Contents

1 How to Read these Operating Instructions 5
Copyright, limitation of liability and revision rights 5
2 Safety 7
High voltage warning 7
Safety Instructions 7
General Warning 7
Before commencing repair work 8
Special conditions 8
Avoid unintended start 9
Safe Stop of the frequency converter 9
IT mains 11
3 Mechanical Installation 13
How to Get Started 13
Pre-installation 13
Planning the Installation Site 13
Receiving the Frequency Converter 14
Transportation and Unpacking 14
Lifting 15
Mechanical Dimensions 16
Rated Power 18
Mechanical Installation 19
Terminal Locations - Frame size D 21
Cooling and Airflow 23
Field Installation of Options 28
Installation of Duct Cooling Kit in Rittal Enclosures 28
Outside Installation/ NEMA 3R Kit for Rittal Enclosures 29
Installation on Pedestal 30
Installation of Input Plate Options 30
Installation of Mains Shield for Frequency Converters 31
4 Electrical Installation 33
Electrical Installation 33
Power Connections 33
Mains Connection 40
Fuses 41
Motor Insulation 42
Motor Bearing Currents 42
Control Cable Routing 43
Electrical Installation, Control Terminals 44
Connection Examples 46
Start/Stop 46
Pulse Start/Stop 46
Electrical Installation - additional 48
Electrical Installation, Control Cables 48
Switches S201, S202, and S801 50
Final Set-up and Test 51
Additional Connections 53
Mechanical Brake Control 53
Motor Thermal Protection 53
5 How to Operate the Frequency Converter 55
How to operate graphical LCP (GLCP) 55
Tips and tricks 62
6 How to Programme the Frequency Converter 65
How to Programme 65
Parameter list 97
0-** Operation and Display 98
1-** Load / Motor 100
2-** Brakes 101
3-** Reference / Ramps 102
4-** Limits / Warnings 103
5-** Digital In / Out 104
6-** Analog In / Out 106
8-** Communication and Options 108
11-** ADAP-KOOL LON 109
13-** Smart Logic Controller 110
14-** Special Functions 111
15-** FC Information 112
16-** Data Readouts 114
18-** Info \& Readouts 116
20-** FC Closed Loop 117
21-** Ext. Closed Loop 118
22-** Application Functions 120
23-** Time Based Funtions 122
25-** Pack Controller 123
26-** Analog I / O Option MCB 109 125
28-** Compressor Functions 126
7 General Specifications 127
8 Troubleshooting 133
Alarms and warnings 133
Warning/Alarm list 136
Index 139

1 How to Read these Operating Instructions Danfoss

1 How to Read these Operating Instructions

1.1.1 Copyright, limitation of liability and revision rights

This publication contains information proprietary to Danfoss. By accepting and using this manual the user agrees that the information contained herein will be used solely for operating equipment from Danfoss or equipment from other vendors provided that such equipment is intended for communication with Danfoss equipment over a serial communication link. This publication is protected under the Copyright laws of Denmark and most other countries.

Danfoss does not warrant that a software program produced according to the guidelines provided in this manual will function properly in every physical, hardware or software environment.

Although Danfoss has tested and reviewed the documentation within this manual, Danfoss makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall Danfoss be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in this manual, even if advised of the possibility of such damages. In particular, Danfoss is not responsible for any costs, including but not limited to those incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties.

Danfoss reserves the right to revise this publication at any time and to make changes to its contents without prior notice or any obligation to notify former or present users of such revisions or changes.

1.1.2 Symbols

Symbols used in this manual:

NB!

Indicates something to be noted by the reader.

Indicates a general warning.

\square

1.1.3 Available literature for ADAP-KOOL Drive AKD 102

Danfoss technical literature is available in print from your local Danfoss Sales Office or online at:
http://portal.danfoss.net/RA/Marketing/Product\ Information/AKD102/Pages/default.aspx

1.1.4 Abbreviations and standards

Table 1.1: Abbreviation and standards table .

2 Safety

2.1.1 High voltage warning

The voltage of the frequency converter and the MCO 101 option card is dangerous whenever it is connected to mains. Incorrect installation of the motor or frequency converter may causedeath, serious injury or damage to the equipment. Consequently, it is essential to comply with the instructions in this manual as well as local and national rules and safety regulations.

2.1.2 Safety Instructions

Prior to using functions directly or indirectly influencing personal safety (e.g. Safe Stop, Fire Mode or other functions either forcing the motor to stop or attempting to keep it functioning) a thorough risk analysis and system test must be carried through. The system tests must include testing failure modes regarding the control signalling (analog and digital signals and serial communication.

NB!

Before using Fire Mode, contact Danfoss

- Make sure the frequency converter is properly connected to earth.
- Do not remove mains connections, motor connections or other power connections while the frequency converter is connected to power.
- \quad Protect users against supply voltage.
- Protect the motor against overloading according to national and local regulations.
- The earth leakage current exceeds 3.5 mA .
- The [OFF] key is not a safety switch. It does not disconnect the frequency converter from mains.

2.1.3 General Warning

Warning:

Touching the electrical parts may be fatal - even after the equipment has been disconnected from mains.
Also make sure that other voltage inputs have been disconnected, (linkage of DC intermediate circuit), as well as the motor connection for kinetic back-up.

Before touching any potentially live parts of the frequency converter, wait at least as follows:
380-480 V, 110-250 kW, wait at least 20 minutes.
380-480 V, 315-1000 kW, wait at least 40 minutes.
525-690 V, 45-400 kW, wait at least 20 minutes.
525-690 V, 450-1200 kW, wait at least 30 minutes.
Shorter time is allowed only if indicated on the nameplate for the specific unit.
Leakage Current
The earth leakage current from the frequency converter exceeds 3.5 mA . According to IEC $61800-5-1$ a reinforced Protective Earth
connection must be ensured by means of: a min. $10 \mathrm{~mm}^{2} \mathrm{Cu}$ or $16 \mathrm{~mm}^{2} \mathrm{Al}$ PE-wire or an addtional PE wire - with the same cable cross
section as the Mains wiring - must be terminated separately.
Residual Current Device
This product can cause a D.C. current in the protective conductor. Where a residual current device (RCD) is used for extra protection,
only an RCD of Type B (time delayed) shall be used on the supply side of this product. See also RCD Application Note MN.90.GX.02.
Protective earthing of the frequency converter and the use of RCD's must always follow national and local regulations.

2.1.4 Before commencing repair work

1. Disconnect the frequency converter from mains
2. Disconnect DC bus terminals 88 and 89
3. Wait at least the time mentioned in section General Warning above
4. Remove motor cable

2.1.5 Special conditions

Electrical ratings

The rating indicated on the nameplate of the frequency converter is based on a typical 3-phase mains power supply, within the specified voltage, current and temperature range, which is expected to be used in most applications.

The frequency converters also support other special applications, which affect the electrical ratings of the frequency converter. Special conditions which affect the electrical ratings might be:

- Single phase applications
- High temperature applications which require de-rating of the electrical ratings
- Marine applications with more severe environmental conditions.

Other applications might also affect the electrical ratings.

Consult the relevant sections in this manual and in the for information about the electrical ratings.

Installation requirements:

The overall electrical safety of the frequency converter requires special installation considerations regarding:

- Fuses and circuit breakers for over-current and short-circuit protection
- Selection of power cables (mains, motor, brake, loadsharing and relay)
- Grid configuration (grounded delta transformer leg, IT,TN, etc.)
- Safety of low-voltage ports (PELV conditions).

Consult the relevant clauses in these instructions and in the for information about the installation requirements.

2.1.6 Caution

The frequency converter's DC link capacitors remain charged after power has been disconnected. To avoid an electrical shock hazard,
disconnect the frequency converter from the mains before carrying out maintenance. Before doing service on the frequency converter,
wait at least the amount of time indicated below:

Voltage	Power size	Min. Waiting Time
$380-480 \mathrm{~V}$	$110-250 \mathrm{~kW}$	20 minutes
Be aware that there may be high voltage on the DC link even when the LEDs are turned off.		

2.1.7 Installation at High Altitudes (PELV)

Installation at high altitude:
$380-480 \mathrm{~V}$: At altitudes above 3 km , please contact Danfoss regarding PELV.
$525-690 \mathrm{~V}$: At altitudes above 2 km , please contact Danfoss regarding PELV.

2.1.8 Avoid unintended start

While the frequency converter is connected to mains, the motor can be started/stopped using digital commands, bus commands, references or via the Local Control Panel.

- Disconnect the frequency converter from mains whenever personal safety considerations make it necessary to avoid unintended start.
- To avoid unintended start, always activate the [OFF] key before changing parameters.
- Unless terminal 37 is turned off, an electronic fault, temporary overload, a fault in the mains supply, or lost motor connection may cause a stopped motor to start.

2.1.9 Safe Stop of the frequency converter

For versions fitted with a Safe Stop terminal 37 input, the frequency converter can perform the safety function Safe Torque Off(As defined by draft CD IEC 61800-5-2) or Stop Category O (as defined in EN 60204-1).

It is designed and approved suitable for the requirements of Safety Category 3 in EN 954-1. This functionality is called Safe Stop. Prior to integration and use of Safe Stop in an installation, a thorough risk analysis on the installation must be carried out in order to determine whether the Safe Stop functionality and safety category are appropriate and sufficient. In order to install and use the Safe Stop function in accordance with the requirements of Safety Category 3 in EN 954-1, the related information and instructions of the must be followed! The information and instructions of the Operating Instructions are not sufficient for a correct and safe use of the Safe Stop functionality!

Prüf- und Zertifizierungsstelle im BG-PRÜFZERT

BGIA

Berufsgenossenschaftliches Institut für Arbeitsschutz

Hauptverband der gewerblichen Berufsgenossenschaffen

2.1.10 IT mains

T mains

Do not connect frequency converters with RFI-filters to mains supplies with a voltage between phase and earth of more than 440 V for 400 V converters and 760 V for 690 V converters.

For 400 V IT mains and delta earth (grounded leg), mains voltage may exceed 440 V between phase and earth.
For 690 V IT mains and delta earth (grounded leg), mains voltage may exceed 760 V between phase and earth.

Par. 14-50 RFI Filter can be used to disconnect the internal RFI capacitors from the RFI filter to ground.

2.1.11 Software Version and Approvals: ADAP-KOOL Drive AKD 102

This manual can be used with all ADAP-KOOL Drive AKD 102 frequency converters with software version 2.1.x.
The software version number can be seen from par. 15-43 Software Version.

2.1.12 Disposal instruction

Equipment containing electrical components must not be disposed of together with domestic waste.
It must be separately collected with electrical and electronic waste according to local and currently valid legislation.

3 Mechanical Installation

3.1 How to Get Started

3.1.1 About How to Install

This chapter covers mechanical and electrical installations to and from power terminals and control card terminals.
Electrical installation of options is described in the relevant Operating Instructions and Design Guide.

3.1.2 How to Get Started

The frequency converter is designed to achieve a quick and EMC-correct installation by following the steps described below.

Read the safety instructions before installing the unit.

Mechanical Installation

- Mechanical mounting

Electrical Installation

- Connection to Mains and Protecting Earth
- Motor connection and cables
- Fuses and circuit breakers
- Control terminals - cables

Quick setup

- Local Control Panel, LCP
- Automatic Motor Adaptation, AMA
- Programming

Frame size is depending on enclosure type, power range and mains voltage

Illustration 3.1: Diagram showing basic installation including mains, motor, start/stop key, and potentiometer for speed adjustment.

3.2 Pre-installation

3.2.1 Planning the Installation Site

NB!

Before performing the installation it is important to plan the installation of the frequency converter. Neglecting this may result in extra work during and after installation.

Select the best possible operation site by considering the following (see details on the following pages, and the respective Design Guides):

- Ambient operating temperature
- Installation method
- How to cool the unit
- Position of the frequency converter
- Cable routing
- Ensure the power source supplies the correct voltage and necessary current
- Ensure that the motor current rating is within the maximum current from the frequency converter
- If the frequency converter is without built-in fuses, ensure that the external fuses are rated correctly.

3.2.2 Receiving the Frequency Converter

When receiving the frequency converter please make sure that the packaging is intact, and be aware of any damage that might have occurred to the unit during transport. In case damage has occurred, contact immediately the shipping company to claim the damage.

3.2.3 Transportation and Unpacking

Before unpacking the frequency converter it is recommended that it is located as close as possible to the final installation site. Remove the box and handle the frequency converter on the pallet, as long as possible.

NB!
The card box cover contains a drilling master for the mounting holes in the D frames.

[^0]
3.2.4 Lifting

Always lift the frequency converter in the dedicated lifting eyes. For all D and E2 (IP00) enclosures, use a bar to avoid bending the lifting holes of the frequency converter.

Illustration 3.3: Recommended lifting method, size D.

NB!
The lifting bar must be able to handle the weight of the frequency converter. See Mechanical Dimensions for the weight of the different frame sizes. Maximum diameter for bar is 2.5 cm (1 inch). The angle from the top of the drive to the lifting cable should be $60^{\circ} \mathrm{C}$ or greater.

Mechanical dimensions, Frame size D							
Frame Size		D1		D2		D3	D4
		$\begin{array}{r} 110-132 k \\ \\ (380-1 \end{array}$	$\begin{aligned} & \text { at } 400 \mathrm{~V} \\ & 0 \mathrm{~V} \text {) } \end{aligned}$	$\begin{gathered} 160-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \end{gathered}$		$\begin{gathered} 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 160-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \end{gathered}$
$I P$NEMA		$\begin{gathered} 21 \\ \text { Type } 1 \end{gathered}$	$\begin{gathered} 54 \\ \text { Type } 12 \end{gathered}$	$\begin{gathered} 21 \\ \text { Type } 1 \end{gathered}$	54 Type 12	$\begin{gathered} 00 \\ \text { Chassis } \end{gathered}$	$\begin{gathered} 00 \\ \text { Chassis } \end{gathered}$
Shipping dimensions	Height	650 mm					
	Width	1730 mm	1730 mm	1730 mm	1730 mm	1220 mm	1490 mm
	Depth	570 mm					
Drive dimensions	Height	1209 mm	1209 mm	1589 mm	1589 mm	1046 mm	1327 mm
	Width	420 mm	420 mm	420 mm	420 mm	408 mm	408 mm
	Depth	380 mm	380 mm	380 mm	380 mm	375 mm	375 mm
	Max weight	104 kg	104 kg	151 kg	151 kg	91 kg	138 kg

3.2.6 Rated Power

Frame size		D1	D2	D3	D4
Enclosure protection	IP	21/54	21/54	00	00
	NEMA	Type 1/ Type 12	Type 1/ Type 12	Chassis	Chassis
Normal overload rated power-110\% overload torque		$\begin{gathered} 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 45-160 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 150-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 200-400 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 110-132 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 45-160 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 150-250 \mathrm{~kW} \text { at } 400 \mathrm{~V} \\ (380-480 \mathrm{~V}) \\ 200-400 \mathrm{~kW} \text { at } 690 \mathrm{~V} \\ (525-690 \mathrm{~V}) \end{gathered}$

3.3 Mechanical Installation

Preparation of the mechanical installation of the frequency converter must be done carefully to ensure a proper result and to avoid additional work during installation. Start taking a close look at the mechanical drawings at the end of this instruction to become familiar with the space demands.

3.3.1 Tools Needed

To perform the mechanical installation the following tools are needed:

- Drill with 10 or 12 mm drill
- Tape measure
- Wrench with relevant metric sockets ($7-17 \mathrm{~mm}$)
- Extensions to wrench
- \quad Sheet metal punch for conduits or cable glands in IP 21/Nema 1 and IP 54 units
- Lifting bar to lift the unit (rod or tube max. $\varnothing 25 \mathrm{~mm}$ (1 inch), able to lift minimum 400 kg (880 lbs)).
- Crane or other lifting aid to place the frequency converter in position
- A Torx T50 tool is needed to install the E1 in IP21 and IP54 enclosure types.

3.3.2 General Considerations

Space

Ensure proper space above and below the frequency converter to allow airflow and cable access. In addition space in front of the unit must be considered to enable opening of the door of the panel.

Illustration 3.4: Space in front of IP21/IP54 enclosure type, frame size D1 and D2.

Illustration 3.7: Space in front of IP21/IP54 enclosure type, frame size F2

Illustration 3.8: Space in front of IP21/IP54 enclosure type, frame size F4

Wire access
Ensure that proper cable access is present including necessary bending allowance. As the IP00 enclosure is open to the bottom cables must be fixed to the back panel of the enclosure where the frequency converter is mounted, i.e. by using cable clamps.
\square

3.3.3 Terminal Locations - Frame size D

Take the following position of the terminals into consideration when you design for cables access.

Illustration 3.9: Position of power connections, frame size D3 and D4

Be aware that the power cables are heavy and hard to bend. Consider the optimum position of the frequency converter for ensuring easy installation of the cables.

NB!
All D frames are available with standard input terminals or disconnect switch. All terminal dimensions can be found in the following table.

	IP 21 (NEMA 1) / IP 54 (NEMA 12)		IP 00 / Chassis	
	Frame size D1	Frame size D2	Frame size D3	Frame size D4
A	277 (10.9)	379 (14.9)	119 (4.7)	122 (4.8)
B	227 (8.9)	326 (12.8)	68 (2.7)	68 (2.7)
C	173 (6.8)	273 (10.8)	15 (0.6)	16 (0.6)
D	179 (7.0)	279 (11.0)	20.7 (0.8)	22 (0.8)
E	370 (14.6)	370 (14.6)	363 (14.3)	363 (14.3)
F	300 (11.8)	300 (11.8)	293 (11.5)	293 (11.5)
G	222 (8.7)	226 (8.9)	215 (8.4)	218 (8.6)
H	139 (5.4)	142 (5.6)	131 (5.2)	135 (5.3)
I	55 (2.2)	59 (2.3)	48 (1.9)	51 (2.0)
J	354 (13.9)	361 (14.2)	347 (13.6)	354 (13.9)
K	284 (11.2)	277 (10.9)	277 (10.9)	270 (10.6)
L	334 (13.1)	334 (13.1)	326 (12.8)	326 (12.8)
M	250 (9.8)	250 (9.8)	243 (9.6)	243 (9.6)
N	167 (6.6)	167 (6.6)	159 (6.3)	159 (6.3)
0	261 (10.3)	260 (10.3)	261 (10.3)	261 (10.3)
P	170 (6.7)	169 (6.7)	170 (6.7)	170 (6.7)
Q	120 (4.7)	120 (4.7)	120 (4.7)	120 (4.7)
R	256 (10.1)	350 (13.8)	98 (3.8)	93 (3.7)
S	308 (12.1)	332 (13.0)	301 (11.8)	324 (12.8)
T	252 (9.9)	262 (10.3)	245 (9.6)	255 (10.0)
U	196 (7.7)	192 (7.6)	189 (7.4)	185 (7.3)
V	260 (10.2)	273 (10.7)	260 (10.2)	273 (10.7)

Table 3.1: Cable positions as shown in drawings above. Dimensions in mm (inch).

3.3.4 Cooling and Airflow

Cooling

Cooling can be obtained in different ways, by using the cooling ducts in the bottom and the top of the unit, by taking air in and out the back of the unit or by combining the cooling possibilities.

Duct cooling

A dedicated option has been developed to optimize installation of IP00/chassis frequency converters in Rittal TS8 enclosures utilizing the fan of the frequency converter for forced air cooling of the backchannel. The air out the top of the enclosure could but ducted outside a facility so the heat loses from the backchannel are not dissipated within the control room reducing air-conditioning requirements of the facility.
Please see Installation of Duct Cooling Kit in Rittal enclosures, for further information.

Back cooling

The backchannel air can also be ventilated in and out the back of a Rittal TS8 enclosure. This offers a solution where the backchannel could take air from outside the facility and return the heat loses outside the facility thus reducing air-conditioning requirements.

NB!
A doorfan(s) is required on the enclosure to remove the heat losses not contained in the backchannel of the drive and any additional losses generated from other components installed inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (i.e. Rittal Therm software). If the drive is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3 and D4 drives is $391 \mathrm{~m}^{3} / \mathrm{h}$ (230 cfm).

Airflow

The necessary airflow over the heat sink must be secured. The flow rate is shown below.

Enclosure protection	Frame size	Door fan / Top fan airflow	Airflow over heatsink
IP21 / NEMA 1	D1 and D2	$170 \mathrm{~m}^{3} / \mathrm{h}(100 \mathrm{cfm})$	$765 \mathrm{~m}^{3} / \mathrm{h}(450 \mathrm{cfm})$
IP00 / Chassis	D3 and D4	$255 \mathrm{~m}^{3} / \mathrm{h}(150 \mathrm{cfm})$	$765 \mathrm{~m}^{3} / \mathrm{h}(450 \mathrm{cfm})$

Table 3.2: Heatsink Air Flow

NB!

The fan runs for the following reasons:

1. AMA
2. DC Hold
3. Pre-Mag
4. DC Brake
5. 60% of nominal current is exceeded
6. Specific heatsink temperature exceeded (power size dependent).

Once the fan is started it will run for minimum 10 minutes.

External ducts

If additional duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. Use the charts below to derate the frequency converter according to the pressure drop.

Illustration 3.12: E frame Derating vs. Pressure Change (Small Fan), P250T5 and P355T7-P400T7
Drive air flow: $650 \mathrm{cfm}\left(1105 \mathrm{~m}^{3} / \mathrm{h}\right.$)

3.3.5 Installation on the Wall - IP21 (NEMA 1) and IP54 (NEMA 12) Units

This only applies to frame sizes D1 and D2 . It must be considered where to install the unit.

Take the relevant points into consideration before you select the final installation site:

- Free space for cooling
- Access to open the door
- Cable entry from the bottom

Mark the mounting holes carefully using the mounting template on the wall and drill the holes as indicated. Ensure proper distance to the floor and the ceiling for cooling. A minimum of 225 mm (8.9 inch) below the frequency converter is needed. Mount the bolts at the bottom and lift the frequency converter up on the bolts. Tilt the frequency converter against the wall and mount the upper bolts. Tighten all four bolts to secure the frequency converter against the wall.

Illustration 3.13: Lifting method for mounting drive on wall

3.3.6 Gland/ Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

Cables are connected through the gland plate from the bottom. Remove the plate and plan where to place the entry for the glands or conduits. Prepare holes in the marked area on the drawing.

NB!
The gland plate must be fitted to the frequency converter to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the gland plate is not mounted, the frequency converter may trip on Alarm 69, Pwr. Card Temp

Illustration 3.14: Example of proper installation of the gland plate.

Frame size D1 + D2

Cable entries viewed from the bottom of the frequency converter - 1) Mains side 2) Motor side

3.3.7 I P21 Drip Shield Installation (Frame size D1 and D2)

To comply with the IP21 rating, a separate drip shield is to be installed as explained below:

- Remove the two front screws
- Insert the drip shield and replace screws
- Torque the screws to $5,6 \mathrm{Nm}$ ($50 \mathrm{in}-\mathrm{lbs}$)

3.4 Field Installation of Options

3.4.1 Installation of Duct Cooling Kit in Rittal Enclosures

This section deals with the installation of IPOO / chassis enclosed frequency converters with duct work cooling kits in Rittal enclosures. In addition to the enclosure a 200 mm base/plinth is required.

Illustration 3.16: Installation of IP00 in Rittal TS8 enclosure.

The minimum enclosure dimension is:

- D3 and D4 frame: Depth 500 mm and width 600 mm .

The maximum depth and width are as required by the installation. When using multiple frequency converters in one enclosure it is recommended that each drive is mounted on its own back panel and supported along the mid-section of the panel. These duct work kits do not support the "in frame" mounting of the panel (see Rittal TS8 catalogue for details). The duct work cooling kits listed in the table below are suitable for use only with IP 00 / Chassis frequency converters in Rittal TS8 IP 20 and UL and NEMA 1 and IP 54 and UL and NEMA 12 enclosures.

NB!

A doorfan(s) is required on the enclosure to remove the heat losses not contained in the backchannel of the drive and any additional losses generated from other components installed inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (i.e. Rittal Therm software). If the drive is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3 and D4 drives is $391 \mathrm{~m}^{3} / \mathrm{h}$ (230 cfm).

Ordering Information

Rittal TS-8 Enclosure	Frame D3 Kit Part No.	Frame D4Kit Part No.
1800 mm	176 F 1824	176F1823
2000 mm	176 F 1826	176F1825

Please see the Duct Kit Instruction Manual, 175R5640, for further information

External ducts

If additional duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. Please see section Cooling and Airflow for further information.

3.4.2 Outside Installation/ NEMA 3R Kit for Rittal Enclosures

This section is for the installation of NEMA 3R kits available for the frequency converter frames D3 and D4. These kits are designed and tested to be used with IP00/ Chassis versions of these frames in Rittal TS8 NEMA 3R or NEMA 4 enclosures. The NEMA-3R enclosure is an outdoor enclosure that provides a degree of protection against rain and ice. The NEMA-4 enclosure is an outdoor enclosure that provides a greater degree of protection against weather and hosed water.

The minimum enclosure depth is 500 mm (600 mm for E2 frame) and the kit is designed for a 600 mm (800 mm for E2 frame) wide enclosure. Other enclosure widths are possible, however additional Rittal hardware is required. The maximum depth and width are as required by the installation.

NB!
The current rating of drives in D3 and D4 frames are de-rated by 3\%, when adding the NEMA 3R kit. Drives in E2 frames require no derating

NB!
A doorfan(s) is required on the enclosure to remove the heat losses not contained in the backchannel of the drive and any additional losses generated from other components installed inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (i.e. Rittal Therm software). If the drive is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3 and D4 drives is $391 \mathrm{~m}^{3} / \mathrm{h}(230 \mathrm{cfm})$.

Ordering information

Frame size D3: 176F4600
Frame size D4: 176F4601
Frame size E2: 176F1852

[^1]
3.4.3 Installation on Pedestal

This section describes the installation of a pedestal unit available for the frequency converters frames D1 and D2. This is a 200 mm high pedestal that allows these frames to be floor mounted. The front of the pedestal has openings for input air to the power components.

The frequency converter gland plate must be installed to provide adequate cooling air to the control components of the frequency converter via the door fan and to maintain the IP21/NEMA 1 or IP54/NEMA 12 degrees of enclosure protections.

There is one pedestal that fits both frames D1 and D2. Its ordering number is 176F1827. The pedestal is standard for E1 frame.

3.4.4 Installation of Input Plate Options

This section is for the field installation of input option kits available for frequency converters in all D and E frames.
Do not attempt to remove RFI filters from input plates. Damage may occur to RFI filters if they are removed from the input plate.

[^2]| | $\begin{aligned} & 380-480 V \\ & 380-500 V \end{aligned}$ | Fuses | Disconnect Fuses | RFI | RFI Fuses | RFI Disconnect Fuses |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | All D1 power sizes | 176F8442 | 176F8450 | 176F8444 | 176F8448 | $176 F 8446$ |
| D2 | All D2 power sizes | 176F8443 | 176F8441 | 176F8445 | 176F8449 | 176 F 8447 |

	525-690 V	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect Fuses
D1	$\begin{aligned} & \text { AKD 102/ : 45-90 kW } \\ & : 37-75 \mathrm{~kW} \end{aligned}$	175L8829	175L8828	175 L 8777	NA	NA
	$\begin{aligned} & \text { AKD 102/: 110-160 kW } \\ & \text { : 90-132 kW } \end{aligned}$	175L8442	175L8445	175 L 8777	NA	NA
D2	All D2power sizes	175 L 8827	175L8826	175L8825	NA	NA

For further information, please see the Instruction Sheet, 175R5795

3.4.5 Installation of Mains Shield for Frequency Converters

This section is for the installation of a mains shield for the frequency converter series with D1, D2 and E1 frames. It is not possible to install in the IP00/ Chassis versions as these have included as standard a metal cover. These shields satisfy VBG-4 requirements.

Ordering numbers:

Frames D1 and D2 : 176F0799

NB!
For further information, please see the Instruction Sheet, 175R5923

4 Electrical Installation

4.1 Electrical Installation

4.1.1 Power Connections

Cabling and Fusing

NB! Cables General All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. UL applications require $75^{\circ} \mathrm{C}$ copper conductors. 75 and $90^{\circ} \mathrm{C}$ copper conductors are thermally acceptable for the frequency converter to use in non UL applications.

The power cable connections are situated as shown below. Dimensioning of cable cross section must be done in accordance with the current ratings and local legislation. See the Specifications section for details.

For protection of the frequency converter, the recommended fuses must be used or the unit must be with built-in fuses. Recommended fuses can be seen in the tables of the fuse section. Always ensure that proper fusing is made according to local regulation

The mains connection is fitted to the mains switch if this is included.

Abstract

NB! The motor cable must be screened/armoured. If an unscreened/unarmoured cable is used, some EMC requirements are not complied with. Use a screened/armoured motor cable to comply with EMC emission specifications. For more information, see EMC specifications in the Design Guide.

See section General Specifications for correct dimensioning of motor cable cross-section and length.

Screening of cables:

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance.

Connect the motor cable screen to both the de-coupling plate of the frequency converter and to the metal housing of the motor.
Make the screen connections with the largest possible surface area (cable clamp). This is done by using the supplied installation devices within the frequency converter.

Cable-length and cross-section:

The frequency converter has been EMC tested with a given length of cable. Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency

When frequency converters are used together with Sine-wave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the instruction in par. 14-01 Switching Frequency.

Term. no.	96	97	98	99	
	U	V	W	$\mathrm{PE}^{1)}$	Motor voltage 0-100\% of mains voltage. 3 wires out of motor
	U1	V1	W1	PE ${ }^{1}$	Delta-connected
	W2	U2	V2	PE1)	6 wires out of motor
	U1	V1	W1	$\mathrm{PE}^{1)}$	Star-connected U2, V2, W2 $\mathrm{U} 2, \mathrm{~V} 2$ and W 2 to be interconnected separately.

${ }^{1)}$ Protected Earth Connection

NB!
In motors without phase insulation paper or other in-
sulation reinforcement suitable for operation with volt-
age supply (such as a frequency converter), fit a Sine-
wave filter on the output of the frequency converter.

Illustration 4.1: Compact IP 21 (NEMA 1) and IP 54 (NEMA 12), frame size D1

Illustration 4.2: Compact IP 21 (NEMA 1) and IP 54 (NEMA 12) with disconnect, fuse and RFI filter, frame size D2

1)	AUX Relay			5)	Brake			
	01	02	03		-R	+R		
	04	05	06		81	82		
2)	Temp Switch			6)	SMPS Fuse (see fuse tables for part number)			
	106	104	105	7)	AUX Fan			
3)	Line				100	101	102	103
	R	S	T		L1	L2	L1	L2
	91	92	93	8)	Fan Fuse (see fuse tables for part number)			
	L1	L2	L3	9)	Mains ground			
4)	Load sharing			10)	Motor			
	-DC +DC				U	V	W	
	88				96	97	98	
					T1	T2	T3	

Illustration 4.3: Compact IP 00 (Chassis), frame size D3

Illustration 4.4: Compact IP 00 (Chassis) with disconnect, fuse and RFI filter, frame size D4

1) AUX Relay

01	02	03
04	05	06

2) Temp Switch

106104105
3) Line

R	S	T
91	92	93
L1	L2	L3

4) Load sharing
-DC +DC
$88 \quad 89$
5) Brake
-R $\quad+\mathrm{R}$
8182
6) SMPS Fuse (see fuse tables for part number)
7) AUX Fan
$\begin{array}{llll}100 & 101 & 102 & 103\end{array}$
L1 L2 L1 L2
8) Fan Fuse (see fuse tables for part number)
9) Mains ground
10) Motor

U	V	W
96	97	98

T1	T2	T3

Illustration 4.6: Position of earth terminals IP21 (NEMA type 1) and IP54 (NEMA type 12)

NB!

D2 and D4 shown as examples. D1 and D3 are equivalent.

4.1.2 Earthing

The following basic issues need to be considered when installing a frequency converter, so as to obtain electromagnetic compatibility

 (EMC).- Safety earthing: Please note that the frequency converter has a high leakage current and must be earthed appropriately for safety reasons. Apply local safety regulations.
- High-frequency earthing: Keep the earth wire connections as short as possible.

Connect the different earth systems at the lowest possible conductor impedance. The lowest possible conductor impedance is obtained by keeping the conductor as short as possible and by using the greatest possible surface area.
The metal cabinets of the different devices are mounted on the cabinet rear plate using the lowest possible HF impedance. This avoids having different HF voltages for the individual devices and avoids the risk of radio interference currents running in connection cables that may be used between the devices. The radio interference will have been reduced.
In order to obtain a low HF impedance, use the fastening bolts of the devices as HF connection to the rear plate. It is necessary to remove insulating paint or similar from the fastening points.

4.1.3 Extra Protection (RCD)

ELCB relays, multiple protective earthing or earthing can be used as extra protection, provided that local safety regulations are complied with.

In the case of an earth fault, a DC component may develop in the fault current.

If ELCB relays are used, local regulations must be observed. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up.

See also the section Special Conditions in the Design Guide.

4.1.4 RFI Switch

Mains supply isolated from earth

If the frequency converter is supplied from an isolated mains source (, floating delta and grounded delta) or TT/TN-S mains with grounded leg, the RFI switch is recommended to be turned off (OFF) via par. 14-50 RFI Filter. For further reference, see IEC 364-3. In case optimum EMC performance is needed, parallel motors are connected or the motor cable length is above 25 m , it is recommended to set par. 14-50 RFI Filter to [ON].
In OFF, the internal RFI capacities (filter capacitors) between the chassis and the intermediate circuit are cut off to avoid damage to the intermediate circuit and to reduce the earth capacity currents (according to IEC 61800-3).
Please also refer to the application note VLT on IT mains, MN.90.CX.O2. It is important to use isolation monitors that are capable for use together with power electronics (IEC 61557-8).

4.1.5 Torque

When tightening all electrical connections it is very important to tighten with the correct torque. Too low or too high torque results in a bad electrical connection. Use a torque wrench to ensure correct torque

Illustration 4.7: Always use a torque wrench to tighten the bolts.

Frame size	Terminal	Torque	Bolt size
D1, D2, D3 and D4	Mains Motor	$19 \mathrm{Nm}(168 \mathrm{in}-\mathrm{lbs})$	M10
Load sharing Brake	$9.5 \mathrm{Nm}(84 \mathrm{in}-\mathrm{lbs})$	M8	

4.1.6 Shielded Cables

It is important that shielded and armoured cables are connected in a proper way to ensure high EMC immunity and low emissions.

Connection can be made using either cable glands or clamps:

- EMC cable glands: Generally available cable glands can be used to ensure an optimum EMC connection.
- EMC cable clamp: Clamps allowing easy connection are supplied with the frequency converter.

4.1.7 Motor Cable

The motor must be connected to terminals $\mathrm{U} / \mathrm{T} 1 / 96, \mathrm{~V} / \mathrm{T} 2 / 97, \mathrm{~W} / \mathrm{T} 3 / 98$. Earth to terminal 99 . All types of three-phase asynchronous standard motors can be used with a frequency converter unit. The factory setting is for clockwise rotation with the frequency converter output connected as follows:

Terminal No.	Function
$96,97,98,99$	Mains U/T1, V/T2, W/T3
	Earth

- Terminal U/T1/96 connected to U-phase
- Terminal V/T2/97 connected to V-phase
- Terminal W/T3/98 connected to W-phase

The direction of rotation can be changed by switching two phases in the motor cable or by changing the setting of par. 4-10 Motor Speed Direction. Motor rotation check can be performed using par.1-28 Motor Rotation Check and following the steps shown in the display.

4.1.8 Load Sharing

Terminal No.	Function
88,89	Loadsharing

The connection cable must be screened and the max. length from the frequency converter to the DC bar is limited to 25 metres (82 feet). Load sharing enables linking of the DC intermediate circuits of several frequency converters.

Please note that mains disconnect may not isolate the frequency converter due to DC link connection

4.1.9 Shielding against Electrical Noise

Before mounting the mains power cable, mount the EMC metal cover to ensure best EMC performance.

NOTE: The EMC metal cover is only included in units with an RFI filter.

4.1.10 Mains Connection

Mains must be connected to terminals 91,92 and 93 . Earth is connected to the terminal to the right of terminal 93.

Terminal No.	Function
$91,92,93$	Mains R/L1, S/L2, T/L3
94	Earth

Check the name plate to ensure that the mains voltage of the frequency converter matches the power supply of your plant.

Ensure that the power supply can supply the necessary current to the frequency converter.

If the unit is without built-in fuses, ensure that the appropriate fuses have the correct current rating.

4.1.11 External Fan Supply

Frame size D-E-F

In case the frequency converter is supplied by DC or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.

Terminal No.	Function
100,101	Auxiliary supply S, T
102,103	Internal supply S, T

The connector located on the power card provides the connection of line voltage for the cooling fans. The fans are connected from factory to be supplied form a common AC line (jumpers between 100-102 and 101-103). If external supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101. A 5 Amp fuse should be used for protection. In UL applications this should be LittleFuse KLK-5 or equivalent.

4.1.12 Fuses

Branch circuit protection:

In order to protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuited and over-current protected according to national/international regulations.

Short-circuit protection:

The frequency converter must be protected against short-circuit to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned below to protect service personnel and equipment in case of an internal failure in the drive. The frequency converter provides full short-circuit protection in case of a short-circuit on the motor output.

Over-current protection

Provide overload protection to avoid fire hazard due to overheating of the cables in the installation. The frequency converter is equipped with an internal over-current protection that can be used for upstream overload protection (UL-applications excluded). See par. 4-18 Current Limit. Moreover, fuses or circuit breakers can be used to provide the over-current protection in the installation. Over-current protection must always be carried out according to national regulations.

Non UL compliance

If $\mathrm{UL} / \mathrm{CUL}$ is not to be complied with, we recommend using the following fuses, which will ensure compliance with EN50178:

P110 - P250	$380-480 \mathrm{~V}$	type gQ
P315-P450	$380-480 \mathrm{~V}$	type gR

380-480 V, frame size D

The fuses below are suitable for use on a circuit capable of delivering 100,000 Arms (symmetrical), 240 V , or 480 V , or 500 V , or 600 V depending on the drive voltage rating. With the proper fusing the drive Short Circuit Current Rating (SCCR) is 100,000 Arms.

Table 4.1: Frame size D, Line fuses, 380-480 V

4.1.13 Mains Disconnectors - Frame Size D

Frame size	Power \& Voltage	Type
D1/D3	P110-P132 380-480V \& P110-P160 525-690V	ABB OETL-NF200A
D2/D4	P160-P250 $380-480 \mathrm{~V} \&$ P200-P400 525-690V	ABB OETL-NF400A

4.1.14 Motor Insulation

For motor cable lengths \leq the maximum cable length listed in the General Specifications tables the following motor insulation ratings are recommended because the peak voltage can be up to twice the DC link voltage, 2.8 times the mains voltage, due to transmission line effects in the motor cable. If a motor has lower insulation rating it recommended to use a du/ dt or sine wave filter.

Nominal Mains Voltage	Motor Insulation
$U_{N} \leq 420 \mathrm{~V}$	Standard $\mathrm{U}_{\mathrm{LL}}=1300 \mathrm{~V}$
$420 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 500 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1600 \mathrm{~V}$
$500 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 600 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1800 \mathrm{~V}$
$600 \mathrm{~V}<\mathrm{U}_{\mathrm{N}} \leq 690 \mathrm{~V}$	Reinforced $\mathrm{U}_{\mathrm{LL}}=2000 \mathrm{~V}$

4.1.15 Motor Bearing Currents

All motors installed with 110 kW or higher power drives should have NDE (Non-Drive End) insulated bearings installed to eliminate circulating bearing currents. To minimize DE (Drive End) bearing and shaft currents proper grounding of the drive, motor, driven machine, and motor to the driven machine is required.

Standard Mitigation Strategies:

1. Use an insulated bearing
2. Apply rigorous installation procedures

- Strictly follow the EMC Installation guideline
- Provide a good high frequency connection between the motor and the frequency converter for instance by screened cable which has a 360° connection in the motor and the frequency converter
- Provide a low impedance path from frequency converter to building ground/earth and from the motor to building ground/earth. This can be difficult for pumps
- Make a direct earth connection between the motor and load machine
- Reinforce the PE so the high frequency impedance is lower in the PE
- Ensure the motor and load motor are aligned

3. Lower the IGBT switching frequency
4. Modify the inverter waveform, 60° AVM vs. SFAVM
5. Install a shaft grounding system or use an isolating coupling between motor and load
6. Apply conductive lubrication
7. If the application allows, avoid running at low motor speeds by using the minimum speed settings of the drive .
8. Try to ensure the line voltage is balanced to ground. This can be difficult for IT, TT, TN-CS or Grounded leg systems
9. Use a dU/dt or sine wave filter

4.1.16 Control Cable Routing

Tie down all control wires to the designated control cable routing as shown in the picture. Remember to connect the shields in a proper way to ensure optimum electrical immunity.

Fieldbus connection

Connections are made to the relevant options on the control card. For details see the relevant fieldbus instruction. The cable must be placed to the left inside the frequency converter and tied down together with other control wires (see picture).

Control card wiring path for the D3. Control card wiring for the D1, D2 and D4 use the same path.

Control card wiring path for the F1/F3. Control card wiring for the F2/F4 use the same path.

In the Chassis (IP00) and NEMA 1 units it is also possible to connect the fieldbus from the top of the unit as shown on the picture to the right. On the NEMA 1 unit a cover plate must be removed.
Kit number for fieldbus top connection: 176F1742

Installation of 24 Volt external DC Supply

Torque: 0.5-0.6 Nm (5 in-lbs)
Screw size: M3

No.	Function
$35(-), 36(+)$	24 V external DC supply

24 VDC external supply can be used as low-voltage supply to the control card and any option cards installed. This enables full operation of the LCP (including parameter setting) without connection to mains. Please note that a warning of low voltage will be given when 24 VDC has been connected; however, there will be no tripping.

Use 24 VDC supply of type PELV to ensure correct galvanic isolation (type PELV) on the control terminals of the frequency converter.

4.1.17 Access to Control Terminals

All terminals to the control cables are located beneath the LCP. They are accessed by opening the door of the IP21/ 54 version or removing the covers of the IPOO version.

4.1.18 Electrical Installation, Control Terminals

To connect the cable to the terminal:

1. Strip insulation by about $9-10 \mathrm{~mm}$
2. Insert a screwdriver ${ }^{11}$ in the square hole.
3. Insert the cable in the adjacent circular hole.
4. Remove the screwdriver. The cable is now mounted in the terminal.

To remove the cable from the terminal:

1. Insert a screw driver ${ }^{1)}$ in the square hole.
2. Pull out the cable.
${ }^{1)} \mathrm{Max} .0 .4 \times 2.5 \mathrm{~mm}$

4.2 Connection Examples

4.2.1 Start/ Stop

Terminal $18=$ par. 5-10 Terminal 18 Digital Input [8] Start Terminal 27 = par. 5-12 Terminal 27 Digital Input [0] No operation (Default coast inverse)

Terminal 37 = Safe stop

4.2.2 Pulse Start/ Stop

Terminal $18=$ par. 5-10 Terminal 18 Digital Input [9] Latched start Terminal 27= par. 5-12 Terminal 27 Digital Input [6] Stop inverse

Terminal 37 = Safe stop

4.2.3 Speed Up/ Down

Terminals 29/ 32 = Speed up/ down:.

Terminal 18 = par. 5-10 Terminal 18 Digital InputStart [9] (default)

Terminal 27 = par. 5-12 Terminal 27 Digital Input Freeze reference [19]

Terminal $29=$ par. 5-13 Terminal 29 Digital InputSpeed up [21] Terminal 32 = par. 5-14 Terminal 32 Digital Input Speed down [22]

Note: Terminal 29 only in FC x02 ($\mathrm{x}=$ series type).

4.2.4 Potentiometer Reference

Voltage reference via a potentiometer:

Reference Source $1=[1]$ Analog input 53 (default)
Terminal 53, Low Voltage $=0$ Volt
Terminal 53, High Voltage $=10$ Volt
Terminal 53, Low Ref./Feedback $=0$ RPM
Terminal 53, High Ref./Feedback $=1500$ RPM
Switch S201 = OFF (U)

4.3 Electrical Installation - additional

4.3.1 Electrical Installation, Control Cables

Illustration 4.10: Diagram showing all electrical terminals without options.
Terminal 37 is the input to be used for Safe Stop. For instructions on Safe Stop installation please refer to the section Safe Stop Installation in the frequency converter Design Guide. See also sections Safe Stop and Safe Stop Installation.

Very long control cables and analogue signals may in rare cases and depending on installation result in $50 / 60 \mathrm{~Hz}$ earth loops due to noise from mains supply cables.

If this occurs, it may be necessary to break the screen or insert a 100 nF capacitor between screen and chassis.

The digital and analog inputs and outputs must be connected separately to the frequency converter common inputs (terminal 20,55,39) to avoid earth currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.

Input polarity of control terminals

[^3] optimum electrical immunity.

4.3.2 Switches S201, S202, and S801

Switches S201 (A53) and S202 (A54) are used to select a current ($0-20 \mathrm{~mA}$) or a voltage (-10 to 10 V) configuration of the analog input terminals 53 and 54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See drawing Diagram showing all electrical terminals in section Electrical Installation.

Default setting:

S201 (A53) = OFF (voltage input)
S202 (A54) = OFF (voltage input)
S801 (Bus termination) $=$ OFF

When changing the function of S201, S202 or S801 be careful not to use force for the switch over. It is recommended to remove the LCP fixture (cradle) when operating the switches. The switches must not be operated with power on the frequency converter.

4.4 Final Set-up and Test

To test the set-up and ensure that the frequency converter is running, follow these steps.

Step 1. Locate the motor name plate

Step 2. Enter the motor name plate data in this parameter list. To access this list first press the [QUICK MENU] key then select "Q2 Quick Setup".

1.	Par. 1-20 Motor Power [kW] Par. 1-21 Motor Power [HP]
2.	Par. 1-22 Motor Voltage
3.	Par. 1-23 Motor Frequency
4.	Par. 1-24 Motor Current
5.	Par. 1-25 Motor Nominal Speed

Step 3. Activate the Automatic Motor Adaptation (AMA)
Performing an AMA will ensure optimum performance. The AMA measures the values from the motor model equivalent diagram.

1. Connect terminal 37 to terminal 12 (if terminal 37 is available).
2. Connect terminal 27 to terminal 12 or set par. 5-12 Terminal 27 Digital Input to 'No function' (par. 5-12 Terminal 27 Digital Input [0])
3. Activate the AMA par. 1-29 Automatic Motor Adaptation (AMA).
4. Choose between complete or reduced AMA. If a Sine-wave filter is mounted, run only the reduced AMA, or remove the Sine-wave filter during the AMA procedure.
5. Press the [OK] key. The display shows "Press [Hand on] to start".
6. Press the [Hand on] key. A progress bar indicates if the AMA is in progress.

Stop the AMA during operation

1. Press the [OFF] key - the frequency converter enters into alarm mode and the display shows that the AMA was terminated by the user.

Successful AMA

1. The display shows "Press [OK] to finish AMA".
2. Press the [OK] key to exit the AMA state.

Unsuccessful AMA

1. The frequency converter enters into alarm mode. A description of the alarm can be found in the Warnings and Alarms chapter.
2. "Report Value" in the [Alarm Log] shows the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number along with the description of the alarm will assist you in troubleshooting. If you contact Danfoss for service, make sure to mention number and alarm description.

NB!

Unsuccessful AMA is often caused by incorrectly registered motor name plate data or a too big difference between the motor power size and the frequency converter power size.

Step 4. Set speed limit and ramp time

Par. 3-02 Minimum Reference
Par. 3-03 Maximum Reference
Table 4.2: Set up the desired limits for speed and ramp time.

Par. 4-11 Motor Speed Low Limit [RPM] or par. 4-12 Motor Speed Low Limit [Hz]
Par. 4-13 Motor Speed High Limit [RPM] or par. 4-14 Motor Speed High Limit [Hz]

4.5 Additional Connections

4.5.1 Mechanical Brake Control

In hoisting/ lowering applications, it is necessary to be able to control an electro-mechanical brake:

- Control the brake using any relay output or digital output (terminal 27 or 29).
- Keep the output closed (voltage-free) as long as the frequency converter is unable to 'support' the motor, for example due to the load being too heavy
- Select Mechanical brake control [32] in par. 5-4* for applications with an electro-mechanical brake.
- \quad The brake is released when the motor current exceeds the preset value in par. 2-20 Release Brake Current.
- The brake is engaged when the output frequency is less than the frequency set in par. 2-21 Activate Brake Speed [RPMJor par. 2-22 Activate Brake Speed [Hz], and only if the frequency converter carries out a stop command.

If the frequency converter is in alarm mode or in an over-voltage situation, the mechanical brake immediately cuts in.

4.5.2 Parallel Connection of Motors

The frequency converter can control several parallel-connected motors. The total current consumption of the motors must not exceed the rated output current $\mathrm{I}_{\mathrm{M}, \mathrm{N}}$ for the frequency converter.
NB!
Installations with cables connected in a common joint
as in the illustration below, is only recommended for
short cable lengths.

NB!
When motors are connected in parallel, par. 1-29 Automatic Motor Adaptation (AMA) cannot be used.

NB!

The electronic thermal relay (ETR) of the frequency converter cannot be used as motor protection for the individual motor in systems with parallel-connected motors. Provide further motor protection by e.g. thermistors in each motor or individual thermal relays (circuit breakers are not suitable as protection).

Problems may arise at start and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start and at low RPM values.

4.5.3 Motor Thermal Protection

The electronic thermal relay in the frequency converter has received UL-approval for single motor protection, when par. 1-90 Motor Thermal Protectioris set for ETR Trip and par. 1-24 Motor Current is set to the rated motor current (see motor name plate).
For thermal motor protection it is also possible to use the MCB 112 PTC Thermistor Card option. This card provides ATEX certificate to protect motors in explosion hazardous areas, Zone $1 / 21$ and Zone 2/22. Please refer to the Design Guide for further information.

5 How to Operate the Frequency Converter

5.1.1 Three ways of operating

The frequency converter can be operated in 3 ways:

1. Graphical Local Control Panel (GLCP), see 5.1.2
2. RS-485 serial communication or USB, both for PC connection, see 5.1.4

If the frequency converter is fitted with fieldbus option, please refer to relevant documentation.

5.1.2 How to operate graphical LCP (GLCP)

The following instructions are valid for the GLCP (LCP 102).

The GLCP is divided into four functional groups:

1. Graphical display with Status lines.
2. Menu keys and indicator lights (LED's) - selecting mode, changing parameters and switching between display functions.
3. Navigation keys and indicator lights (LEDs).
4. Operation keys and indicator lights (LEDs).

Graphical display:

The LCD-display is back-lit with a total of 6 alpha-numeric lines. All data is displayed on the LCP which can show up to five operating variables while in [Status] mode.

Display lines:

a. Status line: Status messages displaying icons and graphics.
b. Line 1-2: Operator data lines displaying data and variables defined or chosen by the user. By pressing the [Status] key, up to one extra line can be added.
c. Status line: Status messages displaying text.

The display is divided into 3 sections:

Top section (a) shows the status when in status mode or up to 2 variables when not in status mode and in the case of Alarm/Warning.

The number of the Active Set-up (selected as the Active Set-up in par. 0-10 Active Set-up) is shown. When programming in another Set-up than the Active Set-up, the number of the Set-up being programmed appears to the right in brackets.

The Middle section (b) shows up to 5 variables with related unit, regardless of status. In case of alarm/warning, the warning is shown instead of the variables.

The Bottom section (c) always shows the state of the frequency converter in Status mode.

It is possible to toggle between three status read-out displays by pressing the [Status] key.
Operating variables with different formatting are shown in each status screen - see below.

Several values or measurements can be linked to each of the displayed operating variables. The values / measurements to be displayed can be defined via par. 0-20 Display Line 1.1 Small, par. 0-21 Display Line 1.2 Small, par. 0-22 Display Line 1.3 Small, par. 0-23 Display Line 2 Large and par. 0-24 Display Line 3 Large, which can be accessed via [QUICK MENU], "Q3 Function Setups", "Q3-1 General Settings", "Q3-13 Display Settings".

Each value / measurement readout parameter selected in par. 0-20 Display Line 1.1 Smal/to par. 0-24 Display Line 3 Large has its own scale and number of digits after a possible decimal point. Larger numeric values are displayed with few digits after the decimal point.
Ex.: Current readout
5.25 A; 15.2 A 105 A.

Status display I:

This read-out state is standard after start-up or initialization. Use [INFO] to obtain information about the value/measurement linked to the displayed operating variables (1.1, 1.2, 1.3, 2, and 3).
See the operating variables shown in the display in this illustration. 1.1, 1.2 and 1.3 are shown in small size. 2 and 3 are shown in medium size.

Status display II:

See the operating variables (1.1, 1.2, 1.3, and 2) shown in the display in this illustration.
In the example, Speed, Motor current, Motor power and Frequency are selected as variables in the first and second lines.
$1.1,1.2$ and 1.3 are shown in small size. 2 is shown in large size.

Status display III:

This state displays the event and action of the Smart Logic Control. For further information, see section Smart Logic Control.

Display Contrast Adjustment

Press [status] and [$\mathbf{\Delta}$] for darker display
Press [status] and [\mathbf{v}] for brighter display

Indicator lights (LEDs):

If certain threshold values are exceeded, the alarm and/or warning LED lights up. A status and alarm text appear on the control panel.
The On LED is activated when the frequency converter receives power from mains voltage, a DC bus terminal, or an external 24 V supply. At the same time, the back light is on.

- Green LED/On: Control section is working.
- Yellow LED/Warn.: Indicates a warning.
- Flashing Red LED/Alarm: Indicates an alarm.

GLCP keys

Menu keys

The menu keys are divided into functions. The keys below the display and indicator lamps are used for parameter set-up, including choice of display indication during normal operation.

[Status]

indicates the status of the frequency converter and/or the motor. 3 different readouts can be chosen by pressing the [Status] key: 5 line readouts, 4 line readouts or Smart Logic Control.

Use [Status] for selecting the mode of display or for changing back to Display mode from either the Quick Menu mode, the Main Menu mode or Alarm mode. Also use the [Status] key to toggle single or double read-out mode.

[Quick Menu]

allows quick set-up of the frequency converter. The most common ADAP-KOOL Drive AKD 102 functions can be programmed here.

The [Quick Menu] consists of

- My Personal Menu
- Quick Set-up
- Function Set-up
- Changes Made
- Loggings

The Function set-up provides quick and easy access to all parameters required for the majority of ADAP-KOOL Drive AKD 102 applications including most VAV and CAV supply and return fans, cooling tower fans, Primary, Secondary and Condenser Water Pumps and other pump, fan and compressor applications. Amongst other features it also includes parameters for selecting which variables to display on the LCP, digital preset speeds, scaling of analog references, closed loop single zone and multi-zone applications and specific functions related to Fans, Pumps and Compressors.

The Quick Menu parameters can be accessed immediately unless a password has been created via par. 0-60 Main Menu Password, par. 0-61 Access to Main Menu w/o Password, par. 0-65 Personal Menu Password or par. 0-66 Access to Personal Menu w/o Password.
It is possible to switch directly between Quick Menu mode and Main Menu mode.

[Main Menu]

is used for programming all parameters. The Main Menu parameters can be accessed immediately unless a password has been created via par. 0-60 Main Menu Password, par. 0-61 Access to Main Menu w/o Password,par. 0-65 Personal Menu Password or par. 0-66 Access to Personal Menu w/o Password. For the majority of ADAP-KOOL Drive AKD 102 applications it is not necessary to access the Main Menu parameters but instead the Quick Menu, Quick Set-up and Function Set-up provides the simplest and quickest access to the typical required parameters.
It is possible to switch directly between Main Menu mode and Quick Menu mode.
Parameter shortcut can be carried out by pressing down the [Main Menu] key for 3 seconds. The parameter shortcut allows direct access to any parameter.

[Alarm Log]

displays an Alarm list of the five latest alarms (numbered A1-A5). To obtain additional details about an alarm, use the arrow keys to manoeuvre to the alarm number and press [OK]. Information is displayed about the condition of the frequency converter before it enters the alarm mode.

The Alarm \log button on the LCP allows access to both Alarm log and Maintenance log.

[Back]

reverts to the previous step or layer in the navigation structure.

[Cancel]

last change or command will be cancelled as long as the display has not been changed.

[Info]

displays information about a command, parameter, or function in any display window. [Info] provides detailed information when needed.

Exit Info mode by pressing either [Info], [Back], or [Cancel].

Navigation Keys

The four navigation arrows are used to navigate between the different choices available in [Quick Menu], [Main Menu] and [Alarm Log]. Use the keys to move the cursor.
[OK] is used for choosing a parameter marked by the cursor and for enabling the change of a parameter.

Operation Keys for local control are found at the bottom of the control panel.

[Hand On]

enables control of the frequency converter via the GLCP. [Hand On] also starts the motor, and it is now possible to enter the motor speed data by means of the arrow keys. The key can be selected as Enable [1] or Disable [0] via par. 0-40 [Hand on] Key on LCP.
The following control signals will still be active when [Hand On] is activated:

- [Hand On] - [Off] - [Auto on]
- Reset
- Coasting stop inverse
- Reversing
- Set-up select Isb - Set-up select msb
- Stop command from serial communication
- Quick stop
- DC brake
NB! External stop signals activated by means of control signals or a serial bus will override a "start" command via the LCP.

[Off]

stops the connected motor. The key can be selected as Enable [1] or Disable [0] via par. 0-41 [Off] Key on LCP. If no external stop function is selected and the [Off] key is inactive the motor can only be stopped by disconnecting the mains supply.

[Auto on]

enables the frequency converter to be controlled via the control terminals and/or serial communication. When a start signal is applied on the control terminals and/or the bus, the frequency converter will start. The key can be selected as Enable [1] or Disable [0] via par. 0-42 [Auto on] Key on $\angle C$.

NB!

An active HAND-OFF-AUTO signal via the digital inputs has higher priority than the control keys [Hand on] - [Auto on].

[Reset]

is used for resetting the frequency converter after an alarm (trip). It can be selected as Enable [1] or Disable [0] via par. 0-43 [Reset] Key on LCP.

The parameter shortcut can be carried out by holding down the [Main Menu] key for 3 seconds. The parameter shortcut allows direct access to any parameter.

5.1.3 RS-485 bus connection

One or more frequency converters can be connected to a controller (or master) using the RS-485 standard interface. Terminal 68 is connected to the P signal ($T X+, R X+$), while terminal 69 is connected to the N signal (TX-,RX-).

If more than one frequency converter is connected to a master, use parallel connections.

Illustration 5.1: Connection example.

In order to avoid potential equalizing currents in the screen, earth the cable screen via terminal 61 , which is connected to the frame via an RC-link.

Bus termination

The RS-485 bus must be terminated by a resistor network at both ends. If the drive is the first or the last device in the RS-485 loop, set the switch S801 on the control card for ON.
For more information, see the paragraph Switches S201, S202, and S801.

5.1.4 How to connect a PC to the frequency converter

To control or program the frequency converter from a PC, install the PC-based Configuration Tool MCT 10.
The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface as shown in the ADAP-KOOL Drive AKD 102 Design Guide, chapter How to Install > Installation of misc. connections.

NB!

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection earth on the frequency converter. Use only an isolated laptop as PC connection to the USB connector on the frequency converter.

130BT308
Illustration 5.2: For control cable connections, see section on Control Terminals.

5.1.5 PC software tools

PC-based Configuration Tool MCT 10

All Frequency converters are equipped with a serial communication port. Danfoss provides a PC tool for communication between PC and frequency converter, PC-based Configuration Tool MCT 10. Please check the section on Available Literature for detailed information on this tool.

MCT 10 set-up software

MCT 10 has been designed as an easy to use interactive tool for setting parameters in our frequency converters. .
The MCT 10 set-up software will be useful for:

- Planning a communication network off-line. MCT 10 contains a complete frequency converter database
- Commissioning frequency converters on line
- \quad Saving settings for all frequency converters
- Replacing a frequency converter in a network
- Simple and accurate documentation of frequency converter settings after commissioning.
- Expanding an existing network
- Future developed frequency converters will be supported

MCT 10 set-up software supports Profibus DP-V1 via a Master class 2 connection. It makes it possible to on line read/write parameters in a frequency converter via the Profibus network. This will eliminate the need for an extra communication network.

Save frequency converter settings:

1. Connect a PC to the unit via USB com port. (Note: Use a PC, which is isolated from the mains, in conjunction with the USB port. Failure to do so may damage equipment.)
2. Open MCT 10 Set-up Software
3. Choose "Read from drive"
4. Choose "Save as"

All parameters are now stored in the PC.

Load frequency converter settings:

1. Connect a PC to the frequency converter via USB com port
2. Open MCT 10 Set-up software
3. Choose "Open"-stored files will be shown
4. Open the appropriate file
5. Choose "Write to drive"

All parameter settings are now transferred to the frequency converter.

A separate manual for MCT 10 Set-up Software is available: MG.10.Rx.yy.

The MCT 10 Set-up software modules

The following modules are included in the software package:

Ordering number:

Please order the CD containing MCT 10 Set-up Software using code number 130B1000.

5.1.6 Tips and tricks

Table 5.1: Tips and tricks

5.1.7 Quick transfer of parameter settings when using GLCP

Once the set-up of a frequency converter is complete, it is recommended to store (backup) the parameter settings in the GLCP or on a PC via MCT 10 Set-up Software Tool.

Stop the motor before performing any of these operations.

Data storage in LCP:

1. Go to par. 0-50 LCP Copy
2. Press the [OK] key
3. Select "All to LCP"
4. Press the [OK] key

All parameter settings are now stored in the GLCP indicated by the progress bar. When 100% is reached, press [OK].

The GLCP can now be connected to another frequency converter and the parameter settings copied to this frequency converter.

Data transfer from LCP to Frequency converter:

1. Go to par. 0-50 LCP Copy
2. Press the [OK] key
3. Select "All from LCP"
4. Press the [OK] key

The parameter settings stored in the GLCP are now transferred to the frequency converter indicated by the progress bar. When 100% is reached, press [OK].

5.1.8 Initialisation to default settings

There are two ways to initialise the frequency converter to default: Recommended initialisation and manual initialisation.
Please be aware that they have different impact according to the below description.

Recommended initialisation (via par. 14-22 Operation Mode)

1. Select par. 14-22 Operation Mode
2. Press [OK]
3. Select "Initialisation" (for NLCP select " 2 ")
4. Press [OK]
5. Remove power to unit and wait for display to turn off.
6. Reconnect power and the frequency converter is reset. Note that first start-up takes a few more seconds
7. Press [Reset]

Par. 14-22 Operation Mode initialises all except:
Par. 14-50 RFI Filter
Par. 8-30 Protocol
Par. 8-31 Address
Par. 8-32 Baud Rate
Par. 8-35 Minimum Response Delay
Par. 8-36 Max Response Delay
Par. 8-37 Maximum Inter-Char Delay
Par. 15-00 Operating Hours to par. 15-05 Over Volt's
Par. 15-20 Historic Log: Event to par. 15-22 Historic Log: Time
Par. 15-30 Alarm Log: Error Code to par. 15-32 Alarm Log: Time

NB!
Parameters selected in par. 0-25 My Personal Menu, will stay present, with default factory setting.

Manual initialisation

NB!

When carrying out manual initialisation, serial communication, RFI filter settings and fault log settings are reset. Removes parameters selected in par. 0-25 My Personal Menu.

1. Disconnect from mains and wait until the display turns off.

2a. Press [Status] - [Main Menu] - [OK] at the same time while power up for Graphical LCP (GLCP)
2b. Press [Menu] while power up for LCP 101, Numerical Display
3. Release the keys after 5 s
4. The frequency converter is now programmed according to default settings

This parameter initialises all except:
Par. 15-00 Operating Hours
Par. 15-03 Power Up's
Par. 15-04 Over Temp's
Par. 15-05 Over Volt's

6 How to Programme the Frequency Converter

6.1 How to Programme

6.1.1 Parameter Set-Up

Group	Title	Function
0-	Operation and Display	Parameters used to program the fundamental functions of the frequency converter and the LCP including: selection of language; selection of which variables are displayed at each position in the display (e.g. static duct pressure or condenser water return temperature can be displayed with the setpoint in small digits in the top row and feedback in large digits in the centre of the dispay); enabling/disabling of the LCP keys/buttons; passwords for the LCP; upload and download of commissioned parameters to/from the LCP and setting the built in clock.
1-	Load / Motor	Parameters used to configure the frequency converter for the specific application and motor including: open or closed loop operation; type of application such as compressor, fan or centrifugal pump; motor nameplate data; auto-tuning of the drive to the motor for optimum performance; flying start (typically used for fan applications) and motor thermal protection.
2-	Brakes	Parameters used to configure braking functions of the frequency converter which although not common in many ADAP-KOOL applications, can be useful on special fan applications. Parameters including: DC braking and resistor braking.
3-	Reference / Ramps	Parameters used to program the minimum and maximum reference limits of speed (RPM/Hz) in open loop or in actual units when operating in closed loop; digital/preset references; jog speed; definition of the source of each reference (e.g. which analog input the reference signal is connected to); ramp up and down times and digital potentiometer settings.
4-	Limits / Warnings	Parameters used to program limits and warnings of operation including: allowable motor direction; minimum and maximum motor speeds ; torque and current limits to protect the pump, fan or compressor driven by the motor; warnings for low/high current, speed, reference, and feedback; missing motor phase protection; speed bypass frequencies including semi-automatic setup of these frequencies (e.g. to avoid resonance conditions on cooling tower and other fans).
5-	Digital In / Out	Parameters used to program the functions of all digital inputs, digital outputs, relay outputs, pulse inputs and pulse outputs for terminals on the control card and all option cards.
6-	Analog In / Out	Parameters used to program the functions associated with all analog inputs and analog outputs for the terminals on the control card and General Purpose I/O option (MCB108) (note: NOT Analog I/O option MCB109, see parameter group 26-00) including: analog input live zero timeout function (which for example can be used to command a cooling tower fan to operate at full speed if the condenser water return sensor fails); scaling of the analog input signals (for example to match the analog input to the mA and pressure range of a static duct pressure sensor); filter time constant to filter out electrical noise on the analog signal which can sometimes occur when long cables are installed; function and scaling of the analog outputs (for example to provide an analog output representing motor current or kW to an analog input of a DDC controller) and to configure the analog outputs to be controlled by the BMS via a high level interface (HLI) (e.g. to control a chilled water valve) including ability to define a default value of these outputs in the event of the HLI failing.
8-	Communication and Options	Parameters used for configuring and monitoring functions associated with the serial communications / high level interface to the frequency converter
14-	Special Functions	Parameters used to configure special functions of the frequency converter including: setting of the switching frequency to reduce audible noise from the motor (sometimes required for fan applications); kinetic back-up function (especially useful for critical applications in semi-conductor installations where performance under mains dip/mains loss is important); mains imbalance protection; automatic reset (to avoid the need for a manual reset of Alarms); energy optimisation parameters (which typically do not need changing but enable fine tuning of this automatic function (if necessary) ensuring the frequency converter and motor combination operate at their optimum efficiency at full and partial load conditions) and auto-derating functions (which enable the frequency converter to continue operation at reduced performance under extreme operating conditions ensuring maximum up time).
15-	FC Information	Parameters providing operating data and other drive information including: operating and running hour counters; kWh counter; resetting of the running and kWh counters; alarm/fault log (where the past 10 alarms are logged along with any associated value and time) and drive and option card indentification parameters such as code number and software version.
16-	Data Readouts	Read only parameters which display the status/value of many operating variables which can be displayed on the LCP or viewed in this parameter group. These parameters can be particularly useful during commissioning when interfacing with a BMS via a high level interface.
18-	Info \& Readouts	Read only parameters which display the last 10 preventative maintenance log items, actions and time and the value of analog inputs and outputs on the Analog I/O option card which can be particularly useful during commissioning when interfacing with a BMS via a high level interface.
20-	FC Closed Loop	Parameters used to configure the closed loop PI(D) controller which controls the speed of the pump, fan or compressor in closed loop mode including: defining where each of the 3 possible feedback signals come from (e.g. which analog input or the BMS HLI); conversion factor for each of the feedback signals (e.g. where a pressure signal is used for indication of flow in an AHU or converting from pressure to temperature in a compressor application); engineering unit for the reference and feedback (e.g. Pa, kPa, mWg , in Wg , bar, $\mathrm{m} 3 / \mathrm{s}, \mathrm{m} 3 / \mathrm{h},{ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$ etc); the function (e.g. sum, difference, average, minimum or maximum) used to calculate the resulting feedback for single zone applications or the control philosophy for multi-zone applications; programming of the setpoint(s) and manual or auto-tuning of the $\operatorname{PI}(\mathrm{D})$ loop.

Table 6.1: Parameter Groups

Group	Title	Function
21-	Extended Closed Loop	Parameters used to configure the 3 extended closed loop PI(D) controllers which for example can be used to control external actuators (e.g. chilled water valve to maintain supply air temperature in a VAV system) including: engineering unit for the reference and feedback of each controller (e.g. ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ etc); defining the range of the reference/setpoint for each controller; defining where each of the references/ setpoints and feedback signals come from (e.g. which analog input or the BMS HLI); programming of the setpoint and manual or auto-tuning of each of the PI(D) controllers.
22-	Application Functions	Parameters used to monitor, protect and control pumps, fans and compressors including: no flow detection and protection of pumps (including auto-setup of this function); dry pump protection; end of curve detection and protection of pumps; sleep mode (especially useful for cooling tower and booster pump sets); broken belt detection (typically used for fan applications to detect no air flow instead of using a $\Delta \mathrm{p}$ switch installed across the fan); short cycle protection of compressors and pump flow compensation of setpoint (especially useful for secondary chilled water pump applications where the Δp sensor has been installed close to the pump and not acoss the furthest most significant load(s) in the system; using this function can compensate for the sensor installation and help to realise the maximum energy savings).
23-	Time Based Functions	Time based parameters including: those used to initiate daily or weekly actions based on the built in real time clock (e.g. change of setpoint for night set back mode or start/stop of the pump/fan/compressor start/stop of an external equipment); preventative maintenance functions which can be based on running or operating hour time intervals or on specific dates and times; energy log (especially useful in retrofit applications or where information of the actual historical load (kW) on the pump/fan/compressor is of interest); trending (especially useful in retrofit or other applications where there is an interest to log operating power, current, frequency or speed of the pump/fan/compressor for analysis and a payback counter).
24-	Application Functions 2	Parameters used to set-up Fire Mode and/or to control a bypass contactor/starter if designed into the system.
25-	Pack Controller	Parameters used to configure and monitor the built in compressor pack controller (typically used for pump booster sets).
26-	Analog I/O Option MCB 109	Parameters used to configure the Analog I/O option (MCB109) including: definition of the analog input types (e.g. voltage, Pt1000 or Ni1000) and scaling and definition of the analog output functions and scaling.
28-	Compressor Functions	Parameters related to compressor functions: - Discharge temperature limits/ monitoring - Day/ Night settings - PO Optimization - Injection control

Parameter descriptions and selections are displayed on the graphic (GLCP) or numeric (NLCP) display. (See relevant section for details.) Access the parameters by pressing the [Quick Menu] or [Main Menu] button on the control panel. The Quick Menu is used primarily for commissioning the unit at start-up by providing the parameters necessary to start operation. The Main Menu provides access to all parameters for detailed application programming.

All digital input/output and analog input/output terminals are multifunctional. All terminals have factory default functions suitable for the majority of ADAP-KOOL applications but if other special functions are required, they must be programmed as explained in parameter group 5 or 6 .

6.1.2 Quick Menu Mode

Parameter Data

The graphical display (GLCP) provides access to all parameters listed under the Quick Menus. To set parameters using the [Quick Menu] button - enter or change parameter data or settings in accordance with the following procedure:

1. Press Quick Menu button
2. Use the [$\mathbf{\Delta}$] and $[\mathbf{V}]$ buttons to find the parameter you want to change
3. Press [OK]
4. Use [$\mathbf{\Delta}$] and [\mathbf{V}] buttons to select the correct parameter setting
5. Press [OK]
6. To move to a different digit within a parameter setting, use the [4] and [-] buttons
7. Highlighted area indicates digit selected for change
8. Press [Cancel] button to disregard change, or press [OK] to accept change and enter the new setting

Example of Changing Parameter Data

Assume parameter 22-60, Broken Belt Function is set to [Off]. However, you want to monitor the fan-belt condition - non- broken or broken according to the folowing procedure:

1. Press Quick Menu key
2. Choose Function Setups with the [\mathbf{v}] button
3. Press [OK]
4. Choose Application Settings with the [\mathbf{V}] button
5. Press [OK]
6. Press [OK] again for Fan Functions
7. Choose Broken Belt Function by pressing [OK]
8. With [\mathbf{V}] button, choose [2] Trip

The frequency converter will now trip if a broken fan-belt is detected.

Select [My Personal Menu] to display only the parameters, which have been pre-selected and programmed as personal parameters. For example, an AHU or pump OEM may have pre-programmed these to be in My Personal Menu during factory commissioning to make on-site commissioning / fine tuning simpler. These parameters are selected in par. 0-25 Personal Menu. Up to 20 different parameters can be programmed in this menu.

If [No Operation] is selected in par. 5-12 Terminal 27 Digital Input, no connection to +24 V on terminal 27 is necessary to enable start. If [Coast Inverse] (factory default value) is selected in par. 5-12 Terminal 27 Digital Input, a connection to +24 V is necessary to enable start.

Select [Changes Made] to get information about:

- the last 10 changes. Use the up/down navigation keys to scroll between the last 10 changed parameters.
- the changes made since factory setting.

Select [Loggings] to get information about the display line read-outs. The information is shown as graphs.
Only display parameters selected in par. 0-20 and par. 0-24 can be viewed. It is possible to store up to 120 samples in the memory for later reference.

Efficient Parameter Set-up for ADAP-KOOL Applications

The parameters can easily be set up for the vast majority of the ADAP-KOOL applications only by using the [Quick Setup] option.
After pressing [Quick Menu], the different choices in the Quick Menu are listed. See also illustration 6.1 below and tables Q3-1 to Q3-4 in the following Function Setups section.

Example of using the Quick Setup option

Assume you want to set the Ramp Down Time to 100 seconds

1. Select [Quick Setup]. The first par. 0-01 Language in Quick Setup appears
2. Press [\mathbf{V}] repeatedly until par. 3-42 Ramp 1 Ramp Down Time appears with the default setting of 20 seconds
3. Press [OK]
4. Use the [4] button to highlight the 3rd digit before the comma
5. Change ' 0 ' to ' 1 ' by using the [$\mathbf{\Delta}$] button
6. Use the [\quad] button to highlight the digit ' 2 '
7. Change ' 2 ' to ' 0 ' with the [$\mathbf{~}$] button
8. Press [OK]

The new ramp-down time is now set to 100 seconds.
It is recommended to do the set-up in the order listed.

NB!

A complete description of the function is found in the parameter sections of these Operating Instructions.

Illustration 6.1: Quick Menu view.

The Quick Setup menu gives access to the 13 most important setup parameters of the drive. After programming the drive will, in most cases be ready for operation. The 13* Quick Setup parameters are shown in the table below. A complete description of the function is given in the parameter description sections of this manual.
The display showing depends on choices made in parameter 0-02 and $0-03$. The default setting of parameters 0-02 and 0-03 depends on which region of the world the frequency converter is supplied to but can be reprogrammed as required.

Par.	Designation	[Units]
$0-01$	Language	
$1-03$	Torque characteristics	$[\mathrm{kW}]$
$1-20$	Motor Power	$[\mathrm{HP}]$
$1-21$	Motor Power*	$[\mathrm{V}]$
$1-22$	Motor Voltage	$[\mathrm{Hz}]$
$1-23$	Motor Frequency	$[\mathrm{A}]$
$1-24$	Motor Current	$[\mathrm{RPM}]$
$1-25$	Motor Nominal Speed	$[\mathrm{Hz}]$
$1-39$	Motor Poles	$[\mathrm{Hz}]$
$4-12$	Motor Speed Low Limit*	
$4-14$	Motor Speed High Limit*	$[\mathrm{s}]$
$3-02$	Minimum Reference	$[\mathrm{s}]$
$3-03$	Maximum Reference	
$3-41$	Ramp 1 Ramp up Time	
$3-42$	Ramp 1 Ramp down Time	
$3-13$	Reference Site	
$5-10$	Terminal 18 Digital Input	
$1-29$	Automatic Motor Adaptation (AMA)	

Table 6.2: Quick Setup parameters

1-20 Motor Power [kW]

Range:

4.00 kW * \quad [0.09-3000.00 kW]

Function:

Enter the nominal motor power in kW according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit.
This parameter cannot be adjusted while the motor is running. Depending on the choices made in par. 0-03 Regional Settings, either par.1-20 Motor Power [kW] or par.1-21 Motor Power [HP] is made invisible.

1-21 Motor Power [HP]

Range:

$4.00 \mathrm{hp*} \quad[0.09-3000.00 \mathrm{hp}]$

Function:

Enter the nominal motor power in HP according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit.
This parameter cannot be adjusted while the motor is running.
Depending on the choices made in par. 0-03 Regional Settings, either par.1-20 Motor Power [kW] or par.1-21 Motor Power [HP] is made invisible.

6 How to Programme the Frequency Converter

NB!

This parameter cannot be adjusted while the motor is running.

1-24 Motor Current

Range:

7.20 A* [0.10-10000.00 A]

Function:

Enter the nominal motor current value from the motor nameplate data. This data is used for calculating motor torque, motor thermal protection etc.

NB! | This parameter cannot be adjusted while the motor is running. |
| :--- |

1-25 Motor Nominal Speed	
Range:	Function:
1420. RPM* $^{*}[100-60000 \mathrm{RPM}]$	Enter the nominal motor speed value from the motor nameplate data. This data is used for calcu-

NB!

This parameter cannot be changed while the motor is running.

4-12 Motor Speed Low Limit [Hz]

Range:

$0 \mathrm{~Hz}^{*} \quad$ [0 - par. $4-14 \mathrm{~Hz}$]

Function:

Enter the minimum limit for motor speed. The Motor Speed Low Limit can be set to correspond to the minimum output frequency of the motor shaft. The Speed Low Limit must not exceed the setting in par.4-14 Motor Speed High Limit [Hz].

4-14 Motor Speed High Limit [Hz]

Range:

```
50/60.0 [par. 4-12 - par. 4-19 Hz]
```

Hz*

Function:

Enter the maximum limit for motor speed. The Motor Speed High Limit can be set to correspond to the manufacturer's recommended maximum of the motor shaft. The Motor Speed High Limit must exceed the in par.4-12 Motor Speed Low Limit [Hz]. Only par.4-11 Motor Speed Low Limit [RPM] or par.4-12 Motor Speed Low Limit [Hz] will be displayed depending on other parameters in the Main Menu and depending on default settings dependant on global location.

NB!

Max. output frequency cannot exceed 10% of the inverter switching frequency (par.14-01 Switching Frequency).

3-02 Minimum Reference

Range:

Function:

0.000 Ref- [-999999.999 - par. 3-03 Referen- Enter the Minimum Reference. The Minimum Reference is the lowest value obtainable by summing erenceFeed-ceFeedbackUnit] backUnit* all references. The Minimum Reference value and unit matches the configuration choice made in par.1-00 Configuration Mode and par. 20-12 Reference/Feedback Unit, respectively.

NB!
This parameter is used in open loop only.

3-03 Maximum Reference

Range:

Function:

50.000 Ref- [par. 3-02-999999.999 Referen-erenceFeed-ceFeedbackUnit] backUnit*

Enter the maximum acceptable value for the remote reference. The Maximum Reference value and unit matches the configuration choice made in par.1-00 Configuration Mode and par. 20-12 Reference/Feedback Unit, respectively.

NB!

If operating with par.1-00 Configuration Mode set for Closed Loop [3], par. 20-14 Maximum Reference/Feedb. must be used.

Function:

Range:

Enter the ramp-up time, i.e. the acceleration time from 0 RPM to par.1-25 Motor Nominal Speed. Choose a ramp-up time such that the output current does not exceed the current limit in par. 4-18 Current Limit during ramping. See ramp-down time in par.3-42 Ramp 1 Ramp Down Time.
par. $3-41=\frac{\text { tacc } \times \text { nnorm }[\text { par. } 1-25]}{\operatorname{ref}[r p m]}[s]$

3-42 Ramp 1 Ramp Down Time

Range:		Function:
20.00 s*	[1.00-3600.00 s]	Enter the ramp-down time, i.e. the deceleration time from par.1-25 Motor Nominal Speed to 0 RPM. Choose a ramp-down time such that no over-voltage arises in the inverter due to regenerative operation of the motor, and such that the generated current does not exceed the current limit set in par. 4-18 Current Limit. See ramp-up time in par.3-41 Ramp 1 Ramp Up Time. $\text { par. } 3-42=\frac{t \text { dec } \times \text { nnorm }[\text { par. } 1-25]}{\operatorname{ref}[r p m]}[s]$
3-13 Reference Site		
Option:		Function:
Select which reference site to activate.		
[0] *	Linked to Hand / Auto	Use local reference when in Hand mode; or remote reference when in Auto mode.
[1]	Remote	Use remote reference in both Hand mode and Auto mode.
[2]	Local	Use local reference in both Hand mode and Auto mode.
		NB! When set to Local [2], the frequency converter will start with this setting again following a 'power down'.

5-10 Terminal 18 Digital Input

Option:

$[0]$	No operation	No reaction to signals transmitted to terminal.
$[1]$	Reset	Resets frequency converter after a TRIP/ALARM. Not all alarms can be reset.
$[2]$	Coast inverse	Leaves motor in free mode. Logic ' 0 ' $=>$ coasting stop. (Default Digital input 27): Coasting stop, inverted input (NC).
$[3]$	Coast and reset inverse	Reset and coasting stop Inverted input (NC). Leaves motor in free mode and resets the frequency converter. Logic ' 0 ' $=>$ coasting stop and reset.
$[5]$	DC-brake inverse	Inverted input for DC braking (NC). Stops motor by energizing it with a DC current for a certain time period. See par. 2-01 DC Brake Current to par. 2-03 DC Brake Cut In Speed $[R P M]$. The function is only active when the value in par. 2-02 DC Braking Time is different from 0. Logic ' $0^{\prime}=>$ DC braking.

[6]	Stop inverse	Stop Inverted function. Generates a stop function when the selected terminal goes from logical level '1' to '0'. The stop is performed according to the selected ramp time (par.3-42 Ramp 1 Ramp Down Time, par. 3-52 Ramp 2 Ramp Down Time, par. 3-62, par. 3-72).
		NB! When the frequency converter is at the torque limit and has received a stop command, it may not stop by itself. To ensure that the frequency converter stops, configure a digital output to Torque limit \& stop [27] and connect this digital output to a digital input that is configured as coast.
[7]	External Interlock	Same function as Coasting stop, inverse, but External Interlock generates the alarm message 'external fault' on the display when the terminal which is programmed for Coast Inverse is logic ' 0 '. The alarm message will also be active via digital outputs and relay outputs, if programmed for External Interlock. The alarm can be reset using a digital input or the [RESET] key if the cause for the External Interlock has been removed. A delay can be programmed in par. 22-00 External Interlock Delay, External Interlock Time. After applying a signal to the input, the reaction described above will be delayed with the time set in par. 22-00 External Interlock Delay.
[8] *	Start	Select start for a start/stop command. Logic ' 1 ' = start, logic ${ }^{\prime} 0$ ' $=$ stop. (Default Digital input 18)
[9]	Latched start	Motor starts, if a pulse is applied for min. 2 ms . Motor stops when Stop inverse is activated
[10]	Reversing	Changes direction of motor shaft rotation. Select Logic ' 1 ' to reverse. The reversing signal only changes the direction of rotation. It does not activate the start function. Select both directions in par.4-10 Motor Speed Direction. (Default Digital input 19).
[11]	Start reversing	Used for start/stop and for reversing on the same wire. Signals on start are not allowed at the same time.
[14]	Jog	Used for activating jog speed. See par.3-11 Jog Speed [Hz]. (Default Digital input 29)
[15]	Preset reference on	Used for shifting between external reference and preset reference. It is assumed that External/ preset [1] has been selected in par. 3-04 Reference Function. Logic '0' = external reference active; logic ' 1 ' = one of the eight preset references is active.
[16]	Preset ref bit 0	Enables a choice between one of the eight preset references according to the table below.
[17]	Preset ref bit 1	Enables a choice between one of the eight preset references according to the table below.
[18]	Preset ref bit 2	Enables a choice between one of the eight preset references according to the table below.
		Preset ref. bit 2 1 0 Preset ref. 0 0 0 0 Preset ref. 1 0 0 1 Preset ref. 2 0 1 0 Preset ref. 3 0 1 1 Preset ref. 4 1 0 0 Preset ref. 5 1 0 1 Preset ref. 6 1 1 0 Preset ref. 7 1 1 1
[19]	Freeze ref	Freezes actual reference. The frozen reference is now the point of enable/condition for Speed up and Speed down to be used. If Speed up/down is used, the speed change always follows ramp 2 (par. 3-51 Ramp 2 Ramp Up Time and par. 3-52 Ramp 2 Ramp Down Time) in the range 0 - par. 3-03 Maximum Reference. (For closed loop see par. 20-14, Maximum Reference/Feedb.).
[20]	Freeze output	Freezes actual motor frequency (Hz). The frozen motor frequency is now the point of enable/condition for Speed up and Speed down to be used. If Speed up/down is used, the speed change always follows ramp 2 (par. 3-51 Ramp 2 Ramp Up Time and par. 3-52 Ramp 2 Ramp Down Time) in the range 0 - par.1-23 Motor Frequency.
		NB! When Freeze output is active, the frequency converter cannot be stopped via a low 'start [13]' signal. Stop the frequency converter via a terminal programmed for Coasting inverse [2] or Coast and reset, inverse [3].

6 How to Programme the Frequency Converter

[21]	Speed up	For digital control of the up/down speed is desired (motor potentiometer). Activate this function by selecting either Freeze reference or Freeze output. When Speed up is activated for less than 400 msec . the resulting reference will be increased by 0.1%. If Speed up is activated for more than 400 msec . the resulting reference will ramp according to Ramp 1 in par.3-41 Ramp 1 Ramp Up Time.
[22]	Speed down	Same as Speed up [21].
[23]	Set-up select bit 0	Selects one of the four set-ups. Set par. 0-10 to Multi Set-up.
[24]	Set-up select bit 1	Same as Set-up select bit 0 [23]. (Default Digital input 32)
[34]	Ramp bit 0	Select which ramp to use. Logic " 0 " will select ramp 1 while logic " 1 " will select ramp 2.
[36]	Mains failure inverse	Select to activate function selected in par. 14-10 Mains Failure. Mains failure is active in the Logic " 0 " situation.
[39]	Day/ Night Control	
[52]	Run Permissive	The input terminal, for which the Run permissive has been programmed must be logic "1" before a start command can be accepted. Run permissive has a logic 'AND' function related to the terminal which is programmed for START [8], Jog [14] or Freeze Output [20], which means that in order to start running the motor, both conditions must be fulfilled. If Run Permissive is programmed on multiple terminals, Run permissive needs only be logic ' 1 ' on one of the terminals for the function to be carried out. The digital output signal for Run Request (Start [8], Jog [14] or Freeze output [20]) programmed in par. 5-3*, or par. 5-4*, will not be affected by Run Permissive.
[53]	Hand start	A signal applied will put the frequency converter into Hand mode as if button Hand On on the LCP has been pressed and a normal stop command will be overridden. If disconnecting the signal, the motor will stop. To make any other start commands valid, another digital input must be assign to Auto Start and a signal applied to this. The Hand On and Auto On buttons on the LCP has no impact. The Offbutton on the LCP will override Hand Startand Auto Start. Press either the Hand On or Auto On button to make Hand Start and Auto Start active again. If no signal on neither Hand Start nor Auto Start, the motor will stop regardless of any normal Start command applied. If signal applied to both Hand Start and Auto Start, the function will be Auto Start. If pressing the Off button on the LCP the motor will stop regardless of signals on Hand Start and Auto Start.
[54]	Auto start	A signal applied will put the frequency converter into Auto mode as if the LCP button Auto On has been pressed. See also Hand Start [53]
[55]	DigiPot Increase	Uses the input as an INCREASE signal to the Digital Potentiometer function described in parameter group 3-9*
[56]	DigiPot Decrease	Uses the input as a DECREASE signal to the Digital Potentiometer function described in parameter group 3-9*
[57]	DigiPot Clear	Uses the input to CLEAR the Digital Potentiometer reference described in parameter group 3-9*
[62]	Reset Counter A	Input for reset of counter A .
[63]	Counter B (up)	(Terminal 29 and 33 only) Input for increment counting in the SLC counter.
[65]	Reset Counter B	Input for reset of counter B.
[66]	Sleep Mode	Forces frequency converter into Sleep Mode (see par. 22-4*).
[78]	Reset Preventive Maintenance Word	Resets all data in par. 16-96 Maintenance Word to 0.
[120]	Lead Pump Start	Starts/ stops the lead pump (controlled by AKD 102).
[130]	Comp. 1 Interlock	The input signal must be low before the AKD 102 is able to start compressor 1.
[131]	Comp. 2 Interlock	The input signal must be low before the AKD 102 is able to start compressor 2.
[132]	Comp. 3 Interlock	The input signal must be low before the AKD 102 is able to start compressor 3.
[139]	Comp. 1 Inv. Interlock	The input signal must be high before the AKD 102 is able to start compressor 1.
[140]	Comp. 2 Inv. Interlock	The input signal must be high before the AKD 102 is able to start compressor 2.
[141]	Comp. 3 Inv. Interlock	The input signal must be high before the AKD 102 is able to start compressor 3.

1-29 Automatic Motor Adaptation (AMA)

Activate the AMA function by pressing [Hand on] after selecting [1] or [2]. See also the item Automatic Motor Adaptation in the Design Guide. After a normal sequence, the display will read: "Press [OK] to finish AMA". After pressing the [OK] key the frequency converter is ready for operation.

Note:

- For the best adaptation of the frequency converter, run AMA on a cold motor
- AMA cannot be performed while the motor is running

NB!
It is important to set motor par. 1-2* Motor Data correctly, since these form part of the AMA algorithm. An AMA must be performed to achieve optimum dynamic motor performance. It may take up to 10 min ., depending on motor power rating.

NB!
If one of the settings in par. 1- $2 *$ Motor Data is changed, par. 1-30 Stator Resistance (Rs) to par.1-39 Motor Poles, the advanced motor
parameters, will return to default setting.
This parameter cannot be adjusted while the motor is running.

NB!

Full AMA should be run without filter only while reduced AMA should be run with filter.

See section: Application Examples > Automatic Motor Adaptation in the Design Guide.

6.1.3 Function Setups

The Function set-up provides quick and easy access to all parameters required for the majority of ADAP-KOOL applications including most VAV and CAV supply and return fans, cooling tower fans, Primary, Secondary and Condenser Water Pumps and other pump, fan and compressor applications.

How to access Function Set-up - example
How to change the output on "Analog output 42"

6 How to Programme the Frequency Converter

Illustration 6.5: Step 4: Function Setups choices appear. Choose 03-1 General Settings. Press [OK].

$\frac{\text { Status }}{28.8 \%}$		${ }_{1 \text { (1) }}$
	5.66. ${ }^{\text {a }}$	2.63 kW
	14.4 Hz	
Okwh		
Auto Remote Rurning		

Illustration 6.2: Step 1: Turn on the frequency converter (yellow LED lights)

Illustration 6.6: Step 5: Use the up/down navigation keys to scroll down to i.e. 03-11 Analog Outputs. Press [OK].

Illustration 6.7: Step 6: Choose parameter 6-50 Terminal 42 Output. Press [OK].

Illustration 6.8: Step 7: Use the up/down navigation keys to
select between the different choices. Press [OK].

Illustration 6.4: Step 3: Use the up/down navigation keys to scroll down to Function Setups. Press [OK].

The Function Setup parameters are grouped in the following way:

Q3-1 General Settings				
Q3-10 Adv. Motor Settings	Q3-11 Analog Output	Q3-12 Clock Settings	Q3-13 Display Settings	
1-90 Motor Thermal Protection	6-50 Terminal 42 Output	$0-70$ Set date and time	0-20 Display Line 1.1 Small	
1-93 Thermistor Source	6-51 Terminal 42 Output min. scale	$0-71$ Date format	$0-21$ Display Line 1.2 Small	
1-29 Automatic Motor Adaption	6-52 Terminal 42 Output max. scale	$0-72$ Time format	$0-22$ Display Line 1.3 Small	
14-01 Switching Frequency		$0-74$ DST/Summertime	$0-23$ Display Line 2 large	
		$0-76$ DST/Summertime start	$0-24$ Display Line 3 large	
			$0-77$ DST/Summertime end	
		$0-37$ Display Text 1		
			$0-38$ Display Text 2	
			$0-39$ Display Text 3	

Q3-2 Open Loop Settings

1-00 Configuration Mode
3-02 Minimum Reference
3-03 Maximum reference
3-15 Reference 1 Source
6-10 Terminal 53 Low Voltage
6-11 Terminal 53 High Voltage
6-14 Terminal 53 Low Reference / Feedb. value
6-15 Terminal 53 High ref / Feed. value
3-10 Preset reference

Q3-3 Closed Loop Settings

1-00 Configuration mode
20-00 Feedback 1 Source
20-12 Reference/Feedback Unit
6-20 Term 54 low voltage
6-21 Term 54 high voltage
6-22 Terminal 54 Low Current (only visible if switch set to I)
6-23 Terminal 54 High Current (only visible if switch set to I)
6-24 Terminal 54 Low ref / Feedb. value
6-25 Terminal 54 High ref / Feedb. value
3-02 Min. Reference
3-03 Max. Reference
20-21 Setpoint 1
20-93 PID Proportional Gain
20-94 PID Integral Time
3-13 Reference site

Q3-4 Application Settings

See also ADAP-KOOL ${ }^{\circledR}$ Drive AKD102 Programming Guide for a detailed description of the Function Setups parameter groups.

6 How to Programme the Frequency Converter

0-20 Display Line 1.1 Small

Option:		Function:
		Select a variable for display in line 1, left position.
[0]	None	No display value selected
[37]	Display Text 1	Present control word
[38]	Display Text 2	Enables an individual text string to be written, for display in the LCP or to be read via serial communication.
[39]	Display Text 3	Enables an individual text string to be written, for display in the LCP or to be read via serial communication.
[89]	Date and Time Readout	Displays the current date and time.
[953]	Profibus Warning Word	Displays Profibus communication warnings.
[1005]	Readout Transmit Error Counter	View the number of CAN control transmission errors since the last power-up.
[1006]	Readout Receive Error Counter	View the number of CAN control receipt errors since the last power-up.
[1007]	Readout Bus Off Counter	View the number of Bus Off events since the last power-up.
[1013]	Warning Parameter	View a DeviceNet-specific warning word. One separate bit is assigned to every warning.
[1115]	LON Warning Word	Shows the LON-specific warnings.
[1117]	XIF Revision	Shows the version of the external interface file of the Neuron C chip on the LON option.
[1118]	LON Works Revision	Shows the software version of the application program of the Neuron C chip on the LON option.
[1501]	Running Hours	View the number of running hours of the motor.
[1502]	kWh Counter	View the mains power consumption in kWh.
[1600]	Control Word	View the Control Word sent from the frequency converter via the serial communication port in hex code.
[1601]	Reference [Unit]	Total reference (sum of digital/analog/preset/bus/freeze ref./catch up and slow-down) in selected unit.
[1602] *	Reference \%	Total reference (sum of digital/analog/preset/bus/freeze ref./catch up and slow-down) in percent.
[1603]	Status Word	Present status word
[1605]	Main Actual Value [\%]	One or more warnings in a Hex code
[1609]	Custom Readout	View the user-defined readouts as defined in par. 0-30, 0-31 and 0-32.
[1610]	Power [kW]	Actual power consumed by the motor in kW.
[1611]	Power [hp]	Actual power consumed by the motor in HP.
[1612]	Motor Voltage	Voltage supplied to the motor.
[1613]	Motor Frequency	Motor frequency, i.e. the output frequency from the frequency converter in Hz .
[1614]	Motor Current	Phase current of the motor measured as effective value.
[1615]	Frequency [\%]	Motor frequency, i.e. the output frequency from the frequency converter in percent.
[1616]	Torque [Nm]	Present motor load as a percentage of the rated motor torque.
[1617]	Speed [RPM]	Speed in RPM (motor shaft speed in revolutions per minute). The accuracy is dependent on the set slip compensation, par. 1-62 or on the motor speed feedback - if available.
[1618]	Motor Thermal	Thermal load on the motor, calculated by the ETR function. See also parameter group 1-9* Motor Temperature.
[1622]	Torque [\%]	Shows the actual torque produced, in percentage.
[1630]	DC Link Voltage	Intermediate circuit voltage in the frequency converter.
[1632]	BrakeEnergy/s	Present brake power transferred to an external brake resistor. Stated as an instantaneous value.
[1633]	BrakeEnergy/2 min	Brake power transferred to an external brake resistor. The mean power is calculated continuously for the most recent 120 seconds.
[1634]	Heatsink Temp.	Present heat sink temperature of the frequency converter. The cut-out limit is $95 \pm 5 \mathrm{oC}$; cutting back in occurs at $70 \pm 5^{\circ} \mathrm{C}$.
[1635]	Thermal Drive Load	Percentage load of the inverters
[1636]	Inv. Nom. Current	Nominal current of the frequency converter

6 How to Programme the Frequency Converter

[1835]	Analog Out X42/11[V]	Shows the value of the signal applied to terminal X42/11 on the Analog I/O card.
$[2117]$	Ext. 1 Reference [Unit]	The value of the reference for extended Closed Loop Controller 1
$[2118]$	Ext. 1 Feedback [Unit]	The value of the feedback signal for extended Closed Loop Controller 1
$[2119]$	Ext. 1 Output [\%]	The value of the output from extended Closed Loop Controller 1
$[2137]$	Ext. 2 Reference [Unit]	The value of the reference for extended Closed Loop Controller 2
$[2138]$	Ext. 2 Feedback [Unit]	The value of the feedback signal for extended Closed Loop Controller 2
$[2139]$	Ext. 2 Output [\%]	The value of the output from extended Closed Loop Controller 2
$[2157]$	Ext. 3 Reference [Unit]	The value of the reference for extended Closed Loop Controller 3
$[2158]$	Ext. 3 Feedback [Unit]	The value of the feedback signal for extended Closed Loop Controller 3
$[2159]$	Ext. 3 Output [\%]	The value of the output from extended Closed Loop Controller 3
$[2230]$	No-Flow Power	The calculated No Flow Power for the actual operating speed
$[2580]$	Pack Status	Status for the operation of the Pack Controller
$[2581]$	Compressor Status	Status for the operation of each individual compressor controlled by the Pack Controller

0-21 Display Line 1.2 Small

The options are the same as those listed for par 0-20 Display Line 1.1 Small

Option:

The options are the same as those listed for par 0-20 Display Line 1.1 Small
Option:

Function:

Select a variable for display in line 2.
[1613] * Frequency [Hz]

```
0-24 Display Line 3 Large
```

The options are the same as those listed for par 0-20 Display Line 1.1 Small

Option:

Function:

Select a variable for display in line 3.
[1502] * Counter [kWh]

0-37 Display Text 1

Range:

Function:

0 N/A* [0 - 0 N/A]

In this parameter it is possible to write an individual text string for display in the LCP or to be read via serial communication. If to be displayed permanently select Display Text 1 in par. 0-20 Display Line 1.1 Small, par. 0-21 Display Line 1.2 Small, par. 0-22 Display Line 1.3 Small, par. 0-23 Display Line 2 Large or par. 0-24 Display Line 3 Large. Use the Δ or \boldsymbol{v} buttons on the LCP to change a character. Use the \leq and buttons to move the cursor. When a character is highlighted by the cursor, it can be changed. Use the $\boldsymbol{\Delta}$ or $\mathbf{\nabla}$ buttons on the LCP to change a character. A character can be inserted by placing the cursor between two characters and pressing $\mathbf{\Delta}$ or $\mathbf{\nabla}$.

6 How to Programme the Frequency Converter

0-77 DST/ Summertime End

Range:
0 N/A* $\quad[0-0 \mathrm{~N} / \mathrm{A}]$
1-00 Configuration Mode
Option:

Option:

[0] * Open loop

Function:

Sets the date and time when summertime/DST ends. The date is programmed in the format selected in par.0-71 Date Format.

Function:

Motor speed is determined by applying a speed reference or by setting desired speed when in Hand Mode.
Open Loop is also used if the frequency converter is part of a closed loop control system based on an external PID controller providing a speed reference signal as output.
[3] Closed loop Motor Speed will be determined by a reference from the built-in PID controller varying the motor speed as part of a closed loop control process (e.g. constant pressure or flow). The PID controller must be configured in par. 20-**, Drive Closed Loop or via the Function Setups accessed by pressing the [Quick Menus] button.

This parameter can not be changed when motor is running.

NB!
When set for Closed Loop, the commands Reversing and Start Reversing will not reverse the direction of the motor.

1-90 Motor Thermal Protection

Option:

Function:

The frequency converter determines the motor temperature for motor protection in two different ways:

- Via a thermistor sensor connected to one of the analog or digital inputs (par.1-93 Thermistor Source).
- Via calculation (ETR = Electronic Thermal Relay) of the thermal load, based on the actual load and time. The calculated thermal load is compared with the rated motor current $I_{M, N}$ and the rated motor frequency $f_{M, N}$. The calculations estimate the need for a lower load at lower speed due to less cooling from the fan incorporated in the motor.

[0]*	No protection	If the motor is continuously overloaded and no warning or trip of frequency converter is wanted.
[1]	Thermistor warning	Activates a warning when the connected thermistor in the motor reacts in the event of motor overtemperature.
[2]	Thermistor trip	Stops (trips) the frequency converter when the connected thermistor in the motor reacts in the event of motor over-temperature.
[3]	ETR warning 1	
[4] *	ETR trip 1	
[5]	ETR warning 2	
[6]	ETR trip 2	
[7]	ETR warning 3	
[8]	ETR trip 3	
[9]	ETR warning 4	
[10]	ETR trip 4	

ETR (Electronic Thermal Relay) functions 1-4 will calculate the load when set-up where they were selected is active. For example ETR-3 starts calculating when set-up 3 is selected. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.

NB!
Danfoss recommends using 24 VDC as thermistor supply voltage.

1-93 Thermistor Source

Option:

Function:

Select the input to which the thermistor (PTC sensor) should be connected. An analog input option [1] or [2] cannot be selected if the analog input is already in use as a reference source (selected in par.3-15 Reference 1 Source, par.3-16 Reference 2 Source or par. 3-17 Reference 3 Source). When using MCB112, choice [0] None must always be selected.

$[0]^{*}$	None
$[1]$	Analog input 53
$[2]$	Analog input 54
$[3]$	Digital input 18
$[4]$	Digital input 19
$[5]$	Digital input 32
$[6]$	Digital input 33

NB!
This parameter cannot be adjusted while the motor is running.

NB!
Digital input should be set to [0] PNP - Active at 24V in parameter 5-00.

3-10 Preset Reference

Array [8]

Range:

0.00 \%* [-100.00-100.00 \%]

Function:

Enter up to eight different preset references (0-7) in this parameter, using array programming. The preset reference is stated as a percentage of the value Refmax (par.3-03 Maximum Reference, for closed loop see par. 20-14 Maximum Reference/Feedb.). When using preset references, select Preset ref. bit 0 / 1 / 2 [16], [17] or [18] for the corresponding digital inputs in parameter group 5-1* Digital Inputs.

6 How to Programme the Frequency Converter

3-13 Reference Site

Option:	Function:	
$[0]^{*}$	Linked to Hand / Auto	Select which reference site to activate.
$[1]$	Remote	Use local reference when in Hand mode; or remote reference when in Auto mode.
$[2]$	Local	Use local reference in both Hand mode and Auto mode.

3-15 Reference 1 Source

Option:

Function:

Select the reference input to be used for the first reference signal. par.3-15 Reference 1 Source, par.3-16 Reference 2 Source and par. 3-17 Reference 3 Source define up to three different reference signals. The sum of these reference signals defines the actual reference.
This parameter cannot be adjusted while the motor is running.

[0]	No function	
[1] *	Analog input 53	
[2]	Analog input 54	
[7]	Pulse input 29	
[8]	Pulse input 33	
[20]	Digital pot.meter	
[21]	Analog input X30/11	
[22]	Analog input X30/12	
[23]	Analog Input X42/1	
[24]	Analog Input X42/3	
[25]	Analog Input X42/5	
[30]	Ext. Closed Loop 1	
[31]	Ext. Closed Loop 2	
[32]	Ext. Closed Loop 3	
6-10 Terminal 53 Low Voltage		
Range:		Function:
0.07 V*	[0.00-par. 6-11 V]	Enter the low voltage value. This analog input scaling value should correspond to the low reference/ feedback value set in par.6-14 Terminal 53 Low Ref./Feedb. Value.

6-11 Terminal 53 High Voltage

Range:

[par. 6-10-10.00 V]Enter the high voltage value. This analog input scaling value should correspond to the high refer- ence/feedback value set in par.6-15 Terminal 53 High Ref./Feedb. Value.
6-14 Terminal 53 Low Ref./ Feedb. Value
Range:
0.000 N/A* $[-999999.999-999999.999 \mathrm{~N} / \mathrm{A}]$
:---

6-15 Terminal 53 High Ref./ Feedb. Value

Range:

50.000 N/ [-999999.999-999999.999 N/A] Enter the analog input scaling value that corresponds to the high voltage/high current value set in
A*

Function:

Enter the high voltage value. This analog input scaling value should correspond to the high reference/feedback value set in par.6-15 Terminal 53 High Ref./Feedb. Value.

$$
\text { 6-10 Terminal } 53 \text { Low Voltage and par. 6-12 Terminal } 53 \text { Low Current. }
$$

6-20 Terminal 54 Low Voltage

Range:

Function:

Enter the low voltage value. This analog input scaling value should correspond to the low reference/ feedback value, set in par.6-24 Terminal 54 Low Ref./Feedb. Value.

6-21 Terminal 54 High Voltage

Range:

6-22 Terminal 54 Low Current

Range:
$4.00 \mathrm{~mA}^{*} \quad$ [$0.00-$ par. $6-23 \mathrm{~mA}$]

Function:

Enter the low current value. This reference signal should correspond to the low reference/feedback value, set in par.6-24 Terminal 54 Low Ref./Feedb. Value. The value must be set at $>2 \mathrm{~mA}$ in order to activate the Live Zero Time-out Function in par.6-01 Live Zero Timeout Function.

6-23 Terminal 54 High Current

Range:

Function:

$20.00 \mathrm{~mA}^{*} \quad$ [par. 6-22-20.00 mA]

6-24 Terminal 54 Low Ref./ Feedb. Value

Range:

Function:

$0.000 \mathrm{~N} / \mathrm{A}^{*}$ [-999999.999-999999.999 N/A] Enter the analog input scaling value that corresponds to the low voltage/low current value set in par.6-20 Terminal 54 Low Voltage and par.6-22 Terminal 54 Low Current.

6-25 Terminal 54 High Ref./ Feedb. Value

Range:

Function:

$100.000 \mathrm{~N} /[-999999.999-999999.999 \mathrm{~N} / \mathrm{A}] \quad$ Enter the analog input scaling value that corresponds to the high voltage/high current value set in A* par.6-21 Terminal 54 High Voltage and par.6-23 Terminal 54 High Current.

6-50 Terminal 42 Output

Option:

Function:

Select the function of Terminal 42 as an analog current output. A motor current of 20 mA cereponds to $I_{\text {max }}$.
[0] * No operation
[100] * Output freq. 0-100 $: 0-100 \mathrm{~Hz},(0-20 \mathrm{~mA})$

6 How to Programme the Frequency Converter

[101]	Reference Min-Max	: Minimum reference - Maximum reference, (0-20 mA)
[102]	Feedback +-200\%	: -200\% to $+200 \%$ of par. 20-14 Maximum Reference/Feedb., (0-20 mA)
[103]	Motor cur. 0-Imax	: 0 - Inverter Max. Current (par. 16-37 Inv. Max. Current), (0-20 mA)
[104]	Torque 0-Tlim	: 0-Torque limit (par. 4-16 Torque Limit Motor Mode), (0-20 mA)
[105]	Torque 0-Tnom	: $0-$ Motor rated torque, ($0-20 \mathrm{~mA}$)
[106]	Power 0-Pnom	: $0-$ Motor rated power, ($0-20 \mathrm{~mA}$)
[107] *	Speed 0-HighLim	: 0 - Speed High Limit (par.4-13 Motor Speed High Limit [RPM] and par.4-14 Motor Speed High Limit $[\mathrm{Hz}]),(0-20 \mathrm{~mA})$
[113]	Ext. Closed Loop 1	: 0-100\%, (0-20 mA)
[114]	Ext. Closed Loop 2	: 0-100\%, (0-20 mA)
[115]	Ext. Closed Loop 3	: 0-100\%, (0-20 mA)
[130]	Out frq 0-100 4-20mA	: 0-100 Hz
[131]	Reference 4-20mA	: Minimum Reference - Maximum Reference
[132]	Feedback 4-20mA	: -200\% to +200\% of par. 20-14 Maximum Reference/Feedb.
[133]	Motor cur. 4-20mA	: 0 - Inverter Max. Current (par. 16-37 Inv. Max. Current)
[134]	Torq. $0-\lim$ 4-20 mA	: 0 - Torque limit (par. 4-16 Torque Limit Motor Mode)
[135]	Torq.0-nom 4-20mA	: 0 - Motor rated torque
[136]	Power 4-20mA	: 0 - Motor rated power
[137]	Speed 4-20mA	: 0 - Speed High Limit (4-13 and 4-14)
[139]	Bus ctrl.	: 0-100\%, (0-20 mA)
[140]	Bus ctrl. 4-20 mA	: 0-100\%
[141]	Bus ctrl t.o.	: 0-100\%, (0-20 mA)
[142]	Bus ctrl t.o. $4-20 \mathrm{~mA}$: 0-100\%
[143]	Ext. CL 1 4-20mA	: 0-100\%
[144]	Ext. CL 2 4-20mA	: 0-100\%
[145]	Ext. CL 3 4-20mA	: 0-100\%

NB!

Values for setting the Minimum Reference is found in open loop par.3-02 Minimum Reference and for closed loop par. 20-13 Minimum Reference/ Feedb. - values for maximum reference for open loop is found in par.3-03 Maximum Reference and for closed loop par. 20-14 Maximum Reference/ Feedb..

6-51 Terminal 42 Output Min Scale

Range: Function:

$0.00 \% *$	$[0.00-200.00 \%]$
Scale for the minimum output (0 or 4 mA) of the analogue signal at terminal 42.	
Set the value to be the percentage of the full range of the variable selected in par. $6-50$ Terminal	
42 Output.	

6-52 Terminal 42 Output Max Scale

Range:	Function:	
$100.00 \%{ }^{2}$	$[0.00-200.00 \%]$	Scale for the maximum output $(20 \mathrm{~mA})$ of the analog signal at terminal 42. Set the value to be the percentage of the full range of the variable selected in par.6-50 Terminal 42 Output.

It is possible to get a value lower than 20 mA at full scale by programming values $>100 \%$ by using a formula as follows:

20 mA / desired maximum current $\times 100 \%$
i.e. 10 mA : $\frac{20 \mathrm{~mA}}{10 \mathrm{~mA}} \times 100 \%=200 \%$

EXAMPLE 1:

Variable value $=$ OUTPUT FREQUENCY, range $=0-100 \mathrm{~Hz}$
Range needed for output $=0-50 \mathrm{~Hz}$
Output signal 0 or 4 mA is needed at 0 Hz (0% of range) - set par.6-51 Terminal 42 Output Min Scale to 0%
Output signal 20 mA is needed at 50 Hz (50% of range) - set par.6-52 Terminal 42 Output Max Scale to 50%

EXAMPLE 2:

Variable $=$ FEEDBACK, range $=-200 \%$ to $+200 \%$
Range needed for output=0-100\%
Output signal 0 or 4 mA is needed at 0% (50% of range) - set par.6-51 Terminal 42 Output Min Scale to 50%
Output signal 20 mA is needed at 100% (75% of range) - set par.6-52 Terminal 42 Output Max Scale to 75%

EXAMPLE 3:

Variable value $=$ REFERENCE, range $=$ Min ref - Max ref
Range needed for output= Min ref (0%) - Max ref (100%), 0-10 mA
Output signal 0 or 4 mA is needed at Min ref - set par.6-51 Terminal 42 Output Min Scale to 0\%
Output signal 10 mA is needed at Max ref (100\% of range) - set par.6-52 Terminal 42 Output Max Scale to 200\%
($20 \mathrm{~mA} / 10 \mathrm{~mA} \times 100 \%=200 \%$).

14-01 Switching Frequency

Option:

Function:

Select the inverter switching frequency. Changing the switching frequency can help to reduce acoustic noise from the motor.

NB!

The output frequency value of the frequency converter must never exceed $1 / 10$ of the switching frequency. When the motor is running, adjust the switching frequency in par.14-01 Switching Frequency until the motor is as noiseless as possible. See also par. 14-00 Switching Pattern and the section Derating.

$[0]$	1.0 kHz
$[1]$	1.5 kHz
$[2]$	2.0 kHz
$[3]$	2.5 kHz
$[4]$	3.0 kHz
$[5]$	3.5 kHz
$[6]$	4.0 kHz
$[7] *$	5.0 kHz
$[8]$	6.0 kHz

$[9]$	7.0 kHz
$[10]$	8.0 kHz
$[11]$	10.0 kHz
$[12]$	12.0 kHz
$[13]$	14.0 kHz
$[14]$	16.0 kHz

20-00 Feedback 1 Source

Option:

NB!
If a feedback is not used, its source must be set to No Function [0]. Par.20-20 Feedback Function determines how the three possible feedbacks will be used by the PID Controller.

20-01 Feedback 1 Conversion

This parameter allows a conversion function to be applied to Feedback 1.

6 How to Programme the Frequency Converter

20-02 Feedback 1 Source Unit

This parameter determines the unit that is used for this Feedback Source, prior to applying the feedback conversion of par. 20-01, Feedback 1 Conversion. This unit is not used by the PID Controller. It is used only for display and monitoring purposes.
Option:
Function:

$[70]$	mbar
$[71]^{*}$	bar
$[72]$	Pa
$[73]$	kPa
$[74]$	m WG
$[170]$	psi
$[171]$	$\mathrm{lb} / \mathrm{in}^{2}$
$[172]$	in WG
$[173]$	ft WG

NB!

This parameter is only available when using Pressure to Temperature Feedback Conversion.

20-12 Reference/ Feedback Unit

This parameter determines the unit that is used for the setpoint reference and feedback that the PID Controller will use for controlling the output frequency of the frequency converter.

Option:

Function:

[60] * ${ }^{\circ} \mathrm{C}$
[160] ${ }^{\circ} \mathrm{F}$
20-21 Setpoint 1

Range:

Function:

0.000 Proc- [-999999.999-999999.999 Proc- Setpoint 1 is used in Closed Loop Mode to enter a setpoint reference that is used by the frequency essCtrIU- essCtrlUnit]
nit*
converter's PID Controller. See the description of par.20-20 Feedback Function.

NB!

Setpoint reference entered here is added to any other references that are enabled (see par. group 3-1*).

20-30 Refrigerant

Select the refrigerant used in the compressor application. This parameter must be specified correctly for the pressure to temperature conversion to be accurate. If the refrigerant used is not listed in choices [0] through [6], select User defined [7]. Then, use par. 20-31, 20-32 and 20-33 to provide $A 1, A 2$ and $A 3$ for the equation below:
Temperature $=\frac{A 2}{(\ln (P e+1)-A 1)}-A 3$
Option:
Function:

$[0]^{*}$	Ruser
$[1]$	R12
$[2]$	R22
$[3]$	R134a
$[4]$	R502
$[5]$	R717
$[6]$	R13
$[7]$	R13b1

$[8]$	R23
$[9]$	R500
$[10]$	R503
$[11]$	R114
$[12]$	R142b
$[14]$	R32
$[15]$	R227
$[16]$	R401A
$[17]$	R507
$[18]$	R402A
$[19]$	R404A
$[20]$	R407C
$[21]$	R407A
$[22]$	R407B
$[23]$	R410A
$[24]$	R170
$[25]$	R290
$[26]$	R600
$[27]$	R600a
$[28]$	R744
$[29]$	R1270
$[30]$	R417A
$[31]$	Isceon 29
$20-40$	Thermostat/ Pressostat Function

Set whether the Thermostat/ Pressostat function is active (On) or inactive (Off).

Option:	Function:
$[0]^{*}$ Off	
$[1]$	

[1] On

20-41 Cut-out Value

Range:

1 bar* [-3000-par.20-42]

Function:

Select the Cut-out Level where the stop signal is activated and the compressor stops.

20-42 Cut-in Value

Range:

3 bar* [Par. 20-41-3000]

20-93 PI D Proportional Gain

Range:

Function:

$0.50 \mathrm{~N} / \mathrm{A}^{*} \quad[0.00-10.00 \mathrm{~N} / \mathrm{A}]$
If (Error x Gain) jumps with a value equal to what is set in par. 20-14 Maximum Reference/Feedb. the PID controller will try to change the output speed equal to what is set in par.4-13 Motor Speed High Limit [RPM]/par.4-14 Motor Speed High Limit [Hz] but in practice of course limited by this setting. The proportional band (error causing output to change from $0-100 \%$) can be calculated by means of the formula:
$\left(\frac{1}{\text { Proportional Gain }}\right) \times($ Max Reference $)$
NB!
Always set the desired for par. 20-14 Maximum Reference/Feedb. before setting the values for the PID controller in par. group 20-9*.

20-94 PI D Integral Time

Range:	Function:
$20.00 \mathrm{~s}^{*} \quad[0.01-10000.00 \mathrm{~s}]$	Over time, the integrator accumulates a contribution to the output from the PID controller as long
as there is a deviation between the Reference/Setpoint and feedback signals. The contribution is	
proportional to the size of the deviation. This ensures that the deviation (error) approaches zero.	
Quick response on any deviation is obtained when the integral time is set to a low value. Setting it	
too low, however, may cause the control to become unstable.	
The value set, is the time needed for the integrator to add the same contribution as the proportional	
part for a certain deviation.	
If the value is set to 10,000 , the controller will act as a pure proportional controller with a P-band	
based on the value set in par.20-93 PID Proportional Gain. When no deviation is present, the output	
from the proportional controller will be 0.	

Function:

22-40 Minimum Run Time

Range:

10 s * [0-600 s]

22-41 Minimum Sleep Time

Range:

$10 s^{*} \quad[0-600 \mathrm{~s}]$

22-42 Wake-up Speed [RPM]

Range:

0 RPM* [par. 4-11 - par. 4-13 RPM]

22-43 Wake-up Speed [Hz]

Range:

0 Hz * [par. 4-12 - par. 4-14 Hz]

Function:

To be used if par. 0-02 Motor Speed Unit has been set for RPM (parameter not visible if Hz selected). Only to be used if par.1-00 Configuration Mode is set for Open Loop and speed reference is applied by an external controller.
Set the reference speed at which the Sleep Mode should be cancelled.

Function:

Set the desired Minimum Time for staying in Sleep Mode. This will override any wake up conditions.

Function:

To be used if par. 0-02 Motor Speed Unit, has been set for Hz (parameter not visible if RPM selected). Only to be used if par.1-00 Configuration Mode, is set for Open Loop and speed reference is applied by an external controller controlling the pressure.
Set the reference speed at which the Sleep Mode should be cancelled.

22-44 Wake-up Ref./ FB Difference

Range:

10% * $\quad[0-100 \%]$

Function:

Only to be used if par.1-00 Configuration Mode is set for Closed Loop and the integrated PI controller is used for controlling the pressure.
Set the pressure drop allowed in percentage of set point for the pressure (Pset) before cancelling the Sleep Mode.

NB!

If used in application where the integrated PI controller is set for inverse control (e.g. cooling tower applications) in par. 20-71 PID Performance, the value set in par.22-44 Wake-up Ref./FB Difference will automatically be added.

22-75 Short Cycle Protection

Option:

$[0]$	Disabled
$[1]$	Enabled

Function:

Timer set in Interval Between Starts, par. 22-76 is disabled.
Timer set in Interval between Starts, par. 22-76 is enabled.

22-76 Interval Between Starts

Range:

300 s* [0-3600 s]

Function:

Sets the time desired as minimum time between two starts. Any normal start command (Start/Jog/ Freeze) will be disregarded until the timer has expired.

22-77 Minimum Run Time

Range:

0 s* [0 - par. 22-76 s]

Function:

Sets the time desired as minimum run time after a normal start command (Start/Jog/Freeze). Any normal stop command will be disregarded until the set time has expired. The timer will start counting following a normal start command (Start/Jog/Freeze).

The timer will be overridden by a Coast (Inverse) or an External Interlock command.

25-00 Pack Controller

Option:

Function:

For operation of multiple devices (compressor) systems where capacity is adapted to actual load by means of speed control combined with on/off control of the devices. For simplicity only compressor systems are described.

[0] * Disabled | The Pack Controller is not active. All built-in relays assigned to compressor motors in the Pack func- |
| :--- |
| tion will be de-energized. If a variable speed compressor is connected to the frequency converter |
| directly (not controlled by a built-in relay), this compressor will be controlled as a single compressor |
| system. |

[1] Enabled The Pack Controller is active and will stage/destage compressors according to load on the system.

NB!

This parameter can only be Enabled [1], if parameter 28-00 Short Cycle Protection is set to Disabled [0].

25-06 Number of Compressors

Option:

$[0] *$	2 compressors	If Fixed Lead Compressor, par. 25-05, is set to No[0]: one variable speed compressor and one fixed speed compressor; both controlled by built in relay. If Fixed Lead Compressor, par. 25-05, is set to Yes [1]: one variable speed compressor and one fixed speed compressor controlled by built-in relay
$[1]$	3 compressors	3 Compressors [1]: One lead compressor, see Fixed Lead Compressor, par. 25-05. Two fixed speed compressors controlled by built-in relays.

Function:

The number of compressors connected to the Pack Controller including the variable speed compressor. If the variable speed compressor is connected directly to the frequency converter and the other fixed speed compressors (lag compressors) are controlled by the two built in relays, three compressors can be controlled. If both the variable speed and fixed speed compressors are to be controlled by built-in relays, only two compressors can be connected.

25-20 25-20 Neutral Zone [unit]

Range:

4.00* [0-9999.99]
example, if the set-point is $-20^{\circ} \mathrm{C}$ and the NZ is set to $4^{\circ} \mathrm{C}$, a suction pressure equivalent to a temperature between $-24^{\circ} \mathrm{C}$ and $-16^{\circ} \mathrm{C}$ is tolerated. No staging or destaging will occur within this zone.

25-21 + Zone [unit]

Range:

3.00* [0-9999.99]

25-22 -Zone [unit]

Range:

3.00* [0-9999.99]

Function:

When a large and quick change in the system demand occurs, the system pressure rapidly changes and a quicker staging or destaging of a fixed speed compressor becomes necessary to match the requirement. The +Zone defines the range where the + zone delay is active.
Setting the +Zone too close to zero could defeat the purpose with frequent staging at momentary pressure changes. Setting the +Zone too high might lead to an unacceptably high or low pressure in the system while the +Zone Delay timer (par. 25-24) is running. The +Zone value can be optimized with increased familiarity with the system. See ++Zone Delay, par. 25-26.
To avoid unintended staging during the commissioning phase and fine tuning of the controller, initially set the +Zone to a large value beyond any expected pressure peak. This implicitly disables the override function for pressure peaks. When the fine tuning is complete, the +Zone should be set to the desired value. An initial value of $3^{\circ} \mathrm{C}$ is suggested.

Function:

When a large and quick change in the system demand occurs, the system pressure rapidly changes and a quicker staging or destaging of a fixed speed compressor becomes necessary to match the requirement. The -Zone defines the range where the - zone delay is active.
Setting the -Zone too close to zero could defeat the purpose with frequent staging at momentary pressure changes. Setting the -Zone too high might lead to an unacceptably high or low pressure in the system while the -Zone Delay timer (par. 25-25) is running. The -Zone value can be optimized with increased familiarity with the system. See --Zone Delay, par. 25-27.
To avoid unintended staging during the commissioning phase and fine tuning of the controller, initially set the -Zone to a large value beyond any expected pressure drop. This implicitly disables the override function for pressure drops. When the fine tuning is complete, the -Zone should be set to the desired value. An initial value of $3^{\circ} \mathrm{C}$ is suggested.

6.1.4 Main Menu Mode

Select the Main Menu mode by pressing the [Main Menu] key. Illustration 6.2 shows the resulting read-out, which appears on the display of the GLCP.
Lines 2 through 5 on the display show a list of parameter groups which can be chosen by toggling the up and down buttons.

Illustration 6.9: Display example.

Each parameter has a name and number which remain the same regardless of the programming mode. In the Main Menu mode, the parameters are divided into groups. The first digit of the parameter number (from the left) indicates the parameter group number.

All parameters can be changed in the Main Menu. The configuration of the unit (par.1-00) will determine other parameters available for programming. For example, selecting Closed Loop enables additional parameters related to closed loop operation. Option cards added to the unit enable additional parameters associated with the option device.

6.1.5 Parameter Selection

In the Main Menu mode, the parameters are divided into groups. Select a parameter group by means of the navigation keys.
The following parameter groups are accessible:

Group no.	Parameter group:
0	Operation/Display
1	Load/Motor
2	Brakes
3	References/Ramps
4	Limits/Warnings
5	Digital In/Out
6	Analog In/Out
8	Comm. and Options
11	AKD Lon*
13	Smart Logic
14	Special Functions
15	Drive Information
16	Data Readouts
18	Info \& Readouts
20	Internal Control
21	Extended PID
22	Application Functions
23	Time-based Functions
25	Pack Controller
26	Analog I/O Option MCB 109**
28	Compressor functions
$*$	Only when MCA
$* *$ 107 AKLon is installed	

Table 6.3: Parameter groups.

After selecting a parameter group, choose a parameter by means of the navigation keys.
The middle section on the GLCP display shows the parameter number and name as well as the selected parameter value.

6.1.6 Changing data

1. Press [Quick Menu] or [Main Menu] key.
2. Use [$\mathbf{\Delta}$] and [$\mathbf{\nabla}$] keys keys to find parameter group to edit.
3. Press $[\mathrm{OK}]$ key.
4. Use [$\mathbf{\Delta}]$ and $[\mathbf{v}]$ keys to find parameter to edit.
5. Press [OK] key.
6. Use [$\mathbf{\Delta}$] and [\mathbf{V}] keys to select correct parameter setting. Or, to move to digits within a number, use keys. Cursor indicates digit selected to change. [$\mathbf{\Delta}$] key increases the value, [\mathbf{V}] key decreases the value.
7. Press [Cancel] key to disregard change, or press [OK] key to accept change and enter new setting.

6.1.7 Changing a text value

If the selected parameter is a text value, change the text value by means of the up/down navigation keys.
The up key increases the value, and the down key decreases the value.
Place the cursor on the value to be saved and press [OK].

Illustration 6.11: Display example.

6.1.8 Changing a group of numeric data values

If the chosen parameter represents a numeric data value, change the chosen data value by means of the [4] and [\bullet] navigation keys as well as the up/down [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] navigation keys. Use the $\boldsymbol{4}$] and [$\boldsymbol{\bullet}$] navigation keys to move the cursor horizontally.

Use the up/down navigation keys to change the data value. The up key enlarges the data value, and the down key reduces the data value. Place the cursor on the value to be saved and press [OK].

6.1.9 Changing of data value, Step-by-Step

Certain parameters can be changed step by step or infinitely variably. This applies to par.1-20 Motor Power [kW], par.1-22 Motor Voltage and par. 1-23 Motor Frequency.
The parameters are changed both as a group of numeric data values and as numeric data values infinitely variably.

6.1.10 Read-out and programming of indexed parameters

Parameters are indexed when placed in a rolling stack.
Par. 15-30 Alarm Log: Error Code to par. 15-32 Alarm Log: Time contain a fault log which can be read out. Choose a parameter, press [OK], and use the up/down navigation keys to scroll through the value log.

Use par.3-10 Preset Reference as another example:
Choose the parameter, press [OK], and use the up/down navigation keys keys to scroll through the indexed values. To change the parameter value, select the indexed value and press [OK]. Change the value by using the up/down keys. Press [OK] to accept the new setting. Press [Cancel] to abort. Press [Back] to leave the parameter.

6.2 Parameter list

Parameters for ADAP-KOOL ${ }^{\circledR}$ Drive AKD102 are grouped into various parameter groups for easy selection of the correct parameters for optimized operation of the frequency converter.
The vast majority of applications can be programmed using the Quick Menu button and selecting the parameters under Quick Setup and Function Setups. Descriptions and default settings of parameters may be found under the section Parameter Lists at the back of this manual.

0-xx Operation/Display	$14-x x$ Special Functions
1-xx Load/Motor	$15-x x$ FC Information
2-xx Brakes	$16-x x$ Data Readouts
3-xx Reference/Ramps	$18-x x$ Info \& Readouts
4-xx Limits/ Warnings	$20-x x$ FC Closed Loop
5-xx Digital In/Out	$21-x x$ Ext. Closed Loop
6-xx Analog In/Out	$22-x x$ Application Functions
8-xx Comm. and Options	$23-x x$ Time Based Functions
11-xx ADAP-KOOL Lon	$24-x x$ Application Functions 2
13-xx Smart Logic Controller	$25-x x$ Pack Controller

Par. No. \# P	Parameter description	Defaut value	4.set-up	Change durirg opera-	$\underset{\substack{\text { Conver- } \\ \text { sion index }}}{ }$	Type
0.00 Basic Seltings						
O-011	Language	${ }_{\text {[0] Enalish }}^{\text {[1] }}$	${ }_{1}^{1 \text { set-up }}$	${ }_{\substack{\text { TRUE } \\ \text { FAls }}}$		$\underbrace{\substack{\text { Uint }}}_{\text {Uints }}$
0.03	Regional setinos	00] International	2 set-ups	FALSE	.	Uints
0.09	Operating state at Power-up	Til Resume	Alt set-ups	$\substack{\text { TRUE } \\ \text { EMSE }}$		
0.11	Programming Set-up	[9] Ative set-up	All setups	TRUE		
-	Thin se-up Linkerto	Not			0	
${ }^{0}$						
0-20	Display Lne 1.15 Smal	ExpressionLimit	Als setups	true		Uint16
-		Expressionumit	All se-ups	TRUE		
${ }_{0}^{0.23}$	Dispay Line 2 Large	Expressionimit	All setups	TRUE	-	Uint16
-0.24	Display Line 3 Large	Expressiolimit	Alt set-ups	${ }_{\text {TRUE }}^{\text {TRUE }}$	0	Unintic
${ }_{0}^{0} 0$						
$0 \cdot 30$	Custom Readout Unit	[1]\%	All setups	True		Unit8
${ }_{\text {cose }}^{0.31}$		100.000 Exprsssommeatimitutunit		${ }_{\text {TRUVE }}^{\text {TRUE }}$	${ }_{-2}$	${ }_{\text {In332 }}$
${ }_{0}^{0.37}$	Display Text 1	0 N/	1 set-up	TRUE	0	
${ }_{\text {cose }}^{0.38} \mathrm{O}$	Dispal Text ${ }^{\text {d }}$	ONA	1 1setup	$\underset{\substack{\text { TRUE } \\ \text { TRUE }}}{ }$	0	
$0.4{ }^{\text {0.4* }}$ LCP Keypar						
0.40	[Hand on]. Key on LCP	Enabled	All setups	TRUE		Uint8
0.41	loffi Key on LCP	[1] Enobed	All setups	TRUE		
-0.42	PAuto	deal	Alf set-tps	TRUE		
0.44	IOffiReset] Key on LCP	${ }_{\text {[1] Enabled }}$	All set-ups	${ }_{\text {TRUE }}$		Uints
		[1] Enabled	All setups	TRUE		Unit8
0.51 S	Set-up Copy	[0] No copy	All setups	FAlSE		Uint 8

Par. No. \# Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
0-6* Passw ord					
0-60 Main Menu Password	100 N/A	1 set-up	TRUE	0	Uint16
0-61 Access to Main Menu w/o Password	[0] Full access	1 set-up	TRUE	-	Uint8
0-65 Personal Menu Password	200 N/A	1 set-up	TRUE	0	Uint16
0-66 Access to Personal Menu w/o Password	[0] Full access	1 set-up	TRUE	-	Uint8
0-7* Clock Settings					
0-70 Set Date and Time	ExpressionLimit	All set-ups	TRUE	0	TimeOfDay
0-71 Date Format	null	1 set-up	TRUE	-	Uint8
0-72 Time Format	null	1 set-up	TRUE	-	Uint8
0-74 DST/Summertime	[0] Off	1 set-up	TRUE	-	Uint8
0-76 DST/Summertime Start	ExpressionLimit	1 set-up	TRUE	0	TimeOfDay
0-77 DST/Summertime End	ExpressionLimit	1 set-up	TRUE	0	TimeOfDay
0-79 Clock Fault	[0] Disabled	1 set-up	TRUE	-	Uint8
0-81 Working Days	null	1 set-up	TRUE	-	Uint8
0-82 Additional Working Days	ExpressionLimit	1 set-up	TRUE	0	TimeOfDay
0-83 Additional Non-Working Days	ExpressionLimit	1 set-up	TRUE	0	TimeOfDay
0-89 Date and Time Readout	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	VisStr[25]

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
1-0* General Settings						
1-00	Configuration Mode	null	All set-ups	TRUE	-	Uint8
1-03	Torque Characteristics	[0] Compressor CT	All set-ups	TRUE	-	Uint8
1-2* Motor Data						
1-20	Motor Power [kW]	ExpressionLimit	All set-ups	FALSE	1	Uint32
1-21	Motor Power [HP]	ExpressionLimit	All set-ups	FALSE	-2	Uint32
1-22	Motor Voltage	ExpressionLimit	All set-ups	FALSE	0	Uint16
1-23	Motor Frequency	ExpressionLimit	All set-ups	FALSE	0	Uint16
1-24	Motor Current	ExpressionLimit	All set-ups	FALSE	-2	Uint32
1-25	Motor Nominal Speed	ExpressionLimit	All set-ups	FALSE	67	Uint16
1-28	Motor Rotation Check	[0] Off	All set-ups	FALSE	-	Uint8
1-29	Automatic Motor Adaptation (AMA)	[0] Off	All set-ups	FALSE	-	Uint8
1-3* Adv. Motor Data						
1-30	Stator Resistance (Rs)	ExpressionLimit	All set-ups	FALSE	-4	Uint32
1-31	Rotor Resistance (Rr)	ExpressionLimit	All set-ups	FALSE	-4	Uint32
1-35	Main Reactance (Xh)	ExpressionLimit	All set-ups	FALSE	-4	Uint32
1-36	Iron Loss Resistance (Rfe)	ExpressionLimit	All set-ups	FALSE	-3	Uint32
1-39	Motor Poles	ExpressionLimit	All set-ups	FALSE	0	Uint8
1-5* Load Indep. Setting						
1-50	Motor Magnetisation at Zero Speed	100 \%	All set-ups	TRUE	0	Uint16
1-51	Min Speed Normal Magnetising [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
1-52	Min Speed Normal Magnetising [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
1-6* Load Depen. Setting						
1-60	Low Speed Load Compensation	100 \%	All set-ups	TRUE	0	Int16
1-61	High Speed Load Compensation	100 \%	All set-ups	TRUE	0	Int16
1-62	Slip Compensation	0 \%	All set-ups	TRUE	0	Int16
1-63	Slip Compensation Time Constant	0.10 s	All set-ups	TRUE	-2	Uint16
1-64	Resonance Dampening	100 \%	All set-ups	TRUE	0	Uint16
1-65	Resonance Dampening Time Constant	5 ms	All set-ups	TRUE	-3	Uint8
1-7* Start Adjustments						
1-71	Start Delay	00.0 s	All set-ups	TRUE	-1	Uint16
1-72	Start Function	[2] Coast	All set-ups	TRUE	-	Uint8
1-73	Flying Start	[0] Disabled	All set-ups	FALSE	-	Uint8
1-74	Start Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
1-75	Start Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
1-76	Start Current	0.00 A	All set-ups	TRUE	-2	Uint32
1-77	Compressor Start Max Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
1-78	Compressor Start Max Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
1-79	Compressor Start Max Time to Trip	5.0 s	All set-ups	TRUE	-1	Uint8
1-8* Stop Adjustments						
1-80	Function at Stop	[0] Coast	All set-ups	TRUE	-	Uint8
1-81	Min Speed for Function at Stop [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
1-82	Min Speed for Function at Stop [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
1-86	Compressor Min. Speed for Trip [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
1-87	Compressor Min. Speed for Trip [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
1-9* Motor Temperature						
1-90	Motor Thermal Protection	[0] No protection	All set-ups	TRUE	-	Uint8
1-91	Motor External Fan	[0] No	All set-ups	TRUE	-	Uint16
1-93	Thermistor Source	[0] None	All set-ups	TRUE	-	Uint8

6.2.3 2-** Brakes

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
2-0* DC-Brake						
2-00	DC Hold/Preheat Current	50 \%	All set-ups	TRUE	0	Uint8
2-01	DC Brake Current	50 \%	All set-ups	TRUE	0	Uint16
2-02	DC Braking Time	10.0 s	All set-ups	TRUE	-1	Uint16
2-03	DC Brake Cut In Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
2-04	DC Brake Cut In Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
2-1* Brake Energy Funct.						
2-10	Brake Function	[0] Off	All set-ups	TRUE	-	Uint8
2-11	Brake Resistor (ohm)	ExpressionLimit	All set-ups	TRUE	0	Uint16
2-12	Brake Power Limit (kW)	ExpressionLimit	All set-ups	TRUE	0	Uint32
2-13	Brake Power Monitoring	[0] Off	All set-ups	TRUE	-	Uint8
2-15	Brake Check	[0] Off	All set-ups	TRUE	-	Uint8
2-16	AC brake Max. Current	100.0 \%	All set-ups	TRUE	-1	Uint32
2-17	Over-voltage Control	[2] Enabled	All set-ups	TRUE	-	Uint8

6.2.4 3-* * Reference / Ramps

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
3-0* Reference Limits						
3-02	Minimum Reference	ExpressionLimit	All set-ups	TRUE	-3	Int32
3-03	Maximum Reference	ExpressionLimit	All set-ups	TRUE	-3	Int32
3-04	Reference Function	[0] Sum	All set-ups	TRUE	-	Uint8
3-1* References						
3-10	Preset Reference	0.00 \%	All set-ups	TRUE	-2	Int16
3-11	Jog Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
3-13	Reference Site	[0] Linked to Hand / Auto	All set-ups	TRUE	-	Uint8
3-14	Preset Relative Reference	0.00 \%	All set-ups	TRUE	-2	Int32
3-15	Reference 1 Source	[1] Analog input 53	All set-ups	TRUE	-	Uint8
3-16	Reference 2 Source	[20] Digital pot.meter	All set-ups	TRUE	-	Uint8
3-17	Reference 3 Source	[0] No function	All set-ups	TRUE	-	Uint8
3-19	Jog Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
3-4* Ramp 1						
3-41	Ramp 1 Ramp Up Time	ExpressionLimit	All set-ups	TRUE	-2	Uint32
3-42	Ramp 1 Ramp Down Time	ExpressionLimit	All set-ups	TRUE	-2	Uint32
3-5* Ramp 2						
3-51	Ramp 2 Ramp Up Time	ExpressionLimit	All set-ups	TRUE	-2	Uint32
3-52	Ramp 2 Ramp Down Time	ExpressionLimit	All set-ups	TRUE	-2	Uint32
3-8* Other Ramps						
3-80	Jog Ramp Time	ExpressionLimit	All set-ups	TRUE	-2	Uint32
3-81	Quick Stop Ramp Time	ExpressionLimit	2 set-ups	TRUE	-2	Uint32
3-82	Starting Ramp Up Time	ExpressionLimit	2 set-ups	TRUE	-2	Uint32
3-9* Digital Pot.Meter						
3-90	Step Size	0.10 \%	All set-ups	TRUE	-2	Uint16
3-91	Ramp Time	1.00 s	All set-ups	TRUE	-2	Uint32
3-92	Power Restore	[0] Off	All set-ups	TRUE	-	Uint8
3-93	Maximum Limit	100 \%	All set-ups	TRUE	0	Int16
3-94	Minimum Limit	0 \%	All set-ups	TRUE	0	Int16
3-95	Ramp Delay	1.000 N/A	All set-ups	TRUE	-3	TimD

6.2.5 4-** Limits/Warnings

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
4-1* Motor Limits						
4-10	Motor Speed Direction	[0] Clockwise	All set-ups	FALSE	-	Uint8
4-11	Motor Speed Low Limit [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
4-12	Motor Speed Low Limit [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
4-13	Motor Speed High Limit [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
4-14	Motor Speed High Limit [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
4-16	Torque Limit Motor Mode	110.0 \%	All set-ups	TRUE	-1	Uint16
4-17	Torque Limit Generator Mode	100.0 \%	All set-ups	TRUE	-1	Uint16
4-18	Current Limit	ExpressionLimit	All set-ups	TRUE	-1	Uint32
4-19	Max Output Frequency	ExpressionLimit	All set-ups	FALSE	-1	Uint16
$4-5^{*}$ Adj. Warnings						
4-50	Warning Current Low	0.00 A	All set-ups	TRUE	-2	Uint32
4-51	Warning Current High	ImaxVLT (P1637)	All set-ups	TRUE	-2	Uint32
4-52	Warning Speed Low	0 RPM	All set-ups	TRUE	67	Uint16
4-53	Warning Speed High	outputSpeedHighLimit (P413)	All set-ups	TRUE	67	Uint16
4-54	Warning Reference Low	-999999.000 N/A	All set-ups	TRUE	-3	Int32
4-55	Warning Reference High	999999.000 N/A	All set-ups	TRUE	-3	Int32
4-56	Warning Feedback Low	-999999.000 ReferenceFeedbackUnit	All set-ups	TRUE	-3	Int32
4-57	Warning Feedback High	999999.000 ReferenceFeedbackUnit	All set-ups	TRUE	-3	Int32
4-58	Missing Motor Phase Function	[1] On	All set-ups	TRUE	-	Uint8
4-6* Speed Bypass						
4-60	Bypass Speed From [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
4-61	Bypass Speed From [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
4-62	Bypass Speed To [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
4-63	Bypass Speed To [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
4-64	Semi-Auto Bypass Set-up	[0] Off	All set-ups	FALSE	-	Uint8

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
5-0* Digital I/ O mode						
5-00	Digital I/O Mode	[0] PNP - Active at 24V	All set-ups	FALSE	-	Uint8
5-01	Terminal 27 Mode	[0] Input	All set-ups	TRUE	-	Uint8
5-02	Terminal 29 Mode	[0] Input	All set-ups	TRUE	-	Uint8
5-1* Digital Inputs						
5-10	Terminal 18 Digital Input	[8] Start	All set-ups	TRUE	-	Uint8
5-11	Terminal 19 Digital Input	[10] Reversing	All set-ups	TRUE	-	Uint8
5-12	Terminal 27 Digital Input	null	All set-ups	TRUE	-	Uint8
5-13	Terminal 29 Digital Input	[0] No operation	All set-ups	TRUE	-	Uint8
5-14	Terminal 32 Digital Input	[39] Day/Night Control	All set-ups	TRUE	-	Uint8
5-15	Terminal 33 Digital Input	[0] No operation	All set-ups	TRUE	-	Uint8
5-16	Terminal X30/2 Digital Input	[0] No operation	All set-ups	TRUE	-	Uint8
5-17	Terminal X30/3 Digital Input	[0] No operation	All set-ups	TRUE	-	Uint8
5-18	Terminal X30/4 Digital Input	[0] No operation	All set-ups	TRUE	-	Uint8
5-3* Digital Outputs						
5-30	Terminal 27 Digital Output	[0] No operation	All set-ups	TRUE	-	Uint8
5-31	Terminal 29 Digital Output	[0] No operation	All set-ups	TRUE	-	Uint8
5-32	Term X30/6 Digi Out (MCB 101)	[0] No operation	All set-ups	TRUE	-	Uint8
5-33	Term X30/7 Digi Out (MCB 101)	[0] No operation	All set-ups	TRUE	-	Uint8
5-4* Relays						
5-40	Function Relay	null	All set-ups	TRUE	-	Uint8
5-41	On Delay, Relay	0.01 s	All set-ups	TRUE	-2	Uint16
5-42	Off Delay, Relay	0.01 s	All set-ups	TRUE	-2	Uint16
5-5* Pulse Input						
5-50	Term. 29 Low Frequency	100 Hz	All set-ups	TRUE	0	Uint32
5-51	Term. 29 High Frequency	100 Hz	All set-ups	TRUE	0	Uint32
5-52	Term. 29 Low Ref./Feedb. Value	0.000 N/A	All set-ups	TRUE	-3	Int32
5-53	Term. 29 High Ref./Feedb. Value	100.000 N/A	All set-ups	TRUE	-3	Int32
5-54	Pulse Filter Time Constant \#29	100 ms	All set-ups	FALSE	-3	Uint16
5-55	Term. 33 Low Frequency	100 Hz	All set-ups	TRUE	0	Uint32
5-56	Term. 33 High Frequency	100 Hz	All set-ups	TRUE	0	Uint32
5-57	Term. 33 Low Ref./Feedb. Value	0.000 N/A	All set-ups	TRUE	-3	Int32
5-58	Term. 33 High Ref./Feedb. Value	$100.000 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	-3	Int32
5-59	Pulse Filter Time Constant \#33	100 ms	All set-ups	FALSE	-3	Uint16

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
5-6* Pulse Output						
5-60	Terminal 27 Pulse Output Variable	[0] No operation	All set-ups	TRUE	-	Uint8
5-62	Pulse Output Max Freq \#27	5000 Hz	All set-ups	TRUE	0	Uint32
5-63	Terminal 29 Pulse Output Variable	[0] No operation	All set-ups	TRUE	-	Uint8
5-65	Pulse Output Max Freq \#29	5000 Hz	All set-ups	TRUE	0	Uint32
5-66	Terminal X30/6 Pulse Output Variable	[0] No operation	All set-ups	TRUE	-	Uint8
5-68	Pulse Output Max Freq \#X30/6	5000 Hz	All set-ups	TRUE	0	Uint32
5-9* Bus Controlled						
5-90	Digital \& Relay Bus Control	0 N/A	All set-ups	TRUE	0	Uint32
5-93	Pulse Out \#27 Bus Control	0.00 \%	All set-ups	TRUE	-2	N2
5-94	Pulse Out \#27 Timeout Preset	0.00 \%	1 set-up	TRUE	-2	Uint16
5-95	Pulse Out \#29 Bus Control	0.00 \%	All set-ups	TRUE	-2	N2
5-96	Pulse Out \#29 Timeout Preset	0.00 \%	1 set-up	TRUE	-2	Uint16
5-97	Pulse Out \#X30/6 Bus Control	0.00 \%	All set-ups	TRUE	-2	N2
5-98	Pulse Out \#X30/6 Timeout Preset	0.00 \%	1 set-up	TRUE	-2	Uint16

6.2.7 6-** Analog In / Out

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
6-0* Analog 1/ O Mode						
6-00	Live Zero Timeout Time	10 s	All set-ups	TRUE	0	Uint8
6-01	Live Zero Timeout Function	[0] Off	All set-ups	TRUE	-	Uint8
6-02	Fire Mode Live Zero Timeout Function	[0] Off	All set-ups	TRUE	-	Uint8
6-1* Analog Input 53						
6-10	Terminal 53 Low Voltage	0.07 V	All set-ups	TRUE	-2	Int16
6-11	Terminal 53 High Voltage	10.00 V	All set-ups	TRUE	-2	Int16
6-12	Terminal 53 Low Current	4.00 mA	All set-ups	TRUE	-5	Int16
6-13	Terminal 53 High Current	20.00 mA	All set-ups	TRUE	-5	Int16
6-14	Terminal 53 Low Ref./Feedb. Value	$0.000 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	-3	Int32
6-15	Terminal 53 High Ref./Feedb. Value	ExpressionLimit	All set-ups	TRUE	-3	Int32
6-16	Terminal 53 Filter Time Constant	0.001 s	All set-ups	TRUE	-3	Uint16
6-17	Terminal 53 Live Zero	[1] Enabled	All set-ups	TRUE	-	Uint8
6-2* Analog Input 54						
6-20	Terminal 54 Low Voltage	0.07 V	All set-ups	TRUE	-2	Int16
6-21	Terminal 54 High Voltage	10.00 V	All set-ups	TRUE	-2	Int16
6-22	Terminal 54 Low Current	4.00 mA	All set-ups	TRUE	-5	Int16
6-23	Terminal 54 High Current	20.00 mA	All set-ups	TRUE	-5	Int16
6-24	Terminal 54 Low Ref./Feedb. Value	-1.000 N/A	All set-ups	TRUE	-3	Int32
6-25	Terminal 54 High Ref./Feedb. Value	ExpressionLimit	All set-ups	TRUE	-3	Int32
6-26	Terminal 54 Filter Time Constant	0.001 s	All set-ups	TRUE	-3	Uint16
6-27	Terminal 54 Live Zero	[1] Enabled	All set-ups	TRUE	-	Uint8
6-3* Analog Input X30/11						
6-30	Terminal X30/11 Low Voltage	0.07 V	All set-ups	TRUE	-2	Int16
6-31	Terminal X30/11 High Voltage	10.00 V	All set-ups	TRUE	-2	Int16
6-34	Term. X30/11 Low Ref./Feedb. Value	0.000 N/A	All set-ups	TRUE	-3	Int32
6-35	Term. X30/11 High Ref./Feedb. Value	100.000 N/A	All set-ups	TRUE	-3	Int32
6-36	Term. X30/11 Filter Time Constant	0.001 s	All set-ups	TRUE	-3	Uint16
6-37	Term. X30/11 Live Zero	[1] Enabled	All set-ups	TRUE	-	Uint8
6-40	Terminal X30/12 Low Voltage	0.07 V	All set-ups	TRUE	-2	Int16
6-41	Terminal X30/12 High Voltage	10.00 V	All set-ups	TRUE	-2	Int16
6-44	Term. X30/12 Low Ref./Feedb. Value	0.000 N/A	All set-ups	TRUE	-3	Int32
6-45	Term. X30/12 High Ref./Feedb. Value	100.000 N/A	All set-ups	TRUE	-3	Int32
6-46	Term. X30/12 Filter Time Constant	0.001 s	All set-ups	TRUE	-3	Uint16
6-47	Term. X30/12 Live Zero	[1] Enabled	All set-ups	TRUE	-	Uint8

6.2.9 11-** ADAP-KOOL LON

Par. No. \# Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
11-2* LON Param. Access					
11-21 Store Data Values	[0] Off	All set-ups	TRUE	-	Uint8
11-9* AK LonWorks					
11-90 AK Network Address	0 N/A	1 set-up	TRUE	0	Uint16
11-91 AK Service Pin	[0] Off	1 set-up	TRUE	-	Uint8
11-98 Alarm Text	0 N/A	All set-ups	FALSE	0	VisStr[32]
11-99 Alarm Status	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint8

6.2.10 13-** Smart Logic Controller

Par. No. \# Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
13-0* SLC Settings					
13-00 SL Controller Mode	null	2 set-ups	TRUE	-	Uint8
13-01 Start Event	null	2 set-ups	TRUE	-	Uint8
13-02 Stop Event	null	2 set-ups	TRUE	-	Uint8
13-03 Reset SLC	[0] Do not reset SLC	All set-ups	TRUE	-	Uint8
13-1* Comparators					
13-10 Comparator Operand	null	2 set-ups	TRUE	-	Uint8
13-11 Comparator Operator	null	2 set-ups	TRUE	-	Uint8
13-12 Comparator Value	ExpressionLimit	2 set-ups	TRUE	-3	Int32
13-2* Timers					
13-20 SL Controller Timer	ExpressionLimit	1 set-up	TRUE	-3	TimD
13-4* Logic Rules					
13-40 Logic Rule Boolean 1	null	2 set-ups	TRUE	-	Uint8
13-41 Logic Rule Operator 1	null	2 set-ups	TRUE	-	Uint8
13-42 Logic Rule Boolean 2	null	2 set-ups	TRUE	-	Uint8
13-43 Logic Rule Operator 2	null	2 set-ups	TRUE	-	Uint8
13-44 Logic Rule Boolean 3	null	2 set-ups	TRUE	-	Uint8
13-5* States					
13-51 SL Controller Event	null	2 set-ups	TRUE	-	Uint8
13-52 SL Controller Action	null	2 set-ups	TRUE	-	Uint8

6.2.11 14-** Special Functions

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
14-0* Inverter Switching						
14-00	Switching Pattern	[0] 60 AVM	All set-ups	TRUE	-	Uint8
14-01	Switching Frequency	null	All set-ups	TRUE	-	Uint8
14-03	Overmodulation	[1] On	All set-ups	FALSE	-	Uint8
14-04	PWM Random	[0] Off	All set-ups	TRUE	-	Uint8
14-1* Mains On/ Off						
14-12	Function at Mains Imbalance	[0] Trip	All set-ups	TRUE	-	Uint8
14-2* Reset Functions						
14-20	Reset Mode	[0] Manual reset	All set-ups	TRUE	-	Uint8
14-21	Automatic Restart Time	10 s	All set-ups	TRUE	0	Uint16
14-22	Operation Mode	[0] Normal operation	All set-ups	TRUE	-	Uint8
14-23	Typecode Setting	null	2 set-ups	FALSE	-	Uint8
14-25	Trip Delay at Torque Limit	60 s	All set-ups	TRUE	0	Uint8
14-26	Trip Delay at Inverter Fault	ExpressionLimit	All set-ups	TRUE	0	Uint8
14-28	Production Settings	[0] No action	All set-ups	TRUE	-	Uint8
14-29	Service Code	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	Int32
14-3* Current Limit Ctrl.						
14-30	Current Lim Ctrl, Proportional Gain	100 \%	All set-ups	FALSE	0	Uint16
14-31	Current Lim Ctrl, Integration Time	0.020 s	All set-ups	FALSE	-3	Uint16
14-4* Energy Optimising						
14-40	VT Level	66 \%	All set-ups	FALSE	0	Uint8
14-41	AEO Minimum Magnetisation	40 \%	All set-ups	TRUE	0	Uint8
14-42	Minimum AEO Frequency	10 Hz	All set-ups	TRUE	0	Uint8
14-43	Motor Cosphi	ExpressionLimit	All set-ups	TRUE	-2	Uint16
14-5* Environment						
14-50	RFI Filter	[1] On	1 set-up	FALSE	-	Uint8
14-52	Fan Control	[0] Auto	All set-ups	TRUE	-	Uint8
14-53	Fan Monitor	[1] Warning	All set-ups	TRUE	-	Uint8
14-55	Output Filter	[0] No Filter	1 set-up	FALSE	-	Uint8
14-6* Auto Derate						
14-60	Function at Over Temperature	[0] Trip	All set-ups	TRUE	-	Uint8
14-61	Function at Inverter Overload	[0] Trip	All set-ups	TRUE	-	Uint8
14-62	Inv. Overload Derate Current	95 \%	All set-ups	TRUE	0	Uint16

6.2.12 15-** FC Information

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
15-0* Operating Data						
15-00	Operating Hours	0 h	All set-ups	FALSE	74	Uint32
15-01	Running Hours	0 h	All set-ups	FALSE	74	Uint32
15-02	kWh Counter	0 kWh	All set-ups	FALSE	75	Uint32
15-03	Power Up's	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint32
15-04	Over Temp's	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint16
15-05	Over Volt's	0 N/A	All set-ups	FALSE	0	Uint16
15-06	Reset kWh Counter	[0] Do not reset	All set-ups	TRUE	-	Uint8
15-07	Reset Running Hours Counter	[0] Do not reset	All set-ups	TRUE	-	Uint8
15-08	Number of Starts	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint32
15-1* Data Log Settings						
15-10	Logging Source	0	2 set-ups	TRUE	-	Uint16
15-11	Logging Interval	ExpressionLimit	2 set-ups	TRUE	-3	TimD
15-12	Trigger Event	[0] False	1 set-up	TRUE	-	Uint8
15-13	Logging Mode	[0] Log always	2 set-ups	TRUE	-	Uint8
15-14	Samples Before Trigger	$50 \mathrm{~N} / \mathrm{A}$	2 set-ups	TRUE	0	Uint8
15-2* Historic Log						
15-20	Historic Log: Event	0 N/A	All set-ups	FALSE	0	Uint8
15-21	Historic Log: Value	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint32
15-22	Historic Log: Time	0 ms	All set-ups	FALSE	-3	Uint32
15-23	Historic Log: Date and Time	ExpressionLimit	All set-ups	FALSE	0	TimeOfDay
15-3* Alarm Log						
15-30	Alarm Log: Error Code	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint8
15-31	Alarm Log: Value	0 N/A	All set-ups	FALSE	0	Int16
15-32	Alarm Log: Time	0 s	All set-ups	FALSE	0	Uint32
15-33	Alarm Log: Date and Time	ExpressionLimit	All set-ups	FALSE	0	TimeOfDay
15-34	Alarm Log: Status	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint8
15-35	Alarm Log: Alarm Text	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	VisStr[32]
15-4* Drive Identification						
15-40	FC Type	0 N/A	All set-ups	FALSE	0	VisStr[6]
15-41	Power Section	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-42	Voltage	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-43	Software Version	0 N/A	All set-ups	FALSE	0	VisStr[5]
15-44	Ordered Typecode String	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	VisStr[40]
15-45	Actual Typecode String	0 N/A	All set-ups	FALSE	0	VisStr[40]
15-46	Frequency Converter Ordering No	0 N/A	All set-ups	FALSE	0	VisStr[8]
15-47	Power Card Ordering No	0 N/A	All set-ups	FALSE	0	VisStr[8]
15-48	LCP Id No	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-49	SW ID Control Card	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-50	SW ID Power Card	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-51	Frequency Converter Serial Number	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	VisStr[10]
15-53	Power Card Serial Number	0 N/A	All set-ups	FALSE	0	VisStr[19]

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
15-6* Option Ident						
15-60	Option Mounted	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	VisStr[30]
15-61	Option SW Version	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-62	Option Ordering No	0 N/A	All set-ups	FALSE	0	VisStr[8]
15-63	Option Serial No	0 N/A	All set-ups	FALSE	0	VisStr[18]
15-70	Option in Slot A	0 N/A	All set-ups	FALSE	0	VisStr[30]
15-71	Slot A Option SW Version	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-72	Option in Slot B	0 N/A	All set-ups	FALSE	0	VisStr[30]
15-73	Slot B Option SW Version	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	VisStr[20]
15-74	Option in Slot C0	0 N/A	All set-ups	FALSE	0	VisStr[30]
15-75	Slot C0 Option SW Version	0 N/A	All set-ups	FALSE	0	VisStr[20]
15-76	Option in Slot C1	0 N/A	All set-ups	FALSE	0	VisStr[30]
15-77	Slot C1 Option SW Version	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	VisStr[20]
15-9* Parameter Info						
15-92	Defined Parameters	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint16
15-93	Modified Parameters	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint16
15-99	Parameter Metadata	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint16

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
16-0* General Status						
16-00	Control Word	0 N/A	All set-ups	FALSE	0	V2
16-01	Reference [Unit]	0.000 ReferenceFeedbackUnit	All set-ups	FALSE	-3	Int32
16-02	Reference [\%]	0.0 \%	All set-ups	FALSE	-1	Int16
16-03	Status Word	0 N/A	All set-ups	FALSE	0	V2
16-05	Main Actual Value [\%]	0.00 \%	All set-ups	FALSE	-2	N2
16-09	Custom Readout	0.00 CustomReadoutUnit	All set-ups	FALSE	-2	Int32
16-10	Power [kW]	0.00 kW	All set-ups	FALSE	1	Int32
16-11	Power [hp]	0.00 hp	All set-ups	FALSE	-2	Int32
16-12	Motor Voltage	0.0 V	All set-ups	FALSE	-1	Uint16
16-13	Frequency	0.0 Hz	All set-ups	FALSE	-1	Uint16
16-14	Motor Current	0.00 A	All set-ups	FALSE	-2	Int32
16-15	Frequency [\%]	0.00 \%	All set-ups	FALSE	-2	N2
16-16	Torque [Nm]	0.0 Nm	All set-ups	FALSE	-1	Int16
16-17	Speed [RPM]	0 RPM	All set-ups	FALSE	67	Int32
16-18	Motor Thermal	0 \%	All set-ups	FALSE	0	Uint8
16-22	Torque [\%]	0 \%	All set-ups	FALSE	0	Int16
16-3* Drive Status						
16-30	DC Link Voltage	0 V	All set-ups	FALSE	0	Uint16
16-32	Brake Energy /s	0.000 kW	All set-ups	FALSE	0	Uint32
16-33	Brake Energy / 2 min	0.000 kW	All set-ups	FALSE	0	Uint32
16-34	Heatsink Temp.	$0^{\circ} \mathrm{C}$	All set-ups	FALSE	100	Uint8
16-35	Inverter Thermal	0 \%	All set-ups	FALSE	0	Uint8
16-36	Inv. Nom. Current	ExpressionLimit	All set-ups	FALSE	-2	Uint32
16-37	Inv. Max. Current	ExpressionLimit	All set-ups	FALSE	-2	Uint32
16-38	SL Controller State	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint8
16-39	Control Card Temp.	$0^{\circ} \mathrm{C}$	All set-ups	FALSE	100	Uint8
16-40	Logging Buffer Full	[0] No	All set-ups	TRUE	-	Uint8
16-5* Ref. \& Feedb.						
16-50	External Reference	0.0 N/A	All set-ups	FALSE	-1	Int16
16-52	Feedback [Unit]	0.000 ProcessCtrlUnit	All set-ups	FALSE	-3	Int32
16-53	Digi Pot Reference	0.00 N/A	All set-ups	FALSE	-2	Int16
16-54	Feedback 1 [Unit]	0.000 ProcessCtrIUnit	All set-ups	FALSE	-3	Int32
16-55	Feedback 2 [Unit]	0.000 ProcessCtrIUnit	All set-ups	FALSE	-3	Int32
16-56	Feedback 3 [Unit]	0.000 ProcessCtrIUnit	All set-ups	FALSE	-3	Int32

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
16-6* I nputs \& Outputs						
16-60	Digital Input	0 N/A	All set-ups	FALSE	0	Uint16
16-61	Terminal 53 Switch Setting	[0] Current	All set-ups	FALSE	-	Uint8
16-62	Analog Input 53	0.000 N/A	All set-ups	FALSE	-3	Int32
16-63	Terminal 54 Switch Setting	[0] Current	All set-ups	FALSE	-	Uint8
16-64	Analog Input 54	0.000 N/A	All set-ups	FALSE	-3	Int32
16-65	Analog Output 42 [mA]	$0.000 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	-3	Int16
16-66	Digital Output [bin]	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Int16
16-67	Pulse Input \#29 [Hz]	0 N/A	All set-ups	FALSE	0	Int32
16-68	Pulse Input \#33 [Hz]	0 N/A	All set-ups	FALSE	0	Int32
16-69	Pulse Output \#27 [Hz]	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Int32
16-70	Pulse Output \#29 [Hz]	0 N/A	All set-ups	FALSE	0	Int32
16-71	Relay Output [bin]	0 N/A	All set-ups	FALSE	0	Int16
16-72	Counter A	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	Int32
16-73	Counter B	0 N/A	All set-ups	TRUE	0	Int32
16-75	Analog In X30/11	0.000 N/A	All set-ups	FALSE	-3	Int32
16-76	Analog In X30/12	0.000 N/A	All set-ups	FALSE	-3	Int32
16-77	Analog Out X30/8 [mA]	0.000 N/A	All set-ups	FALSE	-3	Int16
16-8* Fieldbus \& FC Port						
16-80	Fieldbus CTW 1	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	V2
16-82	Fieldbus REF 1	0 N/A	All set-ups	FALSE	0	N2
16-84	Comm. Option STW	0 N/A	All set-ups	FALSE	0	V2
16-85	FC Port CTW 1	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	V2
16-86	FC Port REF 1	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	N2
16-9* Diagnosis Readouts						
16-90	Alarm Word	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint32
16-91	Alarm Word 2	0 N/A	All set-ups	FALSE	0	Uint32
16-92	Warning Word	0 N/A	All set-ups	FALSE	0	Uint32
16-93	Warning Word 2	0 N/A	All set-ups	FALSE	0	Uint32
16-94	Ext. Status Word	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint32
16-95	Ext. Status Word 2	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint32
16-96	Maintenance Word	0 N/A	All set-ups	FALSE	0	Uint32

6.2.14 18-** Info \& Readouts

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
18-0* Maintenance Log						
18-00	Maintenance Log: Item	0 N/A	All set-ups	FALSE	0	Uint8
18-01	Maintenance Log: Action	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint8
18-02	Maintenance Log: Time	0 s	All set-ups	FALSE	0	Uint32
18-03	Maintenance Log: Date and Time	ExpressionLimit	All set-ups	FALSE	0	TimeOfDay
18-1* Fire Mode Log						
18-10	Fire Mode Log: Event	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	FALSE	0	Uint8
18-11	Fire Mode Log: Time	0 s	All set-ups	FALSE	0	Uint32
18-12	Fire Mode Log: Date and Time	ExpressionLimit	All set-ups	FALSE	0	TimeOfDay
18-3* I nputs \& Outputs						
18-30	Analog Input X42/1	0.000 N/A	All set-ups	FALSE	-3	Int32
18-31	Analog Input X42/3	0.000 N/A	All set-ups	FALSE	-3	Int32
18-32	Analog Input X42/5	0.000 N/A	All set-ups	FALSE	-3	Int32
18-33	Analog Out X42/7 [V]	0.000 N/A	All set-ups	FALSE	-3	Int16
18-34	Analog Out X42/9 [V]	0.000 N/A	All set-ups	FALSE	-3	Int16
18-35	Analog Out X42/11 [V]	0.000 N/A	All set-ups	FALSE	-3	Int16

6.2.15 20-** FC Closed Loop

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
20-0* Feedback						
20-00	Feedback 1 Source	[2] Analog input 54	All set-ups	TRUE	-	Uint8
20-01	Feedback 1 Conversion	[2] Pressure to temperature	All set-ups	FALSE	-	Uint8
20-02	Feedback 1 Source Unit	null	All set-ups	TRUE	-	Uint8
20-03	Feedback 2 Source	[0] No function	All set-ups	TRUE	-	Uint8
20-04	Feedback 2 Conversion	[0] Linear	All set-ups	FALSE	-	Uint8
20-05	Feedback 2 Source Unit	null	All set-ups	TRUE	-	Uint8
20-06	Feedback 3 Source	[0] No function	All set-ups	TRUE	-	Uint8
20-07	Feedback 3 Conversion	[0] Linear	All set-ups	FALSE	-	Uint8
20-08	Feedback 3 Source Unit	null	All set-ups	TRUE	-	Uint8
20-12	Reference/Feedback Unit	null	All set-ups	TRUE	-	Uint8
20-2* Feedback/ Setpoint						
20-20	Feedback Function	[3] Minimum	All set-ups	TRUE	-	Uint8
20-21	Setpoint 1	0 ProcessCtrlUnit	All set-ups	TRUE	-3	Int32
20-22	Setpoint 2	0.000 ProcessCtrlUnit	All set-ups	TRUE	-3	Int32
20-23	Setpoint 3	0.000 ProcessCtrlUnit	All set-ups	TRUE	-3	Int32
20-25	Setpoint Type	null	All set-ups	TRUE	-	Uint8
20-3* Feedback Adv. Conv						
20-30	Refrigerant	[19] R404A	All set-ups	TRUE	-	Uint8
20-31	User Defined Refrigerant A1	10.0000 N/A	All set-ups	TRUE	-4	Uint32
20-32	User Defined Refrigerant A2	-2250.00 N/A	All set-ups	TRUE	-2	Int32
20-33	User Defined Refrigerant A3	250.000 N/A	All set-ups	TRUE	-3	Uint32
20-4* Thermostat/ Pressostat						
20-40	Thermostat/Pressostat Function	null	All set-ups	FALSE	-	Uint8
20-41	Cut-out Value	ExpressionLimit	All set-ups	TRUE	-3	Int32
20-42	Cut-in Value	ExpressionLimit	All set-ups	TRUE	-3	Int32
20-7* PID Autotuning						
20-70	Closed Loop Type	[0] Auto	2 set-ups	TRUE	-	Uint8
20-71	PID Performance	[0] Normal	2 set-ups	TRUE	-	Uint8
20-72	PID Output Change	0.10 N/A	2 set-ups	TRUE	-2	Uint16
20-73	Minimum Feedback Level	-999999.000 ProcessCtrlUnit	2 set-ups	TRUE	-3	Int32
20-74	Maximum Feedback Level	999999.000 ProcessCtrlUnit	2 set-ups	TRUE	-3	Int32
20-79	PID Autotuning	[0] Disabled	All set-ups	TRUE	-	Uint8
20-8* PID Basic Settings						
20-81	PID Normal/ Inverse Control	[1] Inverse	All set-ups	TRUE	-	Uint8
20-82	PID Start Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
20-83	PID Start Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
20-84	On Reference Bandwidth	5 \%	All set-ups	TRUE	0	Uint8
20-9* PID Controller						
20-91	PID Anti Windup	[1] On	All set-ups	TRUE	-	Uint8
20-93	PID Proportional Gain	0.50 N/A	All set-ups	TRUE	-2	Uint16
20-94	PID Integral Time	30.00 s	All set-ups	TRUE	-2	Uint32
20-95	PID Differentiation Time	0.00 s	All set-ups	TRUE	-2	Uint16
20-96	PID Diff. Gain Limit	5.0 N/A	All set-ups	TRUE	-1	Uint16

6.2.16 21-** Ext. Closed Loop

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
21-0* Ext. CL Autotuning						
21-00	Closed Loop Type	[0] Auto	2 set-ups	TRUE	-	Uint8
21-01	PID Performance	[0] Normal	2 set-ups	TRUE	-	Uint8
21-02	PID Output Change	0.10 N/A	2 set-ups	TRUE	-2	Uint16
21-03	Minimum Feedback Level	-999999.000 N/A	2 set-ups	TRUE	-3	Int32
21-04	Maximum Feedback Level	999999.000 N/A	2 set-ups	TRUE	-3	Int32
21-09	PID Autotuning	[0] Disabled	All set-ups	TRUE	-	Uint8
21-1* Ext. CL 1 Ref./ Fb.						
21-10	Ext. 1 Ref./Feedback Unit	[1] \%	All set-ups	TRUE	-	Uint8
21-11	Ext. 1 Minimum Reference	0.000 ExtPID1Unit	All set-ups	TRUE	-3	Int32
21-12	Ext. 1 Maximum Reference	100.000 ExtPID1Unit	All set-ups	TRUE	-3	Int32
21-13	Ext. 1 Reference Source	[0] No function	All set-ups	TRUE	-	Uint8
21-14	Ext. 1 Feedback Source	[0] No function	All set-ups	TRUE	-	Uint8
21-15	Ext. 1 Setpoint	0.000 ExtPID1Unit	All set-ups	TRUE	-3	Int32
21-17	Ext. 1 Reference [Unit]	0.000 ExtPID1Unit	All set-ups	TRUE	-3	Int32
21-18	Ext. 1 Feedback [Unit]	0.000 ExtPID1Unit	All set-ups	TRUE	-3	Int32
21-19	Ext. 1 Output [\%]	0 \%	All set-ups	TRUE	0	Int32
21-2* Ext. CL1 PID						
21-20	Ext. 1 Normal/Inverse Control	[0] Normal	All set-ups	TRUE	-	Uint8
21-21	Ext. 1 Proportional Gain	$0.01 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	-2	Uint16
21-22	Ext. 1 Integral Time	10000.00 s	All set-ups	TRUE	-2	Uint32
21-23	Ext. 1 Differentation Time	0.00 s	All set-ups	TRUE	-2	Uint16
21-24	Ext. 1 Dif. Gain Limit	5.0 N/A	All set-ups	TRUE	-1	Uint16
21-3* Ext. CL 2 Ref./ Fb.						
21-30	Ext. 2 Ref./Feedback Unit	[1] \%	All set-ups	TRUE	-	Uint8
21-31	Ext. 2 Minimum Reference	0.000 ExtPID2Unit	All set-ups	TRUE	-3	Int32
21-32	Ext. 2 Maximum Reference	100.000 ExtPID2Unit	All set-ups	TRUE	-3	Int32
21-33	Ext. 2 Reference Source	[0] No function	All set-ups	TRUE	-	Uint8
21-34	Ext. 2 Feedback Source	[0] No function	All set-ups	TRUE	-	Uint8
21-35	Ext. 2 Setpoint	0.000 ExtPID2Unit	All set-ups	TRUE	-3	Int32
21-37	Ext. 2 Reference [Unit]	0.000 ExtPID2Unit	All set-ups	TRUE	-3	Int32
21-38	Ext. 2 Feedback [Unit]	0.000 ExtPID2Unit	All set-ups	TRUE	-3	Int32
21-39	Ext. 2 Output [\%]	0 \%	All set-ups	TRUE	0	Int32
21-4* Ext. CL 2 PID						
21-40	Ext. 2 Normal/Inverse Control	[0] Normal	All set-ups	TRUE	-	Uint8
21-41	Ext. 2 Proportional Gain	0.01 N/A	All set-ups	TRUE	-2	Uint16
21-42	Ext. 2 Integral Time	10000.00 s	All set-ups	TRUE	-2	Uint32
21-43	Ext. 2 Differentation Time	0.00 s	All set-ups	TRUE	-2	Uint16
21-44	Ext. 2 Dif. Gain Limit	5.0 N/A	All set-ups	TRUE	-1	Uint16

6.2.17 22-** Application Functions

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
22-0* Miscellaneous						
22-00	External Interlock Delay	0 s	All set-ups	TRUE	0	Uint16
22-2* No-Flow Detection						
22-20	Low Power Auto Set-up	[0] Off	All set-ups	FALSE	-	Uint8
22-21	Low Power Detection	[0] Disabled	All set-ups	TRUE	-	Uint8
22-22	Low Speed Detection	[0] Disabled	All set-ups	TRUE	-	Uint8
22-23	No-Flow Function	[0] Off	All set-ups	TRUE	-	Uint8
22-24	No-Flow Delay	10 s	All set-ups	TRUE	0	Uint16
22-26	Dry Pump Function	[0] Off	All set-ups	TRUE	-	Uint8
22-27	Dry Pump Delay	10 s	All set-ups	TRUE	0	Uint16
22-3* No-Flow Power Tuning						
22-30	No-Flow Power	0.00 kW	All set-ups	TRUE	1	Uint32
22-31	Power Correction Factor	100 \%	All set-ups	TRUE	0	Uint16
22-32	Low Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
22-33	Low Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
22-34	Low Speed Power [kW]	ExpressionLimit	All set-ups	TRUE	1	Uint32
22-35	Low Speed Power [HP]	ExpressionLimit	All set-ups	TRUE	-2	Uint32
22-36	High Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
22-37	High Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
22-38	High Speed Power [kW]	ExpressionLimit	All set-ups	TRUE	1	Uint32
22-39	High Speed Power [HP]	ExpressionLimit	All set-ups	TRUE	-2	Uint32
22-4* Sleep Mode						
22-40	Minimum Run Time	10 s	All set-ups	TRUE	0	Uint16
22-41	Minimum Sleep Time	10 s	All set-ups	TRUE	0	Uint16
22-42	Wake-up Speed [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
22-43	Wake-up Speed [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
22-44	Wake-up Ref./FB Difference	10 \%	All set-ups	TRUE	0	Int8
22-45	Setpoint Boost	0 \%	All set-ups	TRUE	0	Int8
22-46	Maximum Boost Time	60 s	All set-ups	TRUE	0	Uint16
22-5* End of Curve						
22-50	End of Curve Function	[0] Off	All set-ups	TRUE	-	Uint8
22-51	End of Curve Delay	10 s	All set-ups	TRUE	0	Uint16
22-6* Broken Belt Detection						
22-60	Broken Belt Function	[0] Off	All set-ups	TRUE	-	Uint8
22-61	Broken Belt Torque	10 \%	All set-ups	TRUE	0	Uint8
22-62	Broken Belt Delay	10 s	All set-ups	TRUE	0	Uint16
22-7* Short Cycle Protection						
22-75	Short Cycle Protection	[0] Disabled	All set-ups	TRUE	-	Uint8
22-76	Interval between Starts	300 s	All set-ups	TRUE	0	Uint16
22-77	Minimum Run Time	0 s	All set-ups	TRUE	0	Uint16

6.2.18 23-** Time Based Funtions

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
23-0* Timed Actions						
23-00	ON Time	ExpressionLimit	2 set-ups	TRUE	0	TimeOfDayWoDate
23-01	ON Action	[0] Disabled	2 set-ups	TRUE	-	Uint8
						TimeOfDay-
23-02	OFF Time	ExpressionLimit	2 set-ups	TRUE	0	WoDate
23-03	OFF Action	[0] Disabled	2 set-ups	TRUE	-	Uint8
23-04	Occurrence	[0] All days	2 set-ups	TRUE	-	Uint8
23-1* Maintenance						
23-10	Maintenance Item	[1] Motor bearings	1 set-up	TRUE	-	Uint8
23-11	Maintenance Action	[1] Lubricate	1 set-up	TRUE	-	Uint8
23-12	Maintenance Time Base	[0] Disabled	1 set-up	TRUE	-	Uint8
23-13	Maintenance Time Interval	1 h	1 set-up	TRUE	74	Uint32
23-14	Maintenance Date and Time	ExpressionLimit	1 set-up	TRUE	0	TimeOfDay
23-15	Reset Maintenance Word	[0] Do not reset	All set-ups	TRUE	-	Uint8
23-5* Energy Log						
23-50	Energy Log Resolution	[5] Last 24 Hours	2 set-ups	TRUE	-	Uint8
23-51	Period Start	ExpressionLimit	2 set-ups	TRUE	0	TimeOfDay
23-53	Energy Log	0 N/A	All set-ups	TRUE	0	Uint32
23-54	Reset Energy Log	[0] Do not reset	All set-ups	TRUE	-	Uint8
23-6* Trending						
23-60	Trend Variable	[0] Power [kW]	2 set-ups	TRUE	-	Uint8
23-61	Continuous Bin Data	0 N/A	All set-ups	TRUE	0	Uint32
23-62	Timed Bin Data	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	Uint32
23-63	Timed Period Start	ExpressionLimit	2 set-ups	TRUE	0	TimeOfDay
23-64	Timed Period Stop	ExpressionLimit	2 set-ups	TRUE	0	TimeOfDay
23-65	Minimum Bin Value	ExpressionLimit	2 set-ups	TRUE	0	Uint8
23-66	Reset Continuous Bin Data	[0] Do not reset	All set-ups	TRUE	-	Uint8
23-67	Reset Timed Bin Data	[0] Do not reset	All set-ups	TRUE	-	Uint8
23-8* Payback Counter						
23-80	Power Reference Factor	100 \%	2 set-ups	TRUE	0	Uint8
23-81	Energy Cost	$1.00 \mathrm{~N} / \mathrm{A}$	2 set-ups	TRUE	-2	Uint32
23-82	Investment	$0 \mathrm{~N} / \mathrm{A}$	2 set-ups	TRUE	0	Uint32
23-83	Energy Savings	0 kWh	All set-ups	TRUE	75	Int32
23-84	Cost Savings	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	Int32

6.2.19 25-** Pack Controller

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
25-0* System Settings						
25-00	Pack Controller	[0] Disabled	2 set-ups	FALSE	-	Uint8
25-04	Compressor Cycling	[0] Disabled	All set-ups	TRUE	-	Uint8
25-06	Number of Compressors	2 N/A	2 set-ups	FALSE	0	Uint8
25-2* Zone Settings						
25-20	Neutral Zone [unit]	4.00 ReferenceFeedbackUnit	All set-ups	TRUE	-2	Uint32
25-21	+ Zone [unit]	3.00 ReferenceFeedbackUnit	All set-ups	TRUE	-2	Uint32
25-22	- Zone [unit]	3.00 ReferenceFeedbackUnit	All set-ups	TRUE	-2	Uint32
25-23	Fixed Speed neutral Zone [unit]	4.00 ReferenceFeedbackUnit	All set-ups	TRUE	-2	Uint32
25-24	+ Zone Delay	120 s	All set-ups	TRUE	0	Uint32
25-25	- Zone Delay	60 s	All set-ups	TRUE	0	Uint32
25-26	++ Zone Delay	60 s	All set-ups	TRUE	0	Uint32
25-27	-- Zone Delay	30 s	All set-ups	TRUE	0	Uint32
25-3* Staging Functions						
25-30	Destage At No-Flow	[0] Disabled	All set-ups	TRUE	-	Uint8
25-31	Stage Function	[0] Disabled	All set-ups	TRUE	-	Uint8
25-32	Stage Function Time	15 s	All set-ups	TRUE	0	Uint16
25-33	Destage Function	[0] Disabled	All set-ups	TRUE	-	Uint8
25-34	Destage Function Time	15 s	All set-ups	TRUE	0	Uint16
25-4* Staging Settings						
25-40	Ramp Down Delay	10.0 s	All set-ups	TRUE	-1	Uint16
25-41	Ramp Up Delay	2.0 s	All set-ups	TRUE	-1	Uint16
25-42	Staging Threshold	ExpressionLimit	All set-ups	TRUE	0	Uint8
25-43	Destaging Threshold	ExpressionLimit	All set-ups	TRUE	0	Uint8
25-44	Staging Speed [RPM]	0 RPM	All set-ups	TRUE	67	Uint16
25-45	Staging Speed [Hz]	0.0 Hz	All set-ups	TRUE	-1	Uint16
25-46	Destaging Speed [RPM]	0 RPM	All set-ups	TRUE	67	Uint16
25-47	Destaging Speed [Hz]	0.0 Hz	All set-ups	TRUE	-1	Uint16

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
25-8* Status						
25-80	Pack Status	0 N/A	All set-ups	TRUE	0	VisStr[25]
25-81	Compressor Status	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	VisStr[25]
25-82	Lead Compressor	0 N/A	All set-ups	TRUE	0	Uint8
25-83	Relay Status	0 N/A	All set-ups	TRUE	0	VisStr[4]
25-84	Compressor ON Time	0 h	All set-ups	TRUE	74	Uint32
25-85	Relay ON Time	0 h	All set-ups	TRUE	74	Uint32
25-86	Reset Relay Counters	[0] Do not reset	All set-ups	TRUE	-	Uint8
25-87	Inverse Interlock	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	Uint16
25-9* Service						
25-90	Compressor Interlock	[0] Off	All set-ups	TRUE	-	Uint8
25-91	Manual Alternation	0 N/A	All set-ups	TRUE	0	Uint8

6.2.20 26-** Analog I / O Option MCB 109 Par. No. \# Parameter description
26-0* Analog 1/O Mode 26-00 Terminal X42/1 Mode
26-1* Analog Input X42

26-0* Analog 1/ O Mode			
26-00	Terminal X42/1 Mode	[1] Voltage	All set-ups
26-01	Terminal X42/3 Mode	[1] Voltage	All set-ups
26-02	Terminal X42/5 Mode	[1] Voltage	All set-ups
26-1* Analog Input X42/1			
26-10	Terminal X42/1 Low Voltage	0.07 V	All set-ups
26-11	Terminal X42/1 High Voltage	10.00 V	All set-ups

26-11 \quad Term. X42/1 Low Ref./Feedb. Value
6-15 Term. X42/1 High Ref./Feedb. Value
26-16 Term. X42/1 Filter Time Constant
Term. X42/1 Live Zero
Terminal X42/3 Low Voltage
Terminal X42/3 High Voltage
Term. $\times 42 / 3$ Low Ref./Feedb. Value

Term. X42/3 Filter Time Constant
Term. X42/3 Live Zero
Term. X42/3 Live Zero
Terminal X42/5 Low Voltage
Terminal $X 42 / 5$ High Voltage
Term. X42/5 Low Ref./Feedb. Value
Term. X42/5 High Ref./Feedb. Value
Term. X42/5 Live Zero
Terminal X42/7 Output
Terminal X42/7 Min. Scale

Terminal X42/7 Bus Control
Terminal X42/9 Output

Terminal X42/9 Timeout Preset
Terminal X42/11 Output

Terminal X42/11 Bus Control
Terminal X42/11 Timeout Preset
$\stackrel{C}{4}$
[0] No operation

6
6.2.21 28-** Compressor Functions

Par. No. \#	Parameter description	Default value	4-set-up	Change during operation	Conversion index	Type
28-2* Discharge Temperature Monitor						
28-20	Temperature Source	[0] None	All set-ups	FALSE	-	Uint8
28-21	Temperature Unit	[60] ${ }^{\circ} \mathrm{C}$	All set-ups	FALSE	-	Uint8
28-24	Warning Level	130 N/A	All set-ups	FALSE	0	Uint16
28-25	Warning Action	[1] Decrease cooling	All set-ups	FALSE	-	Uint8
28-26	Emergency Level	145 N/A	All set-ups	FALSE	0	Uint16
28-27	Discharge Temperature	0 DTM_ReadoutUnit	All set-ups	TRUE	0	Int32
28-7* Day/ Night Settings						
28-71	Day/Night Bus Indicator	[0] Day	All set-ups	TRUE	-	Uint8
28-72	Enable Day/Night Via Bus	[0] Disabled	All set-ups	TRUE	-	Uint8
28-73	Night Setback	0.000 ReferenceFeedbackUnit	All set-ups	TRUE	-3	Int32
28-74	Night Speed Drop [RPM]	ExpressionLimit	All set-ups	TRUE	67	Uint16
28-75	Night Speed Drop Override	$0.000 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	-3	Int32
28-76	Night Speed Drop [Hz]	ExpressionLimit	All set-ups	TRUE	-1	Uint16
28-8* PO Optimization						
28-81	dP0 Offset	0.0 K	All set-ups	TRUE	-1	Int32
28-82	PO	0.000 K	All set-ups	TRUE	-3	Int32
28-83	P0 Setpoint	0.000 K	All set-ups	TRUE	-3	Int32
28-84	PO Reference	0.000 K	All set-ups	TRUE	-3	Int32
28-85	PO Minimum Reference	0 K	All set-ups	TRUE	0	Int32
28-86	PO Maximum Reference	0 K	All set-ups	TRUE	0	Int32
28-87	Most Loaded Controller	$0 \mathrm{~N} / \mathrm{A}$	All set-ups	TRUE	0	Int16
28-9* Injection Control						
28-90	Injection On	[0] Off	All set-ups	TRUE	-	Uint8
28-91	Delayed Compressor Start	[0] No	All set-ups	TRUE	-	Uint8

7 General Specifications

Mains supply (L1, L2, L3):
Supply voltage
Supply voltage
Supply frequency
Max. imbalance temporary between mains phases
True Power Factor (λ)
Displacement Power Factor (cos甲) near unity
Switching on input supply L1, L2, L3 (power-ups)
Environment according to EN60664-1

The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, $480 / 690$ V maximum.

Motor output (U, V, W):
Output voltage
Output frequency
Switching on output
Ramp times
* Voltage and power dependent
Torque characteristics:

Starting torque (Constant torque)	maximum 110% for 1 min.*
Starting torque	maximum 135% up to 0.5 sec .*
Overload torque (Constant torque)	maximum 110% for 1 min .*
*Percentage relates to the frequency converter's nominal torque.	
Cable lengths and cross sections:	
Max. motor cable length, screened/armoured	150 m
Max. motor cable length, unscreened/unarmoured	300 m
Max. cross section to motor, mains, load sharing and brake *	
Maximum cross section to control terminals, rigid wire	$1.5 \mathrm{~mm}^{2} / 16$ AWG ($2 \times 0.75 \mathrm{~mm}^{2}$)
Maximum cross section to control terminals, flexible cable	$1 \mathrm{~mm}^{2} / 18$ AWG
Maximum cross section to control terminals, cable with enclosed core	$0.5 \mathrm{~mm}^{2} / 20$ AWG
Minimum cross section to control terminals	$0.25 \mathrm{~mm}^{2}$
* See Mains Supply tables for more information!	
Digital inputs:	
Programmable digital inputs	4 (6)
Terminal number	18, 19, $27^{1)}, 29^{1)}, 32,33$,
Logic	PNP or NPN
Voltage level	0-24V DC
Voltage level, logic'0' PNP	< 5 V DC
Voltage level, logic'1' PNP	$>10 \mathrm{VDC}$
Voltage level, logic '0' NPN	> 19 V DC
Voltage level, logic '1' NPN	$<14 \mathrm{VDC}$
Maximum voltage on input	28 V DC
Input resistance, R_{i}	approx. $4 \mathrm{k} \Omega$

All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.

Analog inputs:
Number of analog inputs
Terminal number
Modes
Mode select
Voltage mode
Voltage level
Input resistance, R_{i}
Max. voltage
Current mode
Current level
Input resistance, R_{i}
Max. current
Resolution for analog inputs
Accuracy of analog inputs
Bandwidth

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Pulse inputs:
Programmable pulse inputs
Terminal number pulse
Max. frequency at terminal, 29,33
Max. frequency at terminal, 29,33
Min. frequency at terminal 29,33
Voltage level
Maximum voltage on input
Input resistance, R_{i}
Pulse input accuracy $(0.1-1 \mathrm{kHz})$
Analog output:
Number of programmable analog outputs
Terminal number
Current range at analog output
Max. resistor load to common at analog output
Accuracy on analog output
Resolution on analog output

The analog output is ga/vanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, RS-485 serial communication:
Terminal number
68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61
Common for terminals 68 and 69
The RS-485 serial communication circuit is functionally seated from other central circuits and ga/vanically isolated from the supply voltage (PELV).

Digital output:

Programmable digital/pulse outputs
Terminal number
Voltage level at digital/frequency output
Max. output current (sink or source)
Max. load at frequency output
Max. capacitive load at frequency output
Minimum output frequency at frequency output
Maximum output frequency at frequency output
Accuracy of frequency output

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, 24 V DC output:
Terminal number 12,13
Max. load :200 mA
The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Relay outputs:

Programmable relay outputs 2

Relay 01 Terminal number

1-3 (break), 1-2 (make)
Max. terminal load (AC-1) ${ }^{1}$ on 1-3 (NC), 1-2 (NO) (Resistive load) 240 V AC, 2 A
Max. terminal load $(\mathrm{AC}-15)^{1}$ (Inductive load @ $\left.\cos \varphi 0.4\right) \quad 240 \mathrm{VAC}, 0.2 \mathrm{~A}$
Max. terminal load (DC-1) ${ }^{1}$) on 1-2 (NO), 1-3 (NC) (Resistive load) $60 \mathrm{VDC}, 1 \mathrm{~A}$
Max. terminal load (DC-13) ${ }^{1)}$ (Inductive load) $24 \mathrm{VDC}, 0.1 \mathrm{~A}$
Relay 02 Terminal number 4-6 (break), 4-5 (make)
Max. terminal load (AC-1) $)^{1)}$ on 4-5 (NO) (Resistive load) ${ }^{213)} 400 \mathrm{VAC}, 2 \mathrm{~A}$
Max. terminal load (AC-15) $)^{1}$ on 4-5 (NO) (Inductive load @ $\cos \varphi 0.4$) $240 \mathrm{VAC}, 0.2 \mathrm{~A}$
Max. terminal load (DC-1) $)^{1)}$ on 4-5 (NO) (Resistive load) $80 \mathrm{VDC}, 2 \mathrm{~A}$
Max. terminal load (DC-13) ${ }^{1}$) on 4-5 (NO) (Inductive load) $24 \mathrm{VDC}, 0.1 \mathrm{~A}$
Max. terminal load (AC-1) $)^{1}$ on 4-6 (NC) (Resistive load) $240 \mathrm{VAC}, 2 \mathrm{~A}$
Max. terminal load (AC-15) ${ }^{1}$ on 4-6 (NC) (Inductive load @ $\cos \varphi 0.4$ 240 V AC, 0.2 A
Max. terminal load (DC-1) ${ }^{1}$) on 4-6 (NC) (Resistive load)
50 V DC, 2 A
Max. terminal load (DC-13) ${ }^{1)}$ on 4-6 (NC) (Inductive load)
24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO)
Environment according to EN 60664-1
24 V DC $10 \mathrm{~mA}, 24 \mathrm{~V}$ AC 20 mA

1) IEC 60947 t 4 and 5

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II
3) UL applications 300 V AC $2 A$

Control card, 10 V DC output:

Terminal number	50
Output voltage	$10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Max. load	25 mA

The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control characteristics:
Resolution of output frequency at $0-1000 \mathrm{~Hz} \quad:+/-0.003 \mathrm{~Hz}$
System response time (terminals $18,19,27,29,32,33$) : $\leq 2 \mathrm{~ms}$
Speed control range (open loop) 1:100 of synchronous speed
Speed accuracy (open loop)
30-4000 rpm: Maximum error of $\pm 8 \mathrm{rpm}$
All control characteristics are based on a 4-pole asynchronous motor

Surroundings:

Enclosure, frame size D and E
IP 00, IP 21, IP 54
Enclosure, frame size F
IP 21, IP 54
Vibration test

Relative humidity
5\% - 95\%(IEC 721-3-3; Class 3K3 (non-condensing) during operation
Aggressive environment (IEC 721-3-3), uncoated class 3C2

Aggressive environment (IEC 721-3-3), coated class 3C3
Test method according to IEC 60068-2-43 H2S (10 days)
Ambient temperature (at 60 AVM switching mode)

- with derating
- with full output power, typical EFF2 motors
- at full continuous FC output current
${ }^{1)}$ For more information on derating see the Design Guide, section on Special Conditions.

Minimum ambient temperature during full-scale operation
Minimum ambient temperature at reduced performance
Temperature during storage/transport
Maximum altitude above sea level without derating
Maximum altitude above sea level with derating

Derating for high altitude, see section on special conditions
EMC standards, Emission
EN 61800-3, EN 61000-6-3/4, EN 55011, IEC 61800-3
EN 61800-3, EN 61000-6-1/2,
EMC standards, Immunity EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6

See section on special conditions!
Control card performance:

Scan interval
Control card, USB serial communication:
USB standard
USB plug

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB connection is not galvanically isolated from protection earth. Use only isolated laptop/PC as connection to the USB connector on the frequency converter or an isolated USB cable/converter.

Protection and Features:

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the frequency converter trips if the temperature reaches $95^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. An overload temperature cannot be reset until the temperature of the heatsink is below $70^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ (Guideline - these temperatures may vary for different power sizes, enclosures etc.). Thee frequency converter has an auto derating function to avoid it's heatsink reaching $95^{\circ} \mathrm{C}$.
- The frequency converter is protected against short-circuits on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter is protected against earth faults on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.

1) For type of fuse see section Fuses.
2) American Wire Gauge.
3) Measured using 5 m screened motor cables at rated load and rated frequency.
4) The typical power loss is at nominal load conditions and expected to be within $+/-15 \%$ (tolerence relates to variety in voltage and cable conditions). Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the frequency converter and opposite. If the switching frequency is increased comed to the default setting, the power losses may rise significantly.LCP and typical control card power consumptions are included. Further options and customer load may add up to 30W to the losses. (Though typical only 4W extra for a fully loaded control card, or options for slot A or slot B, each).
Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5\%).

8 Troubleshooting

8.1 Alarms and warnings

8.1.1 Alarms and warnings

A warning or an alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

In the event of an alarm, the frequency converter will have tripped. Alarms must be reset to restart operation once their cause has been rectified. This may be done in four ways:

1. By using the [RESET] control button on the LCP control panel.
2. Via a digital input with the "Reset" function.
3. Via serial communication/optional fieldbus.
4. By resetting automatically using the [Auto Reset] function, which is a default setting for ADAP-KOOL Drive. see par. 14-20 Reset Mode in AKD102 Programming Guide, MG.11.Mx.yy

NB!

After a manual reset using the [RESET] button on the LCP, the [AUTO ON] button must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also table on following page).

Alarms that are trip-locked offer additional protection, since the mains supply must be switched off before the alarm can be reset. After being switched back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.

Alarms that are not trip-locked can also be reset using the automatic reset function in parameter 14-20 (Warning: automatic wake-up is possible!)

If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.

This is possible, for instance, in parameter 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the frequency converter. Once the problem has been rectified, only the alarm continues flashing.

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
1	10 Volts low	X			
2	Live zero error	(X)	(X)		6-01
3	No motor	(X)			1-80
4	Mains phase loss	(X)	(X)	(X)	14-12
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC over voltage	X	X		
8	DC under voltage	X	X		
9	Inverter overloaded	X	X		
10	Motor ETR over temperature	(X)	(X)		1-90
11	Motor thermistor over temperature	(X)	(X)		1-90
12	Torque limit	X	X		
13	Over Current	X	X	X	
14	Earth fault	X	X	X	
15	Incomp. HW		X	X	
16	Short Circuit		X	X	
17	Control word timeout	(X)	(X)		8-04
18	Start failed		X		
19	Discharge temp. high	X	X		
23	Internal fans				
24	External fans				
25	Brake resistor short-circuited	X			
26	Brake resistor power limit	(X)	(X)		2-13
27	Brake chopper short-circuited	X	X		
28	Brake check	(X)	(X)		2-15
29	Power board over temp	X	X	X	
30	Motor phase U missing	(X)	(X)	(X)	4-58
31	Motor phase V missing	(X)	(X)	(X)	4-58
32	Motor phase W missing	(X)	(X)	(X)	4-58
33	Inrush fault		X	X	
34	Fieldbus communication fault	X	X		
36	Mains failure				
38	Internal fault		X	X	
40	Overload T27				
41	Overload T29				
42	Overload X30/6-7				
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
49	Speed limit		X		
50	AMA calibration failed		X		
51	AMA check $U_{\text {nom }}$ and $\mathrm{I}_{\text {nom }}$		X		
52	AMA low Inom		X		
53	AMA motor too big		X		
54	AMA motor too small		X		
55	AMA parameter out of range		X		
56	AMA interrupted by user		X		
57	AMA timeout		X		
58	AMA internal fault	X	X		
59	Current limit	X			
60	External interlock				
62	Output Frequency at Maximum Limit	X			
64	Voltage Limit	X			
65	Control Board Over-temperature	X	X	X	
66	Heat sink Temperature Low	X			
67	Option Configuration has Changed		X		
68	Safe Stop Activated		X		

Table 8.1: Alarm/Warning code list

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
70	Illegal FC configuration				
80	Drive Initialised to Default Value		X		
92	No-Flow	X	X		22-2*
93	Dry Pump	X	X		22-2*
94	End of Curve	X	X		22-5*
95	Broken Belt	X	X		22-6*
96	Start Delayed	X			22-7*
97	Stop Delayed	X			22-7*
98	Clock Fault	X			0-7*
219	Compressor Interlock	X			
250	New spare part				
251	New type code				

Table 8.2: Alarm/Warning code list, continued..
(X) Dependent on parameter

Alarm Word and Extended Status Word					
Bit	Hex	Dec	Alarm Word	Warning Word	Extended Status Word
0	00000001	1	Brake Check	Brake Check	Ramping
1	00000002	2	Pwr. Card Temp	Pwr. Card Temp	AMA Running
2	00000004	4	Earth Fault	Earth Fault	Start CW/CCW
3	00000008	8	Ctrl.Card Temp	Ctrl.Card Temp	Slow Down
4	00000010	16	Ctrl. Word TO	Ctrl. Word TO	Catch Up
5	00000020	32	Over Current	Over Current	Feedback High
6	00000040	64	Torque Limit	Torque Limit	Feedback Low
7	00000080	128	Motor Th Over	Motor Th Over	Output Current High
8	00000100	256	Motor ETR Over	Motor ETR Over	Output Current Low
9	00000200	512	Inverter Overld.	Inverter Overld.	Output Freq High
10	00000400	1024	DC under Volt	DC under Volt	Output Freq Low
11	00000800	2048	DC over Volt	DC over Volt	Brake Check OK
12	00001000	4096	Short Circuit	DC Voltage Low	Braking Max
13	00002000	8192	Inrush Fault	DC Voltage High	Braking
14	00004000	16384	Mains ph. Loss	Mains ph. Loss	Out of Speed Range
15	00008000	32768	AMA Not OK	No Motor	OVC Active
16	00010000	65536	Live Zero Error	Live Zero Error	
17	00020000	131072	Internal Fault	10V Low	
18	00040000	262144	Brake Overload	Brake Overload	
19	00080000	524288	U phase Loss	Brake Resistor	
20	00100000	1048576	V phase Loss	Brake IGBT	
21	00200000	2097152	W phase Loss	Speed Limit	
22	00400000	4194304	Fieldbus Fault	Fieldbus Fault	
23	00800000	8388608	24 V Supply Low	24V Supply Low	
24	01000000	16777216	Mains Failure	Mains Failure	
25	02000000	33554432	1.8V Supply Low	Current Limit	
26	04000000	67108864	Brake Resistor	Low Temp	
27	08000000	134217728	Brake IGBT	Voltage Limit	
28	10000000	268435456	Option Change	Unused	
29	20000000	536870912	Drive Initialised	Unused	
30	40000000	1073741824	Safe Stop	Unused	

Table 8.3: Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnosis. See also par. 16-90, 16-92 and 16-94.

		Description of Alarm Word 2 and Warning Word 2		
Bit	Hex	Dec	Alarm Word 2	Warning Word 2
0	00000001	1		Start Delayed
1	00000002	2		Stop Delayed
9	00000200	512	Discharge Temperature High	Discharge Temperature High
10	00000400	1024	Start Limit	
11	00000800	2048	Speed Limit	

Table 8.4: Compressor specific Alarms and Warnings

8.1.2 Warning/ Alarm list

W ARNING 1, 10 Volts low:

The 10 V voltage from terminal 50 on the control card is below 10 V . Remove some of the load from terminal 50, as the 10 V supply is overloaded. Max. 15 mA or minimum 590 ohm.

WARNI NG/ ALARM 2, Live zero error:

The signal on terminal 53 or 54 is less than 50% of the value set in par. 6-10, par. 6-12, par. 6-20, or par. 6-22 respectively.

WARNING/ ALARM 3, No motor:

No motor has been connected to the output of the frequency converter.

WARNI NG/ ALARM 4, Mains phase loss:

A phase is missing on the supply side, or the mains voltage imbalance is too high.
This message also appears in case of a fault in the input rectifier on the frequency converter.
Check the supply voltage and supply currents to the frequency converter.

WARNING 5, DC link voltage high:

The intermediate circuit voltage (DC) is higher than the overvoltage limit of the control system. The frequency converter is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is below the undervoltage limit of the control system. The frequency converter is still active.

W ARNI NG/ ALARM 7, DC over voltage:

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.
Connect a brake resistor. Extend the ramp time

Possible corrections:

Connect a brake resistor
Extend the ramp time
Activate functions in par. 2-10
Increase par. 14-26

Alarm/warning limits: Voltage ranges [VDC]			[VDC]
Undervoltage Voltage warning low Voltage warning high (w/o brake - w/brake)			
Overvoltage			

The voltages stated are the intermediate circuit voltage of the frequency converter with a tolerance of $\pm 5 \%$. The corresponding mains voltage is the intermediate circuit voltage (DC-link) divided by 1.35

WARNI NG/ ALARM 8, DC under voltage:

If the intermediate circuit voltage (DC) drops below the "voltage warning low" limit (see table above), the frequency converter checks if 24 V backup supply is connected.
If no 24 V backup supply is connected, the frequency converter trips after a given time depending on the unit.
To check whether the supply voltage matches the frequency converter, see Specifications.

WARNI NG/ ALARM 9, I nverter overloaded:

The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at 98% and trips at 100%, while giving an alarm. Reset cannot be performed before counter is below 90%.

The fault is that the frequency converter is overloaded by more than 100% for too long.

WARNING/ ALARM 10, Motor ETR over temperature:

According to the electronic thermal protection (ETR), the motor is too hot. It can be chosen if the frequency converter is to give a warning or an alarm when the counter reaches 100% in par. 1-90. The fault is that the motor is overloaded by more than 100% for too long. Check that the motor par. 1-24 is set correctly.

W ARNI NG/ ALARM 11, Motor thermistor over temp:

The thermistor or the thermistor connection is disconnected. Choose if the frequency converter is to give a warning or an alarm when the counter reaches 100% in par. 1-90. Check that the thermistor is connected correctly between terminal 53 or 54 (analog voltage input) and terminal 50 (+10 Volts supply), or between terminal 18 or 19 (digital input PNP only) and terminal 50. If a KTY sensor is used, check for correct connection between terminal 54 and 55.

W ARNI NG/ ALARM 12, Torque limit:

The torque is higher than the value in par. 4-16 (in motor operation) or the torque is higher than the value in par. 4-17 (in regenerative operation).

W ARNI NG/ ALARM 13, Over Current :

The inverter peak current limit (approx. 200\% of the rated current) is exceeded. The warning will last approx. 8-12 sec., then the frequency converter trips and issues an alarm. Turn off the frequency converter and check if the motor shaft can be turned and if the motor size matches the frequency converter.

ALARM 14, Earth fault:

There is a discharge from the output phases to earth, either in the cable between the frequency converter and the motor or in the motor itself. Turn off the frequency converter and remove the earth fault.

ALARM 15, In-complete hardware:
A fitted option is not handled by the present control board (hardware or software).

ALARM 16, Short-circuit:

There is short-circuiting in the motor or on the motor terminals.
Turn off the frequency converter and remove the short-circuit.

W ARNI NG/ ALARM 17, Control w ord timeout:

There is no communication to the frequency converter.
The warning will only be active when par. 8-04 is NOT set to OFF.
If par. 8-04 is set to Stop and Trip, a warning appears and the frequency converter ramps down until it trips, while giving an alarm.
par. 8-03 Control word Timeout Time could possibly be increased.

Alarm 18, Start Failed

The speed has not been able to exceed Max Start Speed (par. 1-77) during the start within the allowed time (par. 1-79). This may be caused by a blocked rotor.

Warning/ Alarm 19, Discharge Temperature High

Warning:
The discharge temperature exceeds the level programmed in par. 28-24. If so programmed in par. 28-25 the drive lowers the speed of the compressor in an attempt to lower the discharge temperature.

Alarm:
The discharge temperature exceeds the level programmed in par. 28-26.

W ARNI NG 25, Brake resist or short-circuited:

The brake resistor is monitored during operation. If it short-circuits, the brake function is disconnected and the warning appears. The frequency converter still works, but without the brake function. Turn off the frequency converter and replace the brake resistor (see par. 2-15 Brake Check.

ALARM/ W ARNI NG 26, Brake resist or power limit:

The power transmitted to the brake resistor is calculated as a percentage, as a mean value over the last 120 s , on the basis of the resistance value of the brake resistor (par. 2-11) and the intermediate circuit voltage. The warning is active when the dissipated braking power is higher than 90%. If Trip [2] has been selected in par. 2-13, the frequency converter cuts out and issues this alarm, when the dissipated braking power is higher than 100\%.

WARNI NG 27, Brake chopper fault:

The brake transistor is monitored during operation and if it short-circuits, the brake function disconnects and the warning comes up. The frequency converter is still able to run, but since the brake transistor has short-
circuited, substantial power is transmitted to the brake resistor, even if it is inactive. Turn off the frequency converter and remove the brake resistor.
Warning: There is a risk of substantial power being
transmitted to the brake resistor if the brake transistor
is short-circuited.

ALARM/ W ARNI NG 28, Brake check failed:
Brake resistor fault: the brake resistor is not connected/working.

ALARM 29, Frequency converter over temperature:

If the enclosure is IP 20 or IP 21/TYPE 1, the cut-out temperature of the heat-sink is $95^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, dependent on size of frequency converter. The temperature fault cannot be reset, until the temperature of the heatsink is below $70^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

The fault could be:

- Ambient temperature too high
- Too long motor cable

ALARM 30, Motor phase U missing:

Motor phase U between the frequency converter and the the motor is missing.
Turn off the frequency converter and check motor phase U.
ALARM 31, Motor phase V missing:
Motor phase V between the frequency converter and the motor is missing. Turn off the frequency converter and check motor phase V .

ALARM 32, Motor phase W missing:
Motor phase W between the frequency converter and the motor is missing.

Turn off the frequency converter and check motor phase W.
ALARM 33, Inrush fault:
Too many power-ups have occurred within a short time period. See the chapter Specifications for the allowed number of powerups within one minute.

W ARNI NG/ ALARM 34, Fieldbus communication fault:
The fieldbus on the communication option card is not working.
WARNING 35, Out of frequency range:
This warning is active if the output frequency has reached par. 4-52 Warning speed low or par. 4-53 Warning speed high. If the frequency converter is in par. 1-00 Process control, closed loop [3], the warning is active in the display. If the frequency converter is not in this mode bit 008000 Out of frequency range in extended status word is active but there is no warning in the display.

ALARM 38, Internal fault:
Contact the local Danfoss supplier.
WARNING 47, 24 V supply low:
The external 24 V DC backup power supply may be overloaded, otherwise contact the local Danfoss supplier.

W ARNI NG 48, 1.8 V supply low :
Contact the local Danfoss supplier.
ALARM 49, Speed Limit:
When the speed is not within the specified range in par. 4-11 and par. $4-13$. the drive will show a warning. When the speed is below the specified limit in par. 1-86 (except when starting or stopping) the drive will trip.

ALARM 50, AMA calibration failed:
Contact the local Danfoss supplier.
ALARM 51, AMA check Unom and I nom:
The setting of motor voltage, motor current, and motor power is presumably wrong. Check the settings.

ALARM 52, AMA low Inom:

The motor current is too low. Check the settings.
ALARM 53, AMA motor too big:
The motor is too big for the AMA to be carried out.
ALARM 54, AMA motor too small:
The motor is too small for the AMA to be carried out.
ALARM 55, AMA par. out of range:
The par. values found from the motor are outside acceptable range.

ALARM 56, AMA interrupted by user:

The AMA has been interrupted by the user.

ALARM 57, AMA timeout:

Try to start the AMA again a number of times, until the AMA is carried out. Please note that repeated runs may heat the motor to a level where the resistance Rs and Rr are increased. In most cases, however, this is not critical.

ALARM 58, AMA internal fault:
Contact the local Danfoss supplier.
W ARNI NG 59, Current limit:
Contact the local Danfoss supplier.
WARNING 62, Output Frequency at Maximum Limit:
The output frequency is higher than the value set in par. 4-19
WARNING 64, Voltage Limit:
The load and speed combination demands a motor voltage higher than the actual DC link voltage.

WARNING/ ALARM/ TRIP 65, Control Card Over Temperature:

Control card over temperature: The cut-out temperature of the control card is $80^{\circ} \mathrm{C}$.

WARNING 66, Heatsink Temperature Low:

The heat sink temperature is measured as $0^{\circ} \mathrm{C}$. This could indicate that the temperature sensor is defective and thus the fan speed is increased to the maximum in case the power part or control card is very hot.

ALARM 67, Option Configuration has Changed:

One or more options has either been added or removed since the last power-down.

ALARM 68, Safe Stop Activated:

Safe Stop has been activated. To resume normal operation, apply 24 V DC to terminal 37, then send a reset signal (via Bus, Digital I/O, or by pressing [RESET]). For correct and safe use of the Safe Stop function follow the related information and instructions in the Design Guide
ALARM 70, Illegal Frequency Configuration:
Actual combination of control board and power board is illegal.
ALARM 80, Initialization to Default Value:
Parameter settings are initialised to default setting after a manual (threefinger) reset.

Warning 96, Start Delayed:

A start signal is suppressed because the time that has passed since last accepted start is less than the minimum time programmed in par. 22-76.

Warning 97, Stop Delayed:

A stop signal is suppressed because the motor has been running less time than the minimum time programmed in par. 22-77.

Warning 219, Compressor Interlock:
At least one compressor is inversely interlocked via a digital input. The interlocked compressors can be viewed in par. 25-87.

ALARM 250, New Spare Part:

The power or Switch Mode Power Supply has been exchanged. The frequency converter type code must be restored in the EEPROM. Select the correct type code in Par 14-23 according to the label on unit. Remember to select 'Save to EEPROM' to complete.

ALARM 251, New Type Code:

The frequency converter has got a new type code.

Index

$+$

[+zone Unit], 25-21 94

A

Abbeviations And Standards
Acceleration Time
Access To Control Terminals
Airflow
Ama
Analog Inputs
Analog Output
Auto Energy Optimization Compressor
Auto Energy Optimization Vt

B

Back Cooling 23

C

Cable Lengths And Cross Sections 127
Cable Positions 22
Cable-length And Cross-section: 33
Cabling 33
Changing A Group Of Numeric Data Values 96
Changing A Text Value 95
Changing Data 95
Changing Of Data Value 96
Coasting 59
Communication Option 137
Condenser Vt 69
Configuration Mode, 1-00 82
Control Cables 49
Control Cables 48
Control Card Performance 130
Control Card, 10 V Dc Output 129
Control Card, 24 V Dc Output 129
Control Card, Rs-485 Serial Communication: 128
Control Card, Usb Serial Communication 130
Control Characteristics 129
Control Terminals 44
Cooling 82
Cooling 23
Copyright, Limitation Of Liability And Revision Rights 5
D
Date And Time 0-70 81
Date Format 0-71 8
Dc Link 136
Default Settings 63
Digital Inputs: 127
Digital Output 129
Display Text 10-37 80
Display Text $20-38$ 81
Display Text 30-39 81
Disposal Instruction 11
Drip Shield Installation 27
Dst/summertime 0-74 81
Dst/summertime End 0-77 82
Dst/summertime Start 0-76 81
Duct Cooling 23
Duct Work Cooling Kits 28

E

Earth Leakage Current
Earthing
Efficient Parameter Set-up For Adap-kool Applications
Elcb Relays
Electrical Installation
Electrical Ratings
Electronic Waste
Etr
Example Of Changing Parameter Data
External Fan Supply

F

Feedback 1 Conversion, 20-01 89
Feedback 1 Source 20-00 89
Feedback 1 Source Unit, 20-02 89
Fieldbus Connection
Function Setups 75
Fuse Tables 41
Fuses 41
Fusing 33

G

General Considerations 19
General Warning. 5
Gland/conduit Entry - Ip21 (nema 1) And Ip54 (nema12) 26
Glcp 62
Graphical Display 55

H

High-voltage Warning 5
How To Connect A Pc To The Frequency Converter 60
How To Operate Graphical (glcp) 5

$\|$

Indexed Parameters 96
Indicator Lights (leds)
Initialisation 63
Input Polarity Of Control Terminals 49
Installation At High Altitudes (pelv) 9
Installation Of 24 Volt External Dc Supply 44
Installation Of Duct Cooling Kit In Rittal 28
Installation Of Input Plate Options 30
Installation Of Mains Shield For Frequency Converters 31
Installation On Pedestal 30
Installation On The Wall - Ip21 (nema 1) And Ip54 (nema 12) Units 25
Intermediate Circuit 136
Interval Between Starts, 22-76 92

K

Kty Sensor 136

L

Language 0-01 69

$\operatorname{Lcp} 102$
Leakage Current 7
Leds 55

Literature 6

M

Main Menu 66
Main Menu Mode 58
Main Menu Mode 94
Main Menu Structure 97
Main Reactance 75
Mains Connection 40
Mains Supply (11, L2, L3): 127
Mains Supply $3 \times 525-690$ Vac 132
Maximum Reference 3-03 72
Mct 10 61
Mechanical Brake Control 53
Mechanical Dimensions 18
Mechanical Dimensions 16
Mechanical Installation 19
Minimum Reference 3-02 71
Minimum Run Time 22-40 92, 93
Minimum Sleep Time 22-41 92
Motor Cable 38
Motor Current 1-24 70
Motor Frequency 1-23 70
Motor Name Plate 51
Motor Nominal Speed 1-25 70
Motor Output 127
Motor Poles 1-39 71
[Motor Power Hp] 1-21 69
[Motor Power Kw] 1-20 69
Motor Protection 82, 130
[Motor Speed High Limit Hz] 4-14 71
[Motor Speed Low Limit Hz] 4-12 71
Motor Thermal Protection 53, 82
Motor Voltage 1-22 70
N
Name Plate Data 51
[Neutral Zone Unit], 25-20 93
Non Ul Compliance 41
0
Ordering 28
Output Performance ($u, \mathrm{~V}, \mathrm{~W}$) 127
Outside Installation/ Nema 3r Kit For Rittal 29
P
Pack Controller, 25-00 93
Parallel Connection Of Motors 53
Parameter Selection 95
Parameter Set-up 65
Pc Software Tools 61
Pid Integral Time 20-94 92
Pid Proportional Gain 20-93 91
Planning The Installation Site 13
Potentiometer Reference 47
Power Connections 33
Preset Reference 3-10 83
Profibus Dp-v1 61
Protection 41
Protection And Features 130
Pulse Inputs 128
Pulse Start/stop 46
Q
Quick Menu 58, 66

Quick Menu Mode 58
Quick Menu Mode 67
Quick Transfer Of Parameter Settings When Using Glcp 62

R

Ramp 1 Ramp Down Time 3-42
Ramp 1 Ramp Up Time 3-41 72
Receiving The Frequency Converter 14
Reference 1 Source 3-15 84
Reference Site 3-13 72,84
Reference/feedback Unit, 20-12 90
Refrigerant, $20-30$ 90 90
Relay Outputs 129
Residual Current Device 7
Rfi Switch 37
Rs-485 Bus Connection 60

S

Screened/armoured 49
Screening Of Cables: 33
Serial Communication 130
Setpoint 120 -21 90
Shielded Cables 38
Short Cycle Protection, 22-75 92
Sine-wave Filter 34
Space 19
Speed Up/down 47
Start/stop 46
Stator Leakage Reactance 75
Status 58
Status Messages 55
Step-by-step 96
Surroundings 129
Switches S201, S202, And S801 50
Switching Frequency $14-01$ - 88
Switching Frequency: 33

T

Terminal 42 Output 6-50 $\quad 85$
Terminal 42 Output Max Scale 6-52 87
Terminal 42 Output Min Scale 6-51 86
Terminal 53 High Ref./feedb. Value 6-15 85
Terminal 53 High Voltage 6-11 85
Terminal 53 Low Ref./feedb. Value 6-14 85
Terminal 53 Low Voltage 6-10 84
Terminal 54 High Current 6-23 85
Terminal 54 High Ref./feedb. Value 6 -25 85
Terminal 54 High Voltage 6-21 85
Terminal 54 Low Current 6-22 85
Terminal 54 Low Ref.ffeedb. Value 6-24 85
Terminal 54 Low Voltage 6-20 85
Terminal Locations - Frame Size D
Thermistor 82
Thermistor Source 1-93 83
Three Ways Of Operating 55
Time Format 0-72 81
Torque 38
Torque Characteristics 127
Torque Characteristics, 1-03 69

U

Unpacking 14
V
Voltage Level 127
Voltage Reference Via A Potentiometer 47
W
Wake-up Ref./fb Difference 22-44 92
[Wake-up Speed Hz] 22-43 92
[Wake-up Speed Rpm] 22-42 92
Wire Access 20
[-zone Unit], 25-22 94

[^0]: Illustration 3.2: Mounting Template

[^1]: NB!
 Please see the instructions $175 R 5922$ for further information

[^2]: NB!
 Where RFI filters are available, there are two different type of RFI filters depending on the input plate combination and the RFI filters interchangeable. Field installable kits in certain cases are the same for all voltages.

[^3]: Connect the wires as described in the Operating Instruction for the frequency converter. Remember to connect the shields in a proper way to ensure

