

Guia de Operação Safe Torque Off

Conversores de frequência VLT®

Índice

1 Introdução	2
1.1 Objetivo do Manual	2
1.2 Recursos adicionais	2
1.3 Visão Geral Funcional	2
1.4 Aprovações e certificações	3
1.5 Símbolos, abreviações e convenções	
2 Segurança	5
2.1 Símbolos de Segurança	5
2.2 Pessoal qualificado	5
2.3 Segurança e Precauções	5
3 Instalação	7
3.1 Instruções de Segurança	7
3.2 Instalação do STO	7
3.3 Instalação em combinação com VLT [®] PTC Thermistor Card MCB 112	8
4 Colocação em funcionamento	ç
4.1 Instruções de Segurança	ç
4.2 Ativação do STO	٥
4.3 Programações dos parâmetros de STO em combinação com VLT® PTC Thermistor Card MCB 112	ç
4.4 Comportamento de Nova Partida Automática/Manual	ç
4.5 Teste de colocação em funcionamento do STO	10
4.6 Segurança da configuração do sistema	10
4.7 Serviço e manutenção	10
5 Exemplos de aplicações	12
5.1 Dados de SISTEMA	12
5.2 Parada de emergência de conversor de frequência com Safe Torque Off - Categoria 1, PL c, SIL 1	12
5.3 Parada de emergência de conversor de frequência com Safe Torque Off usando relé de segurança - Categoria 3, PL d, SIL 2	13
5.4 Parada de emergência de conversor de frequência com Safe Torque Off, relé de segurança e contator de saída - Categoria 4, PL e, SIL 3	14
5.5 Parada de emergência de vários conversores de frequência - Categoria 3, PL d, SIL 2	15
6 Dados técnicos do STO	17
Índice	18

1 Introdução

1.1 Objetivo do Manual

Este manual fornece informações para uso de conversores de frequência Danfoss VLT® em aplicações de segurança funcional. O manual inclui informações sobre normas de segurança funcional, a função Safe Torque Off (STO) do conversor de frequência Danfoss VLT®, a instalação e colocação em funcionamento relacionadas e o serviço e manutenção do STO.

VLT® é uma marca registrada.

1.2 Recursos adicionais

Este manual é direcionado a usuários já familiarizados com os conversores de frequência VLT®. Sua finalidade é ser um complemento dos manuais e das instruções disponíveis para download. *drives.danfoss.com/knowledge-center/technical-documentation/*. Leia as instruções que acompanham o conversor de frequência e/ou o opcional do conversor de frequência antes de instalar a unidade e observe as instruções para uma instalação segura.

1.3 Visão Geral Funcional

1.3.1 Introdução

A função Safe Torque Off (STO) é um componente em um sistema de controle de segurança. STO impede que a unidade gere a potência exigida para girar o motor.

AVISO!

Selecione e aplique os componentes no sistema de controle de segurança corretamente para obter o nível de segurança operacional desejado. Antes de integrar e usar o STO em uma instalação, execute uma análise de risco completa na instalação para determinar se a funcionalidade STO e os níveis de segurança são apropriados e suficientes.

O conversor de frequência VLT® está disponível com:

- Safe Torque Off (STO), conforme definido pela EN IEC 61800-5-2.
- Categoria de parada 0, conforme definido na EN 60204-1.

O conversor de frequência integra a funcionalidade STO por meio do terminal de controle 37.

O conversor de frequência VLT[®] com funcionalidade STO é projetado e aprovado como adequado para os requisitos de:

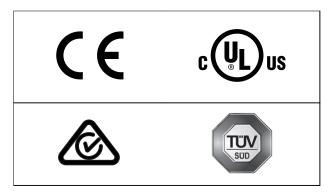
- Categoria 3 em EN ISO 13849-1.
- Nível de desempenho "d" na EN ISO 13849-1.
- SIL 2 na IEC 61508 e EN 61800-5-2.
- SILCL 2 na EN 62061.

1.3.2 Produtos cobertos e identificação

A função STO está disponível para os seguintes tipos de conversores de frequência:

- VLT® HVAC Drive FC 102
- VLT[®] Refrigeration Drive FC 103
- VLT[®] AQUA Drive FC 202
- Gabinete VLT[®] AutomationDrive FC 301 tamanho A1
- VLT[®] AutomationDrive FC 302
- VLT® Decentral Drive FCD 302
- VLT® Parallel Drive Modules

Identificação


 Confirme que o conversor de frequência está configurado com a função STO verificando o código de tipo da unidade na plaqueta de identificação (consulte *Tabela 1.1*).

Produto	Código do tipo		
VLT® HVAC Drive FC 102	T ou U no dígito 18 do		
VLI - HVAC DIIVE FC 102	código do tipo		
VLT® Refrigeration Drive FC 103	T no dígito 18 do código do		
VEF - Reingeration Drive FC 103	tipo		
VLT® AOUA Drive FC 202	T ou U no dígito 18 do		
VLI AQUA DIIVE FC 202	código do tipo		
Gabinete VLT® AutomationDrive	T no dígito 18 do código do		
FC 301 tamanho A1	tipo		
VLT® AutomationDrive FC 302	X, B ou R no dígito 18 do		
VLI® AutomationDrive FC 302	código do tipo		
VLT® Decentral Drive FCD 302	X, B ou R no dígito 18 do		
VLI Decentral Drive FCD 302	código do tipo		
VIT® Parallel Drive Modules	T ou U no dígito 18 do		
VLI - Parallel Drive Modules	código do tipo		

Tabela 1.1 Identificação do código do tipo

1.4 Aprovações e certificações

Mais aprovações e certificações estão disponíveis. Entre em contato com um parceiro Danfoss local.

1.4.1 Normas e conformidade aplicadas

O uso do STO no terminal 37 exige que o usuário atenda todas as determinações de segurança, incluindo as leis, regulamentações e diretrizes relevantes.

A função STO integrada atende às normas a seguir:

- IEC/EN 60204-1: 2016 Categoria de parada 0 parada n\u00e3o controlada
- IEC/EN 61508: 2010 SIL2
- IEC/EC 61800-5-2: 2016
- IEC/EN 62601: 2015 SIL CL2
- EN ISO 13849-1: 2015 Categoria 3 PL d

1.5 Símbolos, abreviações e convenções

Abreviações	Referência	Descrição		
B _{10d}		Número de ciclos até 10% dos componentes apresentarem uma falha perigosa (para		
		componentes pneumáticos e eletromecânicos).		
Cat.	EN ISO 13849-1	Categoria, nível "B, 1–4"		
CCF		Falha de causa comum		
DC		Cobertura de diagnóstico dividida em Baixa, Média e Alta.		
FIT		Falha no tempo: 1E-9/hora		
HFT	EN IEC 61508	Tolerância a falhas de hardware: HFT = n significa que n+1 falhas poderiam causar uma		
		perda da função de segurança.		
MTTFd	EN ISO 13849-1	Tempo médio para falha - perigoso. Unidade: Anos são divididos em Baixo, Médio e		
		Alto.		
PFH	EN IEC 61508	Probabilidade de falhas perigosas por hora. Considere esse valor se o dispositivo de		
		segurança for operado em alta demanda ou no modo de operação contínua, em que a		
		frequência das demandas de operação feitas em um sistema relacionado à segurança		
		for maior que 1 por ano.		
PFD	EN IEC 61508	Probabilidade média de falha sob demanda; valor usado para operação de baixa		
		demanda.		
PL	EN ISO 13849-1	Nível discreto usado para especificar a capacidade de peças relacionadas à segurança		
		de sistemas de controle executarem uma função de segurança em condições previsíveis.		
		Níveis divididos de a até e.		
PLr		Nível de desempenho exigido (o nível de desempenho exigido para uma determinada		
		função de segurança).		
SIL	EN IEC 61508	Nível da integridade de segurança		
	EN IEC 62061			
STO	EN IEC 61800-5-2	Safe Torque Off		
SS1	EN IEC 61800-5-2	Parada segura 1		
SRECS	EN IEC 62061	Sistema de controle elétrico relacionado à segurança		
SRP/CS	EN ISO 13849-1	Peças dos sistemas de controle relacionadas à segurança		
PDS/SR	EN IEC 61800-5-2	Sistema de drive de potência (relacionado à segurança)		

Tabela 1.2 Abreviações relacionadas à segurança funcional

Convenções

Listas numeradas indicam os procedimentos. As listas com marcadores indicam outras informações e descrições das ilustrações.

O texto em itálico indica:

- Referência cruzada.
- Link.
- Nome do parâmetro.
- Nota de rodapé.
- Grupo do parâmetro.
- Opcional de parâmetro.
- Alarmes/advertências.

Todas as dimensões nos desenhos estão indicadas em unidades métricas e imperiais (entre parênteses), por exemplo: mm (pol). Um asterisco (*) indica a configuração padrão de um parâmetro.

2 Segurança

2.1 Símbolos de Segurança

Os seguintes símbolos são usados neste guia:

AADVERTÊNCIA

Indica uma situação potencialmente perigosa que pode resultar em morte ou ferimentos graves.

ACUIDADO

Indica uma situação potencialmente perigosa que pode resultar em ferimentos leves ou moderados. Também podem ser usados para alertar contra práticas inseguras.

AVISO!

Indica informações importantes, inclusive situações que podem resultar em danos no equipamento ou na propriedade.

2.2 Pessoal qualificado

Somente pessoas com habilidades comprovadas têm permissão de montar, instalar, programar, comissionar, manter e desativar os produtos. Pessoas com habilidades comprovadas

- São engenheiros elétricos qualificados ou pessoas que receberam treinamento de engenheiros elétricos qualificados e têm experiência apropriada para operar dispositivos, sistemas, fábrica e máquinas de acordo com os padrões e diretrizes gerais da tecnologia de segurança.
- Estão familiarizados com as normas básicas com relação à saúde e à segurança/prevenção de acidentes.
- Leram e entenderam as diretrizes de segurança fornecidas neste manual e também as instruções fornecidas nas instruções de utilização do conversor de frequência.
- Possuem bom conhecimento das normas gerais e específicas aplicáveis à determinada aplicação.

Os usuários dos sistemas de drive de potência (relacionados à segurança) (PDS(SR)) são responsáveis por:

- Análise de risco e de perigo da aplicação.
- Identificar as funções de segurança necessárias e alocar SIL ou PLr para cada uma das funções.
- Outros subsistemas e a validade dos sinais e comandos vindos deles.
- Projetar sistemas de controle relacionados à segurança adequados (hardware, software, parametrização etc.).

Medidas de proteção

- Somente pessoal qualificado tem permissão para instalar e comissionar sistemas de engenharia de segurança.
- Instale o conversor de frequência em um painel elétrico IP54 conforme IEC 60529 ou em ambiente equivalente. Em aplicações especiais, características nominais de proteção de IP mais altas podem ser necessárias.
- Assegure proteção contra curto-circuito do cabo entre o opcional de segurança e o dispositivo de segurança externo de acordo com a ISO 13849-2 tabela D.4. Quando forças externas influenciarem o eixo do motor (por exemplo, cargas suspensas), medidas adicionais (por exemplo, um freio de segurança) serão necessárias para eliminar riscos.

2.3 Segurança e Precauções

Consulte o capítulo *Segurança* nos *guias/instruções de utilização* pertinentes para obter as precauções de segurança gerais.

ACUIDADO

Após a instalação do STO, execute um teste de colocação em funcionamento conforme especificado em capétulo 4.5 Teste de colocação em funcionamento do STO. Um teste de colocação em funcionamento aprovado é obrigatório após a primeira instalação e após cada mudança na instalação de segurança.

▲ADVERTÊNCIA

RISCO DE MORTE E FERIMENTO GRAVE

Se forças externas que atuam no motor, por exemplo, no caso de um eixo vertical (cargas suspensas) e um movimento acidental, por exemplo, causado pela gravidade, puderem causar algum risco, o motor deve ser equipado com medidas adicionais de proteção contra queda. Por exemplo, instale freios mecânicos adicionais.

AADVERTÊNCIA

RISCO DE MORTE E FERIMENTO GRAVE

STO (ou seja, remoção da tensão de alimentação de 24 V CC para o terminal 37) não fornece segurança elétrica. A função STO por si não é suficiente para implementar a função Emergency-Off conforme definido pela EN 60204-1. A função Emergency-Off exige medidas de isolamento elétrico, por exemplo, desligar a rede elétrica por meio de um contator adicional.

2

AADVERTÊNCIA

RISCO DE CHOQUE ELÉTRICO

A função STO NÃO isola a tensão de rede para o conversor de frequência ou circuitos auxiliares. Execute trabalho em peças elétricas do conversor de frequência ou do motor somente após isolar a alimentação de tensão de rede e aguardar decorrer o tempo de descarga, conforme especificado no capítulo Segurança nos guias/instruções de utilização relevantes. Não isolar a alimentação de tensão de rede da unidade e aguardar o tempo especificado poderá resultar em morte ou ferimentos graves.

- Não pare o conversor de frequência usando a função STO. Se um conversor de frequência em funcionamento for parado usando a função, a unidade desarmará e realizará uma parada por inércia. Se essa limitação não for aceitável, por exemplo, porque causa perigo, use o modo de parada apropriado para parar o conversor de frequência e as máquinas antes de usar a função STO. Dependendo da aplicação, um freio mecânico poderá ser necessário.
- O STO é adequado para executar trabalho mecânico somente no sistema do conversor de frequência ou na área afetada de uma máquina. Ele não fornece segurança elétrica. O STO não deve ser usado como controle de partida e/ou parada do conversor de frequência.

ACUIDADO

NOVA PARTIDA AUTOMÁTICA

O comportamento de nova partida automática é permitido somente em uma de duas situações:

- A prevenção de nova partida acidental é implementada por outras partes da instalação do STO.
- Uma presença na zona de perigo pode ser excluída fisicamente quando o STO não estiver ativado. Em particular, o parágrafo 6.3.3.2.5 da ISO 12100: 2010 deve ser observado.

AADVERTÊNCIA

RISCO DE MORTE E FERIMENTO GRAVE

A função STO pode ser usada em motores assíncronos, síncronos e de ímã permanente. Duas falhas podem ocorrer no semicondutor de potência do conversor de frequência. Ao usar motores síncronos ou de ímã permanente, uma rotação residual pode resultar das falhas. A rotação pode ser calculada como ângulo = 360/ (número de polos). A aplicação que usar motores síncronos ou de ímã permanente deve levar em consideração essa rotação residual e assegurar que não representa um risco de segurança. Esta situação não é relevante para motores assíncronos.

AVISO!

Execute uma avaliação de risco de cada função de parada para determinar a seleção de uma categoria de parada de acordo com a EN 60204-1:

- A Categoria de parada 0 é alcançada com a remoção imediata da potência do atuador, resultando em uma parada por inércia não controlada. O STO, de acordo com a EN 61800-5-2, realiza uma parada Categoria de parada 0.
- A Categoria de parada 1 é alcançada com potência disponível para os atuadores da máquina conseguirem a parada. A potência é removida dos atuadores quando a parada é realizada de acordo com a EN 61800-5-2 Parada segura 1 (SS1).
- A Categoria de parada 2 é uma parada controlada com potência disponível para os atuadores da máquina. Uma posição de retenção sob potência segue a parada.

AVISO!

Ao projetar a aplicação da máquina, a sincronização e a distância devem ser consideradas para uma parada por inércia parar (Categoria de parada 0 ou STO). Para obter mais informações sobre as categorias de parada, consulte a EN 60204-1.

3 Instalação

3.1 Instruções de Segurança

ACUIDADO

RISCO ELÉTRICO

O operador ou instalador elétrico é responsável pelo aterramento correto e por estar em conformidade com todas as normas de segurança locais e nacionais aplicáveis.

Consulte capétulo 2 Segurança e os guias/instruções de utilização do conversor de frequência relevante. Também, observe sempre as instruções fornecidas pelo fabricante do motor.

3.2 Instalação do STO

Para conexão do motor, conexão de rede elétrica CA e fiação de controle, siga as instruções de instalação segura nos *guias/instruções de utilização* do conversor de frequência.

Para instalação com o VLT® PTC Thermistor Card MCB 112 com certificação Ex, consulte *capétulo 3.3 Instalação em combinação com VLT® PTC Thermistor Card MCB 112*.

Ative o STO integrado da seguinte maneira:

 Remova o fio de jumper entre os terminais de controle 37 e 12 ou 13. Cortar ou interromper o jumper não é suficiente para evitar curto-circuito. (Consulte jumper em *llustração 3.1*)

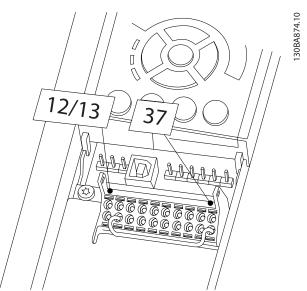


Ilustração 3.1 Jumper entre os terminais 12/13 (24 V) e 37 (todos os conversores de frequência, exceto FCD 302)

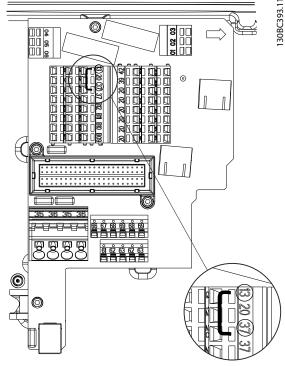
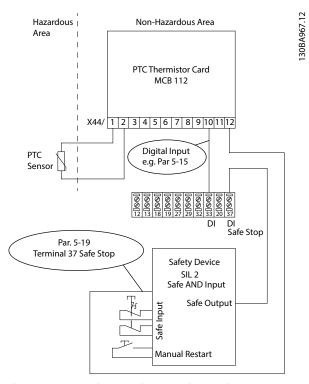


Ilustração 3.2 Jumper entre os terminais 13 (24 V) e 37 (FCD 302)

- Por exemplo, conecte um relé de monitoramento de segurança externo por meio de uma função de segurança NO no terminal 37 (STO) e no terminal 12 ou 13 (24 V CC). Exemplos de conexão e aplicação podem ser encontrados em capétulo 5 Exemplos de aplicações.
- Complete e fiação de acordo com as instruções fornecidas nos guias/instruções de utilização do conversor de frequência.

3


3.3 Instalação em combinação com VLT® PTC Thermistor Card MCB 112

AVISO!

A combinação de VLT® PTC Thermistor Card MCB 112 e função STO está disponível somente para VLT® HVAC Drive FC 102, VLT® AQUA Drive FC 202, VLT® AutomationDrive FC 301 com gabinetes tamanho A1.

O VLT® PTC Thermistor Card MCB 112 usa o terminal 37 como seu canal de desligamento relacionado à segurança.

- Certifique-se de que a saída X44/12 do MCB 112 faça uma função lógica E com o sensor relacionado à segurança (por exemplo, botão de parada de emergência e interruptor de proteção) que ativa o STO. Isso significa que a saída para o terminal 37 do STO estará HIGH (24 V) somente se tanto o sinal da saída X44/12 do MCB 112 quanto o sinal do sensor relacionado à segurança estiverem HIGH. Se pelo menos um dos dois sinais for LOW, a saída para o terminal 37 deverá ser LOW também.
- Garanta que o dispositivo de segurança com a lógica E seja compatível com o nível de segurança exigido.
- Protege contra curto-circuito a conexão da saída do dispositivo de segurança com lógica E segura para o terminal 37 do STO; consulte *llustração 3.3*.

llustração 3.3 Combinação de uma aplicação de STO e uma aplicação de MCB 112

A *llustração 3.3* mostra uma entrada de nova partida do dispositivo de segurança externo. Isso significa que nessa instalação, *parâmetro 5-19 Terminal 37 Safe Stop* pode ser definido para o valor [7] PTC 1 & Relé W ou [8] PTC 1 & Relé A/W. Consulte *Instruções de utilização do VLT® PTC Thermistor Card* MCB 112 para obter mais detalhes.

4 Colocação em funcionamento

4.1 Instruções de Segurança

ACUIDADO

RISCO ELÉTRICO

O operador ou instalador elétrico é responsável pelo aterramento correto e por estar em conformidade com todas as normas de segurança locais e nacionais aplicáveis.

Consulte *capétulo 2 Segurança* e os *guias/instruções de utilização* do conversor de frequência relevante. Também, observe sempre as instruções fornecidas pelo fabricante do motor.

4.2 Ativação do STO

A função STO é ativada removendo a tensão do terminal 37 do conversor de frequência. Ao conectar o conversor de frequência a dispositivos de segurança externos para fornecer um atraso seguro, pode ser obtida uma instalação para uma Parada segura 1. Os dispositivos de segurança externos devem atender Cat./PL ou SIL quando conectados ao terminal 37. A função STO pode ser usada em motores assíncronos, síncronos e de ímã permanente.

Quando a função STO (terminal 37) é ativada, o conversor de frequência emite um alarme, desarma a unidade e para o motor com parada por inércia. É necessária nova partida manual. Use a função STO para parar o conversor de frequência em situações de parada de emergência. No modo de operação normal quando o STO não for necessário, use a função de parada padrão. Assegure que os requisitos de acordo com ISO 12100 parágrafo 6.3.3.2.5 sejam atendidos antes de usar a função de nova partida automática.

4.3 Programações dos parâmetros de STO em combinação com VLT® PTC Thermistor Card MCB 112

Quando MCB 112 estiver conectado, mais seleções estão disponíveis para parâmetro 5-19 Terminal 37 Safe Stop ([4] Alarme do PTC 1 para [9] PTC 1 & Relé W/A).

As seleções [1]* AlarmParadSeg e [3] AdvertParadSegur ainda estão disponíveis, mas são para instalações sem MCB 112 ou qualquer dispositivo de segurança externo.
 Se [1]* AlarmParadSeg e [3] AdvertParadSegur estiverem selecionados e MCB 112 for acionado, o conversor de frequência responde com o alarme 72, Falha Perigosa e realiza uma parada por

- inércia do motor com segurança, sem nova partida automática.
- Não selecione [4] Alarme do PTC 1 e [5]
 Advertência PTC 1 quando um dispositivo de
 segurança externo for usado. Use essas seleções
 somente quando apenas MCB 112 usar o STO.
 Se a seleção [4] Alarme do PTC 1 ou [5]
 Advertência PTC 1 Advertência estiver selecionada
 e o dispositivo de segurança externo acionar o
 STO, o conversor de frequência emite o alarme
 72, Falha Perigosa e realiza uma parada por
 inércia do motor com segurança, sem nova
 partida automática.
- Selecione [6] PTC 1 & Relé A a [9] PTC 1 & Relé W/A
 para a combinação de dispositivo de segurança
 externo e MCB 112.

ACUIDADO

NOVA PARTIDA AUTOMÁTICA

As seleções permitem nova partida automática quando o dispositivo de segurança externo está desativado.

Antes de selecionar [7] PTC 1 & Relé W ou [8] PTC 1 & Relé A/W, assegure que:

- A prevenção de nova partida acidental é implementada por outras partes da instalação do STO ou
- Uma presença na zona de perigo pode ser excluída fisicamente quando o STO não estiver ativado. Em particular, o parágrafo 6.3.3.2.5 da ISO 12100:2010 deve ser observado.

Consulte Instruções de utilização do VLT® PTC Thermistor Card MCB 112 para obter mais informações.

4.4 Comportamento de Nova Partida Automática/Manual

O estado padrão do STO impede novas partidas acidentais (Comportamento de prevenção de nova partida). Para finalizar o STO e retomar a operação normal:

- Reaplique a alimentação de 24 V CC no terminal
 37
- Envie um sinal de reinicialização (via barramento, E/S digital ou tecla [Reset]).

Defina a função STO para nova partida automática programando o valor de *parâmetro 5-19 Terminal 37 Safe Stop* do valor padrão [1]* *AlarmParadSeg* para o valor [3] *AdvertParadSegur*.

Nova partida automática significa que o STO está terminado e a operação normal será retomada, quando a

tensão de 24 V CC é aplicada no terminal 37. Nenhum sinal de reinicialização é necessário.

4.5 Teste de colocação em funcionamento do STO

Após a instalação e antes da primeira operação, execute um teste de colocação em funcionamento da instalação usando o STO.

Execute o teste novamente após cada modificação da instalação ou aplicação que envolva o STO.

AVISO!

Um teste de colocação em funcionamento bem-sucedido da função STO é obrigatório após a instalação inicial e após cada mudança subsequente na instalação.

Para executar um teste de colocação em funcionamento:

- Siga as instruções em capétulo 4.5.1 Prevenção de nova partida para aplicação de STO para aplicações sem nova partida automática após uma parada segura ou
- Siga as instruções em capétulo 4.5.2 Nova partida automática da aplicação de STO para aplicações com nova partida automática após uma parada segura.

4.5.1 Prevenção de nova partida para aplicação de STO

Aplicação em que *parâmetro 5-19 Terminal 37 Safe Stop* é programado para o valor padrão [1]* AlarmParadSeg ou STO e VLT® PTC Thermistor MCB 112 combinados em que *parâmetro 5-19 Terminal 37 Safe Stop* é programado para [6] PTC 1 & Relé A ou [9] PTC 1 & Relé W/A):

- Remova a alimentação de tensão de 24 V CC do terminal 37 usando o dispositivo de interrupção enquanto o conversor de frequência aciona o motor (ou seja, a alimentação de rede elétrica não é interrompida).
- 2. Verifique se:
 - 2a O motor para por inércia.
 - 2b O freio mecânico é ativado (se conectado).
 - 2c Se o painel de controle local (LCP) estiver montado, ele mostra o *Alarme 68, Parada Segura*.
- 3. Reaplique a tensão de 24 V CC no terminal 37.
- Assegure que o motor permanece no estado de parada por inércia e o freio mecânico (se conectado) permanece ativado.
- Envie um sinal de reinicialização (via barramento, E/S digital ou tecla [Reset]).

 Assegure que o motor está operacional novamente.

O teste de colocação em funcionamento é concluído com sucesso quando todas as etapas são aprovadas.

4.5.2 Nova partida automática da aplicação de STO

Aplicação em que *parâmetro 5-19 Terminal 37 Safe Stop* é programado para [3] AdvertParadSegur ou Safe Torque Off e VLT® PTC Thermistor MCB 112 combinados em que *parâmetro 5-19 Terminal 37 Safe Stop* é programado para [7] PTC 1 & Relé W ou [8] PTC 1 & Relé A/W:

- Remova a alimentação de tensão de 24 V CC do terminal 37 com o dispositivo de interrupção enquanto o conversor de frequência aciona o motor (ou seja, a alimentação de rede elétrica não é interrompida).
- 2. Verifique se:
 - 2a O motor faz parada por inércia.
 - 2b O freio mecânico é ativado (se conectado).
 - 2c Se o painel de controle local (LCP) estiver montado, ele mostra a *Advertência 68, Parada Segura*.
- 3. Reaplique a tensão de 24 V CC no terminal 37.
- 4. Assegure que o motor está operacional novamente.

O teste de colocação em funcionamento é concluído com sucesso quando todas as etapas são aprovadas.

AVISO!

Consulte a advertência no comportamento de nova partida no capétulo 2.3 Segurança e Precauções.

4.6 Segurança da configuração do sistema

- Medidas de segurança são de responsabilidade do usuário
- Os parâmetros do conversor de frequência são protegidos por senha.

4.7 Serviço e manutenção

É necessário que o PL d ou o SIL2 realize um teste funcional a cada 12 meses para detectar qualquer falha ou mau funcionamento da funcionalidade STO. Para PL ou SIL inferior, trata-se de uma recomendação.

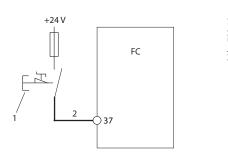
4

Para aplicar o teste funcional, realize as seguintes etapas (ou um método semelhante adequado para a aplicação):

- Remova a alimentação de tensão de 24 V CC do terminal 37.
- 2. Verifique se o LCP mostra o *Alarme 68, Parada Segura*.
- 3. Verifique se o conversor de frequência desarma a unidade.
- 4. Verifique se o motor realiza uma parada por inércia e chega a uma parada completa.
- 5. Verifique se o motor não poder ser iniciado.
- 6. Reconecte a alimentação de tensão de 24 V CC no terminal 37.
- 7. Verifique se o motor não dá partida automaticamente e reinicia somente ao ser dado um sinal de reinicialização (via barramento, E/S digital ou tecla [Reset]).

4

5 Exemplos de aplicações


5.1 Dados de SISTEMA

SISTEMA (Safety Integrity Software Tool for the Evaluation of Machine Applications, Ferramenta de software de integridade de segurança para a avaliação das aplicações da máquina) é um utilitário de software que fornece aos desenvolvedores e testadores de controles de máquina relacionados à segurança um suporte abrangente na avaliação de segurança no contexto da ISO 13849-1.

Dados de segurança funcional estão disponíveis na biblioteca de dados para uso com a ferramenta de cálculo SISTEMA do IFA (Instituto de saúde e segurança ocupacional e do Seguro social de acidentes alemão) e dados para cálculo manual. A ferramenta SISTEMA está disponível para download em www.danfoss.com/en/service-and-support/downloads/dds/sistema-safety-integrity-software-tool/#overview.

5.2 Parada de emergência de conversor de frequência com Safe Torque Off -Categoria 1, PL c, SIL 1

A *llustração 5.1* mostra um exemplo de aplicação da parada de emergência com Safe Torque Off - Categoria 1, PL c, SIL 1.

1	Botão de parada de emergência
2	Cabo protegido contra curto-circuito (se não estiver dentro
	da instalação do painel elétrico IP54). Consulte ISO 13849-2
	Tabela D.4 para obter mais informações.

Ilustração 5.1 Parada de emergência com Safe Torque Off - Categoria 1, PL c, SIL 1

Função de segurança

Se houver uma emergência, o dispositivo de parada de emergência é ativado. A função Safe Torque Off (STO) do conversor de frequência está ativada. Após um comando de parada ou de parada de emergência, o conversor de frequência é parado.

Características de projeto

- O circuito pode ser usado até a Categoria 1, PL c (ISO 13849-1) ou SIL 1 (EN 62061 e IEC 61508).
- A função Safe Torque Off (STO) é ativada por meio de um contato de interruptor operado positivamente NF (em conformidade com IEC 60947-1, IEC 60947-5-1 e IEC 60947-5-5).
- Para PL c, as funções de segurança completas devem ser calculadas (MTTFd).
- Use princípios básicos de segurança.
- O dispositivo usado para ativação do Safe Torque Off (STO) deve ser adequado para a categoria selecionada, PL ou SIL.

Ao implementar a parada de emergência, preste atenção a estas dicas:

- Todos os padrões não relacionados à segurança devem ser atendidos para a aplicação e seus componentes.
- O projetista da aplicação é o responsável por selecionar componentes adequados.
- O cabo mostrado em negrito na *llustração 5.1* deve estar protegido contra curto-circuito, em conformidade com a ISO 13849-2 tabela D.4.
- Para atender o PL c, deve-se calcular o MTTFd e o DC para toda a função de segurança.
- O valor B_{10d} do dispositivo de parada de emergência deve ser conhecido. O valor B_{10d} deve ser alto o suficiente para atender o PL c correspondente ao MTTFd.

Implementação no SISTEMA usando a biblioteca Danfoss VLT®

Como exemplo, use o subsistema "VLT® AutomationDrive FC 302/FCD 302 Safe Torque Off (Terminal 37)". Não é necessário editar todos os parâmetros definidos na biblioteca.

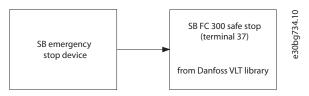
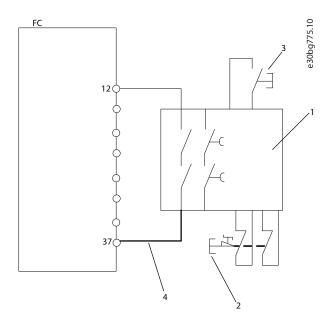



Ilustração 5.2 Diagrama de blocos relacionado à segurança

5.3 Parada de emergência de conversor de frequência com Safe Torque Off usando relé de segurança - Categoria 3, PL d, SIL 2

A *llustração 5.3* mostra um exemplo de aplicação da parada de emergência com Safe Torque Off usando relé de segurança - Categoria 3, PL d, SIL 2.

1	Relé de segurança (Categoria 3, PL d ou SIL 2)
2	Botão de parada de emergência
3	Botão de reset
4	Cabo protegido contra curto-circuito (se não estiver dentro
	da instalação do painel elétrico IP54). Consulte ISO 13849-2
	Tabela D.4 para obter mais informações.

Ilustração 5.3 Exemplo de instalação para obter uma Categoria de parada 0 (EN 60204-1) com Cat. de segurança 3/PL "d" (ISO 13849-1) ou SIL 2 (EN 62061 e IEC 61508).

Função de segurança

Se houver uma emergência, o dispositivo de parada de emergência é ativado. A função Safe Torque Off (STO) do conversor de frequência está ativada. Após um comando de parada ou de parada de emergência, o conversor de frequência é parado.

Características de projeto

- O circuito pode ser usado até a Categoria 3, PL d (ISO 13849-1) ou SIL 2 (EN 62061 e IEC 61508).
- Para PL d, as funções de segurança completas devem ser calculadas (MTTFd).
- Use princípios básicos de segurança.
- O dispositivo usado para ativação do Safe Torque Off (STO) e do relé de segurança deve ser adequado para a categoria selecionada, PL ou SIL.

Ao implementar a parada de emergência, preste atenção a estas dicas:

- Todos os padrões não relacionados à segurança devem ser atendidos para a aplicação e seus componentes.
- O projetista da aplicação é o responsável por selecionar componentes adequados.
- O cabo mostrado em negrito na *llustração 5.3* deve estar protegido contra curto-circuito, em conformidade com a ISO 13849-2 tabela D.4.
- Para atender o PL d, deve-se calcular o MTTFd e o DC para toda a função de segurança.

Esta configuração pode ser usada se estiver sendo usado um dispositivo de chaveamento duplo positivo. Dependendo do relé de segurança, também é possível conectar vários dispositivos de ativação a 1 Safe Torque Off (STO).

Implementação no SISTEMA usando a biblioteca Danfoss VLT®

Como exemplo, use o subsistema "VLT® AutomationDrive FC 302/FCD 302 Safe Torque Off (Terminal 37)". Não é necessário editar todos os parâmetros definidos na biblioteca.

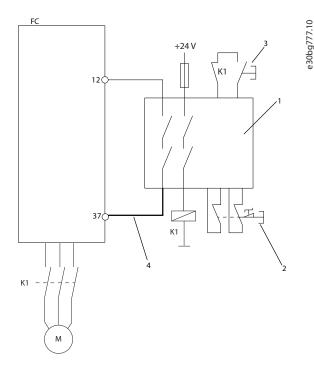


Ilustração 5.4 Diagrama de blocos relacionado à segurança

5.4 Parada de emergência de conversor de frequência com Safe Torque Off, relé de segurança e contator de saída -Categoria 4, PL e, SIL 3

A *Ilustração 5.5* mostra um exemplo de aplicação da parada de emergência de conversor de frequência com Safe Torque Off, relé de segurança e contator de saída - Categoria 4, PL e, SIL 3.

1	Relé de segurança (Categoria 4, PL e, SIL 3)
2	Botão de parada de emergência
3	Botão de reset
4	Cabo protegido contra curto-circuito (se não estiver dentro
	da instalação do painel elétrico IP54). Consulte ISO 13849-2
	Tabela D.4 para obter mais informações.

Ilustração 5.5 Conversor de frequência com Safe Torque Off, relé de segurança e contator de saída - Categoria 4, PL e, SIL 3

Função de segurança

Se houver uma emergência, o dispositivo de parada de emergência é ativado. A função Safe Torque Off (STO) do conversor de frequência está ativada. Após um comando de parada ou de parada de emergência, o conversor de frequência é parado.

Onde o sistema de controle de segurança deve estar em conformidade com PL e (ISO 13849-1) ou SIL 3 (EN 62061 e IEC 61508), exige-se uma parada de 2 canais para a função STO. Um canal pode ser implementado pela entrada de STO no conversor de frequência, e o outro por um contator, que pode ser conectado ao circuito de potência de entrada ou de saída do conversor de frequência. O

contator deve ser monitorado através de um contato guiado auxiliar, mostrado como K1 na *llustração 5.5*.

Características de projeto

- O circuito pode ser usado até a Categoria 4 e PL e.
- Para PL e, as funções de segurança completas devem ser calculadas (MTTFd).
- Use princípios básicos de segurança.
- O dispositivo usado para ativação do Safe Torque Off (STO) e do relé de segurança deve ser adequado para a categoria selecionada, PL ou SIL.

Ao implementar a parada de emergência, preste atenção a estas dicas:

- Todos os padrões não relacionados à segurança devem ser atendidos para a aplicação e seus componentes.
- O projetista da aplicação é o responsável por selecionar componentes adequados.
- O cabo mostrado em negrito na *llustração 5.5* deve estar protegido contra curto-circuito, em conformidade com a ISO 13849-2 tabela D.4.
- Para atender o PL e, deve-se calcular o MTTFd e o DC para toda a função de segurança.

Esta configuração pode ser usada se estiver sendo usado um dispositivo de chaveamento duplo positivo.

Implementação no SISTEMA usando a biblioteca Danfoss VIT®

Como exemplo, use o bloco "VLT® AutomationDrive FC 302 (Terminal 37)". Não é necessário editar todos os parâmetros definidos na biblioteca.

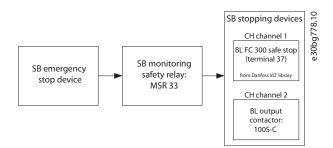
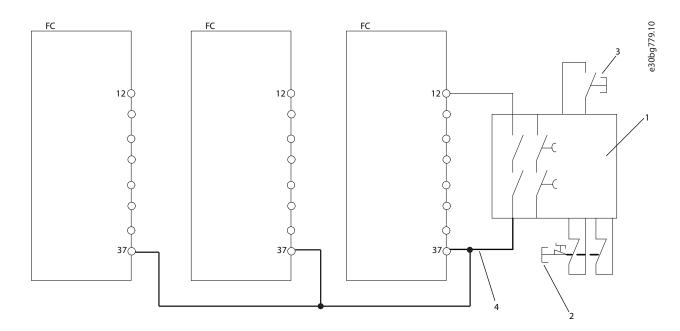



Ilustração 5.6 Diagrama de blocos relacionado à segurança

5.5 Parada de emergência de vários conversores de frequência - Categoria 3, PL d, SIL 2

A *llustração 5.7* mostra um exemplo de aplicação da parada de emergência de vários conversores de frequência - Categoria 3, PL d, SIL 2.

1	Relé de segurança (Categoria 3, PL d ou SIL 2)
2	Botão de parada de emergência
3	Botão de reset
4	Cabo protegido contra curto-circuito (se não estiver dentro da instalação do painel elétrico IP54). Consulte ISO 13849-2 Tabela
	D.4 para obter mais informações.

Ilustração 5.7 Parada de emergência de vários conversores de frequência - Categoria 3, PL d, SIL 2

Função de segurança

Se houver uma emergência, o dispositivo de parada de emergência é ativado. A função Safe Torque Off (STO) do conversor de frequência está ativada. Após um comando de parada ou de parada de emergência, o conversor de frequência é parado.

As entradas de STO podem ser conectadas juntas diretamente caso seja necessário controlar vários conversores de frequência na mesma linha de controle.

Conectar as entradas juntas aumenta a probabilidade de ocorrer uma falha no sentido sem proteção, pois uma falha no conversor de frequência 1 pode resultar na ativação de todos os conversores de frequência. A probabilidade de ocorrer uma falha é tão baixa, de 1 x 10⁻¹⁰ por hora, que a probabilidade resultante ainda atende aos requisitos da SIL2 para números fundamentados de conversores de frequência. Recomenda-se não conectar mais de 20 entradas em paralelo.

AVISO!

Ao usar uma alimentação interna de 24 V CC (terminal 12), a quantidade de entradas paralelas (terminal 37) é limitada em 3, caso contrário, a energia de saída disponível é excedida.

Características de projeto

- O circuito pode ser usado até a Categoria 3, PL d ou SIL 2.
- Para PL d, as funções de segurança completas devem ser calculadas (MTTFd).
- Use princípios básicos de segurança.
- O dispositivo usado para ativação do Safe Torque Off (STO) e do relé de segurança deve ser adequado para a categoria selecionada, PL ou SIL.

Ao implementar a parada de emergência, preste atenção a estas dicas:

- Todos os padrões não relacionados à segurança devem ser atendidos para a aplicação e seus componentes.
- O projetista da aplicação é o responsável por selecionar componentes adequados.
- O cabo mostrado em negrito na *llustração 5.7* deve estar protegido contra curto-circuito, em conformidade com a ISO 13849-2 tabela D.4.
- Para atender o PL d, deve-se calcular o MTTFd e o DC para toda a função de segurança.

Esta configuração pode ser usada se estiver sendo usado um dispositivo de chaveamento duplo positivo. Dependendo do relé de segurança, também é possível conectar vários dispositivos de ativação a um Safe Torque Off.

Implementação no SISTEMA usando a biblioteca Danfoss VLT®

Como exemplo, use o subsistema "VLT® AutomationDrive FC 302/FCD 302 Safe Torque Off (Terminal 37)". Não é necessário editar todos os parâmetros definidos na biblioteca. O subsistema precisa ser colocado na função de segurança tantas vezes quanto o número de conversores de frequência estiverem presentes na única linha de STO.

Ilustração 5.8 Diagrama de blocos relacionado à segurança

6 Dados técnicos do STO

AVISO!

Para obter as especificações técnicas e as condições de operação do conversor de frequência, consulte os *guias/instruções de utilização* relevantes do conversor de frequência.

AVISO!

O sinal do STO deve ser fornecido por SELV ou PELV.

	Diretiva de maquinaria	EN ISO 13849-1			
	(2006/42/EC)	EN IEC 62061			
	(2000) 12/20)	EN IEC 61800-5-2			
Diretivas europeias	Diretiva EMC	EN 50011			
Directivas europeias	(2014/30/EU)	EN 61000-6-3			
	(2014/30/20)	EN 61800-3			
	Diretiva de baixa tensão	EN 50178			
	(2014/35/EU)	EN 61800-5-1			
Normas do soguransa	Segurança da maquinaria	EN ISO 13849-1, IEC 62061, IEC 60204-1			
Normas de segurança	Segurança funcional	IEC 61508-1 a -7, IEC 61800-5-2	!		
Fire a de comune de		IEC 61800-5-2	IEC 60204-1		
Função de segurança		Safe Torque Off (STO)	Categoria de parada 0		
	ISO 13849-1	•			
	Categoria	Cat. 3			
	Cobertura do diagnóstico	CC: 90% (Médio)			
	Tempo médio para falha	MTTEd: 14 000 anas (alta)			
	perigosa	MTTFd: 14.000 anos (alto)			
	Nível de Desempenho	PL d			
	IEC 61508/IEC 62061				
	Nível da Integridade de				
	Segurança	SIL 2, SIL CL2			
Desempenho de segurança	Probabilidade de	DELL 15 10/h, 15 0/h mayo wayin	mtos con a (6 a a 1) 2)		
	Falha perigosa	PFH: 1E-10/h; 1E-8/h para varia (modo alta demanda)	ntes especificas '' 21		
	por hora	(modo alta demanda)			
	Probabilidade de	PFD: 1E-10; 1E-4 para variantes	osnosíficas1),2		
	Falha perigosa	(modo baixa demanda)	especificas."-		
	sob demanda	(modo baixa demanda)			
	Tolerância a falhas de				
	hardware	HFT: 0 (1001)			
	Intervalo do teste de prova T1	20 anos			
	TM de tempo de missão	20 anos			
Tempo de reação	Tempo de resposta da entrada	Máximo 20 ms, 60 ms para variantes específicas ^{1), 2)}			
	à saída				

Tabela 6.1 Dados Técnicos

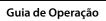
1) VLT® HVAC Drive FC 102Conversores de alta potência VLT® Refrigeration DriveFC 103, VLT® AQUA Drive FC 202 e VLT® AutomationDrive FC 301/FC 302 com gabinete tamanho F:

- 400 V: 450/500 kW (600/650 hp) 800/1000 kW (1075/1350 hp) (sobrecarga alta/sobrecarga normal).
- 690 V: 630/710 kW (850/950 hp) 1800/2000 kW (2400/2700 hp) (sobrecarga alta/sobrecarga normal).

2) VLT® Parallel Drive Modules:

- 400 V: 250/315 kW (350/450 hp) 800/1000 kW (1200/1350 hp) (sobrecarga alta/sobrecarga normal).
- 690 V: 315/400 kW (350/400 hp) 1000/1200 kW (1150/1350 hp) (sobrecarga alta/sobrecarga normal).

MG37D628



		•		
n	~		-	_
				_

A
Abreviações4
Alarme9
Aprovações3
Ativação
C
Canal de desligamento8
Cartão do termistor 8
Certificações3
Comando 5
Comportamento de nova partida9
Convenções4
D
Dados de SISTEMA 12
Dados técnicos 17
Dispositivo de segurança 8
Dispositivos de segurança externos 9
F
Freio mecânico 10
1
Identificação2
Instalação8
Interruptor de proteção de segurança8
M
 Manutenção 10
Manutençao10
N
Normas e conformidade3
Nova partida automática
Р
Pessoal qualificado5
Prevenção de nova partida9, 10
Prevenção de nova partida acidental9
Produtos cobertos2
Programações do parâmetro9
S
Saída 8

Sensor relacionado à segurança8
SIL CL2
SIL2
Símbolos4
Sinal
Sistema de controle 5
Т
Terminação9
Teste de colocação em funcionamento 10

A Danfoss não aceita qualquer responsabilidade por possíveis erros constantes de catálogos, brochuras ou outros materiais impressos. A Danfoss reserva-se o direito de alterar os seus produtos sem aviso prévio. Esta determinação aplica-se também a produtos já encomendados, desde que tais modificações não impliquem em mudanças nas especificações acordadas. Todas as marcas registradas constantes deste material são propriedade das respectivas empresas. Danfoss e o logotipo Danfoss são marcas registradas da Danfoss A/S. Todos os direitos reservados.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

