нет
D	dV/dt
S	Синусоидальный
C	Синфазный
1	Синфазный + dV/dt
2	Синфазный + синусоидальный
[11] 3a	резервированный символ (символ 19)
Χ	Нет
[12] Or	пция кабельного ввода (символ 20)
X	Снизу
Т	Сверху
L	Сеть питания сверху, двигатель снизу
М	Сеть питания снизу, двигатель сверху
	п омогательный источник питания имвол 21)
1	Внешний 230 В пер. тока
2	Внутренний 230 В пер. тока
4	Внутренний 230 В пер. тока + внутренний 24 В пост. тока
5	Внешний 230 В пер. тока + внутренний 24 В пост. тока
6	Внешний 120 В пер. тока
7	Внутренний 120 В пер. тока
8	Внутренний 120 В пер. тока + внутренний 24 В пост. тока
9	Внешний 120 В пер. тока + внутренний 24 В пост. тока
	пция охлаждения через тыльный канал имвол 22)
Χ	Вход внизу/выход вверху
1	Вход сзади/выход сзади
C	Вход сзади/выход вверху
D	Вход внизу/выход сзади
N	Нет
[15] Or	пция вспомогательных функций имволы 23–24)
AX	Нет вспомогательных опций
A1	Розетка переменного тока + освещение в шкафу
A2	Расширенные клеммы входов/выходов
А3	Обогреватель для шкафа
A4	Регулятор обогревателя двигателя

A5	Монитор изоляции
AA	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/выходов
AB	Розетка переменного тока + освещение в шкафу + обогреватель шкафа
AC	Розетка переменного тока + освещение в шкафу + регулятор обогревателя двигателя
AD	Розетка переменного тока + освещение в шкафу + монитор изоляции
AE	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/ выходов + обогреватель шкафа
AF	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/выходов + регулятор обогревателя двигателя
AG	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/ выходов + монитор изоляции
АН	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/выходов + обогреватель шкафа + регулятор обогревателя двигателя
AI	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/выходов + обогреватель шкафа + монитор изоляции
AJ	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/выходов + регулятор обогревателя двигателя + монитор изоляции
AK	Розетка переменного тока + освещение в шкафу + расширенные клеммы входов/выходов + обогреватель шкафа + регулятор обогревателя двигателя + монитор изоляции
AL	Розетка переменного тока + освещение в шкафу + обогреватель шкафа + регулятор обогревателя двигателя
AM	Розетка переменного тока + освещение в шкафу + обогреватель шкафа + монитор изоляции
AN	Розетка переменного тока + освещение в шкафу + обогреватель шкафа + регулятор обогревателя двигателя + монитор изоляции
AO	Розетка переменного тока + освещение в шкафу + регулятор обогревателя двигателя + монитор изоляции
AP	Расширенные клеммы входов/выходов + обогреватель шкафа
AQ	Расширенные клеммы входов/выходов + регулятор обогревателя двигателя
AR	Расширенные клеммы входов/выходов + монитор изоляции
AS	Расширенные клеммы входов/выходов + обогреватель шкафа + регулятор обогревателя двигателя
AT	Расширенные клеммы входов/выходов + обогреватель шкафа + монитор изоляции

AU	Расширенные клеммы входов/выходов + обогреватель шкафа + регулятор обогревателя двигателя + монитор изоляции
AV	Расширенные клеммы входов/выходов + регулятор обогревателя двигателя + монитор изоляции
AW	Обогреватель шкафа + регулятор обогревателя двигателя
A8	Обогреватель шкафа + монитор изоляции
AY	Обогреватель шкафа + регулятор обогревателя двигателя + монитор изоляции
AZ	Регулятор обогревателя двигателя + монитор изоляции
[16] Д	исплей панели управления (символ 25)
L	LCP на двери
N	Без LCP
	ласс защиты корпуса (символы 26–27)
21	IP21
54	IP54
(18)	Опция, монтируемая на дверь
XX	Нет
D1	Сигнальные светодиоды и кнопка сброса
D2	Ав. выключатель + ав. кнопка
D3	STO с ав. кнопкой (без функциональной безопасности)
D4	STO/SS1 с ABAP. KH. + SLS (энкодер TTL)
D5	STO/SS1 c ABAP. KH. + SLS (энк. HTL)
DA	Индикаторы и кнопка сброса + ав. выключатель и ав. кнопка
DB	Индикаторы и кнопка сброса + STO с ав. кнопкой (нет функциональной безопасности)
DC	Индикаторы и кнопка сброса + STO/SS1 с авар. кнопкой (энк. TTL)
DE	Индикаторы и кнопка сброса + STO/SS1 с авар. кнопкой + SLS (энк. HTL)
[19] Д П	оп. платы для гнезда А: ромышленная шина (символ 30)
X	Без доп. устройств
L	VLT® PROFINET MCA 120
Ν	VLT® EtherNet/IP MCA 121
Q	VLT® Modbus TCP MCA 122
Υ	VLT® POWERLINK MCA 123
8	VLT® EtherCAT MCA 124
0	VLT® PROFIBUS DP V1 MCA 101
4	VLT® DeviceNet MCA 104
6	VLT® CANopen MCA 105
Т	VLT® 3000 PROFIBUS Converter MCA 113
U	VLT® 5000 PROFIBUS Converter MCA 114
V	VLT® 5000 DeviceNet Converter MCA 194

[20] Д	оп. платы для гнезда В (символы 31)
Χ	Дополнительные устройства отсутствуют
K	VLT® General Purpose MCB 101
R	VLT® Encoder Input MCB 102
U	VLT® Resolver Input MCB 103
Р	VLT® Relay Option MCB 105
Z	VLT® Safety PLC I/O MCB 108
2	VLT® PTC Thermistor Card MCB 112
4	VLT® Sensor Input Card MCB 114
5	VLT® Programmable I/O MCB 115
6	VLT® Safety Option MCB 150 TTL
7	VLT® Safety Option MCB 151 HTL
8	VLT® Safety Option MCB 152 PROFIsafe STO
[21] До	оп. плата в гнездо СО (символ 32)
X	Без доп. устройств
4	VLT® Motion Control MCO 305
	оп. плата в гнездо С1 (символ 33)
X	Без доп. устройств
R	VLT® Extended Relay Card MCB 113
7	VLT® Sensorless Safety MCB 159
	рограммное обеспечение доп. паты для гнезда С (символ 34)
X	Без опции программного обеспечения Примечание. Дополнительная плата в гнезде С4 в пункте [16] без ПО для управления перемещением в пункте [18] потребует программирования квалифицированным специалистом
0	VLT® Synchronizing Controller MCO 350 (необходимо выбрать С4 в пункте [16])
1	VLT® Positioning Controller MCO 351 (необходимо выбрать С4 в пункте [16])
[24] Д	оп. плата для гнезда D (символ 35)
X	Без доп. устройств
0	VLT® 24 V DC Supply Option MCB 107
1	VLT® Real-time Clock Option MCB 117
	ильтр ЭМС (символ 36)
2	(Н2) Класс ВЧ-помех А2 (С3)
4	(Н4) Класс ВЧ-помех А1 (С2)
	арезервированный символ (символ 37)
X	Нет
	арезервированный символ (символ 38–39)
XX e.g.	Het
[28] X	вык документации (символ 40) Только английский
G	Английский + немецкий
F	Английский + французский
	11 3
Uopami	ите внимание, что не все комбинации

Обратите внимание, что не все комбинации возможны. Для получения помощи в конфигурации преобразователей частоты шкафного исполнения VLT обратитесь к местному торговому представителю.

Электрические характеристики — VLT® AutomationDrive Low Harmonic Drive и VLT® Advanced Active Filter

[T5] $3 \times 380-480$ В пер. тока — VLT $^{\circ}$ Low Harmonic Drive

	Bı	Размер корпуса								
		Выході	ной ток		_			Расчетное	Класс защи	ıты [IEC/UL]
Код типа	(3×380)-440 B)	(3 × 441–480 B)		Типичная выходная мощность на валу		Непрерывный входной ток	значение потерь мощности	IP21	IP54
FC 302	Непрерывн. I_N	Прерывист. І _{макс.} (60 с)	Непрерывн. I_N	Прерывист. I _{макс.} (60 c)	кВт при 400 В	л. с. при 460 В	[A]	[Вт]	Тип 1	Тип 12
N132	260	390	240	360	132	200	251	7428	D1n	D1n
N160	315	473	302	453	160	250	304	8048	D2n	D2n
N200	395	593	361	542	200	300	381	9753	D2n	D2n
N250	480	720	443	665	250	350	472	11 587	E9	E9
P315	600	900	540	810	315	450	590	14 140	E9	E9
P355	658	987	590	885	355	500	647	15 286	E9	E9
P400	695	1043	678	1017	400	550	684	16 063	E9	E9
P450	800	1200	730	1095	450	600	779	20 077	F18	F18
P500	880	1320	780	1170	500	650	857	21 851	F18	F18
P560	900	1485	890	1335	560	750	964	23 320	F18	F18
P630	1120	1680	1050	1575	630	900	1090	26 559	F18	F18

[T5] $3 \times 380-480$ В пер. тока — VLT $^{\circ}$ Low Harmonic Drive

	Нор	Размер корпуса								
Код типа		Выходной ток						Расчетное	Класс защиты [IEC/UL]	
	(3×380	(3 × 380-440 B) (3 × 441-480 B)				выходная ъ на валу	Непрерывный входной ток	значение потерь мощности	IP21	IP54
FC 302	Непрерывн. I _№	Прерывист. I _{макс.} (60 c)	Непрерывн. I _N	Прерывист. І _{макс.} (60 с)	кВт при 400 В	л. с. при 460 В	[A]	[Вт]	Тип 1	Тип 12
N132	315	347	302	332	160	250	304	8725	D1n	D1n
N160	395	435	361	397	200	300	381	9831	D2n	D2n
N200	480	528	443	487	250	350	463	11 371	D2n	D2n
N250	600	660	540	594	315	450	590	14 051	E9	E9
P315	658	724	590	649	355	500	647	15 320	E9	E9
P355	745	820	678	746	400	600	733	17 180	E 9	E9
P400	800	880	730	803	450	600	787	18 447	E9	E9
P450	800	968	780	858	500	650	857	21 909	F18	F18
P500	990	1089	890	979	560	750	964	24 592	F18	F18
P560	1120	1232	1050	1155	630	900	1090	26 640	F18	F18
P630	1260	1380	1160	1276	710	1000	1227	30 519	F18	F18

[T4] 3×380 –480 В пер. тока, VLT $^{\circ}$ Advanced Active Filter

Норма	Нормальная перегрузка (110 % в течение 1 минуты за период 10 минут при автоматическом регулировании)								ровании)	Размер корпуса		
				Выході	ной ток	Рекомендуемый	Расчетное	Класс защиты [IEC/UL]				
Код типа	При	400 B	При	460 B	При	480 B	При :	500 B	номинал предохранителей и разъединителей*	значение потерь мощности	IP21	IP54
AAF006	Реак- тивный	Гармо- ники	Реак- тивный	Гармо- ники	Реак- тивный	Гармо- ники	Реак- тивный	Гармо- ники	[A]	[Вт]	Тип 1	Тип 12
A190	190	171	190	171	190	171	190	152	350	5000	D14	D14
A250	250	225	250	225	250	225	250	200	630	7000	E1	E1
A310	310	279	310	279	310	279	310	248	630	9000	E1	E1
A400	400	360	400	360	400	360	400	320	900	11 100	E1	E1

^{*} Рекомендуется использовать опции встроенных предохранителей и разъединителей.

Габаритные размеры VLT® Low Harmonic Drive и VLT® Advanced Active Filter

			VLT® Low Ha		VLT® Advanced Active Filter		
Размер корпуса		D1n	D2n	E9	F18	D14	E1
Класс защиты [IEC/UL]			IP21/тип 1 IP54/тип 12				
	Высота	1781,70	1781,7	2000,7	2278,4	1780,0	2000,0
[MM]	Ширина	929,2	1024,2	1200,0	2792,0	600,0	600,0
	Глубина	418,4	418,4	538,0	605,8	418,4	538,0
[кг]	Bec	353,0	413,0	676,0	1900,0	238,0	453,0
	Высота	70,1	70,1	78,8	89,7	70,0	78,7
[дюйм]	Ширина	36,6	40,3	47,2	109,9	23,6	23,6
	Глубина	16,5	16,5	21,0	23,9	16,5	21,0
[фунт]	Bec	777,0	910,0	1490,0	4189,0	524,7	998,7

Технические характеристики фильтра VLT® Advanced Active Filter

•	
Тип фильтра	3P/3W, активный шунтирующий фильтр (TN, TT, IT)
Частота	50-60 Гц (±5 %)
Корпуса	IP21 – NEMA 1, IP54 – NEMA 12
Макс. предварительное искажения	10 % 20 % с ухудшением характеристик
Рабочая температура	0–40 °C +5 °C с ухудшением характеристик -10 °C с ухудшением характеристик
Высота над уровнем моря	1000 м без снижения номинальных характеристик 3000 м со снижением характеристик (5 %/1000 м)
Стандарты ЭМС	IEC61000-6-2 IEC61000-6-4
Покрытие цепей	Конформное покрытие в соотв. с ISA S71.04-1985, класс G3
Языки	18 различных
Режимы компенсации гармоник	Выборочный или общий (эфф. значение 90 % для подавления гармоник)
Спектр компенсации гармоник	От 2-й до 40-й в общем режиме включая гармоники 5-ю, 7-ю, 11-ю, 13-ю, 17-ю, 19-ю, 23-ю, 25-ю в выборочном режиме

Advanced Active Filter					
Макс. ток гармоник в процентах от номинального тока	15: 63 %, 17: 45 %, 111: 29 % 113: 25 %, 117: 18 %, 119: 16 % 123: 14 %, 125: 13 %				
Компенсация реактивного тока	Да, ведущая (емкостная) или отстающая (индуктивная) до целевого коэффициента мощности				
Уменьшение мерцания	Да				
Приоритет компенсации	Программируется на гармоники или коэффициент реактивной мощности				
Опция параллельного подключения	До 4 устройств одинаковой номинальной мощности в конфигурации «главное/ подчиненные»				
Поддержка трансформаторов тока (поставляется заказчиком, монтаж на месте)	Вторичная обмотка на 1 А или 5 А с автоматической подстройкой класса 0.5 или лучше				
Цифровые входы/выходы	4 (2 программируемых) Программируемая логика PNP или NPN				
Интерфейс связи	RS485, USB1.1				
Тип управления	Прямое управление по гармоникам (для ускоренного реагирования)				
Время отклика	< 15 мс (включая аппаратное)				
Время подавления гармонических колебаний (5–95 %)	< 15 мс				
Время подавления реактивных колебаний (5–95 %)	< 15 MC				
Макс. выход за установленные пределы	5 %				
Частота коммутации	Пошаговое управление в диапазоне 3–18 кГц				
Средняя частота коммутации	3–4,5 кГц				

Код типа VLT® Advanced Active Filter

На веб-сайте drives.danfoss.com заказчик может включить в конфигурацию различные фильтры VLT® Active Filter в соответствии со своими запросами.

Дополнительные устройства в гнездо А: сетевые шины

Предлагаются для всей номенклатуры выпускаемых преобразователей частоты

Сетевой протокол	FC 301	FC 302	FCD 302
VLT® PROFINET MCA 120	•	•	•
VLT® EtherNet/IP MCA 121	•	•	•
VLT® Modbus TCP MCA 122	•	•	_
VLT® POWERLINK MCA 123	•	•	•
VLT® EtherCAT MCA 124	•	•	•
VLT® PROFIBUS DP MCA 101	•	•	•
VLT® DeviceNet MCA 104	•	•	-
VLT® CANopen MCA 105	•	•	-
VLT® 3000 PROFIBUS Converter MCA 113	_	•	-
VLT® 5000 PROFIBUS Converter MCA 114	_	•	_
VLT® 5000 DeviceNet Converter MCA 194	_	•	_
VLT® FCD 300 PROFIBUS Converter	_	-	•

Стандартное исполнение

PROFINET

Уникальность протокола PROFINET заключается в том, что он объединяет наилучшую производительность с открытостью самой высокой степени. Эта плата позволяет использовать множество функций PROFIBUS, сводя к минимуму усилия пользователя при переходе на сеть PROFINET и обеспечивая отдачу от инвестиций в программное обеспечение ПЛК.

- Те же типы PPO, что и у PROFIBUS, обеспечивают простоту перехода на PROFINET
- Поддержка MRP для топология «линия»
- Поддержка диагностики DP-V1 Diagnostic, позволяющая легко, быстро и в соответствии со стандартами обрабатывать и передавать информацию о предупреждениях и сбоях в ПЛК, улучшая пропускную способность системы
- Реализация согласно классу соответствия В (Conformance Class B)
- Встроенный веб-сервер
- Почтовый клиент для оповещения о событиях обслуживания
- Поддержка PROFISAFE

VLT® PROFINET MCA 120

Код для заказа*

– стандартное исполнение, 2 порта

130В1235 — с покрытием, 2 порта

EtherNet/IP

Сеть Ethernet — это стандарт будущего для осуществления связи в производственном цехе. Протокол EtherNet/IP™ основан на самых современных технологиях для использования в промышленности и отвечает самым взыскательным требованиям. Протокол EtherNet/ IP^{m} расширяет возможности серийного стандартного протокола Ethernet до промышленного протокола Common Industrial Protocol (СІР™), который также представляет собой протокол высшего уровня и такую же объектную модель, как в DeviceNet.

Устройство предлагает несколько усовершенствованных функций, в частности:

- Встроенный высокоэффективный коммутатор, обеспечивающий линейную топологию и устраняющий необходимость во внешних коммутаторах
- Кольцо DLR
- Расширенные функции коммутации и диагностики
- Встроенный веб-сервер
- Почтовый клиент для оповещения о событиях обслуживания
- Возможность одно- и многоадресной передачи информации

VLT® EtherNet/IP MCA 121

Код для заказа*

130В1119 — стандартное исполнение, 2 порта 130В1219 — с покрытием, 2 порта

Modbus TCP

Modbus TCP является первым промышленным Ethernet-протоколом для автоматизации. Устройство Modbus ТСР способно работать с интервалом соединений до 5 мс в обоих направлениях, что делает его одним из самых быстрых устройств Modbus TCP на рынке. В целях резервирования управляющих модулей устройство обеспечивает замену одного из лвух управляющих молулей в горячем режиме, то есть без выключения системы.

Другие особенности

■ Двойное подключение к главному ПЛК для обеспечения избыточности в случае использования двух портов (только МСА 122)

VLT® Modbus TCP MCA 122

Код для заказа*

130В1196 — стандартное исполнение, 2 порта 130В1296 — с покрытием, 2 порта

POWERLINK

POWERLINK представляет собой второе поколение периферийных шин. Теперь может использоваться высокая скорость передачи данных по промышленной сети Ethernet, что позволяет задействовать всю мощь информационных технологий в мире автоматизации производственных процессов.

POWERLINK обеспечивает высокую производительность в режиме реального времени и использует функции синхронизации времени. Благодаря использованию моделей связи на основе CANopen, функциям управления сетью и моделям описания устройств эта опция предлагает гораздо больше, чем просто быструю сеть передачи данных.

Идеальное решение для следующих задач:

- Динамические приложения управления перемещением
- Обработка материалов.
- Приложения синхронизации и позиционирования
- Встроенный веб-сервер
- Почтовый клиент для оповещения о событиях обслуживания

VLT® POWERLINK MCA 123

Код для заказа*

130В1489 — стандартное исполнение. 2 порта 130В1490 — с покрытием, 2 порта

[□] Опционально

^{*} Кодовый номер свободно добавляемой дополнительной платы (может использоваться только в FC 301 и FC 302)

EtherCAT

Опция EtherCAT обеспечивает подключение по протоколу EtherCAT к сетям, основанным на EtherCAT®.

Эта опция обеспечивает проводную связь EtherCAT на полной скорости и подключение к преобразователю частоты с интервалом от 4 мс в обоих направлениях. Поэтому эту опцию можно использовать в сетях самых разных типов — от низкопроизводительных сетей до сетей с сервоприводами.

- Поддержка EoE Ethernet через EtherCAT
- HTTP (гипертекстовый транспортный протокол) для диагностики через встроенный веб-сервер
- CoE (CAN Over Ethernet) для доступа к параметрам преобразователя частоты
- SMTP (протокол простого обмена электронной почтой) для уведомлений по электронной почте
- TCP/IP для простого доступа к данным конфигурации преобразователя частоты с помощью МСТ 10

VLT® EtherCAT MCA 124

Код для заказа*

130В5546 — стандартное исполнение 130В5646 — с покрытием

PROFIBUS DP V1

Работа преобразователя частоты через сетевую шину позволяет снизить расходы на систему, устанавливать более быструю и эффективную связь и простой пользовательский интерфейс.

Лругие особенности

- Широкая совместимость, высокая надежность, поддержка основных поставщиков PLC и взаимозаменяемость с будущими версиями
- Быстрая эффективная связь, понятная установка, передовая диагностика и параметризация, а также автоконфигурация данных процесса с помощью файла GSD
- Нециклическая параметризация с использованием конечного автомата профилей PROFIdrive или Danfoss FC (только MCA101) и устройств PROFIBUS DP-V1 Master Class 1 и Master Class 2

VLT® PROFIBUS DP MCA 101

Код для заказа*

130В1100 — стандартное исполнение 130В1200 — с покрытием

DeviceNet

DeviceNet обеспечивает надежную и эффективную обработку данных благодаря усовершенствованной технологии «производитель/потребитель»

- Поддержка профиля ODVA для преобразователя частоты через клеммы ввода/вывода 20/70 и 21/71, что гарантирует совместимость с имеющимися системами
- Дополнительным преимуществом являются строгие методики проверки совместимости ODVA, которые обеспечивают взаимную совместимость изделий
- Встроенный веб-сервер
- Почтовый клиент для оповещения о событиях обслуживания

VLT® DeviceNet MCA 104

Код для заказа*

130В1102 — стандартное исполнение 130В1202 — с покрытием

CANopen

Высокая адаптивность и низкая стоимость – два основных «кита» протокола CANopen.

Опция CANopen имеет доступ к управлению с высоким приоритетом, статусу преобразователя частоты (как объект обработки данных, PDO) и всем параметрам с помощью нециклических данных (как сервисный объект данных, SDO).

Для обеспечения функциональной совместимости вариант с этим протоколом имеет профиль преобразователя частоты DSP402. Все эти функции гарантируют передачу данных в соответствии со стандартами, функциональную совместимость и низкие затраты.

VLT® CANopen MCA 105

Код для заказа*

130В1103 — стандартное исполнение 130В1205 — с покрытием

VLT® 3000 PROFIBUS Converter

VLT® PROFIBUS Converter MCA 113, специализированная версия устройств для шин PROFIBUS, эмулирует команды VLT® 3000 в VLT® AutomationDrive.

Это дает возможность замены VLT® 3000 преобразователем частоты VLT® AutomationDrive или позволяет расширить существующую систему без дорогостоящего изменения программы ПЛК.

VLT® 3000 PROFIBUS Converter MCA 113

Код для заказа*

130В1245 — с покрытием

VLT® 5000 PROFIBUS Converter

VLT® PROFIBUS Converter MCA 114, специализированная версия устройств для шин Profibus, эмулирует команды VLT® 5000 B VLT® AutomationDrive.

Дает возможность замены VLT® 5000 преобразователем частоты VLT® AutomationDrive или позволяет расширить существующую систему без дорогостоящего изменения программы ПЛК.

Поддерживает DP-V1.

VLT® 5000 PROFIBUS Converter MCA 114

Код для заказа*

130B1246 — с покрытием

VLT® 5000 DeviceNet Converter

VLT® DeviceNet Converter MCA 194 эмулирует команды VLT® 5000 в VLT® AutomationDrive.

Это дает возможность замены VLT® 5000 преобразователем частоты VLT® AutomationDrive или позволяет расширить систему без дорогостоящего изменения программы ПЛК.

Эта дополнительная плата эмулирует экземпляры «ввода/вывода» и явные сообщения VLT® 5000.

VLT® DeviceNet Converter MCA 194

Код для заказа*

130В5601 — с покрытием

VLT® FCD 300 PB Converter MCA 117

VLT® FCD 300 PB Converter MCA 117 эмулирует команды FCD300 или FCM 300 в сети PROFIBUS. Все команды FCD/FCM300 из ПЛК преобразуются в МСА117 в команды FCD 302. Это устраняет необходимость перезаписи программы ПЛК и изменения конфигурации.

VLT® FCD 300 PB Converter MCA 117

Код для заказа*

Устанавливается только на заводе

^{*} Код для заказа свободно добавляемой дополнительной платы (может использоваться только в FC 301 и FC 302)

Дополнительные устройства в гнездо В: функциональные расширения

Предлагаются для всей номенклатуры выпускаемых преобразователей частоты

Дополнительное оборудование	FC 301	FC 302	FCD 302
VLT® General Purpose MCB 101	•	•	_
VLT® Encoder Input MCB 102	•	•	•
VLT® Resolver Input MCB 103	•	•	•
VLT® Relay Option MCB 105	•	•	_
VLT® Safety PLC I/O MCB 108	•	•	•
VLT® Analog I/O Option MCB 109	_	•	_
VLT® PTC Thermistor Card MCB 112	•	•	_
VLT® Sensor Input Card MCB 114	_	•	_
VLT® Programmable I/O MCB 115	•	•	-
VLT® Safety Option MCB 150 TTL	_	•	_
VLT® Safety Option MCB 151 HTL	_	•	_
VLT® Safety Option MCB 152 PROFIsafe STO	_	•	•
VLT® Sensorless Safety MCB 159	_	•	_

Стандартное исполнение

VLT® General Purpose I/O MCB 101

Это дополнительное устройство ввода/вывода увеличивает число входов и выходов управления:

- 3 цифровых входа 0-24 В: логический 0 < 5 В, логическая 1 > 10 В
- 2 аналоговых входа 0–10 В: разрешение 10 бит + знак.
- 2 цифровых вывода NPN/PNP по лвухтактной схеме
- 1 аналоговый выход 0/4-20 мА
- Подпружиненное соединение

Код для заказа

130В1125 — стандартное исполнение 130В1212 — с покрытием (класс 3С3/IEC 60721-3-3)

VLT® Encoder Input MCB 102

Эта опция обеспечивает возможность подключения инкрементных и абсолютных энкодеров различных типов. Подключенный энкодер может применяться для управления скоростью/положением по замкнутому контуру, а также для управления магнитным потоком двигателя по замкнутому контуру.

Поддерживаются следующие типы энкодеров:

- TTL 5 B (RS 422)
- 1VPP SinCos
- SSI
- Hiperface
- EnDat 2.1 и 2.2

Код для заказа

130В1115 — стандартное исполнение. 130В1203 — с покрытием (класс 3С3/IEC 60721-3-3).

VLT® Resolver Input MCB 103

Эта опция обеспечивает подключение резольвера для получения обратной связи по скорости от двигателя.

- Напряжение первичной 2-8 В (эфф.) обмотки.....
- Частота первичной обмотки.......2,0–15 кГц ■ Ток первичной
- обмотки, макс..... 50 мА (эфф.) ■ Напряжение на входе
- вторичной обмотки....4 В (эфф.) ■ Подпружиненное соединение

Код для заказа

130В1127 — стандартное исполнение 130В1227 — с покрытием (класс 3С3/IEC 60721-3-3)

VLT® Relay Card MCB 105

Обеспечивает расширенные функции реле благодаря трем дополнительным релейным выходам.

- Макс. частота коммутации при ном./мин.6 мин-1/20 sec-1
- Защищает соединение кабеля управления
- Подпружиненное соединение провода управления

Макс. нагрузка на клеммах:

- АС-1, резистивная нагрузка 240 В пер. тока, 2 А
- AC-15, индуктивная нагрузка при $\cos \phi$ 0,4240 В пер. тока, 0,2 А
- DC-1, резистивная24 В пост. тока, 1 А нагрузка, ■ DC-13, индуктивная нагрузка
- при соѕ ф 0,4......24 В пост. тока, 0,1 А

Мин. нагрузка на клеммах:

■ 5 В пост. тока

Код для заказа

130В1110 — стандартное исполнение 130В1210 — с покрытием . (класс 3C3/IEC 60721-3-3)

VLT® Safe PLC I/O MCB 108

Преобразователь частоты VLT® AutomationDrive FC 302 обеспечивает безопасный ввод на основе однополюсного входа 24 В пост. тока.

- Для большинства областей применения этот вход позволяет пользователю обеспечить безопасность экономически выгодным способом. В случае использования преобразователя частоты с более сложными продуктами, такими как защитные ПЛК, световые завесы и т. д., интерфейс Safe PLC обеспечивает подключение двухпроводных цепей безопасности
- Интерфейс Safe PLC позволяет прекращать работу на плюсовой или минусовой перемычке, не мешая сигналам, принимаемым Safe PLC

Код для заказа

130В1120 — стандартное исполнение. 130В1220 — с покрытием (класс 3C3/IEC 60721-3-3).

VLT® Analog I/O Option MCB 109

Это дополнительное аналоговое устройство ввода/вывода легко встраивается в преобразователь частоты для модернизации с целью получения улучшенных технических характеристик и реализации управления с помощью дополнительных входов и выходов. Это дополнительное устройство также повышает функциональность преобразователя частоты за счет добавления резервного источника на аккумуляторных батареях для встроенных часов преобразователя частоты. Это обеспечивает стабильное использование всех функций таймера преобразователя частоты.

- 3 аналоговых входа, каждый из которых допускает возможность настройки в качестве входа напряжения и температуры
- Подключение аналоговых сигналов 0-10 В, а также входов температуры PT1000 и NI1000
- 3 аналоговых выхода, каждый с возможностью настройки в качестве выхода 0-10 В
- Резервный источник питания для стандартной функции часов в преобразователе частоты

Срок службы резервного аккумулятора, как правило, составляет 10 лет и зависит от условий окружающей среды.

Код для заказа

130В1143 — стандартное исполнение 130В1243 — с покрытием (класс 3С3/IEC 60721-3-3)

VLT® PTC Thermistor Card MCB 112

Плата VLT® PTC Thermistor Card МСВ 112, обеспечивает улучшенный контроль за состоянием двигателя по сравнению со встроенными функцией ЭТР и клеммой термистора.

- Зашишает электродвигатель от перегрева
- Имеет сертификацию ATEX для работы с двигателями с классами взрывозащиты EX dи EX е
- Использует функцию Safe Torque Off, которая одобрена в соответствии c SIL 2 IEC 61508

Код для заказа

130В1137 — с покрытием . (класс 3C3/IEC 60721-3-3)

VLT® Sensor Input Card MCB 114

Защищает двигатель от перегрева посредством мониторинга температуры подшипников и обмоток двигателя.

- Защищает электродвигатель от перегрева
- 3 самоопределяющихся входа для 2- или 3-проводных датчиков РТ100/РТ1000
- 1 дополнительный аналоговый вход 4-20 мА

Код для заказа

130В1172 — стандартное исполнение 130В1272 — с покрытием . (класс 3C3/IEC 60721-3-3)

VLT® Programmable I/O MCB 115

Имеет 3 программируемых аналоговых входа и 3 аналоговых выхода. Аналоговые входы могут использоваться для сигналов напряжения, тока и температуры. Аналоговые выходы могут использоваться для сигналов напряжения, тока и цифровых сигналов.

Код для заказа

130B1266

VLT® Safety Option MCB 150, 151

Дополнительные устройства безопасности серий VLT ® Safety Options MCB 150 и МСВ 151 расширяют возможности функции Safe Torque Off (STO), встроенной в стандартный преобразователь частоты VLT® AutomationDrive. Использование функции безопасного останова 1 (SS1) позволяет выполнять контролируемый останов перед снятием крутящего момента. Использование функции ограничения безопасной скорости (SLS) позволяет контролировать, не превышен ли установленный предел скорости.

Если VLT® Safety Option MCB 150 или MCB 151 используется в сочетании со встроенной опцией VLT® Sensorless Safety MCB 159, для контроля безопасной скорости внешний датчик больше не требуется.

Ланные функции могут использоваться вплоть до уровней безопасности PL d в соответствии с EN ISO 13849-1 и SIL 2 в соответствии с ІЕС 61508.

- Дополнительные функции, соответствующие стандартам безопасности
- Замена внешнего оборудования безопасности
- Уменьшение требуемого пространства
- 2 программируемых входа для обеспечения безопасности
- 1 выход для обеспечения безопасности (для Т37)
- Более легкая сертификация машины
- Преобразователь частоты может находиться под напряжением постоянно
- Безопасное копирование с помощью панели управления
- Динамический отчет о вводе в эксплуатацию
- Энкодер TTL (MCB 150) или HTL (МСВ 151) для получения обратной связи по скорости

Код для заказа

130B3280 — MCB 150, 130B3290 — MCB 151

VLT® Safety Option MCB 152

VLT® Safety Option MCB 152 обеспечивает активацию функции Safe Torque Off (STO) по шине PROFIsafe при использовании в сочетании с дополнительным устройством периферийной шины VLT® PROFINET MCA 120. Она повышает гибкость эксплуатации за счет подключения предохранительных устройств на производственной установке.

Функции безопасности в МСВ 152 реализованы в соответствии с EN IEC 61800-5-2. MCB 152 поддерживает функции PROFIsafe по активации встроенных функций защиты в VLT® AutomationDrive с любого хоста PROFIsafe, вплоть до уровня целостности защиты SIL 2 в соответствии со стандартами EN IEC 61508 и EN IEC 62061, уровнем эффективности PL d, категорией 3 согласно EN ISO 13849-1.

- Устройство PROFIsafe (в сочетании с МСА 120)
- Замена внешнего оборудования безопасности
- 2 программируемых входа для обеспечения безопасности
- Безопасное копирование с помощью панели управления
- Динамический отчет о вводе в эксплуатацию

Код для заказа

130В9860 — с покрытием (класс 3C3/IEC 60721-3-3)

VLT® Sensorless Safety MCB 159

VLT® Safety Option MCB 151 с опцией VLT® Sensorless Safety MCB 159 обеспечивает для VLT® AutomationDrive FC 302 функции безопасной скорости без датчиков (SS1/SLS/SMS).

При использовании МСВ 159 больше не требуется внешний датчик для контроля безопасной скорости. Выберите VLT® Sensorless Safety MCB 159 в качестве дополнительной платы в гнездо С1 при заказе нового преобразователя частоты с помощью интерактивного средства конфигурации. МСВ 159 не используется для целей модернизации.

Опция МСВ 159 доступна только в качестве расширения для МСВ 151.

Код для заказа

Устанавливается только на заводе.

^{*} Код для заказа свободно добавляемой дополнительной платы (может использоваться только в FC 301 и FC 302)

Дополнительные устройства в гнездо С: релейная плата и плата управления перемещением

Предлагаются для всей номенклатуры выпускаемых преобразователей частоты

Дополнительное оборудование	FC 301	FC 302	FCD 302
VLT® Extended Relay Card MCB 113			_
VLT® Motion Control MCO 305			_
VLT® Synchronizing Control MCO 350			_
VLT® Positioning Controller MCO 351	•	•	_

Стандартное исполнение

Опиионально

VLT® Extended Relay Card MCB 113

VLT® Extended Relay Card MCB 113 добавляет ряд входов/выходов для повышения гибкости.

- 7 цифровых входов
- 2 аналоговых выхода
- 4 реле SPDT (однополюсные на два направления)
- Соответствует рекомендациям NAMUR
- Возможность гальванической развязки

Код для заказа

130В1164 — стандартное исполнение 130В1264 — с покрытием (класс 3С3/IEC 60721-3-3)

VLT® Motion Control MCO 305

Интегрированный программируемый контроллер перемещения, добавляющий дополнительные функции для преобразователей частоты VLT® AutomationDrive FC 301 и FC 302.

VLT® Motion Control Option MCO 305 предлагает простые в использовании функции перемещения наряду с возможностью программирования – идеальное решение для задач позиционирования и синхронизации.

- Синхронизация (электронный вал), позиционирование и управление посредством электронного кулачкового механизма
- 2 отдельных интерфейса, поддерживающих и инкрементные. и абсолютные энкодеры
- 1 выход энкодера (функция виртуального главного устройства)
- 10 цифровых входов
- 8 цифровых выходов
- Поддержка шины перемещения CANopen, энкодеров и модулей ввода/вывода
- Прием и передача данных через интерфейс промышленной шины (требуется дополнительная плата промышленной шины)

- Программные средства для ПК для устранения неполадок и ввода в эксплуатацию: редактор программ и профиля кулачкового механизма
- Структурированный язык программирования, поддерживающий как циклическое, так и управляемое событиями выполнение

Код для заказа

130В1134 — стандартное исполнение 130В1234 — с покрытием (класс 3C3/IEC 60721-3-3)

VLT® Synchronizing Controller MCO 350

Контроллер синхронизации VLT® Synchronizing Controller MCO 350 для VLT ® AutomationDrive расширяет функциональные возможности преобразователя частоты при его использовании для синхронизации и заменяет традиционные механические решения.

- Синхронизация скорости
- Синхронизация положения (угла) с коррекцией и без коррекции маркера
- Регулируемое в интерактивном режиме передаточное число редуктора
- Регулируемое в интерактивном режиме смещение положения (угла)
- Выход энкодера с функцией виртуального главного устройства для синхронизации нескольких подчиненных устройств
- Управление через порты ввода/вывода или по шине
- Функция возврата в нулевое положение
- Конфигурация и считывание состояния и данных с помощью панели управления

Код для заказа

130В1152 — стандартное исполнение 130В1252 — с покрытием (класс 3C3/IEC 60721-3-3)

VLT® Positioning Controller MCO 351

VLT® Positioning Controller MCO 351 обладает целым рядом удобных преимуществ при использовании в качестве устройства позиционирования во многих отраслях промышленности.

Возможности:

- Относительное позиционирование
- Абсолютное позиционирование
- Позиционирование с помощью контактного датчика
- Использование концевых выключателей (программных и аппаратных)
- Управление через порты ввода/вывода или по шине
- Использование механического тормоза (с программируемой задержкой)
- Обработка ошибок
- Толчковая скорость/ручное управление
- Позиционирование относительно
- Функция возврата в нулевое положение
- Конфигурация и считывание состояния и данных с помощью панели управления

Код для заказа

130В1153 — стандартное исполнение 130В1253 — с покрытием (класс 3C3/IEC 60721-3-3)

Дополнительные устройства в гнездо D: резервный источник питания 24 В и часы реального времени (RTC)

Предлагаются для всей номенклатуры выпускаемых преобразователей частоты

Код для заказа*

130B1108 — стандартное исполнение 130B1208 — с покрытием

. (класс 3C3/IEC 60721-3-3)

Дополнительное оборудование	FC 301	FC 302	FCD 302	
VLT® 24 V DC Supply MCB 107				
VLT® Real-time Clock Option MCB 117				-
■ Стандартное исполнение □ Опционально				
VLT® 24 V DC Supply MCB 107	VLT® Real-time C	Clock MCB 117		
Для поддержания работы секции	Обеспечивает расш	, .		
управления и иных дополнительных	регистрации данны			
устройств в активном режиме в случае обрыва питания от сети используется	проставлять метки	даты и времени вляя огромные объемы		
внешний источник постоянного тока.	оперативных даннь			
BICERIAM METO-HAM HOCTO/HHIOTO TONG.	ежедневно, время г			
Это позволяет обеспечить работу	частоты — в реальн			
LCP и установленных дополнительных	· ·			
устройств в полном объеме (включая	■ Доступность дан	•		
установку параметров) без подключения	времени со ссыл			
к электросети.	времени выполн ■ Возможность как			
■ Диапазон напряжения		о программирования		
на входе24 В пост. тока ±15 %	■ Расширенное жу			
(не более 37 В в течение 10 с)	' '	м временных меток		
■ Макс. входной ток2,2 A				
■ Макс. длина кабеля75 м	Код для заказа			
Входная емкостная нагрузка< 10 мФ	134B6544			
■ Задержка включения питания< 0,6 c				

^{*} Код для заказа свободно добавляемой дополнительной платы (может использоваться только в FC 301 и FC 302)

Дополнительные устройства питания

Опции питания	FC 301	FC 302	FCD 302
VLT® Advanced Harmonic Filter AHF 005/010	•	•	_
VLT® Line Reactor MCC 103			_
VLT® Sine-Wave Filter MCC 101	•		_
VLT® All-mode Filter MCC 201			_
VLT® dU/dt Filter MCC 102	•	•	_
VLT® Common Mode Filters MCC 105		•	_
VLT® Brake Resistors MCE 101	•	•	_

■ Стандартное исполнение

□ Опционально

VLT® Advanced Harmonic Filter AHF 005 и AHF 010

- Оптимизация гармонических искажений в преобразователях частоты VLT® для мощностей до 250 кВт включительно
- Запатентованная методика снижает уровни общего гармонического искажения (THD) в сети питания до 5–10 % и менее
- Идеально подходит для автоматизации в промышленности, высокодинамичных применений и объектов с особыми требованиями по безопасности
- Автоматизированное охлаждение с помощью вентилятора с переменной скоростью вращения

Диапазоны мощности

380-415 В пер. тока (50 и 60 Гц) 440-480 В пер. тока (60 Гц) 600 В пер. тока (60 Гц) 500-690 В пер. тока (50 Гц)

Степени защиты корпуса

■ IP20 (доступен дополнительный комплект модернизации до IP21/NEMA 1)

Код для заказа

См. соответствующее руководство по проектированию.

VLT® Line Reactor MCC 103

- Обеспечивает сбалансированное разделение тока в ситуациях с разделением нагрузки, когда подключение стороны постоянного тока выпрямителей нескольких преобразователей частоты объединено
- Сертификация UL для применений с разделением нагрузки
- При планировании применений с разделением нагрузки следует обратить особое внимание на сочетание различных типов корпусов и на пусковые броски тока
- Рекомендуем обратиться в службу поддержки Danfoss по применениям, чтобы получить технические советы по применениям с разделением нагрузки
- Совместимость с источником питания от сети VLT® AutomationDrive 50 Гц или 60 Гц

Код для заказа

См. соответствующее руководство по проектированию.

VLT® Sine-wave Filter MCC 101

- Синусоидальные фильтры VLT® Sine-wave размещаются между преобразователем частоты и двигателем и обеспечивают синусоидальное междуфазное напряжение на двигателе
- Уменьшают нагрузку на изоляцию лвигателя
- Уменьшают издаваемый двигателем акустический шум
- Уменьшают токи в подшипниках (особенно для больших двигателей)
- Снижают потери в двигателе

- Продлевают срок службы
- Внешний вид семейства VLT® серии FC

Диапазоны мощности

3 × 200-500 B. 2.5-800 A 3 × 525-690 B, 4,5-660 A

Степени защиты корпуса

- Корпуса IP00 и IP20 предназначены для настенного монтажа оборудования до 75 А (500 В) или 45 А (690 В)
- Корпуса IP23 предназначены для напольного монтажа оборудования до 115 А (500 В) или 76 А (690 В) и выше
- Корпуса IP54 предназначены как для настенного монтажа, так и для монтажа на полу оборудования до 4,5, 10 и 22 А (690 В)

Код для заказа

См. соответствующее руководство по проектированию.

VLT® All-mode Filter MCC 201

- Снижает падение напряжения при использовании длинных кабелей
- Позволяет использовать кабели более длинные, чем это предусмотрено требованиями преобразователя частоты
- Позволяет использовать
- неэкранированные кабели двигателя Снижает акустический коммутационный шум от двигателя
- Снижает кондуктивные помехи
- Устраняет подшипниковые токи двигателя
- Уменьшает нагрузку на изоляцию двигателя
- Увеличивает срок службы двигателя

Код для заказа

См. соответствующее руководство по проектированию.

VLT® dU/dt Filter MCC 102

- Уменьшает величины dU/dt межфазного напряжения на клеммах двигателя
- Устанавливается между преобразователем частоты и двигателем для исключения крайне быстрых изменений напряжения
- Кривая напряжения между клеммами фаз двигателя все еще сохраняет импульсную форму, но ее величины dU/dt уменьшаются
- Уменьшает нагрузку на изоляцию двигателей и рекомендуется в ситуациях использования старых двигателей, в агрессивных средах или при частом торможении, которое увеличивает напряжение в цепи постоянного тока
- Внешний вид семейства VLT® серии FC

Диапазоны мощности

3 × 200-690 В (до 880 A)

Степени защиты корпуса

- IP00 и IP20/IP23 для всего диапазона мошностей
- Корпус IP54 доступен для токов до 177 А

Код для заказа

См. соответствующее руководство по проектированию

VLT® Common Mode Filter MCC 105

- Устанавливается между преобразователем частоты и двигателем
- Это нанокристаллические сердечники, которые сглаживают высокочастотный шум в кабелях двигателя (экранированных или неэкранированных) и уменьшают токи в подшипниках двигателей
- Продлевает срок службы подшипников двигателя
- Может совмещаться с фильтрами dU/dt и синусоидальными фильтрами
- Снижает излучаемые помехи силового кабеля
- Уменьшает электромагнитные помехи
- Простота установки регулировка не требуется
- Овальная форма возможен монтаж внутри корпуса преобразователя частоты или в клеммной коробке двигателя

Диапазоны мощности

380-415 В пер. тока (50 и 60 Гц) 440-480 В пер. тока (60 Гц) 600 В пер. тока (60 Гц) 500-690 В пер. тока (50 Гц)

Код для заказа

130В3257 — корпуса А и В

130В7679 — корпус С1

130В3258 — корпуса С2, С3 и С4

130B3259 — корпус D

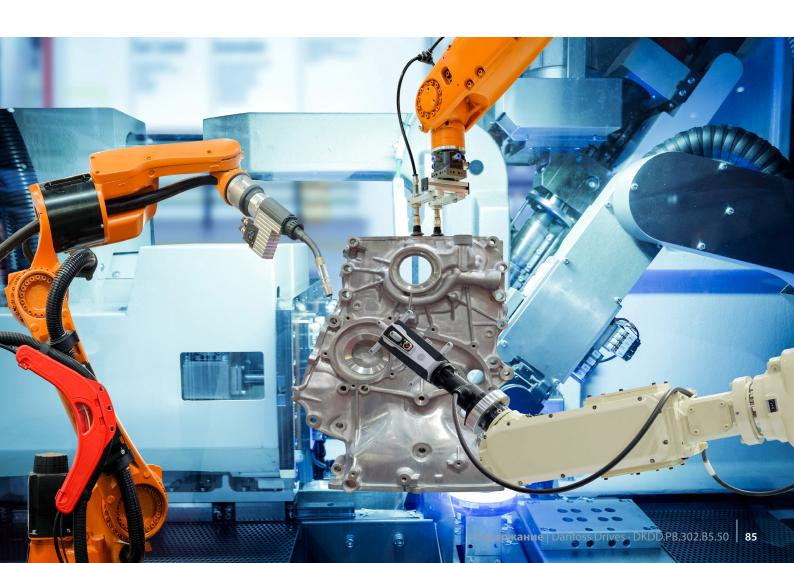
130B3260 — корпуса E и F

VLT® Brake Resistor MCE 101

- Энергия, генерируемая при торможении, поглощается резисторами, что обеспечивает защиту электрических компонентов от нагревания
- Оптимизирован для серии FC. Также доступны универсальные версии для горизонтального и вертикального перемещения
- Встроенный термовыключатель.
- Версии для вертикальной или горизонтальной установки
- Ряд вертикально устанавливаемых блоков имеет сертификацию UL

Диапазоны мощности

Точное соответствие электрических параметров в каждом преобразователе частоты VLТ® любого типоразмера по мошности.


Степени защиты корпуса

- IP20
- IP21
- IP54
- IP65

Код для заказа

См. соответствующее руководство по проектированию.

Принадлежности В наличии для VLT® Automation Drive / VLT® Decentral Drive

Панель управления (LCP)	FC 301	FC 302	FCD 302
VLT® Control Panel LCP 101 (цифровая) Код для заказа : 130В1124			-
VLT® Control Panel LCP 102 (графическая) Код для заказа : 130В1107			-
VLT® Control Panel LCP 102 (графическая), IP66 Код для заказа: 130В1078	-	-	
VLT® Wireless Communication Panel LCP 103 Код для заказа: 13480460			-
Комплект для монтажа панели управления Код для заказа для корпуса IP20: 130В1113: с крепежом, прокладкой, графической панелью управления и кабелем длиной 3 м 130В1114: с крепежом, прокладкой, цифровой панелью управления и кабелем длиной 3 м 130В1117: с крепежом, прокладкой и кабелем длиной 3 м, без панели управления LCP 130В1170: с крепежом и прокладкой, без панели управления LCP			-
Код для заказа для корпуса IP55: 130В1129: с крепежом, прокладкой, закрывающим щитком и кабелем длиной 8 м со свободным концом без разъема			
Комплект для дистанционного монтажа панели управления Код для заказа: 134B5223: комплект с кабелем 3 м 134B5224: комплект с кабелем 5 м 134B5225: комплект с кабелем 10 м			-
Кабель для LCP Предварительно скомпонованный кабель для использования между преобразователем частоты и панелью управления Код для заказа: 130B5776	-	-	
Монтажные принадлежности и переходники	FC 301	FC 302	FCD 302
Переходник PROFIBUS SUB-D9, подходит для корпусов А2 и А3 с защитой IP20 Код для заказа: 130B1112	•	•	-
Переходник для дополнительных устройств Код для заказа: 13081130: стандартное исполнение 13081230: с покрытием		•	-
Переходник для гнезда С Код для заказа: 134B7093	•	•	-
Комплект переходников для настенного монтажа преобразователей частоты от FCD300 до FCD302 (только для сочетания «малый корпус/малый корпус») Код для заказа: 13486784	-	-	•
Крепежная пластина для VLT® 3000 и VLT® 5000 подходит только для устройств IP20/NEMA тип 1 мощностью до 7,5 кВт <i>Код для заказа:</i> 13080524			-
Расширение порта USB Код для заказа кабеля длиной 350 мм: 13081155 Код для заказа кабеля длиной 650 мм: 13081156			-
Комплект IP21/тип 1 (NEMA 1) Код для заказа: 130B1121: для корпусов размера A1 130B1122: для корпусов размера A2 130B1123: для корпусов размера A3 130B1187: для корпусов размера B3 130B1189: для корпусов размера B4 130B1191: для корпусов размера C3 130B1193: для корпусов размера C4		•	-
Погодозащитный козырек NEMA 3R для наружного использования Код для заказа: 176F6302: для корпусов размера D1h 176F6303: для корпусов размера D2h	-	•	-
Погодозащитный козырек NEMA 4X для наружного использования Код для заказа: 130B4598: для корпусов А4, А5, В1, В2 130B4597: для корпусов C1, C2		•	-
Разъем двигателя Код для заказа: 130B1065: для корпуса размера от A2 до A5 (10 шт.)	•	•	-
Сетевой разъем Код для заказа: 130B1066: разъемы питающей сети IP55 (10 шт.) 130B1067: разъемы питающей сети IP20/21 (10 шт.)	•	•	-
Клемма реле 01 Код для заказа: 130B1069: 3-контактные разъемы для реле 01 (10 шт.)	•		-
Клемма реле 02 Код для заказа: 130B1068: 3-контактные разъемы для реле 02 (10 шт.)	=	•	=

Монтажные принадлежности и переходники	FC 301	FC 302	FCD 302
Клеммы платы управления Код для заказа: 13080295	•		-
VLT® Leakage Current Monitor Module RCMB20/RCMB35 Код для заказа: 130B5645: A2−A3 130B5764: B3 130B5765: B4 130B6226: C3 130B5647: C4			-
Монтажные кронштейны 5 мм Код для заказа: 130 <i>B5772</i>	-	-	
Монтажные кронштейны 40 мм Код для заказа: 13085771	_	=	
Клемма защитного заземления M16/M20, нержавеющая сталь Код для заказа: <i>175N2703</i>	_	-	
Вентиляционная мембрана Goretex Предотвращает образование конденсата внутри корпуса Код для заказа: 175N2116	-	-	
Тормозной резистор для монтажа внутри монтажного корпуса ниже клемм двигателя Код для заказа: 13085780: 350 Ом 10 Вт/100 % 13085778: 1750 Ом 10 Вт/100 %	-	-	
Программное обеспечение для ПК	FC 301	FC 302	FCD 302
VLT® Motion Control Tool MCT 10	•	•	•
VLT® Motion Control Tool MCT 31	•	•	•
ПО для расчета гармоник (Danfoss HCS)		•	•
VLT® Energy Box		•	•
MyDrive® ecoSmart™			•

[□] Опционально. ■ Стандартное исполнение

Совместимость принадлежностей с корпусом определенного размера

Данные приведены только для VLT® AutomationDrive с корпусами типоразмеров D, E и F

Размер корпуса	Позиция в коде типа	D1h/ D2h	D3h/ D4h	D5h/ D7h	D6h/ D8h	D1n/ D2n	E1h/ E2h	E3h/ E4h	E 9	F1/ F2	F3/F4 (со шкафом доп. устройств)	F8	F9 (со шкафом доп. устройств)	F10/ F12	F11/F13 (со шкафом доп. устройств)
Корпус из нержавеющей стали тыльным каналом	4	-		-	-	-			-	0		-	-	-	-
Экран сети питания	4		-					-		•		•		•	
Обогреватели и термостат	4		_			_		_	-			_	-		
Освещение шкафа с розеткой питания	4	-	-	-	-	-	-	-	-			-			
Фильтры ВЧ-помех (+)	5									-		-		-	
Контроль сопротивления изоляции (IRM)	5	-	-	-	-	-	-	-	-	-		-		-	
Датчик остаточного тока (RCD)	5	-	_	_	-	_	_	-	-	-		-		-	
Тормозной прерыватель (IGBT)	6	-													
Safe Torque Off с реле безопасности Pilz	6														
Клеммы рекуперации	6	-													
Общие клеммы двигателя	6	•	•	•	•	•	•	•	•			•	•		
Устройство аварийного останова с реле безопасности Pilz	6	-	-	-	-	-	-	-	-	-		-	-	-	-
Safe Torque Off + реле безопасности Pilz	6	-	_	_	_	_	-	_	-						
Без LCP	7					-			-	-	-	-	-	_	-
VLT® Control Panel LCP 101 (цифровая)	7					_	-	-	_	-	-	_	-	-	-
VLT® Control Panel LCP 102 (графическая)	7					•	•	•	•	•		•		•	
Предохранители	9				_		•								
Клеммы распределения нагрузки	9	-		-	-	-	-		-			-	-	_	-
Предохранители + клеммы разделения нагрузки	9	-		-	_	-	-		-			-	-	-	-
Разъединитель	9(1)	-	-	-						-		-		-	
Автоматические выключатели	9(1)	-	_	_		_	-	_	-	-		_	-	-	-
Контакторы	9(1)	-	-	-		-	-	-	-	-		-	-	-	-
Ручные пускатели двигателей	10	-	_	_	_	_	_	-	-			-	-		
Силовые клеммы на 30 A с защитой предохранителем	10	-	-	-	-	-	-	-	-	0		_	_		
Источник питания 24 В пост. тока	11	-	-	-	-	-	_	-	-			-	-		
Внешнее устройство контроля температуры	11	-	-	-	-	-	-	-	-			-	-		
Панель доступа к радиатору	11					-			-	-	-	-	-	-	-
Преобразователь частоты NEMA 3R Ready	11		-	-	-	-	-	-	-	-	-	-	-	-	-

Дополнительные устройства, поставляемые с предохранителями
 Не выпускается в версии 690 В
 Опционально
 Стандартное исполнение

Корпус с тыльным каналом из нержавеющей стали

Для повышения защищенности от коррозии в агрессивных средах устройства можно заказать в корпусе с тыльным каналом из нержавеющей стали.

Такое исполнение рекомендуется для насыщенного солями воздуха на морском побережье.

Экран сети питания

Экран Lexan® устанавливается перед клеммами ввода питания и входной панелью для защиты от случайного касания при открытой двери корпуса.

Обогреватели и термостат

Обогреватели устанавливаются на внутренней стороне шкафа в корпусах D и F, регулируются автоматическими термостатами и предотвращают конденсирование влаги внутри корпуса.

По умолчанию термостат включает обогреватели при температуре 10 °C (50 °F) и выключает их при температуре 15,6 °C (60 °F).

Освещение шкафа с розеткой питания

Осветительное устройство может устанавливаться внутри шкафа в корпусах F и предназначено для повышения освещенности при обслуживании и ремонте. Пепь освещения включает розетку для временного подключения переносных компьютеров и иных устройств. Имеются два напряжения:

- 230 B, 50 Гц, 2,5 A, CE/ENEC
- 120 B, 60 Гц, 5 A, UL/cUL

Фильтры ВЧ-помех

Фильтры ВЧ-помех класса А2 являются стандартными встроенными устройствами в преобразователях частоты серии VLT®. При необходимости, дополнительный класс зашиты от помех ВЧ/ЭМС обеспечивается дополнительными ВЧ-фильтрами класса А1, которые подавляют ВЧ-помехи и электромагнитное излучение согласно требованиям EN 55011.

На преобразователях частоты с размером корпуса F установка фильтра ВЧ-помех класса А1 требует монтажа шкафа дополнительных устройств.

Фильтры ВЧ-помех предлагаются также для установки на судах.

Контроль сопротивления изоляции (IRM)

Устройство выполняет контроль сопротивления изоляции в незаземленных системах (системы IT в терминологии IEC) между фазными проводниками системы и землей. Для уровня изоляции существуют омическая предаварийная уставка и уставка основной аварийной сигнализации. Для внешнего использования с каждой уставкой связано аварийное реле SPDT. К каждой незаземленной (IT) системе можно подключить только одно устройство контроля сопротивления изоляции.

- Интеграция с цепью Safe Torque Off преобразователя частоты
- ЖК-дисплей сопротивления изоляции
- Память отказов
- Кнопки INFO («Информация»), TEST («Проверка») и RESET («Сброс»)

Датчик остаточного тока (RCD)

Использует балансовый метод для контроля замыкания на землю в заземленных системах и заземленных системах с высоким сопротивлением (системы TN и TT в терминологии IEC). Имеется уставка предварительного оповещения (50 % от уставки сигнализации) и уставка сигнализации. Для внешнего использования с каждой уставкой связано аварийное реле SPDT. Требуется внешний трансформатор тока с проемом для первичной цепи (поставляется и монтируется заказчиком).

- Интегрирован в цепь Safe Torque Off преобразователя частоты
- Устройство IEC 60755 тип В контролирует токи замыкания на землю импульсного постоянного тока и чистого постоянного тока
- Шкальный индикатор уровня тока замыкания на землю от 10 до 100 % от уставки
- Память отказов
- Кнопка TEST/RESET (Тест/сброс)

Safe Torque Off с реле безопасности Pilz

Поставляется с преобразователями частоты с размером корпуса F. Делает возможной установку реле Pilz в шкаф без необходимости использования шкафа дополнительных устройств.

Устройство аварийного останова с реле безопасности Pilz

Включает резервную 4-проводную кнопку аварийного останова, которая находится в передней части корпуса, и реле Pilz, которое контролирует ее вместе с цепью Safe Torque Off преобразователя частоты и положением контактора. При использовании корпусов размера F требуется наличие контактора и шкафа для дополнительных устройств.

Тормозной прерыватель (IGBT)

Клеммы тормоза с цепью тормозного прерывателя IGBT позволяют подключать внешние тормозные резисторы. Более подробные сведения о тормозных резисторах можно найти в руководстве по проектированию тормозных резисторов VLT® Brake Resistor MCE 101 (документ MG.90.Ox.yy), который можно скачать по адресу http://drivesliterature.danfoss.com/

Клеммы рекуперации

Позволяют подключать блоки рекуперации к шине постоянного тока на стороне блока конденсаторов реакторов постоянного тока для рекуперативного торможения. Клеммы рекуперации в корпусах размера F рассчитаны приблизительно на 50 % номинальной мощности преобразователя частоты. Консультацию по предельным значениям рекуперации мощности для конкретного размера и напряжения преобразователя частоты можно получить у изготовителя.

Клеммы распределения нагрузки

Эти клеммы подключены к шине постоянного тока на стороне выпрямителя реактора постоянного тока и обеспечивают распределение мощности от шины постоянного тока между различными преобразователя частоты. Клеммы разделения нагрузки в корпусах размера F рассчитаны приблизительно на 33 % номинальной мощности преобразователя частоты. Консультацию по предельным значениям разделения нагрузки для конкретного размера и напряжения преобразователя частоты можно получить у изготовителя.

Разъединитель

Рукоятка на дверце приводит в действие разъединитель, включающий и выключающий подачу питания на преобразователь частоты, чтобы гарантировать более безопасные условия на время обслуживания. Разъединитель сблокирован с дверцами шкафа и предотвращает их открытие, пока подается питание.

Автоматические выключатели

Автоматический выключатель можно отключать дистанционно, однако возвращать в исходное положение нужно вручную. Автоматические выключатели сблокированы с дверцами шкафа и предотвращают их открытие, пока подается питание. Если автоматический выключатель заказывается как дополнительное устройство, для быстродействующей защиты преобразователя частоты от перегрузки по току прилагаются также и предохранители.

Контакторы

Контактор с электрическим управлением обеспечивает дистанционное включение и выключение полачи питания на преобразователь частоты. Если дополнительно заказывается устройство аварийного останова IEC, предохранительный модуль Pilz контролирует вспомогательный контакт на контакторе.

Ручные пускатели двигателей

Используются для подачи 3-фазного питания на электровентиляторы, которые часто требуются для охлаждения более мощных двигателей. Питание пускатели получают со стороны нагрузки любого поставляемого контактора, автоматического выключателя или разъединителя. В случае использования фильтра ВЧ-помех класса 1 входная сторона фильтра подает питание на пускатель. Перед пускателем каждого двигателя имеется предохранитель: питание отключено, если питание, подаваемое на преобразователь частоты, отключено. Допускается установка до 2 пускателей. Если в заказе оговорена цепь на 30 А с защитой предохранителями, допускается установка лишь одного пускателя. Пускатели включены в цепь Safe Torque Off преобразователя частоты.

Конструктивными элементами блока являются:

- Включатель (вкл./выкл.)
- Цепь защиты от короткого замыкания и перегрузок с функцией тестирования
- Функция ручного сброса

Силовые клеммы на 30 А с защитой предохранителем

- Трехфазное питание, соответствующее напряжению сети, для подключения вспомогательного оборудования заказчика
- Не предусмотрены, если выбран вариант с двумя ручными пускателями двигателей
- Напряжение на клеммах отсутствует, если подача питания на преобразователь частоты отключена
- Питание на клеммы с предохранителями подается со стороны нагрузки любого поставляемого контактора, автоматического выключателя или разъединителя. Если дополнительно заказан фильтр ВЧ-помех класса 1, питание на пускатель подается со стороны входа фильтра ВЧ-помех

Общие клеммы двигателя

Опция общих клемм двигателя предоставляет шины и оборудование, необходимое для подключения клемм двигателя от подключаемых параллельно инверторов к одной клемме (на каждую фазу) для поддержки установки набора для верхнего ввода со стороны двигателя.

Эту опцию также рекомендуется использовать для подключения выхода преобразователя частоты к выходному фильтру или выходному контактору. Общие клеммы двигателя устраняют необходимость в использовании кабелей равной длины от каждого из инверторов к общей точке на выходном фильтре (или двигателе).

Источник питания 24 В пост. тока

- 5 А, 120 Вт, 24 В пост. тока
- Защита от выходных сверхтоков, перегрузки, короткого замыкания и перегрева
- Предназначен для подачи питания на вспомогательные устройства заказчика (например, датчики, входы/выходы PLC, температурные зонды, индикаторные лампочки и/или иные электронные средства)
- Средства диагностики включают в себя сухой контакт контроля постоянного тока, зеленый светодиод контроля постоянного тока и красный светодиод перегрузки
- Доступна версия с часами реального времени

Внешнее устройство контроля температуры

Предназначено для контроля температур vзлов внешних систем (например, обмоток двигателя и/или подшипников). Включает 8 универсальных входных модулей и 2 специализированных входных термисторных модуля. Все 10 модулей могут включаться в цепь Safe Torque Off преобразователя частоты и контролироваться по сети шины (для этого требуется покупка отдельного блока сопряжения модуль/шина). Для использования функции мониторинга внешней температуры нужно заказать опцию тормоза для функции Safe Torque Off.

Универсальные входы (5)

Типы сигнала:

Входы RTD (включая Pt100), 3- или 4-проводные Термопара

Аналоговый ток или аналоговое напряжение

Дополнительные особенности:

- Один универсальный выход, настраиваемый на аналоговое напряжение или аналоговый ток
- Два выходных реле (норм. разомкн.)
- ЖК-дисплей на две строки и светодиодная индикация диагностики
- Датчик обнаружения разрыва фаз, короткого замыкания и неверной полярности
- ПО настройки интерфейса
- Если требуется 3 РТС, необходимо добавить опцию платы управления МСВ 112

Дополнительные внешние мониторы температуры:

■ Эта опция доступна, если потребуется больше датчиков, чем реализуют платы МСВ 114 и МСВ 112

VLT® Control Panel LCP 101 (цифровая)

- Сообщения о состоянии
- Быстрое меню для упрощения ввода в эксплуатацию
- Установка и регулировка параметров
- Пуск/останов вручную или выбор автоматического режима
- Функция сброса

Код для заказа

VLT® Control Panel LCP 102 (графическая)

- Для дисплея предусмотрено несколько языков
- Быстрое меню для упрощения ввода в эксплуатацию.
- Полное резервное сохранение параметров и функция копирования
- Журналирование аварийных сигналов
- Кнопка Info поясняет предназначение выбранного пункта на дисплее
- Пуск/остановка вручную или выбор автоматического режима
- Функция сброса
- Отображение тренда

Код для заказа

130B1107

VLT® Wireless **Communication Panel LCP 103**

- Полный доступ к преобразователю частоты
- Сообщения об ошибках в режиме реального времени
- PUSH-уведомления для аварийных сигналов/предупреждений
- Надежное и безопасное шифрование WPA2
- Интуитивно понятные функции параметров
- Активные графики для мониторинга и точной настройки
- Многоязыковая поддержка
- Возможность передачи файла параметров во встроенную память или на смартфон или обратно

Код для заказа

Комплект для установки USB-порта в двери

Комплект удлинителя USB для доступа к управлению преобразователем частоты через портативный компьютер без открытия корпуса преобразователя; в наличии для корпусов любых размеров.

Комплекты могут монтироваться только на преобразователи частоты, произведенные после определенной даты. На преобразователях частоты, произведенных до этой даты, отсутствуют необходимые элементы для монтажа комплектов. См. приведенную выше таблицу, чтобы определить, на какие преобразователи частоты возможна установка комплектов.

Код для заказа

Корпуса D	176F1784
Корпуса Е	176F1784
Корпуса F	176F1784

Кабели питания комплекта для верхнего ввода для корпусов типоразмера F

Для использования этого комплекта преобразователь частоты должен быть заказан с опцией общих клемм двигателя. Комплект включает все необходимое для установки шкафа с верхним вводом со стороны двигателя (правой стороны) на корпус типоразмера F.

Код для заказа

F1/F3, 400 мм	176F1838
F1/F3, 600 мм	176F1839
F2/F4 400 MM	176F1840
F2/F4, 600 MM	176F1841
F8, F9, F10, F11,	
F12. F13	ашайтесь на завод

Кабели питания комплекта для верхнего ввода для корпусов размера F

Комплект включает все необходимое для установки шкафа с верхним вводом со стороны сети питания (левой стороны) на корпус типоразмера F.

Код для заказа

F1/F2, 400 MM176F1832
F1/F2, 600 MM176F1833
F3/F4 с разъединителем, 400 мм 176F1834
F3/F4 с разъединителем, 600 мм176F1835
F3/F4 без разъединителя, 400 мм 176F1836
F3/F4 без разъединителя, 600 мм176F1837
F8, F9, F10, F11,
F12, F13Обращайтесь на завод

Комплекты для общих клемм двигателя

Комплекты общих клемм двигателя содержат шины и оборудование, необходимое для подключения клемм двигателя от подключаемых параллельно инверторов к одной клемме (на каждую фазу) для поддержки установки комплекта для верхнего ввода со стороны двигателя. Этот комплект равнозначен опции общих клемм двигателя у преобразователя частоты. Этот комплект не требуется для установки комплекта верхнего ввода со стороны двигателя, если при заказе преобразователя частоты была указана опция общих клемм двигателя.

Этот комплект также рекомендуется использовать для подключения выхода преобразователя частоты к выходному фильтру или выходному контактору. Общие клеммы двигателя устраняют необходимость в использовании кабелей равной длины от каждого из инверторов к общей точке на выходном фильтре (или двигателе).

Код для заказа

F1/F2, 400 MM	176F1832
F1/F2, 600 MM	176F1833

Крепежная пластина

Крепежная пластина используется для замены старого преобразователя частоты в корпусе типоразмера D на новый преобразователь в корпусе типоразмера D с использованием одного и того же крепежа.

Код для заказа

Крепежная пластина D1h/D3h для замены преобразователя частоты D1/D3.......176F3409 Крепежная пластина D2h/D4h для замены преобразователя частоты D2/D4...... 176F3410

Комплект воздуховода тыльного канала

Комплекты воздуховодов тыльных каналов предлагаются для переоборудования корпусов типоразмеров D и E. Они доступны в двух конфигурациях, со входом снизу/ выходом сверху и только с вентиляцией сверху. В наличии для корпусов размеров D3h и D4h.

Коды для заказа воздуховодов с верхними/нижними входами

Комплект D3h, 1800 мм,	
без подставки	176F3627
Комплект D4h, 1800 мм,	
без подставки	176F3628
Комплект D3h, 2000 мм,	
без подставки	176F3629
Комплект D4h, 2000 мм,	
боз попставки	176F3630

Kopпyca NEMA 3R Rittal и сварные корпуса

Эти комплекты предназначены для корпусов IP00/IP20/шасси для обеспечения степеней защиты NEMA 3R или NEMA 4. Такие корпуса предназначены для использования вне помещений, обеспечивая определенную защиту от погодных условий.

Код для заказа NEMA 3R (сварные корпуса)

Комплект охлаждения через тыльный канал для D3h (вход сзади/выход сзади) 176F3521 Комплект охлаждения через тыльный канал для D4h (вход сзади/выход сзади)..... 176F3526

Код для заказа NEMA 3R (корпуса Rittal)

Комплект охлаждения через тыльный канал для D3h (вход сзади/выход сзади)..... 176F3633 Комплект охлаждения через тыльный канал для D4h (вход сзади/выход сзади)..... 176F3634 Комплект охлаждения через тыльный канал для E3h (вход сзади/выход сзади), нижняя пластина 600 мм...... 176F3924 Комплект охлаждения через тыльный канал для Е3h (вход сзади/выход сзади), нижняя пластина 800 мм..... 176F3925 Комплект охлаждения через тыльный канал для E4h (вход сзади/выход сзади), Нижняя пластина 800 мм 176F3926

Погодозащитный козырек NEMA 3R для наружного использования

Предназначен для установки над преобразователем частоты VLT® для защиты от прямого воздействия солнечных лучей, снега и попадания мусора. Преобразователи частоты, используемые с этим типом защиты, должны заказываться на производстве с использованием опции «NEMA 3R Ready». В коде типа этот вариант корпуса имеет обозначение E5S.

Код для заказа

D1h	1	76F6302
D2h	1	76F6303

Комплекты охлаждения с тыльным вентиляционным каналом для корпусов марки не Rittal

Эти комплекты предназначены для корпусов IP20/шасси марки не Rittal для обеспечения охлаждения по схеме «вход сзади/выход сзади». Комплекты не включают пластины для монтажа в корпусах.

Код для заказа

D3h	.176F3519
D4h	176F3524

Код для заказа комплекта из нержавеющей стали

D3h	176F3520
D4h	176F3525

Комплект охлаждения через тыльный канал (вход снизу, выход сзади)

Комплект для направления воздушного потока в тыльном канале через нижнюю поверхность и заднюю стенку преобразователя частоты.

Код для заказа

D1h/D3h	176F3522
D2h/D4h	.176F3527

Код для заказа комплекта из нержавеющей стали

DIN/D3n	1/6F3523
D2h/D4h	176F3528

Комплект охлаждения через тыльный канал (вход сзади/выход сзади)

Эти комплекты предназначены для перенаправления воздуха тыльного канала. Устанавливаемый на заводе тыльный канал направляет воздух по схеме «вход внизу, выход вверху». Комплект позволяет воздуху входить внутрь и выходить наружу через заднюю часть преобразователя частоты.

Код для заказа комплекта охлаждения с входом сзади/выходом сзади

c brodom csadm bbirodom csadm			
D1h	176F3648		
D2h	176F3649		
D3h	176F3625		
D4h	176F3626		
D5h/D6h	176F3530		
E1h	176F6617		
E2h	176F6618		

Код для заказа комплекта из нержавеющей стали

D1h	176F3656
D2h	176F3657
D3h	176F3654
D4h	176F3655

Код для заказа VLT® Low Harmonic Drive176F6482

.....176F6481 D2n.... E9 176F3538 F18......176F3534

Код для заказа VLT® Advanced Active Filter AAF 006

Телескопический комплект охлаждения через тыльный канал

Комплекты охлаждения через тыльный канал для преобразователей с корпусами ІР20/шасси позволяют отводить воздух от радиатора из щита, в котором установлен преобразователь частоты. Новая телескопическая система обеспечивает повышенную гибкость и позволяет упростить установку внутри щита.

Комплекты поставляются в практически собранном состоянии и содержат пластину уплотнений, которая подходит для стандартных корпусов Rittal.

Коды для заказа корпусов типоразмера D:

D3h (вход снизу/выход сзади)......176F6760 D4h (вход снизу/выход сзади)......176F6761

Коды для заказа корпусов типоразмера Е:

E3h (вход снизу/выход сверху),	
нижняя пластина 600 мм	176F6606
E3h (вход снизу/выход сверху),	
нижняя пластина 800 мм	176F6607
E4h (вход снизу/выход сверху),	
нижняя пластина 800 мм	176F6608
E3h (вход сзади/выход сзади)	176F6610
E4h (вход сзади/выход сзади)	176F6611
E3h (вход снизу/выход сзади),	
нижняя пластина 600 мм	176F6612
E3h (вход снизу/выход сзади),	
нижняя пластина 800 мм	176F6613
E4h (вход снизу/выход сзади),	
нижняя пластина 800 мм	176F6614
E3h (вход снизу/выход сверху)	176F6615
E4h (вход снизу/выход сверху)	176F6616

Комплект для монтажа на подставку с охлаждением по схеме«вход сзади, выход сзади»

См. дополнительные документы 177R0508 и 177R0509.

Код для заказа

Комплект D1h, 400 мм	176F3532
Комплект D2h, 400 мм	176F3533

Комплект для монтажа на подставку

Комплект для монтажа на подставку — это подставка высотой 400 мм для размеров корпусов D1h, D2h, E1h и E2h или высотой 200 мм для размеров корпусов D5h и D6h, которая позволяет монтировать преобразователи частоты на пол. На передней стороне подставки имеются отверстия для впуска охлаждающего воздуха к силовым компонентам.

Код для заказа

Комплект D1h, 400 мм	176F3631
Комплект D2h, 400 мм	176F3632
Комплект D5h/D6h, 200 мм	176F3452
Комплект D7h/D8h, 200 мм	176F3539
Комплект E1h, 400 мм	176F6764
Комплект E2h, 400 мм	176F6763

Комплект опции входной пластины

Комплекты опции входной пластины доступны для корпусов размеров D и E. Можно заказать комплекты, увеличивающие число предохранителей, разъединителей/ предохранителей, фильтров ВЧ-помех, фильтров ВЧ-помех/предохранителей или фильтров ВЧ-помех/разъединителей/ предохранителей. Коды для заказа комплекта вы можете узнать у изготовителя.

Верхний ввод кабелей периферийной шины

Комплект для верхнего ввода дает возможность подвести кабели сетевой шины через верхнюю крышку преобразователя частоты. После монтажа комплект обеспечивает степень защиты IP20. Если требуется повышенная степень защиты, можно использовать другой соединительный разъем.

Код для заказа

D1h-D8h.....176F3594

Комплект разъемов Sub D9 для верхнего ввода кабелей опции PROFIBUS

Этот комплект состоит из разъемов sub D9 для подключения кабелей PROFIBUS с верхним вводом и обеспечивает степень защиты (IP) преобразователя частоты до IP54.

Код для заказа

Комплект для дистанционного монтажа панели управления

Комплект для дистанционного монтажа панели управления отличается простотой установки, конструкцией со степенью защиты IP54 и возможностью монтажа на панели и стены толщиной 1-90 мм. Передняя крышка защищает экран от солнечных лучей для удобства программирования. В закрытом состоянии крышку можно запереть для предотвращения вмешательства, при этом светодиоды питания/предупреждения/ сигнализации остаются видны. Комплект совместим с различными вариантами панели управления VLT® Local Control Panel.

Код для заказа корпуса IP20

Длина кабел	ля 3 м	134B5223
Длина кабел	ля 5 м	134B5224
Длина кабел	ля 10 м	134B5225

Комплект шины заземления

Дополнительные точки заземления для преобразователей частоты в корпусах E1h и E2h. В комплект входит пара заземляющих стержней для установки внутри корпуса.

Код для заказа

E1h/E2h.....

Комплект многожильных кабелей

Комплект предназначен для подключения преобразователя частоты с помощью многожильного кабеля для каждой фазы двигателя или фазы сети питания.

Код для заказа

D1h	.176F3817
D2h	176F3818

Комплект L-образных шин двигателя

Комплект позволяет использовать многожильные кабели для каждой фазы сети или двигателя. Преобразователи частоты в корпусах D1h и D3h могут иметь 3 соединения на фазу сечением 50 мм², а корпуса D2h и D4h — 4 соединения на фазу сечением 70 мм².

Код для заказа

D1h/D3h, комплект L-образных	
шин двигателя	.176F3812
D2h/D4h, комплект L-образных	
шин двигателя	176F3810
D1h/D3h, комплект L-образных	
шин сети питания	176F3854
D2h/D4h, комплект L-образных	
шин сети питания	176F3855

Комплект синфазных сердечников

Комплект состоит из 2 или 4 синфазных сердечников и предназначен для уменьшения токов в подшипниках. Количество сердечников зависит от напряжения и длины кабелей.

Код для заказа

Синфазный фильтр Т5/50 м..... 176F6770 Синфазный фильтр Т5/100 м или Т7 ..176F3811

Комплект обогревателя

Комплект обогревателей состоит из двух противоконденсационных обогревателей мощностью 40 Вт для установки внутри корпусов E1h и E2h.

Код для заказа

176F6748

Комплект кабельных зажимов

Комплект содержит все детали, необходимые для установки кабельных зажимов для кабелей сети питания, двигателя и цепей управления.

Код для заказа

E3h	176F6746
E4h	.176F6747

Комплект принадлежностей для разъединителя

Этот комплект заказывается при выборе преобразователя частоты E3h и E4h с опцией разъединителя. Преобразователи частоты E3h и E4h с опцией разъединителя. В комплект входят ручку и штифт для разъединителя.

Код для заказа

......176F3857 E3h, E4h

Более сильный снаружи, более умный внутри

Обеспечивая непревзойденную производительность в течение почти 50 лет, VLT® AutomationDrive созданы с расчетом на долгие годы эксплуатации. Эти надежные преобразователи частоты эффективно и стабильно работают даже в самых требовательных ситуациях применения и самых сложных условиях окружающей среды.

Модульный преобразователь частоты VLT® AutomationDrive обеспечивает экономию электроэнергии, увеличение гибкости, снижение расходов, связанных с приобретением запасных частей и техническим обслуживанием, а также позволяет оптимизировать управление процессом на любой промышленной машине или производственной линии самых разных отраслей.

Производительность смешивания порошков

возросла трехкратно благодаря беспроводной сети PROFINET

Huijbregts Groep, Голландия

Пивоварня Peroni выбирает VLT® FlexConcept®

для оптимизации эксплуатационных расходов

Пивоварня Peroni, Рим, Италия

Italcementi пользуется преимуществами


оптимизации технологического процесса в любых

условиях эксплуатации

Italcementi Group (итальянская цементная компания GSM Aggregates в коммуне Руса во Франции)

Читать историю успеха

Читать историю успеха

Ознакомьтесь с другими практическими примерами применения AutomationDrive в промышленности по адресу https://goo.gl/RT4366

Подпишитесь на наши аккаунты и узнайте больше о преобразователях частоты

. Любая информация, включая, но, не ограничиваясь информацией о выборе продукта, его применении или использовании, конструкции продукта, весе, размерах, производительности или любых других технических данных в руководствах к продукту, описаниях каталогов, рекламных объявлениях и т. д. и вне зависимости от того, предоставлены ли они в письменном, устном, электронном виде, онлайн или посредством загрузки, считается лишь рекомендательной и является юридически обязывающей только в том случае и в той степени, в каких об этом сделаны явные указания в ценовом предложении или подтверждении заказа. Компания Danfoss не несет ответственности за возможные ошибки в каталогах, брошюрах, видео и других материалах. Компания Danfoss оставляет за собой право изменять свои изделия без предварительного уведомления. Это также относится к заказанной, но не поставленной продукции при условии, что такие изменения возможны без внесения изменений в форму, пригодность или функциональность продукции. Все товарные знаки в этом материале являются собственностью Danfoss A/S или группы компаний Danfoss. Danfoss и логотип Danfoss являются товарными знаками компании Danfoss A/S. Все права защищены.