VACON® NXP CONVERTIDORES DE FRECUENCIA

SYSTEM DRIVE MANUAL DE HARDWARE

SALUDOS,

Gracias por haber elegido a Vacon® como proveedor de convertidores.

Vacon es uno la mayor empresa del mundo centrada exclusivamente en convertidores. Estamos orgullosos de lo que hacemos.

- Suministramos convertidores de frecuencia en la gama de potencia de 0,25 kW a 5 MW.
- Nos centramos en todo el ciclo de vida de los convertidores de CA, desde el proceso de I+D hasta los servicios postventa.
- Los expertos de Vacon son conscientes de la importancia de las etapas de la actividad del cliente.
- El conocimiento de Vacon está disponible en todos aquellos casos que afecten a su coste total de propiedad.

Pasión por la excelencia

- Vacon se esfuerza en proporcionar los mejores convertidores de frecuencia de velocidad variable.
- Hasta un 6% de los ingresos se invierten en I+D.

Ámbito global con presencia local

- Vacon cuenta con plantas de fabricación en Finlandia, China, Italia, India y Estados Unidos.
- Nuestros convertidores de frecuencia se comercializan en más de 100 países con filiales, socios comerciales y centros de servicio alrededor del mundo.

Rápido crecimiento

 Durante muchos años, Vacon ha crecido dos veces más rápido que el mercado mundial de convertidores de frecuencia.

Nuevamente, gracias y esperamos que encuentre que nuestras unidades seccionales diseñadas satisfagan sus necesidades.

Visítenos en www.vacon.com.

Saludos cordiales,

Jarmo Tirkkonen

Jarmo Tirkkonen, director de programa, Unidades en armario Vacon

Tel. +358(0)201 212 614 Móvil +358(0)40 8371614 Fax +358(0)201 212 699 Vacon Plc, Äyritie 8 C, 01510 Vantaa, Finlandia

Tabla 1. Historial de revisión de manuales

Revisión	Fecha de publicación	Cambios/actualizaciones
Α	17.12.2013	Primera versión

ÍNDICE

ID de documento: DPD01631

Revisión: A

Fecha de publicación de revisión: 26.08.2014

١.	intro	oduccion	
	1.1	Ámbito de suministro	
	1.2	Definiciones y abreviaturas	
	1.3	Folletos y manuales relacionados	
	1.4	Especificaciones de proyecto	6
		1.4.1 Parámetros	
_	_	1.4.2 Secciones y opciones	
2.	Sec	ciones disponibles	8
	2.1	Sección de dispositivos auxiliares	
	2.2	Sección de entrada principal	9
	2.3	Sección de front-end no regenerativos	11
	2.4	Sección active front-end	
	2.5	Sección de unidad inversor	15
		2.5.1 Tamaños de unidad FR4-FR8	۱۵ ۱۵
	2.6	Sección de freno dinámico	
_			
		alación	
	3.1	Notas de seguridad	
		3.1.1 Advertencias	
		3.1.2 Advertencias	23
	2.2	3.1.3 Tierra y protección frente a fallo de puesta a tierra	24
	3.2 3.3	AlmacenamientoElevación y movimiento de las secciones	22 22
	3.4	Colocación de las secciones	20 27
	5.4	3.4.1 Espacio libre alrededor del armario	
		3.4.2 Fijación del armario al suelo o la pared	28
		3.4.2 Fijación del armario al suelo o la pared	29
	3.5	Conexión de las secciones	30
		3.5.1 Fijación de los armarios entre sí	30
		3.5.2 Barras conductoras comunes	
	3.6	Cableado	
		3.6.1 Puesta a tierra	32
		3.6.2 Conexión de alimentación eléctrica y motor	22
	3.7	Pares de apriete de los tornillos	رد عد
,		•	
		vicio	
	4.1	Garantía	
	4.2	Mantenimiento	
	4.3	Instrucciones de sustitución	
		4.3.1 Fusibles	4L 11
		4.3.3 Unidades	
		4.3.4 LCL	
_	l £		
5 .		rmación técnica	
	5.1	Control e interfaz	
		5.1.1 Control sin retroalimentación de velocidad (lazo abierto)	47
	ΕO	5.1.2 Control con retroalimentación de velocidad (lazo cerrado)	
	5.2	Definiciones de carga	4 <i>/</i>
		5.2.1 Carga de bomba y ventilador	45
		5.2.2 OL(n_{base}) OL($n_{\text{máx}}$) para carga de par constante	
		5.2.4 $OL(n_{base}) > OL(n_{máx})$ para carga de potencia constante	
		5.2.5 Ol $(n_{})$ < Ol (n_{-+}) para carga de potencia constante	h)

53	Especificaciones técnicas de las unidades Vacon®	53
5.5	5.3.1 NXN – Unidades front end no regenerativo	53 55
	5.3.3 Inversores NXI	
6. Do	cumentación suministrada	
	Ejemplos de documentación	
0.1	6.1.1 Tabla de conexiones de cable	64
	6.1.2 Listado de piezas	65
	6.1.3 Lista de cableado	
	6.1.4 Diagrama del circuito	
	6.1.5 Esquema de interruptores	
	6.1.6 Fsquema del dispositivo	69

INTRODUCCIÓN VACON ● 5

1. INTRODUCCIÓN

Vacon[®] ha estado a la vanguardia del negocio de sistemas de unidades durante veinte años. No obstante, ahora estamos cambiando ligeramente la forma en que trabajamos en los proyectos, para asegurarnos de que reciba el mismo nivel sobresaliente de calidad y servicio en todo momento.

Vacon[®] NXP System Drive garantiza que nuestros socios reciban una solución que ofrezca un nivel de calidad tan coherente como excelente. Las soluciones complejas se simplifican gracias a la estandarización, por tanto puede confiar en un producto que se integra fácilmente en el proceso.

1.1 ÁMBITO DE SUMINISTRO

El ámbito de suministro se limita a las unidades indicadas en este manual. Los sistemas de control de tracción, máquinas o procesos no forman parte del ámbito de suministro de Vacon Plc.

1.2 DEFINICIONES Y ABREVIATURAS

LV	Baja tensión
ADS	Sección de dispositivos auxiliares
MIS	Sección de entrada principal
NFS	Sección de front-end no regenerativos
AFS	Sección active front-end
IUS	Sección de unidad inversor
DBS	Sección de freno dinámico
SLD	Diagrama de línea simple
DRL	Lista de unidad

1.3 FOLLETOS Y MANUALES RELACIONADOS

Todos los manuales de usuario y folletos de Vacon están disponibles en formato PDF en el sitio web de Vacon en www.vacon.com/downloads/.

ID de documento	Nombre del manual
BC00169	Follero de productos de bus común de CC Vacon
DPD01172	Manual de usuario de Vacon NXN NFE
DPD00906	Manual de usuario de Vacon NX AFE
UD01047	Manual de usuario de inversores Vacon NX FI4-8
UD01063	Manual de usuario de inversores Vacon NX FI9–14

Tabla 2. Manuales de usuario y folletos relacionados

Además los manuales para distintas aplicaciones y tarjetas opcionales están disponibles en el sitio web de Vacon en www.vacon.com/downloads/.

VACON ● 6 INTRODUCCIÓN

1.4 ESPECIFICACIONES DE PROYECTO

1.4.1 PARÁMETROS

Los parámetros del proyecto se seleccionan con la herramienta de configuración de ajuste.

Tabla 3. Ejemplo de parámetros seleccionados desde la herramienta de configuración

Parámetro	Selección
Tipo de red de alimentación principal	IT
Tensión de la red de alimentación principal	690 V _{CA}
Frecuencia	50 Hz
Intensidad máxima de la red de alimentación	2500 A
Sistema de barra conductora	CC+, CC-, PE
Tensión de sistema de barra conductora	1100 V _{CC}
Intensidad máxima del sistema de barra conductora	2500 A
I _{cw} , 1 s	50 kA
Diseño PE	50%
Barras conductoras y barras conductoras flexibles	Estañadas
Tipo de armario	Rittal TS8
Altura	2000 mm
Fondo	600 mm
Material del armario	Acero recubierto de polvo
Piezas de láminas de acero dentro de la carcasa	Sin revestimiento
Color	RAL 7035
Protección de entrada de la carcasa	Protección contra contacto accidental de piezas con tensión
Barreras de protección y cubiertas	IP 21
Temperatura ambiente	35°C
Cables libres y conductores halógenos	No
Esquema eléctrico	No
Tipo de embalaje	Cajón para transporte marítimo
Aplicación	Industria

INTRODUCCIÓN VACON ● 7

1.4.2 SECCIONES Y OPCIONES

Las secciones y opciones se seleccionan con la herramienta de configuración de ajuste. Las secciones disponibles y las opciones se introducen en el Capítulo 2.

Tabla 4. Ejemplo de secciones seleccionadas y opciones que se seleccionan de la herramienta de configuración

#	Tipo de sección	Categoría de sección	Opciones
1	ADS_600	Control	+PES
2	MIS_2500	Alimentación de entrada	+ICB
3	AFS_13	Alimentación de entrada	-
4	IUS_4	Alimentación de salida	+ODU
5	IUS_10	Alimentación de salida	+ODU
6	IUS_10	Alimentación de salida	+ODU
7	IUS_12	Alimentación de salida	+ISC, +ODU
8	IUS_7	Alimentación de salida	+ODU
9	IUS_12	Alimentación de salida	+ISC, +ODU

1.4.2.1 Esquema del sistema y dibujo de huella

El esquema del sistema y los dibujos de huella se crean en función de las secciones y opciones seleccionadas con la herramienta de configuración de ajuste.

La documentación suministrada durante la entrega del proyecto se introduce en el Capítulo 6.

2. SECCIONES DISPONIBLES

2.1 SECCIÓN DE DISPOSITIVOS AUXILIARES

La sección de dispositivos auxiliares (ADS) incluye los controles de ajuste comunes. Esta sección se puede personalizar en función de las necesidades de la aplicación y segmento. Hay tres tamaños de ADS disponible.

 Tipo de ADS
 Anchura x altura x profundidad (mm)

 ADS_400
 400 x 2000 x 605

 ADS_600
 600 x 2000 x 605

 ADS_800
 800 x 2000 x 605

Tabla 5. Tamaño de sección ADS

La sección ADS incluye el siguiente equipamiento de serie:

- 1. Control del disyuntor con +ICB seleccionado
- 2. Indicación del estado de la red de alimentación principal (fallo, precarga y en marcha)
- 3. Fuente de alimentación auxiliar de 24 V, 5 A
- 4. Transformador auxiliar, suministro de una fase de 2500 VA (en el fondo del armario)
- 5. Terminales de control y supervisión
- 6. Botón de desconexión de emergencia

- Parada de emergencia CATO (+PES)
- Parada de emergencia CAT1 (+PED)
- Detector de fallos del aislamiento (+PIF)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)
- Transformador de tensión auxiliar de 4000 VA (+AT4)
- Tensión auxiliar 110 V_{CA} (+AT1)
- Fuente de alimentación auxiliar de 24 V, 10 A (+ADC)
- Cableado de la parte superior (+CIT)
- Armario auxiliar vacío de 600 mm con puerta (+G60)
- Diseño y componentes con certificación UL (+NAR)
- Opción específica del cliente (+CSO)

⁺PAP tendrá subunidades en las secciones seleccionadas si es necesario; consulte los diagramas del circuito.

SECCIONES DISPONIBLES VACON ● 9

2.2 SECCIÓN DE ENTRADA PRINCIPAL

La sección de entrada principal (MIS) incluye el dispositivo de entrada principal. El dispositivo de entrada principal y su tamaño dependen de la intensidad necesaria del ajuste completo.

Tipo de MIS	Intensidad de entrada	Anchura x altura x profundidad (mm)
MIS_630	630 A	400 x 2000 x 605
MIS_1000	1000 A	600 x 2000 x 605
MIS_1250	1250 A	600 x 2000 x 605
MIS_1600	1600 A	600 x 2000 x 605
MIS_2500	2500 A	600 x 2000 x 605
MIS_3200	3200 A	800 x 2000 x 605
MIS_4000	4000 A	800 x 2000 x 605

Tabla 6. Tamaños MIS disponibles

La sección MIS incluye el siguiente equipamiento de serie (consulte la Figura 1):

- 1. Dispositivo de entrada principal, interruptor de carga
- 2. Conexiones a la red de alimentación principal
- 3. Conexión digital de varios instrumentos con bus de campo
- 4. Componentes de precarga para AFE

- Disyuntor de aire (+ICB)
- Cableado de la parte superior (+CIT)
- Interruptor de tierra (+ILE)
- Transductores de corriente (+ITR)
- Diseño y componentes con certificación UL (+NAR)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)

⁺ILE requiere una sección adicional.

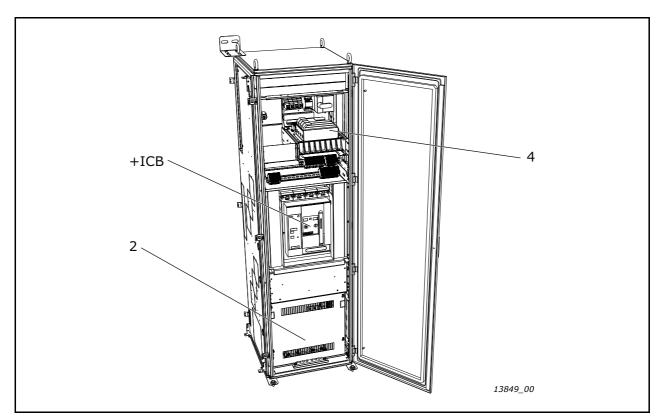


Figura 1. Ejemplo de sección de entrada principal MIS_1600

2.3 SECCIÓN DE FRONT-END NO REGENERATIVOS

La sección de front-end no regenerativos (NFS) incluye una o varias unidades NXN de la familia de productos Vacon[®]. NXN es una unidad de alimentación no regenerativa que se puede utilizar en sistemas de 6 pulsos, 12 pulsos, 18 pulsos y 24 pulsos.

Tabla 7. Secciones NFS disponibles

Tipo de NFS	Número de unidades NXN	Anchura x altura x profundidad (mm)
NFS_1x*	1	400 x 2000 x 605
NFS_2x*	2	600 x 2000 x 605

^{*} _M selección para diseño especular.

La sección NFS incluye el siguiente equipamiento de serie (consulte la Figura 2):

- 1. Unidad o unidades NXN
- 2. Reactancias
- 3. Terminales de control y señales de indicación (instaladas en la sección MIS o ADS)
- 4. Fusibles de CC para la unidad de alimentación
- 5. Fusibles de CA para el filtro

- Diseño y componentes con certificación UL (+NAR)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)

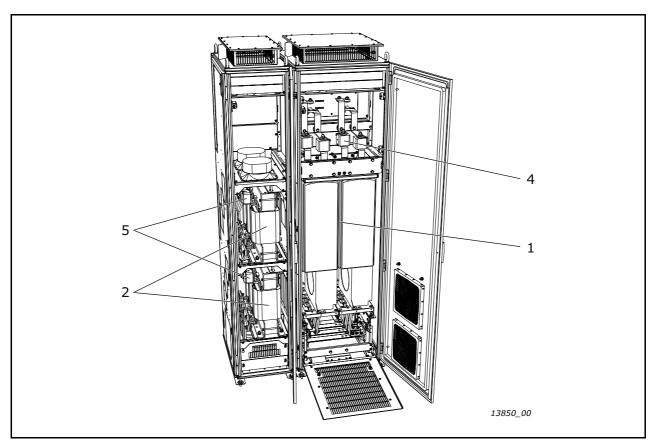


Figura 2. Ejemplo de sección de front-end no regenerativos NFS $_2x$

2.4 SECCIÓN ACTIVE FRONT-END

La sección Active Front-End (AFS) incluye un filtro LCL y una unidad NXA de la familia de productos Vacon[®]. La sección Active Front-End proporciona un valor de THD(I) bajo y es posible conectar varias unidades en paralelo para ofrecer una redundancia completa o reducida.

Tipo de AFS	Tamaño de unidad	Anchura x altura x profundidad (mm)
AFS_9*/**	FI9	800 x 2000 x 605***
AFS_10*/**	FI10	800 x 2000 x 605***
AFS_13*/**	FI13	1400 x 2000 x 605***

Tabla 8. Secciones AFS disponibles

Las secciones AFS incluyen el siguiente equipamiento de serie (consulte la Figura 3):

- 1. Filtro LCL
- 2. Unidad NXA
- 3. Unidad de control
- 4. Componentes de precarga (instalados en la sección MIS)
- 5. Terminales de control y señales de indicación (instaladas en la sección MIS o ADS)
- 6. Fusibles de CC para la unidad de alimentación
- 7. Fusibles de CA para el filtro (instalados en la sección MIS)

- Diseño y componentes con certificación UL (+NAR)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)

^{*} _M selección para diseño especular.

^{**} Barras conductoras +AC, AC para dos o más secciones AFS tras la sección MIS, limitadas a 2600 A por lado del MIS.

^{***} Dimensiones con LCL.

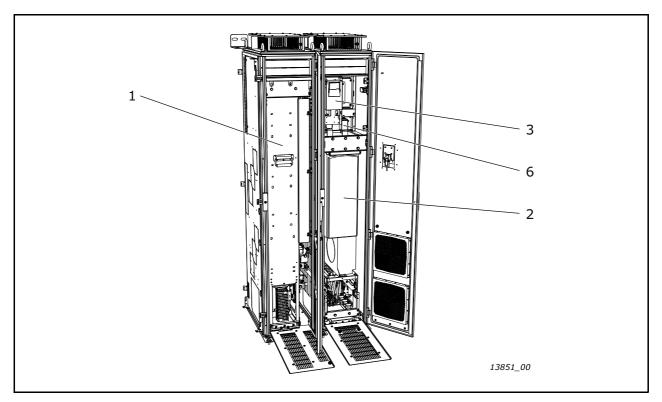


Figura 3. Ejemplo de sección active front-end AFS_9

SECCIONES DISPONIBLES VACON ● 15

2.5 SECCIÓN DE UNIDAD INVERSOR

2.5.1 TAMAÑOS DE UNIDAD FR4-FR8

La sección de inversor (IUS) incluye una o varias unidades NXI menores de la familia de productos Vacon[®]. Todos los inversores son unidades NXP de primera clase de Vacon.

Número máximo de Tamaño Anchura x altura x profundidad Tipo de IUS de unidad unidades por sección (mm) 3* IUS 4 FR4 400 x 2000 x 605** IUS 4/6 FR4/FR6 2 400 x 2000 x 605** IUS 7 FR7 1 400 x 2000 x 605** 400 x 2000 x 605** IUS 8 FR8 1

Tabla 9. Tamaños de sección IUS disponibles FR4-FR8

La sección IUS incluye el siguiente equipamiento de serie (consulte la Figura 4):

- 1. Fusibles de entrada (fusibles de CC)
- 2. Unidad o unidades NXI
- 3. Caja de control (integrada en el módulo)
- 4. Terminales de control y señales de indicación

- dU/dt (+0DU)
- Filtro de modo común (+0CM)
- Filtro sinusoidal (+0SI)
- Interruptor de entrada con carga (+ISC)
- Interruptor de entrada, desconexión de CC (+ISD)
- Detección de arco (+ADU)
- Control del ventilador del motor (+AMF)
- Alimentador del calentador del motor (+AMH)
- Control de freno mecánico (+AMB)
- Luz de sección (+SLT)
- Cableado superior (+COT)
- Diseño y componentes con certificación UL (+NAR)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)

^{*} Solo opciones de tarjeta opcional y bus de campo

^{**} La salida superior +400 mm se puede compartir entre dos secciones

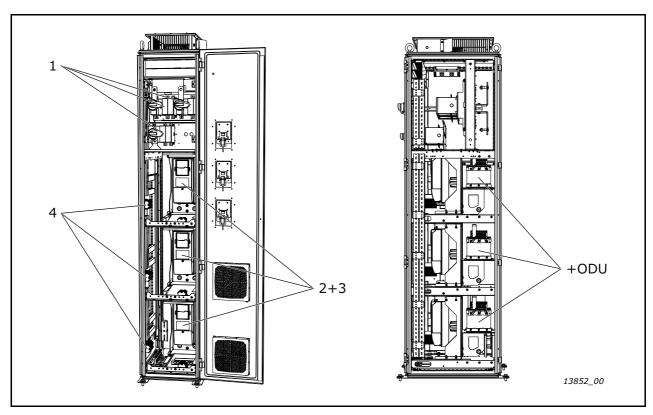


Figura 4. Ejemplo de unidad de inversor IUS_4

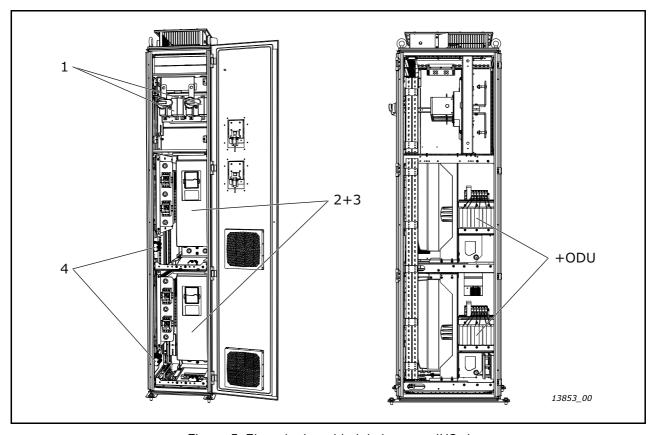


Figura 5. Ejemplo de unidad de inversor IUS_6

SECCIONES DISPONIBLES VACON ● 17

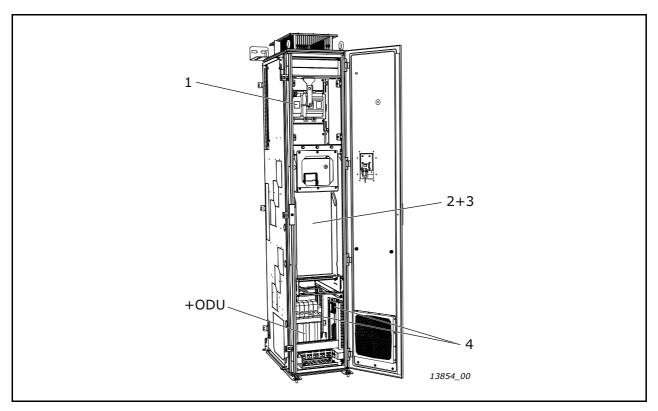


Figura 6. Ejemplo de unidad de inversor IUS_8

2.5.2 TAMAÑOS DE UNIDAD FI9-FI14

La sección de inversor (IUS) incluye las unidades NXI de mayor tamaño de la familia de productos Vacon[®]. Todos los inversores son unidades NXP de primera clase de Vacon.

Ancho x Alto x Ancho x Alto x Fondo (mm) Tamaño Anchura x altura x Tipo de Fondo (mm) con optimización de espacio, IUS de unidad profundidad (mm) con +ODU sin +ODU/con +ODU 600/600 x 2000 x 605 IUS 9 FI9 800 x 2000 x 605 800 x 2000 x 605 **IUS 10** FI10 800 x 2000 x 605 800 x 2000 x 605 600/600 x 2000 x 605 IUS 12 FI12 1000 x 2000 x 605 1000 x 2000 x 605 900/No disponible IUS 13 FI13 1200 x 2000 x 605 1400 x 2000 x 605 1100/No disponible IUS 14 FI14 2200 x 2000 x 605 2800 x 2000 x 605 No disponible

Tabla 10. Tamaños de sección IUS disponibles F19-F114

La sección IUS incluye el siguiente equipamiento de serie (consulte la Figura 7):

- 1. Fusibles de entrada (fusibles de CC)
- 2. Unidad NXI
- 3. Desinstalación de plataforma/módulo de servicio
- 4. Salida de alimentación (para PC, etc.)
- 5. Sección de control y terminales externos fijos, 70 uds.

- dU/dt (+0DU)
- Filtro de modo común (+0CM)
- Filtro sinusoidal (+0SI)
- Interruptor de entrada con carga (+ISC)
- Interruptor de entrada, desconexión de CC (+ISD)
- Detección de arco (+ADU)
- Control del ventilador del motor (+AMF)
- Alimentador del calentador del motor (+AMH)
- Control de freno mecánico (+AMB)
- Luz de sección (+SLT)
- Cableado superior (+COT)
- Diseño y componentes con certificación UL (+NAR)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)

SECCIONES DISPONIBLES VACON ● 19

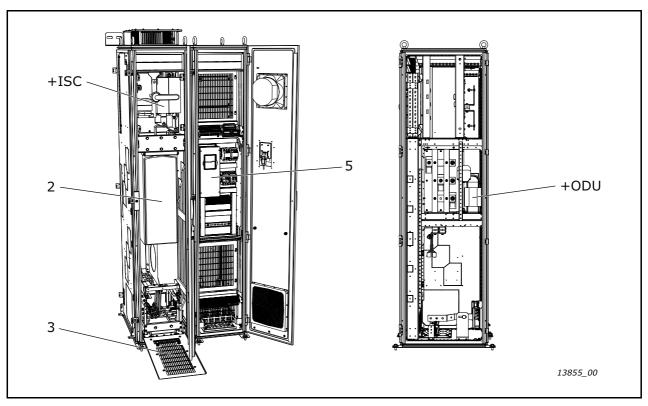


Figura 7. Ejemplo de unidad de inversor IUS_9

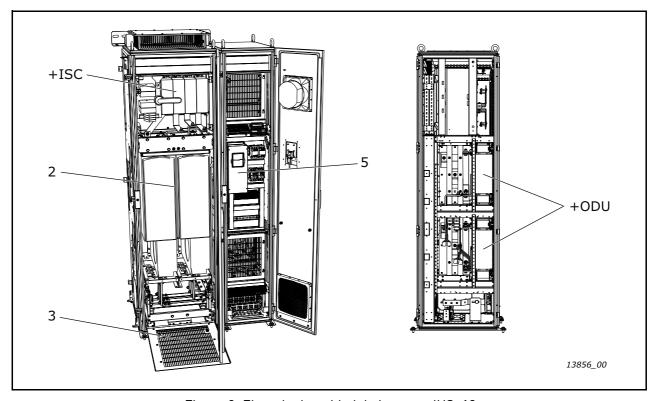


Figura 8. Ejemplo de unidad de inversor IUS_12

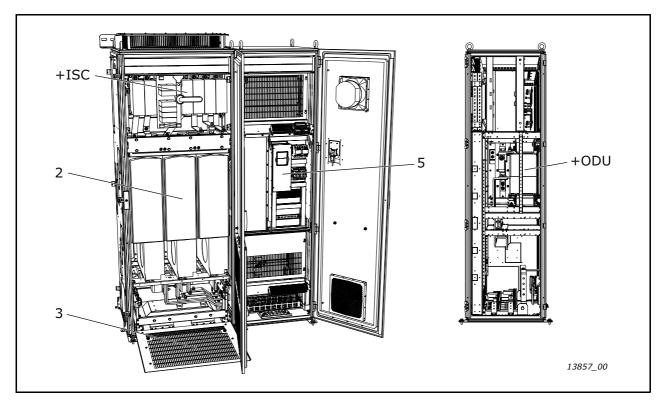


Figura 9. Ejemplo de unidad de inversor IUS_13

2.6 SECCIÓN DE FRENO DINÁMICO

La sección de freno dinámico (DBS) incluye las unidades NXI de mayor tamaño de la familia de productos Vacon[®]. Las unidades de freno son unidades NXP de primera clase de Vacon.

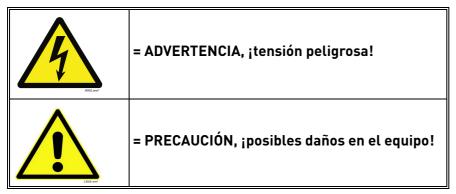
La sección DBS incluye el siguiente equipamiento de serie:

- 1. Fusibles de entrada (fusibles de CC)
- 2. Brake chopper de NXI
- 3. Desinstalación de plataforma/módulo de servicio
- 4. Salida de alimentación (para PC, etc.)
- 5. Sección de control y terminales externos fijos, 70 uds.

Ofrecemos las siguientes opciones estándar prediseñadas:

- Interruptor de entrada (con carga) (+ISC)
- Interruptor de entrada (desconexión de CC) (+ISD)
- Detección de arco (+ADU)
- Luz de sección (+SLT)
- Cableado superior (+COT)
- Diseño y componentes con certificación UL (+NAR)
- Protección de arco (+PAP)
- Calentador de armario (+ACH)
- Luz de armario (+ACL)

Las secciones de freno dinámico son similares a las secciones de la unidad inversor. Consulte las dimensiones y las figuras de ejemplo en el Capítulo 2.5.2.


VACON ● 22 INSTALACIÓN

3. INSTALACIÓN

3.1 NOTAS DE SEGURIDAD

Lea detenidamente la información que aparece en las precauciones y las advertencias.

Estas notas de precaución y advertencia están señalizadas como sigue:

La instalación solo la puede llevar a cabo un electricista profesional.

3.1.1 ADVERTENCIAS

Los componentes de la unidad de potencia y todos los dispositivos montados en armario están activos cuando la unidad está conectada a la red de alimentación principal. Entrar en contacto con esta tensión es sumamente peligroso y puede dar lugar a la muerte o a lesiones graves.

Los terminales U, V, W del motor y los terminales de la resistencia del frenado/Bus de CC y todos los demás dispositivos de la red eléctrica están potencial activos cuando el convertidor está conectado a la red de alimentación principal, incluso en el caso de que el motor esté parado.

Tras desconectar el convertidor de frecuencia de la red de alimentación principal, **espere** hasta que se apaguen los indicadores del panel (si no hubiera un panel conectado, mire los indicadores de la cubierta). Espere 5 minutos más antes de tocar las conexiones de la unidad. No intente abrir la puerta del armario hasta que haya transcurrido este tiempo. Una vez agotado este tiempo, utilice un equipo de medida para asegurarse por completo de que no exista ninguna tensión. ¡Antes de iniciar cualquier trabajo eléctrico, asegúrese siempre de que no haya tensión!

Los terminales de E/S se encuentran aislados del potencial de red. Sin embargo, las **salidas de relé y otros terminales de E/S pueden contener tensión de control peligrosa**, incluso aunque la unidad esté desconectado de la red de alimentación principal.

Antes de conectar el convertidor a la red eléctrica, asegúrese de que el frontal y las cubierta para cables del convertidor, así como las puertas del armario, estén cerradas.

3.1.2 ADVERTENCIAS

Las unidades Vacon están destinadas exclusivamente a instalaciones fijas.

No realice mediciones cuando el convertidor de frecuencia esté conectado a la red eléctrica.

La **intensidad táctil** de los convertidores de frecuencia Vacon supera los 3,5 mA de $_{\rm CA}$. Según la norma EN61800-5-1, **se debe garantizar una conexión reforzada de tierra de protección**. Consulte el Capítulo 3.1.3.

Si la unidad se usa como componente de un equipo, el **fabricante de este equipo será responsable** de suministrarlo con un dispositivo de desconexión (EN 60204-1).

Solo se podrán utilizar los **recambios** suministrados por Vacon.

En el encendido, un corte eléctrico o un reset de fallo, **el motor se iniciará inmediatamente** si la señal de inicio está activa, salvo que se haya seleccionado el control de pulso para la lógica de Marcha/Paro.

Además, las funciones de I/O (incluyendo las entradas de inicio) pueden cambiar si se modifican los parámetros, las aplicaciones o el software. Por tanto, desconecte el motor si un arranque inesperado puede ser peligroso.

Si activa la función de reset automático, el **motor arrancará de forma automática** tras el reset de un fallo. Consulte el Manual de aplicación para obtener información detallada.

Antes de realizar medidas en el motor o en el cable del motor, desconecte el cable del motor de la unidad.

No toque los componentes de los circuitos impresos. Es posible que una descarga de electricidad estática produzca daños en los componentes.

Compruebe que el **nivel CEM** del convertidor de frecuencia cumple los requisitos de la red de alimentación.

VACON ● 24 INSTALACIÓN

3.1.3 TIERRA Y PROTECCIÓN FRENTE A FALLO DE PUESTA A TIERRA

PRECAUCIÓN:

El convertidor de frecuencia debe estar siempre conectado a tierra con un conductor de tierra que, a su vez, esté conectado a la terminal de tierra marcada con:

La intensidad táctil del convertidor de frecuencia supera los 3,5 mA de $_{\rm CA}$. Según la norma EN61800-5-1, se deben cumplir una o varias de las siguientes condiciones para el circuito de protección asociado:

Una conexión fija y:

- el conductor de masa de protección tendrá un área de sección cruzada de al menos 10 mm²
 Cu o 16 mm² Al o
- una desconexión automática del suministro en caso de discontinuidad del conductor de masa de protección o
- suministrar un terminal adicional para un segundo **conductor para la protección de toma a tierra** de la misma sección transversal que el **conductor para la protección de toma a tierra** original.

Tabla 11. Sección transversal del conductor para la protección de toma a tierra

Área de sección transversal de los conductores de fase (<i>S</i>) [mm²]	Área de sección cruzada mínima del conductor para la protección de toma a tierra correspondiente [mm²]
<i>S</i> ≤16	<i>S</i>
16< <i>S</i> ≤35	16
35< <i>S</i>	<i>S</i> /2

Los valores anteriores son válidos solamente si el conductor de masa de protección está hecho del mismo metal que los conductores de fase. Si esto no es así, el área de sección cruzada del conductor de masa de protección se determinará de manera que produzca una conductancia equivalente a la resultante de la aplicación de esta tabla.

El área de sección transversal de cada uno de los conductores de tierra de protección que no forme parte de la carcasa de cables no debe ser, en ningún caso, inferior a:

- 2,5 mm² si existe protección mecánica, o
- 4 mm² si no existe protección mecánica. Para el equipamiento conectado por cable, las provisiones deberán hacerse de modo que el conductor de masa de protección del cable sea, en el caso de fallo del mecanismo de liberación de tensión, el último conductor que se interrumpa.

No obstante, cumpla siempre los reglamentos locales relativos al tamaño mínimo del conductor para la protección de toma a tierra.

NOTA: Dadas las altas corrientes capacitivas presentes en el convertidor de frecuencia, es posible que los interruptores de protección contra fallos de intensidad no funcionen correctamente.

No realice pruebas de resistencia de tensión en ninguna pieza del convertidor de frecuencia. Existe un procedimiento que se debe seguir para la realización de la prueba. Si no se sigue este procedimiento, se podría dañar el producto.

3.2 ALMACENAMIENTO

Si el convertidor de frecuencia va a estar almacenado antes de su uso, asegúrese de que las condiciones ambientales son adecuadas:

- Temperatura de almacenamiento –40...+70°C
- Humedad relativa < 95%, sin condensación

Asimismo, el entorno debe estar libre de polvo. Si hay polvo en el aire, el convertidor debe estar bien protegido para asegurarse de que no entre polvo en su interior.

Si el convertidor se debe almacenar durante períodos prolongados, se debe conectar el sistema de alimentación al convertidor una vez cada 24 meses durante 2 horas como mínimo. Si el período de almacenamiento supera los 24 meses, deberá tener cuidado al cargar los condensadores CC electrolíticos. Por lo tanto, no es recomendable un período de almacenamiento tan largo.

Si el período de almacenamiento va a ser superior a los 24 meses, se deberán recargar los condensadores al objeto de limitar una posible elevada intensidad a tierra a través de los condensadores. La mejor opción es utilizar una fuente de alimentación de CC con límite de intensidad ajustable. El límite de intensidad debe establecerse, por ejemplo, a 300–500 mA y la fuente de alimentación de CC tiene que estar conectada a los terminales B+/B- (terminales de alimentación de CC).

La tensión de CC se debe ajustar al nivel de tensión de CC nominal de la unidad $(1,35xU_n CA)$ y debe alimentarse durante al menos 1 hora.

Si no tiene tensión de CC disponible y la unidad estuvo almacenada durante mucho más de un año sin energía, póngase en contacto con fábrica antes de conectarla a la alimentación.

VACON • 26 INSTALACIÓN

3.3 ELEVACIÓN Y MOVIMIENTO DE LAS SECCIONES

Las secciones se envían en un cajón o una jaula de madera. Los cajones se pueden transportar tanto horizontal como verticalmente, mientras que el transporte de las jaulas en posición horizontal no está permitido. Consulte siempre las marcas de expedición para obtener información más detallada. Para sacar la sección del cajón, utilice un equipo de izado capaz de soportar el peso del armario.

Hay argollas de izado en la parte superior del armario y dichas argollas se pueden utilizar para elevar el armario en posición vertical y desplazarlo al lugar necesario.

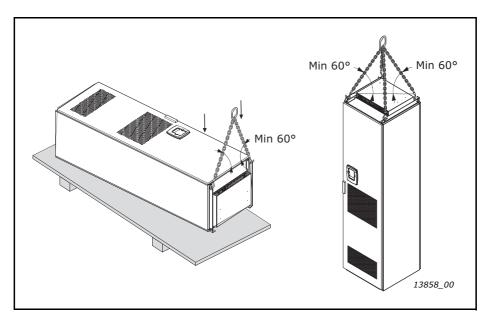


Figura 10. Izado de las secciones

Para mover las secciones in situ se puede utilizar una carretilla elevadora, un montacargas o sobre rodillos:

- Baje el paquete hasta una base a nivel
- Retire la cobertura de embalaje solo en el lugar de instalación
- Las rutas de transporte bajas, estrechas o enrevesadas podrían requerir la retirada de la paleta antes de desplazar el equipo
- Desplace los paquetes solo en posición vertical

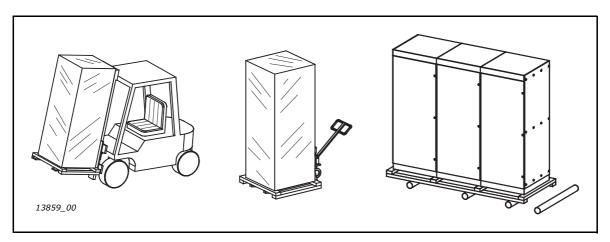


Figura 11. Desplazamiento de las secciones

Las piezas de interruptores pueden inclinarse con facilidad hacia atrás al maniobrar sobre rodillos o carritos manuales ya que su centro de gravedad suele estar en una posición elevada en la parte posterior de la unidad.

Instalación Vacon ● 27

3.4 COLOCACIÓN DE LAS SECCIONES

Antes de comenzar la tarea de instalación, compruebe el nivel del suelo esté incluido en los límites aceptables. La desviación máxima respecto al nivel básico no puede ser superior a los 5 mm sobre una distancia de 3 m. La diferencia máxima aceptable respecto a la altura entre el borde delantero y trasero del armario debe estar en un límite de +2/-0 mm.

El armario siempre debe estar fijado al suelo o a la pared. Dependiendo de las condiciones de instalación, las secciones del armario se pueden fijar de varias formas. En las esquinas delanteras hay orificios que se pueden utilizar para fijarlo. Además, los rieles de la parte superior del armario cuentan con unas argollas que permiten fijar el armario a la pared.

3.4.1 ESPACIO LIBRE ALREDEDOR DEL ARMARIO

Se debe dejar espacio libre suficiente por encima y delante del armario para garantizar suficiente refrigeración y espacio para mantenimiento.

Se recomienda dejar al menos 200 mm por encima y 1000 mm por delante de los armarios.

Asegúrese también de que la temperatura del aire de refrigeración no supere la temperatura ambiente máxima de las unidades.

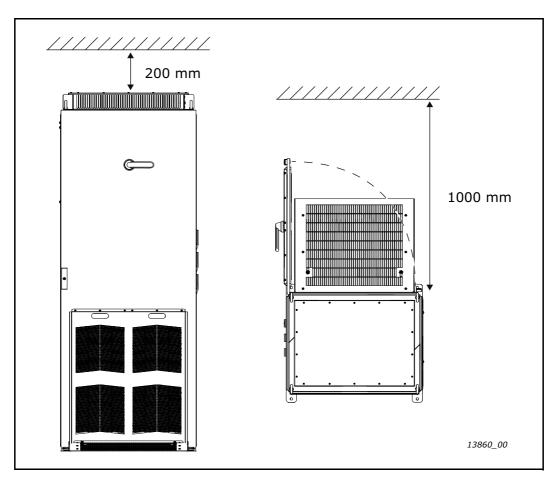


Figura 12. Espacio requerido alrededor del armario

VACON • 28 INSTALACIÓN

3.4.2 FIJACIÓN DEL ARMARIO AL SUELO O LA PARED

En las instalaciones donde el armario se monta en la pared, fije la parte superior del armario a la pared (1) y las esquinas delanteras al suelo (2) con tornillos.

Si se utiliza solo la fijación inferior, fije el armario al suelo en la parte frontal (2) y posterior (3) mediante tornillos.

Fije todas las secciones del armario del mismo modo.



Figura 13. Fijación del armario a la pared y al suelo

INSTALACIÓN VACON ● 29

3.4.3 INSTALACIÓN ADOSADO

Las secciones se pueden instalar también adosadas. Fije las partes superiores de los armarios conjuntamente (1) y las esquinas frontales al suelo (2) mediante tornillos.

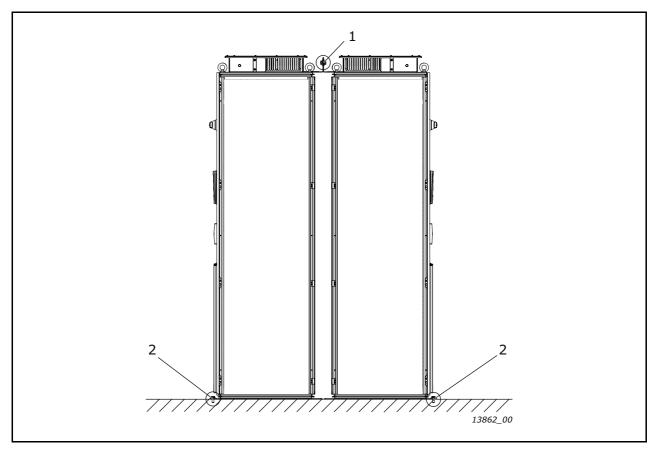


Figura 14. Fijación de los armarios adosados

VACON • 30 INSTALACIÓN

3.5 CONEXIÓN DE LAS SECCIONES

Las secciones de armario incluidas en la entrega se deben unir entre sí. Esto se hace conectado las barras conductoras de CC y PE de las secciones y conectados los armarios de secciones entre sí. Todas las piezas necesarias se incluyen en el envío.

3.5.1 FIJACIÓN DE LOS ARMARIOS ENTRE SÍ

Para unir dos secciones de armarios entre sí necesita seis abrazaderas de anclaje de acople rápido (1 en la figura siguiente) y cuatro soportes angulares de anclaje (2 en la figura). Los cuatro soportes angulares de anclaje se instalan en las esquinas superior e inferior en el interior del armario. Tres de los soportes de anclaje de acople rápido se instalan en la parte delantera y tres en la parte trasera en el exterior del armario.

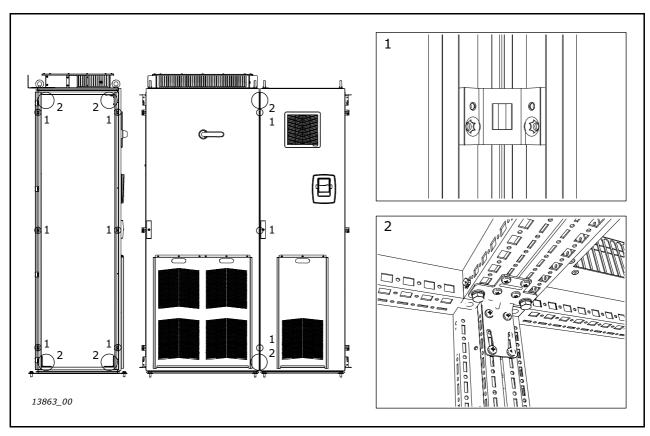


Figura 15. Abrazaderas de anclaje de acople rápido

Instalación Vacon ● 31

3.5.2 BARRAS CONDUCTORAS COMUNES

Una entre sí las barras conductoras de PE y las barras conductoras de CC atornillándolas entre sí con soportes de anclaje.

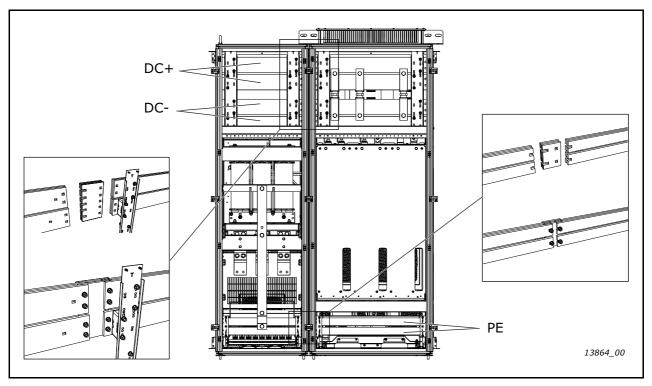


Figura 16. Conexión de las barras conductoras CC y PE comunes

VACON ● 32 INSTALACIÓN

3.6 CABLEADO

Antes de conectar ningún cable, utilice un polímetro para comprobar que los cables que se van a conectar no tienen tensión.

3.6.1 PUESTA A TIERRA

Los conductores PE se conectan a la barra conductora PE. Las barras conductoras PE de cada sección están conectadas (consulte la Figura 16 en la página 31) y las barras conductoras PE se deben conectar a tierra.

Consulte las instrucciones de puesta a tierra y de protección contra fallos de puesta a tierra en el Capítulo 3.1.3.

3.6.2 CONEXIÓN DE ALIMENTACIÓN ELÉCTRICA Y MOTOR

Se debe acceder a los terminales de alimentación desde la parte inferior del armario. Los cables de entrada de la red se conectan a los terminales L1, L2 y L3 en la sección de entrada principal (consulte la Figura 17 en la página 33). Los cables del motor se conectan a los terminales de sección del inversor marcados con U, V y W. Realice aperturas para los cables en las arandelas de la parte inferior del armario y haga pasar los cables por ellas. Utilice las abrazaderas para cables para fijar los cables.

Utilice cables con una temperatura de servicio de al menos +70°C. Como regla práctica, los cables y los fusibles se pueden dimensionar de acuerdo a la intensidad de salida nominal del convertidor de frecuencia que puede encontrar en la placa de características. Se recomienda dimensionar en función de la intensidad de salida, ya que la intensidad de entrada del convertidor de frecuencia nunca supera significativamente la intensidad de salida.

Tipo de cable	Nivel L (2º entorno)	Nivel T
Cable de entrada de la red	1	1
Cable del motor	2	1/2*
Cable de control	4	4

Tabla 12. Tipos de cable necesarios para cumplir la normativa

Nivel L = $EN61800-3.2^{\circ}$ entorno

Nivel T = Para redes TI

Cable de alimentación diseñado para una instalación fija y el voltaje específico

 de la red. No se requiere cable apantallado (se recomiendan DRAKA NK CABLES – MCMK o similares).

Cable de alimentación simétrico equipado con cable de protección concéntrica y

- 2 = diseñado para la tensión específica de la red (se recomienda DRAKA NK CABLES MCMK o similares).
- 4 = Cable apantallado equipado con pantalla compacta de baja impedancia (DRAKA NKCABLES JAMAK, SAB/ÖZCuY-O o similar).

Consulte las instrucciones de selección de cableado y fusibles más detalladas en el manual de usuario correspondiente (consulte la Tabla 2 en la página 5).

^{*} Recomendado

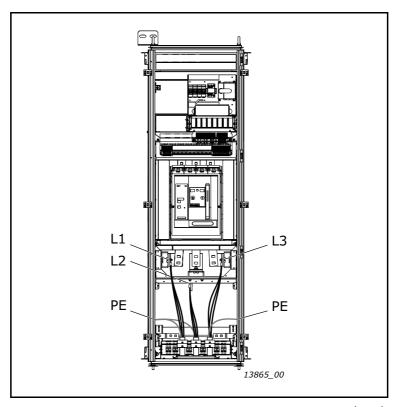


Figura 17. Cableado de la sección de entrada principal (MIS)

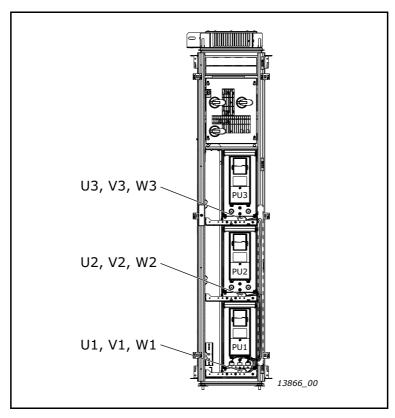


Figura 18. Cableado de la sección del inversor IUS_4

VACON ● 34 Instalación

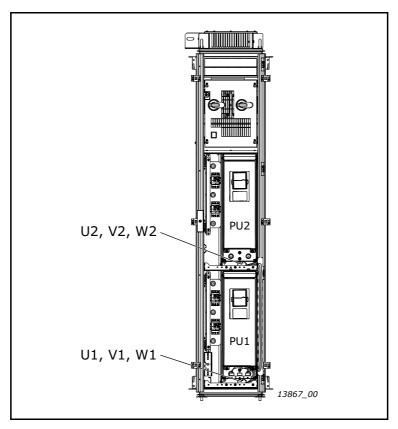


Figura 19. Cableado de la sección del inversor IUS_6

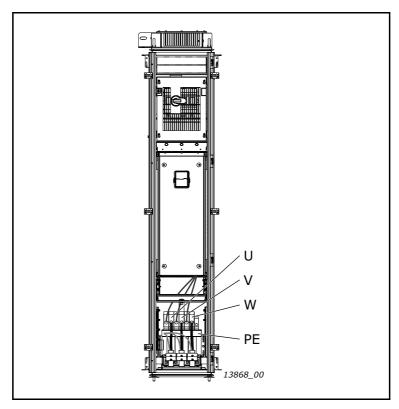


Figura 20. Cableado de la sección del inversor IUS_8

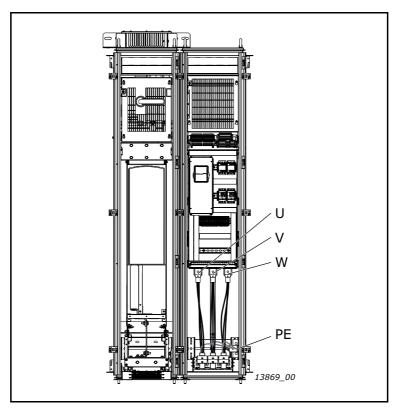


Figura 21. Cableado de las secciones del inversor IUS_9 e IUS_10

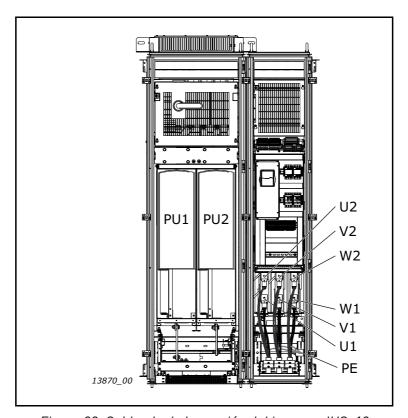


Figura 22. Cableado de la sección del inversor IUS_12

VACON ● 36 INSTALACIÓN

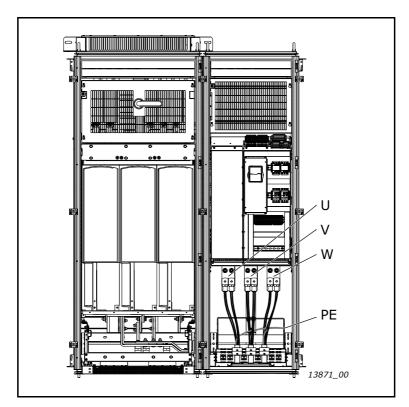


Figura 23. Cableado de la sección del inversor IUS_13

INSTALACIÓN VACON ● 37

3.6.3 CONEXIONES DE CONTROL

La unidad de control del convertidor de frecuencia consta en líneas generales de una tarjeta de control y tarjetas adicionales conectadas a cinco conectores de ranura (A a E) de la tarjeta de control. La tarjeta de control está conectada a la unidad de potencia a través de un conector D o cables de fibra óptica.

Normalmente, cuando se entrega el convertidor de frecuencia de fábrica, la unidad de control incluye al menos la compilación estándar de dos placas básicas (placa de E/S y placa de relés) que suelen instalarse en las ranuras A y B.

La tarjeta de control se puede alimentar externamente (+24 V, ±10%); para ello, conecte la fuente de alimentación externa a cualquiera de los terminales bidireccionales. Esta tensión será suficiente para establecer los parámetros y para mantener activo el Fieldbus.

Para instrucciones de selección de cableado más detalladas, consulte el manual de usuario correspondiente (consulte la Tabla 2 en la página 5).

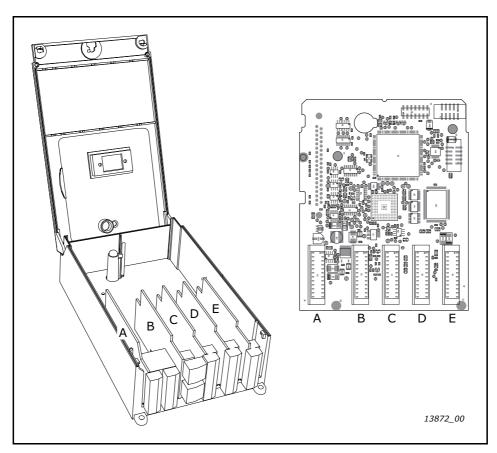


Figura 24. Unidad de control, tarjeta de control (derecha) y tarjetas opcionales (A–E)

VACON • 38 INSTALACIÓN

3.7 PARES DE APRIETE DE LOS TORNILLOS

Los pares de apriete de todas las conexiones de alimentación (cables y barras conectoras) para distintos tamaños de pernos y tornillos se indican en la tabla siguiente.

Tabla 13. Pares de comprobación y de apriete de las conexiones de alimentación

Tamaño de tornillo/perno	Par de comprobación (Nm)	Par de apriete (Nm)
M6	8	10
M8	18	22
M10	35	45
M12	65	75

Los pares de apriete de los terminales de la unidad de control se indican más abajo.

Tabla 14. Pares de apriete de los terminales de la unidad de control

Tornillo de terminal	Par de apriete (Nm)
Terminales del relé y del termistor (tornillo M3)	0,5
Otros terminales (tornillo M2.6)	0,2

SERVICIO VACON ● 39

4. SERVICIO

4.1 GARANTÍA

La garantía cubre únicamente los defectos de fabricación. El fabricante no se hace responsable de los daños originados durante el transporte o como consecuencia del transporte, recepción del envío, instalación, puesta en marcha o utilización.

En ningún caso y bajo ninguna circunstancia, se hará responsable al fabricante por daños o averías a causa de una mala utilización, instalación inadecuada, temperatura ambiente inaceptable, polvo, sustancias corrosivas o funcionamiento fuera de las especificaciones nominales.

Así como tampoco será responsable le fabricante de daños consecuenciales.

El período de garantía del fabricante es de 18 meses desde la entrega o de 12 meses desde la puesta en marcha, cualquiera sea el que venza primero (condiciones generales y comerciales de Vacon[®] PLC).

Es posible que el distribuidor local ofrezca un periodo de garantía diferente al anterior. Este periodo de garantía se especificará en las condiciones comerciales y de garantía del distribuidor. Vacon no asume responsabilidad alguna por cualesquiera otras garantías que no sean aquellas que haya concedido Vacon.

Para cualquier consulta referente a la garantía, póngase en contacto en primer lugar con el distribuidor.

4.2 MANTENIMIENTO

Todos los dispositivos técnicos, también las unidades, requieren cierta atención y un mantenimiento de prevención de fallos. Para lograr que las unidades Vacon funcionen sin fallos, las condiciones ambientales, así como la carga, la línea eléctrica, el control de procesos, etc. se atienen a las especificaciones que determinó el fabricante.

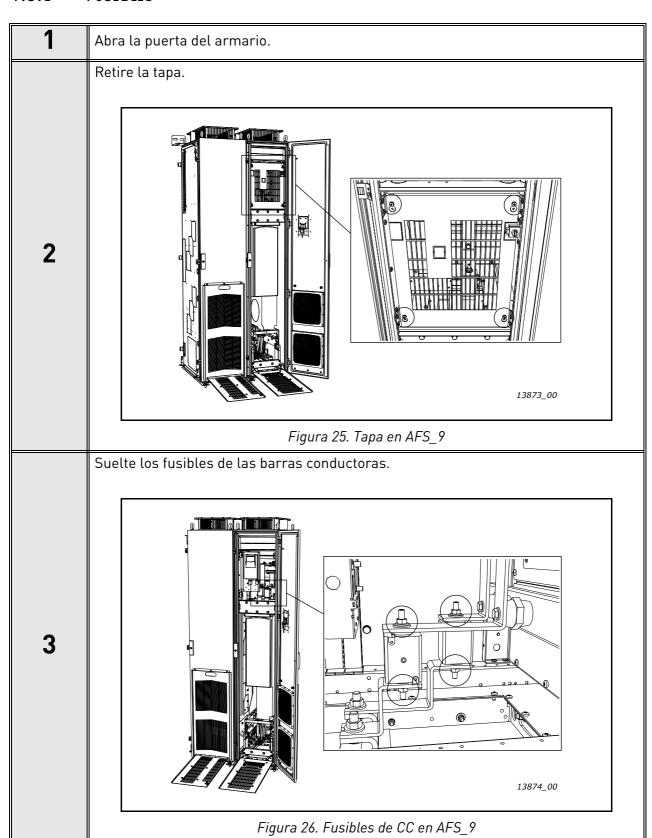
Si todas las condiciones se adecuan a las especificaciones del fabricante, lo que habrá que tener en cuenta es disponer de una capacidad de refrigeración lo suficientemente elevada para los circuitos de la alimentación y del control. Para esto, bastará con asegurarse de que el sistema de refrigeración funciona correctamente. El funcionamiento de los ventiladores de refrigeración y la limpieza del radiador debe comprobarse con regularidad.

Se recomienda llevar un mantenimiento regular para garantizar un funcionamiento sin fallos y una vida prolongada de las unidades Vacon. El mantenimiento regular debe incluir al menos lo siguiente.

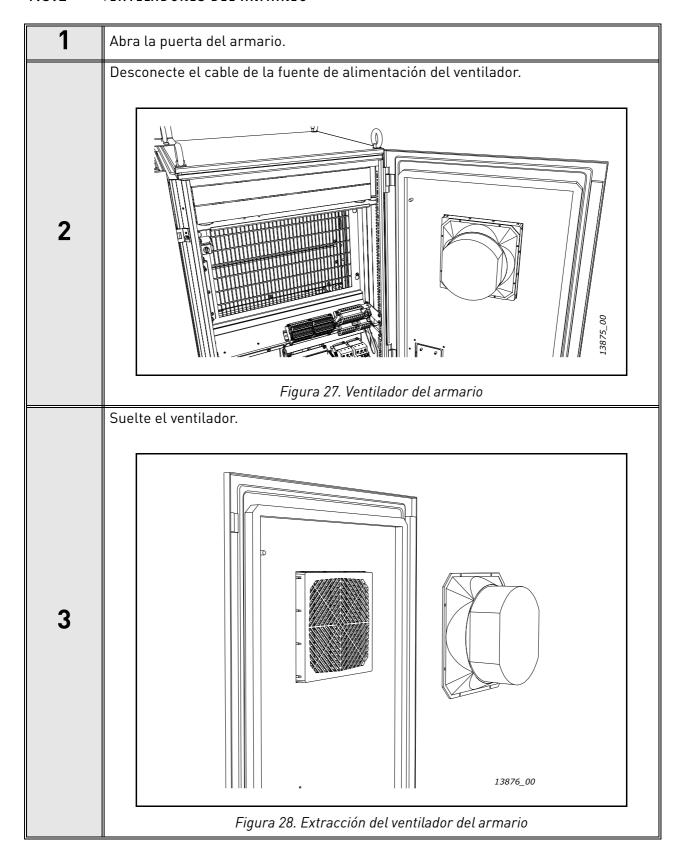
Intervalo	Mantenimiento	
12 meses (si la unidad está almacenada)	Modificación de los condensadores	
6–24 meses (en función del entorno)	Compruebe los pares de apriete de los terminales de entrada y salida y de los terminales de E/S. Limpie el túnel de refrigeración. Comprobación del funcionamiento del ventilador de refrigeración y de si hay corrosión en terminales, barras conductoras y otras superficies.	
5–7 años	Cambie los ventiladores de refrigeración: • Ventiladores del armario • Ventiladores principales de la unidad • Ventiladores de filtro LCL	
5–10 años	Cambie los condensadores del bus de CC si el rizado de tensión de CC es elevado.	

Tabla 15. Programa de mantenimiento

Se recomienda asimismo llevar un registro de todas las acciones y valores del contador con las fechas y horas al objeto de llevar un seguimiento del mantenimiento.


VACON ● 40 SERVICIO

4.3 INSTRUCCIONES DE SUSTITUCIÓN



El mantenimiento solo lo puede llevar a cabo personal de mantenimiento formado por Vacon.

4.3.1 FUSIBLES

4.3.2 VENTILADORES DEL ARMARIO

VACON ● 42 SERVICIO

4.3.3 UNIDADES

Abra la puerta del armario.

Suelte la rampa de servicio y bájela delante de la unidad.

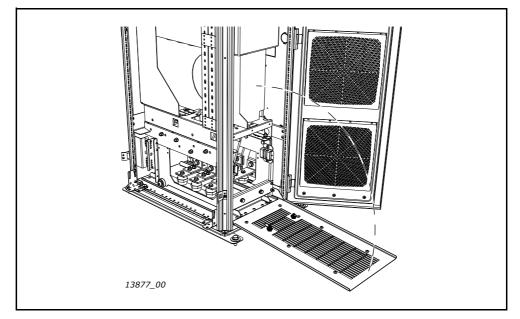


Figura 29. Bajada de la rampa de servicio

- 1. Afloje los cuatro tornillos y retire la tapa.
- 2. Quite los seis tornillos y quite la placa de soporte superior de la unidad.
- 3. Quite los dos tornillos de la placa de soporte inferior de la unidad.

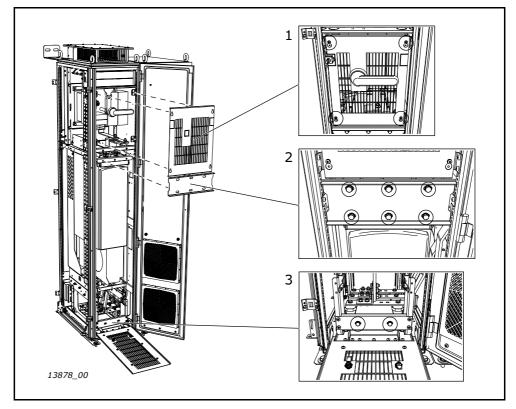


Figura 30. Extracción de la tapa de la unidad y placas de soporte en IUS_9

3

Suelte las barras conductoras de entrada y salida. 4 13879_00 Figura 31. Tornillos de montaje de la barra conductora en IUS_9 Extraiga la unidad de la rampa de servicio. 5 13880_00

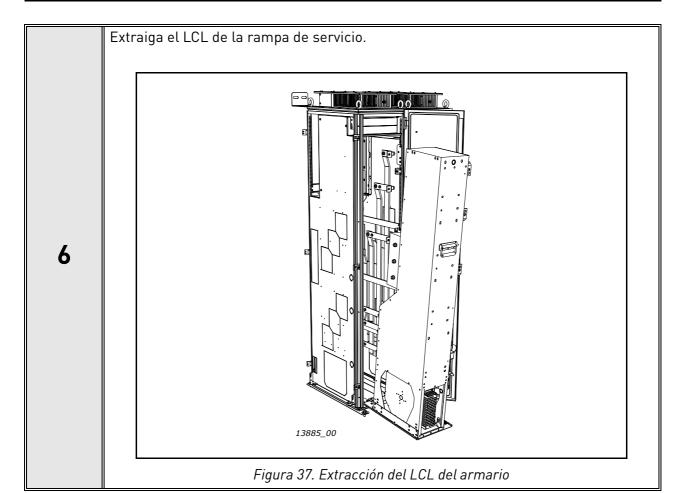
Figura 32. Extracción de la unidad del armario

VACON ● 44 SERVICIO

4.3.4 LCL

1 Abra la puerta del armario. Suelte la rampa de servicio y bájela delante del LCL. 13881_00 Figura 33. Bajada de la rampa de servicio 1. Afloje los tres tornillos y retire la placa cobertora lateral. 2. Quite los cuatro tornillos y quite la placa de soporte superior de LCL. 13882_00 Figura 34. Extracción de la cubierta lateral LCL y de placas de soporte superiores

en AFS_9


Tel. +358 (0) 201 2121 • Fax +358 (0)201 212 205

Suelte las barras conductoras de entrada y salida de LCL. 4 Figura 35. Tornillos de montaje de la barra conductora LCL en AFS_9 Quite los cuatro tornillos y quite la placa de soporte inferior de LCL. 5

Figura 36. Tornillos de montaje de la placa de soporte inferior LCL

F

13884_00

5. INFORMACIÓN TÉCNICA

5.1 CONTROL E INTERFAZ

Las funciones de velocidad y/o control de par están disponibles en la unidad. La referencia de par y/o velocidad así como la palabra de comando se genera a través del sistema de control de línea anulado y se transmiten individualmente a cada unidad a través de bus de campo o de señales por cable. La unidad transmite los valores reales seleccionados así como las palabras de estado de vuelta al sistema de control de línea.

5.1.1 CONTROL SIN RETROALIMENTACIÓN DE VELOCIDAD (LAZO ABIERTO)

- Error de velocidad en estado fijo típicamente <0,5%
- Tiempo de aumento de par <10 ms
- Error de par en estado fijo típicamente <3%
- Adecuado también para configuración multimotor

5.1.2 CONTROL CON RETROALIMENTACIÓN DE VELOCIDAD (LAZO CERRADO)

El control de par pleno a velocidad cero no se puede mantener sin retroalimentación de velocidad. Cuando se requiere un error de velocidad inferior al 0,5% o control de par pleno a todas las velocidades, es necesario un control de motor basado en retroalimentación desde un encoder. Esta capacidad está incorporada en la unidad NXP. Además del sistema de medida actual utilizado, la unidad NXP utiliza los valores de retroalimentación del encoder para determinar el estado del motor. El microprocesador mejorado facilitado con la unidad NXP es capaz de realizar cálculos cada 150 microsegundos. Este control se puede utilizar para aplicaciones que requieran una gran precisión como, por ejemplo, unidades seccionales.

- Error de velocidad en estado fijo típicamente <0,01% (depende del tipo de encoder de impulsos)
- Encoder de impulsos: 250-5000 ppr a 5, 12 o 24 V (depende de la tarjeta opcional)
- Tiempo de aumento de par <10 ms
- Error de par en estado fijo típicamente <3%

5.2 DEFINICIONES DE CARGA

Las unidades se seleccionan normalmente en función de la definición de carga mostrada en la lista de unidades, donde:

- n_{\min} = velocidad mínima [RPM], inicio del rango de velocidad de carga de par constante continuo
- n_{base} = velocidad base [RPM], final del rango de velocidad de carga de par constante continuo (e inicio de la gama de velocidad de carga de potencia constante continua)
- n_{max} = velocidad máxima [RPM], final del rango de velocidad de carga de potencia constante continua (también velocidad máxima de motor permitida)
- P[n_{base}] = potencia de base [kW], potencia del eje del motor al final del rango de velocidad de carga de par constante continuo (también potencia del eje del motor del rango de velocidad de carga de potencia constante continuo)
- $T[n_{base}]$ = par de base [Nm], par del eje del motor del rango de velocidad de carga de par constante continuo (también par del eje del motor al inicio del rango de velocidad de carga de potencia constante continuo)
- *OL* = sobrecarga [%], carga máxima de corta duración, 1 min. / 10 min. (100% = sin sobrecarga)

NOTA: La carga se define en función de la información recibida. Vacon[®] Plc no tiene la responsabilidad de comprobar que la información sea suficiente y exacta.

Hay varias posibilidades a la hora de definir la curva de carga. A continuación se indican algunos ejemplos.

5.2.1 CARGA DE BOMBA Y VENTILADOR

Ajuste todas las velocidades al mismo valor $(n_{\min} = n_{\text{base}} = n_{\text{máx}})$ para tener la curva típica de bomba y ventilador, es decir, carga con aumento cuadrático.

La sobrecarga se define ahora como el par de arranque y como OL a máxima velocidad (la sobrecarga se define ahora como porcentaje del par a máxima velocidad).

El cálculo de la intensidad también se realiza aquí suponiendo un flujo nominal en el motor desde 0 al punto desexcitación (no se dispone del cálculo de intensidad en función de la "curva de flujo optimizado").

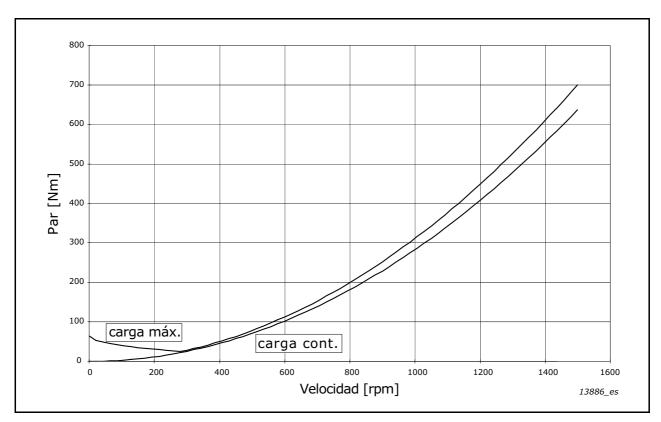


Figura 38. Ejemplo: carga de bomba y ventilador

5.2.2 $OL(N_{BASE}) > OL(N_{MAX})$ PARA CARGA DE PAR CONSTANTE

Es posible ajustar la sobrecarga a una velocidad base menor que la sobrecarga a máxima velocidad, es decir, $OL(n_{base}) < OL(n_{máx})$.

Esto puede resultar útil al seleccionar el convertidor de frecuencia correcto para unidades de par constante cuando la demanda de sobrecarga a velocidades bajas es mayor que a velocidades altas.

Esta posibilidad se suele utilizar cuando el punto de desexcitación es mayor que la velocidad base.

La ventaja de ello puede ser la posibilidad de utilizar un convertidor de frecuencia de menor tamaño.

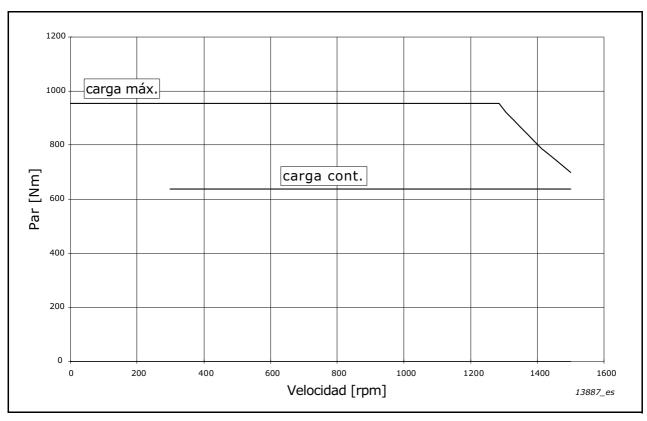


Figura 39. Ejemplo: $OL(n_{base}) > OL(n_{máx})$ para carga de par constante

5.2.3 PAR DE ARRANQUE >> OL(NMÁX) PARA CARGA DE PAR CONSTANTE

Es posible ajustar el par de arranque a un valor mayor que la sobrecarga a máxima velocidad, es decir, $OL(n_{base}) < OL(n_{máx})$.

Esto puede resultar útil al seleccionar el convertidor de frecuencia correcto para unidades de par constante donde el requisito de par de arranque es muy superior al requisito de carga máxima a máxima velocidad.

Esta posibilidad se suele utilizar cuando el punto de desexcitación es superior a la velocidad base y cuando el par de arranque se necesita durante un intervalo muy breve.

La ventaja de ello puede ser la posibilidad de utilizar un convertidor de frecuencia de menor tamaño.

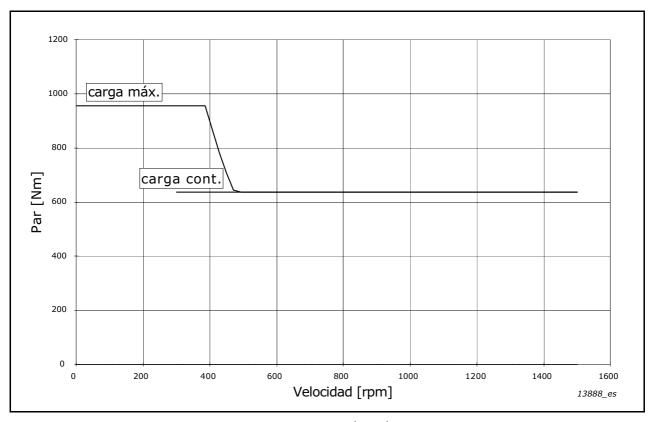


Figura 40. Ejemplo: Par de arranque \gg OL $(n_{m\acute{a}x})$ para carga de par constante

5.2.4 $OL(N_{BASE}) > OL(N_{M\acute{A}X})$ para carga de potencia constante

Algunas unidades de potencia constante requieren menos sobrecarga a máxima velocidad que a velocidades más bajas. Por tanto, es posible ajustar la sobrecarga relativa a una velocidad base mayor que la sobrecarga relativa a máxima velocidad, es decir, $OL(n_{base}) > OL(n_{máx})$.

Esto reducirá el tamaño del motor cuando/si la capacidad de carga no es el límite de dimensionamiento.

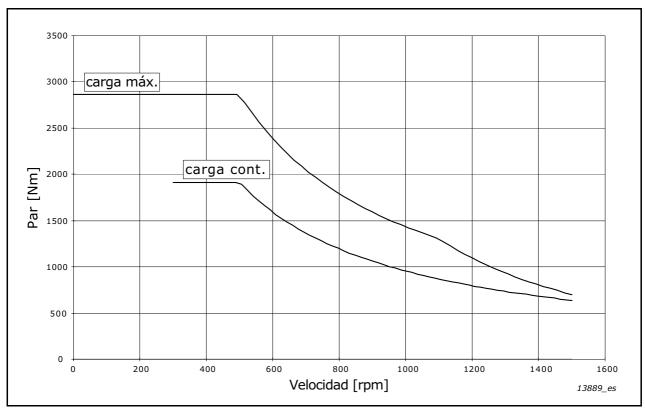


Figura 41. Ejemplo: $OL(n_{base}) > OL(n_{máx})$ para carga de potencia constante

5.2.5 $OL(N_{BASE}) < OL(N_{MAX})$ PARA CARGA DE POTENCIA CONSTANTE

Es posible ajustar la sobrecarga a una velocidad base menor que la sobrecarga a máxima velocidad, es decir, $OL(n_{base}) < OL(n_{máx})$.

Esto puede resultar útil al seleccionar el motor y el convertidor de frecuencia correcto para unidades de potencia constante donde el requisito de OL relativa es superior a máxima velocidad que el requisito de OL relativa a velocidad base.

La ventaja de ello puede ser la posibilidad de utilizar un convertidor de frecuencia de menor tamaño.

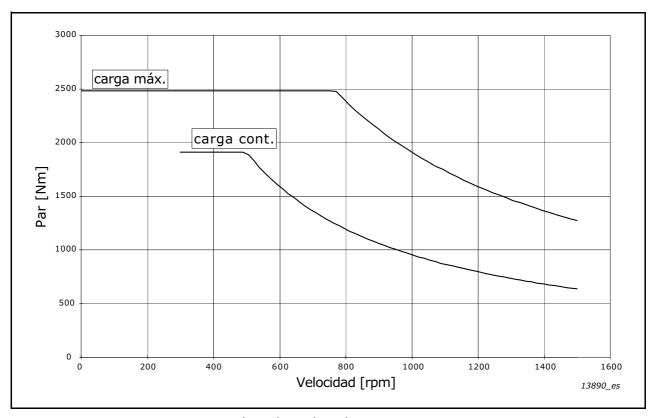


Figura 42. Ejemplo: $OL(n_{base}) < OL(n_{m\acute{a}x})$ para carga de potencia constante

5.3 ESPECIFICACIONES TÉCNICAS DE LAS UNIDADES VACON®

5.3.1 NXN - UNIDADES FRONT END NO REGENERATIVO

Tabla 16. Especificaciones técnicas para unidades front end no regenerativo (NFE)

	Tensión de entrada U _{entrada}	380-690 V _{CA} ; -15%+10%, EN 60204-1
	Frecuencia de entrada f _{in}	45–66 Hz
Conexión	Intensidad de entrada continua	I _H : Temperatura ambiente máx. +40°C, capacidad de sobrecarga 1,5 x I _H (1 min./10 min.) I _L : Temperatura ambiente máx. +40°C, capacidad de sobrecarga 1,1 x I _L (1 min./10 min.)
a la red	Conexión a la red	Sin límite (protecciones de sobrecarga interna)
	Intensidad THD	Depende de las reactancias adicionales (caso normal < 40%)
	Retraso de marcha	Depende de la capacitancia del bus de CC (máx. 10 s)
	Interrupción imprevista de potencia de entrada	Las interrupciones inferiores a 40 ms funcionan nor- malmente si la CC no cae mucho. Una interrupción más larga supone una operación de arranque normal (la intensidad de carga varía en función de la carga).
	Tensión de salida U _{out}	465-800 V _{CC} (380-500 V _{CA}) 640-1100 V _{CC} (525-690 V _{CA})
Conexión de CC	Eficiencia	>98%
	Capacidad eléctrica de la batería de CC	6,8 μF (incluye resistencia de descarga de 10 M Ω)
Características de control	Método de control	NFE es una unidad de potencia independiente. La carga y las protecciones las controla el propio NFE.

Tabla 16. Especificaciones técnicas para unidades front end no regenerativo (NFE)

	Temperatura ambiente	-10°C (sin escarcha)+40°C: I _H
	de trabajo	–10°C (sin escarcha)+40°C: I _L
	Temperatura de almace- namiento	-40°C+70°C
	Humedad relativa	De 0 a 95% RH, sin condensación, anticorrosivo, sin goteo de agua
	Calidad del aire: - vapores químicos - partículas mecánicas	IEC 721-3-3, unidad en funcionamiento, clase 3C2 IEC 721-3-3, unidad en funcionamiento, clase 3S2
Condiciones ambientales	Altitud	100% de capacidad de carga (sin reducción) hasta 1000 m, 1% de reducción por cada 100 m por encima de 1000 m; máx. 2000 m
	Vibración EN50178, EN60068-2-6	5–150 Hz Amplitud de vibración 0,25 mm (pico) a 5–31 Hz Aceleración máx. 1 G a 31–150 Hz
	Choque EN50178, EN60068-2-27	Prueba de caída UPS (para pesos aplicables UPS) Almacenamiento y envío: máx. 15 G, 11 ms (en el paquete)
	Aire de refrigeración requerido	1150 m ³ /h
	Tipo de protección	IP00
EMC (con ajustes por defecto)	Inmunidad	Se cumplen todos los requisitos de inmunidad de CEM. Se puede elegir nivel N-, L- o T
Seguridad		CE, UL, CUL EN 61800-5-1 (2003) (consulte la placa de características de la unidad para aprobaciones más detalladas)
Conexiones	Pantalla	7 segmentos (opcional)
de control	Información de disparo	Relé E/S (opcional)
	Protección de sobretem- peratura del convertidor	Se dispara si la temperatura asciende por encima del nivel de disparo (por defecto)
Protección	Medida de intensidad	Se dispara si la intensidad asciende por encima del nivel de disparo (por defecto)
	Supervisión de fase de suministro	Desconexiones si falta alguna de las fases de salida (por defecto)

5.3.2 NXA - UNIDADES ACTIVE FRONT-END

Tabla 17. Especificaciones técnicas para unidades active front end (AFE)

Conexión de	Tensión de entrada U _{entrada}	380-500 V _{CA} ; 525-690 V _{CA} ; -10%+10%
entrada de CA	Frecuencia de entrada f _{in}	48-63 Hz
	Retraso de marcha	FI9-FI13: 5 s
	Tensión de salida U _{out}	1,35 x U _{in} x 1,1 (el refuerzo de la tensión del bus de CC por defecto es del 110%)
Conexión de salida de CC	Intensidad de salida continua	I _H : Temperatura ambiente máx. +40°C, capacidad de sobrecarga 1,5 x I _H (1 min./10 min.) I _L : Temperatura ambiente máx. +40°C, capacidad de sobrecarga 1,1 x I _L (1 min./10 min.)
Características	Método de control	Control de vector de lazo abierto
de control	Frecuencia de conmutación	NXA_xxxx 5: 3,6 kHz NXA_xxxx 6: 3,6 kHz
	Temperatura ambiente de trabajo	-10°C (sin escarcha)+40°C: I _H -10°C (sin escarcha)+40°C: I _L 1,5% de reducción por cada 1°C sobre 40°C; temperatura máxima +50°C.
	Temperatura de almacenamiento	-40°C+70°C
	Humedad relativa	De 0 a 95% RH, sin condensación, anticorrosivo, sin goteo de agua
Candicianas	Calidad del aire: - vapores químicos - partículas mecánicas	EN 60721, equipo en funcionamiento, clase 3C3. IEC 721-3-3, unidad en funcionamiento, clase 3S2
Condiciones ambientales	Altitud	100% de capacidad de carga (sin reducción) hasta 1000 m, 1,5% de reducción por cada 100 m sobre 1000 m. Máx. 2000 m (525–690 V _{CA}) y 4000 m (380–500 V _{CA}), E/S de relé: máx. 3000 m (240 V) y 4000 m (120 V)
	Vibración EN50178, EN60068-2-6	5–150 Hz Amplitud de vibración 1 mm (pico) a 3–15,8 Hz Aceleración máx. 1 G a 15,8–150 Hz
	Choque EN50178, EN60068-2-27	Prueba de caída UPS (para pesos aplicables UPS) Almacenamiento y envío: máx. 15 G, 11 ms (en el paquete)
	Tipo de protección	Tamaño IP00/NEMA1 estándar en la gama de kW/HP.
EMC (con ajustes por defecto)	Inmunidad	EN 61800-3 (2a edición, 2004), segundo entorno
Seguridad		EN 50178 (1997), EN 60204-1 (1996-2009), EN 60950 (2000, 3ª edición) (según corresponda), CE, UL, cUL, FI, GOST R, IEC-EN 61800-5 (para obtener información sobre aprobaciones, vea la placa de características de la unidad)

Tabla 17. Especificaciones técnicas para unidades active front end (AFE)

	Tensión de entrada	$0+10 \text{ V, R}_i = 200 \text{ k}\Omega.$
	analógica	Resolución 0,1%, precisión ±1%
	Intensidad de entrada analógica	$0(4)20$ mA, R_i = 250 Ω diferencial
	Entradas digitales (6)	Lógica positiva o negativa; 18–30 V _{CC}
	Tensión auxiliar	+24 V, ±15%, máx. 250 mA
Conexiones de control	Tensión de salida de referencia	+10 V, +3%, carga máx. 10 mA
	Salida analógica (1)	0(4)20 mA; R _L máx. 500 Ω; Resolución 10 bits; Precisión ±2%
	Salidas digitales	Salida de colector abierto, 50 mA/48 V
	Salidas de relé	2 salidas de relé de conmutación programables Capacidad de interrupción: 24 $\rm V_{CC}$ / 8 A, 250 $\rm V_{CC}$ / 8 A, 125 $\rm V_{DC}$ / 0,4 A.
		Carga mín. de interrupción: 5 V/10 mA.
	Protección contra sobretensión Protección contra subtensión	NXA_5: 911 V _{CC} ; NXA_6: 1200 V _{CC} NXA_5: 333 V _{CC} ; NXA_6: 460 V _{CC}
	Protección frente a fallos de puesta a tierra	En caso de fallo de puesta a tierra en el cable de alimentación, la protección contra fallos de puesta a tierra solamente protege la unidad NX-AFE en sí.
Protección	Monitorización de fase de entrada	Se dispara si falta alguna de las fases de entrada.
	Protección frente a sobreintensidad	Sí
	Protección de sobretem- peratura del convertidor	Sí
	Protección de cortocir- cuito de las tensiones de referencia +24 V y +10 V	Sí

5.3.3 INVERSORES NXI

5.3.3.1 <u>Tamaños de unidad FR4–FR8</u>

Tabla 18. Especificaciones técnicas de los inversores tamaño FR4-FR8 (INU)

Conexión de entrada de CA	Tensión de entrada U _{entrada}	465–800 V _{CC} ; 640–1100 V _{CC} ; –0%+0%, La tensión de ondulación la tensión de alimentación del inversor generada durante la rectificación de la tensión CA de la frecuencia fundamental debe ser menor que 50 V pico a pico.
	Conexión a la fuente de alimentación de CC	Una vez por minuto o menos (normal)
	Retraso de marcha	2 s
	Tensión de salida U _{out}	3~ 0 - U _{in} / 1,4
Conexión	Intensidad de salida continua	I _H : Temperatura ambiente máx., +50°C; capacidad de sobrecarga, 1,5 x I _H (1 mín./10 mín.) I _L : Temperatura ambiente máx., +40°C; capacidad de sobrecarga, 1,1 x I _L (1 mín./10 mín.)
del motor	Par motor de inicio	I _S durante dos segundos, depende del motor
	Intensidad de pico	I _S para 2 seg. cada 20 seg.
	Frecuencia de salida	0–320 Hz; 7200 Hz (uso especial)
	Resolución de frecuencia	Depende de la aplicación
	Método de control	Control de frecuencia de U/f Control vectorial sin sensores de lazo abierto Control de frecuencia de bucle abierto Control vectorial de bucle abierto
Características de control	Frecuencia de conmutación	NXI_xxxx 5: 1–16 kHz; Ajustes por defecto de fábrica 10 kHz (NXI_0072 y superior: 1–10 kHz; Ajustes por defecto de fábrica 3,6 kHz) NXI_xxxx 6: 1–6 kHz; Ajustes por defecto de fábrica 1,5 kHz
	Referencia de frecuencia: - Entrada analógica - Referencia del panel	Resolución 0,1% (10 bits), precisión ±1% Resolución 0,01 Hz
	Punto de desexcitación del motor	30-320 Hz
	Tiempo de aceleración	0-3000 s
	Tiempo de deceleración	0-3000 s

Tabla 18. Especificaciones técnicas de los inversores tamaño FR4-FR8 (INU)

	Temperatura ambiente	–10°C (sin escarcha)+50°C: I _H
	de trabajo	–10°C (sin escarcha)+40°C: IL
	Temperatura de almacenamiento	-40°C+70°C
	Humedad relativa	De 0 a 95% RH, sin condensación, anticorrosivo, sin goteo de agua
	Calidad del aire: - vapores químicos - partículas mecánicas	IEC 721-3-3, unidad en funcionamiento, clase 3C2 IEC 721-3-3, unidad en funcionamiento, clase 3S2
Condiciones ambientales	Altitud	100% de capacidad de carga (sin reducción) hasta 1000 m, 1% de reducción para cada 100 m por encima de 1000 m; máx. 3000 m
	Vibración EN50178, EN60068-2-6	5–150 Hz Amplitud de vibración 0,25 mm (pico) a 5–15,8 Hz Aceleración máx. 1 G a 15,8–150 Hz
	Choque EN50178, EN60068-2-27	Prueba de caída UPS (para pesos aplicables UPS) Almacenamiento y envío: máx. 15 G, 11 ms (en el paquete)
	Tipo de protección	FR4-7: norma IP21/NEMA1 FR8: norma IP00
EMC (con ajustes por defecto)	Inmunidad	Cumple todos los estándares CEM
Seguridad		EN 50178 (1997), EN 60204-1 (1996), EN 60950 (2000, 3ª edición) (según corresponda), CE, UL, CUL, FI, GOST R, IEC 61800-5; (consulte la placa de características de la unidad para aprobaciones más detalladas)
	Tensión de entrada analógica	0+10 V, R_i = 200 k Ω , (-10 V+10 V control de joystick) Resolución 0,1%, precisión ±1%
	Intensidad de entrada analógica	$0(4)20$ mA, R_i = 250 Ω diferencial
	Entradas digitales (6)	Lógica positiva o negativa; 18–30 V _{CC}
	Tensión auxiliar	+24 V, ±15%, máx. 250 mA
Conexiones de control	Tensión de salida de referencia	+10 V, +3%, carga máx. 10 mA
	Salida analógica	0(4)20 mA; R _L máx. 500 Ω; Resolución 10 bits; Precisión ±2%
	Salidas digitales	Salida de colector abierto, 50 mA/48 V
	Salidas de relé	2 salidas de relé de conmutación programables Capacidad de interrupción: 24 V_{CC} / 8 A, 250 V_{CC} / 8 A, 125 V_{DC} / 0,4 A. Carga mín. de interrupción: 5 V/10 mA.
		oarga min. de interrapcion. o v/ 10 ma.

Tabla 18. Especificaciones técnicas de los inversores tamaño FR4-FR8 (INU)

	Protección contra sobretensión Protección contra subtensión	NXI_5: 911 V _{CC} ; NXI_6: 1200 V _{CC} NXI_5: 333 V _{CC} ; NXI_6: 460 V _{CC}
	Protección frente a fallos de puesta a tierra	En caso de fallo de puesta a tierra en el motor o en el cable del motor, solamente estará protegido el inversor
	Fase de salida	Si hay desconexiones de las fases de salida no constan
	Protección frente a sobreintensidad	Sí
Protección	Protección de sobretemperatura del convertidor	Sí
	Protección de sobrecarga del motor	Sí
	Protección contra bloqueo del motor	Sí
	Protección frente a baja carga del motor	Sí
	Protección de cortocircuito de las tensiones de referencia +24 V y +10 V	Sí

5.3.3.2 <u>Tamaños de unidad FI9-FI14</u>

Tabla 19. Especificaciones técnicas de los inversores tamaño FI9-FI14 (INU)

	Tensión de entrada U _{entrada}	465–800 V _{CC} (380–500 V _{CA}) 640–1100 V _{CC} (525–690 V _{CA}) La tensión de ondulación la tensión de alimentación del inversor generada durante la rectificación de la tensión CA de la frecuencia fundamental debe ser menor que 50 V pico a pico.
Conexión de	Corriente de entrada I _{in}	$[\sqrt{3} \times U_{mot} \times I_{mot} \times \cos \varphi] / [U_{in} \times 0.98]$
entrada de CA	Capacidad eléctrica de la batería de CC	FI9_5: 4950 µF; FI9_6: 3733 µF FI10_5: 9900 µF; FI10_6: 7467 µF FI12_5: 19800 µF; FI12_6: 14933 µF FI13_5: 29700 µF; FI13_6: 22400 µF FI14_5: 2 x 29700 µF; FI14_6: 2 x 22400 µF
	Retraso de marcha	5 s
	Tensión de salida U _{out}	3~ 0 - U _{in} / 1,4
Conexión del	Intensidad de salida continua	I _H : Temperatura ambiente máx. +40°C, capacidad de sobrecarga 1,5 x I _H (1 min./10 min.) I _L : Temperatura ambiente máx. +40°C, capacidad de sobrecarga 1,1 x I _L (1 min./10 min.)
motor	Par motor de inicio	I _S durante dos segundos, depende del motor
	Intensidad de pico	I _S para 2 seg. cada 20 seg.
	Frecuencia de salida	0–320 Hz; 7200 Hz (uso especial)
	Resolución de frecuencia	Depende de la aplicación
	Método de control	Control de frecuencia de U/f Control vectorial sin sensores de lazo abierto Control de frecuencia de bucle abierto Control vectorial de bucle abierto
Características de control	Frecuencia de conmutación	NXI_5: 1-10 kHz; Ajustes por defecto de fábrica 3,6 kHz NXI_6: 1-6 kHz; Ajustes por defecto de fábrica 1,5 kHz
	Referencia de frecuencia: - Entrada analógica - Referencia del panel	Resolución 0,1% (10 bits), precisión ±1% Resolución 0,01 Hz
	Punto de desexcitación del motor	30-320 Hz
	Tiempo de aceleración	0-3000 s
	Tiempo de deceleración	0-3000 s
	Par de frenado	Frenado de CC: 30% x T _N (sin freno)

Tabla 19. Especificaciones técnicas de los inversores tamaño FI9-FI14 (INU)

	Temperatura ambiente de trabajo	-10°C (sin escarcha) +40°C
	Temperatura de almacenamiento	-40° C+70° C
	Humedad relativa	De 0 a 95 % RH, sin condensación, anticorrosivo, sin goteo de agua
	Calidad del aire: - vapores químicos - partículas mecánicas	IEC 721-3-3, unidad en funcionamiento, clase 3C2 IEC 721-3-3, unidad en funcionamiento, clase 3S2
Condiciones	Altitud	100% de capacidad de carga (sin reducción) hasta 1000 m, 1% de reducción por cada 100 m por encima de 1000 m; máx. 2000 m
ambientales	Vibración EN50178, EN60068-2-6	Amplitud de vibración 0,25 mm (pico) a 5–31 Hz Aceleración máx. 1 G a 31–150 Hz
	Choque EN50178, EN60068-2-27	Prueba de caída UPS (para pesos aplicables UPS) Almacenamiento y envío: máx. 15 G, 11 ms (en el paquete)
	Pérdida de calor	P _{pérdida} [kW] _{aprox.} Pmot[kW] × 0,02
	Aire de refrigeración requerido	FI9: 1150 m ³ /h FI10: 1400 m ³ /h FI12: 2800 m ³ /h FI13: 4200 m ³ /h FI14: 2×4200 m ³ /h
	Tipo de protección	IP00
EMC (con ajustes por defecto)	Inmunidad	Se cumplen todos los requisitos de inmunidad de CEM, Nivel T
Seguridad		CE, UL, CUL EN 61800-5-1 (2003) (consulte la placa de características de la unidad para aprobaciones más detalladas)

Tabla 19. Especificaciones técnicas de los inversores tamaño FI9-FI14 (INU)

	Tensión de entrada analógica	0+10 V, R _i = 200 kΩ, (–10 V+10 V control de joystick) Resolución 0,1%, precisión ±1%
	Intensidad de entrada analógica	$0(4)20$ mA, R_i = 250 Ω diferencial
	Entradas digitales (6)	Lógica positiva o negativa; 18–30 V _{CC}
	Tensión auxiliar	+24 V, ±15%, máx. 250 mA
Conexiones de control	Tensión de salida de referencia	+10 V, +3%, carga máx. 10 mA
	Salida analógica	0(4)20 mA; R _L máx. 500 Ω; Resolución 10 bits; Precisión ±2%
	Salidas digitales	Salida de colector abierto, 50 mA/48 V
	Salidas de relé	2 salidas de relé de conmutación programables Capacidad de interrupción: 24 V_{CC} / 8 A, 250 V_{CC} / 8 A, 125 V_{CC} / 0,4 A. Carga mín. de interrupción: 5 V/10 mA.
	Protección contra sobretensión Protección contra subtensión	NXI_5: 911 V _{CC} ; NXI_6: 1200 V _{CC} NXI_5: 333 V _{CC} ; NXI_6: 460 V _{CC}
	Protección frente a fallos de puesta a tierra	En caso de fallo de puesta a tierra en el motor o en el cable del motor, solamente estará protegido el inversor
	Fase de salida	Si hay desconexiones de las fases de salida no constan
	Protección frente a sobreintensidad	Sí
Protección	Protección de sobretemperatura del convertidor	Sí
	Protección de sobrecarga del motor	Sí
	Protección contra bloqueo del motor	Sí
	Protección frente a baja carga del motor	Sí
	Protección de cortocircuito de las tensiones de referencia +24 V y +10 V	Sí

5.3.4 NXB = UNIDADES BRAKE CHOPPER

Las unidades brake chopper están disponibles en tamaños de bastidor FI9–FI14. Las especificaciones técnicas de las unidades brake chopper son las mismas que las de las unidades de inversor (consulte el Capítulo 5.3.3.2).

6. DOCUMENTACIÓN SUMINISTRADA

 $Vacon^{@}$ ofrece documentación técnica para los convertidores de frecuencia con interruptores según el estándar de diseño de Vacon Plc. La documentación se facilita en inglés.

El ámbito de suministro de Vacon Plc relativo a la documentación no incluye:

- Requisitos especiales
- Requisitos específicos de envío
- Requisitos específicos del cliente (p. ej. marcas, denominación, codificación, etc.)

Tabla 20. Documentación suministrada

Tipo de documento	Formato electrónico	Copias en papel
Tabla de conexiones de cable	dwg, dxf o pdf	3 juegos
Listado de piezas	dwg, dxf o pdf	3 juegos
Lista de cableado	dwg, dxf o pdf	3 juegos
Diagrama del circuito	dwg, dxf o pdf	3 juegos
Esquema de interruptores	dwg, dxf o pdf	3 juegos
Esquema del dispositivo	dwg, dxf o pdf	3 juegos
Manuales de Vacon (según corresponda)	pdf	3 juegos

6.1 EJEMPLOS DE DOCUMENTACIÓN

6.1.1 TABLA DE CONEXIONES DE CABLE

	۷	-KM8:2T1	-KM8:4T2	-KM8:6T3					-KM9:2T1	-KM9:4T2	-KM9:6T3																										DESIGNACIÓN DE PÁGINA	I PROY.		PÁGINA
01	Pos.	9/1	9/1	9/1	8/2	9/2	9/2	9/2	8/3	9/3	8/3	+								+																	DESIGNA	REVISIÓN PROY		PÁGINA
	TIPO TERM.	STVSS	STVS S	S SALS	STVS S	STVS S	STVS S	STVS S	STVS S	STVS S	STVS S																											ID. VACON		IDRIFAS
n	TERMINAL	-U2-XS5 1	2	3	4	5	9	7	8		10																											LISTA DE TERMINALES		Ξ_
0												+																										LISTA DE T		
	CABLE																																				TÍTULO			
	DESDE	-X18:T1	-X18:T2	-X18:T3					-X19:T1	-X19:T2	-X19:T3																											® 	N BY DRIVES	
	LÍNEA	37	38	39	40	41	42	43	44	45	46	+																									.FC		DRIVEN BY DRIVES	
ו	4	-X2:6	-X2:7	-U2-XS1:7	-X2:10	-X2:15	-X2: 16	-K10: A1	-K10:21	-K10:12	-K10:22	V0: 44	-X2:41	-X2:43	-U2.B:28	-U2.B:29			-U2.C:1	-U2.C:2	-U2.C:3	-02.C: 4	-U2.C:6	-U2.C:9	-U2.C:10		7.070	-018:3	-018:5					-Q19:1	-Q19:3	- C18:5	PROVEEDOR FC		_	
	Pos.	11/1	11/1	11/2	11/2	11/3	11/3	11/4	9//	9/2	8/2	4475	11/5	11/6	11/7	11/8	11/8	11/8	11/9	11/9	11/9	11/9	11/9	11/10	11/10	11/10	250	9/1	9/1	9/2	9/2	9/2	9/2	9/3	8/3	8/8				
-	TIPO TERM.	STVSS	STVSS	STVSS	STVS S	STVS S	STVS S	S SAAS	STVS S	STVS S	STVSS	0 0/1	STVSS	SIVSS	STVSS	STVS S	STVSS	STVS S	STVSS	STVSS	S SVIS	STVSS	STVS S	STVS S	STVSS	STVS S	0	STVSS	STVS S	STVSS	STVSS	STVS S	STVSS	STVSS	STVSS	SO S	CONSTRUCTOR DEL PANEL			
)	TERMINAL	-U2-XS1 1	2	3	4	5 2	9	7	8		10	*	-0z-A5z 1				9	-U2-XS3 1			4 4			80		10	,	-02-704 -			2					01	CONSTRU			
ı	CABLE																																							
•	DESDE C	-XT1:1	-XT1:2	-XT1:3	-XT1: 4	-F2: X2Q1-3	-XT1: 9	-XT1: 10	-XT1:5	-XK: 1	-XK: 3	0.67	-X3:2	-X3:3	-X3:4	-X3:5	-X3:6	-X3:7	-X3:8	-X3:9	-X3:10	-x3:12	-X3:13	-X3:14	-X3:15		7	-X18:L2	-X18:L3					-X19: L1	-X19: L2	-X19: L3				
	LÍNEA	-	2	3	4	5	9	7	8	6	10	2	12 42	13	14	15	16	17	18	19	20	22	23	24	25	26		28	29	30	31	32	33	34	35	36				

Figura 43. Ejemplo: tabla de conexiones de cable

6.1.2 LISTADO DE PIEZAS

	1	N		3		1		0	,	0	10		
LÍNE	LÍNEA NOMBRE (CANT.)	N°ARTÍCULO	DESCRIPCIÓN		FABRIC.	Pos	LÍNEA	LÍNEA NOMBRE (CANT.)	N°ARTÍCULO	DESCRIPCIÓN		FABRIC.	POS.
<u> </u>	1-A1	B91065101	Relé de supervisión de aislamiento	e aislamiento IRDH275B-435	Bender	6/4	21	-F16	F097203	Soporte de fusible PS201PRE 1P 125 A, 1000 V	KE 1P 125 A, 1000 V	Ferraz	4/8
<u> </u>	2 -EL1	MD 08 ASM 0001	lluminación de armario 24 Vcc,	ario 24 Vcc, 2x4 LED	Rifas	14/2	22		T088774	Fusible FD20GB100V8T, 8 A, 1000 VCC	A, 1000 VCC	Ferraz	1/5
["]	3 -EL2	MD 08 ASM 0001	lluminación de armario 24 Vcc.	ario 24 Vcc, 2x4 LED	Rifas	14/3	23	-F17	F097203	Soporte de fusible PS201PRE 1P 125 A, 1000 V	1E1P 125 A, 1000 V	Ferraz	4/9
 	4 -EL4	MD 08 ASM 0001	lluminación de armario 24 Vcc	ario 24 Vcc, 2x4 LED	Rifas	14/6	24		T088774	Fusible FD20GB100V8T, 8 A, 1000 VCC	A, 1000 VCC	Ferraz	4/9
l	5 -EL5	MD 08 ASM 0001	lluminación de armario 24 Vcc,	ario 24 Vcc, 2x4 LED	Rifas	14/8	25	-F18	C089495	Fusible FD20GB100V16T, 16 A, 1000 VCC	6 A, 1000 VCC	Ferraz	4/10
<u> </u>	9 -EL6	MD 08 ASM 0001	lluminación de armario 24 Vcc	ario 24 Vcc, 2x4 LED	Rifas	14/9	26		F097203	Soporte de fusible PS201PRE 1P 125 A, 1000 V	KE 1P 125 A, 1000 V	Ferraz	4/10
I	7 -ES1	FR515-1	Interruptor de final FR 515-1	R 515-1	Pizzato	14/2	27	-F19	C089495	Fusible FD20GB100V16T, 16 A, 1000 VCC	6 A, 1000 VCC	Ferraz	4/10
 	8 -ES2	FR515-1	Interruptor de final FR 515-1	R 515-1	Pizzato	14/3	28		F097203	Soporte de fusible PS201PRE 1P 125 A, 1000 V	(E1P 125 A, 1000 V	Ferraz	4/10
 	9 -ES4	FR515-1	Interruptor de final FR 515-1	R 515-1	Pizzato	14/6	29	-FS21	179200 1A	Fusible de 20 mm relleno de arena, 1 A	arena, 1 A.	Siba	5/5
-	10 -ES5	FR515-1	Interruptor de final FR 515-1	R 515-1	Pizzato	14/8	30		10113000	Soporte para fusible de 20	Soporte para fusible de 20 mm con LED, WSI 6/LD, 10-36 V	Weidmüller	5/5
-	11 -ES6	FR515-1	Interruptor de final FR 515-1	R 515-1	Pizzato	14/9	31	-FS22	179200 1A	Fusible de 20 mm relleno de arena, 1 A	arena, 1 A.	Siba	9/9
-	12 -F2	OEVA630D32D02-V1	Interruptor fusible - de bobina para mercado	Interruptor fusible - desconector OEVA 630D32D02, 630 A, 2P, bobina para mercado EE. UU. 115 VCA	ABB	1/7	32		10113000	Soporte para fusible de 20	Soporte para fusible de 20 mm con LED, WSI 6/LD, 10-36 V	Weidmüller	9/9
_	13 -F2 (2)	P320035	Semiconductor pr. fu DIN000	Semiconductor pr. fusible 6,9URD000PV016, 16 A, 690 V, DIN000	Ferraz	1/1	33	-FS23	179200 5A	Fusible de 20 mm relleno de arena, 5 A	arena, 5 A	Siba	2//
	14	Q302717	Fusible 9URD73PA1100, 1100 A,	100, 1100 A, 900 V	Ferraz	1/1	34		10113000	Soporte para fusible de 20	Soporte para fusible de 20 mm con LED, WSI 6/LD, 10-36 V	Weidmüller	2//2
_	15 -F4 (2)	6693	Fusible PV10 gG 4 A, 10x38 mm	10x38 mm	OEZ	5/1	35	-FS24	179200 5A	Fusible de 20 mm relleno de arena, 5 A	arena, 5 A	Siba	5/8
-	16 -F4	31112	Soporte de fusible AES 2P 32A	S 2P 32A	Wöhner	5/1	36		10113000	Soporte para fusible de 20	Soporte para fusible de 20 mm con LED, WSI 6/LD, 10-36 V	Weidmüller	5/8
-	17 -F5 (2)	6695	Fusible PV10 gG 6 A, 10x38 mm	10x38 mm	OEZ	5/1	37	-FS25	179200 1A	Fusible de 20 mm relleno de arena, 1 A	arena, 1 A.	Siba	6/9
-	18 -F5	31112	Soporte de fusible AES 2P 32A	S 2P 32A	Wöhner	5/1	38		10113000	Soporte para fusible de 20	Soporte para fusible de 20 mm con LED, WSI 6/LD, 10-36 V	Weidmüller	6/9
_	19 -F6	6703	Fusible PV10 gG 16 A, 10x38 mm	10x38 mm	OEZ	4/4	39	-FS26	179200 1A	Fusible de 20 mm relleno de arena, 1 A	arena, 1 A.	Siba	5/10
[[20	31113	Soporte de fusible AES 3P 32 A	S3P32A	Wöhner	1/5	40		10113000	Soporte para fusible de 20	Soporte para fusible de 20 mm con LED, WSI 6/LD, 10-36 V	Weidmüller	5/10
				CONSTRUCTOR DEL PANEL		PROVEEDOR FC	5		TÍTULO			DESIGNACIÓN DE PÁGINA	E PÁGINA
						>	AG	V D C O N	LIST	LISTA DE COMPONENTES	ID. VACON	REVISIÓN PROY.	
						l 		DRIVEN BY DRIVES			ID RIFAS	PÁGINA	
REV. FECHA	REV. FECHA MOTIVOS DE EMISIÓN	EMISIÓN										PÁGINAS DEL CAPÍTULO	PÍTULO

Figura 44. Ejemplo: listado de piezas

6.1.3 LISTA DE CABLEADO

	⋖	-X2:1	-X2:2	-X2:3	-X2:4	-X2:5	-X2:6	-X2:7	-X2:8	-X2:9	-X2:10		-X2:11	-X2:12	-X2: 13	-X2: 14	-X2: 15	-X2: 16	-X2: 17	-X2: 18	-X2:19	-X2:20		-X2:41	-X2:42		-X2:43	-X2:44		-U2-XS2:4	-U2-XS2:5		-X2:21	-X2:22	-X2:23	-X2:25	-X2:26					DESIGNACIÓN DE PÁGINA		REVISION PROY.	PÁGINA	PÁGINAS DEL CAPÍTULO
2	POS.	11/1	11/1	11/1	11/1	11/1	11/1	11/2	11/2	11/2	11/2		11/2	11/2	11/2	11/3	11/3	11/3	11/3	11/3	11/3	11/3		11/5	11/5		11/6	11/6		11/7	11/7		11/6	11/6	11/6	11/6	11/6					DE			PAC	PÁC
ו	TIPO DE CABLE	12x0,75 mm²		12x0,75 mm²		2x0,75 mm²	2x0,75 mm²		2x0,75 mm²	2x0,75 mm²		2x0,75 mm²	2x0,75 mm²		7x1,5 mm²	7x1,5 mm²	7x1,5 mm²	7x1,5 mm²	7x1,5 mm²							ID. VACON	ID RIFAS																			
	CABLE	-W2.1 1	2	e	4	5	9	7	8	6	10		-W2.2 1	2	3	4	2	9	7	00	6	10		-W2.3 1	2		-W2.4 1	2		-W2.5 1	2		-W2.6 1	2	3	4	D.						LISTA DE CABLES			
)E	-U2.A: 1	-U2.A:2	-U2.A:3	-U2.A:4	-U2.A:5	-U2.A:6	-U2.A:7	-U2.A:8	-U2.A:9	-U2.A: 10		-U2.A: 11	-U2.A:12	-U2.A: 13	-U2.A: 14	-U2.A: 15	-U2.A: 16	-U2.A: 17	-U2.A: 18	-U2.A: 19	-U2.A:20		-U2.B:1	-U2.B:2		-U2.B:3	-U2.B:4		-U2.B : 28	-U2.B:29		-U2.B:21	-U2.B:22	-U2.B:23	-U2.B:25	-U2.B:26					цілого			IVES	
	DESDE	ij	ņ	ņ	ņ	ņ	ņ	Ϋ́	Ϋ́	ņ	ή		ij	ij	.n-	.i.	'n	:0-	Ϋ́	Ϋ́	Ϋ́	'n		Ü-	ñ		ה <u>ר</u>	n-		Ω- -	'n-		ın-	n-	n-	ñ	ñ						()	NOUS N	DRIVEN BY DR	
	LÍNEA	36	37	38	39	40	41	42	43	44	45		46	47	48	49	20	51	52	23	54	22		26	22		28	29		09	61		62	63	64	65	99				_	OR FC		P		
וי	∢	M1 : U	M1 : V	M1 : W		-X1:1	-X1:2	-X1: 3	-X1: 4	-X1: 5	-X1: 6	-X1: 7	-X1:8	-X1: 9	-X1: 10		-X1: 11	-X1: 12	-X1: 13	-X1: 14	-X1: 15	-X1: 16	-X1: 17	-X1: 18	-X1: 19	-X1: 20		-X1: 21	-X1: 22	-X1: 23	-X1: 24	-X1: 25	-X1: 26		-X1: 27	-X1: 28	-X1: 29	-X1: 30	-X1: 31	-X1: 32		PROVEEDOR FC				
r	Pos.	1//2	1//2	1//2		1/01	1/01	10/1	10/1	1/01	10/1	10/2	10/2	10/2	10/2		10/2	10/2	10/2	10/3	10/3	10/3	10/3	10/3	10/3	10/3		10/6	10/6	10/6	10/6	10/6	10/6		10/8	10/8	10/8	10/8	10/8	10/8						
)	TIPO DE CABLE	-xmm²	-xmm²	-x-mm²		12x0,75 mm²		12x0,75 mm²		7 x1,5 mm²	7x1,5 mm²	7x1,5 mm²	7 x1,5 mm²	7 x1,5 mm²	7 x1,5 mm²		7 x1,5 mm²		CONSTRUCTOR DEL PANEI																											
1	CABLE		77	F3		-W1.1 1	2			S	9	7		6	10		-W1.2 1	2	е	4	ß	9		8	6	10		-W1.3 1		8	4	5	9		-W1.4 1	2	e	4	5	9						
1	DESDE	-L2 : U2	-L2:V2	-L2 : W2		-U1.A:1	-U1.A:2	-U1.A:3	-U1.A:4	-U1.A:5	-U1.A:6	-U1.A:7	-U1.A:8	-U1.A:9	-U1.A: 10		-U1.A:11	-U1.A:12	-U1.A:13	-U1.A:14	-U1.A: 15	-U1.A: 16	-U1.A: 17	-U1.A:18	-U1.A:19	-U1.A:20		-U1.B:21	-U1.B:22	-U1.B:23	-U1.B:24	-U1.B:25	-U1.B:26		-U1.C:22	-U1.C:23	-U1.C : 25	-U1.C : 26	-U1.C:28	-U1.C : 29						NO SOUTH ON
	LÍNEA	-	2	е		4	2	9	7	80	6	10	11	12	13		14	15	16	17	18	19	20	21	22	23		24	25	56	27	28	59		30	31	32	33	34	35				+	\perp	V 100

Figura 45. Ejemplo: lista de cableado

6.1.4 DIAGRAMA DEL CIRCUITO

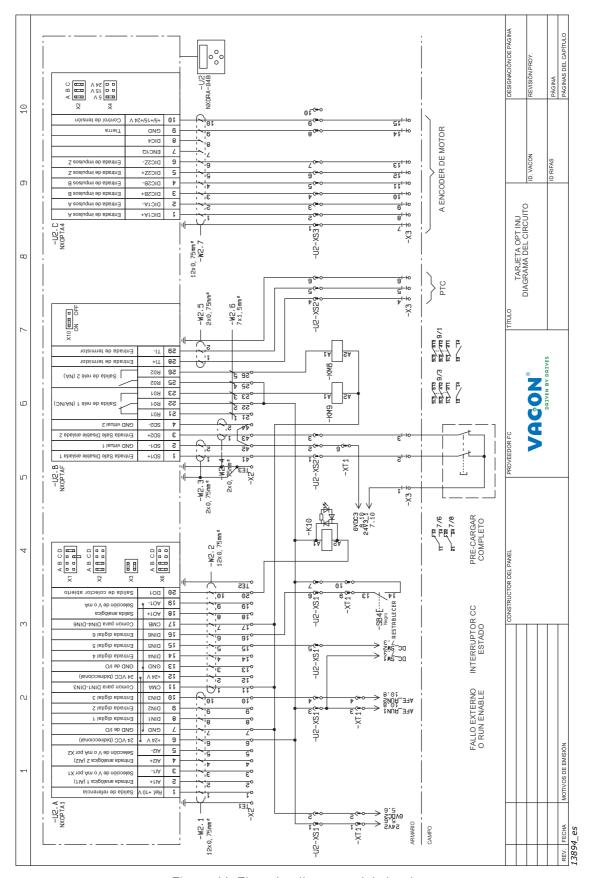


Figura 46. Ejemplo: diagrama del circuito

6.1.5 ESQUEMA DE INTERRUPTORES

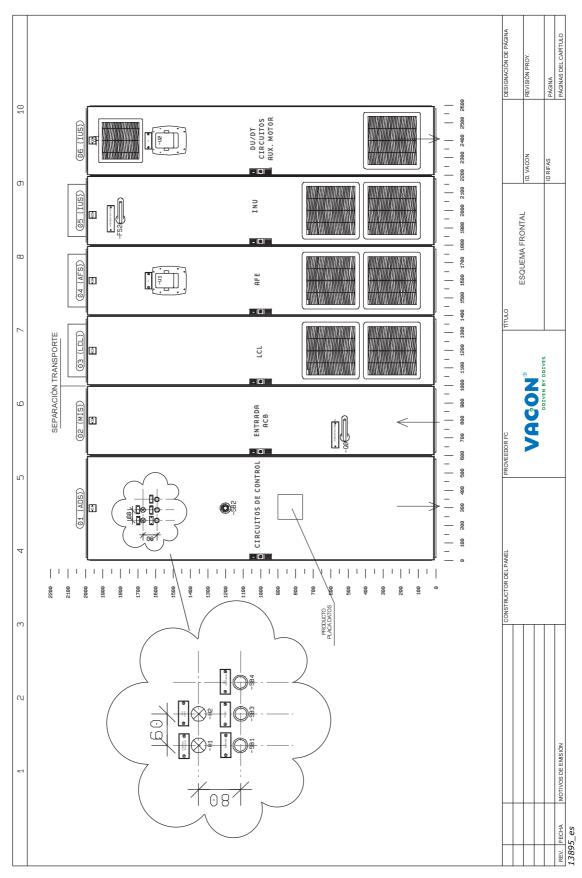


Figura 47. Ejemplo: esquema de interruptores

6.1.6 ESQUEMA DEL DISPOSITIVO

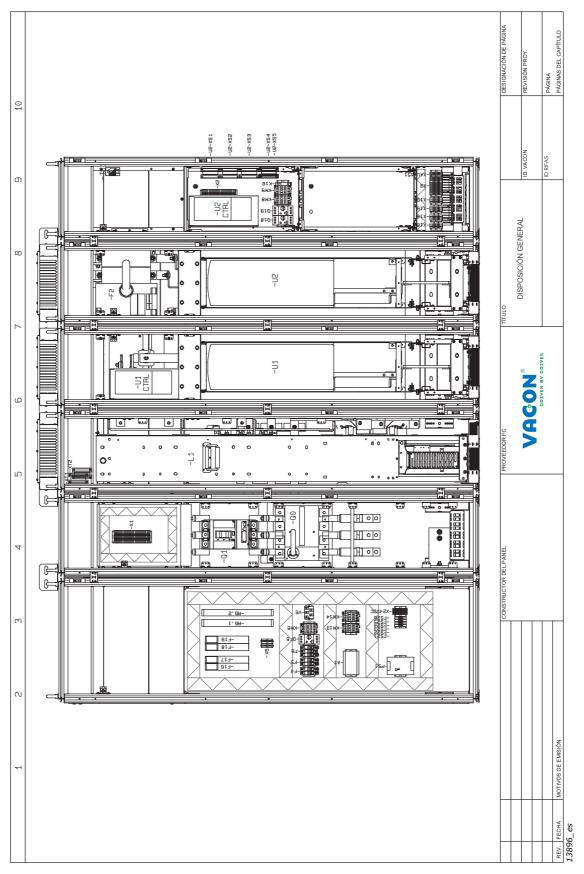


Figura 48. Ejemplo: esquema del dispositivo

Find your nearest Vacon office on the Internet at:

www.vacon.com

Manual authoring: documentation@vacon.com

Vacon Plc. Runsorintie 7 65380 Vaasa Finland

Subject to change without prior notice © 2014 Vacon Plc.

Rev. A