Operating Instructions VLT ${ }^{\oplus}$ HVAC Drive FC 102

315-1400 kW

TOMORROW

Danfoss A/S
6430 Nordborg
Denmark
CVR nr.: 20165715

EU DECLARATION OF CONFORMITY
 Danfoss A/S
 Danfoss Drives A/S

declares under our sole responsibility that the

Product category: Frequency Converter
Type designation(s): FC-102XYYYZZ ${ }^{* ~}$

Character X: N or P
Character YYY: K37, K75, 1K1, 1K5, 2K2, 3K0, 3K7, 4K0, 5K5, 7K5, 11K, 15K, 18K, 22K, 30K, 37K, 45K, $55 \mathrm{~K}, 75 \mathrm{~K}, 90 \mathrm{~K}, 110,132,150,160,200,250,315,355,400,450,500,560,630,710,800,900,1 \mathrm{M} 0$, 1M2, 1M4

Character ZZ: T2, T4, T6, T7

* may be any number or letter indicating drive options which do not impact this DoC.

The meaning of the 39 characters in the type code string can be found in appendix 00729776.

Covered by this declaration is in conformity with the following directive(s), standard(s) or other normative document(s), provided that the product is used in accordance with our instructions.

Low Voltage Directive 2014/35/EU

EN61800-5-1:2007 + A1:2017

EMC Directive 2014/30/EU

EN61800-3:2004 + A1:2012
Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy.

Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods.
RoHS Directive 2011/65/EU including amendment 2015/863.

Danfoss only vouches for the correctness of the English version of this declaration. In the event of the declaration being translated into any other language, the translator concerned shall be liable for the correctness of the translation

For products including available Safe Torque Off (STO) function according to unit typecode on the nameplate: T or U at character $\mathbf{1 8}$ of the typecode.

Machine Directive 2006/42/EC

EN/IEC 61800-5-2:2007
(Safe Stop function conforms with STO - Safe
Torque Off, SIL 2 Capability)

Other standards considered:

EN ISO 13849-1:2015
(Safe Stop function, PL d
(MTTFd $=14000$ years, $\mathrm{DC}=90 \%$, Category 3)
EN/IEC 61508-1:2011, EN/IEC 61508-2:2011
(Safe Stop function, SIL 2 (PFH = 1E-10/h, 1E-8/h
for specific variants, $\mathrm{PFD}=1 \mathrm{E}-10,1 \mathrm{E}-4$ for specific
variants, SFF $>99 \%$, HFT=0))

EN/IEC 62061:2005 + A1:2013
(Safe Stop function, SILCL 2)

EN/IEC 60204-1:2006 + A1:2009
(Stop Category 0)

Adjustable speed electrical power drive systems Part 5-2: Safety requirements - Functional

Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design

Functional safety of electrical/electronic/ programmable electronic safety-related systems Part 1: General requirements
Part 2: Requirements for electrical/ electronic / programmable electronic safety-related systems Safety of machinery - Functional safety of safetyrelated electrical, electronic and programmable electronic control systems
Safety of machinery - Electrical equipment of machines - Part 1: General requirements

For products including ATEX option, it requires STO function in the products. The products can have the VLT PTC Thermistor Card MCB112 installed from factory (2 at character 32 in the typecode), or it can be separately installed as an additional part.

2014/34/EU - Equipment for explosive atmospheres (ATEX)

Based on EU harmonized standard:
EN 50495: 2010
Safety devices required for safe functioning of equipment with respect to explosion risks.

Notified Body:
PTB Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, has assessed the conformity of the "ATEX certified motor thermal protection systems" of Danfoss FC VLT Drives with Safe Torque Off function and has issued the certificate PTB 14 ATEX 3009.

Contents

Contents

1 Introduction 4
1.1 Purpose of the Manual 4
1.2 Additional Resources 4
1.3 Document and Software Version 4
1.4 Approvals and Certifications 4
1.4.1 Approvals 4
1.5 Disposal 5
1.6 Abberviations and Conventions 5
2 Safety 7
2.1 Qualified Personnel 7
2.2 Safety Regulations 7
2.2.1 Discharge Time 7
2.2.2 Safe Torque Off (STO) 8
3 Mechanical Installation 9
3.1 Pre-installation 9
3.1.1 Planning the Installation Site 9
3.1.1.1 Inspection on Receipt 9
3.1.2 Receiving the Frequency Converter 9
3.1.3 Transportation and Unpacking 9
3.1.4 Lifting 9
3.1.5 Mechanical Dimensions 11
3.2 Mechanical Installation 15
3.2.1 Preparation for Installation 15
3.2.2 Tools Required 15
3.2.3 General Considerations 15
3.2.4 Terminal Locations, F8-F14 16
3.2.4.1 Inverter and Rectifier, Enclosure Sizes F8 and F9 16
3.2.4.2 Inverter, Enclosure Sizes F10 and F11 17
3.2.4.3 Inverter, Enclosure Sizes F12 and F13 18
3.2.4.4 Inverter, Enclosure Size F14 19
3.2.4.5 Rectifier, Enclosure Sizes F10, F11, F12 and F13 19
3.2.4.6 Rectifier, Enclosure Size F14 20
3.2.4.7 Options Cabinet, Enclosure Size F9 21
3.2.4.8 Options Cabinet, Enclosure Sizes F11/F13 22
3.2.5 Cooling and Airflow 22
3.3 Frame size F Panel Options 26
3.3.1 Panel Options 26

Contents
4 Electrical Installation 28
4.1 Electrical Installation 28
4.1.1 Power Connections 28
4.1.2 Grounding 35
4.1.3 Extra Protection (RCD) 35
4.1.4 RFI Switch 35
4.1.5 Torque 35
4.1.6 Screened Cables 36
4.1.7 Motor Cable 36
4.1.8 Brake Cable for Frequency Converters with Factory-installed Brake Chopper Op- tion 37
4.1.9 Shielding against Electrical Noise 37
4.1.10 Mains Connection 37
4.1.11 External Fan Supply 38
4.1.12 Fuses 38
4.1.13 Motor Insulation 41
4.1.14 Motor Bearing Currents 41
4.1.15 Brake Resistor Temperature Switch 41
4.1.16 Control Cable Routing 41
4.1.17 Access to Control Terminals 42
4.1.18 Electrical Installation, Control Terminals 42
4.2 Connection Examples 43
4.2.1 Start/Stop 43
4.2.2 Pulse Start/Stop 43
4.3.1 Electrical Installation, Control Cables 45
4.3.2 Switches S201, S202 and S801 47
4.4 Final Set-up and Test 48
4.5 Additional Connections 49
4.5.1 Mechanical Brake Control 49
4.5.2 Parallel Connection of Motors 49
4.5.3 Motor Thermal Protection 50
4.5.4 Mechanical Brake Control 50
5 How to Operate the Frequency Converter 51
5.1.1 3 Ways of Operating 51
5.1.2 How to Operate Graphical LCP (GLCP) 51
5.1.3 RS-485 Bus Connection 54
5.1.4 How to Connect a PC to the Frequency Converter 55
5.1.5 PC Software Tools 55
5.1.6 Tips and Tricks 56
5.1.7 Quick Transfer of Parameter Settings when Using GLCP 56
5.1.8 Initialisation to Default Settings 56
6 How to Programme 58
6.1.1 Parameter Set-Up 58
6.1.2 Quick Menu Mode 62
6.1.3 Function Setups 66
6.1.4 5-1* Digital Inputs 76
6.1.5 Main Menu Mode 88
6.1.6 Parameter Selection 88
6.1.7 Changing Data 89
6.1.8 Changing a Text Value 89
6.1.9 Changing a Group of Numeric Data Values 89
6.1.10 Changing of Data Value, Step-by-Step 89
6.1.11 Readout and Programming of Indexed Parameters 90
6.2 Parameter Menu Structure 90
7 General Specifications 95
8 Warnings and Alarms 106
Index 118

Introduction

1 Introduction

1.1 Purpose of the Manual

The frequency converter is designed to provide high shaft performance on electrical motors. Read these operating instructions carefully for proper use. Incorrect handling of the frequency converter may cause improper operation of the frequency converter or related equipment, shorten lifetime or cause other troubles.

These operating instructions provide information on:

- Start-up
- Installation
- Programming
- Troubleshooting
- Chapter 1 Introduction introduces the manual and informs about approvals, symbols, and abbreviations used in this manual.
- Chapter 2 Safety entails instructions on how to handle the frequency converter in a safe way.
- Chapter 3 Mechanical Installation guides through the mechanical installations.
- Chapter 4 Electrical Installation guides through the electrical installations.
- Chapter 5 How to Operate the Frequency Converter explains how to operate the frequency converter via the LCP.
- Chapter 6 How to Programme explains how to programme the frequency converter via the LCP.
- Chapter 7 General Specifications contains technical data about the frequency converter.
- Chapter 8 Warnings and Alarms assists in solving problems that may occur when using the frequency converter.
VLT^{\circledR} is a registered trademark.

1.2 Additional Resources

- VLT ${ }^{\circledR}$ HVAC Drive FC 102Operating Instructions provide the necessary information for getting the frequency converter up and running.
- VLT ${ }^{\circledR}$ HVAC Drive FC 102 Design Guide entails all technical information about the frequency converter and customer design and applications.
- VLT ${ }^{\circledR}$ HVAC Drive FC 102 Programming Guide provides information on how to programme and includes complete parameter descriptions.
- Analog I/O Option MCB 109 Installation Instructions.
- Temperature Derating Guide Application Note.
- MCT 10 Set-up SoftwareOperating Instructions enables the user to configure the frequency converter from a Windows ${ }^{\text {TM }}$ based PC environment.
- Danfoss VLT Energy Box software at www.danfoss.com/BusinessAreas/DrivesSolutions.
- VLT ${ }^{\circledR}$ HVAC Drive Drive Applications.
- PROFIBUS Installation Guide.
- VLT DeviceNet MCA 104 Operating Instructions.
- VLT ${ }^{\circledR}$ HVAC Drive FC 102 BACnet Operating Instructions.
- VLT ${ }^{\circledR}$ HVAC Drive FC 102 LonWorks Operating Instructions.
- VLT ${ }^{\circledR}$ HVAC Drive FC 102 Metasys N2 Operating Instructions.
- VLT ${ }^{\circledR}$ HVAC Drive FC 102 FLN Operating Instructions.
- Output Filter Design Guide.
- Brake Resistor MCE 101 Design Guide.

Danfoss technical literature is available in print from your local Danfoss Sales Office or online at: www.danfoss.com/ BusinessAreas/DrivesSolutions/Documentations/Technical +Documentation.htm

1.3 Document and Software Version

This manual is regularly reviewed and updated. All suggestions for improvement are welcome. Table 1.1 shows the document version and the corresponding software version.

Edition	Remarks	Software version
MG16B2xx	Replaces MG16B1xx	$4.1 x$

Table 1.1 Document and Software Version

1.4 Approvals and Certifications

1.4.1 Approvals

Introduction

The frequency converter complies with UL508C thermal memory retention requirements. For more information, refer to the section Motor Thermal Protection in the product specific design guide.

NOTICE

Imposed limitations on the output frequency (due to export control regulations):
From software version 6.72 onwards, the output frequency of the frequency converter is limited to 590 Hz . Software versions $6 \mathrm{x} . \mathrm{xx}$ also limit the maximum output frequency to 590 Hz , but these versions cannot be flashed, that is, neither downgraded nor upgraded.

1.5 Disposal

Do not dispose of equipment containing electrical components together with domestic waste.
Collect it separately in accordance with local and currently valid legislation.

1.6 Abberviations and Conventions

60° AVM	60° Asynchronous vector modulation
A	Ampere/AMP
AC	Alternating current
AD	Air discharge
AEO	Automatic energy optimisation
AI	Analog input
AMA	Automatic motor adaptation
AWG	American wire gauge
${ }^{\circ} \mathrm{C}$	Degrees Celsius
CD	Contant discharge
CM	Common mode
CT	Constant torque
DC	Direct current
DI	Digital input
DM	Differential mode
D-TYPE	Drive dependent
EMC	Electro magnetic compatibility
ETR	Electronic thermal relay
fog	Motor frequency when jog function is activated.
f_{M}	Motor frequency
$\mathrm{f}_{\text {MAX }}$	The maximum output frequency the frequency converter applies on its output.
fmin	The minimum motor frequency from frequency converter
$\mathrm{f}_{\mathrm{M}, \mathrm{N}}$	Nominal motor frequency
FC	Frequency converter
g	Gramme
Hiperface ${ }^{\circledR}$	Hiperface ${ }^{\circledR}$ is a registered trademark by Stegmann

hp	Horsepower
HTL	HTL encoder (10-30 V) pulses - High-voltage transistor logic
Hz	Hertz
Inv	Rated inverter output current
ILIM	Current limit
$\mathrm{I}_{\mathrm{M}, \mathrm{N}}$	Nominal motor current
IVLt,Max	The maximum output current
IvLt,N	The rated output current supplied by the frequency converter
kHz	Kilohertz
LCP	Local control panel
Isb	Least significant bit
m	Meter
mA	Milliampere
MCM	Mille circular mil
MCT	Motion control tool
mH	Millihenry inductance
min	Minute
ms	Millisecond
msb	Most significant bit
ףVLT	Efficiency of the frequency converter defined as ratio between power output and power input.
nF	Nanofarad
NLCP	Numerical local control panel
Nm	Newton meters
$\mathrm{n}_{\text {s }}$	Synchronous motor speed
On-line/Off-line Parameters	Changes to on-line parameters are activated immediately after the data value is changed.
Pbr,cont.	Rated power of the brake resistor (average power during continuous braking).
PCB	Printed circuit board
PCD	Process data
PELV	Protective extra low voltage
Pm	Frequency converter nominal output power as HO.
$\mathrm{P}_{\mathrm{M}, \mathrm{N}}$	Nominal motor power
PM motor	Permanent magnet motor
Process PID	The PID regulator maintains the desired speed, pressure, temperature, etc.
Rbr,nom	The nominal resistor value that ensures a brake power on motor shaft of $150 / 160 \%$ for 1 minute
RCD	Residual current device
Regen	Regenerative terminals
$\mathrm{R}_{\text {min }}$	Minimum permissible brake resistor value by frequency converter
RMS	Root mean square
RPM	Revolutions per minute
Rrec	Resistor value and resistance of the brake resistor
s	Second

Introduction
Operating Instructions

SFAVM	Stator flux-oriented asynchronous vector modulation
STW	Status word
SMPS	Switch mode power supply
THD	Total harmonic distortion
TLIM	Torque limit
TL	TL encoder (5 V) pulses - transistor transistor logic
UM,N	Nominal motor voltage
V	Volts
VT	Variable torque
VVC ${ }^{+}$	Voltage vector control

Table 1.2 Abbreviations

Conventions

Numbered lists indicate procedures.
Bullet lists indicate other information and description of illustrations.
Italicised text indicates

- Cross reference
- Link
- Footnote
- Parameter name, parameter group name, parameter option

All dimensions are in mm [inch].

* indicates a default setting of a parameter.

Safety

2 Safety

The following symbols are used in this document:

AWARNING

Indicates a potentially hazardous situation which could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which could result in minor or moderate injury. It can also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that can result in damage to equipment or property.

2.1 Qualified Personnel

Correct and reliable transport, storage, installation, operation, and maintenance are required for the troublefree and safe operation of the frequency converter. Only qualified personnel are allowed to install or operate this equipment.

Qualified personnel are defined as trained staff, who are authorised to install, commission, and maintain equipment, systems, and circuits in accordance with pertinent laws and regulations. Additionally, the personnel must be familiar with the instructions and safety measures described in these operating instructions.

2.2 Safety Regulations

AWARNING

HIGH VOLTAGE

Frequency converters contain high voltage when connected to AC mains input, DC power supply, or load sharing. Failure to perform installation, start-up, and maintenance by qualified personnel can result in death or serious injury.

- Installation, start-up, and maintenance must be performed by qualified personnel only.

AWARNING
 UNINTENDED START

When the frequency converter is connected to AC mains, DC power supply, or load sharing, the motor may start at any time. Unintended start during programming, service, or repair work can result in death, serious injury, or property damage. The motor can start by means of an external switch, a serial bus command, an input reference signal from the LCP, or after a cleared fault condition.
To prevent unintended motor start:

- Disconnect the frequency converter from the mains.
- Press [Off/Reset] on the LCP before programming parameters.
- The frequency converter, motor, and any driven equipment must be fully wired and assembled when the frequency converter is connected to AC mains, DC power supply, or load sharing.

2.2.1 Discharge Time

Voltage [V]	Minimum waiting time (minutes)	
	30	40
$380-500 \mathrm{~V}$		$315-1000 \mathrm{~kW}$
$525-600 \mathrm{~V}$	$400-1400 \mathrm{~kW}$	

Table 2.1 Discharge Time

\triangle WARNING

LEAKAGE CURRENT HAZARD
Leakage currents exceed 3.5 mA . Failure to ground the frequency converter properly can result in death or serious injury.

- Ensure the correct grounding of the equipment by a certified electrical installer.

Safety
Operating Instructions

AWARNING

EQUIPMENT HAZARD

Contact with rotating shafts and electrical equipment can result in death or serious injury.

- Ensure that only trained and qualified personnel perform installation, start up, and maintenance.
- Ensure that electrical work conforms to national and local electrical codes.
- Follow the procedures in these operating instructions.

AWARNING

UNINTENDED MOTOR ROTATION
WINDMILLING
Unintended rotation of permanent magnet motors can result in serious injury or equipment damage.

- Ensure that permanent magnet motors are blocked to prevent unintended rotation.

ACAUTION

INTERNAL FAILURE HAZARD

An internal failure in the frequency converter can result in serious injury, when the frequency converter is not properly closed.

- Ensure that all safety covers are in place and securely fastened before applying power.

2.2.2 Safe Torque Off (STO)

STO is an option. To run STO, additional wiring for the frequency converter is required. Refer to $V L T^{\circledR}$ Frequency Converters Safe Torque Off Operating Instructions for further information.

3 Mechanical Installation

3.1 Pre-installation

3.1.1 Planning the Installation Site

NOTICE

Plan the installation of the frequency converter before commencing the installation. Neglecting this may result in extra work during and after installation.

Select the best possible operation site by considering the following (see details on the following pages, and the respective Design Guides):

- Ambient operating temperature
- Installation method
- How to cool the unit
- Position of the frequency converter
- Cable routing
- Ensure that the power source supplies the correct voltage and necessary current.
- Ensure that the motor current rating is within the maximum current from the frequency converter.
- If the frequency converter is without built-in fuses, ensure that the external fuses are rated correctly.

3.1.1.1 Inspection on Receipt

After receiving the delivery, immediately check whether the scope of delivery matches the shipping documents. Danfoss does not honour claims for faults registered at a later time. Register a complaint immediately:

- With the carrier in case of visible transport damage.
- With the responsible Danfoss representative in case of visible defects or incomplete delivery.

3.1.2 Receiving the Frequency Converter

When receiving the frequency converter, make sure that the packaging is intact, and be aware of any damage that might have occurred to the unit during transport. In case damage has occurred, immediately contact the shipping company to claim the damage.

3.1.3 Transportation and Unpacking

Locate the frequency converter as close as possible to the final installation site before unpacking.
Remove the box and handle the frequency converter on the pallet, as long as possible.

3.1.4 Lifting

Always lift the frequency converter via the dedicated lifting eyes.

Illustration 3.1 Recommended Lifting Method, Enclosure Size F8.

Illustration 3.2 Recommended Lifting Method, Enclosure Size F9/F10.

Illustration 3.3 Recommended Lifting Method, Enclosure Size F11/F12/F13/F14.

NOTICE

The plinth is provided in the same packaging as the frequency converter, but is not attached during shipment. The plinth is required to allow airflow cooling to the frequency converter. Position the frequency converter on top of the plinth in the final installation location. The angle from the top of the frequency converter to the lifting cable should be $>60^{\circ}$. In addition to Illustration 3.1 to Illustration 3.3, a spreader bar can be used to lift the frequency converter.

3.1.5 Mechanical Dimensions

Table 3.4 Mechanical Dimensions, Enclosure Sizes E and F

NOTICE

The F frames are available in 6 different sizes, F8, F9, F10, F11, F12 and F13 The F8, F10 and F12 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F9, F11 and F13 have an additional options cabinet left of the rectifier cabinet. The F9 is an F8 with an additional options cabinet. The F11 is an F10 with an additional options cabinet. The F13 is an F12 with an additional options cabinet.

3.2 Mechanical Installation

3.2.1 Preparation for Installation

Make the following preparations to ensure reliable and effective installation of the frequency converter:

- Provide a suitable mounting arrangement. The mounting arrangement depends on the design, weight, and torque of the frequency converter.
- Examine the mechanical drawings to ensure that the space requirements are met.
- Ensure that all wiring is done in accordance with national regulations.

3.2.2 Tools Required

- Drill with 10 or 12 mm bit.
- Tape measure.
- Wrench with relevant metric sockets ($7-17 \mathrm{~mm}$).
- Extensions to wrench.
- \quad Sheet metal punch for conduits or cable glands in IP21/Nema 1 and IP54 units
- Lifting bar to lift the unit (rod or tube max. $\varnothing 25$ mm (1 inch), able to lift minimum 400 kg (880 lbs).
- Crane or other lifting aid to place the frequency converter in position.

3.2.3 General Considerations

Space

Ensure sufficient space above and below the frequency converter to allow airflow and cable access. In addition, allow for enough space in front of the unit to open the panel door, see Illustration 3.4 to Illustration 3.10.

130BB531.10

Illustration 3.4 Space in Front of Enclosure Size F8

3.2.4 Terminal Locations, F8-F14

The F enclosures are available in 7 different sizes, F8, F9, F10, F11, F12, F13, and F14. The F8, F10, F12, and F14 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F9, F11 and F13 have an additional options cabinet left of the rectifier cabinet. The F9 is an F8 with an additional options cabinet. The F11 is an F10 with an additional options cabinet. The F13 is an F12 with an additional options cabinet.

3.2.4.1 Inverter and Rectifier, Enclosure Sizes F8 and F9

Illustration 3.11 Terminal Locations - Left, Front and Right Views. The gland plate is 42 mm below .0 level.

1) Ground bar

3.2.4.2 Inverter, Enclosure Sizes F10 and F11

3.2.4.3 Inverter, Enclosure Sizes F12 and F13

Illustration 3.13 Terminal Locations - Left, Front and Right Views. The gland plate is 42 mm below .0 level.

1) Ground bar

3.2.4.4 Inverter, Enclosure Size F14

Illustration 3.14 Terminal Locations - Left, Front and Right Views. The gland plate is 42 mm below .0 level.
3.2.4.5 Rectifier, Enclosure Sizes F10, F11, F12 and F13

Illustration 3.15 Terminal Locations - Left, Front and Right Views. The gland plate is 42 mm below .0 level.

1) Loadshare Terminal (-)
2) Ground bar
3) Loadshare Terminal (+)

3.2.4.6 Rectifier, Enclosure Size F14

Illustration 3.16 Terminal Locations - Left, Front and Right Views. The gland plate is 42 mm below .0 level.

3.2.4.7 Options Cabinet, Enclosure Size F9

Illustration 3.17 Terminal Locations - Left, Front and Right Views

3.2.4.8 Options Cabinet, Enclosure Sizes F11/F13

Illustration 3.18 Terminal Locations - Left, Front and Right Views

3.2.5 Cooling and Airflow

Cooling

Cooling can be achieved in different ways:

- By using the cooling ducts at the top and bottom of the unit.
- By taking air in and out the back of the unit.
- By combining the cooling methods.

Duct cooling

A dedicated option has been developed to optimise the installation of frequency converters in Rittal TS8 enclosures utilising the frequency converter fan for forced air cooling of the backchannel. The air out of the top of the enclosure could be ducted outside a facility so the heat losses from the backchannel are not dissipated within the control room. This ultimately reduces the air-conditioning requirements of the facility.

Back cooling

The backchannel air can also be ventilated in and out of the back of a Rittal TS8 enclosure. The backchannel takes cool air from outside the facility and returns warm air to outside the facility, thus reducing air-conditioning requirements.

Airflow

Ensure sufficient airflow over the heat sink. The flow rate is shown in Table 3.5.

Enclosure protection	Door fan(s)/Top fan airflow	Heat sink fan(s)
IP21/NEMA 1	$700 \mathrm{~m}^{3} / \mathrm{h}(412 \mathrm{cfm})^{*}$	$985 \mathrm{~m}^{3} / \mathrm{h}(580 \mathrm{cfm})^{*}$
IP54/NEMA 12	$525 \mathrm{~m}^{3} / \mathrm{h}(309 \mathrm{cfm})^{*}$	$985 \mathrm{~m}^{3} / \mathrm{h}(580 \mathrm{cfm})^{*}$

Table 3.5 Heat Sink Air Flow

* Airflow per fan. Enclosure sizes F contain multiple fans.

NOTICE

The fan runs for the following reasons:

- AMA
- DC Hold
- Pre-Mag
- DC Brake
- 60% of nominal current is exceeded.
- Specific heat sink temperature exceeded (power size dependent).

The fan runs for minimum 10 minutes.

External ducts

If additional duct work is added externally to the Rittal cabinet, calculate the pressure drop in the ducting. To derate the frequency converter according to the pressure drop, refer to Illustration 3.19.

Illustration 3.19 Enclosure Size F, Derating vs. Pressure Change (Pa)
Drive air flow: $985 \mathrm{~m}^{3} / \mathrm{h}$ (580 cfm)

3.2.6 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

Cables are connected through the gland plate from the bottom. Remove the plate and plan where to place the entry for the glands or conduits. Prepare holes in the marked area on the drawings in Table 3.6 and Table 3.7.

NOTICE

Fit the gland plate to the frequency converter to ensure the specified protection degree, as well as ensuring proper cooling of the unit. If the gland plate is not mounted, the frequency converter may trip on Alarm 69, Pwr. Card Temp

Illustration 3.20 Example of Proper Installation of the Gland Plate.

Table 3.6 F8-F10: Cable Entries Viewed from the Bottom of the Frequency Converter

Mechanical Installation

Table 3.7 F11-F14: Cable Entries Viewed from the Bottom of the Frequency Converter

3.3 Frame size F Panel Options

3.3.1 Panel Options

Space heaters and thermostat

Space heaters are mounted on the cabinet interior of enclosure size F10-F14 frequency converters. They are controlled via an automatic thermostat, and help control humidity inside the enclosure, thereby extending the lifetime of frequency converter components in damp environments. The thermostat default settings turn on the heaters at $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ and turn them off at $15.6^{\circ} \mathrm{C}(60$ ${ }^{\circ} \mathrm{F}$).

Cabinet light with power outlet

A light mounted on the cabinet interior of enclosure size F10-F14 frequency converters increases visibility during servicing and maintenance. The housing light includes a power outlet for temporarily powering tools or other devices, available in 2 voltages:

- $\quad 230 \mathrm{~V}, 50 \mathrm{~Hz}, 2.5 \mathrm{~A}, \mathrm{CE} / E N E C$
- $120 \mathrm{~V}, 60 \mathrm{~Hz}, 5 \mathrm{~A}, \mathrm{UL} / c \mathrm{LL}$

Transformer tap set-up

If the cabinet light and outlet, and/or the space heaters and thermostat are installed, transformer T1 requires the taps to be set to the proper input voltage. A
$380-480 / 500 \mathrm{~V}$ unit is initially set to the 525 V tap and a $525-690 \mathrm{~V}$ unit is set to the 690 V tap. This ensures that no overvoltage of secondary equipment occurs if the tap is not changed before power is applied. See Table 3.8 to set the proper tap at terminal T1, located in the rectifier cabinet. For location in the frequency converter, see the illustration of the rectifier in Illustration 4.1.

Input voltage range [V]	Tap to select [V]
$380-440$	400
$441-490$	460
$491-550$	525
$551-625$	575
$626-660$	660
$661-690$	690

Table 3.8 Transformer Tap Setting

NAMUR terminals

NAMUR is an international association of automation technology users in the process industries, primarily chemical and pharmaceutical industries in Germany. Selection of this option provides terminals organised and labeled to the specifications of the NAMUR standard for frequency converter input and output terminals. This requires an MCB 112 PTC Thermistor Card and an MCB 113 Extended Relay Card.

RCD (residual current device)

Uses the core balance method to monitor ground fault currents in grounded and high-resistance grounded systems (TN and TT systems in IEC terminology). There is a pre-warning (50\% of main alarm setpoint) and a main
alarm setpoint. Associated with each setpoint is an SPDT alarm relay for external use. Requires an external windowtype current transformer (not supplied).

- Integrated into the frequency converter's safestop circuit.
- IEC 60755 Type B device monitors AC, pulsed DC, and pure DC ground fault currents.
- LED bar graph indicator of the ground fault current level from $10-100 \%$ of the setpoint.
- Fault memory
- TEST/RESET button

IRM (insulation resistance monitor)

Monitors the insulation resistance in ungrounded systems (IT systems in IEC terminology) between the system phase conductors and ground. There is an ohmic pre-warning and a main alarm setpoint for the insulation level. Associated with each setpoint is an SPDT alarm relay for external use.

NOTICE

Only one insulation resistance monitor can be connected to each ungrounded (IT) system.

- Integrated into the frequency converter's safestop circuit.
- LCD display of the ohmic value of the insulation resistance.
- Fault Memory
- [Info], [Test], and [Reset] keys

Manual motor starters

Provide 3-phase power for electric blowers often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter and is off when the incoming power to the frequency converter is off. Up to 2 starters are allowed (only 1 if a 30 A, fuse-protected circuit is ordered). The manual motor starter is integrated into the frequency converter's STO and includes the following features:

- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

30 Amp, fuse-protected terminals

- 3-phase power matching incoming mains voltage for powering auxiliary customer equipment.
- Not available if 2 manual motor starters are selected.
- Terminals are off when the incoming power to the frequency converter is off.
- Power for the fused protected terminals is provided from the load side of any supplied circuit breaker or disconnect switch.

24 V DC power supply

- $5 \mathrm{~A}, 120 \mathrm{~W}, 24 \mathrm{~V}$ DC
- Protected against output overcurrent, overload, short circuits, and overtemperature.
- For powering 3rd party accessory devices such as sensors, PLC I/O, contactors, temperature probes, indicator lights, and/or other electronic hardware.
- Diagnostics include a dry DC-ok contact, a green DC-ok LED, and a red overload LED.

External temperature monitoring

Designed for monitoring temperatures of external system components, such as the motor windings and/or bearings. Includes 8 universal input modules plus 2 dedicated thermistor input modules. All 10 modules are integrated into the frequency converter's STO circuit and can be monitored via a fieldbus network (requires a separate module/bus coupler).

Universal inputs (8) - signal types

- RTD inputs (including Pt100), 3 -wire or 4 -wire
- Thermocoupler
- Analog current or analog voltage

Additional features:

- 1 universal output, configurable for analog voltage or analog current.
- 2 output relays (N.O.)
- Dual-line LC display and LED diagnostics
- Sensor lead wire break, short-circuit, and incorrect polarity detection
- Interface set-up software

Dedicated thermistor inputs (2) - features

- Each module is capable of monitoring up to 6 thermistors in series.
- Fault diagnostics for wire breakage or shortcircuits of sensor leads.
- ATEX/UL/CSA certification
- A 3rd thermistor input can be provided by the PTC Thermistor Option Card MCB 112, if necessary.

4 Electrical Installation

4.1 Electrical Installation

4.1.1 Power Connections

Cabling and Fusing
NOTICE
Cables General
All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. UL applications require $75^{\circ} \mathrm{C}$ copper conductors. $75^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ copper conductors are thermally acceptable for the frequency converter to use in non UL applications.

The power cable connections are located as in Illustration 4.1. Dimensioning of the cable cross-section must be done in accordance with the current ratings and local legislation. See chapter 7.1 General Specifications for details.

For protection of the frequency converter, use the recommended fuses, or ensure that the unit has built-in fuses. Recommended fuses are detailed in in chapter 4.1.12 Fuses. Always ensure that fusing conforms to local regulations.

The mains connection is fitted to the mains switch if this is included.

Illustration 4.1 Power Cable Connections

NOTICE

If an unscreened/unarmoured cable is used, some EMC requirements are not complied with. Use a screened/armoured motor cable to comply with EMC emission specifications. For more information, see EMC Specifications in the product relevant design guide.

See chapter 7.1 General Specifications for the correct dimensioning of the motor cable cross-section and length.

Illustration 4.2 A) Modified 6-Pulse Connection ${ }^{1), ~ 2), ~ 3) ~}$
B) 12-Pulse Connection ${ }^{2)}$, 4)

Notes

1) 6-pulse connection eliminates the harmonics reduction benefits of the 12-pulse rectifier.
2) Suitable for IT and TN mains connection.
3) In the unlikely event that 1 of the 6-pulse modular rectifiers becomes inoperable, it is possible to operate the frequency converter at reduced load with a single 6 -pulse rectifier. Contact Danfoss for reconnection details.
4) No paralleling of mains cabling is shown here.

Screening of cables

Avoid installation with twisted screen ends（pigtails）．They spoil the screening effect at higher frequencies．If it is necessary to break the screen to install a motor isolator or motor contactor，the screen must be continued at the lowest possible HF impedance．

Connect the motor cable screen to both the decoupling plate of the frequency converter and to the metal housing of the motor．

Make the screen connections with the largest possible surface area（cable clamp）．This is done by using the supplied installation devices within the frequency converter．

Cable length and cross－section

The frequency converter has been EMC tested with a given cable length．Keep the motor cable as short as possible to reduce the noise level and leakage currents．

Switching frequency

When frequency converters are used with sine－wave filters to reduce the acoustic noise from a motor，set the switching frequency according to the instruction in 14－01 Switching Frequency．

Term．no．				
96	97	98	99	
U	V	W	$\mathrm{PE}^{1)}$	Motor voltage 0－100\％of mains voltage． 3 wires out of motor
U1	V1	W1		Delta－connected
W2	U2	V2		6 wires out of motor
U1	V1	W1	$\mathrm{PE}^{1)}$	Star－connected U2，V2，W2 U2，V2 and W2 to be intercon－ nected separately．

Table 4．1 Terminal Connections

1）Protective Earth Connection

NOTICE

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply（such as a frequency converter），fit a sine－ wave filter on the output of the frequency converter．

Illustration 4．3 Star and Delta Connections

1	12-pulse rectifier module					
2	Ground/earth PE terminals					
3	Mains/fuses					
	R1	S1	T1			
	L1-1	L2-1	L3-1			
	91-1	92-1	93-1			
4	Mains/fuses					
	R2	S2	T2			
	L2-1	L2-2	L3-2			
	91-2	92-2	93-2			
5	Motor connection					
	U	V	W			
	T1	T2	T3			
	96	97	98			
6	Brake terminals					
	$-\mathrm{R} \quad+\mathrm{R}$					
	8182					
7	Inverter module					
8	SCR enable/disable					
9	Relay 1			Relay 2		
	01	02	03	04	05	06
10	Auxillary fan					
	104106					

1	12-pulse rectifier module					
2	AUX fan					
		101	102	103		
	L1	L2	L1	L2		
3	Mains fuses F10/F12 (6 pieces)					
4	Mains					
	R1	S1	T1	R2	S2	T2
	L1-1	L2-1	L3-1	L1-2	L2-2	L3-2
5	DC bus connections for common DC bus					
	DC+ DC-					
6	DC bus connections for common DC bus					
	DC+ DC-					

Illustration 4.4 Rectifier and Inverter Cabinet, Enclosure Sizes F8 and F9

Illustration 4.5 Rectifier Cabinet, Enclosure Sizes F10 and F12

1	12-pulse rectifier modules					
2	N/A					
3	DC busbar access					
4	DC busbar access					
	100	101	102	103		
	L1	L2	L1	L2		
5	Mains fuses (6 pieces)					
	-R + R					
	8182					
6	Mains					
	R1	S1	T1	R2	S2	T2
	L1-1	L2-1	L3-1	L1-2	L2-2	L3-2

1	External temperature monitoring			
2	AUX relay			
	01	02		
	04	05		
3	NAMUR			
4	AUX fan			
	100	101	102	103
	L1	L2	L1	L2
5	Brake			
	-R	+R		
	81	82		
6	Motor			
	U	V	W	
	96	97	98	
	T1	T2	T3	
7	NAMUR fuse. See Table 4.16 for part numbers.			
8	Fan fuses. See Table 4.13 for part numbers.			
9	SMPS fuses. See Table 4.12 for part numbers.			

Illustration 4.7 Inverter Cabinet, Enclosure Sizes F10 and F11

Illustration 4.6 Rectifier Cabinet, Enclosure Size F14

1	External temperature monitoring			
2	AUX relay			
	01	02	03	
	04	05	06	
3	NAMUR			
4	AUX fan			
	100	101	102	103
	L1	L2	L1	L2
5	Brake			
	$-\mathrm{R}$			
	81 82			
6	Motor			
	U	V	W	
	96	97	98	
	T1	T2	T3	
7	NAMUR fuse. See Table 4.16 for part numbers.			
8	Fan fuses. See Table 4.13 for part numbers.			
9	SMPS fuses. See Table 4.12 for part numbers.			

[^0]| 4 | AUX fan | | | |
| :--- | :--- | :--- | :--- | :--- |
| | 100 | 101 | 102 | 103 |
| | L1 | L2 | L1 | L2 |
| 5 | Brake | | | |
| | -R | +R | | |
| | 81 | 82 | | |
| 6 | Motor | | W | |
| | U | 97 | 98 | |
| | 96 | T 2 | T 3 | |

Illustration 4.9 Inverter Cabinet, Enclosure Size F14

1	Pilz relay terminal					
2	RCD or IRM terminal					
3	Mains/6-phase					
	R1	S1	T1	R2	S2	T2
	91-1	92-1	93-1	91-2	92-2	93-2
	L1-1	L2-1	L3-1	L1-2	L2-2	L3-2
4	Safety relay coil fuse with Pilz relay					
	See chapter 4.1.13 Fuse Tables for part numbers.					
5	Mains fuses, (6 pieces)					
	See chapter 4.1.13 Fuse Tables for part numbers.					
6	2x3-phase manual disconnect					

Illustration 4.10 Options Cabinet, Enclosure Size F9

Illustration 4.11 Options Cabinet, Enclosure Sizes F11 and F13

4.1.2 Grounding

To obtain electromagnetic compatibility (EMC), consider the following basic issues when installing a frequency converter.

- Safety grounding: The frequency converter has a high leakage current (> 3.5 mA) and must be grounded appropriately for safety reasons. Apply local safety regulations.
- High-frequency grounding: Keep the ground wire connections as short as possible.

Connect the different ground systems at the lowest possible conductor impedance. This is obtained by keeping the conductor as short as possible and by using the greatest possible surface area.
The metal cabinets of the different devices are mounted on the cabinet rear plate using the lowest possible Highfrequency impedance. This avoids having different Highfrequency voltages for the individual devices and avoids the risk of radio interference currents running in any connection cables used between the devices. The radio interference has been reduced.
To obtain a low High-frequency impedance, use the fastening bolts of the devices as High-frequency connection to the rear plate. Remove any insulating paint or similar from the fastening points.

4.1.3 Extra Protection (RCD)

If local safety regulations are complied with, ELCB relays, multiple protective earthing or grounding can be used as extra protection.

A ground fault may cause a DC component to develop in the fault current.

If ELCB relays are used, observe local regulations. Relays must be suitable for the protection of 3 -phase equipment with a bridge rectifier and for a brief discharge on powerup.

See also Special Conditions in the product relevant design guide.

4.1.4 RFI Switch

Mains supply isolated from ground

Turn off (OFF) ${ }^{1)}$ the RFI switch via 14-50 RFI Filter on the frequency converter and 14-50 RFI Filter on the filter if:

- The frequency converter is supplied from an isolated mains source (IT mains, floating delta and grounded delta).
- The frequency converter is supplied from TT/TN-S mains with grounded leg.

For further reference, see IEC 364-3.
Set $14-50$ RFI Filter to [ON] if:

- Optimum EMC performance is needed.
- Parallel motors are connected.
- The motor cable length is above 25 m .
${ }^{1)}$ Not available for $525-600 / 690 \mathrm{~V}$ frequency converters.

In OFF, the internal RFI capacities (filter capacitors) between the chassis and the intermediate circuit are cut off to avoid damage to the intermediate circuit and to reduce the ground capacity currents (according to IEC 61800-3).
Also refer to the application note VLT on IT mains. It is important to use isolation monitors which are compatible with power electronics (IEC 61557-8).

4.1.5 Torque

When tightening all electrical connections, it is important to tighten with the correct torque. Too low or too high torque results in a poor electrical connection. Use a torque wrench to ensure correct torque.

Table 4.2 Tightening Torques

Illustration 4.12 Tightening Torques.

Enclosure size	Terminal	Torque	Bolt size
F8-F14	Mains	19-40 Nm	
	Motor	$\begin{aligned} & (168-354 \text { in- } \\ & \text { lbs) } \end{aligned}$	M10
	Brake Regen	$\begin{aligned} & 8.5-20.5 \mathrm{Nm} \\ & \text { (75-181 in-lbs) } \end{aligned}$	M8

4.1.6 Screened Cables

AWARNING

Danfoss recommends using screened cables between the LCL filter and the frequency converter. Unshielded cables can be used between transformer and LCL filter input side.

It is important that screened and armoured cables are connected in a proper way to ensure high EMC immunity and low emissions.

The connection can be made using either cable glands or clamps.

- EMC cable glands: Available cable glands can be used to ensure an optimum EMC connection.
- EMC cable clamp: Clamps allowing easy connection are supplied with the frequency converter.

4.1.7 Motor Cable

Connect the motor to terminals U/T1/96, V/T2/97, W/T3/98. Ground to terminal 99. All types of 3-phase asynchronous standard motors can be used with a frequency converter. The factory setting is for clockwise rotation with the frequency converter output connected as follows:

Terminal Number	Function
$96,97,98$	Mains U/T1, V/T2, W/T3
99	Ground

Table 4.3 Motor Connection Terminals

- Terminal U/T1/96 connected to U-phase.
- Terminal V/T2/97 connected to V-phase.
- Terminal W/T3/98 connected to W-phase.

Illustration 4.13 Wiring for Clockwise and Counterclockwise Motor Rotation

The direction of rotation can be changed by switching 2 phases in the motor cable or by changing the setting of 4-10 Motor Speed Direction.

A motor rotation check can be performed using parameter 1-28 Motor Rotation Check and following the steps shown on the display.

Requirements

F8/F9 requirements: The cables must be of equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F10/F11 requirements: Motor phase cable quantities must be multiples of 2 , resulting in $2,4,6$, or 8 (1 cable is not allowed) to obtain equal amount of wires attached to both inverter module terminals. The cables must be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.
F12/F13 requirements: Motor phase cable quantities must be multiples of 3 , resulting in $3,6,9$, or $12(1,2$, or 3 cables are not allowed) to obtain an equal amount of wires attached to each inverter module terminal. The wires must be of equal length within 10% between the inverter
module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F14 requirements: Motor phase cable quantities must be multiples of 4 , resulting in $4,8,12$, or $16(1,2$, or 3 cables are not allowed) to obtain an equal amount of wires attached to each inverter module terminal. The wires must be of equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements: The length, minimum 2.5 m , and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

NOTICE

If a retrofit application requires an unequal amount of wires per phase, consult Danfoss for requirements and documentation, or use the top/bottom entry side cabinet option.

4.1.8 Brake Cable for Frequency Converters with Factory-installed Brake Chopper Option

(Only standard with letter B in position 18 of product type code).

Use a screened connection cable to the brake resistor. The maximum length from the frequency converter to the DC bar is limited to $25 \mathrm{~m}(82 \mathrm{ft})$.

Terminal number	Function
81,82	Brake resistor terminals

Table 4.4 Brake Resistor Terminals

The connection cable to the brake resistor must be screened. Connect the screen to the conductive back plate on the frequency converter and to the metal cabinet of the brake resistor with cable clamps.
Size the brake cable cross-section to match the brake torque. See also the Instructions Brake Resistor and Brake Resistors for Horizontal Applications for further information regarding safe installation.

NOTICE

Depending on the supply voltage, voltages up to 1099 V DC may occur on the terminals.

F enclosure requirements

Connect the brake resistor to the brake terminals in each inverter module.

4.1.9 Shielding against Electrical Noise

Before mounting the mains power cable, mount the EMC metal cover to ensure best EMC performance.

NOTICE

The EMC metal cover is only included in frequency converters with an RFI filter.

Illustration 4.14 Mounting of EMC shield.

4.1.10 Mains Connection

Mains and ground must be connected as detailed in Table 4.5.

Terminal number	Function
$91-1,92-1,93-1$	Mains R1/L1-1, S1/L2-1, T1/L3-1
$91-2,92-2,93-2$	Mains R2/L1-2, S2/L2-2, T2/L3-2
94	Ground

Table 4.5 Mains and Ground Connection Terminals

NOTICE

Check the nameplate to ensure that the mains voltage of the frequency converter matches the power supply of the plant.

Ensure that the power supply can supply the necessary current to the frequency converter.

If the frequency converter is without built-in fuses, ensure that the appropriate fuses have the correct current rating.

4.1.11 External Fan Supply

In case the frequency converter is supplied by $D C$, or if the fan must run independently of the power supply, an external power supply can be applied. The connection is made on the power card.

Terminal number	Function
100,101	Auxiliary supply S, T
102,103	Internal supply S, T

Table 4.6 External Fan Supply Terminals

The connector located on the power card provides the connection of line voltage for the cooling fans. The fans are connected from factory to be supplied from a common AC line (jumpers between 100-102 and 101-103). If an external supply is needed, remove the jumpers and connect the supply to terminals 100 and 101 . Use a 5 A fuse for protection. In UL applications this should be LittleFuse KLK-5 or equivalent.

4.1.12 Fuses

Branch circuit protection

To protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear, machines etc., must be short-circuited and overcurrent protected according to national/international regulations.

Power size	Enclosure	Rating		Bussmann	Spare Bussmann		Estimated fuse power loss [W]	
	Size	Voltage (UL)	Amperes	P/N	P/N	400V	460V	
P315T5	F8/F9	700	700	$170 M 4017$	176F9179	25	19	
P355T5	F8/F9	700	700	$170 M 4017$	176F9179	30	22	
P400T5	F8/F9	700	700	$170 M 4017$	176F9179	38	29	
P450T5	F8/F9	700	700	$170 M 4017$	176F9179	3500	2800	
P500T5	F10/F11	700	900	$170 M 6013$	176F9180	3940	4925	
P560T5	F10/F11	700	900	$170 M 6013$	176F9180	2625	2100	
P630T5	F10/F11	700	900	$170 M 6013$	176F9180	3940	4925	
P710T5	F10/F11	700	1500	$170 M 6018$	176F9181	45	34	
P800T5	F12/F13	700	1500	$170 M 6018$	176F9181	60	45	
P1M0T5	F12/F13	700	1500	$170 M 6018$	176F9181	83	63	

Table 4.7 Mains Fuses, 380-500 V

Power size	Enclosure	Rating		Bussmann	Spare Bussmann	Estimated fuse power loss [W]	
	Size	Voltage (UL)	Amperes	P/N	P/N	600 V	690 V
P450T7	F8/F9	700	630	170 M 4016	$176 F 9179$	13	10
P500T7	F8/F9	700	630	170 M 4016	176 F9179	17	13
P560T7	F8/F9	700	630	170 M 4016	$176 F 9179$	22	16
P630T7	F8/F9	700	630	170 M 4016	176F9179	24	18
P710T7	F10/F11	700	900	$170 M 6013$	$176 F 9180$	26	20
P800T7	F10/F11	700	900	$170 M 6013$	$176 F 9180$	35	27
P900T7	F10/F11	700	900	$170 M 6013$	$176 F 9180$	44	33
P1M0T7	F12/F13	700	1500	$170 M 6018$	$176 F 9181$	26	20
P1M2T7	F12/F13	700	1500	$170 M 6018$	$176 F 9181$	37	28
P1M4T7	F12/F13	700	1500	$170 M 6018$	$176 F 9181$	47	36

Table 4.8 Mains Fuses, 525-690 V

Size/Type	Bussmann PN*	Rating	Siba
P500	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P560	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P630	170 M 6467	$1400 \mathrm{~A}, 700 \mathrm{~V}$	2068132.1400
P710	170 M 6467	$1400 \mathrm{~A}, 700 \mathrm{~V}$	2068132.1400
P800	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P1M0	170 M 6467	$1400 \mathrm{~A}, 700 \mathrm{~V}$	2068132.1400

Table 4.9 Inverter module DC Link Fuses, 380-500V

Size/Type	Bussmann PN*	Rating	Siba
P710	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P800	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P900	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P1M0	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P1M2	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000
P1M4	170 M 8611	$1100 \mathrm{~A}, 1000 \mathrm{~V}$	2078132.1000

Table 4.10 Inverter module DC Link Fuses, 525-690V
*170M fuses from Bussmann shown use the -/80 visual indicator, -
TN/80 Type T, -/110 or TN/110 Type T indicator fuses of the same size and amperage may be substituted for external use.

Electrical Installation
Operating Instructions

Supplementary fuses

	Size/Type	Bussmann PN*	Rating	Alternative Fuses
2.5-4.0 A Fuse	P500-P1M0, 380-500 V	LPJ-6 SP or SPI	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 6A
	P710-P1M4, 525-690 V	LPJ-10 SP or SPI	$10 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 10 A
4.0-6.3 A Fuse	P500-P1M0, 380-500 V	LPJ-10 SP or SPI	$10 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 10 A
	P710-P1M4, 525-690 V	LPJ-15 SP or SPI	15 A, 600 V	Any listed Class J Dual Element, Time Delay, 15 A
6.3-10 A Fuse	P500-P1M0, 380-500 V	LPJ-15 SP or SPI	$15 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 15 A
	P710-P1M4, 525-690 V	LPJ-20 SP or SPI	$20 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 20A
10-16 A Fuse	P500-P1M0, 380-500 V	LPJ-25 SP or SPI	$25 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 25 A
	P710-P1M4, 525-690 V	LPJ-20 SP or SPI	20 A, 600 V	Any listed Class J Dual Element, Time Delay, 20 A

Table 4.11 Manual Motor Controller Fuses

Enclosure size	Bussmann PN*	Rating
F8-F13	KTK-4	4 A, 600V

Table 4.12 SMPS Fuse

Size/Type	Bussmann PN*	LittelFuse	Rating
P355-P1M0, $380-500 ~ V ~$		KLK-15	$15 \mathrm{~A}, 600 \mathrm{~V}$
P450-P1M4, $525-690 ~ V ~$		KLK-15	$15 \mathrm{~A}, 600 \mathrm{~V}$

Table 4.13 Fan Fuses

Enclosure size	Bussmann PN*	Rating	Alternative fuses
F8-F13	LPJ-30 SP or SPI	$30 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 30 A

Table 4.14 30 A Fuse Protected Terminal Fuse

Enclosure size	Bussmann PN*	Rating	Alternative fuses
F8-F13	LPJ-6 SP or SPI	$6 \mathrm{~A}, 600 \mathrm{~V}$	Any listed Class J Dual Element, Time Delay, 6 A

Table 4.15 Control Transformer Fuse

Enclosure size	Bussmann PN*	Rating
F8-F13	GMC-800MA	$800 \mathrm{~mA}, 250 \mathrm{~V}$

[^1]| Frame size | Bussmann PN* | Rating | Alternative
 fuses |
| :--- | :---: | :---: | :---: |
| F8-F13 | LP-CC-6 | $6 \mathrm{~A}, 600 \mathrm{~V}$ | Any listed
 Class CC, 6A |

Table 4.17 Safety Relay Coil Fuse with PILS Relay

Enclosure size	Power	Type
380-500 V		
F9	P250	ABB OETL-NF600A
F9	P315	ABB OETL-NF600A
F9	P355	ABB OETL-NF600A
F9	P400	ABB OETL-NF600A
F11	P450	ABB OETL-NF800A
F11	P500	ABB OETL-NF800A
F11	P560	ABB OETL-NF800A
F11	P630	ABB OT800U21
F13	P710	Merlin Gerin NPJF36000S12AAYP
F13	P800	Merlin Gerin NPJF36000S12AAYP
525-690 V		
F9	P355	ABB OT400U12-121
F9	P400	ABB OT400U12-121
F9	P500	ABB OT400U12-121
F9	P560	ABB OT400U12-121
F11	P630	ABB OETL-NF600A
F11	P710	ABB OETL-NF600A
F11	P800	ABB OT800U21
F13	P900	ABB OT800U21
F13	P1M0	Merlin Gerin NPJF36000S12AAYP
F13	P1M2	Merlin Gerin NPJF36000S12AAYP

Table 4.18 Mains Disconnectors

4.1.13 Motor Insulation

For motor cable lengths \leq the maximum cable length listed in, the motor insulation ratings in Table 4.19 are recommended. Peak voltage can be up to twice the DClink voltage, and 2.8 times the mains voltage, due to transmission line effects in the motor cable. If a motor has lower insulation rating, use a dU/dt or sine-wave filter.

Nominal mains voltage [V]	Motor insulation [V]
$\mathrm{U}_{\mathrm{N}} \leq 420$	Standard $\mathrm{U}_{\mathrm{LL}}=1300$
$420<\mathrm{U}_{\mathrm{N}} \leq 500$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1600$
$500<\mathrm{U}_{\mathrm{N}} \leq 600$	Reinforced $\mathrm{U}_{\mathrm{LL}}=1800$
$600<\mathrm{U}_{\mathrm{N}} \leq 690$	Reinforced $\mathrm{U}_{\mathrm{LL}}=2000$

Table 4.19 Motor Insulation Ratings

4.1.14 Motor Bearing Currents

All motors installed with VLT^{\circledR} HVAC Drive 315 kW or higher power drives should have NDE (Non-Drive End) insulated bearings installed to eliminate circulating bearing currents. To minimize DE (Drive End) bearing and shaft currents proper grounding of the drive, motor, driven machine, and motor to the driven machine is required.

Standard Mitigation Strategies:

1. Use an insulated bearing
2. Apply rigorous installation procedures

- Ensure the motor and load motor are aligned
- Strictly follow the EMC Installation guideline
- Reinforce the PE so the high frequency impedance is lower in the PE than the input power leads
- Provide a good high frequency connection between the motor and the frequency converter for instance by screened cable which has a 360° connection in the motor and the frequency converter
- Make sure that the impedance from frequency converter to building ground is lower that the grounding impedance of the machine. This can be difficult for pumps
- Make a direct earth connection between the motor and load motor

3. Lower the IGBT switching frequency
4. Modify the inverter waveform, 60° AVM vs. SFAVM
5. Install a shaft grounding system or use an isolating coupling
6. Apply conductive lubrication
7. Use minimum speed settings if possible
8. Try to ensure the line voltage is balanced to ground. This can be difficult for IT, TT, TN-CS or Grounded leg systems
9. Use a dU/dt or sinus filter

4.1.15 Brake Resistor Temperature Switch

- \quad Torque: $0.5-0.6 \mathrm{Nm}$ (5 in-lbs)
- Screw size: M3

This input can be used to monitor the temperature of an externally connected brake resistor. If the input between 104 and 106 is established, the frequency converter trips on warning/alarm 27 Brake IGBT. If the connection is closed between 104 and 105, the frequency converter trips on warning/alarm 27 Brake IGBT.
Install a KLIXON switch that is normally closed. If this function is not used, short-circuit 106 and 104 together.

- Normally closed: 104-106 (factory installed jumper)
- Normally open: 104-105

Terminal number	Function
$106,104,105$	Brake resistor temperature switch.

Table 4.20 Brake Resistor Temperature Switch Terminals

\triangle CAUTION

If the temperature of the brake resistor gets too high and the thermal switch drops out, the frequency converter stops braking and the motor starts coasting.

Illustration 4.15 Brake Resistor Temperature Switch

4.1.16 Control Cable Routing

Tie all control wires down to the designated control cable routing. Remember to connect the shields in a proper way to ensure optimum electrical immunity.

Fieldbus connection

Connections are made to the relevant options on the control card. For details, see the relevant fieldbus instruction. Place the cable in the provided path inside the
frequency converter and tie it down with other control wires.

Installation of 24 V external DC supply

- Torque: 0.5-0.6 Nm (5 in-lbs)
- Screw size: M3

Terminal number	Function
$35(-), 36(+)$	24 V external DC supply

Table 4.21 Terminals for 24 V External DC Supply
24 V DC external supply can be used as low-voltage supply to the control card and any option cards installed. This enables full operation of the LCP (including parameter setting) without connection to the mains. A warning of low voltage is given when 24 V DC has been connected; however, there is no tripping.

NOTICE

Use 24 V DC PELV supply to ensure correct galvanic isolation (type PELV) on the control terminals of the frequency converter.

4.1.17 Access to Control Terminals

All terminals to the control cables are located beneath the LCP. They are accessed by opening the door of the IP21/ IP54 unit, or by removing the covers of the IP00 unit.

4.1.18 Electrical Installation, Control Terminals

To connect the cable to the terminal:

1. Strip the insulation by about $9-10 \mathrm{~mm}$

Illustration 4.16 Stripping of Insulation
2. Insert a screwdriver ${ }^{1)}$ in the square hole.
3. Insert the cable in the adjacent circular hole.

Illustration 4.17 Inserting Cable
4. Remove the screwdriver. The cable is now mounted in the terminal.

1) Maximum $0.4 \times 2.5 \mathrm{~mm}$

To remove the cable from the terminal:

1. Insert a screwdriver ${ }^{1)}$ in the square hole.
2. Pull out the cable.
1) Max. $0.4 \times 2.5 \mathrm{~mm}$

Illustration 4.18 Removing Cable

Illustration 4.19 Unplugging Control Terminals

4.2 Connection Examples

4.2.1 Start/Stop

Terminal $18=5$-10 Terminal 18 Digital Input [8] Start
Terminal $27=5-12$ Terminal 27 Digital Input [0] No operation (Default coast inverse)
Terminal 37 = Safe Torque Off

Illustration 4.20 Wiring Start/Stop

4.2.2 Pulse Start/Stop

Terminal $18=5-10$ Terminal 18 Digital Input [9] Latched start
Terminal 27=5-12 Terminal 27 Digital Input [6] Stop inverse Terminal 37 = Safe Torque Off

Illustration 4.21 Wiring Pulse Start/Stop

4.2.3 Speed Up/Down

Terminals 29/32 = Speed up/down
Terminal $18=5$-10 Terminal 18 Digital Input [9] Start (default)

Terminal $27=5-12$ Terminal 27 Digital Input [19] Freeze reference

Terminal $29=5-13$ Terminal 29 Digital Input [21] Speed up

Terminal $32=5-14$ Terminal 32 Digital Input [22] Speed down

NOTICE

Terminal 29 only in FC x02 ($\mathrm{x}=$ series type).

Illustration 4.22 Speed Up/Down

4.2.4 Potentiometer Reference

Voltage reference via a potentiometer

Reference Source 1 = [1] Analog input 53 (default)
Terminal 53, Low Voltage $=0 \mathrm{~V}$
Terminal 53, High Voltage $=10 \mathrm{~V}$
Terminal 53, Low Ref./Feedback $=0$ RPM
Terminal 53, High Ref./Feedback $=1500$ RPM
Switch S201 = OFF (U)

Illustration 4.23 Potentiometer Reference

4.3.1 Electrical Installation, Control Cables

Illustration 4.24

A=Analog, D=Digital

*Terminal 37 (optional) is used for Safe Torque Off. For Safe Torque Off installation instructions, refer to the Safe Torque Off Operating Instructions for Danfoss VLT ${ }^{\circledR}$ Frequency Converters.
**Do not connect cable screen.

Illustration 4.25 Diagram Showing all Electrical Terminals with NAMUR Option

Very long control cables and analog signals may in rare cases and depending on installation result in $50 / 60 \mathrm{~Hz}$ ground loops due to noise from mains supply cables.

If this occurs, it may be necessary to break the screen or insert a 100 nF capacitor between screen and chassis.

Connect the digital and analog inputs and outputs separately to the frequency converter common inputs (terminal 20,55,39) to avoid ground currents from both groups to affect other groups. For example, switching on the digital input may disturb the analog input signal.

Input polarity of control terminals

Illustration 4.26 PNP (Source)

Illustration 4.27 NPN (Sink)

NOTICE

Control cables must be screened/armoured.

Connect the wires as described in the product related Operating Instructions. Remember to connect the shields in a proper way to ensure optimum electrical immunity.

4.3.2 Switches S201, S202 and S801

Use switches S201 (A53) and S202 (A54) to configure the analog input terminals 53 and 54 as a current ($0-20 \mathrm{~mA}$) or a voltage (-10 V to +10 V).

Enable termination on the RS-485 port (terminals 68 and 69) via the switch S 801 (BUS TER.).

See Illustration 4.24.

Default setting:

S201 (A53) = OFF (voltage input)
S202 (A54) = OFF (voltage input)
S801 (Bus termination) $=$ OFF

Electrical Installation

NOTICE

When changing the function of S201, S202, or S801 do not to use force during the switch over. Remove the LCP fixture (cradle) when operating the switches. Do not operate the switches when the frequency converter is powered.

Illustration 4.29 Switch Location

4.4 Final Set-up and Test

To test the set-up and to ensure that the frequency converter is running, follow these steps.

Step 1. Locate the motor nameplate

NOTICE

The motor is either star (Y) or delta connected (Δ). This information is on the motor nameplate.

THREE PHASE INDUCTION MOTOR

MOD MCV 315E	Nr. 1351891204				ILIN 6.5	
kW 400	PRIMARY				SF 1.15	
HP 536	V690	A410.6	CONN Y		COS f 0.85	40
mm 1481	V	A	CONN		AMB 40	${ }^{\circ} \mathrm{C}$
Hz 50	V A	A	CONN		ALT 1000	m
DESIGNN	SECONDARY				RISE 80	${ }^{\circ} \mathrm{C}$
DUTY S1	V	A	CONN		ENCLOSURE IP23	
INSULI EFFICIEN	\% 95.8\%	\% 100\%	95.8\%	75\%	WEIGHT	1.83 ton

\triangle CAUTION
Illustration 4.30 Nameplate

Step 2. Enter the motor nameplate data in this parameter list.
To access this list, press [Quick Menu] then select Q2 Quick Setup.

1. 1-20 Motor Power [kW]

> 1-21 Motor Power [HP]
2. 1-22 Motor Voltage
3. 1-23 Motor Frequency
4. 1-24 Motor Current
5. 1-25 Motor Nominal Speed

Step 3. Activate the Automatic Motor Adaptation (AMA)

Performing an AMA ensures optimum performance. The AMA measures the values from the motor model equivalent diagram.

1. Connect terminal 37 to terminal 12 (if terminal 37 is available).
2. Connect terminal 27 to terminal 12 or set 5-12 Terminal 27 Digital Input to [0] No function.
3. Activate the AMA 1-29 Automatic Motor Adaptation (AMA).
4. Select between complete or reduced AMA. If a sine-wave filter is mounted, run only the reduced AMA, or remove the sine-wave filter during the AMA procedure.
5. Press [OK]. The display shows Press [Hand On] to start.
6. Press [Hand On]. A progress bar indicates if the AMA is in progress.

Stop the AMA during operation

1. Press [Off] - the frequency converter enters into alarm mode and the display shows that the user terminated the AMA.

Successful AMA

1. The display shows Press [OK] to finish AMA.
2. Press $[O K]$ to exit the AMA state.

Unsuccessful AMA

1. The frequency converter enters into alarm mode. A description of the alarm can be found in .
2. Report Value in the [Alarm Log] shows that the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number along with the description of the alarm helps with troubleshooting. If contacting Danfoss for service, state the alarm number and description.

NOTICE

Incorrectly registered motor nameplate data or a too big difference between the motor power size and the frequency converter power size often causes unsuccessful AMA.

Step 4. Set the speed limit and ramp time

- 3-02 Minimum Reference
- 3-03 Maximum Reference

Step 5. Set up the desired limits for speed and ramp time.

- 4-11 Motor Speed Low Limit [RPM] or 4-12 Motor Speed Low Limit [Hz]
- 4-13 Motor Speed High Limit [RPM] or 4-14 Motor Speed High Limit [Hz]
- 3-41 Ramp 1 Ramp Up Time
- 3-42 Ramp 1 Ramp Down Time

4.5 Additional Connections

4.5.1 Mechanical Brake Control

In hoisting/lowering applications, it is necessary to be able to control an electro-mechanical brake:

- Control the brake using any relay output or digital output (terminal 27 or 29).
- Keep the output closed (voltage-free) as long as the frequency converter is unable to support the motor, for example due to the load being too heavy.
- \quad Select [32] Mechanical brake control in parameter group 5-4* Relays for applications with an electromechanical brake.
- The brake is released when the motor current exceeds the preset value in 2-20 Release Brake Current.
- The brake is engaged when the output frequency is less than the frequency set in 2-21 Activate Brake Speed [RPM] or 2-22 Activate Brake Speed $[\mathrm{Hz}]$, and only if the frequency converter carries out a stop command.
If the frequency converter is in alarm mode or in an overvoltage situation, the mechanical brake immediately cuts in.

4.5.2 Parallel Connection of Motors

The frequency converter can control several parallelconnected motors. The total current consumption of the motors must not exceed the rated output current $I_{M, N}$ for the frequency converter.

NOTICE

Installations with cables connected in a common joint as in Illustration 4.31, are only recommended for short cable lengths.

NOTICE

When motors are connected in parallel, 1-29 Automatic Motor Adaptation (AMA) cannot be used.

NOTICE

The electronic thermal relay (ETR) of the frequency converter cannot be used as motor overload protection for the individual motor in systems with parallelconnected motors. Provide further motor overload protection, for example thermistors in each motor or individual thermal relays (circuit breakers are not suitable as protection).

Illustration 4.31 Parallel Motor Connection

Problems may arise at start-up and at low RPM values if motor sizes are widely different because small motors' relatively high ohmic resistance in the stator calls for a higher voltage at start-up and at low RPM values.

4.5.3 Motor Thermal Protection

The electronic thermal relay in the frequency converter has received UL-approval for single motor overload protection, when 1-90 Motor Thermal Protection is set for [4] ETR Trip and 1-24 Motor Current are set to the rated motor current (see motor nameplate).
For thermal motor protection, it is also possible to use the MCB 112 PTC Thermistor Card option. This card provides ATEX certificate to protect motors in explosion hazardous areas, Zone $1 / 21$ and Zone 2/22. When 1-90 Motor Thermal Protection is set to [20] ATEX ETR and is combined with the use of MCB 112, it is possible to control an Ex-e motor in explosion hazardous areas. Consult the product relevant Programming Guide for details on how to set up the frequency converter for safe operation of Ex-e motors.

4.5.4 Mechanical Brake Control

In hoisting/lowering applications, it is necessary to be able to control an electro-mechanical brake:

- Control the brake using any relay output or digital output (terminal 27 or 29).
- Keep the output closed (voltage-free) as long as the frequency converter is unable to support the motor, for example due to the load being too heavy.
- \quad Select [32] Mechanical brake control in parameter group 5-4* Relays for applications with an electromechanical brake.
- The brake is released when the motor current exceeds the preset value in 2-20 Release Brake Current.
- The brake is engaged when the output frequency is less than the frequency set in 2-21 Activate Brake Speed [RPM] or 2-22 Activate Brake Speed $[\mathrm{Hz}]$, and only if the frequency converter carries out a stop command.
If the frequency converter is in alarm mode or in an overvoltage situation, the mechanical brake immediately cuts in.

5 How to Operate the Frequency Converter

5.1.1 3 Ways of Operating

The frequency converter can be operated in 3 ways:

1. Graphical Local Control Panel (GLCP)
2. Numeric Local Control Panel (NLCP)
3. RS-485 serial communication or USB, both for PC connection

If the frequency converter is fitted with fieldbus option, refer to relevant documentation.

5.1.2 How to Operate Graphical LCP (GLCP)

The following instructions are valid for the GLCP (LCP 102).

The GLCP is divided into 4 functional groups

1. Graphical display with status lines.
2. Menu keys and indicator lights (LEDs) - selecting mode, changing parameters and switching between display functions.
3. Navigation keys and indicator lights (LEDs).
4. Operation keys and indicator lights (LEDs).

Graphical display

The LCD-display is back-lit with a total of 6 alpha-numeric lines. All data is displayed on the LCP which can show up to 5 operating variables while in [Status] mode.

Display lines

a. Status line: Status messages displaying icons and graphics.
b. Line 1-2: Operator data lines displaying data and variables defined or selected by the user. By pressing the [Status] key, up to one extra line can be added.
c. Status line: Status messages displaying text.

Illustration 5.1 LCP

The display is divided into 3 sections
Top section
(a) shows the status when in status mode or up to 2 variables when not in status mode and in the case of Alarm/Warning.
The number of the active set-up (selected as the active set-up in 0-10 Active Set-up) is shown. When programming in another set-up than the active set-up, the number of the set-up being programmed appears to the right in brackets.

Middle section

(b) shows up to 5 variables with related unit, regardless of status. In case of alarm/warning, the warning is shown instead of the variables.

Bottom section

(c) always shows the state of the frequency converter in status mode.

How to Operate the Frequenc...

It is possible to toggle between 3 status readout displays by pressing the [Status] key.
Operating variables with different formatting are shown in each status screen - see below.

Several values or measurements can be linked to each of the displayed operating variables. The values/ measurements to be displayed can be defined via 0-20 Display Line 1.1 Small, 0-21 Display Line 1.2 Small, 0-22 Display Line 1.3 Small, 0-23 Display Line 2 Large and 0-24 Display Line 3 Large, which can be accessed via [Quick Menu], Q3 Function Set-ups, Q3-1 General Settings, Q3-13 Display Settings.

Each value/measurement readout parameter selected in $0-20$ Display Line 1.1 Small to 0-24 Display Line 3 Large has its own scale and number of digits after a possible decimal point. Larger numeric values are displayed with few digits after the decimal point.
Ex.: Current readout
5.25 A; 15.2 A 105 A.

Status display I

This readout state is standard after start-up or initialisation. Use [INFO] to obtain information about the value/ measurement linked to the displayed operating variables (1.1, 1.2, 1.3, 2, and 3).

See the operating variables shown in the display in this illustration. 1.1, 1.2 and 1.3 are shown in small size. 2 and 3 are shown in medium size.

Illustration 5.2 Example of Status Display I

Status display II

See the operating variables (1.1, 1.2, 1.3, and 2) shown in the display in Illustration 5.3.
In the example, speed, motor current, motor power and frequency are selected as variables in the first and second lines.
1.1, 1.2 and 1.3 are shown in small size. 2 is shown in large size.

Illustration 5.3 Example of Status Display II

Status display III

This state displays the event and action of the Smart Logic Control.

Illustration 5.4 Example of Status Display III

Display Contrast Adjustment

Press [status] and [$\mathbf{\Delta}$] for darker display
Press [status] and [\mathbf{v}] for brighter display

Illustration 5.5 Display Sections

Indicator lights (LEDs)

If certain threshold values are exceeded, the alarm and/or warning LED lights up. A status and alarm text appear in the display.
The On LED is activated when the frequency converter receives power from mains voltage, a DC bus terminal, or a 24 V external supply. At the same time, the backlight is on.

- Green LED/On: Control section is working.
- Yellow LED/Warn.: Indicates a warning.
- Flashing Red LED/Alarm: Indicates an alarm.

Illustration 5.6 Indicator Lights

GLCP keys

Menu keys

The menu keys are divided into functions. The keys below the display and indicator lights are used for parameter setup, including selection of display indication during normal operation.

Illustration 5.7 Menu Keys

[Status]

indicates the status of the frequency converter and/or the motor. 3 different readouts can be selected by pressing the [Status] key:

- 5 -line readouts
- 4 -line readouts
- Smart Logic Control

Press [Status] to select the display mode or for changing back to Display mode from either Quick Menu mode, Main Menu mode or Alarm mode. Also press [Status] to toggle single or double readout mode.

[Quick Menu]

allows quick set-up of the frequency converter. The most common HVAC functions can be programmed here.

The [Quick Menu] consists of

- My Personal Menu
- Quick Set-up
- Function Set-up
- Changes Made
- Loggings

The Function Set-up provides quick and easy access to all parameters required for most HVAC applications including

- most VAV and CAV supply and return fans
- cooling tower fans
- primary, secondary and condenser water pumps
- other pump, fan and compressor applications

Among other features, it also includes parameters for selecting which variables to display in the LCP, digital preset speeds, scaling of analog references, closed loop single-zone and multi-zone applications and specific functions related to fans, pumps and compressors.

The Quick Menu parameters can be accessed immediately unless a password has been created via 0-60 Main Menu Password, 0-61 Access to Main Menu w/o Password, 0-65 Personal Menu Password or 0-66 Access to Personal Menu w/o Password.
It is possible to switch directly between Quick Menu mode and Main Menu mode.

[Main Menu]

is used for programming all parameters. The Main Menu parameters can be accessed immediately unless a password has been created via 0-60 Main Menu Password,

0-61 Access to Main Menu w/o Password, 0-65 Personal Menu Password or 0-66 Access to Personal Menu w/o Password. For most HVAC applications, it is not necessary to access the Main Menu parameters. Instead, the Quick Menu, Quick Set-up and Function Set-up provide the simplest and quickest access to the typical required parameters. It is possible to switch directly between Main Menu mode and Quick Menu mode.
Parameter shortcut can be carried out by pressing down [Main Menu] for 3 s . The parameter shortcut allows direct access to any parameter.

[Alarm Log]

displays an alarm list of the 10 latest alarms (numbered A1-A10). To obtain more details about an alarm, press the navigation keys to manoeuvre to the alarm number and press [OK]. Information is displayed about the condition of the frequency converter before it enters the alarm mode.

The [Alarm Log] key on the LCP allows access to both alarm log and maintenance log.
[Back]
reverts to the previous step or layer in the navigation structure.

Illustration 5.8 Back Key

[Cancel]

Cancels the last change or command as long as the display has not been changed.

Illustration 5.9 Cancel Key

[Info]

displays information about a command, parameter, or function in any display window. [Info] provides detailed information when needed.
Exit Info mode by pressing either [Info], [Back], or [Cancel].

Illustration 5.10 Info Key

Navigation Keys

The 4 navigation keys are used to navigate between the different options available in [Quick Menu], [Main Menu] and [Alarm Log]. Press the keys to move the cursor.

How to Operate the Frequenc...
[OK]
is used for selecting a parameter marked by the cursor and for enabling the change of a parameter.

Illustration 5.11

Operation Keys

for local control are found at the bottom of the control panel.

Illustration 5.12 Operation Keys

[Hand On]

enables control of the frequency converter via the GLCP. [Hand On] also starts the motor, and it is now possible to enter the motor speed data with the navigation keys. The key can be selected as [1] Enable or [0] Disable via $0-40$ [Hand on] Key on LCP.
The following control signals are still active when [Hand On] is activated:

- [Hand On] - [Off] - [Auto On]
- Reset
- Coasting stop inverse
- Reversing
- Set-up select Isb - Set-up select msb
- Stop command from serial communication
- Quick stop
- DC brake

NOTICE

External stop signals activated with control signals or a fieldbus overrides a start command via the LCP.
[Off]
stops the connected motor. The key can be selected as [1] Enabled or [0] Disabled via 0-41 [Off] Key on LCP. If no external stop function is selected and the [Off] key is inactive, the motor can only be stopped by disconnecting the mains supply.

[Auto On]

enables the frequency converter to be controlled via the control terminals and/or serial communication. When a start signal is applied on the control terminals and/or the bus, the frequency converter starts. The key can be selected as [1] Enabled or [0] Disabled via 0-42 [Auto on] Key on LCP.

NOTICE

An active HAND-OFF-AUTO signal via the digital inputs has higher priority than the control keys [Hand On] [Auto On].

[Reset]

is used for resetting the frequency converter after an alarm (trip). It can be selected as [1] Enable or [0] Disable via $0-43$ [Reset] Key on LCP.

The parameter shortcut can be carried out by holding down the [Main Menu] key for 3 s . The parameter shortcut allows direct access to any parameter.

5.1.3 RS-485 Bus Connection

One or more frequency converters can be connected to a controller (or master) using the RS-485 standard interface. Terminal 68 is connected to the P signal ($T X+, R X+$), while terminal 69 is connected to the N signal (TX-, RX-).

If more than one frequency converter is connected to a master, use parallel connections.

Illustration 5.13 Connection Example.

To avoid potential equalising currents in the screen, ground the cable screen via terminal 61 , which is connected to the frame via an RC-link.

How to Operate the Frequenc...

Bus termination

Terminate the RS-485 bus by a resistor network at both ends. If the frequency converter is the first or the last device in the RS-485 loop, set the switch S801 on the control card for ON.
For more information, see the paragraph Switches S201, S202, and S801.

5.1.4 How to Connect a PC to the Frequency Converter

To control or program the frequency converter from a PC, install the PC-based configuration tool MCT 10 Set-up Software.
The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface as shown in chapter 5.1.3 RS-485 Bus Connection.

NOTICE

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protective earth. Use only an isolated laptop as PC connection to the USB connector on the frequency converter.

Illustration 5.14 USB Connection to Frequency Converter

5.1.5 PC Software Tools

PC-based MCT 10 Set-up Software

All frequency converters are equipped with a serial communication port. Danfoss provides a PC tool for communication between PC and frequency converter. Check the section on for detailed information on this tool.

MCT 10 Set-up Software

MCT 10 Set-up Software has been designed as an easy to use interactive tool for setting parameters in our frequency converters.
The MCT 10 Set-up Software is useful for:

- Planning a communication network off-line. MCT 10 Set-up Software contains a complete frequency converter database.
- Commissioning frequency converters on line.
- Saving settings for all frequency converters.
- Replacing a frequency converter in a network.
- Simple and accurate documentation of frequency converter settings after commissioning.
- Expanding an existing network.
- Future developed frequency converters are supported.
MCT 10 Set-up Software supports Profibus DP-V1 via a master class 2 connection. It enables online reading/ writing of parameters in a frequency converter via the Profibus network. This network eliminates the need for an extra communication network.

Save frequency converter settings:

1. Connect a PC to the unit via USB com port. (NOTE: Use a PC, which is isolated from the mains, with the USB port. Failure to do so may damage equipment.).
2. Open MCT 10 Set-up Software.
3. Select Read from drive.
4. Select Save as.

All parameters are now stored in the PC.

Load frequency converter settings:

1. Connect a PC to the frequency converter via USB com port.
2. Open MCT 10 Set-up Software.
3. Select Open - stored files are shown.
4. Open the appropriate file.
5. Select Write to drive.

All parameter settings are now transferred to the frequency converter.

A separate manual for MCT 10 Set-up Software is available from www.Danfoss.com/BusinessAreas/DrivesSolutions/ Softwaredownload/DDPC+Software+Program.htm.

The MCT 10 Set-up software modules
The following modules are included in the software package.

How to Operate the Frequenc...

	MCT Set-up 10 Software Setting parameters Copy to and from frequency converters Documentation and print of parameter settings incl. diagrams
	Ext. user interface Preventive Maintenance Schedule Clock settings Timed Action Programming Smart Logic Controller Set-up

Table 5.1

Ordering number:

Order the CD containing MCT 10 Set-up Software using code number 130 B 1000.

The software can be downloaded from the Danfoss internet site www.Danfoss.com/BusinessAreas/DrivesSolutions/Softwaredownload/DDPC+Software+Program.htm

5.1.6 Tips and Tricks

- For most HVAC applications the Quick Menu, Quick Set-up and Function Set-up provides the simplest and quickest access to all the typical parameters required
- Whenever possible, performing an AMA, ensures best shaft performance
- Contrast of the display can be adjusted by pressing [Status] and [$\mathbf{\Delta}]$ for darker display or by pressing [Status] and [\mathbf{v}] for brighter display
- Under [Quick Menu] and [Changes Made] all parameters that have been changed from factory settings are displayed
- Press and hold [Main Menu] key for 3 s for access to any parameter
- For service purposes, copy all parameters to the LCP, see 0-50 LCP Copy for further information

5.1.7 Quick Transfer of Parameter Settings when Using GLCP

Once the set-up of a frequency converter is complete, store (back up) the parameter settings in the GLCP or on a PC via MCT 10 Set-up Software.

AWARNING

Stop the motor before performing any of these operations.

Data storage in LCP

1. Go to 0-50 LCP Copy.
2. Press [OK].
3. Select [1] All to LCP.
4. Press [OK].

All parameter settings are now stored in the GLCP indicated by the progress bar. When 100% is reached, press [OK].

The GLCP can now be connected to another frequency converter and the parameter settings copied to this frequency converter.

Data transfer from LCP to frequency converter

1. Go to 0-50 LCP Copy.
2. Press [OK].
3. Select [2] All from LCP.
4. Press [OK]

The parameter settings stored in the GLCP are now transferred to the frequency converter indicated by the progress bar. When 100% is reached, press [OK].

5.1.8 Initialisation to Default Settings

There are 2 ways to initialise the frequency converter to default: Recommended initialisation and manual initialisation.
Be aware that they have different impact according to the following description.

Recommended initialisation (via 14-22 Operation Mode)

1. Select 14-22 Operation Mode.
2. Press [OK].
3. Select [2] Initialisation (for NLCP select " 2 ").
4. Press [OK].
5. Remove power to unit and wait for display to turn off.
6. Reconnect power and the frequency converter is reset. Note that first start-up takes a few more seconds.
7. Press [Reset]

14-22 Operation Mode initialises all except:
14-50 RFI Filter
8-30 Protocol
8-31 Address
8-32 Baud Rate
8-35 Minimum Response Delay
8-36 Max Response Delay
8-37 Maximum Inter-Char Delay
15-00 Operating hours to 15-05 Over Volt's

15-20 Historic Log: Event to 15-22 Historic Log: Time
15-30 Alarm Log: Error Code to 15-32 Alarm Log: Time

NOTICE

Parameters selected in 0-25 My Personal Menu stay present with default factory setting.

Manual initialisation

NOTICE

When carrying out manual initialisation, serial communication, RFI filter settings and fault log settings are reset.
Removes parameters selected in 0-25 My Personal Menu.

1. Disconnect from mains and wait until the display turns off.
2. Press

2a [Status] - [Main Menu] - [OK] at the same time while powering up for Graphical LCP (GLCP).

2b [Menu] while powering up for LCP 101, Numerical Display.
3. Release the keys after 5 s .
4. The frequency converter is now programmed according to default settings.

This parameter initialises all except:
15-00 Operating hours
15-03 Power Up's
15-04 Over Temp's
15-05 Over Volt's

6 How to Programme

6.1.1 Parameter Set-Up

Group	Title	Function
0**	Operation and Display	Parameters used to program the fundamental functions of the frequency converter and the LCP including: - Selection of language - Selection of which variables are displayed at each position in the display. As an example, static duct pressure or condenser water return temperature can be displayed with the setpoint in small digits in the top row and feedback in large digits in the centre of the display) - Enabling/disabling of the LCP keys - Passwords for the LCP - Upload and download of commissioned parameters to/from the LCP - Setting the built-in clock
1**	Load/Motor	Parameters used to configure the frequency converter for the specific application and motor including: - Open or closed loop operation - Type of application such as compressor, fan or centrifugal pump - Motor nameplate data - Auto-tuning of the frequency converter to the motor for optimum performance - Flying start (typically used for fan applications) - Thermal motor protection
2**	Brakes	Parameters used to configure brake functions of the frequency converter which although not common in many HVAC applications, can be useful on special fan applications. Parameters including: - DC brake - Dymamic/resistor brake - Overvoltage control (which provides automatic adjustment of the deceleration rate (autoramping) to avoid tripping when decelerating large inertia fans)
3**	Reference/Ramps	Parameters used to program the - minimum and maximum reference limits of speed ($\mathrm{RPM} / \mathrm{Hz}$) in open loop or in actual units when operating in closed loop) - digital/preset references - jog speed - definition of the source of each reference (for example, which analog input the reference signal is connected to) - ramp-up and ramp-down times - digital potentiometer settings

Group	Title	Function
4**	Limits/Warnings	Parameters used to program limits and warnings of operation including: - Allowable motor direction - Minimum and maximum motor speeds. As an example, in pump applications the minimum speed is often set to approx $30-40 \%$. This speed ensures that pump seals always are adequately lubricated, avoid cavitation and ensure that adequate head always is produced to create flow) - Torque and current limits to protect the pump, fan or compressor driven by the motor - Warnings for low/high current, speed, reference, and feedback - Missing motor phase protection - Speed bypass frequencies including semi-automatic set-up of these frequencies (for example, to avoid resonance conditions on cooling tower and other fans)
5**	Digital In/Out	Parameters used to program the functions of all - digital inputs - digital outputs - relay outputs - pulse inputs - pulse outputs for terminals on the control card and all option cards.
6**	Analog In/Out	Parameters used to program the functions associated with all analog inputs and analog outputs for the terminals on the control card and General Purpose I/O option (MCB 101) including: - Analog input live zero timeout function (which for example can be used to command a cooling tower fan to operate at full speed if the condenser water return sensor fails) - Scaling of the analog input signals (for example to match the analog input to the mA and pressure range of a static duct pressure sensor) - Filter time constant to filter out electrical noise on the analog signal which can sometimes occur when long cables are installed - Function and scaling of the analog outputs (for example to provide an analog output representing motor current or kW to an analog input of a DDC controller) - Configure the analog outputs to be controlled by the BMS via a high-level interface (HLI) (for example, to control a chilled water valve) including ability to define a default value of these outputs in the event of the HLI failing
8**	Communication and Options	Parameters used for configuring and monitoring functions associated with the serial communications/high level interface to the frequency converter
9**	Profibus	Parameters only applicable when a Profibus option is installed.
10**	CAN Fieldbus	Parameters only applicable when a DeviceNet option is installed.
11**	LonWorks	Parameters only applicable when a Lonworks option is installed.

How to Programme Operating Instructions

Group	Title	Function
13**	Smart Logic Controller	Parameters used to configure the built-in Smart Logic Controller (SLC). The SLC can be used for - simple functions such as - comparators (for example, if running above $\times \mathrm{Hz}$, activate output relay) - timers (for example, when a start signal is applied, first activate output relay to open supply air damper and wait x seconds before ramping up) - complex sequence of user-defined actions executed by the SLC when the associated userdefined event is evaluated as TRUE by the SLC. For example, initiate an economiser mode in a simple AHU cooling application control scheme where there is no BMS. For such an application, the SLC can monitor the outside air relative humidity. If the relative humidity is below a defined value, the supply air temperature setpoint could be automatically increased. With the frequency converter monitoring the outside air relative humidity and supply air temperature via its analog inputs, and controlling the chilled water valve via one of the extended $\mathrm{PI}(\mathrm{D})$ loops and an analog output, it would then modulate that valve to maintain a higher supply air temperature). The SLC can often replace the need for other external control equipment.
14**	Special Functions	Parameters used to configure special functions of the frequency converter including: - Setting of the switching frequency to reduce audible noise from the motor (sometimes required for fan applications) - Kinetic back-up function (especially useful for critical applications in semi-conductor installations where performance under mains dip/mains loss is important) - Mains imbalance protection - Automatic reset (to avoid the need for a manual reset of Alarms) - Energy optimisation parameters. These parameters typically do not need changing but enable fine-tuning of this automatic function ensuring that the frequency converter and motor combination operate at their optimum efficiency. - Autoderating functions (which enable the frequency converter to continue operation at reduced performance under extreme operating conditions ensuring maximum up time)
15**	FC Information	Parameters providing operating data and other frequency converter information including: - Operating and running hour counters - kWh counter; resetting of the running and kWh counters - Alarm/fault log (where the past 10 alarms are logged along with any associated value and time) - Frequency converter and option card identification parameters such as code number and software version
16**	Data Readouts	Read-only parameters which display the status/value of many operating variables which can be displayed on the LCP or viewed in this parameter group. These parameters can be useful during commissioning when interfacing with a BMS via a high-level interface.
$18^{* *}$	Info \& Readouts	Read-only parameters which display the last 10 preventive maintenance log items, actions and time and the value of analog inputs and outputs on the Analog I/O option card which can be useful during commissioning when interfacing with a BMS via a high-level interface.

How to Programme Operating Instructions

Group	Title	Function
20**	FC Closed Loop	Parameters used to configure the closed loop $\mathrm{PI}(\mathrm{D})$ controller which controls the speed of the pump, fan or compressor in closed loop mode including: - Defining where each of the 3 possible feedback signals come from (for example, which analog input or the BMS HLI) - Conversion factor for each of the feedback signals. An example could be a pressure signal used for indication of flow in an AHU or converting from pressure to temperature in a compressor application) - Engineering unit for the reference and feedback (for example, $\mathrm{Pa}, \mathrm{kPa}, \mathrm{m} \mathrm{Wg}$, in Wg , bar, $\mathrm{m} 3 / \mathrm{s}, \mathrm{m} 3 / \mathrm{h},{ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$ etc) - The function (for example, sum, difference, average, minimum or maximum) used to calculate the resulting feedback for single zone applications or the control philosophy for multi-zone applications - Programming of the setpoints - Manual or auto-tuning of the $\mathrm{PI}(\mathrm{D})$ loop
$21^{* *}$	Extended Closed Loop	Parameters used to configure the 3 extended closed loop $\mathrm{PI}(\mathrm{D})$ controllers. The controllers can for example be used to control external actuators (for example, chilled water valve to maintain supply air temperature in a VAV system) including: - Engineering unit for the reference and feedback of each controller (for example, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ etc) - Defining the range of the reference/setpoint for each controller - Defining where each of the references/setpoints and feedback signals come from (for example, which analog input or the BMS HLI) - Programming of the setpoint and manual or auto-tuning of each of the $\mathrm{PI}(\mathrm{D})$ controllers.
22**	Application Functions	Parameters used to monitor, protect and control pumps, fans and compressors including: - No-flow detection and protection of pumps (including auto-setup of this function) - Dry pump protection - End-of-curve detection and protection of pumps - Sleep mode (especially useful for cooling tower and booster pump sets) - Broken belt detection (typically used for fan applications to detect no air flow instead of using a $\Delta \mathrm{p}$ switch installed across the fan) - Short cycle protection of compressors and pump flow compensation of setpoint (especially useful for secondary chilled water pump applications where the Δp sensor has been installed close to the pump and not acoss the furthest most significant load(s) in the system - Using this function can compensate for the sensor installation and help to realise the maximum energy savings).
23**	Time Based Functions	Time-based parameters including: - Parameters used to initiate daily or weekly actions based on the built-in real time clock. The actions could be change of setpoint for night set back mode or start/stop of the pump/fan/ compressor start/stop of an external equipment) - Preventive maintenance functions which can be based on running or operating hour time intervals or on specific dates and times - Energy log (especially useful in retrofit applications or where information of the actual historical load (kW) on the pump/fan/compressor is of interest) - Trending (useful in retrofit or other applications where there is an interest to log operating power, current, frequency or speed of the pump/fan/compressor for analysis and a payback counter
$24^{* *}$	Application Functions 2	Parameters used to set up fire mode and/or to control a bypass contactor/starter if designed into the system.

How to Programme Operating Instructions

Group	Title	Function
$25^{* *}$	Cascade Controller	Parameters used to configure and monitor the built-in pump cascade controller (typically used for pump booster sets).
$26^{* *}$	Analog I/O Option MCB 109	Parameters used to configure the Analog I/O option (MCB 109) including: - Definition of the analog input types (for example, voltage, Pt1000 or Ni1000)
	- Scaling and definition of the analog output functions and scaling.	

Table 6.1 Parameter Groups

Parameter descriptions and selections are displayed on the graphic (GLCP) or numeric (NLCP) display. (See relevant section for details.) Access the parameters by pressing [Quick Menu] or [Main Menu] on the LCP. The Quick Menu is used primarily for commissioning the unit at start-up by providing the parameters necessary to start operation. The Main Menu provides access to all parameters for detailed application programming.

All digital input/output and analog input/output terminals are multifunctional. All terminals have factory default functions suitable for most HVAC applications but if other special functions are required, they must be programmed as explained in parameter group 5 -** $^{* *}$ Digital In/out or 6-** Analog In/out.

6.1.2 Quick Menu Mode

Parameter data

The graphical display (GLCP) provides access to all parameters listed under the Quick Menus. The numeric display (NLCP) only provides access to the Quick Set-up parameters. To set parameters pressing [Quick Menu] enter or change parameter data or settings in accordance with the following procedure

1. Press [Quick Menu].
2. Press [$\mathbf{\Delta}$] and [\mathbf{v}] to find the parameter to change.
3. Press [OK].
4. Press [$\mathbf{\Delta}$] and [\mathbf{v}] to select the correct parameter setting.
5. Press [OK].
6. To move to a different digit within a parameter setting, use the [\downarrow] and [\downarrow].
7. Highlighted area indicates digit selected for change.
8. Press [Cancel] to disregard change, or press [OK] to accept change and enter the new setting.

Example of changing parameter data

Assume parameter 22-60 Broken Belt Function is set to [Off]. To monitor the fan-belt condition, non-broken or broken, follow this procedure

1. Press [Quick Menu].
2. Select Function Set-ups with [v].
3. Press [OK].
4. Press [\mathbf{v}] to select Application Settings .
5. Press [OK].
6. Press [OK] again for Fan Functions.
7. Select Broken Belt Function by pressing [OK].
8. Press [\mathbf{v}], to select [2] Trip.

If a broken fan-belt is detected, the frequency converter trips .

Select [My Personal Menu] to display personal

 parametersFor example, an AHU or pump OEM may have preprogrammed personal parameters to be in My Personal Menu during factory commissioning to make on-site commissioning/fine tuning simpler. These parameters are selected in 0-25 My Personal Menu. Up to 20 different parameters can be programmed in this menu.

Select [Changes Made] to get information about

- The last 10 changes. Press [$\mathbf{\Delta}$] and [v] to scroll between the last 10 changed parameters.
- \quad The changes made since default setting.

[Loggings]

shows information about the display line readouts. The information is shown as graphs.
Only display parameters selected in 0-20 Display Line 1.1 Small and 0-24 Display Line 3 Large can be viewed. It is possible to store up to 120 samples in the memory for later reference.

Quick Set-up

Efficient parameter set-up for HVAC applications

The parameters can easily be set up for most HVAC applications only by using the Quick Set-up option. After pressing [Quick Menu], the different options in the Quick Menu are listed. See also Illustration 6.1 and Table 6.3 to Table 6.6.

Example of using the Quick Set-up option

To set the ramp down time to 100 s :

1. Select Quick Set-up. Parameter 0-01 Language in Quick Set-up appears.
2. Press [v] repeatedly until parameter 3-42 Ramp 1 Ramp Down Time appears with the default setting of 20 s .
3. Press [OK].
4. Press [4] to highlight the third digit before the comma.
5. Change ' 0 ' to ' 1 ' by pressing [$\mathbf{\Delta}$].
6. Press [\downarrow] to highlight the digit ' 2 '.
7. Change ' 2 ' to ' 0 ' by pressing [\mathbf{v}].
8. Press [OK].

The new ramp-down time is now set to 100 s . Do the set-up in the order listed.

NOTICE

Illustration 6.1 Quick Menu View

The Quick Set-up menu gives access to the 18 most important set-up parameters of the frequency converter. After programming, the frequency converter is ready for operation. The 18 Quick Set-up parameters are shown in Table 6.2.

Parameter	$[\mathrm{Units}]$
Parameter 0-01 Language	
Parameter 1-20 Motor Power [kW]	$[\mathrm{kW}]$
Parameter 1-21 Motor Power [HP]	$[\mathrm{Hp}]$
Parameter 1-22 Motor Voltage*	$[\mathrm{V}]$
Parameter 1-23 Motor Frequency	$[\mathrm{Hz}]$
Parameter 1-24 Motor Current	$[\mathrm{A}]$
Parameter 1-25 Motor Nominal Speed	$[\mathrm{RPM}]$
Parameter 1-28 Motor Rotation Check	$[\mathrm{Hz}]$
Parameter 3-41 Ramp 1 Ramp Up Time	$[\mathrm{s}]$
Parameter 3-42 Ramp 1 Ramp Down Time	$[\mathrm{s}]$
Parameter 4-11 Motor Speed Low Limit [RPM]	$[\mathrm{RPM}]$
Parameter 4-12 Motor Speed Low Limit [Hz]*	$[\mathrm{Hz}]$
Parameter 4-13 Motor Speed High Limit [RPM]	$[\mathrm{RPM}]$
Parameter 4-14 Motor Speed High Limit [Hz]*	$[\mathrm{Hz}]$
3-19 Jog Speed [RPM]	$[\mathrm{RPM}]$
Parameter 3-11 Jog Speed [Hz]*	$[\mathrm{Hz}]$
5-12 Terminal 27 Digital Input	
Parameter 5-40 Function Relay**	

Table 6.2 Quick Set-up Parameters
*The display showing depends on the selections made in 0-02 Motor Speed Unit and 0-03 Regional Settings. The default settings of 0-02 Motor Speed Unit and 0-03 Regional Settings depend on which region of the world the frequency converter is supplied to but can be reprogrammed as required.
** Parameter 5-40 Function Relay is an array. Select between [0] Relay1 or [1] Relay2 . Standard setting is [0] Relay1 with the default option [9] Alarm.

For a detailed information about settings and programming, see the VLT ${ }^{\circledR}$ HVAC Drive Programming Guide

NOTICE

If [0] No Operation is selected in 5-12 Terminal 27 Digital Input, no connection to +24 V on terminal 27 is necessary to enable start.
If [2] Coast Inverse (factory default value) is selected in 5-12 Terminal 27 Digital Input, a connection to +24 V is necessary to enable start.

How to Programme

0-01 Language		
Option:		Function:
		Defines the language to be used in the display. The frequency converter is delivered with 4 different language packages. English and German are included in all packages. English cannot be erased or manipulated.
[0] *	English	Part of Language packages 1-4
[1]	Deutsch	Part of Language packages 1-4
[2]	Francais	Part of Language package 1
[3]	Dansk	Part of Language package 1
[4]	Spanish	Part of Language package 1
[5]	Italiano	Part of Language package 1
[6]	Svenska	Part of Language package 1
[7]	Nederlands	Part of Language package 1
[10]	Chinese	Part of Language package 2
[20]	Suomi	Part of Language package 1
[22]	English US	Part of Language package 4
[27]	Greek	Part of Language package 4
[28]	Bras.port	Part of Language package 4
[36]	Slovenian	Part of Language package 3
[39]	Korean	Part of Language package 2
[40]	Japanese	Part of Language package 2
[41]	Turkish	Part of Language package 4
[42]	Trad.Chinese	Part of Language package 2
[43]	Bulgarian	Part of Language package 3
[44]	Srpski	Part of Language package 3
[45]	Romanian	Part of Language package 3
[46]	Magyar	Part of Language package 3
[47]	Czech	Part of Language package 3
[48]	Polski	Part of Language package 4
[49]	Russian	Part of Language package 3
[50]	Thai	Part of Language package 2
[51]	Bahasa Indonesia	Part of Language package 2
[52]	Hrvatski	Part of Language package 3

1-20 Motor Power [kW]		
Range:		Function:
Size related**	$0.09-$ 3000.00 $\mathrm{~kW}]$	Enter the nominal motor power in kW according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit. Depending on the selections made in 0-03 Regional Settings, either parameter 1-20 Motor Power [kW] or parameter 1-21 Motor Power [HP] is made invisible.

1-21 Motor Power [HP]		
Range:		Function:
Size related*	0.09- 3000.00 $\mathrm{hp]}$	Enter the nominal motor power in hp according to the motor nameplate data. The default value corresponds to the nominal rated output of the unit. Depending on the selections made in 0-03 Regional Settings, either parameter 1-20 Motor Power [kW] or parameter 1-21 Motor Power [HP] is made invisible.

1-22 Motor Voltage

Range:		Function:
Size related*	$[10-$ $1000 \mathrm{~V}]$	Enter the nominal motor voltage according to the motor nameplate data. The default value corresponds to the nominal rated output of the frequency converter.

1-23 Motor Frequency		
Range:		Function:
Size related**	$[20-$ 1000 $\mathrm{~Hz}]$	Select the motor frequency value from the motor nameplate data. For 87 Hz operation with $230 / 400 \mathrm{~V}$ motors, set the nameplate data for $230 \mathrm{~V} / 50 \mathrm{~Hz}$. Adapt parameter 4-13 Motor Speed High Limit $[R P M]$ and 3-03 Maximum Reference to the 87 Hz application.

1-24 Motor Current		
Range:	Function:	
Size related*	$0.10-$ $10000.00 \mathrm{~A}]$	Enter the nominal motor current value from the motor nameplate data. This data is used for calculating motor torque, thermal motor protection etc.

1-25 Motor Nominal Speed		
Range:	Function:	
Size related*	$[100-60000$ RPM $]$	Enter the nominal motor speed value from the motor nameplate data. This data is used for calculating automatic motor compensations.

Option:		Function:	
	Following installation and connection of the motor, this function allows the correct motor rotation direction to be verified. Enabling this function overrides any bus commands or digital inputs, except external interlock and Safe Torque Off (STO) (if included).		
$[0] *$	Off	Motor rotation check is not active.	
$[1]$	Enabled	Motor rotation check is enabled.	

AWARNING

Remove mains power before disconnecting motor phase cables.

NOTICE

Once the motor rotation check is enabled the display shows: Note! Motor may run in wrong direction.
Pressing [OK], [Back] or [Cancel] dismisses the message and displays a new message: "Press [Hand On] to start the motor. Press [Cancel] to abort". Pressing [Hand On] starts the motor at 5 Hz in forward direction and the display shows: "Motor is running. Check if motor rotation direction is correct. Press [Off] to stop the motor". Pressing [Off] stops the motor and resets parameter 1-28 Motor Rotation Check. If motor rotation direction is incorrect, interchange 2 motor phase cables.

3-41 Ramp 1 Ramp Up Time

Range:		Function:
Size related*	$\begin{gathered} {[1.00-} \\ 3600 \mathrm{~s}] \end{gathered}$	Enter the ramp-up time, that is, the acceleration time from 0 RPM to parameter 1-25 Motor Nominal Speed. Select a ramp-up time such that the output current does not exceed the current limit in 4-18 Current Limit during ramping. See ramp-down time in parameter 3-42 Ramp 1 Ramp Down Time.
$\text { par. } 3-41=\frac{\operatorname{tacc} \times \text { nnom }[\text { par. } 1-25]}{\operatorname{ref}[R P M]}[s]$		
3-42 Ramp 1 Ramp Down Time		
Range:		Function:
Size related*	$\begin{gathered} {[1.00-} \\ 3600 \mathrm{~s}] \end{gathered}$	Enter the ramp-down time, that is, the deceleration time from parameter 1-25 Motor Nominal Speed to 0

| R-42 Ramp 1 Ramp Down Time
 Range: Function:
 RPM. Select a ramp-down time preventing
 overvoltage from arising in the inverter due
 to regenerative operation of the motor. The
 ramp-down time should also be long
 enough to prevent that the generated
 current exceeds the current limit set in
 4-18 Current Limit. See ramp-up time in
 parameter 3-41 Ramp 1 Ramp Up Time. |
| :--- | :--- | :--- |

par. $3-42=\frac{\text { tdec } \times \text { nnom }[\text { par. } 1-25]}{\text { ref }[R P M]}[s]$
4-14 Motor Speed High Limit [Hz]

Range:		Function:
Size related*	par. $4-12-$ par. 4-19 Hz]	Enter the max. limit for motor speed in Hz. Parameter 4-14 Motor Speed High Limit $[\mathrm{Hz}]$ can match the manufacturer's recommended maximum motor speed. The motor speed high limit must exceed
the value in parameter 4-12 Motor Speed		
Low Limit [Hz]. The output frequency must		
not exceed 10\% of the switching		
frequency.		

NOTICE

Max. output frequency cannot exceed 10% of the inverter switching frequency (parameter 14-01 Switching Frequency).

4-12 Motor Speed Low Limit [Hz]

Range:		Function:
Size related*	$[0-$ par. 4-14 Hz]	Enter the minimum limit for motor speed in Hz. The motor speed low limit can be set to correspond to the minimum output frequency of the motor shaft. The speed low limit must not exceed the setting in parameter 4-14 Motor Speed High Limit [Hz].

4-13 Motor Speed High Limit [RPM]

Range:		Function:
Size related*	[par. $4-11-$ 60000 RPM]	Enter the maximum limit for motor speed in RPM. The motor speed high limit can be set to correspond to the manufacturer's maximum rated motor. The motor speed high limit must exceed the setting in parameter 4-11 Motor Speed Low Limit [RPM]. The parameter name appears as either parameter 4-11 Motor Speed Low Limit [RPM] or parameter 4-12 Motor Speed Low Limit [HZ], depending on

- the settings of other parameters in the Main Menu, and
- default settings based on geographical location.

NOTICE

Max．output frequency cannot exceed 10% of the inverter switching frequency（parameter 14－01 Switching Frequency）．

NOTICE

Any changes in parameter 4－13 Motor Speed High Limit ［RPM］reset the value in parameter 4－53 Warning Speed High to the same value as set in parameter 4－13 Motor Speed High Limit［RPM］．

4－11 Motor Speed Low Limit［RPM］		
Range：		Function：
Size related＊	$$	Enter the minimum limit for motor speed in RPM．The motor speed low limit can be set to correspond to the manufacturer＇s recommended minimum motor speed． The motor speed low limit must not exceed the setting in parameter 4－13 Motor Speed High Limit ［RPM］．
3－11 Jog Speed［Hz］		
Range：		Function：
Size related＊	$\begin{gathered} \text { [0-par. } \\ 4-14 \mathrm{~Hz}] \end{gathered}$	The jog speed is a fixed output speed at which the frequency converter is running when the jog function is activated． See also 3－80 Jog Ramp Time．

6．1．3 Function Setups

The Function Setup provides quick and easy access to all parameters required for most HVAC applications including
－most VAV and CAV supply and return fans
－cooling tower fans
－primary pumps
－secondary pumps
－condenser water pumps
－other pump，fan and compressor applications．

How to access Function Setup－example

1．Turn on the frequency converter（yellow LED lights）．

Status		1 （1）
28．8\％	5．66A	2.63 kW
	14.4 Hz	
	0kWh	
Auto Remote Running		

Illustration 6．2 Frequency Converter Turned on

2．Press［Quick Menus］．

Illustration 6．3 Quick Menu Selected

3．Press［ $\mathbf{\Delta}]$ and $[\mathbf{v}]$ to scroll down to Function Setups．Press［OK］．

Illustration 6．4 Scrolling to Function Set－up

4．Function Setups options appear．Select Q3－1 General Settings．Press［OK］．

[^2]5. Press [$\mathbf{\Delta}$] and [\mathbf{v}] to scroll down to that is, Q3-11 Analog Outputs. Press [OK].

Illustration 6.6 General Settings Options
7. Press [$\mathbf{\Delta}]$ and $[\mathbf{v}]$ to select between the different options. Press [OK].

43.4\%	7.99A	1(1)
Analog Output		Q3-11
6-50 Terminal 42 Output		
[107] Speed		

Illustration 6.8 Setting a Parameter
6. Select parameter 6 - 50 Terminal 42 Output. Press [OK].

Illustration 6.7 Parameter parameter 6-50 Terminal 42 Output Selected

Function Set-ups parameters

The Function Set-ups parameters are grouped in the following way

Q3-10 Adv. Motor Settings	Q3-11 Analog Output	Q3-12 Clock Settings	Q3-13 Display Settings
Parameter 1-90 Motor Thermal Protection	Parameter 6-50 Terminal 42 Output	$0-70$ Date and Time	0 -20 Display Line 1.1 Small
Parameter 1-93 Thermistor Source	Parameter 6-51 Terminal 42 Output Min Scale	$0-71$ Date Format	$0-21$ Display Line 1.2 Small
Parameter 1-29 Automatic Motor Adaptation (AMA)	Parameter 6-52 Terminal 42 Output Max Scale	$0-72$ Time Format	$0-22$ Display Line 1.3 Small
Parameter 14-01 Switching Frequency		$0-74$ DST/Summertime	$0-23$ Display Line 2 Large
Parameter 4-53 Warning Speed High		$0-76$ DST/Summertime Start	$0-24$ Display Line 3 Large
	$0-77$ DST/Summertime End	$0-37$ Display Text 1	
		$0-38$ Display Text 2	
	$0-39$ Display Text 3		

Table 6.3 Q3-1 General Settings

Q3-20 Digital Reference	Q3-21 Analog Reference
Parameter 3-02 Minimum Reference	Parameter 3-02 Minimum Reference
3-03 Maximum Reference	3-03 Maximum Reference
Parameter 3-10 Preset Reference	Parameter 6-10 Terminal 53 Low Voltage
5-13 Terminal 29 Digital Input	Parameter 6-11 Terminal 53 High Voltage
5-14 Terminal 32 Digital Input	$6-12$ Terminal 53 Low Current
5-15 Terminal 33 Digital Input	6-13 Terminal 53 High Current
	Parameter 6-14 Terminal 53 Low Ref./Feedb. Value
	Parameter 6-15 Terminal 53 High Ref./Feedb. Value

Table 6.4 Q3-2 Open Loop Settings

How to Programme
Operating Instructions

Q3-30 Single Zone Int. Set Point	Q3-31 Single Zone Ext. Set Point	Q3-32 Multi Zone / Adv
Parameter 1-00 Configuration Mode	Parameter 1-00 Configuration Mode	Parameter 1-00 Configuration Mode
20-12 Reference/Feedback Unit	20-12 Reference/Feedback Unit	Parameter 3-15 Reference 1 Source
20-13 Minimum Reference/Feedb.	20-13 Minimum Reference/Feedb.	Parameter 3-16 Reference 2 Source
20-14 Maximum Reference/Feedb.	20-14 Maximum Reference/Feedb.	Parameter 20-00 Feedback 1 Source
6-22 Terminal 54 Low Current	Parameter 6-10 Terminal 53 Low Voltage	Parameter 20-01 Feedback 1 Conversion
Parameter 6-24 Terminal 54 Low Ref./Feedb. Value	Parameter 6-11 Terminal 53 High Voltage	20-02 Feedback 1 Source Unit
Parameter 6-25 Terminal 54 High Ref./ Feedb. Value	6-12 Terminal 53 Low Current	Parameter 20-03 Feedback 2 Source
Parameter 6-26 Terminal 54 Filter Time Constant	6-13 Terminal 53 High Current	Parameter 20-04 Feedback 2 Conversion
Parameter 6-27 Terminal 54 Live Zero	Parameter 6-14 Terminal 53 Low Ref./Feedb. Value	20-05 Feedback 2 Source Unit
Parameter 6-00 Live Zero Timeout Time	Parameter 6-15 Terminal 53 High Ref./ Feedb. Value	Parameter 20-06 Feedback 3 Source
Parameter 6-01 Live Zero Timeout Function	6-22 Terminal 54 Low Current	Parameter 20-07 Feedback 3 Conversion
Parameter 20-21 Setpoint 1	Parameter 6-24 Terminal 54 Low Ref./Feedb. Value	20-08 Feedback 3 Source Unit
Parameter 20-81 PID Normal/ Inverse Control	Parameter 6-25 Terminal 54 High Ref./ Feedb. Value	20-12 Reference/Feedback Unit
20-82 PID Start Speed [RPM]	Parameter 6-26 Terminal 54 Filter Time Constant	20-13 Minimum Reference/Feedb.
20-83 PID Start Speed [Hz]	Parameter 6-27 Terminal 54 Live Zero	20-14 Maximum Reference/Feedb.
Parameter 20-93 PID Proportional Gain	Parameter 6-00 Live Zero Timeout Time	Parameter 6-10 Terminal 53 Low Voltage
Parameter 20-94 PID Integral Time	Parameter 6-01 Live Zero Timeout Function	Parameter 6-11 Terminal 53 High Voltage
20-70 Closed Loop Type	Parameter 20-81 PID Normal/ Inverse Control	6-12 Terminal 53 Low Current
20-71 PID Performance	20-82 PID Start Speed [RPM]	6-13 Terminal 53 High Current
20-72 PID Output Change	20-83 PID Start Speed [Hz]	Parameter 6-14 Terminal 53 Low Ref./Feedb. Value
20-73 Minimum Feedback Level	Parameter 20-93 PID Proportional Gain	Parameter 6-15 Terminal 53 High Ref./Feedb. Value
20-74 Maximum Feedback Level	Parameter 20-94 PID Integral Time	Parameter 6-16 Terminal 53 Filter Time Constant
20-79 PID Autotuning	20-70 Closed Loop Type	Parameter 6-17 Terminal 53 Live Zero
	20-71 PID Performance	Parameter 6-20 Terminal 54 Low Voltage
	20-72 PID Output Change	Parameter 6-21 Terminal 54 High Voltage
	20-73 Minimum Feedback Level	6-22 Terminal 54 Low Current
	20-74 Maximum Feedback Level	6-23 Terminal 54 High Current
	20-79 PID Autotuning	Parameter 6-24 Terminal 54 Low Ref./Feedb. Value
		Parameter 6-25 Terminal 54 High Ref./Feedb. Value
		Parameter 6-26 Terminal 54 Filter Time Constant
		Parameter 6-27 Terminal 54 Live Zero
		Parameter 6-00 Live Zero Timeout Time
		Parameter 6-01 Live Zero Timeout Function
		Parameter 4-56 Warning Feedback Low
		Parameter 4-57 Warning Feedback High
		Parameter 20-20 Feedback Function
		Parameter 20-21 Setpoint 1
		Parameter 20-22 Setpoint 2

Q3-30 Single Zone Int. Set Point	Q3-31 Single Zone Ext. Set Point	Q3-32 Multi Zone / Adv
		Parameter 20-81 PID Normal/ Inverse Control
		$20-82$ PID Start Speed [RPM]
		$20-83$ PID Start Speed [Hz]
		Parameter 20-93 PID Proportional Gain
		Parameter 20-94 PID Integral Time
		$20-70$ Closed Loop Type
		$20-71$ PID Performance
		$20-72$ PID Output Change
		$20-73$ Minimum Feedback Level
	$20-74$ Maximum Feedback Level	
	$20-79$ PID Autotuning	

Table 6.5 Q3-3 Closed Loop Settings

Q3-40 Fan Functions	Q3-41 Pump Functions	Q3-42 Compressor Functions
Parameter 22-60 Broken Belt Function	22-20 Low Power Auto Set-up	Parameter 1-03 Torque Characteristics
Parameter 22-61 Broken Belt Torque	Parameter 22-21 Low Power Detection	Parameter 1-71 Start Delay
Parameter 22-62 Broken Belt Delay	Parameter 22-22 Low Speed Detection	Parameter 22-75 Short Cycle Protection
Parameter 4-64 Semi-Auto Bypass Set-up	Parameter 22-23 No-Flow Function	Parameter 22-76 Interval between Starts
Parameter 1-03 Torque Characteristics	Parameter 22-24 No-Flow Delay	Parameter 22-77 Minimum Run Time
Parameter 22-22 Low Speed Detection	Parameter 22-40 Minimum Run Time	Parameter 5-01 Terminal 27 Mode
Parameter 22-23 No-Flow Function	Parameter 22-41 Minimum Sleep Time	Parameter 5-02 Terminal 29 Mode
Parameter 22-24 No-Flow Delay	Parameter 22-42 Wake-up Speed [RPM]	5-12 Terminal 27 Digital Input
Parameter 22-40 Minimum Run Time	$22-43$ Wake-up Speed [Hz]	5-13 Terminal 29 Digital Input
Parameter 22-41 Minimum Sleep Time	$22-44$ Wake-up Ref./FB Difference	Parameter 5-40 Function Relay
Parameter 22-42 Wake-up Speed [RPM]	$22-45$ Setpoint Boost	Parameter 1-73 Flying Start
22-43 Wake-up Speed [Hz]	$22-46$ Maximum Boost Time	1-86 Trip Speed Low [RPM]
22-44 Wake-up Ref./FB Difference	Parameter 22-26 Dry Pump Function	1-87 Trip Speed Low [Hz]
22-45 Setpoint Boost	$22-27$ Dry Pump Delay	
22-46 Maximum Boost Time	$22-80$ Flow Compensation	
Parameter 2-10 Brake Function	$22-81$ Square-linear Curve Approximation	
2-16 AC brake Max. Current	$22-82$ Work Point Calculation	
Parameter 2-17 Over-voltage Control	$22-83$ Speed at No-Flow [RPM]	
Parameter 1-73 Flying Start	$22-84$ Speed at No-Flow [Hz]	
Parameter 1-71 Start Delay	$22-85$ Speed at Design Point [RPM]	
Parameter 1-80 Function at Stop	$22-86$ Speed at Design Point [Hz]	
Parameter 2-00 DC Hold/Preheat Current	$22-87$ Pressure at No-Flow Speed	
Parameter 4-10 Motor Speed Direction	$22-88$ Pressure at Rated Speed	
	$22-89$ Flow at Design Point	
	$22-90$ Flow at Rated Speed	
	Parameter 1-03 Torque Characteristics	
	Parameter 1-73 Flying Start	

[^3]How to Programme

1-00 Configuration Mode		
Option:		Function:
		NOTICE This parameter cannot be adjusted while the motor is running.
[0]	Open Loop	Motor speed is determined by applying a speed reference or by setting desired speed when in Hand Mode. Open loop is also used if the frequency converter is of a closed loop control system based on an external PID controller providing a speed reference signal as output.
[3]	Closed Loop	Motor speed is determined by a reference from the built-in PID controller varying the motor speed as of a closed loop control process (e.g. constant pressure or flow). The PID controller must be configured in parameter group 20-** Feedback or via the Function Set-ups accessed by pressing [Quick Menus].

NOTICE

When set for closed loop, the commands reversing and start reversing do not reverse the motor direction.

1-03 Torque Characteristics		
Option:	$\begin{array}{l}\text { Compressor } \\ \text { torque }\end{array}$	$\begin{array}{l}\text { For speed control of screw and scroll } \\ \text { compressors. Provides a voltage which is } \\ \text { optimised for a constant torque load charac- } \\ \text { teristic of the motor in the entire range down } \\ \text { to 10 Hz. }\end{array}$
[1]	$\begin{array}{l}\text { Variable } \\ \text { torque }\end{array}$	$\begin{array}{l}\text { For speed control of centrifugal pumps and } \\ \text { fans. Also to be used when controlling more } \\ \text { than one motor from the same frequency } \\ \text { converter (for example, multiple condenser } \\ \text { fans or cooling tower fans). Provides a } \\ \text { voltage which is optimised for a squared } \\ \text { torque load characteristic of the motor. }\end{array}$
[2]	$\begin{array}{l}\text { Auto Energy } \\ \text { Optim. CT }\end{array}$	$\begin{array}{l}\text { For optimum energy-efficient speed control } \\ \text { of screw and scroll compressors. Provides a } \\ \text { voltage which is optimised for a constant }\end{array}$
torque load characteristic of the motor in the		
entire range down to 15 Hz. In addition, the		
AEO feature adapts the voltage exactly to the		
current load situation, thereby reducing		
energy consumption and audible noise from		
the motor. To obtain optimum performance,		
set the motor power factor cos phi correctly.		
This value is set in 14-43 Motor Cosphi. The		
parameter has a default value which is		
automatically adjusted when the motor data		
is programmed. These settings typically		

Option:		Function: [3] Auto Energy Optim. VT motor power factor cos phi requires tuning, an AMA function can be carried out using parameter 1-29 Automatic Motor Adaptation (AMA). It is rarely necessary to adjust the motor power factor parameter manually. For optimum energy efficient speed control of centrifugal pumps and fans. Provides a voltage optimised for a squared torque load characteristic of the motor. In addition, the AEO feature adapts the voltage exactly to the current load situation, thereby reducing energy consumption and audible noise from the motor. To obtain optimum performance, set the motor power factor cos phi correctly. This value is set in 14-43 Motor Cosphi. The parameter has a default value and is automatically adjusted when the motor data is programmed. These settings typically ensure optimum motor voltage, but if the motor power factor cos phi requires tuning, an AMA function can be carried out using parameter 1-29 Automatic Motor Adaptation (AMA). It is rarely necessary to adjust the motor power factor parameter manually.

NOTICE

Parameter 1-03 Torque Characteristics have no effect when 1-10 Motor Construction = [1] PM, non-salient SPM.

NOTICE

For pumps or fan applications where the viscosity or density can vary significantly or where excessive flow, for example due to pipe breakage, can occur, select Auto Energy Optim. CT

1-29 Automatic Motor Adaptation (AMA)

Option:		Function:	
		This parameter cannot be adjusted while the motor is running.	
$[0] *$	Off	No function	
$[1]$	Enable Complete AMA	Performs AMA of the stator resistance Rs, the rotor resistance R_{r}, the stator leakage reactance X_{1}, the rotor leakage reactance X_{2} and the main reactance Xh.	
$[2]$	Enable Reduced AMA	Performs a reduced AMA of the stator resistance R_{s} in the system only. Select this option if an LC filter is used between the frequency converter and the motor.	

NOTICE

Parameter 1-29 Automatic Motor Adaptation (AMA) have no effect when 1-10 Motor Construction = [1] PM, nonsalient SPM.

Activate the AMA function by pressing [Hand On] after selecting [1] or [2]. See also the section Automatic Motor Adaptation in the Design Guide. After a normal sequence, the display reads: Press [OK] to finish AMA. After pressing [OK], the frequency converter is ready for operation.

NOTICE

- For the best adaptation of the frequency converter, run AMA on a cold motor
- AMA cannot be performed while the motor is running

NOTICE

Avoid generating external torque during AMA.

NOTICE

If one of the settings in parameter group 1-2* Motor Data is changed, 1-30 Stator Resistance (Rs) to 1-39 Motor Poles return to default settings.

NOTICE

Full AMA should be run without filter only while reduced AMA should be run with filter.

See section: Application Examples > Automatic Motor Adaptation in the Design Guide.

1-71 Start Delay		
Range:	Function:	
$00 \mathrm{~s} *$	$[0-$	When the frequency converter receives the start command, it delays the motor start for the time specified in this parameter.
The function selected in parameter 1-80 Function		
at Stop is active in the delay period.		

1-73 Flying Start		
Option:		Function:
	This function makes it possible to catch a motor which is spinning freely due to a mains drop-out.	
When parameter 1-73 Flying Start is enabled, parameter 1-71 Start Delay has no function.		
Search direction for flying start is linked to the		
setting in parameter 4-10 Motor Speed Direction.		
[0] Clockwise: Flying start search in clockwise		
direction. If not successful, a DC brake is carried		
out.		

1-73 Flying Start		
Option:		Function:
		[2] Both Directions: The flying start first makes a search in the direction determined by the last reference (direction). If not finding the speed, it makes a search in the other direction. If not successful, a DC brake is activated in the time set in 2-02 DC Braking Time. Start then takes place from 0 Hz .
[0]	Disabled	Select [0] Disable if this function is not required
[1]	Enabled	Select [1] Enable to enable the frequency converter to catch and control a spinning motor. The parameter is always set to [1] Enable when 1-10 Motor Construction = [1] PM non-salient. Important related parameters: - 1-58 Flystart Test Pulses Current - 1-59 Flystart Test Pulses Frequency - 1-70 PM Start Mode - 2-06 Parking Current - 2-07 Parking Time - 2-03 DC Brake Cut In Speed [RPM] - 2-04 DC Brake Cut In Speed [Hz] - 2-06 Parking Current - 2-07 Parking Time

The flying-start function used for PM motors is based on an initial speed estimation. The speed is always estimated as the first thing after an active start signal is given. Based on the setting of 1-70 PM Start Mode the following happens:
1-70 PM Start Mode $=[0]$ Rotor Detection:
If the speed estimate comes out as greater than 0 Hz , the frequency converter catches the motor at that speed and resume normal operation. Otherwise, the frequency converter estimates the rotor position and start normal operation from there.

1-70 PM Start Mode $=[1]$ Parking:

If the speed estimate comes out lower than the setting in 1-59 Flystart Test Pulses Frequency, the parking function is engaged (see 2-06 Parking Current and 2-07 Parking Time). Otherwise, the frequency converter catches the motor at that speed and resume normal operation. Refer to description of 1-70 PM Start Mode for recommended settings.

Current limitations of the flying-start principle used for PM motors:

- The speed range is up to 100% nominal speed or the field weakening speed (which ever is lowest).
- PMSM with high back EMF (>300 VLL(rms)) and high winding inductance ($>10 \mathrm{mH}$) needed more
time for reducing short circuit current to zero and may be susceptible to error in estimation.
- Current testing limited to a speed range up to 300 Hz . For certain units, the limit is 250 Hz ; all 200-240 V units up to and including 2.2 kW and all $380-480 \mathrm{~V}$ units up to and including 4 kW .
- Current testing limited to a machine power size up to 22 kW .
- \quad Prepared for salient pole machine (IPMSM) but not yet verified on those types of machine.
- For high-inertia applications (that is, where the load inertia is more than 30 times larger than the motor inertia), use a brake resistor to avoid overvoltage trip during high-speed engagement of the flying-start function.

Option:		Function:
		Select the frequency converter function after a stop command or after the speed is ramped down to the settings in 1-81 Min Speed for Function at Stop [RPM]. Available selections depend on 1-10 Motor Construction: [0] Asynchron: [0] Coast [1] DC-hold [2] Motor check, warning [6] Motor check, alarm [1] PM non-salient: [0] coast
[0] *	Coast	Leaves motor in free mode.
[1]	DC Hold/ Motor Preheat	Energises motor with a DC hold current (see parameter 2-00 DC Hold/Preheat Current).
[2]	Motor check, warning	Issues a warning if the motor is not connected.
[6]	Motor check, alarm	Issues an alarm if the motor is not connected.

1-90 Motor Thermal Protection		
Option:		Function:
	The frequency converter determines the motor temperature for motor overload protection in 2 different ways: Via a thermistor sensor connected to one of the analog or digital	

1-90 Motor Thermal Protection		
Option:		Function:
		inputs (parameter 1-93 Thermistor Source). Via calculation (ETR = Electronic Thermal Relay) of the thermal load, based on the actual load and time. The calculated thermal load is compared with the rated motor current $I_{M, N}$ and the rated motor frequency $f_{M, N}$. The calculations estimate the need for a lower load at lower speed due to less cooling from the fan incorporated in the motor.
[0]	No protection	If the motor is continuously overloaded, and no warning or trip of frequency converter is wanted.
[1]	Thermistor warning	Activates a warning when the connected thermistor in the motor reacts in the event of motor overtemperature.
[2]	Thermistor trip	Stops (trips) the frequency converter when the connected thermistor in the motor reacts in the event of motor overtemperature.
[3]	ETR warning 1	
[4]	ETR trip 1	
[5]	ETR warning 2	
[6]	ETR trip 2	
[7]	ETR warning 3	
[8]	ETR trip 3	
[9]	ETR warning 4	
[10]	ETR trip 4	

ETR (Electronic Thermal Relay) functions 1-4 calculate the load when the set-up where they were selected is active. For example ETR-3 starts calculating when set-up 3 is selected. For the North American market: The ETR functions provide class 20 motor overload protection in accordance with NEC.

\triangle WARNING

To maintain PELV, all connections made to the control terminals must be PELV, for example, thermistor must be reinforced/double insulated

NOTICE

Danfoss recommends using 24 V DC as thermistor supply voltage.

NOTICE

The ETR timer function does not work when 1-10 Motor Construction = [1] PM, non-salient SPM.

NOTICE

For correct operation of the ETR function, the setting in parameter 1-03 Torque Characteristics must fit the application (see description of parameter 1-03 Torque Characteristics).

| 1-93 Thermistor Source | |
| :--- | :--- | :--- |
| Option: | Function:
 This parameter cannot be adjusted
 while the motor is running. |
| Select the input to which the thermistor (PTC | |
| sensor) should be connected. An analog | |
| input option [1] Analog Input 53 or [2] Analog | |
| Input 54 cannot be selected if the analog | |
| input is already in use as a reference source | |
| (selected in parameter 3-15 Reference 1 | |
| Source, parameter 3-16 Reference 2 Source or | |
| 3-17 Reference 3 Source). | |
| When using MCB 112, [0] None must always | |
| be selected. | |

1-93 Thermistor Source		
Option:		Function:
$[0] *$	None	
$[1]$	Analog Input 53	
$[2]$	Analog Input 54	
$[3]$	Digital input 18	
$[4]$	Digital input 19	
$[5]$	Digital input 32	
$[6]$	Digital input 33	

NOTICE

Digital input should be set to [0] PNP - Active at 24 V in 5-00 Digital I/O Mode.

Range:		Function:
$\begin{aligned} & 50 \\ & \%^{*} \end{aligned}$	$\begin{gathered} {[0-} \\ 160 \%] \end{gathered}$	Enter a value for holding current as a percentage of the rated motor current $I_{M, N}$ set in parameter 1-24 Motor Current. 100\% DC hold current corresponds to $\mathrm{I}_{\mathrm{M}, \mathrm{N}}$. This parameter holds the motor (holding torque) or pre-heats the motor. This parameter is active if [1] DC hold/Motor Preheat is selected in parameter 1-80 Function at Stop.

NOTICE

Parameter 2-00 DC Hold/Preheat Current have no effect when 1-10 Motor Construction $=[1]$ PM, non-salient SPM.

NOTICE

The maximum value depends on the rated motor current.
Avoid 100\% current for too long. It may damage the motor.

2-10 Brake Function		
Option:		Function:
		Available selections depend on 1-10 Motor Construction: [0] Asynchron: [0] Off [1] Resistor brake [2] AC brake [1] PM non-salient: [0] Off [1] Resistor brake
[0]	Off	No brake resistor installed.
[1]	Resistor brake	Brake resistor incorporated in the system, for dissipation of surplus brake energy as heat. Connecting a brake resistor allows a higher DClink voltage during braking (generating operation). The resistor brake function is only active in frequency converters with an integral dynamic brake.
[2]	AC brake	AC Brake only works in compressor torque mode in parameter 1-03 Torque Characteristics.

2-17 Over-voltage Control		
Option:		Function:
$[0]$	Disabled	No OVC required.
$[2] *$	Enabled	Activates OVC.

NOTICE

Parameter 2-17 Over-voltage Control has no effect when 1-10 Motor Construction = [1] PM, non-salient SPM.

NOTICE

The ramp time is automatically adjusted to avoid tripping of the frequency converter.

3-02 Minimum Reference				
Range:	Function:			
$\begin{array}{l}\text { Size } \\ \text { related* }\end{array}$	$\begin{array}{l}\text { [-999999.999- } \\ \text { par. 3-03 } \\ \text { ReferenceFeed- } \\ \text { backUnit] }\end{array}$	$\begin{array}{l}\text { Enter the minimum reference. The } \\ \text { minimum reference is the lowest } \\ \text { value obtainable by summing all } \\ \text { references. The minimum } \\ \text { reference value and unit matches } \\ \text { the configuration made in } \\ \text { parameter 1-00 Configuration Mode } \\ \text { and 20-12 Reference/Feedback Unit. } \\ \text { NOT/CE }\end{array}$		
This parameter is used in			$\}$	open loop only.
:---				

3-04 Reference Function		
Option:		Function:
$[0]$	Sum	Sums both external and preset reference sources.
$[1]$	External/ Preset	Use either the preset or the external reference source. Shift between external and preset via a command on a digital input.

3-10 Preset Reference

Array [8]
Range: Function:

| $[-100-$ |
| :---: | :---: | :--- |
| $100 \%]$ | | Enter up to 8 different preset references (0-7) in |
| :--- |
| this parameter, using array programming. The |
| preset reference is stated as a percentage of the |
| value Refmax (3-03 Maximum Reference, for |
| closed loop see 20-14 Maximum Reference/ |
| Feedb.). When using preset references, select |
| Preset ref. bit 0/1/2 [16], [17] or [18] for the |
| corresponding digital inputs in parameter group |
| $5-1^{*}$ Digital Inputs. |

[^4]How to Programme

Illustration 6.11 Preset Reference Scheme

3-15 Reference 1 Source

Option:			$\begin{array}{l}\text { Function: } \\ \hline\end{array}$
		$\begin{array}{l}\text { This parameter cannot be } \\ \text { adjusted while the motor is } \\ \text { running. }\end{array}$	
Select the reference input to be used			
for the first reference signal.			
Parameter 3-15 Reference 1 Source,			
parameter 3-16 Reference 2 Source and			
3-17 Reference 3 Source define up to 3			
different reference signals. The sum			
of these reference signals defines the			
actual reference.			

3-16 Reference 2 Source

Function:

NOTICE

This parameter cannot be adjusted while the motor is running.

Select the reference input to be used for the second reference signal. Parameter 3-15 Reference 1

3-16		Reference 2 Source
Option:		
	Source, parameter 3-16 Reference 2 Source and 3-17 Reference 3 Source define up to 3 different reference signals. The sum of these reference signals defines the actual reference.	
$[0]$	No function	
[1]	Analog Input 53	
$[2]$	Analog Input 54	
$[7]$	Pulse input 29	
$[8]$	Pulse input 33	
$[20]$	Digital pot.meter	
$[21]$	Analog input X30/11	
$[22]$	Analog input X30/12	
$[23]$	Analog Input X42/1	
$[24]$	Analog Input X42/3	
$[25]$	Analog Input X42/5	
$[29]$	Analog Input X48/2	
$[30]$	Ext. Closed Loop 1	
$[31]$	Ext. Closed Loop 2	
$[32]$	Ext. Closed Loop 3	

4-10 Motor Speed Direction

Option:		Function:
		Selects the motor speed direction required. Use this parameter to prevent unwanted reversing.
$[0]$	Clockwise	Only operation in clockwise direction is allowed.
$[2] *$	Both directions	Operation in both clockwise and counter- clockwise direction is allowed.

NOTICE

The setting in parameter 4-10 Motor Speed Direction has impact on the Flying Start in parameter 1-73 Flying Start.

4-53 Warning Speed High		
Range:		Function:
Size related*	[par. $4-52-$ par. 4-13 RPM]	Enter the nHIGH value. When the motor speed exceeds this limit (nHIGH), the display reads SPEED HIGH. The signal outputs can be programmed to produce a status signal on terminal 27 or 29 and on relay output 01 or 02. Programme the upper signal limit of the motor speed, nHIGH, within the normal working range of the frequency converter. Refer to.

NOTICE

Any changes in parameter 4-13 Motor Speed High Limit [RPM] reset the value in parameter 4-53 Warning Speed High to the same value as set in parameter 4-13 Motor Speed High Limit [RPM].
If a different value is needed in parameter 4-53 Warning Speed High, it must be set after programming of parameter 4-13 Motor Speed High Limit [RPM]

4-56 Warning Feedback Low

Range:		Function:
-999999.999		
ProcessCtrlUnit*	[-999999.999- par. 4-57 ProcessCtrlUnit]	Enter the lower feedback limit. When the feedback drops below this limit, the display reads FeedbLow. The signal outputs can be programmed to produce a status signal on terminal 27 or 29 and on relay output 01 or 02.

4-57 Warning Feedback High		
Range:	Function:	
999999.999 ProcessCtrlUnit*	[par. 4-56- 999999.999 ProcessCtrlUnit]	Enter the upper feedback limit. When the feedback exceeds this limit, the display reads FeedbHigh. The signal outputs can be programmed to produce a status signal on terminal 27 or 29 and on relay output 01 or 02.

4-64 Semi-Auto Bypass Set-up

Option:		Function:
$[0] *$	Off	No function
$[1]$	Enabled	Starts the semi-automatic bypass set-up and continues with the procedure described above.

5-01 Terminal 27 Mode			
Option:			Function: This parameter cannot be adjusted while the motor is running.
$[0] *$	Input	Defines terminal 27 as a digital input.	
$[1]$	Output	Defines terminal 27 as a digital output.	

5-02 Terminal 29 Mode			
Option:			Function: This parameter cannot be adjusted while the motor is running.
$[0] *$	Input	Defines terminal 29 as a digital input.	
$[1]$	Output	Defines terminal 29 as a digital output.	

6.1.4 5-1* Digital Inputs

Parameters for configuring the input functions for the input terminals.
The digital inputs are used for selecting various functions in the frequency converter. All digital inputs can be set to the following functions

Digital input function	Select	Terminal
No operation	[0]	All *terminal 19, 32, 33
Reset	[1]	All
Coast inverse	[2]	27
Coast and reset inverse	[3]	All
DC-brake inverse	[5]	All
Stop inverse	[6]	All
External interlock	[7]	All
Start	[8]	All *terminal 18
Latched start	[9]	All
Reversing	[10]	All
Start reversing	[11]	All
Jog	[14]	All *terminal 29
Preset reference on	[15]	All
Preset ref bit 0	[16]	All
Preset ref bit 1	[17]	All
Preset ref bit 2	[18]	All
Freeze reference	[19]	All
Freeze output	[20]	All
Speed up	[21]	All
Speed down	[22]	All
Set-up select bit 0	[23]	All
Set-up select bit 1	[24]	All
Pulse input	[32]	terminal 29, 33
Ramp bit 0	[34]	All
Mains failure inverse	[36]	All
Fire mode	[37]	All
Run Permissive	[52]	All
Hand start	[53]	All
Auto start	[54]	All
DigiPot Increase	[55]	All
DigiPot Decrease	[56]	All
DigiPot Clear	[57]	All
Counter A (up)	[60]	29, 33
Counter A (down)	[61]	29, 33

Digital input function	Select	Terminal
Reset Counter A	$[62]$	All
Counter B (up)	$[63]$	29,33
Counter B (down)	$[64]$	29,33
Reset Counter B	$[65]$	All
Sleep Mode	$[66]$	All
Reset Maintenance Word	$[78]$	All
PTC Card 1	$[80]$	All
Lead Pump Start	$[120]$	All
Lead Pump Alternation	$[121]$	All
Pump 1 Interlock	$[130]$	All
Pump 2 Interlock	$[131]$	All
Pump 3 Interlock	$[132]$	All

5-12 Terminal 27 Digital Input

The parameter contains all options and functions listed in parameter group 5-1* Digital Inputs except for option [32] Pulse input.

5-13 Terminal 29 Digital Input

The parameter contains all options and functions listed in parameter group 5-1* Digital Inputs.

5-14 Terminal 32 Digital Input

The parameter contains all options and functions listed in parameter group 5-1* Digital Inputs except for option [32] Pulse input.

5-15 Terminal 33 Digital Input

The parameter contains all options and functions listed in parameter group 5-1* Digital Inputs.

5-40 Function Relay

Array [8]
(Relay 1 [0], Relay 2 [1]
Option MCB 105: Relay 7 [6], Relay 8 [7] and Relay 9 [8]).
Select options to define the function of the relays.
The selection of each mechanical relay is realised in an array parameter.

Option:		Function:
$[0]$	No operation	
$[1]$	Control Ready	
$[2]$	Drive ready	
$[3]$	Drive rdy/rem ctrl	
$[4]$	Standby / no warning	
$[5]$	Running	Default setting for relay
$[6]$	Running / no warning	
$[8]$	Run on ref/no warn	
$[9]$	Alarm	Default setting for relay
$[10]$	Alarm or warning	
$[11]$	At torque limit	
$[12]$	Out of current range	
$[13]$	Below current, low	

5-40 Function Relay

Array [8]
(Relay 1 [0], Relay 2 [1]
Option MCB 105: Relay 7 [6], Relay 8 [7] and Relay 9 [8]).
Select options to define the function of the relays.
The selection of each mechanical relay is realised in an array parameter.
Option:
Function:

[14]	Above current, high	
[15]	Out of speed range	
[16]	Below speed, low	
[17]	Above speed, high	
[18]	Out of feedb. range	
[19]	Below feedback, low	
[20]	Above feedback, high	
[21]	Thermal warning	
[25]	Reverse	
[26]	Bus OK	
[27]	Torque limit \& stop	
[28]	Brake, no brake war	
[29]	Brake ready, no fault	
[30]	Brake fault (IGBT)	
[33]	Safe stop active	
[35]	External Interlock	
[36]	Control word bit 11	
[37]	Control word bit 12	
[40]	Out of ref range	
[41]	Below reference, low	
[42]	Above ref, high	
[45]	Bus ctrl.	
[46]	Bus ctrl, 1 if timeout	
[47]	Bus ctrl, 0 if timeout	
[60]	Comparator 0	
[61]	Comparator 1	
[62]	Comparator 2	
[63]	Comparator 3	
[64]	Comparator 4	
[65]	Comparator 5	
[70]	Logic rule 0	
[71]	Logic rule 1	
[72]	Logic rule 2	
[73]	Logic rule 3	
[74]	Logic rule 4	
[75]	Logic rule 5	
[80]	SL digital output A	
[81]	SL digital output B	
[82]	SL digital output C	
[83]	SL digital output D	
[84]	SL digital output E	
[85]	SL digital output F	
[160]	No alarm	
[161]	Running reverse	
[165]	Local ref active	
[166]	Remote ref active	

5-40 Function Relay

Array [8]
(Relay 1 [0], Relay 2 [1]
Option MCB 105: Relay 7 [6], Relay 8 [7] and Relay 9 [8]).
Select options to define the function of the relays.
The selection of each mechanical relay is realised in an array parameter.

Option:		Function:
$[167]$	Start command activ	
$[168]$	Hand / Off	
$[169]$	Auto mode	
$[180]$	Clock Fault	
$[181]$	Prev. Maintenance	
$[188]$	AHF Capacitor Connect	
$[189]$	External Fan Control	
$[190]$	No-Flow	
$[191]$	Dry Pump	
$[192]$	End Of Curve	
$[193]$	Sleep Mode	
$[194]$	Broken Belt	
$[195]$	Bypass Valve Control	
$[196]$	Fire Mode	
$[197]$	Fire Mode was Act.	
$[198]$	Drive Bypass	
$[211]$	Cascade Pump 1	
$[212]$	Cascade Pump 2	
$[213]$	Cascade Pump 3	

6-00 Live Zero Timeout Time		
$10 \mathrm{~s}^{*}$	R1- $99 \mathrm{~s}]$	Function: Enter the live zero time-out time period. Live zero time-out time is active for analog inputs, that is, terminal 53 or terminal 54, used as reference or feedback sources. If the reference signal value associated with the selected current input drops below 50\% of the value set in parameter 6-10 Terminal 53 Low Voltage, 6-12 Terminal 53 Low Current, parameter 6-20 Terminal 54 Low Voltage or 6-22 Terminal 54 Low Current for a time period longer than the time set in parameter 6-00 Live Zero Timeout Time, the function selected in parameter 6-01 Live Zero Timeout Function is activated.

6-01 Live Zero Timeout Function

Option:

Function:

	Select the time-out function. The function set in parameter 6-01 Live Zero Timeout Function is activated if the input signal on terminal 53 or 54 is below 50\% of the value in parameter 6-10 Terminal 53 Low Voltage, 6-12 Terminal 53 Low Current, parameter 6-20 Terminal 54 Low Voltage or 6-22 Terminal 54 Low Current for a time period

| O-01 Live Zero Timeout Function | | |
| :--- | :--- | :--- | :--- |
| Option: | Function: | |

Illustration 6.12 Live Zero Conditions

6-10 Terminal 53 Low Voltage		
Range:		Function:
$0.07 \mathrm{~V}^{*}$	$[0-$ par. $6-11 \mathrm{~V}]$	Enter the low-voltage value. This analog input scaling value should correspond to the low reference/feedback value set in parameter 6-14 Terminal 53 Low Ref./Feedb. Value.

6-11		Terminal 53 High Voltage		
Range:		Function:		
$10 \mathrm{~V} *$	$[$ par. 6-10			
$-10 \mathrm{~V}]$				Enter the high-voltage value. This analog
:---				
input scaling value should correspond to the				
high reference/feedback value set in				
parameter 6-15 Terminal 53 High Ref./Feedb.				
Value.				

6-14 Terminal 53 Low Ref./Feedb. Value		
Range:		Function:
0^{*}	$[-999999.999-$	Enter the analog input scaling value that corresponds to the low voltage/low current set in parameter 6-10 Terminal 53 Low Voltage and 6-12 Terminal 53 Low Current.

6-15 Terminal 53 High Ref./Feedb. Value			
Range:	Function:		
Size related*			
9999999.999]		\quad	Enter the analog input scaling
:---			
value that corresponds to the high			
voltage/high current value set in			
parameter 6-11 Terminal 53 High			
Voltage and 6-13 Terminal 53 High			
Current.			

6-16 Terminal 53 Filter Time Constant		
Range:	Function:	
$0.001 \mathrm{~s}^{*}$	$[0.001-$	$\begin{array}{l}\text { NOT/CE } \\ 10 \mathrm{~s}] \\ \text { This parameter cannot be adjusted } \\ \text { while the motor is running. }\end{array}$
Enter the time constant. This is a first-		
order digital low-pass filter time constant		
for suppressing electrical noise in terminal		
53. A high time constant value improves		
dampening, but also increases the time		
delay through the filter.		

6-17 Terminal 53 Live Zero		
Option:		Function:
		This parameter makes it possible to disable the Live Zero monitoring. For example, to be used if the analog outputs are used as of a decentral I/O system (for example, when not as part of any frequency converter related control functions, but feeding a Building Management System with data).
$[0]$	Disabled	
$[1] ~ *$	Enabled	

6-20		Terminal 54 Low Voltage
Range:		Function:
$0.07 \mathrm{~V}^{*}$	$[0-$ par. $6-21 \mathrm{~V}]$	Enter the low-voltage value. This analog input scaling value should correspond to

6-20		Terminal 54 Low Voltage
Range:		Function:
	the low reference/feedback value, set in parameter 6-24 Terminal 54 Low Ref./Feedb. Value.	

6-21 Terminal 54 High Voltage		
Range:		Function:
10 V	$[$ par. 6-20	
$-10 \mathrm{~V}]$	Enter the high-voltage value. This analog input scaling value should correspond to the high reference/feedback value set in parameter 6-25 Terminal 54 High Ref./Feedb. Value.	

6-24 Terminal 54 Low Ref./Feedb. Value

Function:

Enter the analog input scaling value that corresponds to the low voltage/low current value set in parameter 6-20 Terminal 54 Low Voltage and 6-22 Terminal 54 Low Current.

6-25 Terminal 54 High Ref./Feedb. Value

Range:		Function:
100^{*}	[-999999.999- $999999.999]$	Enter the analog input scaling value that corresponds to the high voltage/ high current value set in parameter 6-21 Terminal 54 High Voltage and 6-23 Terminal 54 High Current.

6-26 Terminal 54 Filter Time Constant

| Range: | Function: |
| :---: | :---: | :--- |
| $0.001 \mathrm{~s} \mathrm{~s}^{*}$ | $[0.001-$ |
| $10 \mathrm{~s}]$ | |\(\left.\quad \begin{array}{l}NOT/CE

This parameter cannot be adjusted

while the motor is running.\end{array}\right\}\)| Enter the time constant. This is a first- |
| :--- |
| order digital low-pass filter time constant |
| for suppressing electrical noise in terminal |
| 54. A high time constant value improves |
| dampening but also increases the time |
| delay through the filter. |

6-27 Terminal 54 Live Zero

Option:		Function:
		This parameter makes it possible to disable the Live Zero monitoring. For example, to be used if the analog outputs are used as of a decentral I/O system (for example, when not as of any frequency converter related control functions, but feeding a Building Management System with data).
$[0]$	Disabled	
$[1]$	Enabled	

6-50 Terminal 42 Output		
Option:		Function:
		Select the function of Terminal 42 as an analog current output. A motor current of 20 mA corresponds to $I_{\text {max }}$.
[0]	No operation	
[100]	Output freq. $0-100$	0-100 Hz, (0-20 mA)
[101]	Reference MinMax	Minimum reference - Maximum reference, ($0-20 \mathrm{~mA}$)
[102]	Feedback +-200\%	-200% to $+200 \%$ of 20-14 Maximum Reference/Feedb., (0-20 mA)
[103]	Motor cur. 0-Imax	0 - Inverter Max. Current (16-37 Inv. Max. Current), (0-20 mA)
[104]	Torque 0-Tlim	0 - Torque limit (4-16 Torque Limit Motor Mode), (0-20 mA)
[105]	Torque 0-Tnom	0 - Motor rated torque, (0-20 mA)
[106]	Power 0-Pnom	0 - Motor rated power, (0-20 mA)
[107]	Speed 0-HighLim	0 - Speed High Limit (parameter 4-13 Motor Speed High Limit [RPM] and parameter 4-14 Motor Speed High Limit [Hz]), (0-20 mA)
[113]	Ext. Closed Loop 1	0-100\%, (0-20 mA)
[114]	Ext. Closed Loop 2	0-100\%, (0-20 mA)
[115]	Ext. Closed Loop 3	0-100\%, (0-20 mA)
[130]	$\begin{aligned} & \text { Out frq 0-100 } \\ & 4-20 \mathrm{~mA} \end{aligned}$	0-100 Hz
[131]	Reference $4-20 \mathrm{~mA}$	Minimum Reference - Maximum Reference
[132]	Feedback 4-20mA	-200% to $+200 \%$ of 20-14 Maximum Reference/Feedb.
[133]	Motor cur. $4-20 \mathrm{~mA}$	0 - Inverter Max. Current (16-37 Inv. Max. Current)
[134]	$\begin{aligned} & \text { Torq.0-lim 4-20 } \\ & \mathrm{mA} \end{aligned}$	0 - Torque limit (4-16 Torque Limit Motor Mode)
[135]	$\begin{aligned} & \text { Torq.0-nom } \\ & \text { 4-20mA } \end{aligned}$	0 - Motor rated torque
[136]	Power 4-20mA	0 - Motor rated power
[137]	Speed 4-20mA	0 - Speed High Limit (4-13 and 4-14)
[139]	Bus ctrl.	0-100\%, (0-20 mA)
[140]	Bus ctrl. 4-20 mA	0-100\%
[141]	Bus ctrl t.o.	0-100\%, (0-20 mA)
[142]	$\begin{aligned} & \text { Bus ctrl t.o. } \\ & 4-20 \mathrm{~mA} \end{aligned}$	0-100\%
[143]	Ext. CL 1 4-20mA	0-100\%
[144]	Ext. CL $24-20 \mathrm{~mA}$	0-100\%

6-50 Terminal 42 Output

Option:		Function:
$[145]$	Ext. CL 3 4-20mA	$0-100 \%$

NOTICE

Values for setting the minimum reference are found in open loop parameter 3-02 Minimum Reference and for closed loop 20-13 Minimum Reference/Feedb. - values for maximum reference for open loop is found in 3-03 Maximum Reference and for closed loop 20-14 Maximum Reference/Feedb.

6-51 Terminal 42 Output Min Scale		
Range:		Function:
$0 \% \%^{[0-200}$	Scale for the minimum output $(0 \mathrm{~mA}$ or 4 mA$)$ of the analog signal at terminal 42. Set the value to be the percentage of the full range of the variable selected in parameter 6-50 Terminal 42 Output.	

6-52 Terminal 42 Output Max Scale

Range: Function:

100	$[0-$	Scale for the maximum output $(20 \mathrm{~mA})$ of the
$\%^{*}$	200	analog signal at terminal 42. Set the value to be the percentage of the full range of the variable selected in

Illustration 6.13 Output Current vs Reference Variable

It is possible to get a value lower than 20 mA at full scale by programming values $>100 \%$ by using a formula as follows:

20 mA / desired maximum current $\times 100 \%$
i.e. $10 \mathrm{~mA}: \frac{20 \mathrm{~mA}}{10 \mathrm{~mA}} \times 100 \%=200 \%$

Example 1:
Variable value=OUTPUT FREQUENCY, range $=0-100 \mathrm{~Hz}$ Range needed for output $=0-50 \mathrm{~Hz}$
Output signal 0 mA or 4 mA is needed at $0 \mathrm{~Hz}(0 \%$ of range) - set parameter 6-51 Terminal 42 Output Min Scale to 0\%
Output signal 20 mA is needed at 50 Hz (50% of range) set parameter 6-52 Terminal 42 Output Max Scale to 50\%

Illustration 6.14 Example 1

Example 2:

Variable=FEEDBACK, range $=-200 \%$ to $+200 \%$
Range needed for output=0-100\%
Output signal 0 mA or 4 mA is needed at 0% (50% of range) - set parameter 6-51 Terminal 42 Output Min Scale to 50\%

Output signal 20 mA is needed at 100\% (75\% of range) set parameter 6-52 Terminal 42 Output Max Scale to 75\%

Illustration 6.15 Example 2

Example 3:

Variable value=REFERENCE, range=Minimum ref maximum ref.
Range needed for output=Minimum ref (0\%) - Maximum ref (100\%), 0-10 mA
Output signal 0 mA or 4 mA is needed at minimum ref set parameter 6-51 Terminal 42 Output Min Scale to 0\% Output signal 10 mA is needed at maximum ref (100% of range) - set parameter 6-52 Terminal 42 Output Max Scale to 200\%
($20 \mathrm{~mA} / 10 \mathrm{~mA} \times 100 \%=200 \%$).

14-01 Switching Frequency

Option:		Function:
	$\begin{array}{l}\text { Select the inv } \\ \text { the switching } \\ \text { acoustic nois } \\ \text { NOTICE }\end{array}$	

The output frequency value of the frequency converter must never exceed $1 / 10$ of the switching frequency. When the motor is running, adjust the switching frequency in parameter 14-01 Switching Frequency until the motor is as noiseless as possible. See also 14-00 Switching Pattern and section Derating in the relevant Design Guide.

$[0]$	1.0 kHz	
$[1]$	1.5 kHz	
$[2]$	2.0 kHz	
$[3]$	2.5 kHz	
$[4]$	3.0 kHz	
$[5]$	3.5 kHz	
$[6]$	4.0 kHz	
$[7]$	5.0 kHz	
$[8]$	6.0 kHz	
$[9]$	7.0 kHz	
$[10]$	8.0 kHz	
$[11]$	10.0 kHz	
$[12]$	12.0 kHz	
$[13]$	14.0 kHz	
$[14]$	16.0 kHz	

20-00 Feedback 1 Source		
Option:		

NOTICE
If a feedback is not used, its source must be set to [0] No Function. Parameter 20-20 Feedback Function determines how the PID controller uses the 3 possible feedbacks.

20-01 Feedback 1 Conversion				
Option:		Function:		
[0]	Linear			
*			This parameter allows a conversion function	to be applied to Feedback 1.
:---				

20-01 Feedback 1 Conversion		
Option:		Function:
		where A1, A2 and A3 are refrigerant-specific constants. The refrigerant must be selected in 20-30 Refrigerant. Parameter 20-21 Setpoint 1 through 20-23 Setpoint 3 allow the values of A1, A2 and $A 3$ to be entered for a refrigerant that is not listed in 20-30 Refrigerant.
[3]	Pressure to flow	Used in applications where for controlling the air flow in a duct. A dynamic pressure measurement (pitot tube) represents the feedback signal. Flow $=$ Duct Area $\times \sqrt{\text { Dynamic Pressure }}$ \times Air Density Factor See also 20-34 Duct 1 Area [m2] through 20-38 Air Density Factor [\%] for setting of duct area and air density.
[4]	Velocity to flow	Used in applications where for controlling the air flow in a duct. An air velocity measurement represents the feedback signal. Flow $=$ Duct Area \times Air Velocity See also 20-34 Duct 1 Area [m2] through 20-37 Duct 2 Area [in2] for setting of duct area.

20-03 Feedback 2 Source

Option:		
		See parameter 20-00 Feedback 1 Source for details.
$[0] *$	No function	
$[1]$	Analog Input 53	
$[2]$	Analog Input 54	
$[3]$	Pulse input 29	
$[4]$	Pulse input 33	
$[7]$	Analog Input X30/11	
$[8]$	Analog Input X30/12	
$[9]$	Analog Input X42/1	
$[10]$	Analog Input X42/3	
$[11]$	Analog Input X42/5	
$[15]$	Analog Input X48/2	
$[100]$	Bus Feedback 1	
$[101]$	Bus Feedback 2	
$[102]$	Bus feedback 3	
$[104]$	Sensorless Flow	
$[105]$	Sensorless Pressure	

20-04 Feedback 2 Conversion		
Option:		Function:
		See parameter 20-01 Feedback 1 Conversion for details.
$[0] *$	Linear	
$[1]$	Square root	
$[2]$	Pressure to temperature	
$[3]$	Pressure to flow	
$[4]$	Velocity to flow	

20-06 Feedback 3 Source		
		See parameter 20-00 Feedback 1 Opurce for details.
$[0] *$	No function	
$[1]$	Analog Input 53	
$[2]$	Analog Input 54	
$[3]$	Pulse input 29	
$[4]$	Pulse input 33	
$[7]$	Analog Input X30/11	
$[8]$	Analog Input X30/12	
$[9]$	Analog Input X42/1	
$[10]$	Analog Input X42/3	
$[11]$	Analog Input X42/5	
$[15]$	Analog Input X48/2	
$[100]$	Bus Feedback 1	
$[101]$	Bus Feedback 2	
$[102]$	Bus feedback 3	
$[104]$	Sensorless Flow	
$[105]$	Sensorless Pressure	

20-07 Feedback 3 Conversion

Option:		Function:
		See parameter 20-01 Feedback 1 Conversion for details.
$[0] *$	Linear	
$[1]$	Square root	
$[2]$	Pressure to temperature	
$[3]$	Pressure to flow	
$[4]$	Velocity to flow	

20-20 Feedback Function		
Option:		Function:
$[0]$	Sum	This parameter determines how the 3 possible feedbacks are used to control the output frequency of the frequency converter.
	Sets up the PID Controller to use the sum of Feedback 1, Feedback 2 and Feedback 3 as the feedback.	

20-20 Feedback Function		
Option:		Function:
		NOTICE Any unused feedbacks must be set to No Function in parameter 20-00 Feedback 1 Source, parameter 20-03 Feedback 2 Source, or parameter 20-06 Feedback 3 Source. The sum of setpoint 1 and any other references that are enabled (see parameter group 3-1* References) are used as the PID Controller's setpoint reference.
[1]	Difference	Sets up the PID controller to use the difference between Feedback 1 and Feedback 2 as the feedback. Feedback 3 is not used with this selection. Only Setpoint 1 is used. The sum of Setpoint 1 and any other references that are enabled (see parameter group 3-1* References) are used as the PID controller's setpoint reference.
[2]	Average	Sets up the PID Controller to use the average of Feedback 1, Feedback 2 and Feedback 3 as the feedback. NOTICE Any unused feedbacks must be set to No Function in parameter 20-00 Feedback 1 Source, parameter 20-03 Feedback 2 Source, or parameter 20-06 Feedback 3 Source. The sum of Setpoint 1 and any other references that are enabled (see parameter group 3-1* References) are used as the PID Controller's setpoint reference.
[3]	Minimum	Sets up the PID Controller to compare feedback 1, feedback 2 and feedback 3 and uses the lowest value as the feedback. NOTICE Any unused feedbacks must be set to No Function in parameter 20-00 Feedback 1 Source, parameter 20-03 Feedback 2 Source, or parameter 20-06 Feedback 3 Source. Only setpoint 1 is used. The sum of setpoint 1 and any other references that are enabled (see parameter group 3-1* References) are used as the PID Controller's setpoint reference.
[4]	Maximum	Sets up the PID Controller to compare feedback 1, feedback 2 and feedback 3 and use the highest value as the feedback.

How to Programme

20-20 Feedback Function		
	tion:	Function:
		NOTICE Any unused feedbacks must be set to No Function in parameter 20-00 Feedback 1 Source, parameter 20-03 Feedback 2 Source, or parameter 20-06 Feedback 3 Source. Only setpoint 1 is used. The sum of setpoint 1 and any other references that are enabled (see parameter group 3-1* References) are used as the PID Controller's setpoint reference.
[5]	Multi Setpoint Min	Sets up the PID Controller to calculate the difference between feedback 1 and setpoint 1 , feedback 2 and setpoint 2 , and feedback 3 and setpoint 3. It uses the feedback/setpoint pair in which the feedback is the farthest below its corresponding setpoint reference. If all feedback signals are above their corresponding setpoints, the PID Controller uses the feedback/setpoint pair with the least difference between the 2 .

NOTICE

If only 2 feedback signals are used, set the non-used feedback to [0] No Function in parameter 20-00 Feedback 1 Source, parameter 20-03 Feedback 2 Source, or parameter 20-06 Feedback 3 Source. Note that each setpoint reference is the sum of its respective parameter value (parameter 20-21 Setpoint 1, parameter 20-22 Setpoint 2 and 20-23 Setpoint 3) and any other references that are enabled (see parameter group 3-1* References).

Sets up the PID Controller to calculate the difference between feedback 1 and setpoint 1 , feedback 2 and setpoint 2, and feedback 3 and setpoint 3. It uses the feedback/setpoint pair in which the feedback is farthest above its corresponding setpoint reference. If all feedback signals are below their corresponding setpoints, the PID Controller uses the feedback/setpoint pair with the least difference between the 2 .

20-20 Feedback Function

Option:

Function:

NOTICE

If only 2 feedback signals are used, set the non-used feedback to [0] No Function in parameter 20-00 Feedback 1 Source, parameter 20-03 Feedback 2 Source, or parameter 20-06 Feedback 3 Source. Note that each setpoint reference is the sum of its respective parameter value (parameter 20-21 Setpoint 1, parameter 20-22 Setpoint 2 and 20-23 Setpoint 3) and any other references that are enabled (see parameter group 3-1* References).

NOTICE

Any unused feedback must be set to [0] No function in its Feedback Source parameter:
Parameter 20-00 Feedback 1 Source,
parameter 20-03 Feedback 2 Source, or
parameter 20-06 Feedback 3 Source.

The PID controller uses the feedback resulting from the function selected in parameter 20-20 Feedback Function to control the output frequency of the frequency converter. This feedback can also

- be shown on the frequency converter's display
- be used to control a frequency converter's analog output
- be transmitted over various serial communication protocols

The frequency converter can be configured to handle multi-zone applications. 2 different multi-zone applications are supported:

- Multi-zone, single setpoint
- Multi-zone, multi-setpoint

Examples 1 and 2 illustrate the difference between the 2 :

Example 1 - Multi-zone, single setpoint

In an office building, a VAV (variable air volume) VLT ${ }^{\circledR}$ HVAC Drive system must ensure a minimum pressure at selected VAV boxes. Due to the varying pressure losses in each duct, the pressure at each VAV box cannot be assumed to be the same. The minimum pressure required is the same for all VAV boxes. This control method can be set up by setting parameter 20-20 Feedback Function to option [3], Minimum, and entering the desired pressure in parameter 20-21 Setpoint 1. If any feedback is below the setpoint, the PID Controller increases the fan speed. If all

How to Programme
feedbacks are above the setpoint, the PID controller
decreases the fan speed.

Example 2 - Multi-zone, multi-setpoint

The previous example illustrates the use of multi-zone, multi-setpoint control. If the zones require different pressures for each VAV box, each setpoint may be specified in parameter 20-21 Setpoint 1, parameter 20-22 Setpoint 2 and 20-23 Setpoint 3. By selecting [5] Multi-setpoint minimum in parameter 20-20 Feedback Function, the PID Controller increases the fan speed if any one of the feedbacks is below its setpoint. If all feedbacks are above their individual setpoints, the PID controller decreases the fan speed.

20-21 Setpoint 1	Function:			
$\begin{array}{l}\text { Range: } \\ \hline \text { ProcessCtrIUnit* }\end{array}$	$\begin{array}{l}\text { [-999999.999 - } \\ \text { 999999.999 } \\ \text { ProcessCtrlUnit] }\end{array}$	$\begin{array}{l}\text { Setpoint 1 is used in closed } \\ \text { loop mode to enter a } \\ \text { setpoint reference that is } \\ \text { used by the frequency } \\ \text { converter's PID controller. See } \\ \text { the description of } \\ \text { parameter 20-20 Feedback } \\ \text { Function. }\end{array}$		
NOT/CE			$\}$	The setpoint reference
:---				
entered here is added to				
any other references that				
are enabled (see				
parameter group 3-1*				
References).				

20-22 Setpoint 2

Range:		Function:
$\begin{array}{\|l\|} \hline 0 \\ \text { ProcessCtrIUnit* } \end{array}$	$\begin{aligned} & \text { [-999999.999- } \\ & 999999.999 \\ & \text { ProcessCtrIUnit] } \end{aligned}$	Setpoint 2 is used in closed loop mode to enter a setpoint reference that may be used by the frequency converter's PID controller. See the description of Feedback Function, parameter 20-20 Feedback Function. NOTICE The setpoint reference entered here is added to any other references that are enabled (see parameter group 3-1* References).

20-81 PID Normal/ Inverse Control		
Option:		Function:
		temperature-controlled cooling applications, such as cooling towers.

20-93 PID Proportional Gain		
Range:		Function:
0.50^{*}	$[0-10]$	The proportional gain indicates the number of times the error between the set point and the feedback signal is to be applied.

If (Error x Gain) jumps with a value equal to what is set in 20-14 Maximum Reference/Feedb., the PID controller tries to change the output speed equal to what is set in parameter 4-13 Motor Speed High Limit [RPM]/ parameter 4-14 Motor Speed High Limit [Hz]. However, the output speed is limited by this setting.
The proportional band (error causing output to change from $0-100 \%$) can be calculated with the formula
$\left(\frac{1}{\text { Proportional Gain }}\right) \times($ Max Reference $)$

NOTICE

Always set the desired value for 20-14 Maximum Reference/Feedb. before setting the values for the PID controller in parameter group 20-9* PID Controller.

20-94 PID Integral Time		
Range:		Function:
20 s^{*}	$\begin{gathered} {[0.01-} \\ 10000 \mathrm{~s}] \end{gathered}$	The integrator accumulates a contribution to the output from the PID controller as long as there is a deviation between the reference/ setpoint and feedback signals. The contribution is proportional to the size of the deviation. This ensures that the deviation (error) approaches zero. Quick response on any deviation is obtained when the integral time is set to a low value. Setting it too low, however, may cause the control to become unstable. The value set is the time needed for the integrator to add the same contribution as the proportional for a certain deviation. If the value is set to 10,000 , the controller acts as a pure proportional controller with a P-band based on the value set in parameter 20-93 PID Proportional Gain. When no deviation is present, the output from the proportional controller is 0 .
22-21 Low Power Detection		
Option:		Function:
[0] *	Disabled	
[1]	Enabled	The low-power detection commissioning must be carried out to set the parameters in parameter

22-21 Low Power Detection		
Option:		Function:
	group 22-3* No-Flow Power Tuning for proper operation.	

22-22 Low Speed Detection		
Option:		Function:
$[0] *$	Disabled	
$[1]$	Enabled	Detects when the motor operates with a speed as set in parameter 4-11 Motor Speed Low Limit $[R P M]$ or parameter 4-12 Motor Speed Low Limit $[H z]$.

22-23 No-Flow Function

Common actions for low-power detection and low-speed detection (Individual selections not possible).

Option:		Function:
[0] *	Off	
[1]	Sleep Mode	The frequency converter enters sleep mode and stops when a no-flow condition is detected. See parameter group 22-4* Sleep Mode for programming options for sleep mode.
[2]	Warning	The frequency converter continues to run, but activates a no-flow warning [W92]. A digital output or a serial communication bus can communicate a warning to other equipment.
[3]	Alarm	The frequency converter stops running and activates a no-flow alarm [A 92]. A frequency converter digital output or a serial communi- cation bus can communicate an alarm to other equipment.

NOT/CE

Do not set 14-20 Reset Mode, to [13] Infinite auto reset, when parameter 22-23 No-Flow Function is set to [3] Alarm. Doing so, causes the frequency converter to continuously cycle between running and stopping when a no-flow condition is detected.

NOTICE

Disable the bypass's automatic bypass funcion

- if the frequency converter is equipped with a constant speed bypass with an automatic bypass function starting the bypass if the frequency converter experiences a persistent alarm condition, and
- if [3] Alarm is selected as the no-flow function.

| 22-24 | | No-Flow Delay |
| :--- | :--- | :--- | :--- |
| Range: | | Function: |
| $10 s^{*}$ | $[1-600 \mathrm{~s}]$ | Set the time that low power/low speed must
 stay detected to activate signal for actions. If
 detection disappears before the timer runs
 out, the timer is reset. |

Select desired action for dry pump operation.		
[0] *	Off	
[1]	Warning	The frequency converter continues to run, but activates a dry pump warning [W93]. A frequency converter digital output or a serial communication bus can communicate a warning to other equipment.
[2]	Alarm	The frequency converter stops running and activates a dry pump alarm [A93]. A frequency converter digital output or a serial communication bus can communicate an alarm to other equipment.
[3]	Man. Reset Alarm	The frequency converter stops running and activates a dry pump alarm [A93]. A frequency converter digital output or a serial communication bus can communicate an alarm to other equipment.

NOTICE

Low Power Detection must be enabled (parameter 22-21 Low Power Detection) and commissioned (using either parameter group 22-3* No-flow Power Tuning No Flow Power Tuning, or 22-20 Low Power Auto Set-up) to use dry-pump detection.

NOTICE

Do not set 14-20 Reset Mode, to [13] Infinite auto reset, when parameter 22-26 Dry Pump Function is set to [2] Alarm. Doing so causes the frequency converter to continuously cycle between running and stopping when a dry pump condition is detected.

NOTICE

If the frequency converter is equipped with a constant speed bypass with an automatic bypass function that starts the bypass if the frequency converter experiences a persistent alarm condition, be sure to disable the bypass's automatic bypass function, if [2] Alarm or [3] Man. Reset Alarm is selected as the dry-pump function.

22-40 Minimum Run Time		
Rang		Function:
10 s*	[0-600 s]	Set the desired minimum running time for the motor after a start command (digital input or bus) before entering sleep mode.

22-41 Minimum Sleep Time		
Range:		Function:
$10 \mathrm{~s}^{*}$	$[0-600 \mathrm{~s}]$	Set the desired minimum time for staying in sleep mode. This setting overrides any wake- up conditions.

22-42 Wake-up Speed [RPM]

Range:		Function:
Size related*	[par. $4-11-$ par. 4-13 RPM]	To be used if $0-02$ Motor Speed Unit has been set for RPM (parameter not visible if Hz selected). Only to be used if parameter 1-00 Configuration Mode is set for open loop and an external controller applies speed reference. Set the reference speed at which the sleep mode should be cancelled.

22-60 Broken Belt Function

Selects the action to be performed if the broken belt condition is detected

Option: Function:

[0] *	Off	
[1]	Warning	The frequency converter continues to run, but activates a broken belt warning [W95]. A frequency converter digital output or a serial communication bus can communicate a warning to other equipment.
[2]	Trip	The frequency converter stops running and activates a broken belt alarm [A 95]. A frequency converter digital output or a serial communi- cation bus can communicate an alarm to other equipment.

NOTICE

Do not set 14-20 Reset Mode, to [13] Infinite auto reset, when parameter 22-60 Broken Belt Function is set to [2] Trip. Doing so causes the frequency converter to continuously cycle between running and stopping when a broken belt condition is detected.

NOTICE

If the frequency converter is equipped with a constant speed bypass with an automatic bypass function that starts the bypass if the frequency converter experiences a persistent alarm condition, be sure to disable the bypass's automatic bypass function, if [2] Trip is selected as the broken belt function.

22-61 Broken Belt Torque		
Range:		Function:
$10 \%^{*}$	$[0-100 \%]$	Sets the broken belt torque as a percentage of the rated motor torque.

22-62 Broken Belt Delay

Range:		Function:
10 s	$[0-600$	Sets the time for which the broken belt conditions must be active before carrying out the action selected in parameter 22-60 Broken Belt Function.

22-75 Short Cycle Protection		
Option:		Function:
$[0]$ *	Disabled	Timer set in parameter 22-76 Interval between Starts is disabled.
$[1]$	Enabled	Timer set in parameter 22-76 Interval between Starts is enabled.

22-76 Interval between Starts		
Range:	Function:	
Size related*	par. 22-77 -3600 s]	Sets the time desired as minimum time between 2 starts. Any normal start command (Start/Jog/Freeze) is disregarded until the timer has expired.

22-77 Minimum Run Time		
Range:	Function:	
$0 \mathrm{~s}^{*}$	$[0-\mathrm{par}$. $22-76 \mathrm{~s}]$	Sets the time desired as minimum run time after a normal start command (start/jog/freeze). Any normal stop command is disregarded until the set time has expired. The timer starts counting following a normal start command (start/jog/freeze).
A coast (inverse) or an external interlock		
command overrides the timer.		

NOTICE

Does not work in cascade mode.

6.1.5 Main Menu Mode

Both the GLCP and NLCP provide access to the main menu mode. Select the Main Menu mode by pressing [Main Menu]. Illustration 6.18 shows the resulting readout, which appears on the display of the GLCP.
Lines 2 to 5 on the display show a list of parameter groups which can be selected by toggling [$\mathbf{\Delta}$] and [\mathbf{v}].

Illustration 6.18 Display Example

Each parameter has a name and number which remain the same regardless of the programming mode. In the Main Menu mode, the parameters are divided into groups. The first digit of the parameter number (from the left) indicates the parameter group number.

All parameters can be changed in the Main Menu. The configuration of the unit (parameter 1-00 Configuration Mode) determines other parameters available for programming. For example, selecting closed loop enables more parameters related to closed loop operation. Option cards added to the unit enable more parameters associated with the option device.

6.1.6 Parameter Selection

In the Main Menu mode, the parameters are divided into groups. Press the navigation keys to select a parameter group.
The following parameter groups are accessible:

Group no.	Parameter group
0-**	Operation/Display
1-**	Load/Motor
2-**	Brakes
3-**	References/Ramps
4-**	Limits/Warnings
5-**	Digital In/Out
6-**	Analog In/Out
8-**	Comm. and Options
9-**	Profibus
10-**	CAN Fieldbus
11-**	LonWorks
13-**	Smart Logic
14-**	Special Functions
15-**	FC Information
16-**	Data Readouts
18-**	Data Readouts 2
20-**	FC Closed Loop
21-**	Ext. Closed Loop
22-**	Application Functions
23-**	Time Actions
25-**	Cascade Controller
26-**	Analog I/O Option MCB 109

How to Programme

Group no.	Parameter group
$27-* *$	Cascade CTL Option
$29-* *$	Water Application Functions
$31-* *$	Bypass Option

Table 6.7 Parameter Groups

After selecting a parameter group, select a parameter with the navigation keys.
The middle section on the GLCP display shows the parameter number and name as well as the selected parameter value.

Illustration 6.19 Display Example

6.1.7 Changing Data

1. Press [Quick Menu] or [Main Menu] key.
2. Press [$\mathbf{4}$] and [\mathbf{v}] to find parameter group to edit.
3. Press [OK] key.
4. Press [$\mathbf{\Delta}$] and [\mathbf{v}] to find parameter to edit.
5. Press [OK] key.
6. Press [$\mathbf{\Delta}$] and [\mathbf{v}] to select correct parameter setting. Or, to move to digits within a number, press keys. Cursor indicates digit selected to change. [$\mathbf{\Delta}$] increases the value, [\mathbf{v}] decreases the value.
7. Press [Cancel] to disregard change, or press [OK] to accept change and enter new setting.

6.1.8 Changing a Text Value

If the selected parameter is a text value, change the text value with the $[\mathbf{\Delta}] /[\mathbf{v}]$ keys.
[$\mathbf{\Delta}$] increases the value, and [\mathbf{v}] decreases the value. Place the cursor on the value to be saved and press [OK].

740RPM	10.64 A
Basic Settings	$[1]$
$0-01$ Language	$0-0 *$
[0] English	$\boxed{\Delta}$

Illustration 6.20 Display Example

6.1.9 Changing a Group of Numeric Data Values

If the selected parameter represents a numeric data value, change the selected data value with the [4] and [\bullet] keys as well as the up/down [$\mathbf{\Delta}$] [\mathbf{v}] keys. Press [$\boldsymbol{\triangleleft}$] and [\downarrow] to move the cursor horizontally.

Illustration 6.21 Display Example

Press [$\mathbf{\Delta}$] and $[\mathbf{v}]$ to change the data value. [$\mathbf{\Delta}]$ increases the data value, and $[\mathbf{v}]$ decreases the data value. Place the cursor on the value to be saved and press [OK].

Illustration 6.22 Display Example

6.1.10 Changing of Data Value, Step-byStep

Certain parameters can be changed step by step or infinitely variably. This applies to parameter 1-20 Motor Power [kW], parameter 1-22 Motor Voltage and parameter 1-23 Motor Frequency.
The parameters are changed both as a group of numeric data values and as numeric data values infinitely variably.

6.1.11 Readout and Programming of Indexed Parameters

Parameters are indexed when placed in a rolling stack.
15-30 Alarm Log: Error Code to 15-32 Alarm Log: Time
contain a fault log which can be read out. Select a parameter, press [OK], and use [$\mathbf{\Delta}$] and [\mathbf{v}] to scroll through the value log.

Use parameter 3-10 Preset Reference as another example:
Select the parameter, press [OK], and use [$\mathbf{\Delta}$] and [\mathbf{v}] to scroll through the indexed values. To change the parameter value, select the indexed value and press [OK].
Change the value by [$\mathbf{\Delta}$] and [\mathbf{v}]. Press [OK] to accept the new setting. Press [Cancel] to abort. Press [Back] to leave the parameter.

6.2 Parameter Menu Structure

How to Programme
Operating Instructions

How to Programme
PCD Write Configuration
PCD Read Configuration

15-23	Historic log: Date and Time
$15-3^{*}$	Alarm Log
15-30	Alarm Log: Error Code
15-31	Alarm Log: Value
$15-32$	Alarm Log: Time
$15-33$	Alarm Log: Date and Time
$15-4^{*}$	Drive Identification
$15-40$	FC Type
$15-41$	Power Section
$15-42$	Voltage
$15-43$	Software Version
$15-44$	Ordered Typecode String
$15-45$	Actual Typecode String
$15-46$	Frequency Converter Ordering No
$15-47$	Power Card Ordering No
$15-48$	LCP Id No
$15-49$	SW ID Control Card
$15-50$	SW ID Power Card
$15-51$	Frequency Converter Serial Number
$15-53$	Power Card Serial Number
$15-55$	Vendor URL
$15-56$	Vendor Name
$15-59$	CSIV Filename
$15-6^{*}$	Option Ident
$15-60$	Option Mounted
$15-61$	Option SW Version
$15-62$	Option Ordering No
$15-63$	Option Serial No
$15-70$	Option in Slot A
$15-71$	Slot A Option SW Version
$15-72$	Option in Slot B
$15-73$	Slot B Option SW Version
$15-8^{*}$	Operating Data II
$15-80$	Fan Running Hours
$15-81$	Preset Fan Running Hours
$15-9^{*}$	Parameter Info
$15-92$	Defined Parameters
$15-93$	Modified Parameters
$15-98$	Drive Identification
$15-99$	Parameter Metadata
$16-* *$	Data Readouts
$16-0^{*}$	General Status
$16-00$	Control Word
$16-01$	Reference [Unit]
$16-02$	Reference [\%]
$16-03$	Status Word
$16-05$	Main Actual Value [\%]
$16-09$	Custom Readout
$16-1^{*}$	Motor Status
$16-10$	Power [kW]
$16-11$	Power [hp]
$16-12$	Motor Voltage
$16-13$	Frequency
$16-14$	Motor current
$16-15$	Frequency [\%]
$16-16$	Torque [Nm]
$16-17$	Speed [RPM]
$16-18$	Motor Thermal
$16-20$	Motor Angle
15	

6-63	Terminal X30/8 Output Bus Control
$6-64$	Terminal X30/8 Output Timeout Preset
$8-{ }^{-*}$	Comm. and Options
$\mathbf{8 - 0}$	General Settings

 Current Lim Ctrl, Proportional Gain
Current Lim Ctrl, Integration Time Current Lim Ctrl, Filter Time
Energy Optimising AEO Minimum Magnetisation
Minimum AEO Frequency Minimum AEO Frequency
Motor Cosphi
Environment RFI Filter
DC Link Compensation DC Link Compensation
Fan Control Output Filter
Actual Number of Inverter Units Auto Derate
Function at Over Temperature Function at Inverter Overload Inv. Overload Derate Current
Fault Settings
 Operating Data
Operating hours
Running Hours Running Hours
kWh Counter Power Up's Over Temp's
Over Volt's Reset kWh Counter
Reset Running Hours Counter Reset Running Hours Counter
Number of Starts Data Log Settings Logging Source Trigger Event Logging Mode
Samples Before Trigger
Historic Log

 * * ${ }_{\text {* }}^{\text {* }}$ 12-2* Process Data
 Cable Diagnostic
Auto Cross Over
IGMP Snooping GMP Snooping Broadcast Storm Protection
Broadcast Storm Filter
Port Config
Interface Counters Broadcast Storm Protection
Broadcast Storm Filter
Port Config
Interface Counters TP Server
TTP Server
MTP Service
Transparent Socket Channel Port Advanced Ethernet Services Cable Diagnostic
Auto Cross Over Cable Error Length 2-98 Interface Counters
2-99
Media Counters

 Sthere Always Warning Parameter Net Reference IP Revision CIP Product Code
EDS Parameter COS Inhibit Timer Modbus TCP Modbus TCP
Status Parameter Status Parameter
Slave Message Coun Slave Exception Message Slave Exception Message Count
Other Ethernet Services FTP Server
HTTP Server

LonWorks

둗 힝

 $\stackrel{\searrow}{\bar{\omega}}$ Logic Rules ogic Rule Boolean 1 ogic Rule Boolean 2 gic Rule Operator 2 Stop EventReset SLC
omparators

 Logic Rule Operator 1

 elegram Selection Process Control Fault Message Counter
Fault Code Fault Situation Counter Profibus Warning Word Device Identification Profile Number Control Word 1 Profibus Save Data DO Identification Defined Parameters (1)
Defined Parameters (2) Defined Parameters (2)
Defined Parameters (3) Defined Parameters (4) Changed Parameters (1) Changed Parameters (1)
Changed Parameters (2)
 Changed Parameters (5)
Profibus Revision Counter

LonWorks | LON Functions |
| :--- |
| Drive Profile |
| LON Warning Word |
| XIF Revision |
| LonWorks Revision |
| LON Param. Access |
| Store Data Values |
| Ethernet |
| IP Settings | $13-$

$13-$
$13-$
$13-1$
$13-2$
$13-2$
$13-$
13

How to Programme

$\sum_{\sum_{c}}$ Nㅗ

 ON Action
OFF Time
OFF Action
Occurrence
imed Actions Settings
Timed Actions Mode
imed Actions Reactivation
Maintenance
Maintenance Item

99-2* Platform Readouts

 m

24-9*	Multi-Motor Funct.	25-91	Manual Alternation
24-90	Missing Motor Function	26-**	Analog I/O Option
24-91	Missing Motor Coefficient 1	26-0*	Analog I/O Mode
24-92	Missing Motor Coefficient 2	26-00	Terminal X42/1 Mode
24-93	Missing Motor Coefficient 3	26-01	Terminal X42/3 Mode
24-94	Missing Motor Coefficient 4	26-02	Terminal X42/5 Mode
24-95	Locked Rotor Function	26-1*	Analog Input X42/1
24-96	Locked Rotor Coefficient 1	26-10	Terminal X42/1 Low Voltage
24-97	Locked Rotor Coefficient 2	26-11	Terminal X42/1 High Voltage
24-98	Locked Rotor Coefficient 3	26-14	Term. X42/1 Low Ref./Feedb. Value
24-99	Locked Rotor Coefficient 4	26-15	Term. X42/1 High Ref./Feedb. Value
25-**	Cascade Controller	26-16	Term. X42/1 Filter Time Constant
25-0*	System Settings	26-17	Term. X42/1 Live Zero
25-00	Cascade Controller	26-2*	Analog Input X42/3
25-02	Motor Start	26-20	Terminal X42/3 Low Voltage
25-04	Pump Cycling	26-21	Terminal X42/3 High Voltage
25-05	Fixed Lead Pump	26-24	Term. X42/3 Low Ref./Feedb. Value
25-06	Number of Pumps	26-25	Term. X42/3 High Ref./Feedb. Value
25-2*	Bandwidth Settings	26-26	Term. X42/3 Filter Time Constant
25-20	Staging Bandwidth	26-27	Term. X42/3 Live Zero
25-21	Override Bandwidth	26-3*	Analog Input X42/5
25-22	Fixed Speed Bandwidth	26-30	Terminal X42/5 Low Voltage
25-23	SBW Staging Delay	26-31	Terminal X42/5 High Voltage
25-24	SBW Destaging Delay	26-34	Term. X42/5 Low Ref./Feedb. Value
25-25	OBW Time	26-35	Term. X42/5 High Ref./Feedb. Value
25-26	Destage At No-Flow	26-36	Term. X42/5 Filter Time Constant
25-27	Stage Function	26-37	Term. X42/5 Live Zero
25-28	Stage Function Time	26-4*	Analog Out X42/7
25-29	Destage Function	26-40	Terminal X42/7 Output
25-30	Destage Function Time	26-41	Terminal X42/7 Min. Scale
25-4*	Staging Settings	26-42	Terminal X42/7 Max. Scale
25-40	Ramp Down Delay	26-43	Terminal X42/7 Bus Control
25-41	Ramp Up Delay	26-44	Terminal X42/7 Timeout Preset
25-42	Staging Threshold	26-5*	Analog Out X42/9
25-43	Destaging Threshold	26-50	Terminal X42/9 Output
25-44	Staging Speed [RPM]	26-51	Terminal X42/9 Min. Scale
25-45	Staging Speed [Hz$]$	26-52	Terminal X42/9 Max. Scale
25-46	Destaging Speed [RPM]	26-53	Terminal X42/9 Bus Control
25-47	Destaging Speed [Hz]	26-54	Terminal X42/9 Timeout Preset
25-5*	Alternation Settings	26-6*	Analog Out X42/11
25-50	Lead Pump Alternation	26-60	Terminal X42/11 Output
25-51	Alternation Event	26-61	Terminal X42/11 Min. Scale
25-52	Alternation Time Interval	26-62	Terminal X42/11 Max. Scale
25-53	Alternation Timer Value	26-63	Terminal X42/11 Bus Control
25-54	Alternation Predefined Time	26-64	Terminal X42/11 Timeout Preset
25-55	Alternate if Load < 50\%	30-**	Special Features
25-56	Staging Mode at Alternation	30-2*	Adv. Start Adjust
25-58	Run Next Pump Delay	30-22	Locked Rotor Detection
25-59	Run on Mains Delay	30-23	Locked Rotor Detection Time [s]
25-8*	Status	31-**	Bypass Option
25-80	Cascade Status	31-00	Bypass Mode
25-81	Pump Status	31-01	Bypass Start Time Delay
25-82	Lead Pump	31-02	Bypass Trip Time Delay
25-83	Relay Status	31-03	Test Mode Activation
25-84	Pump ON Time	31-10	Bypass Status Word
25-85	Relay ON Time	31-11	Bypass Running Hours
25-86	Reset Relay Counters	31-19	Remote Bypass Activation
25-9*	Service	35-**	Sensor Input Option
25-90	Pump Interlock	35-0*	Temp. Input Mode

7 General Specifications

Mains Supply (L1-1, L2-1, L3-1, L1-2, L2-2, L3-2)
Supply voltage
Supply voltage

Mains voltage low/mains drop-out:
During low mains voltage or a mains drop-out, the frequency converter continues until the intermediate circuit voltage drops below the minimum stop level, which corresponds typically to 15% below the frequency converter's lowest rated supply voltage.
Power-up and full torque cannot be expected at mains voltage lower than 10% below the frequency converter's lowest rated supply voltage.
Supply frequency
Max. imbalance temporary between mains phases
True Power Factor (λ)
Displacement Power Factor (Cos φ) near unity
Switching on input supply L1, L2, L3 (power-ups)
Environment according to EN6064-1

The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, $480 / 690 \mathrm{~V}$ maximum.

Motor output (U, V, W)
Output voltage
Output frequency
Switching on output
Ramp times

* Voltage and power dependent

Torque characteristics

Starting torque (constant torque)
Starting torque
Overload torque (constant torque)
*Percentage relates to the frequency converter's nominal torque.
Cable lengths and cross-sections
Max. motor cable length, screened/armoured
Max. motor cable length, unscreened/unarmoured
Max. cross section to motor, mains, load sharing and brake *
Maximum cross section to control terminals, rigid wire
Maximum cross section to control terminals, flexible cable
Maximum cross section to control terminals, cable with enclosed core
Minimum cross section to control terminals

* See chapter 7.1.1 Mains Supply $3 \times 380-500 \mathrm{~V}$ AC - High Power and chapter 7.1.1 Electrical Data - 525-690 VAC for more information.

Digital inputs
Programmable digital inputs

Logic PNP or NPN

Voltage level, logic'0' PNP
Voltage level, logic'1' PNP >10 V DC
Voltage level, logic '0' NPN $\quad>19 \mathrm{~V}$ DC
Voltage level, logic '1' NPN <14 V DC
Maximum voltage on input 28 VDC
Input resistance, R_{i}
All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.
Analog inputs
Number of analog inputs
Terminal number
Modes
Mode select
Voltage mode
Voltage level
Input resistance, R_{i}
Maximum voltage
Current mode
Current level
Input resistance, R_{i}
Maximum current
Resolution for analog inputs
Accuracy of analog inputs
Bandwidth

The analog inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Illustration 7.1 PELV Isolation of Analog Inputs

Pulse inputs

Programmable pulse inputs
Terminal number pulse
Maximum frequency at terminal 29, 33
Maximum frequency at terminal 29, 33
Minimum frequency at terminal 29, 33
Voltage level
Maximum voltage on input
Input resistance, R_{i}
Pulse input accuracy ($0.1-1 \mathrm{kHz}$)
Analog output
Number of programmable analog outputs
Terminal number
Current range at analog output
Maximum resistor load to common at analog output
Accuracy on analog output

Resolution on analog output 8 bit
The analog output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, RS-485 serial communication
Terminal number 68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61 Common for terminals 68 and 69
The RS-485 serial communication circuit is functionally separated from other central circuits and galvanically isolated from thesupply voltage (PELV).
Digital output
Programmable digital/pulse outputs 2
Terminal number 27, 291)
Voltage level at digital/frequency output $0-24 \mathrm{~V}$
Maximum output current (sink or source) 40 mA
Maximum load at frequency output 1 k Ω
Maximum capacitive load at frequency output 10 nF
Minimum output frequency at frequency output 0 Hz
Maximum output frequency at frequency output 32 kHz
Accuracy of frequency output Maximum error 0.1% of full scale
Resolution of frequency outputs 12 bit

1) Terminal 27 and 29 can also be programmed as input.

The digital output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control card, 24 V DC output
Terminal number 12,13
Maximum 200 mA

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analog and digital inputs and outputs.

Relay outputs

Programmable relay outputs 2
Relay 01 Terminal number $1-3$ (break), 1-2 (make)
Maximum terminal load (AC-1)1) on 1-3 (NC), 1-2 (NO) (Resistive load) $240 \mathrm{~V} \mathrm{AC}, 2$ A
Maximum terminal load (AC-15) ${ }^{1)}$ (Inductive load @ $\cos \varphi 0.4$) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Maximum terminal load (DC-1) ${ }^{1}$ on 1-2 (NO), 1-3 (NC) (Resistive load) 60 V DC, 1 A
Maximum terminal load (DC-13) ${ }^{1)}$ (Inductive load) $24 \mathrm{~V} \mathrm{DC}$,
Relay 02 Terminal number $4-6$ (break), 4-5 (make)
Maximum terminal load (AC-1)1) on 4-5 (NO) (Resistive load) ${ }^{233}$) $400 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A}$

Maximum terminal load (AC-15) ${ }^{1}$ on 4-5 (NO) (Inductive load @ $\cos \varphi$ 0.4) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Maximum terminal load (DC-1) ${ }^{1)}$ on 4-5 (NO) (Resistive load) 80 V DC, 2 A
Maximum terminal load (DC-13) ${ }^{1)}$ on 4-5 (NO) (Inductive load) 24 V DC, 0.1 A
Maximum terminal load (AC-1)1) on 4-6 (NC) (Resistive load) $240 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A}$
Maximum terminal load (AC-15)1) on 4-6 (NC) (Inductive load @ $\cos \varphi 0.4$) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Maximum terminal load (DC-1) ${ }^{1)}$ on 4-6 (NC) (Resistive load) 50 V DC, 2 A
Maximum terminal load ($\mathrm{DC}-13)^{1)}$ on 4-6 (NC) (Inductive load) 24 V DC, 0.1 A
Minimum terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO) 24 V DC, $10 \mathrm{~mA}, 24 \mathrm{~V} \mathrm{AC}, 20 \mathrm{~mA}$
Environment according to EN 60664-1 overvoltage category III/pollution degree 2

1) IEC 60947 parts 4 and 5

The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II
3) UL applications 300 V AC 2 A

General Specifications

Control card, 10 V DC output
Terminal number
Output voltage
Maximum load

The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control characteristics
Resolution of output frequency at $0-590 \mathrm{~Hz} \quad \pm 0.003 \mathrm{~Hz}$

System response time (terminals 18, 19, 27, 29, 32, 33)
Speed control range (open loop) $1: 100$ of synchronous speed
Speed accuracy (open loop) $30-4000$ RPM: Maximum error of ± 8 RPM

All control characteristics are based on a 4-pole asynchronous motor.

Surroundings

Enclosure, frame size E
Enclosure, frame size F
Vibration test
Relative humidity
Aggressive environment (IEC $60068-2-43) \mathrm{H}_{2} \mathrm{~S}$ test
Test method according to IEC $60068-2-43 \mathrm{H}_{2} \mathrm{~S}(10$ days)
Ambient temperature (at 60 AVM switching mode)

- with derating
- with full output power, typical EFF2 motors
- at full continuous FC output current

1) For more information on derating see the Design Guide, section on Special Conditions.
Minimum ambient temperature during full-scale operation
Minimum ambient temperature at reduced performance
Temperature during storage/transport
Maximum altitude above sea level without derating
Maximum altitude above sea level with derating

Derating for high altitude, see section on special conditions in the Design Guide
EMC standards, Emission
EN 61800-3, EN 61000-6-3/4, EN 55011, IEC 61800-3
EN 61800-3, EN 61000-6-1/2,
EMC standards, Immunity \qquad EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6

See section on special conditions in the Design Guide!
Control card performance
Scan interval 5 ms

Control card, USB serial communication
USB standard
1.1 (Full speed)

USB plug
USB type B "device" plug

\triangle ACAUTION

Connection to PC is carried out via a standard host/device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
The USB connection is NOT galvanically isolated from protective earth. Use only isolated laptop/PC as connection to the USB connector on the frequency converter or an isolated USB cable/converter.

Protection and features

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heat sink ensures that the frequency converter trips if the temperature reaches a predefined level. An overload temperature cannot be reset until the temperature of the heat sink is below the
values stated in the tables on the following pages (Guideline - these temperatures may vary for different power sizes, frame sizes, enclosure ratings etc.).
- The frequency converter is protected against short circuits on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or too high.
- The frequency converter is protected against ground faults on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.

General Specifications

Mains Supply $6 \times 380-500 \mathrm{~V}$ AC				
	P315	P355	P400	P450
Typical Shaft output at 400 V [kW]	315	355	400	450
Typical Shaft output at 460 V [HP]	450	500	600	600
Typical Shaft output at 500 V [kW]	355	400	500	530
Enclosure IP21	F8/F9	F8/F9	F8/F9	F8/F9
Enclosure IP54	F8/F9	F8/F9	F8/F9	F8/F9
Output current				
Continuous (at 400 V) [A]	600	648	745	800
Intermittent (60 sec overload) (at 400 V) [A]	660	724	820	880
Continuous (at 460/500 V) [A]	540	590	678	730
Intermittent (60 sec overload) (at 460/500 V) [A]	594	649	746	803
Continuous KVA (at 400 V) [KVA]	416	456	516	554
Continuous KVA (at 460 V) [KVA]	430	470	540	582
Continuous KVA (at 500 V) [KVA]	468	511	587	632
Max. input current				
Continuous (at 400 V) [A]	590	647	733	787
Continuous (at 460/500 V) [A]	531	580	667	718
Max. cable size, mains [mm² $\left(\mathrm{AWG}^{2}\right)$]	4x90 (3/0)	4x90 (3/0)	4×240 (500 mcm)	4×240 (500 mcm)
Max. cable size, motor $\left[\mathrm{mm}^{2}\right.$ (AWG ${ }^{2}$)]	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \\ \hline \end{gathered}$	$\begin{gathered} 4 \times 240 \\ (4 \times 500 \mathrm{mcm}) \\ \hline \end{gathered}$
Max. cable size, brake [mm² (AWG ${ }^{2}$)	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$
Max. external mains fuses [A] ${ }^{1}$	700			
Estimated power loss at 400 V [W] ${ }^{4)}$	6790	7701	8879	9670
Estimated power loss at 460 V [W]	6082	6953	8089	8803
Weight,enclosure IP21, IP 54 [kg]	440/656			
Efficiency ${ }^{4}$	0.98			
Output frequency	0-600Hz			
Heatsink overtemp. trip	$95{ }^{\circ} \mathrm{C}$			
Power card ambient trip	$68{ }^{\circ} \mathrm{C}$			
* High overload $=160 \%$ torque during 60 sec , Normal overload $=110 \%$ torque during 60 sec .				

Table 7.1

General Specifications

Mains Supply 6 x 380-500V AC						
	P500	P560	P630	P710	P800	P1000
Typical Shaft output at 400 V [kW]	500	560	630	710	800	1000
Typical Shaft output at 460 V [HP]	650	750	900	1000	1200	1350
Typical Shaft output at 500 V [kW]	560	630	710	800	1000	1100
EnclosureIP21, 54 without/ with options cabinet	F10/F11	F10/F11	F10/F11	F10/F11	F12/F13	F12/F13

Output current

Continuous (at 400 V) [A]	880	990	1120	1260	1460	1720
Intermittent (60 sec overload) (at 400 V) [A]	968	1089	1232	1386	1606	1892
Continuous (at $460 / 500 \mathrm{~V}$) [A]	780	890	1050	1160	1380	1530
Intermittent (60 sec overload) (at $460 / 500 \mathrm{~V}$) [A]	858	979	1155	1276	1518	1683
Continuous KVA (at 400 V) [KVA]	610	686	776	873	1012	1192
Continuous KVA (at 460 V) [KVA]	621	709	837	924	1100	1219
Continuous KVA (at 500 V) [KVA]	675	771	909	1005	1195	1325

Max. input current

Continuous (at 400 V) [A]	857	964	1090	1227	1422	1675
Continuous (at $460 / 500 \mathrm{~V}$) [A]	759	867	1022	1129	1344	1490
Max. cable size,motor [mm² (AWG2) ${ }^{2}$]	$\begin{gathered} 8 \times 150 \\ (8 \times 300 \mathrm{mcm}) \end{gathered}$				$\begin{gathered} 12 \times 150 \\ (12 \times 300 \mathrm{mcm}) \end{gathered}$	
Max. cable size,mains [mm² $\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 6 \times 120 \\ (6 \times 250 \mathrm{mcm}) \end{gathered}$					
Max. cable size, brake [mm² (AWG ${ }^{2)}$)	$\begin{gathered} 4 \times 185 \\ (4 \times 350 \mathrm{mcm}) \end{gathered}$				$\begin{gathered} 6 \times 185 \\ (6 \times 350 \mathrm{mcm}) \end{gathered}$	
Max. external mains fuses [A] 1)	900			1500		
Estimated power loss at 400 V [W] ${ }^{4)}$	10647	12338	13201	15436	18084	20358
Estimated power loss at 460 V [W]	9414	11006	12353	14041	17137	17752
F9/F11/F13 max. added losses A1 RFI, CB or Disconnect, \& contactor F9/F11/F13	963	1054	1093	1230	2280	2541
Max. panel options losses	400					
Weight, enclosure IP21, IP54 [kg]	1004/ 1299	1004/1299	1004/ 1299	1004/ 1299	1246/ 1541	1246/ 1541
Weight rectifier module [kg]	102	102	102	102	136	136
Weight inverter module [kg]	102	102	102	136	102	102
Efficiency ${ }^{4}$	0.98					
Output frequency	$0-600 \mathrm{~Hz}$					
Heatsink overtemp. trip	$95^{\circ} \mathrm{C}$					
Power card ambient trip	$68^{\circ} \mathrm{C}$					

Table 7.2

General Specifications
Operating Instructions

Mains Supply $3 \times 525-690 \mathrm{~V}$ AC				
	P450	P500	P560	P630
Typical Shaft output at 550 V [kW]	355	400	450	500
Typical Shaft output at 575 V [HP]	450	500	600	650
Typical Shaft output at 690 V [kW]	450	500	560	630
Enclosure IP21	F8/F9	F8/F9	F8/F9	F8/F9
Enclosure IP54	F8/F9	F8/F9	F8/F9	F8/F9
Output current				
Continuous (at 550 V) [A]	470	523	596	630
Intermittent (60 sec overload) (at 550 V) [A]	517	575	656	693
Continuous (at 575/ 690 V) [A]	450	500	570	630
Intermittent (60 sec overload) (at 575/ 690 V) [A]	495	550	627	693
Continuous KVA (at 550 V) [KVA]	448	498	568	600
Continuous KVA (at 575 V) [KVA]	448	498	568	627
Continuous KVA (at 690 V) [KVA]	538	598	681	753
Max. input current				
Continuous (at 550 V) [A]	453	504	574	607
Continuous (at 575 V) [A]	434	482	549	607
Continuous (at 690 V) [A]	434	482	549	607
Max. cable size, mains [mm² (AWG)]	4x85 (3/0)			
Max. cable size, motor $\left[\mathrm{mm}^{2}\right.$ (AWG)]	4×250 (500 mcm)			
Max. cable size, brake [mm² (AWG)]	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{aligned} & 2 \times 185 \\ & (2 \times 350 \mathrm{mcm}) \end{aligned}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$	$\begin{gathered} 2 \times 185 \\ (2 \times 350 \mathrm{mcm}) \end{gathered}$
Max. external mains fuses [A] ${ }^{1}$	630			
Estimated power loss at 600 V [W] ${ }^{4)}$	6132	6903	8343	9244
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]{ }^{4)}$	6449	7249	8727	9673
Weight, enclosure IP21, IP 54 [kg]	440/656			
Efficiency ${ }^{4}$	0.98			
Output frequency	0-500 Hz			
Heatsink overtemp. trip	$85^{\circ} \mathrm{C}$			
Power card ambient trip	$68^{\circ} \mathrm{C}$			
${ }^{*}$ High overload $=160 \%$ torque during 60 sec , Normal overload $=110 \%$ torque during 60 sec .				

Table 7.3

Mains Supply $3 \times 525-690 \mathrm{~V}$ AC			
	P710	P800	P900
Typical Shaft output at 550 V [kW]	560	670	750
Typical Shaft output at 575 V [HP]	750	950	1050
Typical Shaft output at 690 V [kW]	710	800	900
Enclosure IP21, 54 without/ with options cabinet	F10/F11	F10/F11	F10/F11
Output current			
Continuous $\text { (at } 550 \mathrm{~V} \text {) [A] }$	763	889	988
Intermittent (60 sec overload) (at 550 V) [A]	839	978	1087
Continuous (at 575/ 690 V) [A]	730	850	945
Intermittent (60 sec overload) (at 575/ 690 V) [A]	803	935	1040
Continuous KVA (at 550 V) [KVA]	727	847	941
Continuous KVA (at 690 V) [KVA]	872	1016	1129
Max. input current			
Continuous (at 550 V) [A]	743	866	962
Continuous (at 575 V) [A]	711	828	920
Continuous (at 690 V) [A]	711	828	920
Max. cable size, motor [mm ${ }^{(}\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 8 \times 150 \\ (8 \times 300 \mathrm{mcm}) \end{gathered}$		
Max. cable size,mains [mm ${ }^{2}\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 6 \times 120 \\ (6 \times 250 \mathrm{mcm}) \\ \hline \end{gathered}$		
Max. cable size, brake [mm² (AWG ${ }^{2}$)	$\begin{gathered} 4 \times 185 \\ (4 \times 350 \mathrm{mcm}) \end{gathered}$		
Max. external mains fuses [A] ${ }^{1}$	900		
Estimated power loss at 600 V [W] ${ }^{4)}$	10771	12272	13835
Estimated power loss at 690 V [W] ${ }^{4)}$	11315	12903	14533
F3/F4 Max added losses CB or Disconnect \& Contactor	427	532	615
Max panel options losses	400		
Weight, enclosure IP21, IP 54 [kg]	1004/ 1299	1004/ 1299	1004/1299
Weight, Rectifier Module [kg]	102	102	102
Weight, Inverter Module [kg]	102	102	136
Efficiency ${ }^{4)}$	0.98		
Output frequency	0-500 Hz		
Heatsink overtemp. trip	$85^{\circ} \mathrm{C}$		
Power card ambient trip	$68^{\circ} \mathrm{C}$		
${ }^{*}$ High overload $=160 \%$ torque during 60 sec ., Normal overload $=110 \%$ torque during 60 sec .			

General Specifications
Operating Instructions

Mains Supply $3 \times 525-690 \mathrm{~V}$ AC			
	P1M0	P1M2	P1M4
Typical Shaft output at 550 V [kW]	850	1000	1100
Typical Shaft output at 575 V [HP]	1150	1350	1550
Typical Shaft output at 690 V [kW]	1000	1200	1400
Enclosure IP21, 54 without/ with options cabinet	F12/F13	F12/F13	F12/F13
Output current			
Continuous (at 550 V) [A]	1108	1317	1479
Intermittent (60 sec overload) (at 550 V) [A]	1219	1449	1627
Continuous (at 575/ 690 V) [A]	1060	1260	1415
Intermittent (60 sec overload) (at 575/ 690 V) [A]	1166	1386	1557
Continuous KVA (at 550 V) [KVA]	1056	1255	1409
Continuous KVA (at 690 V) [KVA]	1267	1506	1691
Max. input current			
Continuous (at 550 V) [A]	1079	1282	1440
Continuous (at 575 V) [A]	1032	1227	1378
Continuous (at 690 V) [A]	1032	1227	1378
Max. cable size, motor [mm ${ }^{(}\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} 12 \times 150 \\ (12 \times 300 \mathrm{mcm}) \end{gathered}$		
Max. cable size,mains F12 [mm² (AWG ${ }^{2}$)]	$\begin{gathered} 8 \times 240 \\ (8 \times 500 \mathrm{mcm}) \end{gathered}$		
Max. cable size,mains F13 [mm ${ }^{2}$ $\left(\mathrm{AWG}^{2}\right)$]	$\begin{gathered} \hline 8 \times 400 \\ (8 \times 900 \mathrm{mcm}) \\ \hline \end{gathered}$		
Max. cable size, brake [mm ${ }^{(}{ }^{(A W G}{ }^{2}$)	$\begin{gathered} 6 \times 185 \\ (6 \times 350 \mathrm{mcm}) \end{gathered}$		
Max. external mains fuses [A] ${ }^{1}$	1600	2000	2500
Estimated power loss at 600 V [W] ${ }^{4)}$	15592	18281	20825
Estimated power loss at 690 V [W] ${ }^{4)}$	16375	19207	21857
F3/F4 Max added losses CB or Disconnect \& Contactor	665	863	1044
Max panel options losses		400	
Weight, enclosure IP21, IP 54 [kg]	1246/ 1541	1246/ 1541	1280/1575
Weight, Rectifier Module [kg]	136	136	136
Weight, Inverter Module [kg]	102	102	136
Efficiency ${ }^{4}$		0.98	
Output frequency		0-500 Hz	
Heatsink overtemp. trip		$85^{\circ} \mathrm{C}$	
Power card ambient trip		$68^{\circ} \mathrm{C}$	
${ }^{*}$ High overload $=160 \%$ torque during $60 \mathrm{sec} .$, Normal overload $=110 \%$ torque during 60 sec .			

Table 7.5

1) For type of fuse see section Fuses.
2) American Wire Gauge.
3) Measured using 5 m screened motor cables at rated load and rated frequency.
4) The typical power loss is at nominal load conditions and expected to be within $+/-15 \%$ (tolerence relates to variety in voltage and cable conditions).
Values are based on a typical motor efficiency (eff2/eff3 border line). Motors with lower efficiency will also add to the power loss in the frequency converter and opposite.
If the switching frequency is increased compared to the default setting, the power losses may rise significantly. LCP and typical control card power consumptions are included. Further options and customer load may add up to 30 W to the losses. (Though typical only 4 W extra for a fully loaded control card, or options for slot A or slot B, each).
Although measurements are made with state of the art equipment, some measurement inaccuracy must be allowed for (+/-5\%).

8 Warnings and Alarms

A warning or an alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is no longer present. Under certain circumstances operation of the motor may still be continued. Warning messages may be critical, but are not necessarily so.

If an alarm occurs, the frequency converter trips. Alarms must be reset to restart operation once their cause has been rectified.

This may be done in 4 ways:

1. Pressing [Reset] on the LCP
2. Via a digital input with the "Reset" function
3. Via serial communication/optional fieldbus
4. By resetting automatically using the [Auto Reset] function (default)

\triangle CAUTION

Alarms that are trip-locked offer additional protection, means that the mains supply must be switched off before the alarm can be reset. After being switched back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.
Alarms that are not trip-locked can also be reset using the automatic reset function in 14-20 Reset Mode (Warning: automatic wake-up is possible!)
If a warning and alarm is marked against a code in the table on the following page, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.
This is possible, for instance, in parameter 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the frequency converter. Once the problem has been rectified, only the alarm continues flashing.

NOTICE

After a manual reset pressing [Reset], the [Auto On] or [Hand On] must be pressed to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also Table 8.1).

No.	Description	Warning	Alarm/ Trip	Alarm/Trip Lock	Parameter Reference
1	10 Volts low	X			
2	Live zero error	(X)	(X)		6-01
3	No motor	(X)			1-80
4	Mains phase loss	(X)	(X)	(X)	14-12
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC over voltage	X	X		
8	DC under voltage	X	X		
9	Inverter overloaded	X	X		
10	Motor ETR over temperature	(X)	(X)		1-90
11	Motor thermistor over temperature	(X)	(X)		1-90
12	Torque limit	X	X		
13	Over Current	X	X	X	
14	Earth fault	X	X	X	
15	Hardware mismatch		X	X	
16	Short Circuit		X	X	
17	Control word timeout	(X)	(X)		8-04
23	Internal Fan Fault	X			
24	External Fan Fault	X			14-53
25	Brake resistor short-circuited	X			

No.	Description	Warning	Alarm/ Trip	Alarm/Trip Lock	Parameter Reference
26	Brake resistor power limit	(X)	(X)		2-13
27	Brake chopper short-circuited	X	X		
28	Brake check	(X)	(X)		2-15
29	Drive over temperature	X	X	X	
30	Motor phase U missing	(X)	(X)	(X)	4-58
31	Motor phase V missing	(X)	(X)	(X)	4-58
32	Motor phase W missing	(X)	(X)	(X)	4-58
33	Inrush fault		X	X	
34	Fieldbus communication fault	X	X		
35	Out of frequency range	X	X		
36	Mains failure	X	X		
37	Phase Imbalance	X	X		
38	Internal fault		X	X	
39	Heat sink sensor		X	X	
40	Overload of Digital Output Terminal 27	(X)			5-00, 5-01
41	Overload of Digital Output Terminal 29	(X)			5-00, 5-02
42	Overload of Digital Output On X30/6	(X)			5-32
42	Overload of Digital Output On X30/7	(X)			5-33
46	Pwr. card supply		X	X	
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
49	Speed limit	X	(X)		1-86
50	AMA calibration failed		X		
51	AMA check $U_{\text {nom }}$ and $\mathrm{Inom}^{\text {n }}$		X		
52	AMA low Inom		X		
53	AMA motor too big		X		
54	AMA motor too small		X		
55	AMA Parameter out of range		X		
56	AMA interrupted by user		X		
57	AMA timeout		X		
58	AMA internal fault	X	X		
59	Current limit	X			
60	External Interlock	X			
62	Output Frequency at Maximum Limit	X			
64	Voltage Limit	X			
65	Control Board Over-temperature	X	X	X	
66	Heat sink Temperature Low	X			
67	Option Configuration has Changed		X		
69	Pwr. Card Temp		X	X	
70	Illegal FC configuration			X	
71	PTC 1 Safe Stop	X	$\mathrm{X}^{1)}$		
72	Dangerous Failure			$\mathrm{X}^{1)}$	
73	Safe Stop Auto Restart				
76	Power Unit Setup	X			
79	Illegal PS config		X	X	
80	Drive Initialized to Default Value		X		
91	Analog input 54 wrong settings			X	
92	NoFlow	X	X		22-2*
93	Dry Pump	X	X		22-2*
94	End of Curve	X	X		22-5*
95	Broken Belt	X	X		22-6*
96	Start Delayed	X			22-7*

No.	Description	Warning	Alarm/ Trip	Alarm/Trip Lock	Parameter Reference
97	Stop Delayed	X			$22-7^{*}$
98	Clock Fault	X			$0-7^{*}$
201	Fire M was Active				
202	Fire M Limits Exceeded				
203	Missing Motor				
204	Locked Rotor	X	X		
243	Brake IGBT	X	X	X	
244	Heat sink temp	X	X		
245	Heat sink sensor	X	X		
246	Pwr.card supply	X	X		
247	Pwr.card temp		X	X	
248	Illegal PS config			X	
250	New spare parts		X		
251	New Type Code		X		

Table 8.1 Alarm/Warning Code List

(X) Dependent on parameter

1) Can not be Auto reset via 14-20 Reset Mode

A trip is the action when an alarm has appeared. The trip will coast the motor and can be reset by pressing [Reset] or make a reset by a digital input (parameter group 5-1* Digital Inputs [1]). The original event that caused an alarm cannot damage the frequency converter or cause dangerous conditions. A trip lock is an action when an
alarm occurs, which may cause damage to frequency converter or connected parts. A Trip Lock situation can only be reset by a power cycling.

Warning	yellow
Alarm	flashing red
Trip locked	yellow and red

Table 8.2 LED Indication

Alarm Word and Extended Status Word					
Bit	Hex	Dec	Alarm Word	Warning Word	Extended Status Word
0	00000001	1	Brake Check	Brake Check	Ramping
1	00000002	2	Pwr. Card Temp	Pwr. Card Temp	AMA Running
2	00000004	4	Earth Fault	Earth Fault	Start CW/CCW
3	00000008	8	Ctrl.Card Temp	Ctrl.Card Temp	Slow Down
4	00000010	16	Ctrl. Word TO	Ctrl. Word TO	Catch Up
5	00000020	32	Over Current	Over Current	Feedback High
6	00000040	64	Torque Limit	Torque Limit	Feedback Low
7	00000080	128	Motor Th Over	Motor Th Over	Output Current High
8	00000100	256	Motor ETR Over	Motor ETR Over	Output Current Low
9	00000200	512	Inverter Overld.	Inverter Overld.	Output Freq High
10	00000400	1024	DC under Volt	DC under Volt	Output Freq Low
11	00000800	2048	DC over Volt	DC over Volt	Brake Check OK
12	00001000	4096	Short Circuit	DC Voltage Low	Braking Max
13	00002000	8192	Inrush Fault	DC Voltage High	Braking
14	00004000	16384	Mains ph. Loss	Mains ph. Loss	Out of Speed Range
15	00008000	32768	AMA Not OK	No Motor	OVC Active
16	00010000	65536	Live Zero Error	Live Zero Error	
17	00020000	131072	Internal Fault	10V Low	
18	00040000	262144	Brake Overload	Brake Overload	
19	00080000	524288	U phase Loss	Brake Resistor	
20	00100000	1048576	V phase Loss	Brake IGBT	
21	00200000	2097152	W phase Loss	Speed Limit	
22	00400000	4194304	Fieldbus Fault	Fieldbus Fault	
23	00800000	8388608	24V Supply Low	24V Supply Low	
24	01000000	16777216	Mains Failure	Mains Failure	
25	02000000	33554432	1.8V Supply Low	Current Limit	
26	04000000	67108864	Brake Resistor	Low Temp	
27	08000000	134217728	Brake IGBT	Voltage Limit	
28	10000000	268435456	Option Change	Unused	
29	20000000	536870912	Drive Initialized	Unused	
30	40000000	1073741824	Safe Stop	Unused	

Table 8.3 Description of Alarm Word, Warning Word and Extended Status Word
The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnosis. See also 16-90 Alarm Word, 16-92 Warning Word and 16-94 Ext. Status Word.

WARNING 1, 10 Volts low

The control card voltage is $<10 \mathrm{~V}$ from terminal 50. Remove some of the load from terminal 50, as the 10 V supply is overloaded. Maximum 15 mA or minimum 590Ω.

A short-circuit in a connected potentiometer or improper wiring of the potentiometer can cause this condition.

Troubleshooting

- Remove the wiring from terminal 50. If the warning clears, the problem is with the wiring. If the warning does not clear, replace the control card.

WARNING/ALARM 2, Live zero error

This warning or alarm only appears if programmed in parameter 6-01 Live Zero Timeout Function. The signal on one of the analog inputs is less than 50% of the minimum value programmed for that input. Broken wiring or a faulty device sending the signal can cause this condition.

Troubleshooting

- Check the connections on all the analog input terminals.
- Control card terminals 53 and 54 for signals, terminal 55 common.
- MCB 101 terminals 11 and 12 for signals, terminal 10 common.
- MCB 109 terminals 1, 3, 5 for signals, terminals 2, 4, 6 common.
- Check that the frequency converter programming and switch settings match the analog signal type.
- Perform an input terminal signal test.

WARNING/ALARM 3, No motor

No motor has been connected to the output of the frequency converter.

WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed in 14-12 Function at Mains Imbalance.

Troubleshooting

- Check the supply voltage and supply currents to the frequency converter.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high-voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the lowvoltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.

Troubleshooting

- Connect a brake resistor
- Extend the ramp time.
- Change the ramp type.
- Activate the functions in parameter 2-10 Brake Function.
- Increase 14-26 Trip Delay at Inverter Fault
- If the alarm/warning occurs during a power sag, use kinetic back-up (14-10 Mains Failure).

WARNING/ALARM 8, DC under voltage

If the DC-link voltage drops below the undervoltage limit, the frequency converter checks if a 24 V DC backup supply is connected. If no 24 V DC backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit size.

Troubleshooting

- Check that the supply voltage matches the frequency converter voltage.
- Perform an input voltage test.
- Perform a soft charge circuit test.

WARNING/ALARM 9, Inverter overload

The frequency converter is about to cut out because of an overload. The counter for electronic, thermal inverter protection issues a warning at 98% and trips at 100%, while giving an alarm. The frequency converter cannot be reset until the counter is below 90%.
The fault is that the frequency converter has run with more than 100% overload for too long.

Troubleshooting

- Compare the output current shown on the LCP with the frequency converter rated current.
- Compare the output current shown on the LCP with the measured motor current.
- Display the thermal drive load on the LCP and monitor the value. When running above the frequency converter continuous current rating, the counter increases. When running below the frequency converter continuous current rating, the counter decreases.

WARNING/ALARM 10, Motor overload temperature

According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter issues a warning or an alarm when the counter reaches 100% in parameter 1-90 Motor Thermal Protection. The fault occurs when the motor runs with more than 100% overload for too long.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- Check that the motor current set in 1-24 Motor Current is correct.
- Ensure that the motor data in parameters 1-20 to 1-25 are set correctly.
- If an external fan is in use, check that it is selected in 1-91 Motor External Fan.
- Running AMA in parameter 1-29 Automatic Motor Adaptation (AMA) tunes the frequency converter to the motor more accurately and reduces thermal loading.

WARNING/ALARM 11, Motor thermistor overtemp

The thermistor may be disconnected. Select whether the frequency converter issues a warning or an alarm in parameter 1-90 Motor Thermal Protection.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- Check that the thermistor is connected correctly between either terminal 53 or 54 (analog voltage input) and terminal 50 (+10 V supply). Also check that the terminal switch for 53 or 54 is set for voltage. Check that 1-93 Thermistor Resource is set to terminal 53 or 54.
- When using digital inputs 18 or 19 , check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50.
- If a KTY sensor is used, check for correct connection between terminals 54 and 55
- If using a thermal switch or thermistor, check that the programming of 1-93 Thermistor Resource matches sensor wiring.
- If using a KTY Sensor, check the programming of 1-95 KTY Sensor Type, 1-96 KTY Thermistor Resource and 1-97 KTY Threshold level match sensor wiring.

WARNING/ALARM 12, Torque limit

The torque has exceeded the value in 4-16 Torque Limit Motor Mode or the value in 4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit can change this warning from a warning-only condition to a warning followed by an alarm.

Troubleshooting

- If the motor torque limit is exceeded during ramp up, extend the ramp-up time.
- If the generator torque limit is exceeded during ramp-down, extend the ramp down time.
- If torque limit occurs while running, increase the torque limit. Make sure that the system can operate safely at a higher torque.
- Check the application for excessive current draw on the motor.

WARNING/ALARM 13, Over current

The inverter peak current limit (approximately 200\% of the rated current) is exceeded. The warning lasts approximately 1.5 s , then the frequency converter trips and issues an alarm. Shock loading or quick acceleration with high inertia loads can cause this fault. If the acceleration during ramp-up is quick, the fault can also appear after kinetic back-up.
If extended mechanical brake control is selected, a trip can be reset externally.

Troubleshooting

- Remove the power and check if the motor shaft can be turned.
- Check that the motor size matches the frequency converter.
- Check that the motor data is correct in parameters 1-20 to 1-25.

ALARM 14, Earth (ground) fault

There is current from the output phases to ground, either in the cable between the frequency converter and the motor, or in the motor itself.

Troubleshooting

- Remove the power to the frequency converter and repair the ground fault.
- Check for ground faults in the motor by measuring the resistance to the ground of the motor cables and the motor with a megohmmeter.
- Perform a current sensor test.

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact Danfoss:

- 15-40 FC Type
- 15-41 Power Section
- 15-42 Voltage
- 15-43 Software Version
- 15-45 Actual Typecode String
- 15-49 SW ID Control Card
- 15-50 SW ID Power Card
- 15-60 Option Mounted
- 15-61 Option SW Version (for each option slot)

ALARM 16, Short circuit

There is short-circuiting in the motor or motor wiring.

Troubleshooting

- Remove the power to the frequency converter and repair the short-circuit.
WARNING/ALARM 17, Control word timeout
There is no communication with the frequency converter.

The warning is only active when 8-04 Control Word Timeout Function is not set to [0] Off.
If 8 -04 Control Word Timeout Function is set to [2] Stop and [26] Trip, a warning appears and the frequency converter ramps down until it trips and then displays an alarm.

Troubleshooting:

- Check the connections on the serial communication cable.
- Increase 8-03 Control Word Timeout Time
- Check the operation of the communication equipment.
- Verify a proper installation based on EMC requirements.

ALARM 18, Start failed

The speed has not exceeded 1-77 Compressor Start Max Speed [RPM] during start within the allowed time. (set in 1-79 Compressor Start Max Time to Trip). This may be caused by a blocked motor.

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

- Check the fan resistance.
- Check the soft charge fuses.

WARNING 24, External fan fault
The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

- Check the fan resistance.
- Check the soft charge fuses.

WARNING 25, Brake resistor short circuit

The brake resistor is monitored during operation. If a short-circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational, but without the brake function.

Troubleshooting

- Remove the power to the frequency converter and replace the brake resistor (see 2-15 Brake Check).

WARNING/ALARM 26, Brake resistor power limit

The power transmitted to the brake resistor is calculated as a mean value over the last 120 s of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max. Current. The warning is active when the dissipated braking is $>90 \%$ of the brake resistance power. If [2] Trip is selected in 2-13 Brake Power Monitoring, the frequency converter trips when the dissipated braking power reaches 100%.

AWARNING

If the brake transistor is short-circuited, there is a risk of substantial power being transmitted to the brake resistor.

WARNING/ALARM 27, Brake chopper fault

The brake transistor is monitored during operation. If a short-circuit occurs, the brake function is disabled and a warning is issued. The frequency converter is still operational, but since the brake transistor has shortcircuited, substantial power is transmitted to the brake resistor, even if it is inactive.
Remove the power to the frequency converter and remove the brake resistor.

This alarm/warning could also occur if the brake resistor overheats. Terminals 104 and 106 are available as brake resistors Klixon inputs.

WARNING/ALARM 28, Brake check failed

The brake resistor is not connected or not working. Check 2-15 Brake Check.

ALARM 29, Heat Sink temp

The maximum temperature of the heat sink has been exceeded. The temperature fault resets when the temperature falls below a defined heat sink temperature. The trip and reset points vary based on the frequency converter power size.

Troubleshooting

Check for the following conditions.

- Ambient temperature too high.
- Motor cables too long.
- Incorrect airflow clearance above and below the frequency converter.
- Blocked airflow around the frequency converter.
- Damaged heat sink fan.
- Dirty heat sink.

For D, E, and F enclosures, this alarm is based on the temperature measured by the heat sink sensor mounted inside the IGBT modules. For the F enclosures, the thermal sensor in the rectifier module can also cause this alarm.

Troubleshooting

- Check the fan resistance.
- Check the soft charge fuses.
- Check the IGBT thermal sensor.

ALARM 30, Motor phase U missing

Motor phase U between the frequency converter and the motor is missing.

Troubleshooting

- Remove the power from the frequency converter and check motor phase U.

ALARM 31, Motor phase V missing

Motor phase V between the frequency converter and the motor is missing.

Troubleshooting

- Remove the power from the frequency converter and check motor phase V.

ALARM 32, Motor phase W missing

Motor phase W between the frequency converter and the motor is missing.

Troubleshooting

- Remove the power from the frequency converter and check motor phase W .

ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period.

Troubleshooting

- Let the unit cool to operating temperature.

WARNING/ALARM 34, Fieldbus communication fault

The fieldbus on the communication option card is not working.

WARNING/ALARM 35, Option fault

This warning is active if the output frequency has reached the high limit (set in 4-53 Warning Speed High) or low limit (set in 4-52 Warning Speed Low). In Process Control, Closed Loop (1-00 Configuration Mode) this warning is displayed.

WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the frequency converter is lost and $14-10$ Mains Failure is not set to [0] No Function. Check the fuses to the frequency converter and mains supply to the unit.

ALARM 38, Internal fault

When an internal fault occurs, a code number defined in Table 8.4 is displayed.

Troubleshooting

- Cycle the power
- Check that the option is properly installed.
- Check for loose or missing wiring.

It may be necessary to contact Danfoss Service or the supplier. Note the code number for further troubleshooting directions.

Number	Text
0	The serial port cannot be initialised. Contact your Danfoss supplier or Danfoss Service.
$256-258$	The power EEPROM data is defective or too old.
512	The control board EEPROM data is defective or too old.
513	Communication time-out reading EEPROM data
514	Communication time-out reading EEPROM data
515	Application-oriented control cannot recognise the EEPROM data.

Number	Text
516	Cannot write to the EEPROM because a write command is in progress.
517	The write command is under time-out.
518	Failure in the EEPROM.
519	Missing or invalid barcode data in EEPROM.
783	Parameter value outside of minimum/maximum limits.
1024-1279	A CAN telegram could not be sent.
1281	Digital signal processor flash time-out.
1282	Power micro software version mismatch.
1283	Power EEPROM data version mismatch.
1284	Cannot read digital signal processor software version.
1299	The option software in slot A is too old.
1300	The option software in slot B is too old.
1301	The option software in slot C0 is too old.
1302	The option software in slot C1 is too old.
1315	The option software in slot A is not supported (not allowed).
1316	The option software in slot B is not supported (not allowed).
1317	The option software in slot C0 is not supported (not allowed).
1318	The option software in slot C1 is not supported (not allowed).
1379	Option A did not respond when calculating the platform version
1380	Option B did not respond when calculating the platform version.
1381	Option CO did not respond when calculating the platform version.
1382	Option C1 did not respond when calculating the platform version.
1536	An exception in the application-oriented control is registered. The debug information is written on the LCP.
1792	DSP Watch Dog is active. Debugging of power part data, motor-oriented control data not transferred correctly.
2049	Power data restarted.
2064-2072	H081x: Option in slot x has restarted.
2080-2088	H082x: Option in slot x has issued a power-up wait.
2096-2104	H983x: Option in slot x has issued a legal powerup wait.
2304	Could not read any data from the power EEPROM.
2305	Missing software version from the power unit.
2314	Missing power unit data from the power unit.
2315	Missing software version from the power unit.
2316	Missing lo_statepage from the power unit.
2324	The power card configuration is determined to be incorrect at power-up.
2325	A power card has stopped communicating while mains power is applied.

Number	Text
2326	The power card configuration is determined to be incorrect after the delay for power cards to register.
2327	Too many power card locations have been registered as present.
2330	The power size information between the power cards does not match.
2561	No communication from DSP to ATACD.
2562	No communication from ATACD to DSP (state running).
2816	Stack overflow control board module
2817	Scheduler slow tasks
2818	Fast tasks
2819	Parameter thread
2820	LCP stack overflow
2821	Serial port overflow
2822	USB port overflow
2836	cfListMempool is too small.
3072-5122	The parameter value is outside its limits.
5123	Option in slot A: Hardware incompatible with the control board hardware.
5124	Option in slot B: Hardware incompatible with the control board hardware.
5125	Option in slot C0: Hardware incompatible with the control board hardware.
5126	Option in slot C1: Hardware incompatible with the control board hardware.
5376-6231	Out of memory

Table 8.4 Internal Fault, Code Numbers

ALARM 39, Heat sink sensor

No feedback from the heat sink temperature sensor.
The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, on the gate drive card, or the ribbon cable between the power card and gate drive card.

WARNING 40, Overload of digital output terminal 27 Check the load connected to terminal 27 or remove the short-circuit connection. Check 5-00 Digital I/O Mode and 5-01 Terminal 27 Mode.

WARNING 41, Overload of digital output terminal 29 Check the load connected to terminal 29 or remove the short-circuit connection. Check 5-00 Digital I/O Mode and parameter 5-02 Terminal 29 Mode.

WARNING 42, Overload of digital output on X30/6 or overload of digital output on X30/7
For X30/6, check the load connected to X30/6 or remove the short-circuit connection. Check 5-32 Term X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove the short-circuit connection. Check 5-33 Term X30/7 Digi Out (MCB 101).

ALARM 46, Power card supply

The supply on the power card is out of range.
There are 3 power supplies generated by the switch mode power supply (SMPS) on the power card: $24 \mathrm{~V}, 5 \mathrm{~V}$, and ± 18 V. When powered with 24 V DC with the MCB 107 option, only the 24 V and 5 V supplies are monitored. When powered with 3-phase mains voltage, all 3 supplies are monitored.

WARNING 47, 24 V supply low

The 24 V DC is measured on the control card. This alarm arises when the detected voltage of terminal 12 is $<18 \mathrm{~V}$.

Troubleshooting

- Check for a defective control card.

WARNING 48, 1.8 V supply low

The 1.8 V DC supply used on the control card is outside of the allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for overvoltage.

WARNING 49, Speed limit

When the speed is outside of the specified range in parameter 4-11 Motor Speed Low Limit [RPM] and parameter 4-13 Motor Speed High Limit [RPM], the frequency converter shows a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping), the frequency converter trips.

ALARM 50, AMA calibration failed

Contact the Danfoss supplier or Danfoss Service.
ALARM 51, AMA check Unom and Inom
The settings for motor voltage, motor current and motor power are wrong. Check the settings in parameters 1-20 to 1-25.

ALARM 52, AMA low $\mathrm{I}_{\text {nom }}$
The motor current is too low. Check the settings.

ALARM 53, AMA motor too big

The motor is too big for the AMA to operate.
ALARM 54, AMA motor too small
The motor is too small for the AMA to operate.
ALARM 55, AMA parameter out of range
The parameter values of the motor are outside of the acceptable range. AMA cannot run.

ALARM 56, AMA interrupted by user
The user has interrupted the AMA.

ALARM 57, AMA internal fault

Continue to restart the AMA, until the AMA is carried out.

NOTICE

Repeated runs may heat the motor to a level where the resistance R_{s} and R_{r} are increased. In most cases, however, this behaviour is not critical.

ALARM 58, AMA Internal fault
Contact your Danfoss supplier.

WARNING 59, Current limit

The current is higher than the value in 4-18 Current Limit. Ensure that motor data in parameters $1-20$ to $1-25$ are set correctly. Increase the current limit if necessary. Ensure that the system can operate safely at a higher limit.

WARNING 60, External interlock

External interlock has been activated. To resume normal operation, apply 24 V DC to the terminal programmed for external interlock and reset the frequency converter (via serial communication, digital I/O, or by pressing [Reset]).

WARNING 62, Output frequency at maximum limit The output frequency is higher than the value set in 4-19 Max Output Frequency.

ALARM 64, Voltage Limit

The load and speed combination demands a motor voltage higher than the actual DC-link voltage.

WARNING/ALARM 65, Control card over temperature

The cut-out temperature of the control card is $80^{\circ} \mathrm{C}$.

Troubleshooting

- \quad Check that the ambient operating temperature is within the limits.
- \quad Check for clogged filters.
- Check the fan operation.
- Check the control card.

WARNING 66, Heat sink temperature low

The frequency converter is too cold to operate. This warning is based on the temperature sensor in the IGBT module.

Increase the ambient temperature of the unit. Also, a trickle amount of current can be supplied to the frequency converter whenever the motor is stopped by setting parameter 2-00 DC Hold/Preheat Current at 5\% and parameter 1-80 Function at Stop.

Troubleshooting

The heat sink temperature measured as $0{ }^{\circ} \mathrm{C}$ could indicate that the temperature sensor is defective, causing the fan speed to increase to the maximum. This warning results if the sensor wire between the IGBT and the gate drive card is disconnected. Also, check the IGBT thermal sensor.

ALARM 67, Option module configuration has changed One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit.

ALARM 68, Safe Stop activated

STO has been activated. To resume normal operation, apply 24 V DC to terminal 37, then send a reset signal (via bus, digital I/O, or by pressing [Reset].

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

Troubleshooting

- Check the operation of the door fans.
- Check that the filters for the door fans are not blocked.
- \quad Check that the gland plate is properly installed on IP21/IP54 (NEMA 1/12) frequency converters.

ALARM 70, Illegal FC configuration

The control card and power card are incompatible. To check compatibility, contact your Danfoss supplier with the type code of the unit from the nameplate and the part numbers of the cards.

ALARM 72, Dangerous failure

STO with trip lock. Unexpected signal levels on safe stop and digital input from the VLT^{\circledR} PTC Thermistor Card MCB 112.

WARNING 73, Safe Stop auto restart

Safe stopped. With automatic restart enabled, the motor could start when the fault is cleared.

WARNING 76, Power unit setup
The required number of power units does not match the detected number of active power units.

WARNING 77, Reduced power mode
The frequency converter is operating in reduced power mode (less than the allowed number of inverter sections). This warning is generated on power cycle when the frequency converter is set to run with fewer inverters and remains on.

ALARM 79, Illegal power section configuration

The scaling card has an incorrect part number or is not installed. The MK102 connector on the power card could not be installed.

ALARM 80, Drive initialised to default value

Parameter settings are initialised to default settings after a manual reset. To clear the alarm, reset the unit.

ALARM 91, Analog input 54 wrong settings

 Switch S202 has to be set in position OFF (voltage input) when a KTY sensor is connected to analog input terminal 54.
ALARM 92, No flow

A no-flow condition has been detected in the system. parameter 22-23 No-Flow Function is set for alarm.

Troubleshooting

- Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 93, Dry pump

A no-flow condition in the system with the frequency converter operating at high speed may indicate a dry pump. parameter 22-26 Dry Pump Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 94, End of curve

Feedback is lower than the set point. This may indicate leakage in the system. 22-50 End of Curve Function is set for alarm.

Troubleshooting

- Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 95, Broken belt

Torque is below the torque level set for no load, indicating a broken belt. Parameter 22-60 Broken Belt Function is set for alarm.

Troubleshooting

- Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 96, Start delayed

Motor start has been delayed due to short-cycle protection. Parameter 22-76 Interval between Starts is enabled.

Troubleshooting

- Troubleshoot the system and reset the frequency converter after the fault has been cleared.

WARNING 97, Stop delayed

Stopping the motor has been delayed due to short -cycle protection. Parameter 22-76 Interval between Starts is enabled.

Troubleshooting

- Troubleshoot the system and reset the frequency converter after the fault has been cleared.

WARNING 98, Clock fault

Time is not set or the RTC clock has failed.

Troubleshooting

- Reset the clock in 0-70 Date and Time.

WARNING 201, Fire mode was active

This indicates the frequency converter had entered fire mode. Cycle power to the unit to remove the warning. See the fire mode data in the alarm log.

WARNING 202, Fire mode limits exceeded

While operating in fire mode one or more alarm conditions have been ignored which would normally trip the unit. Operating in this condition voids unit warranty. Cycle power to the unit to remove the warning. See the fire mode data in the alarm log.

WARNING 203, Missing motor

With a frequency converter operating multi-motors, an under-load condition was detected. This could indicate a missing motor. Inspect the system for proper operation.

WARNING 204, Locked rotor

With a frequency converter operating multi-motors, an overload condition was detected. This could indicate a locked rotor. Inspect the motor for proper operation.

ALARM 243, Brake IGBT

This alarm is only for enclosure size F frequency converters. It is equivalent to Alarm 27. The report value in the alarm log indicates which power module generated the alarm:
$1=$ Left most inverter module.
2 = Middle inverter module in enclosure sizes F12 or F3.
$2=$ Right inverter module in enclosure sizes F10 or F11.
2 = Second frequency converter from the left inverter module in enclosure size F14.

3 = Right inverter module in enclosure sizes F12 or F13.

3 = Third from the left intverter module in enclosure size F14.
4 = Far right inverter module in enclosure size F14.
$5=$ Rectifier module.
$6=$ Right rectifier module in enclosure size F14.

ALARM 244, Heat Sink temperature

This alarm is only for enclosure type F frequency converters. It is equivalent to Alarm 29. The report value in the alarm log indicates which power module generated the alarm:
$1=$ Left most inverter module.
2 = Middle inverter module in enclosure size F12
or F3.
$2=$ Right inverter module in enclosure size F10 or F11.
$2=$ Second frequency converter from the left inverter module in enclosure size F14.

3 = Rght inverter module in enclosure sizes F12 or F13.

3 = Tird from the left intverter module in enclosure size F14.

4 = Far right inverter module in enclosure sizes F14.
$5=$ Rectifier module.
$6=$ Right rectifier module in enclosure sizes F14.

ALARM 245, Heat Sink sensor

This alarm is only for enclosure size F frequency converters. It is equivalent to Alarm 39. The report value in the alarm log indicates which power module generated the alarm:

1 = Left most inverter module.
$2=$ Middle inverter module in enclosure sizes F12 or F13.

2 = Right inverter module in enclosure sizes F10 or F11.
$2=$ Second frequency converter from the left inverter module in enclosure size F14.

3 = Right inverter module in enclosure sizes F12 or F13.

3 = Third from the left inverter module in enclosure size F14.
$4=$ Far right inverter module in enclosure size F14.

5 = Rectifier module.
$6=$ Right rectifier module in enclosure size F14.

ALARM 246, Power card supply

This alarm is only for enclosure size F frequency converters. It is equivalent to Alarm 46. The report value in the alarm log indicates which power module generated the alarm:

1 = Left most inverter module.
2 = Middle inverter module in enclosure sizes F12
or F13.
2 = Right inverter module in enclosure sizes F10 or F11.

2 = Second frequency converter from the left inverter module in enclosure size F14.

3 = Right inverter module in enclosure sizes F12
or F13.
3 = Third from the left inverter module in enclosure size F14.
$4=$ Far right inverter module in enclosure size F14.
$5=$ Rectifier module.
$6=$ Right rectifier module in enclosure size F14.

ALARM 247, Power card temperature

This alarm is only for enclosure size F frequency converters. It is equivalent to Alarm 69. The report value in the alarm log indicates which power module generated the alarm:

$$
\begin{aligned}
& 1 \text { = Left most inverter module. } \\
& 2 \text { = Middle inverter module in enclosure sizes F12 } \\
& \text { or F13. } \\
& 2 \text { = Right inverter module in enclosure sizes F10 } \\
& \text { or F11. } \\
& 2 \text { = Second frequency converter from the left } \\
& \text { inverter module in enclosure size F14. } \\
& 3 \text { = Right inverter module in enclosure sizes F12 } \\
& \text { or F13. } \\
& 3=\text { Third from the left inverter module in } \\
& \text { enclosure size F14. } \\
& 4=\text { Far right inverter module in enclosure size } \\
& \text { F14. } \\
& 5=\text { Rectifier module. } \\
& 6=\text { Right rectifier module in enclosure size F14. }
\end{aligned}
$$

ALARM 248, Illegal power section configuration

This alarm is only for enclosure size F frequency converters. It is equivalent to Alarm 79. The report value in the alarm log indicates which power module generated the alarm:
$1=$ Left most inverter module.
$2=$ Middle inverter module in enclosure sizes F12 or F13.

2 = Right inverter module in enclosure sizes F10 or F11.
$2=$ Second frequency converter from the left inverter module in enclosure size F14.

3 = Right inverter module in enclosure sizes F12 or F13.

3 = Third from the left inverter module in enclosure sizes F14.
$4=$ Ffar right inverter module in enclosure sizes F14.
$5=$ Rectifier module.
$6=$ Right rectifier module in enclosure size F14.

WARNING 250, New spare part

A component in the frequency converter has been replaced.

Troubleshooting

- Reset the frequency converter for normal operation.

WARNING 251, New typecode

The power card or other components have been replaced and the typecode changed.

Troubleshooting

- Reset to remove the warning and resume normal operation.
IndexAlarms and warnings.106
AMA.48, 56, 111, 114
Analog input 96, 110
Analog output 96
Analog signal. 110
Approvals.4
Auto energy optimization compressor70
Auto energy optimization VT 70
Automatic motor adaptation (AMA) 48
B
Back cooling 22
Braje Brake control. 111
Brake cable. 37
control, mechanical. 49, 50
resistor 110
resistor temperature switch 41
Braking. 112
Branch circuit protection 38
C
Cable length and cross-section 30, 95
Cable, motor 36
Cabling 28
Changes made 62
Changing a group of numeric data values 89
Changing a text value 89
Changing data 89
Changing of data value 89
Changing parameter data 62
Closed loop. 113
Coast inverse 63
Coasting 54
Communication option. 113
Control cable 45, 47
Control card Control card 110
Control card performance 98
A Control card, RS-485 serial communication. 97
Abbreviations 5
Control card, USB serial communication. 98
Access to control terminal. 42 Control characteristic 98
Airflow. 22 Control terminal. 42
Alarm/warning code list 108 6
Control card, 10 V DC output. 98
Control card, 24 V DC output. 97
Cooling. 22,72
Current rating 110
D
DC link. 110
Default setting 56
Delivery 9
Digital input 95, 111
Digital output. 97
Dry pump function 87
Duct cooling. 22
E
ELCB relay 35
Electrical installation 42, 45
Enclosure size F panel options 26
Example of changing parameter data 62
External fan supply 38
External temperature monitoring 27
F
Feedback. 114, 116
Fieldbus connection 41
Function setup 66
Fuse 38, 113
Fuse tables. 38
Fuse-protected terminals, 30 Amp. 27
Fusing 28
G
General considerations 15
Gland/conduit entry, IP21 (NEMA 1) and IP54 (NEMA12)..... 23
GLCP. 56
Graphical display 51
Grounding 35
H
Heat sink. 114
High voltage 7
How to connect a PC to the frequency converter 55
Motor overload protection 72
How to operate graphical LCP (GLCP)
I
Indexed parameter. 90
Indicator lights (LED). 52
Initialisation. 56
Input polarity of control terminals 47
Input terminal 110
Inspection on receipt 9
Installation Installation, mechanical. 15
Installation, electrical 45
Insulation resistance monitor (IRM) 26
Intermediate circuit 110
IT mains. 35
L
Language package. 64
LCP 56
LCP 102 51
Leakage current 7
LED 51
Literature 4
Local reference. 65
Logging. 62
Low power detection 86
Low speed detection. 86
M
Main Menu 62
Main Menu mode 53, 88
Main reactance 70
Mains connection 37
Mains supply (L1-1, L2-1, L3-1, L1-2, L2-2, L3-2). 95
Manual motor starter 26
Mechanical brake control 49, 50
Mechanical dimensions 14
Mechanical Dimensions 11
Mechanical installation 15
Motor
cable. 36
current. 114
data. 111, 115
nameplate 48
power 114
thermal protection 50
Motor output. 95
51 Motor protection 98
N
N
NAMUR. 26
No operation 63
0
Output current 110
Output performance ($\mathrm{U}, \mathrm{V}, \mathrm{W}$). 95
Overcurrent protection. 38
P
Parallel connection of motors 49
Parameter data 62
Parameter menu structure 91
Parameter selection. 88
Parameter set-up 58
PC software tools 55
Phase loss 110
Planning the installation site 9
Potentiometer reference 44
Power connection. 28
Profibus DP-V1 55
Programming 110
Protection and features. 98
Pulse input. 96
Pulse start/stop 43
Q
Qualified personnel. 7
Quick Menu 62
Quick Menu mode 53, 62
Quick Transfer of Parameter Settings when Using GLCP. 56
R
RCD (Residual current device) 26
Receiving the frequency converter 9
Relay output. 97
Reset. 110, 111, 115
RFI switch 35
RS-485 bus connection 54
S
Safe Torque Off 8
Screened cable 36

Index
Screened/armoured 47
Screening of cables 30
Serial communication. 98
Short circuit. 111
Short-circuit protection 38
Sine-wave filter. 30
Space 15
Space heaters and thermostat. 26
Speed up/down 43
Start/stop 43
Stator leakage reactance. 70
Status. 53
Status messages 51
STO. 8
Supply voltage 113
Surrounding 98
Switches S201, S202 and S801 47
Switching frequency. 30
TTerminal 54115
Terminals, fuse-protected, 30 ampere. 27
Thermal motor protection. 111
Thermal protection 5
Thermistor. 72, 111
Tightening torque 35
Torque 35, 111
Torque characteristic. 95
U
Unintended motor rotation 8
Unintended start. 7
Unpacking 9
V
Voltage imbalance 110
Voltage level 96
Voltage reference via a potentiometer. 44
VVC+ 6
W
Windmilling 8
Wire access 15

www.danfoss.com/drives

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved

Danfoss A/S

Ulsnaes 1
DK-6300 Graasten
www.danfoss.com/drives

[^0]: Illustration 4.8 Inverter Cabinet, Enclosure Sizes F12 and F13

[^1]: Table 4.16 NAMUR Fuse

[^2]: Illustration 6．5 Function Setups Options

[^3]: Table 6.6 Q3-4 Application Settings

[^4]: Illustration 6.10 Preset Reference

