VACON®

VACON[®] 100 HVAC PRZEMIENNIKI CZĘSTOTLIWOŚCI

INSTRUKCJA APLIKACJI

PRZEDMOWA

Dokument:	DPD01704K
Data:	11.04.2016
Wersja	FW0065V032
oprogramowania:	

INFORMACJE O NINIEJSZEJ INSTRUKCJI

Prawa autorskie do niniejszej instrukcji należą do Vacon Ltd. Wszelkie prawa zastrzeżone. Instrukcja może ulec zmianie bez powiadomienia.

W tej instrukcji znajdują się informacje dotyczące korzystania z przemiennika częstotliwości Vacon® oraz jego funkcji. Instrukcja została sporządzona zgodnie ze strukturą menu napędu (rozdz. 1 i 4–8).

Rozdział 1. Skrócona instrukcja uruchamiania

• Rozpoczęcie korzystania z panelu sterującego.

Rozdział 2. Kreatory

• Szybka konfiguracja aplikacji.

Rozdział 3. Interfejsy użytkownika

- Typy wyświetlacza i obsługa panelu sterującego.
- Narzędzie komputerowe Vacon Live.
- Funkcje magistrali.

Rozdział 4. Menu monitorowania

• Dane dotyczące monitorowanych wartości.

Rozdział 5. Menu parametrów

• Lista wszystkich parametrów napędu.

Rozdział 6. Menu Diagnostyka

Rozdział 7. Menu WE/WY i sprzęt

Rozdział 8. Ustawienia użytkownika, ulubione i menu na poziomie użytkownika

Rozdział 9. Opisy monitorowanych wartości

Rozdział 10. Opis parametrów

- Korzystanie z parametrów.
- Programowanie wejść cyfrowych i analogowych.
- Funkcje poszczególnych aplikacji.

Rozdział 11. Śledzenie usterek

- Usterki i ich przyczyny.
- Kasowanie usterek.

W niniejszej instrukcji znajduje się wiele tabel z parametrami. Poniżej znajdują się wskazówki dotyczące sposobu odczytywania tabel.

- A. Lokalizacja parametru w menu, tj. numer parametru.
- B. Nazwa parametru.
- C. Minimalna wartość parametru.
- D. Maksymalna wartość parametru.
- E. Jednostka wartości parametru. Jednostka pojawi się, gdy jest dostępna.
- F. Wartość domyślna ustawiona fabrycznie.
- G. Numer identyfikacyjny parametru.
- H. Krótki opis wartości parametru i/lub jego funkcji.
- Jeśli pojawia się ten symbol, można uzyskać więcej danych na temat parametru w rozdziale Opis parametrów.

FUNKCJE PRZEMIENNIKA CZĘSTOTLIWOŚCI VACON®

- Kreatory rozruchu, sterowania PID, sterowania wielopompowego i trybu pożarowego ułatwiające uruchomienie.
- Przycisk Funct umożliwia łatwe przełączanie lokalnego i zdalnego miejsca sterowania. Możliwe zdalne miejsca sterowania to WE/WY lub magistrala. Wyboru zdalnego miejsca sterowania można dokonać za pomocą parametru.
- Wejście blokady pracy (blokada od przepustnicy). Rozruch napędu jest możliwy dopiero po aktywacji tego wejścia.
- Strona sterowania umożliwiająca szybką konfigurację najważniejszych wartości i monitorowanie ich.
- Różne tryby wstępnego podgrzewania pozwalające uniknąć problemów ze skraplaniem.
- Maksymalna częstotliwość wyjściowa 320 Hz.
- Funkcje zegara czasu rzeczywistego i sterowania czasowego (wymagana jest opcjonalna bateria). Istnieje możliwość zaprogramowania trzech kanałów czasowych w celu uzyskania różnych funkcji w napędzie.
- Dostępny jest zewnętrzny regulator PID. Może on służyć na przykład do sterowania zaworem za pomocą WE/WY przemiennika częstotliwości.
- Funkcja trybu uśpienia, która automatycznie włącza lub wyłącza pracujący napęd w celu oszczędzania energii.
- Dwustrefowy regulator PID z dwoma różnymi sygnałami sprzężenia zwrotnego: sterowanie minimalne i maksymalne.
- Dwa źródła zadawania wartości regulatora PID. Wyboru można dokonać za pomocą wejścia cyfrowego.
- Funkcja wzmocnienia wartości zadanej regulatora PID.
- Funkcja sprzężenia wyprzedzającego zapewniająca szybsze reagowanie na zmiany w procesie.
- Monitorowanie wartości procesu.
- Sterowanie wielopompowe.
- Kompensacja strat ciśnienia w celu uwzględnienia strat ciśnienia w instalacji np. w wyniku nieprawidłowego umieszczenia czujnika w pobliżu pompy lub wentylatora.

SPIS TREŚCI

Pr	zedmo	wa					
	Inforr	nacje o ni	niejszej instrukcji	3			
	Funko	cje przemi	iennika częstotliwości Vacon®	5			
1	Skróc	ona instr	ukcja uruchamiania	11			
	1.1	Panel st	erujący	11			
	1.2	Wyświet	lacze	11			
	1.3 Pierwszy rozruch						
	1.4	Opis apl	ikacji	13			
		1.4.1	Aplikacja Vacon HVAC	13			
2	Kreat	ory					
	2.1	Minikrea	ator PID	20			
	2.2	Minikrea	ator sterowania wielopompowego	21			
	2.3	Kreator	trybu pożarowego	22			
3	Interf	eisv użvtl	kownika	24			
•	3.1	Nawigad	cia po panelu sterujacym	24			
	3.2	Korzvsta	anie z wyświetlacza graficznego				
		3.2.1	Edycja wartości	26			
		3.2.2	Kasowanie usterek	29			
		3.2.3	Przycisk Funct	29			
		3.2.4	Kopiowanie parametrów	33			
		3.2.5	Porównywanie parametrów	35			
		3.2.6	Teksty pomocy	36			
		3.2.7	Korzystanie z menu ulubionych	37			
	3.3	Korzysta	anie z wyświetlacza tekstowego	37			
		3.3.1	Edycja wartości	38			
		3.3.2	Kasowanie usterek	39			
		3.3.3	Przycisk Funct	39			
	3.4	Struktur	a menu	43			
		3.4.1	Szybka konfiguracja	44			
	<u> </u>	3.4.2	Monitorowanie	44			
	3.5	Vacon Li		45			
4	Menu	monitoro	owania	47			
	4.1	Grupa w	artości monitorowanych	47			
		4.1.1	Monitor wielopozycyjny	47			
		4.1.2	Podstawowe	48			
		4.1.3	Monitorowanie funkcji sterowania czasowego	50			
		4.1.4	Monitorowanie regulatora PID1	51			
		4.1.5	Monitorowanie regulatora PID2	52			
		4.1.6	Monitorowanie sterowania wielopompowego	52			
		4.1.7	Monitorowanie danych procesow na magistrali komunikacyjnej	53			
5	Menu	paramet	rów	54			
	5.1	Grupa 3.	1: Ustawienia silnika	54			
	5.2	Grupa 3.	.2: Ustawienia startu/stopu	57			

	5.3	Grupa 3.3: Ustawienia źródeł wartości zadanych	59
	5.4	Grupa 3.4: Konfiguracja zbocza narastania i hamowania	61
	5.5	Grupa 3.5: Konfiguracja WE/WY	62
	5.6	Grupa 3.6: Mapowanie danych magistrali	
	5.7	Grupa 3.7: Częstotliwości zabronione	
	5.8	Grupa 3.8: Monitorowanie limitów	
	5.9	Grupa 3.9: Zabezpieczenia	
	5.10	Grupa 3.10: Automatyczne wznowienie pracy	
	5.11	Grupa 3.11: Funkcje sterowania czasowego	80
	5.12	Grupa 3.12: Regulator PID 1	83
	5.13	Grupa 3.13: Regulator PID 2	89
	5.14	Grupa 3.14: Sterowanie wielopompowe	92
	5.15	Grupa 3.16: Tryb pożarowy	93
	5.16	Grupa 3.17: Ustawienia aplikacji	
	5.17	Grupa 3.18: Ustawienia wyzwolenia impulsu kWh	
6	Menu	ı Diagnostyka	
	6.1	Aktywne usterki	
	6.2	Kasuj usterki	
	6.3	Historia usterek	
	6.4	Liczniki główne	
	6.5	Liczniki kasowalne	
	6.6	Informacje o oprogramowaniu	
7	Menu	ı WE/WY i sprzet	
	7.1	Podstawowe WE/WY	
	7.2	Gniazda kart opcjonalnych	
	7.3	Zegar czasu rzeczywistego	
	7.4	Ustaw. modułu mocy	
	7.5	Panel sterujący	
	7.6	Magistrala komunikacyjna	
8	Ustav	wienia użytkownika, ulubione i menu poziomu użytkownika	106
•	8.1	Ustawienia użytkownika	106
		8.1.1 Kopia zapasowa parametrów	107
	8.2	Ulubione	108
		8.2.1 Dodawanie elementu do ulubionych	108
		8.2.2 Usuwanie elementu z ulubionych	109
	8.3	Poziomy użytkownika	
		8.3.1 Zmiana kodu dostępu poziomów użytkownika	
9	Onisy	v monitorowanych wartości	112
	9.1	Podstawowe	
	9.2	Funkcie sterowania czasowego	115
	9.3	Regulator PID1	115
	9.4	Regulator PID2	116
	9.5	Sterowanie wielopompowe	117
	9.6	Dane magistrali	

10	Opis p	arametr	ów					
	10.1	Ustawie	enia silnika	120				
		10.1.1	Parametry z tabliczki znamionowej silnika	120				
		10.1.2	Parametry sterowania silnika	121				
	10.2	Ustawie	enia Startu/Stopu	125				
	10.3	Wartośo	ci zadane	133				
		10.3.1	Częstotliwość zadawana	133				
		10.3.2	Częstotliwości stałe					
		10.3.3	Parametry potencjometru silnika	137				
	10.4	Konfigu	racja ramp i hamowania	137				
	10.5	Konfigu	racja WE/WY					
		10.5.1	Programowanie wejść cyfrowych i analogowych					
		10.5.2	Wejścia cyfrowe					
		10.5.3	Wejścia analogowe					
		10.5.4	Wyjścia cyfrowe					
		10.5.5	Wyjścia analogowe					
	10.6	Mapa da	anych szyny komunikacyjnej					
	10.7	Czestotliwości zabronione						
	10.8	Monitorowanie limitów						
	10.9	Zabezpi	eczenia					
		10.9.1	Zabezpieczenia termiczne silnika					
		10.9.2	Zabezpieczenie silnika przed utykiem silnika					
		10.9.3	Zabezpieczenie przed niedociążeniem (sucha pompa)					
	10.10	Automa	tyczne wznowienie pracy					
	10.11	Funkcje	sterowania czasowego	175				
		10.11.1	Funkcje sterowania czasowego	175				
	10.12	Regulat	or PID 1					
		10.12.1	Parametry podstawowe	179				
		10.12.2	Wartości zadane					
		10.12.3	Sprzężenie zwrotne					
		10.12.4	Sprzężenie wyprzedzające					
		10.12.5	Monitorowanie procesu					
		10.12.6	Kompensacja spadku ciśnienia					
	10.13	Regulat	or PID 2					
		10.13.1	Parametry podstawowe					
	10.14	Funkcja	sterowania wielopompowego					
	10.15	Tryb poz	żarowy					
	10.16	Ustawie	enia aplikacji	200				
	10.17	Wvzwol	enie impulsu kWh	201				

11	Śledz	enie uste	rek	202
	11.1	Na wyśw	vietlaczu pojawia się usterka	202
		11.1.1	Kasowanie za pomocą przycisku Reset	203
		11.1.2	Kasowanie za pomocą parametru na wyświetlaczu graficznym	203
		11.1.3	Kasowanie za pomocą parametru na wyświetlaczu tekstowym	204
	11.2	Historia	usterek	205
		11.2.1	Analizowanie historii usterek na wyświetlaczu graficznym	205
		11.2.2	Analizowanie historii usterek na wyświetlaczu tekstowym	206
	11.3	Kody us	terek	208

1 SKRÓCONA INSTRUKCJA URUCHAMIANIA

1.1 PANEL STERUJĄCY

Panel sterujący to interfejs użytkownika przemiennika częstotliwości. Na panelu sterującym można regulować prędkość silnika oraz monitorować stan przemiennika częstotliwości. Można również ustawić parametry przemiennika częstotliwości.

Rys. 1: Przyciski panelu sterującego

- Przycisk BACK/RESET. Umożliwia cofnięcie się w strukturze menu, opuszczenie trybu edycji oraz skasowanie usterki.
- B. Przycisk ze strzałką w górę. Umożliwia przewinięcie menu w górę oraz zwiększenie wartości.
- C. Przycisk FUNCT. Umożliwia zmianę kierunku obrotów silnika, przejście na stronę sterowania oraz zmianę miejsca sterowania. Więcej informacji: *Tabela 12 Ustawienia źródeł wartości zadanych*.

1.2 WYŚWIETLACZE

- D. Przycisk ze strzałką w prawo.
- E. Przycisk uruchomienia.
- F. Przycisk ze strzałką w dół. Umożliwia przewinięcie menu w dół oraz zmniejszenie wartości.
- G. Przycisk zatrzymania.
- H. Przycisk ze strzałką w lewo. Umożliwia przesunięcie kursora w lewo.
- I. Przycisk OK. Umożliwia przechodzenie do aktywnego poziomu lub elementu oraz akceptowanie wybranej opcji.

Istnieją dwa typy wyświetlaczy: graficzny i tekstowy. Na panelu sterującym znajdują się zawsze te same przyciski.

Na wyświetlaczu pojawiają się następujące informacje:

- Stan silnika i napędu.
- Usterki silnika i napędu.
- Aktualna lokalizacja w strukturze menu.

Rys. 2: Wyświetlacz graficzny

- A. Pierwsze pole stanu: STOP/RUN
- B. Kierunek obrotów silnika
- C. Drugie pole stanu: READY/NOT READY/ FAULT
- D. Pole alarmu: ALARM/-
- E. Pole miejsca sterowania: PC/IO/ KEYPAD/FIELDBUS
- F. Pole położenia: numer identyfikacyjny parametru i jego bieżąca lokalizacja w menu
- G. Wybrana grupa lub element
- H. Liczba elementów w danej grupie

Rys. 3: Wyświetlacz tekstowy. Jeśli tekst do wyświetlenia jest za długi, będzie on automatycznie przewijany na wyświetlaczu.

- A. Wskaźniki stanu
- B. Wskaźniki alarmu i usterki
- C. Nazwa grupy lub elementu w aktualnej lokalizacji
- D. Aktualna lokalizacja w menu
- E. Wskaźniki miejsca sterowania
- F. Wskaźniki kierunku obrotów

1.3 PIERWSZY ROZRUCH

Kreator rozruchu ułatwia wprowadzenie danych wymaganych przez napęd do sterowania procedurą.

1	Wybór języka	Dostępne opcje zależą od pakietu językowego
2	Czas letni*	Rosja USA UE OFF (WYŁ.)
3	Czas*	gg:mm:ss
4	Data*	dd.mm.
5	Rok*	rrrr

* Pytania wyświetlane tylko w przypadku zainstalowania baterii.

	Uruchomić kreatora rozruchu?	
6		Tak Nie

Aby ustawić wartości parametrów ręcznie, wybierz opcję *Nie* i naciśnij przycisk OK.

7	Wybierz proces	Pompa Wentylator
8	Ustaw wartość parametru Prędkość znamionowa silnika (zgodnie z tabliczką znamionową)	Zakres: 24-19200
9	Ustaw wartość parametru Prąd znamionowy silnika	Zakres: Zmienny
10	Ustaw wartość parametru Minimalna częstotliwość	Zakres: 0.00-50.00
11	Ustaw wartość parametru Maksymalna częstotli- wość	Zakres: 0.00-320.00

Po wybraniu powyższych opcji kreator rozruchu zostanie zamknięty. Można go ponownie uruchomić na dwa sposoby. Przejdź do parametru P6.5.1 Przywróć domyślne ustawienia fabryczne lub do parametru P1.19 Kreator rozruchu. Następnie ustaw wartość *Uaktywnij*.

1.4 OPIS APLIKACJI

1.4.1 APLIKACJA VACON HVAC

Napęd Vacon HVAC zawiera fabrycznie zainstalowaną i gotową do użycia aplikację sterującą.

Napędem można sterować z poziomu panelu sterującego, magistrali, komputera lub zacisku WE/WY.

		S	wy		
		Zacisk	Sygnał	Opis	
	1	+10 Vref	Wyjściowe napięcie odniesienia		
$\begin{array}{c c} 2 \text{ data walle} \\ \text{potencjo-} \\ \text{metrem} \\ 1-10 k\Omega \end{array}$	2 AI1+		Wejście analogowe, napięciowe lub prądowe *)	Napiecie	
Nadajnik 2-przewodowy	3	AI1-	Wspólne wejście analogowe (prądowe)		
Zadawanie	4	AI2+	Wejście analogowe, napięciowe lub prądowe	Prad	
4–20 mA/2–10 V + (programowalne)	5	AI2-	Wspólne wejście analogowe (prądowe)		
·	6	24 Vout	Pomocnicze napięcie 24 V		
	7	GND •	Masa dla WE/WY		
	8	DI1	Wejście cyfr. 1	Start do przodu	
	9	DI2	Wejście cyfr. 2	Start do tyłu	
	10	DI3	Wejście cyfr. 3	Usterka	
	11	СМ	Wspólny dla wejść grupy A (DIN1-DIN6	**)	
	12	24 Vout •	Pomocnicze napięcie 24 V		
г	13	GND •	Masa dla WE/WY		
	14	DI4	Wejście cyfr. 4	Wybór częstotliwości stałej 1	
	15	DI5	Wejście cyfr. 5	Wybór częstotliwości stałej 2	
	16	DI6	Wejście cyfr. 6	Zerowanie usterki	
	17	СМ	Wspólny dla wejść grupy A (DIN1–DIN6) **)	
· · · · · · · · · · · · · · · · · · ·	18	A01+	sygnał analogowy (+wyjście)	Czestotliwość	
	19	A01-/GND •	wspólny dla wyjść analogowych	wyjściowa	
	30	+24 Vwe	Pomocnicze napięcie wejściowe 24	V	
	Α	RS485	Magistrala szeregowa, ujemna		
Do karty przekaźnikowej 1 lub 2	В	RS485	Magistrala szeregowa, dodatnia		

Rys. 4: Przykładowa konfiguracja sygnałów sterujących standardowej karty WE/WY

* = Można użyć przełączników DIP, by dokonać wyboru. Patrz Instrukcja instalacji napędu Vacon 100, Napędy naścienne.

** = Wejścia cyfrowe można odizolować od uziemienia przy użyciu przełącznika DIP.

Od standaro we/	andardowej karty we/wy Karta przekaźnikowa 1				Domyálnia
Od zacisku nr 6 lub 12	Od zacisku #13		Zacisk	Sygnał	Domysime
I	I	21	R01/1 NC		
	PRACA		RO1/2 CM	Wyjscie przekaźnikowe 1	PRACA
Ľ – 🚫			RO1/3 NO		
C	\bigcirc		RO2/1 NC		
		25	RO2/2 CM	Wyjście	USTERKA
			RO2/3 NO	przekaznikowe 2	
			RO3/1 CM	Wyjście	
		33	RO3/2 NO	przekaźnikowe 3	GOTOWOSC

i

WSKAZÓWKA!

Niedostępne dla napędu Vacon 100 X.

Od standardowej ka we/wy	rty	Karta	Demuáluia		
Od zacisku Od zac #12 #13	isku Z	acisk	Sygnał	Domysinie	
1	21	R01/1 NC	Wyiście		
	🏲 22	RO1/2 CM	przekaźnikowe 1	PRACA	
L - (X)	🏲 23	R01/3 NO]		
_	24	RO2/1 NC	—	USTERKA	
	25	R02/2 CM	Wyjscie przekaźnikowe 2		
	26	R02/3 NO			
		TI1+	Wejście		
		TI1-	termistorowe		

Rys. 6: Przykładowa konfiguracja sygnału sterującego karty przekaźnikowej 2

WSKAZÓWKA!

Jedyna opcja dla napędu Vacon 100 X.

Można odizolować od uziemienia wejścia cyfrowe (zaciski 8–10 i 14–16) na standardowej karcie WE/WY. W tym celu należy ustawić przełącznik DIP na karcie sterowania w pozycji WYŁ. Znajdź przełączniki za pomocą poniższego rysunku i dokonaj wyboru zgodnie z własnymi potrzebami.

WSKAZÓWKA!

Aby zapoznać się z konfiguracjami przełącznika DIP dla napędu Vacon 100 X, przeczytaj Instrukcję instalacji napędu Vacon 100 X.

Rys. 7: Przełącznik DIP

1

Tabela 2: Grupa parametrów szybkiej konfiguracji

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P1.1	Napięcie znamio- nowe silnika	Zmienny	Zmienny	v	Zmienny	110	Wartość Un można znaleźć na tabliczce znamionowej silnika. Patrz P3.1.1.1.
P1.2	Częstotliwość zna- mionowa silnika	8.0	320.0	Hz	50	111	Wartość fn można zna- leźć na tabliczce zna- mionowej silnika. Patrz P3.1.1.2.
P1.3	Znamionowa pręd- kość obrotowa sil- nika	24	19200	obr./mi n	Zmienny	112	Wartość nn można zna- leźć na tabliczce zna- mionowej silnika.
P1.4	Prạd znamionowy silnika	Zmienny	Zmienny	A	Zmienny	113	Wartość In można zna- leźć na tabliczce zna- mionowej silnika.
P1.5	Zn cos φ silnika	0.30	1.00		Zmienny	120	Wartość można znaleźć na tabliczce znamiono- wej silnika.
P1.6	Znamionowa moc silnika	Zmienny	Zmienny	kW	Zmienny	116	Wartość nn można zna- leźć na tabliczce zna- mionowej silnika.
P1.7	Limit prạdu silnika	Zmienny	Zmienny	А	Zmienny	107	Maksymalny prąd sil- nika z przemiennika częstotliwości.
P1.8	Częstotliwość mini- malna	0.00	P1.9	Hz	Zmienny	101	Minimalna częstotli- wość zadawana, która jest akceptowalna.
P1.9	Częstotliwość mak- symalna	P1.8	320.00	Hz	50.00	102	Maksymalna częstotli- wość zadawana, która jest akceptowalna.
P1.10	Wybór A dla sterowa- nia z WE/WY	1	8		6	117	Wybór źródła wartości zadanej częstotliwości, gdy miejscem sterowa- nia jest WE/WY A. Aby zapoznać się z opcjami do wyboru, patrz P3.3.3.
P1.11	Częstotliwość stała 1	P3.3.1	300.00	Hz	10.00	105	Wybierz za pomocą wejścia cyfrowego: Wybór częstotliwości stałej 0 (P3.5.1.15) (domyślnie = wejście cyfrowe 4)

Tabela 2: Grupa parametrów szybkiej konfiguracji

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P1.12	Częstotliwość stała 2	P3.3.1	300.00	Hz	15.00	106	Wybierz za pomocą wejścia cyfrowego: Wybór częstotliwości stałej 1 (P3.5.1.16) (domyślnie = wejście cyfrowe 5)
P1.13	Czas przyspieszania 1	0.1	3000.0	S	20.0	103	Określa czas wyma- gany do zwiększenia częstotliwości wyjścio- wej od zera do wartości maksymalnej.
P1.14	Czas hamowania 1	0.1	3000.0	S	20.0	104	Określa czas wyma- gany do zmniejszenia częstotliwości wyjścio- wej od wartości maksy- malnej do zera.
P1.15	Zdalne miejsce ste- rowania	1	2		1	172	Wybór zdalnego miejsca sterowania (start/stop). 0 = sterowanie WE/WY 1 = sterowanie magi- stralą
P1.16	Automatyczne wzno- wienie pracy	0	1		0	731	0 = wyłączony 1 = włączony
P1.17	Usterka termistora	0	3		0	732	0 = brak reakcji 1 = alarm 2 = usterka (zatrzymaj zgodnie z trybem stopu) 3 = usterka (zatrzymaj wybiegiem)
P1.18	Minikreator PID *	0	1		0	1803	0 = nieaktywne 1 = aktywne Patrz

Tabela 2: Grupa parametrów szybkiej konfiguracji

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P1.19	Kreator sterowania wielopompowego *	0	1		0		0 = nieaktywne 1 = aktywne Patrz rozdział <i>2.2 Mini- kreator sterowania wie- lopompowego.</i>
P1.20	Kreator rozruchu **	0	1		0	1171	0 = nieaktywne 1 = aktywne Patrz rozdział <i>1.3 Pierwszy rozruch</i> .
P1.21	Kreator trybu poża- rowego **	0	1		0	1672	0 = nieaktywne 1 = aktywne

* = Parametr widoczny jedynie na graficznym panelu sterującym.

** = Parametr widoczny jedynie na graficznym i tekstowym panelu sterującym.

2 KREATORY

2.1 MINIKREATOR PID

Kreator aplikacji pomaga użytkownikowi w konfiguracji podstawowych parametrów, które są związane z wybraną aplikacją.

Aby uruchomić minikreatora PID, ustaw wartość *Uaktywnij* w parametrze P1.17 Minikreator PID w menu Szybka konfiguracja.

W ustawieniach domyślnych założono, że użytkownik będzie korzystać z regulatora PID w trybie jedno sprzężenie zwrotne/jedna wartość zadana. Domyślnym miejscem sterowania jest WE/WY A, a domyślną jednostką procesową %.

1 Wybierz wartości dla jednostki procesowej (P3.12.1.4)	Więcej niż 1 wybrana wartość.
--	-------------------------------

Jeśli wybrana wartość jest różna od %, pojawią się następne pytania. Jeśli wybrano %, kreator przejdzie bezpośrednio do pytania 5.

2	Ustaw wartość parametru Wartość minimalna jed- nostki procesowej (P3.12.1.5)	Zakres zależy od ustawienia wybranego w pytaniu 1.
3	Ustaw wartość parametru Wartość maksymalna jednostki procesowej (P3.12.1.6)	Zakres zależy od ustawienia wybranego w pytaniu 1.
4	Ustaw wartość parametru Miejsca dziesiętne jed- nostki procesowej (P3.12.1.7)	Zakres: 0-4
5	Ustaw wartość parametru Wybór źródła sprzężenia zwrotnego 1 (P3.12.3.3)	Patrz Tabela 34 Ustawienia sprzężenia zwrot- nego

Jeśli wybrano analogowy sygnał wejściowy, pojawi się pytanie 6. W przeciwnym razie kreator przejdzie do pytania 7.

6	Ustaw zakres sygnału wejścia analogowego	0 = 0–10 V/020 mA 1 = 2–10 V/420 mA Patrz <i>Tabela 15 Ustawienia wejść analogowych</i> .
7	Ustaw wartość parametru Inwersja uchybu (P3.12.1.8)	0 = normalny 1 = odwrócony
8	Ustaw wartość parametru Wybór źródła wartości zadanej (P3.12.2.4)	Patrz Tabela 33 Ustawienia wartości zadanych.

Jeśli wybrano analogowy sygnał wejściowy, pojawi się pytanie 9. W przeciwnym razie kreator przejdzie do pytania 11.

W przypadku wybrania opcji *Wartość zadana z panelu 1* lub *Wartość zadana z panelu 2* kreator przejdzie bezpośrednio do pytania 10.

9	Ustaw zakres sygnału wejścia analogowego	0 = 0–10 V/0–20 mA 1 = 2–10 V/4–20 mA Patrz <i>Tabela 15 Ustawienia wejść analogowych</i> .
10	Ustaw wartości parametrów Wartość zadana z panelu 1 (P3.12.2.1) i Wartość zadana z panelu 2 (P3.12.2.2)	Zakres zależy od ustawienia wybranego w pytaniu 9.
11	Korzystanie z funkcji uśpienia	0 = nie 1 = tak

Jeśli w pytaniu 11 wybrano opcję *Tak*, pojawią się kolejne 3 pytania. Jeśli wybrano opcję *Nie*, kreator zakończy pracę.

12	Ustaw wartość parametru Limit częstotliwości uśpienia (P3.12.2.7)	Zakres: 0.00-320.00 Hz
13	Ustaw wartość parametru Opóźnienie uśpienia 1 (P3.12.2.8)	Zakres: 0–3000 s
14	Ustaw wartość parametru Poziom budzenia (P3.12.2.9)	Zakres zależy od ustawionej jednostki proce- sowej

Minikreator PID zakończył pracę.

2.2 MINIKREATOR STEROWANIA WIELOPOMPOWEGO

Minikreator sterowania wielopompowego zadaje najważniejsze pytania dotyczące konfiguracji układu wielopompowego. Minikreator sterowania wielopompowego jest zawsze wyświetlany po minikreatorze PID.

15	Ustaw wartość parametru Liczba silników (P.3.14.1)	1-4
16	Ustaw wartość parametru Funkcja blokady (P3.14.2)	0 = nieużywany 1 = włączony
17	Ustaw wartość parametru Automatyczna zmiana kolejności silników (P3.14.4)	0 = wyłączony 1 = włączony

Jeśli włączono funkcję automatycznej zmiany kolejności silników, pojawią się kolejne trzy pytania. W przeciwnym razie kreator przejdzie bezpośrednio do pytania 21.

18	Ustaw wartość parametru Uwzględnij przemiennik częstotliwości (P3.14.3)	0 = wyłączony 1 = włączony
19	Ustaw wartość parametru Przedział czasu automa- tycznej zmiany (P3.14.5)	0,0–3000,0 h
20	Ustaw wartość parametru Automatyczna zmiana kolejności silników: Limit częstotliwości (P3.14.6)	0.00–50.00 Hz
21	Ustaw wartość parametru Szerokość pasma (P3.14.8)	0-100%
22	Ustaw wartość parametru Opóźnienie szerokości pasma (P3.14.9)	0-3600 s

Następnie na panelu sterującym zostanie wyświetlona zalecana przez aplikację konfiguracja wejść cyfrowych i wyjść przekaźnikowych (tylko panel graficzny). Należy zapisać te wartości do wykorzystania w przyszłości.

2.3 KREATOR TRYBU POŻAROWEGO

Aby uruchomić kreatora trybu pożarowego, w menu szybkiej konfiguracji należy dla parametru B1.1.4 wybrać opcję *Uaktywnij*.

UWAGA!

Przed przejściem dalej należy przeczytać informacje o haśle i gwarancji w rozdziale *10.15 Tryb pożarowy*.

1	Ustaw wartość parametru P3.17.2 Źródło częstotli-	Więcej niż 1 wybrana wartość
1	wości trybu pożarowego	

Jeśli wybrano wartość różną od *Częstotliwość trybu pożarowego*, kreator przejdzie bezpośrednio do pytania 3.

2	Ustaw wartość parametru P3.17.3 Częstotliwość trybu pożarowego	8,00 Hz–P3.3.1.2 (MaksCzęstotlZadana)
3	Uaktywnij sygnał przy otwarciu lub zamknięciu styku	0 = styk rozwierny 1 = styk zwierny
4	Ustaw wartość parametrów P3.17.4 Aktywacja trybu pożarowego przy OTWARCIU / P3.17.5 Aktywacja trybu pożarowego przy ZAMKNIĘCIU	Wybierz wejście cyfrowe, aby uaktywnić tryb pożarowy. Patrz także rozdział <i>10.15 Tryb</i> <i>pożarowy</i> .
5	Ustaw wartość parametru P3.17.6 Wstecz w trybie pożarowym	Wybierz wejście cyfrowe do uaktywnienia kie- runku wstecznego w trybie pożarowym. DigIn Slot0.1 = DO PRZODU DigIn Slot0.2 = WSTECZ
6	Ustaw wartość parametru P3.17.1 Hasło trybu pożarowego	Ustaw hasło, które uaktywni funkcję trybu pożarowego. 1234 = włączenie trybu testowego 1001 = włączenie trybu pożarowego

3 INTERFEJSY UŻYTKOWNIKA

3.1 NAWIGACJA PO PANELU STERUJĄCYM

Dane przemiennika częstotliwości znajdują się w menu i podmenu. Do nawigacji po menu służą przyciski ze strzałkami w górę i w dół na panelu sterującym. Aby przejść do grupy lub elementu, naciśnij przycisk OK. Aby wrócić do poprzedniego poziomu, naciśnij przycisk Back/ Reset.

Na wyświetlaczu pojawi się aktualna lokalizacja w menu (np. M5.5.1). Pojawi się również nazwa grupy lub elementu w aktualnej lokalizacji.

Rys. 8: Podstawowa struktura menu przemiennika częstotliwości

 $\text{VACON} \cdot 25$

3.2 KORZYSTANIE Z WYŚWIETLACZA GRAFICZNEGO

Rys. 9: Główne menu wyświetlacza graficznego

- A. Pierwsze pole stanu: STOP/RUN
- B. Kierunek obrotów
- C. Drugie pole stanu: READY/NOT READY/ FAULT
- D. Pole alarmu: ALARM/-
- E. Miejsce sterowania: PC/IO/KEYPAD/ FIELDBUS
- F. Pole położenia: numer identyfikacyjny parametru i jego bieżąca lokalizacja w menu
- G. Wybrana grupa lub element: naciśnij OK, aby wejść
- H. Liczba elementów w danej grupie

3.2.1 EDYCJA WARTOŚCI

Wartość elementu na wyświetlaczu graficznym można edytować na dwa różne sposoby.

Zwykle można ustawić tylko jedną wartość parametru. Wybierz ją z listy wartości tekstowych lub zakresu wartości liczbowych.

ZMIANA WARTOŚCI TEKSTOWEJ PARAMETRU

1 Odszukaj parametr za pomocą przycisków strzałek.

STOP	C READY I/O
	Start / Stop Setup
	ID:172 M3.2.1
	Rem Control Place I/O Control
	KeypadStopButton
l (§ T)	Yes
	Start Function
	Ramping

2 Aby przejść do trybu edycji, naciśnij dwa razy przycisk OK lub naciśnij przycisk ze strzałką w prawo.

3 Aby ustawić nową wartość, naciśnij przyciski ze strzałkami w górę lub w dół.

Aby zatwierdzić zmianę, naciśnij przycisk OK. Aby 4 odrzucić zmianę, użyj przycisku Back/Reset.

EDYCJA WARTOŚCI LICZBOWYCH

Odszukaj parametr za pomocą przycisków strzałek. 1

2 Przejdź do trybu edycji.

ID:101 P3.3.1.1 MaxFreqReference 0.00 Hz MinFreqReference ğ 50.00 Hz PosFreqRefLimit 8 320.00 Hz

STOP	\mathbb{C}	READY		I/O
	Mi	.nFreqRe	ference	•
8		ID:101	P3.3.	1.1
^			\sim	/
			- <u>0</u> .00) Hz –
Min: 0.00Hz				
Max	: 50	.00Hz		

3 W przypadku wartości liczbowej do nawigacji po cyfrach służą przyciski ze strzałkami w lewo i w prawo. Do zmiany cyfr służą przyciski ze strzałkami w górę i w dół.

STOP	\mathbb{C}	READY		I/O
8	Mi	.nFreqRe	ference)
\mathbb{C}		ID:101	P3.3.	1.1
			- <u>0</u> 0.0	00 H z -
Min: Max	0.0 :: 50	0Hz .00Hz		

4 Aby zatwierdzić zmianę, naciśnij przycisk OK. Aby odrzucić zmianę, wróć do poprzedniego poziomu za pomocą przycisku Back/Reset.

STOP C	READY		I/O
	InFreqRe	ference P3.3.	1.1
\$		-1 <u>1</u> .0	0 Hz-
Min: 0. Max: 5	00Hz 0.00Hz		

WYBÓR WIĘCEJ NIŻ JEDNEJ WARTOŚCI

Dla niektórych parametrów można wybrać więcej niż jedną wartość. Zaznacz pole wyboru przy każdej wymaganej wartości.

1 Znajdź parametr. Jeśli zaznaczenie pola wyboru jest możliwe, na wyświetlaczu pojawi się odpowiedni symbol.

A. Symbol zaznaczenia przez pole wyboru 2 Do nawigacji po liście wartości służą przyciski ze strzałkami w górę i w dół.

	I/O	
Days ID: M 3.12.	1.3.1	
Sunday		
Monday		
Tuesday		
Wednesday		
Thursday		
Friday		

3 Aby dodać wartość do grupy wybranych wartości, zaznacz pole wyboru obok niej za pomocą przycisku strzałki w prawo.

	DY I/O		
ID:	Days м 3.12.1.3.1		
✓ Sunday			
Monday	Monday		
Tuesday			
Wednesday			
Thursday			
Friday			

3.2.2 KASOWANIE USTEREK

Aby skasować usterkę, należy użyć przycisku Reset lub parametru Kasuj usterki. Patrz instrukcje w rozdziale *11.1 Na wyświetlaczu pojawia się usterka*.

3.2.3 PRZYCISK FUNCT

Przycisk Funct ma 3 funkcje.

- Umożliwia szybki dostęp do strony sterowania.
- Umożliwia łatwe przełączanie miejsc sterowania: lokalnego i zdalnego.
- Umożliwia zmianę kierunku obrotu.

Wybór miejsca sterowania (źródła poleceń startu/zatrzymania przemiennika częstotliwości). Każde miejsce sterowania ma własny parametr wyboru źródła zadawania częstotliwości. Lokalnym miejscem sterowania jest zawsze panel sterujący. Zdalne miejsce sterowania to WE/WY lub magistrala. Aktualne miejsce sterowania jest wyświetlane na pasku stanu wyświetlacza.

Możliwe zdalne miejsca sterowania to WE/WY A, WE/WY B i magistrala. WE/WY A i magistrala mają najniższy priorytet. Można je wybrać za pomocą parametru P3.2.1 (Zdalne miejsce sterowania). Przy użyciu wejścia cyfrowego opcja WE/WY B może zastąpić zdalne miejsca sterowania WE/WY A i magistrala. Wyboru wejścia cyfrowego można dokonać za pomocą parametru P3.5.1.5 (Wymuszenie miejsca sterowania WE/WY B).

Lokalnym miejscem sterowania jest zawsze panel sterujący. Sterowanie lokalne ma wyższy priorytet od zdalnego. Jeśli na przykład zostało ustawione zdalne sterowanie, a następnie za pomocą parametru P3.5.1.5 z wejścia cyfrowego wybrano sterowanie lokalne, jako miejsce sterowania zostanie ustawiony panel sterujący. Przycisk Funct oraz parametr P3.2.2 Lokalne/zdalne umożliwiają przełączanie sterowania lokalnego i zdalnego.

ZMIANA MIEJSCA STEROWANIA

1 Naciśnij przycisk Funct w dowolnym miejscu w strukturze menu.

2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Lokalne/zdalne. Naciśnij przycisk OK.

3 Aby wybrać ustawienie Lokalne lub zdalne, ponownie użyj przycisków ze strzałkami w górę i w dół. Aby zatwierdzić wybór, naciśnij przycisk OK.

4 Jeśli zmieniono miejsce sterowania ze zdalnego na lokalne (panel sterujący), należy podać wartość odniesienia panelu.

Po wybraniu opcji na wyświetlaczu pojawi się ponownie ten sam ekran, który był wyświetlany przed naciśnięciem przycisku Funct.

INTERFEJSY UŻYTKOWNIKA

Local/Remote

$\text{VACON}\cdot\text{31}$

Keypad

PRZECHODZENIE DO STRONY STEROWANIA

Na stronie sterowania można łatwo monitorować najważniejsze wartości.

1 Naciśnij przycisk Funct w dowolnym miejscu w strukturze menu.

2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Strona sterowania. Przejdź do niej za pomocą przycisku OK. Zostanie wyświetlona strona sterowania.

3 Jeśli wybrano lokalne miejsce sterowania i wartość odniesienia panelu sterującego, po naciśnięciu przycisku OK można ustawić parametr P3.3.6 Zadawanie z panelu sterującego.

4 Do zmiany cyfr w wartości służą przyciski ze strzałkami w górę i w dół. Zatwierdź zmianę za pomocą przycisku OK.

Więcej informacji na temat parametru Zadawanie z panelu sterującego znajduje się w rozdziale *5.3 Grupa 3.3: Ustawienia źródeł wartości zadanych*. Dla pozostałych miejsc sterowania i wartości zadanych na wyświetlaczu będzie widoczna zablokowana wartość

STOP 丆	READY			Keypad
	Key ID: 184	pad F	lefe	rence
↓	0.	00Hz		
Output Fre	quency	Motor	Torq	lne
	0.00Hz			0.00%
Motor Curr	ent	Motor	Powe	r
	0.00A			0.00%

		DEADY		14
STOP	\cup	C READY		кеураа
	Keypad Reference			
▲ ▼	$-\underline{0}.00$ Hz –			
Output	Fre	quency	Motor Tore	lne
		0.00Hz		0.00%
Motor Current		Motor Powe	er	
		0.00A		0.00%

READY

STOP

STOP		Reypau		
		Keypad		
	Local/Rer	note 🗘		
<u>Control page</u>				
	Change direc	tion		

częstotliwości zadanej. Inne wartości na stronie to wartości monitorowane wielopoziomowo. Można wybrać wartości pojawiające się w tym miejscu (patrz instrukcje w rozdziale *4.1.1 Monitor wielopozycyjny*).

ZMIANA KIERUNKU OBROTU

Kierunek obrotów silnika można szybko zmienić za pomocą przycisku Funct.

WSKAZÓWKA!

Polecenie zmiany kierunku jest dostępne w menu tylko wtedy, gdy aktualnym miejscem sterowania jest sterowanie Lokalne.

1 Naciśnij przycisk Funct w dowolnym miejscu w strukturze menu.

STOP		γ	I/O
C	Ma ID:	in Menu ^{M1}	
	Monito (7)	r	
8	Parame (15	ters)	
	Diagno (6)	stics	

- 2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Zmiana kierunku. Naciśnij przycisk OK.
- RUN
 READY
 Keypad

 Choose action
 ID:1805

 ID:1805
 ID:1805

 Change direction
 ID:1805

 Local/Remote
 ID:1805
- 3 Wybierz nowy kierunek obrotu. Aktualny kierunek obrotu miga. Naciśnij przycisk OK.

RUN	\mathbb{C}	READY		Keypad
		Ch ID:1805	oose act	tion
			Reverse Forward	

4 Kierunek obrotów zmienia się natychmiast. Zmienia się też strzałka wskazania w polu stanu wyświetlacza.

STOR	T READY	I/O
C	Main Mer	nu M1
	Monitor (7)	
8	Parameters (15)	
	Diagnostics (6)	

3.2.4 KOPIOWANIE PARAMETRÓW

WSKAZÓWKA!

Ta funkcja jest dostępna tylko na wyświetlaczu graficznym.

Aby skopiować parametry z panelu sterującego do napędu, należy zatrzymać napęd.

KOPIOWANIE PARAMETRÓW PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ta funkcja służy do kopiowania parametrów z jednego napędu na inny.

- 1 Zapisz parametry na panelu sterującym.
- Odłącz panel sterujący i podłącz go do innego napędu.
- 3 Pobierz parametry na nowym napędzie, wydając polecenie Przywróć z panelu sterującego.

ZAPISYWANIE PARAMETRÓW NA PANELU STERUJĄCYM

1 Przejdź do menu Ustawienia użytkownika.

Keypad

M6.5.1

2 Przejdź do podmenu Kopia zapasowa parametrów.

READY

ID:

Save to keypad

Parameter backup

Restore factory defaults

Restore from keypad

STOP 🗸

3 Wybierz funkcję za pomocą przycisków ze strzałkami w górę i w dół. Zatwierdź wybór za pomocą przycisku OK.

Polecenie Przywróć domyślne ustawienia fabryczne przywraca fabryczne ustawienia parametrów. Za pomocą polecenia Zapisz w panelu sterującym można skopiować wszystkie parametry do panelu sterującego. Polecenie Przywróć z panelu sterującego kopiuje wszystkie parametry z panelu sterującego do napędu.

Parametry, których nie można skopiować w przypadku napędów o różnych rozmiarach

Jeśli panel sterujący napędu zostanie zamieniony na panel z napędu o innym rozmiarze, wartości tych parametrów nie zmienią się.

- Napięcie znamionowe silnika (P3.1.1.1)
- Częstotliwość znamionowa silnika (P3.1.1.2)
- Prędkość znamionowa silnika (P3.1.1.3)
- Prąd znamionowy silnika (P3.1.1.4)
- Wartość cos fi silnika (P3.1.1.5)
- Znamionowa moc silnika (P3.1.1.6)
- Limit prądu silnika (P3.1.1.7)
- Częstotliwość przełączania (P3.1.2.1)
- Napięcie przy zerowej częstotliwości (P3.1.2.4)
- Prąd podgrzewania silnika (P3.1.2.7)
- Regulacja napięcia stojana (P3.1.2.17)
- Częstotliwość maksymalna (P3.3.2)
- Prąd magnesowania przy starcie (P3.4.8)
- Wartość prądu przy hamowaniu prądem stałym (P3.4.10)
- Prad hamowania strumieniem (P3.4.13)
- Limit prądu utyku (P3.9.5)
- Stała czasowa ciepła silnika (P3.9.9)

3.2.5 PORÓWNYWANIE PARAMETRÓW

Za pomocą tej funkcji można porównać aktywny zestaw parametrów z jednym z poniższych czterech zestawów.

- Zestaw 1 (P6.5.4 Zapisz w zestawie 1)
- Zestaw 2 (P6.5.6 Zapisz w zestawie 2)
- Wartości domyślne (P6.5.1 Przywróć domyślne ustawienia fabryczne)
- Zestaw panelu sterującego (P6.5.2 Zapisz w panelu sterującym)

Więcej informacji na temat tych parametrów: Tabela 57 Porównanie parametrów.

WSKAZÓWKA!

Jeśli zestaw parametrów do porównania z aktualnym zestawem nie został zapisany, na wyświetlaczu pojawi się tekst *Porównywanie zakończone niepowodzeniem*.

KORZYSTANIE Z FUNKCJI PORÓWNYWANIA PARAMETRÓW

1 Przejdź do opcji Porównywanie parametrów w menu Ustawienia użytkownika.

STOP	C READY	I/O
8	User Settings ID: M6.6	
8	Language Selection English	n n
	Parameter Backup (7)	
	Parameter Compare (4)	

2 Wybierz parę zestawów. Naciśnij przycisk OK, aby zatwierdzić wybór.

4 Sprawdź wyniki porównania wartości bieżących i wartości z innego zestawu.

STOP C READY	I/O			
Active set-Set 1 ID:113				
Motor Nom Currnt 0.56A 1.90A				
Motor Cos Phi 0.68 1.74				
(A)(B)(C)(D)				

- A. Bieżąca wartość
- B. Wartość z innego zestawu
- C. Bieżąca wartość
- D. Wartość z innego zestawu

3.2.6 TEKSTY POMOCY

Na wyświetlaczu graficznym mogą pojawić się informacje pomocy dotyczące wielu tematów. Informacje pomocy istnieją dla wszystkich parametrów.

Informacje pomocy są dostępne również dla usterek, alarmów i kreatora rozruchu.

ODCZYT INFORMACJI POMOCY

1 Znajdź element, o którym informacje chcesz odczytać.

2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Pomoc.

STOP	\mathbb{C}	READY	/	I/O
8		Ctrl ID:403	. signal ™3.5	1 A .1.1
	EĊ	lit		
(\mathbf{i})	He	lp		
\bigcirc	Ad	d to f	avourite	s
Aby wyświetlić informacje pomocy, naciśnij przycisk OK.

STOP	\mathbb{C}	READY		I/O
i		Ctrl ID:403	signal M3.5	1 A .1.1
Start I/O A funct: Logic	Sig . St iona in	mal 1 fo art Sign lity cho Start/St	r control al 1 sen with 3 op Setup M	Place I/O A Menu.

WSKAZÓWKA!

Informacje pomocy są wyświetlane zawsze w języku angielskim.

3.2.7 KORZYSTANIE Z MENU ULUBIONYCH

Elementy często używane można dodać do ulubionych. Można zebrać zestaw parametrów lub sygnałów monitorujących ze wszystkich menu panelu sterującego.

Więcej informacji na temat korzystania z menu ulubionych znajduje się w rozdziale *8.2 Ulubione*.

3.3 KORZYSTANIE Z WYŚWIETLACZA TEKSTOWEGO

Interfejsem użytkownika może być również panel sterujący z wyświetlaczem tekstowym. Wyświetlacze tekstowy i graficzny mają prawie identyczne funkcje. Niektóre funkcje są dostępne tylko na wyświetlaczu graficznym.

Na wyświetlaczu pojawiają się informacje o stanie silnika i przemiennika częstotliwości. Ponadto pojawiają się informacje o usterkach w ich działaniu. Na wyświetlaczu znajduje się informacja o aktualnej lokalizacji w menu. Pojawi się również nazwa grupy lub elementu w aktualnej lokalizacji. Jeśli tekst do wyświetlenia jest za długi, będzie on automatycznie przewijany w celu wyświetlenia go w całości.

Rys. 10: Główne menu wyświetlacza tekstowego

- A. Wskaźniki stanu
- B. Wskaźniki alarmu i usterki
- C. Nazwa grupy lub elementu w aktualnej lokalizacji
- 3.3.1 EDYCJA WARTOŚCI

ZMIANA WARTOŚCI TEKSTOWEJ PARAMETRU

Ustaw wartość parametru, postępując zgodnie z niniejszą procedurą.

1 Odszukaj parametr za pomocą przycisków strzałek.

STOP

ALARM

FAULT

D. Aktualna lokalizacja w menu

F. Wskaźniki kierunku obrotów

READY

RUN

E. Wskaźniki miejsca sterowania

2 Aby przejść do trybu edycji, naciśnij przycisk OK.

3 Aby ustawić nową wartość, naciśnij przyciski ze strzałkami w górę lub w dół.

4 Zatwierdź zmianę za pomocą przycisku OK. Aby odrzucić zmianę, wróć do poprzedniego poziomu za pomocą przycisku Back/Reset.

EDYCJA WARTOŚCI LICZBOWYCH

- 1 Odszukaj parametr za pomocą przycisków strzałek.
- 2 Przejdź do trybu edycji.
- 3 Do nawigacji po cyfrach służą przyciski ze strzałkami w lewo i w prawo. Do zmiany cyfr służą przyciski ze strzałkami w górę i w dół.
- 4 Zatwierdź zmianę za pomocą przycisku OK. Aby odrzucić zmianę, wróć do poprzedniego poziomu za pomocą przycisku Back/Reset.

3.3.2 KASOWANIE USTEREK

Aby skasować usterkę, należy użyć przycisku Reset lub parametru Kasuj usterki. Patrz instrukcje w rozdziale *11.1 Na wyświetlaczu pojawia się usterka*.

3.3.3 PRZYCISK FUNCT

Przycisk Funct ma 3 funkcje.

- Umożliwia szybki dostęp do strony sterowania.
- Umożliwia łatwe przełączanie miejsc sterowania: lokalnego i zdalnego.
- Umożliwia zmianę kierunku obrotu.

Wybór miejsca sterowania (źródła poleceń startu/zatrzymania przemiennika częstotliwości). Każde miejsce sterowania ma własny parametr wyboru źródła zadawania częstotliwości. Lokalnym miejscem sterowania jest zawsze panel sterujący. Zdalne miejsce sterowania to WE/WY lub magistrala. Aktualne miejsce sterowania jest wyświetlane na pasku stanu wyświetlacza.

Możliwe zdalne miejsca sterowania to WE/WY A, WE/WY B i magistrala. WE/WY A i magistrala mają najniższy priorytet. Można je wybrać za pomocą parametru P3.2.1 (Zdalne miejsce sterowania). Przy użyciu wejścia cyfrowego opcja WE/WY B może zastąpić zdalne miejsca sterowania WE/WY A i magistrala. Wyboru wejścia cyfrowego można dokonać za pomocą parametru P3.5.1.5 (Wymuszenie miejsca sterowania WE/WY B).

Lokalnym miejscem sterowania jest zawsze panel sterujący. Sterowanie lokalne ma wyższy priorytet od zdalnego. Jeśli na przykład zostało ustawione zdalne sterowanie, a następnie za

pomocą parametru P3.5.1.5 z wejścia cyfrowego wybrano sterowanie lokalne, jako miejsce sterowania zostanie ustawiony panel sterujący. Przycisk Funct oraz parametr P3.2.2 Lokalne/zdalne umożliwiają przełączanie sterowania lokalnego i zdalnego.

ZMIANA MIEJSCA STEROWANIA

1 Naciśnij przycisk Funct w dowolnym miejscu w strukturze menu.

2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Lokalne/zdalne. Naciśnij przycisk OK.

3 Aby wybrać ustawienie Lokalne lub zdalne, ponownie użyj przycisków ze strzałkami w górę i w dół. Aby zatwierdzić wybór, naciśnij przycisk OK.

4 Jeśli zmieniono miejsce sterowania ze zdalnego na lokalne (panel sterujący), należy podać wartość odniesienia panelu.

Po wybraniu opcji na wyświetlaczu pojawi się ponownie ten sam ekran, który był wyświetlany przed naciśnięciem przycisku Funct.

PRZECHODZENIE DO STRONY STEROWANIA

Na stronie sterowania można łatwo monitorować najważniejsze wartości.

READY	RUN	STOP	ALARM	FAULT
្រព្ព	ງດູດ	ME 7	$\Box \Box \Box \Box$	
				,
	7			
i i i	-ij			
	— '			
FWD	REV	I/O	KEYPAD	BUS

1 Naciśnij przycisk Funct w dowolnym miejscu w strukturze menu.

2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Strona sterowania. Przejdź do niej za pomocą przycisku OK. Zostanie wyświetlona strona sterowania.

3 Jeśli wybrano lokalne miejsce sterowania i wartość odniesienia panelu sterującego, po naciśnięciu przycisku OK można ustawić parametr P3.3.6 Zadawanie z panelu sterującego.

Więcej informacji na temat parametru Zadawanie z panelu sterującego znajduje się w rozdziale *5.3 Grupa 3.3: Ustawienia źródeł wartości zadanych*). Dla pozostałych miejsc sterowania i wartości zadanych na wyświetlaczu będzie widoczna zablokowana wartość częstotliwości zadanej. Inne wartości na stronie to wartości monitorowane wielopoziomowo. Można wybrać wartości pojawiające się w tym miejscu (patrz instrukcje w rozdziale *4.1.1 Monitor wielopozycyjny*).

ZMIANA KIERUNKU OBROTU

Kierunek obrotów silnika można szybko zmienić za pomocą przycisku Funct.

WSKAZÓWKA!

Polecenie zmiany kierunku jest dostępne w menu tylko wtedy, gdy aktualnym miejscem sterowania jest sterowanie Lokalne.

1 Naciśnij przycisk Funct w dowolnym miejscu w strukturze menu.

- 2 Za pomocą przycisków ze strzałkami w górę i w dół wybierz opcję Zmiana kierunku. Naciśnij przycisk OK.
- 3 Wybierz nowy kierunek obrotu. Aktualny kierunek obrotu miga. Naciśnij przycisk OK. Kierunek obrotów zmienia się natychmiast; zmienia się też strzałka wskazania w polu stanu na wyświetlaczu.

3.4 STRUKTURA MENU

Menu	Funkcja			
Szybka konfiguracja	Patrz rozdział 1.4.1 Aplikacja Vacon HVAC.			
Monitorowanie	Monitor wielopozycyjny *			
	Podstawowe			
	Funkcje sterowania czasowego			
	Regulator PID 1			
	Regulator PID 2			
	Ster. wielopomp.			
	Dane magistrali			
	Wejścia temperaturowe **			
Parametry	Patrz rozdział 5 Menu parametrów.			
Diagnostyka	Aktywne usterki			
	Kasuj usterki			
	Historia usterek			
	Liczniki główne			
	Liczniki kasowalne			
	Informacje o oprogramowaniu			
WE/WY i sprzęt	Podstawowe WE/WY			
	Gniazdo C			
	Gniazdo D			
	Gniazdo E			
	Zegar czasu rzeczywistego			
	Ustaw. modułu mocy			
	Panel sterujący			
	RS-485			
	Ethernet			

Menu	Funkcja
Ustawienia użytkownika	Wybór języka
	Wybór aplikacji
	Kopia zapasowa parametrów*
	Nazwa napędu
Ulubione *	Patrz rozdział <i>8.2 Ulubione</i> .
Poziomy użytkownika	Patrz rozdział 8.3 Poziomy użytkownika.

* Funkcja niedostępna na panelu sterującym z wyświetlaczem tekstowym.

** = Funkcja jest dostępna tylko wtedy, gdy opcjonalna karta OPT-88 lub OPT-BH jest podłączona do napędu AC.

3.4.1 SZYBKA KONFIGURACJA

Menu Szybka konfiguracja obejmuje minimalny zestaw parametrów najczęściej używanych podczas instalacji oraz uruchamiania aplikacji Vacon 100 HVAC. Zostały one zebrane w pierwszej grupie parametrów, dzięki czemu można je szybko i łatwo znaleźć. Można je także odszukać oraz modyfikować na poziomie grup parametrów, do których faktycznie należą. Zmiana wartości parametru w grupie parametrów szybkiej konfiguracji powoduje także zmianę wartości tego parametru w grupie, do której faktycznie należy. Bardziej szczegółowe informacje na temat parametrów należących do tej grupy można znaleźć w rozdziałach *1.3 Pierwszy rozruch* i *2 Kreatory*.

3.4.2 MONITOROWANIE

MONITOR WIELOPOZYCYJNY

Za pomocą funkcji monitorowania wielopozycyjnego można monitorować 4–9 elementów naraz. Patrz rozdział *4.1.1 Monitor wielopozycyjny*.

WSKAZÓWKA!

Menu monitorowania wielopozycyjnego jest niedostępne na wyświetlaczu tekstowym.

PODSTAWOWE

Wśród podstawowych wartości monitorowanych mogą się znajdować stany, pomiary oraz rzeczywiste wartości parametrów i sygnałów. Patrz rozdział *4.1.2 Podstawowe*.

FUNKCJE STEROWANIA CZASOWEGO

Za pomocą tej funkcji można monitorować wartości funkcji sterowania czasowego oraz zegara czasu rzeczywistego. Patrz rozdział *4.1.3 Monitorowanie funkcji sterowania czasowego*.

REGULATOR PID 1

Za pomocą tej funkcji można monitorować wartości regulatora PID. Patrz rozdział *4.1.4 Monitorowanie regulatora PID1*.

REGULATOR PID 2

Za pomocą tej funkcji można monitorować wartości regulatora PID. Patrz rozdział *4.1.5 Monitorowanie regulatora PID2*.

STER. WIELOPOMP.

Za pomocą tej funkcji można monitorować wartości związane z działaniem kilku napędów. Patrz rozdział *4.1.6 Monitorowanie sterowania wielopompowego*.

DANE MAGISTRALI

Za pomocą tej funkcji można wyświetlić dane magistrali jako monitorowane wartości. Za pomocą tej funkcji można na przykład monitorować proces uruchamiania magistrali. Patrz rozdział *4.1.7 Monitorowanie danych procesów na magistrali komunikacyjnej*.

3.5 VACON LIVE

Vacon Live to przeznaczone na komputery PC narzędzie do uruchamiania i konserwacji przemienników częstotliwości Vacon® 10, Vacon® 20 i Vacon® 100). Narzędzie Vacon Live można pobrać ze strony http://drives.danfoss.com.

Narzędzie Vacon Live ma następujące funkcje.

- Parametryzacja, monitorowanie, informacje o napędzie, rejestracja danych itp.
- Narzędzie do pobierania oprogramowania Vacon Loader
- Transmisja szeregowa i obsługa Ethernet
- Zgodność z systemami Windows XP, Vista, 7 i 8.
- 17 języków: angielski, chiński, czeski, duński, fiński, francuski, hiszpański, holenderski, niemiecki, polski, portugalski, rosyjski, rumuński, słowacki, szwedzki, turecki i włoski.

Przemiennik częstotliwości można połączyć z narzędziem za pomocą kabla transmisji szeregowej. Sterowniki transmisji szeregowej są instalowane automatycznie podczas

instalacji programu Vacon Live. Po podłączeniu kabla program Vacon Live automatycznie wykryje podłączony napęd.

Więcej informacji na temat korzystania z programu Vacon Live znajduje się w menu pomocy tego programu.

						VACC		DRIVES
Drives	Parameter Browser 🕺							
Drive X	K & B & K & G = = 1	O	3 🖻 🗆 😡 🖻	Search				
Files	▲ ⊈ Menu	* Inde	VariableText	Value	Min	Max	Unit	Dr
	 I. Quick Setup 1.21 Standard 	1.	Quick Setup (29)					
	 1.31. Standard 2. Monitor 	P 1.2	Application	Standard	Standard	Motor Potentiometer		Stand
	2.1. Multimonitor	= P1.3	MinFregReference	0,00	0.00	50,00	Hz	0,00
	2.3. Basic	P 1.4	MaxFreqReference	50.00	0.00	320.00	Hz	0.00
	2.4. I/O	P 1.5	Accel Time 1	5.0	0,1	3000.0	5	5.0
	2.7. Timer Functions	P 1.6	Decel Time 1	5,0	0,1	3000,0	5	5,0
	2.8. PID Controller	P 1.7	Current Limit	3,70	0.26	5.20	A	0.00
	2.9. ExtPID Controller	P 1.8	Motor Type	Induction Motor	Induction Motor	PM Motor		Induc
	2.10. Mainten, Counters	P 1.9	Motor Nom Volta	230	180	240	v	0
	2.12. Fieldbus Data	P 1.1	Motor Nom Freg	50.00	8.00	320.00	Hz	0.00
	2.13. Drive Customizer	P 1.1	Motor Nom Speed	1370	24	19200	rpm	0
	A 3.1. Motor Settings	P 1.1	Motor Nom Currnt	1.90	0.26	5.20	A	0.00
	3.1.1. Motor Nameplate	P 1.1	Motor Cos Phi	0,74	0.30	1.00		0.00
	A 3.1.2. Motor Control	P 1.1	Energy Optimization	Disabled	Disabled	Enabled		Disat
	A 3.1.4. Open Loop	P 1.1	5 Identification	No Action	No Action	With Rotation		No A
	3.1.4.12. If Start	P 1.1	3 Start Function	Ramping	Ramping	Flying Start		Ram
	3.2. Start/Stop Setup	P 1.1	7 Stop Function	Coasting	Coasting	Ramping		Coas
	3.3. References	P 1.1	Automatic Reset	Disabled	Disabled	Enabled		Disat
	4 🥐 3.3.2. Torque Ref	P 1.1	External Fault	Fault	No Action	Fault.Coast		Fault
	3.3.2.7. Torque Ctrl Open Loop	P 1.2	Al Low Fault	No Action	No Action	Fault,Coast		No A
	3.3.3. Preset Freqs	P12	Rem. Ctrl. Place	I/O Control	I/O Control	FieldbusCTRL		10 C
	3.3.4. mont Potenion.	P 1.2	2 I/O A Ref sel	A11+A/2	PresetFreq0	Block Out.10	-	A11+
	J.3.6. Jogging	P 1.2	Keypad Ref Sel	Keypad Ref	PresetFreq0	Block Out.10	-	Keyp
	 3.4. Ramps And Brakes 3.4.1. Ramp 1 3.4.2. Ramp 2 3.4.3. Start Magnetizat. 3.4.4. DC Brake 	P 1.2	FieldBus Ref Sel	Fieldbus	PresetFreq0	Block Out.10	-	Field
		P 1.2	5 Al1 Signal Range	0-10V/0-20mA	0-10V/0-20mA	2-10V/4-20mA	-	0-10
		P 1.2	Al2 Signal Range	2-10V/4-20mA	0-10V/0-20mA	2-10V/4-20mA		2-10
		P 1.2	RO1 Function	Run	Not Used	Motor PreHeat Active		Run
	A 3.5 UD Config	+ +		m	0.0253187.6250			

Rys. 11: Narzędzie komputerowe Vacon Live

4 MENU MONITOROWANIA

4.1 GRUPA WARTOŚCI MONITOROWANYCH

Można monitorować rzeczywiste wartości parametrów i sygnałów. Ponadto można monitorować stany i pomiary. Niektóre z monitorowanych wartości można dostosować.

4.1.1 MONITOR WIELOPOZYCYJNY

Na stronie monitorowania wielopozycyjnego można monitorować 9 elementów naraz.

ZMIANA ELEMENTÓW DO MONITOROWANIA

1 Przejdź do menu monitorowania za pomocą przycisku OK.

STOP	\mathbb{C}	READY		I/O	
C		ID:	Main	Menu M1	
8	Qu	ick (4)	Setup		
	Monitor (12)				
8	Parameters (21)				

2 Przejdź do opcji monitorowania wielopozycyjnego.

STOP	\mathbb{C}	REA	٩DY		I/O
		ID:		Monitor M2.1	
	Μι	ıltir	non	itor	
	Ba	asic (7)			
	Ti	mer (13)	Fui	nctions	

3 Aby zastąpić stary element, uaktywnij go. Użyj przycisków ze strzałkami.

STOP 丆	READY I/						
	Multimonitor						
FreqReference	D:25 F Output Freq	Mot	or Speed				
20.0 Hz	0.00 Hz	0	.0 rpm				
Motor Curre	Motor Torque	Moto	r Voltage				
0.00A	0.00 %		0.0V				
DC-link volt	Unit Tempera	Moto	r Tempera				
0.0V	81.9°C		0.0%				

4 Aby wybrać nowy element na liście, naciśnij przycisk OK.

		I/O						
FreqRefe	FreqReference							
ID:1	M2.1.1.	1						
Output frequency	0.0	0 Hz						
FreqReference	10.0	0 Hz						
Motor Speed	0.0	0 rpm						
Motor Current	0.0	A 0						
Motor Torque	0.0	90 %						
Motor Power	0.0	90 %						

4.1.2 PODSTAWOWE

Podstawowe wartości monitorowane to faktyczne wartości wybranych parametrów, sygnałów, stanów oraz pomiarów. Różne aplikacje mogą różnić się pod względem liczby monitorowanych wartości.

W następnej tabeli znajdują się podstawowe wartości monitorowane i związane z nimi dane.

4

WSKAZÓWKA!

W menu monitorowania dostępne są tylko stany standardowych kart WE/WY. Stany sygnałów wszystkich kart WE/WY można znaleźć w postaci danych nieprzetworzonych w menu systemowym WE/WY i sprzęt.

Sprawdź stany karty rozszerzeń WE/WY w menu systemowym WE/WY i sprzęt, gdy pojawi się odpowiedni monit systemowy.

Tabela 3: Elementy w menu monitorowania

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.2.1	Częstotliwość wyj- ściowa	Hz	1	
V2.2.2	Częstotliwość zada- wana	Hz	25	
V2.2.3	Prędkość obrotowa silnika	obr.	2	
V2.2.4	Prạd silnika	А	3	
V2.2.5	Moment obrotowy silnika	%	4	
V2.2.7	Moc na wale silnika	%	5	
V2.2.8	Moc na wale silnika	kW/KM	73	
V2.2.9	Napięcie silnika	V	6	
V2.2.10	Napięcie w obwodzie prądu stałego	V	7	
V2.2.11	Temperatura prze- miennika	°C	8	
V2.2.12	Temperatura silnika	%	9	
V2.2.13	Wejście analogowe 1	%	59	
V2.2.14	Wejście analogowe 2	%	60	
V2.2.15	Wyjście analogowe 1	%	81	
V2.2.16	Podgrzewanie wstępne silnika		1228	0 = wyłączone 1 = ogrzewanie (zasilanie prądem stałym)
V2.2.17	Słowo stanu prze- miennika		43	B1 = gotowość B2 = praca B3 = usterka B6 = włączenie pracy B7 = aktywny alarm B10 = hamowanie prądem stałym w stopie B11 = aktywne hamowanie prądem stałym B12 = żądanie uruchomienia B13 = aktywny regulator silnika
V2.2.19	Status trybu pożaro- wego		1597	0 = wyłączony 1 = włączony 2 = uaktywnione 3 = tryb testowy
V2.2.20	Słowo 1 stanu DIN		56	

4

Tabela 3: Elementy w menu monitorowania

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.2.21	Słowo 2 stanu DIN		57	
V2.2.22	Prạd silnika do 1 miejsca po przecinku		45	
V2.2.23	Appl.StatusWord 1		89	B0 = blokada 1 B1 = blokada 2, B5 = akt. sterowanie WE/WY A B6 = akt. sterowanie WE/WY B B7 = akt. sterowanie z magistrali B8 = akt. sterowanie lokalne B9 = akt. sterowanie PC B10 = akt. częstotliwości stałe B12 = akt. tryb poż. B13 = akt. podgrzewanie
V2.2.24	Appl.StatusWord 2		90	B0 = zabronione przyspieszanie/hamowanie B1 = akt. przełącznik silnika
V2.2.25	Minimalny licznik kasowania kWh		1054	
V2.2.26	Maksymalny licznik kasowania kWh		1067	
V2.2.27	KodOstatAktywnUs- terk		37	
V2.2.28	ID OstatAktywnaUs- ter		95	
V2.2.29	KodOstatAktywnyA- larm		74	
V2.2.30	ID OstatAktywnyA- larm		94	
V2.2.31	Prad Fazy U	А	39	
V2.2.32	Prad Fazy V	А	40	
V2.2.33	Prad Fazy W	А	41	
V2.2.34	Stan regulacji silnika		77	B0: Limit prądu (silnik) B1: Limit prądu (prądnica) B2: Limit momentu obrotowego (silnik) B3: Limit momentu obrotowego (prądnica) B4: Regulacja przepięć B5: Regulacja zbyt niskiego napięcia B6: Limit mocy (silnik) B7: Limit mocy (prądnica)

4.1.3 MONITOROWANIE FUNKCJI STEROWANIA CZASOWEGO

Monitorowanie wartości funkcji sterowania czasowego oraz zegara czasu rzeczywistego.

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.3.1	TC 1, TC 2, TC 3		1441	
V2.3.2	Przedział czasu 1		1442	
V2.3.3	Przedział czasu 2		1443	
V2.3.4	Przedział czasu 3		1444	
V2.3.5	Przedział czasu 4		1445	
V2.3.6	Przedział czasu 5		1446	
V2.3.7	Sterowanie czasowe 1	S	1447	
V2.3.8	Sterowanie czasowe 2	S	1448	
V2.3.9	Sterowanie czasowe 3	S	1449	
V2.3.10	Zegar czasu rzeczy- wistego		1450	

4.1.4 MONITOROWANIE REGULATORA PID1

Tabela 5	Monitorowa	nie wartości	i regulatora	PID1
----------	------------	--------------	--------------	------

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.4.1	Wartość zadana regulacji PID1	Zmienny	20	
V2.4.2	Sprzężenie zwrotne PID1	Zmienny	21	
V2.4.3	PID1 uchyb	Zmienny	22	
V2.4.4	PID1 wyjście	%	23	
V2.4.5	Stan PID1		24	0 = zatrzymany 1 = praca 3 = tryb uśpienia 4 = w strefie martwej (patrz rozdział <i>5.12 Grupa</i> <i>3.12: Regulator PID 1</i>)

4

4.1.5 MONITOROWANIE REGULATORA PID2

Tabela 6: Monitorowanie wartości regulatora PID2

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.5.1	Wartość zadana PID2	Zmienny	83	
V2.5.2	Sprzężenie zwrotne PID2	Zmienny	84	
V2.5.3	PID2 uchyb	Zmienny	85	
V2.5.4	PID2 wyjście	%	86	
V2.5.5	Stan PID2		87	0 = zatrzymany 1 = praca 2 = w strefie martwej (patrz rozdział <i>5.13 Grupa</i> <i>3.13: Regulator PID 2</i>)

4.1.6 MONITOROWANIE STEROWANIA WIELOPOMPOWEGO

Tabela 7: Monitorowanie sterowania wielopompowego

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.6.1	Pracujące silniki		30	
V2.6.2	Wybor Autochange		1114	

LOCAL CONTACTS: HTTP://DRIVES.DANFOSS.COM/DANFOSS-DRIVES/LOCAL-CONTACTS/

4.1.7 MONITOROWANIE DANYCH PROCESÓW NA MAGISTRALI KOMUNIKACYJNEJ

Tabela 8: Monitorowanie danych magistrali

Indeks	Wielkość monitorowana	Unit	ID	Opis
V2.8.1	FB Control Word		874	
V2.8.2	FB zad prędkość		875	
V2.8.3	Dana procesowa wejściowa 1		876	
V2.8.4	Dana procesowa wejściowa 2		877	
V2.8.5	Dana procesowa wejściowa 3		878	
V2.8.6	Dana procesowa wejściowa 4		879	
V2.8.7	Dana procesowa wejściowa 5		880	
V2.8.8	Dana procesowa wejściowa 6		881	
V2.8.9	Dana procesowa wejściowa 7		882	
V2.8.10	Dana procesowa wejściowa 8		883	
V2.8.11	FB słowo stanu		864	
V2.8.12	Rzeczywista pręd- kość FB		865	
V2.8.13	FB Data Out 1		866	
V2.8.14	FB Data Out 2		867	
V2.8.15	FB Data Out 3		868	
V2.8.16	FB Data Out 4		869	
V2.8.17	FB Data Out 5		870	
V2.8.18	FB Data Out 6		871	
V2.8.19	FB Data Out 7		872	
V2.8.20	FB Data Out 8		873	

5 MENU PARAMETRÓW

Aplikacja HVAC obejmuje następujące grupy parametrów:

Menu i grupa parametrów	Opis
Grupa 3.1: Ustawienia silnika	Podstawowe i zaawansowane ustawienia silnika.
Grupa 3.2: Ustawienia Startu/Stopu	Funkcje startu i zatrzymania.
Grupa 3.3: Ustawienia źródeł wartości zadanych	Konfiguracja wartości zadanej częstotliwości.
Grupa 3.4: Konfiguracja zbocza narastania i hamowa- nia	Konfiguracja przyspieszania/zwalniania.
Grupa 3.5: konfiguracja WE/WY	Programowanie WE/WY.
Grupa 3.6: Mapowanie danych magistrali	Parametry danych wyjściowych magistrali.
Grupa 3.7: Częstotliwości zabronione	Programowanie zabronionych częstotliwości.
Grupa 3.8: Monitorowanie limitów	Programowalne ograniczniki.
Grupa 3.9: Zabezpieczenia	Konfiguracja zabezpieczeń.
Grupa 3.10: Automatyczne wznowienie pracy	Ustawienia automatycznego kasowania po usterce.
Grupa 3.11: Funkcje sterowania czasowego	Konfiguracja 3 sterowań czasowych na podstawie zegara czasu rzeczywistego
Grupa 3.12: Regulator PID 1	Parametry regulatora PID 1. Sterowanie silnikiem lub wykorzystanie zewnętrzne.
Grupa 3.13: Regulator PID 2	Parametry regulatora PID 2. Wykorzystanie zew- nętrzne.
Grupa 3.14: Sterowanie wielopompowe	Parametry systemu wielopompowego.
Grupa 3.16: Tryb pożarowy	Parametry trybu pożarowego
Grupa 3.17 Ustawienia aplikacji	
Grupa 3.18 Wyzwolenie impulsu kWh	Parametry potrzebne do skonfigurowania wyjścia cyfrowego, które generuje impulsy zgodne z licznikiem kWh.

5.1 GRUPA 3.1: USTAWIENIA SILNIKA

WSKAZÓWKA!

Te parametry są blokowane, gdy napęd jest w stanie pracy.

Indeks	Ukrywanie	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P3.1.1.1	Napięcie znamio- nowe silnika	Zmienny	Zmienny	v	Zmienny	110	
P3.1.1.2	Częstotliwość zna- mionowa silnika	8.00	320.00	Hz	50 / 60	111	
P3.1.1.3	Znamionowa pręd- kość obrotowa sil- nika	24	19200	obr.	Zmienny	112	
P3.1.1.4	Prąd znamionowy silnika	Zmienny	Zmienny	А	Zmienny	113	
P3.1.1.5	Cos Phi Silnika	0.30	1.00		Zmienny	120	
P3.1.1.6	Znamionowa moc silnika	Zmienny	Zmienny	kW	Zmienny	116	
P3.1.1.7	Limit prądu silnika	Zmienny	Zmienny	А	Zmienny	107	
P3.1.1.8	Typ silnika	0	1		0	650	0 = asynchroniczny sil- nik indukcyjny 1 = synchroniczny sil- nik PM

Tabela 9: Parametry z tabliczki znamionowej silnika

Tabela 10: Ustawienia sterowania silnikiem

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.1.2.1	Częstotliwość klu- czowania	1.5	Zmienny	kHz	Zmienny	601	
P3.1.2.2	Rozłącznik silnikowy	0	1		0	653	0 = wyłączony 1 = włączony
P3.1.2.4	Napięcie przy zero- wej częstotliwości	0.00	40.00	%	Zmienny	606	
P3.1.2.5	Funkcja wstępnego podgrzewania silnika	0	3		0	1225	0 = nieużywany 1 = zawsze w stanie zatrzymania 2 = sterowanie z wejś- cia cyfrowego 3 = zależnie od tempe- ratury radiatora
P3.1.2.6	Graniczna tempera- tura wstępnego pod- grzewania silnika	-20	100	°C	0	1226	
P3.1.2.7	Prąd wstępnego pod- grzewania silnika	0	0,5*IL	А	Zmienny	1227	
P3.1.2.8	Wybór współczynnika U/f	0	1		Zmienny	108	0 = liniowa 1 = kwadratowa
P3.1.2.15	Regulator nadnapię- ciowy	0	1		1	607	0 = wyłączony 1 = włączony
P3.1.2.16	Regulacja zbyt niskiego napięcia	0	1		1	608	0 = wyłączony 1 = włączony
P3.1.2.17	Regulacja napięcia stojana	50.0	150.0	%	100.0	659	
P3.1.2.18	Optymalizacja zuży- cia energii	0	1		0	666	0 = wyłączony 1 = włączony
P3.1.2.19	Opcje startu w biegu	0	65			1590	B0 = Wyłącz wyszuki- wanie kierunku wstecznego B6 = przyrost strumie- nia ze sterowaniem prądem
P3.1.2.20	Start I/f	0	1		0	534	0 = wyłączony 1 = włączony
P3.1.2.21	Częstotliwość startu I/f	5.0	25	Hz	0,2 * P3.1.1.2	535	
P3.1.2.22	Prạd startu I/f	0	100	%	80	536	

5.2 GRUPA 3.2: USTAWIENIA STARTU/STOPU

Tabela 11: Menu ustawień startu/zatrzymania

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P3.2.1	Zdalne miejsce ste- rowania	0	1		0	172	0 = sterowanie WE/WY 1 = sterowanie magi- stralą
P3.2.2	Lokal/Zdalne	0	1		0	211	0 = zdalne 1 = lokalne
P3.2.3	Przycisk Stop na panelu	0	1		0	114	0 = Nie (zawsze włą- czone) 1 = Tak (włączone tylko w przypadku sterowa- nia za pomocą panelu)
P3.2.4	Funkcja START AR	0	1		Zmienny	505	0 = rampa 1 = start "w biegu"
P3.2.5	Funkcja STOP	0	1		0	506	0 = wybieg 1 = rampa
P3.2.6	Logika Start/Stop z WE/WY A	0	4		0	300	Logika = 0 Sygnał 1 = do przodu Sygnał 2 = wstecz Logika = 1 Sygnał 1 = do przodu (zbocze) Sygnał 2 = odwrotny stop Logika = 2 Sygnał 1 = do przodu (zbocze) Sygnał 2 = do tyłu (zbo- cze) Logika = 3 Sygnał 1 = start Ctrl sgn 2 = do tyłu Logika = 4 Sygnał 1 = start (zbo- cze) Ctrl sgn 2 = do tyłu
P3.2.7	Logika Start/Stop z WE/WY B	0	4		0	363	Patrz powyżej.

Tabela 11: Menu ustawień startu/zatrzymania

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P3.2.8	Logika startu z magi- strali	0	1		0	889	0 = jest wymagane zbo- cze narastające 1 = stan
P3.2.9	Start Delay	0.00	60.00	S	0.00	524	

5.3 GRUPA 3.3: USTAWIENIA ŹRÓDEŁ WARTOŚCI ZADANYCH

Tabela 12: Ustawienia źródeł wartości zadanych

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.3.1	Częstotliwość mini- malna	0.00	P3.3.2	Hz	0.00	101	
P3.3.2	Częstotliwość mak- symalna	P3.3.1	320.00	Hz	0.00	102	
P3.3.3	Wybór A dla sterowa- nia z WE/WY	1	11		6	117	1 = częstotliwość stała 0 2 = zadawanie z panelu ster. 3 = magistrala komuni- kacyjna 4 = Al1 5 = Al2 6 = Al1+Al2 7 = sygnał zadający dla PID 1 8 = potencjometr sil- nika 9 = średnia (Al1, Al2) 10 = minimium (Al1, Al2) 11 = maksimum (Al1, Al2)
P3.3.4	Wybór B dla stero- wania z WE/WY	1	11		4	131	
P3.3.5	Wybór źródła zada- wania przy sterowa- niu z panelu	1	8		2	121	1 = częstotliwość stała 0 2 = panel 3 = magistrala komuni- kacyjna 4 = Al1 5 = Al2 6 = Al1+Al2 7 = sygnał zadający dla PID 1 8 = potencjometr sil- nika
P3.3.6	SygnZadaZPanelu	P3.3.1	P3.3.2	Hz	0.00	184	
P3.3.7	Kierunek:Panel	0	1		0	123	0 = do przodu 1 = do tyłu

Tabela 12: Ustawienia źródeł wartości zadanych

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.3.8	Kopiowanie źródła zadawania na panel	0	2		1	181	0 = kopiowanie war- tości zadanej 1 = kopiowanie war- tości zadanej i stanu pracy 2 = bez kopiowania
P3.3.9	Wybór źródła war- tości zadanej przy sterowaniu z magi- strali	1	8		3	122	1 = częstotliwość stała 0 2 = panel 3 = magistrala komuni- kacyjna 4 = AI1 5 = AI2 6 = AI1+AI2 7 = sygnał zadający dla PID 1 8 = potencjometr sil- nika
P3.3.10	Tryb stałej częstotli- wości	0	1		0	182	0 = kodowana binarnie 1 = liczba wejść
P3.3.11	Częstotliwość stała 0	P3.3.1	P3.3.2	Hz	5.00	180	
P3.3.12	Częstotliwość stała 1	P3.3.1	P3.3.1	Hz	10.00	105	
P3.3.13	Częstotliwość stała 2	P3.3.1	P3.3.1	Hz	15.00	106	
P3.3.14	Częstotliwość stała 3	P3.3.1	P3.3.1	Hz	20.00	126	
P3.3.15	Częstotliwość stała 4	P3.3.1	P3.3.1	Hz	25.00	127	
P3.3.16	Częstotliwość stała 5	P3.3.1	P3.3.1	Hz	30.00	128	
P3.3.17	Częstotliwość stała 6	P3.3.1	P3.3.1	Hz	40.00	129	
P3.3.18	Częstotliwość stała 7	P3.3.1	P3.3.1	Hz	50.00	130	
P3.3.19	Stała częstotliwość alarmu	P3.3.1	P3.3.2	Hz	25.00	183	
P3.3.20	Czas rampy poten- cjometru silnika	0.1	500.0	Hz/s	10.0	331	
P3.3.21	Kasowanie potencjo- metru silnika	0	2		1	367	0 = brak kasowania 1 = reset przy zatrzy- maniu 2 = reset przy wyłącze- niu zasilania

Tabela 12: Ustawienia źródeł wartości zadanych

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.3.22	Kierunek wsteczny	0	1		0	15530	0 = kierunek wsteczny dozwolony 1 = kierunek wsteczny niemożliwy

5.4 GRUPA 3.4: KONFIGURACJA ZBOCZA NARASTANIA I HAMOWANIA

Tabela 13: Konfiguracja zbocza narastania i hamowania

Index	Ukrywanie	AI1	AI1	Unit	Domyślni e	ID	Opis
P3.4.1	KsztaltRampy1	0.0	10.0	S	0.0	500	
P3.4.2	Czas przyspieszania 1	0.1	3000.0	S	5.0	103	
P3.4.3	Czas hamowania 1	0.1	3000.0	S	5.0	104	
P3.4.4	KsztaltRampy2	0.0	10.0	S	0.0	501	
P3.4.5	Czas przyspieszania 2	0.1	3000.0	S	20.0	502	
P3.4.6	Czas hamowania 2	0.1	3000.0	S	20.0	503	
P3.4.7	Czas magnesowania przy starcie	0.00	600.00	S	0.00	516	
P3.4.8	Prąd magnesowania przy starcie	Zmienny	Zmienny	А	Zmienny	517	
P3.4.9	Czas hamowania prądem stałym przy zatrzymaniu	0.00	600.00	S	0.00	508	
P3.4.10	Wartość prądu przy hamowaniu prądem stałym	Zmienny	Zmienny	A	Zmienny	507	0 = wyłączony
P3.4.11	Częstotliwość rozpo- częcia hamowania prądem stałym przy zatrzymywaniu z rampą	0.10	10.00	Hz	1.50	515	
P3.4.12	Hamowanie strumie- niem	0	1		0	520	0 = wyłączony 1 = włączony
P3.4.13	Prạd hamowania strumieniem	0	Zmienny	А	Zmienny	519	

5.5 GRUPA 3.5: KONFIGURACJA WE/WY

Tabela 14: Ustawienia wejść cyfrowych

Indeks	Parametr	Domyślnie	ID	Opis
P3.5.1.1	Sygnał sterujący 1 A	DigIN SlotA.1	403	
P3.5.1.2	Sygnał sterujący 2 A	DigIN SlotA.2	404	
P3.5.1.3	Sygnał sterujący 1 B	DigIN Slot0.1	423	
P3.5.1.4	Sygnał sterujący 2 B	DigIN Slot0.1	424	
P3.5.1.5	Wymuszenie miejsca stero- wania WE/WY B	DigIN Slot0.1	425	
P3.5.1.6	Wymuszenie źródła wartości zadanej wg WE/WY B	DigIN Slot0.1	343	
P3.5.1.7	Usterka zewnętrzna (zestyk zamknięty)	DigIN SlotA.3	405	OTWARTY = OK ZAMKNIĘTY = usterka zewnętrzna
P3.5.1.8	Usterka zewnętrzna (zestyk otwarty)	DigIN Slot0.2	406	OTWARTY = usterka zewnętrzna ZAMKNIĘTY = OK
P3.5.1.9	Kasowanie usterki, zestyk zamknięty	DigIN SlotA.6	414	
P3.5.1.10	Kasowanie usterki, zestyk otwarty	DigIN Slot0.1	213	
P3.5.1.11	Gotowosc	DigIN Slot0.2	407	
P3.5.1.12	Blok. napẹdu dod.1	DigIN Slot0.2	1041	
P3.5.1.13	Blok. napędu dod.2	DigIN Slot0.2	1042	
P3.5.1.14	Wstępne podgrzewanie sil- nika włączone	DigIN Slot0.1	1044	OTWARTY = brak reakcji ZAMKNIĘTY = wykorzystywanie prądu stałego układu podgrzewania silnika w stanie stopu. Używany, gdy para- metr P3.1.2.5 ma wartość 2.
P3.5.1.15	Wybór częstotliwości stałej 0	DigIN SlotA.4	419	
P3.5.1.16	Wybór częstotliwości stałej 1	DigIN SlotA.5	420	
P3.5.1.17	Wybór częstotliwości stałej 2	DigIN Slot0.1	421	
P3.5.1.18	Sterowanie czasowe 1	DigIN Slot0.1	447	
P3.5.1.19	Sterowanie czasowe 2	DigIN Slot0.1	448	
P3.5.1.20	Sterowanie czasowe 3	DigIN Slot0.1	449	

Tabela 14: Ustawienia wejść cyfrowych

Indeks	Parametr	Domyślnie	ID	Opis
P3.5.1.21	Wyłącz funkcje sterowania czasowego	DigIN Slot0.1	1499	ZAMKNIĘTY = wyłącza funkcje stero- wania czasowego i kasuje wartości liczników czasu. OTWARTY = włącza funkcje sterowa- nia czasowego.
P3.5.1.22	Wzmocnienie wartości zada- nej PID1	DigIN Slot0.1	1046	OTWARTY = brak wzmocnienia ZAMKNIĘTY = wzmocnienie
P3.5.1.23	Wybór wartości zadanej PID1	DigIN Slot0.1	1047	OTWARTY = wartość zadana 1 ZAMKNIĘTY = wartość zadana 2
P3.5.1.24	Syg. startu PID2	DigIN Slot0.2	1049	OTWARTY = PID2 w trybie zatrzyma- nia ZAMKNIĘTY = praca regulatora PID2
P3.5.1.25	Wybór wartości zadanej PID2	DigIN Slot0.1	1048	OTWARTY = wartość zadana 1 ZAMKNIĘTY = wartość zadana 2
P3.5.1.26	Blokada silnika 1	DigIN Slot0.2	426	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne
P3.5.1.27	Blokada silnika 2	DigIN Slot0.1	427	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne
P3.5.1.28	Blokada silnika 3	DigIN Slot0.1	428	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne
P3.5.1.29	Blokada silnika 4	DigIN Slot0.1	429	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne
P3.5.1.30	Blokada silnika 5	DigIN Slot0.1	430	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne
P3.5.1.31	Potencjometr silnika w górẹ	DigIN Slot0.1	418	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne Wartość zadana z potencjometru silnika ROŚ- NIE aż do otwarcia styku.
P3.5.1.32	Potencjometr silnika w dół	DigIN Slot0.1	417	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne Wartość zadana z potencjometru silnika SPADA aż do otwarcia styku.
P3.5.1.33	WybCzasRamp	DigIN Slot0.1	408	OTWARTY = kształt rampy 1, czas przyspieszenia 1 i czas hamowania 1. ZAMKNIĘTY = kształt rampy 2, czas przyspieszenia 2 i czas hamowania 2.
P3.5.1.34	Sterowanie magistralą	DigIN Slot0.1	411	ZAMKNIĘTY = wymusza magistralę komunikacyjną jako miejsce sterowa- nia
P3.5.1.39	Aktywacja trybu pożarowego OTWARTY	DigIN Slot0.2	1596	OTWARTY = aktywne ZAMKNIĘTY = nieaktywne

vcn

Indeks	Parametr	Domyślnie	ID	Opis
P3.5.1.40	Aktywacja trybu pożarowego ZAMKNIĘTY	DigIN Slot0.1	1619	OTWARTY = nieaktywne ZAMKNIĘTY = aktywne
P3.5.1.41	Wstecz w trybie pożarowym	DigIN Slot0.1	1618	
P3.5.1.42	Ster z pan ster	DigIn Slot0.1	410	
P3.5.1.43	Zerowanie kasowalnego licz- nika kWh	DigIn Slot0.1	1053	
P3.5.1.44	Wybór częstotliwości stałej trybu pożarowego 0	DigIn Slot0.1	15531	
P3.5.1.45	Wybór częstotliwości stałej 1 dla trybu pożarowego	DigIn Slot0.1	15532	
P3.5.1.46	Par. Wybór zestawu 1/2	DigIN Slot0.1	496	OTWARTY = zestaw parametrów 1 ZAMKNIĘTY = zestaw parametrów 2

Tabela 15: Ustawienia wejść analogowych

Indeks	Ukrywanie	AI1	Al1	Jednos tka	Domyślni e	ID	Opis
P3.5.2.1	Wybór sygnału Al1				AnIN SlotA.1	377	
P3.5.2.2	StFiltr.Wej.An 1	0.0	300.0	S	1.0	378	
P3.5.2.3	ZakrSygnWej.An 1	0	1		0	379	0 = 0–10 V / 0–20 mA 1 = 2–10 V / 4–20 mA
P3.5.2.4	Niestandardowe minimum Al1	-160.00	160.00	%	0.00	380	
P3.5.2.5	Niestandardowe minimum Al1	-160.00	160.00	%	100.00	381	
P3.5.2.6	Inwersja sygnału Al1	0	1		0	387	0 = normalny 1 = sygnał odwrócony
P3.5.2.7	Wybór sygnału Al2				AnIN SlotA.2	388	Patrz P3.5.2.1.
P3.5.2.8	Czas filtrowania AI2	0.0	300.0	S	1.0	389	Patrz P3.5.2.2.
P3.5.2.9	Zakres sygnału Al2	0	1		1	390	Patrz P3.5.2.3.
P3.5.2.10	Niestandardowe minimum Al1	-160.00	160.00	%	0.00	391	Patrz P3.5.2.4.
P3.5.2.11	Niestandardowe minimum Al1	-160.00	160.00	%	100.00	392	Patrz P3.5.2.5.
P3.5.2.12	Inwersja sygnału Al2	0	1		0	398	Patrz P3.5.2.6.
P3.5.2.13	Wybór sygnału Al3				AnIN Slot0.1	141	Patrz P3.5.2.1.
P3.5.2.14	AI3 st czas filt	0.0	300.0	s	1.0	142	Patrz P3.5.2.2.
P3.5.2.15	Zakres sygnału Al3	0	1		0	143	Patrz P3.5.2.3.
P3.5.2.16	Niestandardowe minimum Al1	-160.00	160.00	%	0.00	144	Patrz P3.5.2.4.
P3.5.2.17	Niestandardowe minimum Al1	-160.00	160.00	%	100.00	145	Patrz P3.5.2.5.
P3.5.2.18	Inwersja sygnału Al3	0	1		0	151	Patrz P3.5.2.6.
P3.5.2.19	Wybór sygnału Al4				AnIN Slot0.1	152	Patrz P3.5.2.1.
P3.5.2.20	AI4 st czas filt	0.0	300.0	S	1.0	153	Patrz P3.5.2.2.
P3.5.2.21	Zakres sygnału Al4	0	1		0	154	Patrz P3.5.2.3.

Tabela 15: Ustawienia wejść analogowych

Indeks	Ukrywanie	AI1	Al1	Jednos tka	Domyślni e	ID	Opis
P3.5.2.22	Niestandardowe minimum Al1	-160.00	160.00	%	0.00	155	Patrz P3.5.2.4.
P3.5.2.23	Niestandardowe minimum Al1	-160.00	160.00	%	100.00	156	Patrz P3.5.2.5.
P3.5.2.24	Inwersja sygnału Al4	0	1		0	162	Patrz P3.5.2.6.
P3.5.2.25	Wybór sygnału AI5				AnIN Slot0.1	188	Patrz P3.5.2.1.
P3.5.2.26	AI5 st czas filt	0.0	300.0	s	1.0	189	Patrz P3.5.2.2.
P3.5.2.27	Zakres sygnału AI5	0	1		0	190	Patrz P3.5.2.3.
P3.5.2.28	Niestandardowe minimum Al1	-160.00	160.00	%	0.00	191	Patrz P3.5.2.4.
P3.5.2.29	Niestandardowe minimum Al1	-160.00	160.00	%	100.00	192	Patrz P3.5.2.5.
P3.5.2.30	Inwersja sygnału AI5	0	1		0	198	Patrz P3.5.2.6.
P3.5.2.31	Wybór sygnału Al6				AnIN Slot0.1	199	Patrz P3.5.2.1.
P3.5.2.32	Al6 st czas filt	0.0	300.0	s	1.0	200	Patrz P3.5.2.2.
P3.5.2.33	Zakres sygnału Al6	0	1		0	201	Patrz P3.5.2.3.
P3.5.2.34	Niestandardowe minimum Al1	-160.00	160.00	%	0.00	203	Patrz P3.5.2.4.
P3.5.2.35	Niestandardowe minimum Al1	-160.00	160.00	%	100.00	204	Patrz P3.5.2.5.
P3.5.2.36	Inwersja sygnału Al6	0	1		0	209	Patrz P3.5.2.6.

Index	Ukrywanie	AI1	AI1	Unit	Domyśl nie	ID	Opis
Index P3.5.3.2.1	Ukrywanie Funkcja podstawo- wego R01	0	41	Unit	2	ID 11001	Opis Wybór funkcji dla podstawowego przekaźnika R01 0 = brak 1 = gotowość 2 = praca 3 = usterka 4 = UsterkaOdwrócona 5 = alarm 6 = do tyłu 7 = osiągnięto pręd- kość zadaną 8 = aktywny regulator silnika 9 = prędkość zadawana 10 = sterowanie z panelu 11 = sterowanie WE/WY B 12 = monitorowanie limitu 1 13 = monitorowanie limitu 2 14 = sygnał startu 15 = zarezerwowane 16 = aktywacja trybu pożarowego 17 = sterowanie kana- tem czasowym RTC 1 18 = sterowanie kana- tem czasowym RTC 2 19 = sterowanie kana- tem czasowym RTC 3 20 = Słowo sterujące magistrali B13 21 = słowo sterujące magistrali B14 22 = słowo sterujące magistrali B15 23 = PID 1 w trybie uśpienia 24 = zarezerwowane 25 = limity monitoro- wania PID1 26 = limity monitoro- wania PID2 27 = sterowanie silni- kiem 1 28 = sterowanie silni- kiem 2

Tabela 16: Ustawienia wyjść cyfrowych na standardowej karcie we/wy

Index	Ukrywanie	AI1	AI1	Unit	Domyśl nie	ID	Opis
P3.5.3.2.1	Funkcja podstawo- wego R01	0	41		2	11001	29 = sterowanie silni- kiem 3 30 = sterowanie silni- kiem 4 31 = sterowanie silni- kiem 5 32 = zarezerwowane 33 = zarezerwowane 34 = konserwacja, alarm 35 = konserwacja, usterka 36 = usterka termis- tora 37 = przełącznik silnika 38 = podgrzewanie 39 = wyzwolenie impulsu kWh 40 = wskaźnik pracy 41 = wybrane parame- try Zestaw
P3.5.3.2.2	Opóźnienie włączenia podstawowego R01	0.00	320.00	s	0.00	11002	
P3.5.3.2.3	Opóźnienie wyłącze- nia podstawowego R01	0.00	320.00	S	0.00	11003	
P3.5.3.2.4	Funkcja podstawo- wego R02	0	41		3	11004	Patrz P3.5.3.2.1.
P3.5.3.2.5	Opóźnienie włączenia podstawowego R02	0.00	320.00	S	0.00	11005	Patrz P3.5.3.2.2.
P3.5.3.2.6	Opóźnienie wyłącze- nia podstawowego R02	0.00	320.00	S	0.00	11006	Patrz P3.5.3.2.3.
P3.5.3.2.7	Funkcja podstawo- wego R03	0	41		1	11007	Patrz P3.5.3.2.1.
P3.5.3.2.8							
P3.5.3.2.9							

Tabela 16: Ustawienia wyjść cyfrowych na standardowej karcie we/wy

WYJŚCIA CYFROWE GNIAZD ROZSZERZEŃ C, D I E

Wyświetlane są jedynie parametry wyjść na kartach opcjonalnych w gnieździe C, D i E. Opcje wyboru takie same jak w parametrze Funkcja podstawowego RO1 (P3.5.3.2.1).

Ta grupa lub te parametry nie są widoczne, jeśli w gniazdach C, D lub E nie są dostępne wyjścia cyfrowe.

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.5.4.1.1	Funkcja A01	0	Sprzę- żenie zwrotne PID		2	10050	0 = TEST 0% (nieuży- wany) 1 = TEST 100% 2 = częstotliwość wyj- ściowa (0-fmax) 3 = częstotliwość zada- wana (0-fmax) 4 = prędkość obrotowa silnika (0-znamionowa prędkość obrotowa sil- nika) 5 = prąd wyjściowy (0- InMotor) 6 = moment obr. silnika (0-TnMotor) 7 = moc silnika (0- PnMotor) 8 = napięcie silnika (0- UnMotor) 9 = napięcie silnika (0- UnMotor) 9 = napięcie silnika (0- UnMotor) 9 = napięcie v obwo- dzie prądu stałego (0- 100 V) 10 = wyjście PID1 (0- 100%) 11 = wyjście PID2 (0- 100%) 12 = wejście danych procesowych 1 (0- 100%) 13 = wejście danych procesowych 3 (0- 100%) 14 = wejście danych procesowych 4 (0- 100%) 15 = wejście danych procesowych 5 (0- 100%) 17 = wejście danych procesowych 5 (0- 100%) 18 = wejście danych procesowych 7 (0- 100%) 19 = wejście danych procesowych 7 (0- 100%) 19 = wejście danych procesowych 8 (0- 100%)

Tabela 17: Ustawienia wyjść analogowych standardowej karty we/wy

Tabela 17: Ustawienia	wyjść analogowych	n standardowej karty we/wy
-----------------------	-------------------	----------------------------

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.5.4.1.1	Funkcja A01	0	Sprzę- żenie zwrotne PID		2	10050	
P3.5.4.1.2	Czas filtrowania A01	0.0	300.0	S	1.0	10051	0 = brak filtrowania
P3.5.4.1.3	AO1 wartość mini- malna sygnału	0	1		0	10052	0 = 0 mA / 0 V 1 = 4 mA / 2 V
P3.5.4.1.4	Minimalna skala A01	Zmienny	Zmienny	Zmienn y	0.0	10053	
P3.5.4.1.5	Maksymalna skala A01	Zmienny	Zmienny	Zmienn y	0.0	10054	

WYJŚCIA ANALOGOWE GNIAZD C, D I E

Wyświetlane są jedynie parametry istniejących wyjść w gnieździe C/D/E. Opcje wyboru są takie same jak w przypadku parametru podstawowego A01. Ta grupa lub te parametry nie są widoczne, jeśli w gniazdach C, D lub E nie są dostępne wyjścia cyfrowe.

5.6 GRUPA 3.6: MAPOWANIE DANYCH MAGISTRALI

Tabela 18: Mapowanie danych magistrali

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P3.6.1	Wybór wyjścia danych 1 magistrali	0	35000		1	852	
P3.6.2	Wybór wyjścia danych 2 magistrali	0	35000		2	853	
P3.6.3	Wybór wyjścia danych 3 magistrali	0	35000		45	854	
P3.6.4	Wybór wyjścia danych 4 magistrali	0	35000		4	855	
P3.6.5	Wybór wyjścia danych 5 magistrali	0	35000		5	856	
P3.6.6	Wybór wyjścia danych 6 magistrali	0	35000		6	857	
P3.6.7	Wybór wyjścia danych 7 magistrali	0	35000		7	858	
P3.6.8	Wybór wyjścia danych 8 magistrali	0	35000		37	859	
Tabela 19: Domyślne wartości wyjścia danych procesowych n	а						
---	---						
magistrali							

Dane	Wartość domyślna	Skala
Wyjście danych proceso- wych 1	Częstotliwość wyjściowa	0,01 Hz
Wyjście danych proceso- wych 2	Prędkość obrotowa silnika	1 obr./min
Wyjście danych proceso- wych 3	Prąd silnika	0,1 A
Wyjście danych proceso- wych 4	Moment obrotowy silnika	0.1%
Wyjście danych proceso- wych 5	Moc silnika	0.1%
Wyjście danych proceso- wych 6	Napiẹcie silnika	0,1 V
Wyjście danych proceso- wych 7	Napięcie w obwodzie prądu sta- łego	1 V
Wyjście danych proceso- wych 8	Kod ostatniej aktywnej usterki	1

Na przykład wartość *2500* dotycząca częstotliwości wyjściowej odpowiada wartości 25,00 Hz, ponieważ wartość skalowania to 0,01. Wszystkie wartości monitorowania, które podano w rozdziale *4.1 Grupa wartości monitorowanych* mają przypisaną wartość skalowania.

5.7 GRUPA 3.7: CZĘSTOTLIWOŚCI ZABRONIONE

Tabela 20: Częstotliwości zabronione

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.7.1	Dolny limit zakresu zabronionej częstot- liwości 1	-1.00	320.00	Hz	0.00	509	0 = nieużywany
P3.7.2	Górny limit zakresu zabronionej częstot- liwości 1	0.00	320.00	Hz	0.00	510	0 = nieużywany
P3.7.3	Dolny limit zakresu zabronionej częstot- liwości 2	0.00	320.00	Hz	0.00	511	0 = nieużywany
P3.7.4	Górny limit zakresu zabronionej częstot- liwości 2	0.00	320.00	Hz	0.00	512	0 = nieużywany
P3.7.5	Dolny limit zakresu zabronionej częstot- liwości 3	0.00	320.00	Hz	0.00	513	0 = nieużywany
P3.7.6	Górny limit zakresu zabronionej częstot- liwości 3	0.00	320.00	Hz	0.00	514	0 = nieużywany
P3.7.7	Współczynnik skalo- wania czasu rampy	0.1	10.0	Razy	1.0	518	

5.8 GRUPA 3.8: MONITOROWANIE LIMITÓW

Tabela 21: Ustawienia monitorowania limitów

Indeks	Ukrywanie	AI1	Maks.	Jednos tka	Domyśln ie	ID	Opis
P3.8.1	Wybór elementu monitorowania nr 1	0	7		0	1431	0 = częstotliwość wyj- ściowa 1 = częstotliwość zadana 2 = prąd silnika 3 = moment obrotowy sil- nika 4 = moc silnika 5 = napięcie na szynie prądu stałego 6 = wejście analogowe 1 7 = wejście analogowe 2
P3.8.2	Tryb monitorowania nr 1	0	2		0	1432	0 = nieużywany 1 = dolny limit monitoro- wania (wyjście aktywne powyżej limitu) 2 = górny limit monitoro- wania (wyjście aktywne poniżej limitu)
P3.8.3	Limit monitorowania nr 1	Zmienny	Zmienny	Zmienn y	25.00	1433	
P3.8.4	Histereza limitu monitorowania nr 1	Zmienny	Zmienny	Zmienn y	5.00	1434	
P3.8.5	Wybór elementu monitorowania nr 2	0	7		1	1435	Patrz P3.8.1.
P3.8.6	Tryb monitorowania nr 2	0	2		0	1436	Patrz P3.8.2.
P3.8.7	Limit monitorowania nr 2	Zmienny	Zmienny	Zmienn y	40.00	1437	Patrz P3.8.3.
P3.8.8	Histereza limitu monitorowania nr 2	Zmienny	Zmienny	Zmienn y	5.00	1438	Patrz P3.8.4.

5.9 GRUPA 3.9: ZABEZPIECZENIA

Tabela 22: Ustawienia zabezpieczeń

Indeks	Ukrywanie	Al1	Al1	Jednos tka	Domyślni e	ID	Opis
P3.9.1	Odpowiedź na usterkę zbyt niskiej wartości na wejściu analogowym	0	4		0	700	0 = brak reakcji 1 = alarm 2 = alarm, ustaw zadaną częstotliwość usterki (P3.3.19) 3 = usterka (zatrzymaj zgodnie z trybem stopu) 4 = usterka (zatrzymaj wybiegiem)
P3.9.2	Odpowiedź na usterkę zewnętrzną	0	3		2	701	0 = brak reakcji 1 = alarm 2 = usterka (zatrzymaj zgodnie z trybem stopu) 3 = usterka (zatrzymaj wybiegiem)
P3.9.3	Odpowiedź na usterkę fazy napięcia wejściowego	0	1		0	730	0 = pomoc w fazie 3 1 = pomoc w fazie 1
P3.9.4	Usterka zbyt niskiego napięcia	0	1		0	727	0 = usterka zapisana w historii 1 = usterka niezapisana w historii
P3.9.5	Odpowiedź na usterkę fazy wyjścio- wej	0	3		2	702	Patrz P3.9.2.
P3.9.6	Zabezpieczenie ter- miczne silnika	0	3		2	704	Patrz P3.9.2.
P3.9.7	współczynnik tempe- ratury otoczenia sil- nika	-20.0	100.0	°C	40.0	705	
P3.9.8	Chłodzenie silnika przy prędkości zero- wej	5.0	150.0	%	Zmienny	706	
P3.9.9	Stała czasowa ciepła silnika	1	200	min.	Zmienny	707	
P3.9.10	Obciążalność cieplna silnika	0	150	%	100	708	
P3.9.11	Usterka utyku silnika	0	3		0	709	Patrz P3.9.2.

Tabela 22: Ustawienia zabezpieczeń

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.9.12	Prad Utyku	0.00	2*IH	А	ІН	710	
P3.9.13	Limit czasu utyku	1.00	120.00	s	15.00	711	
P3.9.14	Limit częstotliwości utyku	1.00	P3.3.2	Hz	25.00	712	
P3.9.15	Usterka niedociąże- nia (pęknięty pasek/ sucha pompa)	0	3		0	713	Patrz P3.9.2.
P3.9.16	Zabezpieczenie przed niedociąże- niem: obciążenie w obszarze osłabienia pola	10.0	150.0	%	50.0	714	
P3.9.17	Zabezpieczenie przed niedociąże- niem: obciążenie przy zerowej częstot- liwości	5.0	150.0	%	10.0	715	
P3.9.18	Zabezpieczenie przed niedociąże- niem: Limit czasu	2.00	600.00	S	20.00	716	
P3.9.19	Odpowiedź na usterkę komunikacji magistrali	0	4		3	733	Patrz P3.9.1.
P3.9.20	Usterka komunikacji gniazda	0	3		2	734	Patrz P3.9.2.
P3.9.21	Usterka termistora	0	3		0	732	Patrz P3.9.2.
P3.9.22	Odpowiedź na usterkę monitorowa- nia PID1	0	3		2	749	Patrz P3.9.2.
P3.9.23	Odpowiedź na usterkę monitorowa- nia PID2	0	3		2	757	Patrz P3.9.2.

Tabela 22: Ustawienia zabezpieczeń

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.9.25	Sygnał usterki tem- peratury	0	6		0	739	0 = nieużywany 1 = wejście temperatu- rowe 1 2 = wejście temperatu- rowe 2 3 = wejście temperatu- rowe 3 4 = Wejścia temperatu- rowe 1-2 5 = Wejścia temperatu- rowe 2-3 6 = Wejścia temperatu- rowe 1-3
P3.9.26	Limit temperatury do wyzwolenia alarmu	-30.0	200		130.0	741	
P3.9.27	Limit usterki tempe- ratury	-30.0	200		155.0	742	
P3.9.28	Reakcja na usterkę temperatury	0	3		2	740	0 = brak reakcji 1 = alarm 2 = usterka (zatrzymaj zgodnie z trybem stopu) 3 = usterka (zatrzymaj wybiegiem)
P3.9.29 *	Odpowiedź na usterkę bezpiecz- nego wyłączenia momentu (STO)	0	2		2	775	0 = brak reakcji 1 = alarm 2 = usterka (zatrzymaj wybiegiem)

*) Ten parametr nie jest widoczny, jeśli napęd nie obsługuje funkcjonalności bezpiecznego wyłączenia momentu obrotowego.

5.10 GRUPA 3.10: AUTOMATYCZNE WZNOWIENIE PRACY

Tabela 23: Ustawienia automatycznego wznawiania pracy

Indeks	Ukrywanie	AI1	AI1	Unit	Domyślni e	ID	Opis
P3.10.1	Automatyczne wznowienie pracy	0	1		1	731	0 = wyłączony 1 = włączony
P3.10.2	Funkcja ponow- nego startu	0	1		1	719	0 = start "w biegu" 1 = zgodnie z P3.2.4.
P3.10.3	Czas Oczekiwania	0.10	10000.00	S	0.50	717	
P3.10.4	Czas Proby	0.00	10000.00	S	60.00	718	
P3.10.5	Ilosc Prob	1	10		4	759	
P3.10.6	Automatyczne wznawianie: ZaNiskieNap.	0	1		1	720	0 = nie 1 = tak
P3.10.7	Automatyczne wznawianie: Prze- piecie	0	1		1	721	0 = nie 1 = tak
P3.10.8	Automatyczne wznawianie: Prze- tezenie	0	1		1	722	0 = nie 1 = tak
P3.10.9	Automatyczne wznawianie: Niskie Al	0	1		1	723	0 = nie 1 = tak
P3.10.10	Automatyczne wznawianie: Prze- grzanie modułu	0	1		1	724	0 = nie 1 = tak
P3.10.11	Automatyczne wznawianie: Prze- grzanie silnika	0	1		1	725	0 = nie 1 = tak
P3.10.12	Automatyczne wznawianie: Usterka Zewn.	0	1		0	726	0 = nie 1 = tak
P3.10.13	Automatyczne wznawianie: Usterka niedocią- żenia	0	1		0	738	0 = nie 1 = tak
P3.10.14	Monitorowanie PID	0	1		0	15538	0 = nie 1 = tak

5.11 GRUPA 3.11: FUNKCJE STEROWANIA CZASOWEGO

Tabela 24: 3.11.1 Przedział czasu 1

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.1.1	Czas włączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1464	
P3.11.1.2	Czas wyłączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1465	
P3.11.1.3	Od dnia	0	6		0	1466	0 = niedziela 1 = poniedziałek 2 = wtorek 3 = środa 4 = czwartek 5 = piątek 6 = sobota
P3.11.1.4	Do dnia	0	6		0	1467	0 = niedziela 1 = poniedziałek 2 = wtorek 3 = środa 4 = czwartek 5 = piątek 6 = sobota
P3.11.1.5	Przypisz do kanału	0	3		0	1468	Wybór pola wyboru 0 = nieużywany 1 = kanał czasowy 1 2 = kanał czasowy 2 3 = kanał czasowy 3

Tabela 25: 3.11.2 Przedział czasu 2

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.2.1	Czas włączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1469	Patrz Przedział czasu 1.
P3.11.2.2	Czas wyłączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1470	Patrz Przedział czasu 1.
P3.11.2.3	Od dnia	0	6		0	1471	Patrz Przedział czasu 1.
P3.11.2.4	Do dnia	0	6		0	1472	Patrz Przedział czasu 1.
P3.11.2.5	Przypisz do kanału	0	3		0	1473	Patrz Przedział czasu 1.

Tabela 26: 3.11.3 Przedział czasu 3

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.3.1	Czas włączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1474	Patrz Przedział czasu 1.
P3.11.3.2	Czas wyłączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1475	Patrz Przedział czasu 1.
P3.11.3.3	Od dnia	0	6		0	1476	Patrz Przedział czasu 1.
P3.11.3.4	Do dnia	0	6		0	1477	Patrz Przedział czasu 1.
P3.11.3.5	Przypisz do kanału	0	3		0	1478	Patrz Przedział czasu 1.

Tabela 27: 3.11.4 Przedział czasu 4

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.4.1	Czas włączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1479	Patrz Przedział czasu 1.
P3.11.4.2	Czas wyłączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1480	Patrz Przedział czasu 1.
P3.11.4.3	Od dnia	0	6		0	1481	Patrz Przedział czasu 1.
P3.11.4.4	Do dnia	0	6		0	1482	Patrz Przedział czasu 1.
P3.11.4.5	Przypisz do kanału	0	3		0	1483	Patrz Przedział czasu 1.

Tabela 28: 3.11.5 Przedział czasu 5

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.5.1	Czas włączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1484	Patrz Przedział czasu 1.
P3.11.5.2	Czas wyłączenia	00:00:00	23:59:59	gg:mm: ss	00:00:00	1485	Patrz Przedział czasu 1.
P3.11.5.3	Od dnia	0	6		0	1486	Patrz Przedział czasu 1.
P3.11.5.4	Do dnia	0	6		0	1487	Patrz Przedział czasu 1.
P3.11.5.5	Przypisz do kanału	0	3		0	1488	Patrz Przedział czasu 1.

Tabela 29: 3.11.6 Sterowanie czasowe 1

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.6.1	Czas pracy	0	72000	s	0	1489	
P3.11.6.2	Przypisz do kanału	0	3		0	1490	Wybór pola wyboru 0 = nieużywany 1 = kanał czasowy 1 2 = kanał czasowy 2 3 = kanał czasowy 3
P3.11.6.3	Tryb	TOFF	TON		TOFF	15527	

Tabela 30: 3.11.7 Sterowanie czasowe 2

Index	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.7.1	Czas pracy	0	72000	S	0	1491	Patrz Sterowanie cza- sowe 1.
P3.11.7.2	Przypisz do kanału	0	3		0	1492	Patrz Sterowanie cza- sowe 1.
P3.11.7.3	Tryb	TOFF	TON		TOFF	15528	Patrz Sterowanie cza- sowe 1.

Tabela 31: 3.11.8 Sterowanie czasowe 3

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.11.8.1	Czas pracy	0	72000	s	0	1493	Patrz Sterowanie cza- sowe 1.
P3.11.8.2	Przypisz do kanału	0	3		0	1494	Patrz Sterowanie cza- sowe 1.
P3.11.8.3	Sterowanie czasowe 3	TOFF	TON		TOFF	15529	Patrz Sterowanie cza- sowe 1.

5.12 GRUPA 3.12: REGULATOR PID 1

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyśl nie	ID	Opis
P3.12.1.1	Wzmocnienie PID	0.00	1000.00	%	100.00	118	
P3.12.1.2	Czas całkowania PID	0.00	600.00	S	1.00	119	
P3.12.1.3	Czas różniczkowania PID	0.00	100.00	S	0.00	132	
P3.12.1.4	Wybór jednostki pro- cesowej	1	40		1	1036	
P3.12.1.5	Wartość minimalna jednostki procesowej	Zmienny	Zmienny	Zmienn y	0	1033	
P3.12.1.6	Wartość maksy- malna jednostki pro- cesowej	Zmienny	Zmienny	Zmienn y	100	1034	
P3.12.1.7	Miejsca dziesiętne jednostki procesowej	0	4		2	1035	
P3.12.1.8	NegacjaUchybu	0	1		0	340	0 = normalny (sprzęże- nie zwrotne < wartość zadana -> zwiększenie wyjścia PID) 1 = odwrócony (sprzę- żenie zwrotne < war- tość zadana -> zmniej- szenie wyjścia PID)
P3.12.1.9	Histereza strefy martwej	Zmienny	Zmienny	Zmienn y	0	1056	
P3.12.1.10	Opóźnienie strefy martwej	0.00	320.00	S	0.00	1057	

Tabela 33: Ustawienia wartości zadanych

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyśl nie	ID	Opis
P3.12.2.1	Wartość zadana z panelu 1	Zmienny	Zmienny	Zmienn y	0	167	
P3.12.2.2	Wartość zadana z panelu 2	Zmienny	Zmienny	Zmienn y	0	168	
P3.12.2.3	Rampa dla wartości zadanej	0.00	300.0	S	0.00	1068	
P3.12.2.4	Wybór źródła war- tości zadanej 1	0	19		1	332	0 = nieużywany 1 = wartość zadana z panelu 1 2 = wartość zadana z panelu 2 3 = Al1 4 = Al2 5 = Al3 6 = Al4 7 = Al5 8 = Al6 9 = wejście danych pro- cesowych 1 10 = wejście danych pro- cesowych 2 11 = wejście danych pro- cesowych 3 12 = wejście danych pro- cesowych 4 13 = wejście danych pro- cesowych 5 14 = wejście danych pro- cesowych 6 15 = wejście danych pro- cesowych 7 16 = wejście temperatu- rowe 1 18 = wejście temperatu- rowe 3
P3.12.2.5	Wartość zadana 1 — minimum	-200.00	200.00	%	0.00	1069	
P3.12.2.6	Wartość zadana 1 — maksimum	-200.00	200.00	%	100.00	1070	
P3.12.2.7	Limit częstotliwości uśpienia 1	0.00	320.00	Hz	0.00	1016	

Tabela 33: Ustawienia wartości zadanych

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyśl nie	ID	Opis
P3.12.2.8	Opóźnienie uśpienia 1	0	3000	S	0	1017	
P3.12.2.9	Poziom budzenia 1	-214748. 36	214748. 36	Zmienn y	0	1018	
P3.12.2.10	Wartość zadana 1 Tryb budzenia	0	1		0	15539	0 = poziom bezwzględny 1 = względna wartość zadana
P3.12.2.11	Wzmocnienie war- tości zadanej 1	-2.0	2.0	x	1.0	1071	
P3.12.2.12	Wybór źródła war- tości zadanej 2	0	16		2	431	Patrz P3.12.2.4.
P3.12.2.13	Wartość zadana 2 — minimum	-200.00	200.00	%	0.00	1073	Patrz P.12.2.5.
P3.12.2.14	Wartość zadana 2 — maksimum	-200.00	200.00	%	100.00	1074	Patrz P3.12.2.6.
P3.12.2.15	Limit częstotliwości uśpienia 2	0.00	320.00	Hz	0.00	1075	Patrz P3.12.2.7.
P3.12.2.16	Opóźnienie uśpienia 2	0	3000	S	0	1076	Patrz P3.12.2.8.
P3.12.2.17	Poziom budzenia 2	-214748. 36	214748. 36	Zmienn y	0.0000	1077	Patrz P3.12.2.8.
P3.12.2.18	Wartość zadana 2 Tryb budzenia	0	1		0	15540	0 = poziom bezwzględny 1 = względna wartość zadana
P3.12.2.19	Wzmocnienie war- tości zadanej 2	-2.0	2.0	x	1.0	1078	Patrz P3.12.2.11.

Tabela 34: Ustawienia sprzężenia zwrotnego

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyśln ie	ID	Opis
P3.12.3.1	Funkcja sprzężenia zwrotnego	1	9		1	333	1 = używane tylko źródło 1 2 = PIERW(źródło 1); (przepływ = stała x PIERW(ciśnienie]) 3 = PIERW(źródło 1 – źródło 2) 4 = PIERW(źródło 1) + PIERW(źródło 2) 5 = źródło 1 + źródło 2 6 = źródło 1 – źródło 2 7 = MIN(źródło 1, źródło 2) 8 = MAKS(źródło 1, źródło 2) 9 = ŚREDNIA(źródło 1, źródło 2)
P3.12.3.2	Wzmocnienie funkcji sprzężenia zwrot- nego	-1000.0	1000.0	%	100.0	1058	
P3.12.3.3	Wybór źródła sprzę- żenia zwrotnego 1	0	14		2	334	0 = nieużywany 1 = Al1 2 = Al2 3 = Al3 4 = Al4 5 = Al5 6 = Al6 7 = wejście danych proce- sowych 1 8 = wejście danych proce- sowych 2 9 = wejście danych pro- cesowych 3 10 = wejście danych pro- cesowych 4 11 = wejście danych pro- cesowych 5 12 = wejście danych pro- cesowych 6 13 = wejście danych pro- cesowych 7 14 = wejście danych pro- cesowych 8
P3.12.3.4	Sprzężenie zwrotne 1 – minimum	-200.00	200.00	%	0.00	336	
P3.12.3.5	Sprzężenie zwrotne 1 – maksimum	-200.00	200.00	%	100.00	337	
P3.12.3.6	Wybór źródła sprzę- żenia zwrotnego 2	0	14		0	335	Patrz P3.12.3.3.

Tabela 34: Ustawienia sprzężenia zwrotnego

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyśln ie	ID	Opis
P3.12.3.7	Sprzężenie zwrotne 2 – minimum	-200.00	200.00	%	0.00	338	Patrz P3.12.3.4.
M3.12.3.8	Sprzężenie zwrotne 2 – maksimum	-200.00	200.00	%	100.00	339	Patrz P3.12.3.5.

Tabela 35: Ustawienia sprzężenia wyprzedzającego

Index	Ukrywanie	AI1	AI1	Unit	Domyślni e	ID	Opis
P3.12.4.1	Funkcja sprzężenia wyprzedzającego	1	9		1	1059	Patrz P3.12.3.1.
P3.12.4.2	Wzmocnienie funkcji sprzężenia wyprze- dzającego	-1000	1000	%	100.0	1060	Patrz P3.12.3.2.
P3.12.4.3	Wybór źródła sprzę- żenia wyprzedzają- cego 1	0	14		0	1061	Patrz P3.12.3.3.
P3.12.4.4	Sprzężenie wyprze- dzające 1 – minimum	-200.00	200.00	%	0.00	1062	Patrz P3.12.3.4.
P3.12.4.5	Sprzężenie wyprze- dzające 1 – maksi- mum	-200.00	200.00	%	100.00	1063	Patrz P3.12.3.5.
P3.12.4.6	Wybór źródła sprzę- żenia wyprzedzają- cego 2	0	14		0	1064	Patrz P3.12.3.6.
P3.12.4.7	Sprzężenie wyprze- dzające 2 – min.	-200.00	200.00	%	0.00	1065	Patrz P3.12.3.7.
P3.12.4.8	Sprzężenie wyprze- dzające 2 – maks.	-200.00	200.00	%	100.00	1066	Patrz M3.12.3.8.

Tabela 36: Parametry monitorowania procesu

Indeks	Ukrywanie	AI1	AI1	Unit	Domyślni e	ID	Opis
P3.12.5.1	Włącz monitorowa- nie procesu	0	1		0	735	0 = wyłączony 1 = włączony
P3.12.5.2	Górny limit	-214748. 36	214748. 36	Zmienn y	0.00	736	
P3.12.5.3	Dolny limit	-214748. 36	214748. 36	Zmienn y	0.00	758	
P3.12.5.4	Opóźnienie	0	30000	S	0	737	

Tabela 37: Parametry kompensacji spadku ciśnienia

Index	Ukrywanie	AI1	AI1	Unit	Domyślni e	ID	Opis
P3.12.6.1	Włącz wartość zadaną 1	0	1		0	1189	0 = wyłączony 1 = włączony
P3.12.6.2	Maks. kompensacja wartości zadanej 1	-214748. 36	214748. 36	Zmienn y	0.0	1190	
P3.12.6.3	Włącz wartość zadaną 2	0	1		0	1191	Patrz P3.12.6.1.
P3.12.6.4	Maks. kompensacja wartości zadanej 2	-214748. 36	214748. 36	Zmienn y	0.0	1192	Patrz P3.12.6.2.

5.13 GRUPA 3.13: REGULATOR PID 2

Tabela 38: Parametry podstawowe

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyśl nie	ID	Opis
P3.13.1.1	Włącz zadaw PID	0	1		0	1630	0 = wyłączony 1 = włączony
P3.13.1.2	Wyjście w stop	0.0	100.0	%	0.0	1100	
P3.13.1.3	Wzmocnienie PID	0.00	1000.00	%	100.00	1631	Patrz P3.12.1.1.
P3.13.1.4	Czas całkowania PID	0.00	600.00	S	1.00	1632	Patrz P3.12.1.2.
P3.13.1.5	Czas różniczkowania PID	0.00	100.00	S	0.00	1633	Patrz P3.12.1.3.
P3.13.1.6	Wybór jednostki pro- cesowej	1	40		1	1635	Patrz P3.12.1.4.
P3.13.1.7	Wartość minimalna jednostki procesowej	Zmienny	Zmienny	Zmienn y	0	1664	Patrz P3.12.1.5.
P3.13.1.8	Wartość maksy- malna jednostki pro- cesowej	Zmienny	Zmienny	Zmienn y	100	1665	Patrz P3.12.1.6.
P3.13.1.9	Miejsca dziesiętne jednostki procesowej	0	4		2	1666	Patrz P3.12.1.7.
P3.13.1.10	NegacjaUchybu	0	1		0	1636	0 = normalny 1 = odwrócony Patrz P3.12.1.8.
P3.13.1.11	Histereza strefy martwej	Zmienny	Zmienny	Zmienn y	0.0	1637	Patrz P3.12.1.9.
P3.13.1.12	Opóźnienie strefy martwej	0.00	320.00	S	0.00	1638	Patrz P3.12.1.10.

Tabela 39: Wartości zadane

Index	Ukrywanie	AI1	AI1	Jednos tka	Domyśl nie	ID	Opis
P3.13.2.1	Wartość zadana z panelu 1	0.00	100.00	Zmienn y	0.00	1640	
P3.13.2.2	Wartość zadana z panelu 2	0.00	100.00	Zmienn y	0.00	1641	
P3.13.2.3	Rampa dla wartości zadanej	0.00	300.00	S	0.00	1642	
P3.13.2.4	Wybór źródła war- tości zadanej 1	0	19		1	1643	0 = nieużywany 1 = wartość zadana z panelu 1 2 = wartość zadana z panelu 2 3 = Al1 4 = Al2 5 = Al3 6 = Al4 7 = Al5 8 = Al6 9 = wejście danych pro- cesowych 1 10 = wejście danych pro- cesowych 2 11 = wejście danych pro- cesowych 3 12 = wejście danych pro- cesowych 4 13 = wejście danych pro- cesowych 5 14 = wejście danych pro- cesowych 6 15 = wejście danych pro- cesowych 7 16 = wejście temperatu- rowe 1 18 = wejście temperatu- rowe 3
P3.13.2.5	Wartość zadana 1 — minimum	-200.00	200.00	%	0.00	1644	
P3.13.2.6	Wartość zadana 1 — maksimum	-200.00	200.00	%	100.00	1645	
P3.13.2.7	Wybór źródła war- tości zadanej 2	0	16		0	1646	Patrz P3.13.2.4.

Tabela 39: Wartości zadane

Index	Ukrywanie	AI1	AI1	Jednos tka	Domyśl nie	ID	Opis
P3.13.2.8	Wartość zadana 2 — minimum	-200.00	200.00	%	0.00	1647	
P3.13.2.9	Wartość zadana 2 — maksimum	-200.00	200.00	%	100.00	1648	

Tabela 40: Sprzężenie zwrotne

Index	Ukrywanie	AI1	Maks.	Jednos tka	Domyślni e	ID	Opis
P3.13.3.1	Funkcja sprzężenia zwrotnego	1	9		1	1650	Patrz P3.12.3.1.
P3.13.3.2	Wzmocnienie funkcji sprzężenia zwrot- nego	-1000.0	1000.0	%	100.0	1651	Patrz P3.12.3.2.
P3.13.3.3	Wybór źródła sprzę- żenia zwrotnego 1	0	14		1	1652	Patrz P3.12.3.3.
P3.13.3.4	Sprzężenie zwrotne 1 – minimum	-200.00	200.00	%	0.00	1653	
P3.13.3.5	Sprzężenie zwrotne 1 – maksimum	-200.00	200.00	%	100.00	1654	
P3.13.3.6	Wybór źródła sprzę- żenia zwrotnego 2	0	14		2	1655	Patrz P3.12.3.6.
P3.13.3.7	Sprzężenie zwrotne 2 – minimum	-200.00	200.00	%	0.00	1656	
P3.13.3.8	Sprzężenie zwrotne 2 – maksimum	-200.00	200.00	%	100.00	1657	

Tabela 41: Monitorowanie procesu

Index	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.13.4.1	Włącz monitorowa- nie	0	1		0	1659	0 = wyłączony 1 = włączony
P3.13.4.2	Górny limit	Zmienny	Zmienny	Zmienn y	Zmienny	1660	Patrz P3.12.5.2.
P3.13.4.3	Dolny limit	Zmienny	Zmienny	Zmienn y	Zmienny	1661	Patrz P3.12.5.3.
P3.13.4.4	Opóźnienie	0	30000	S	0	1662	

5.14 GRUPA 3.14: STEROWANIE WIELOPOMPOWE

Tabela 42: Parametry sterowania wielopompowego

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.14.1	Liczba silników	1	5		1	1001	
P3.14.2	Funkcja blokad	0	1		1	1032	0 = nieużywany 1 = włączony
P3.14.3	Uwzględnij prze- miennik częstotli- wości	0	1		1	1028	0 = wyłączony 1 = włączony
P3.14.4	Wybor Autochange	0	1		1	1027	0 = wyłączony 1 = włączony
P3.14.5	Przedział czasu automatycznej zmiany	0.0	3000.0	h	48.0	1029	
P3.14.6	Automatyczna zmiana kolejności silników: Ogran.Czestotl.	0.00	50.00	Hz	25.00	1031	
P3.14.7	Automatyczna zmiana kolejności silników: Limit silni- ków	0	5		1	1030	
P3.14.8	Szerokość pasma	0	100	%	10	1097	
P3.14.9	Opóźnienie szero- kości pasma	0	3600	S	10	1098	

5.15 GRUPA 3.16: TRYB POŻAROWY

Tabela 43: Parametry trybu pożarowego

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.16.1	Hasło trybu pożaro- wego	0	9999		0	1599	1002 = włączony 1234 = tryb testowy
P3.16.2	Tryb pożarowy aktywny Otwarty				DigIN Slot0.2	1596	Otwarty = aktywny tryb pożarowy zamknięty = brak dzia- łania
P3.16.3	Tryb pożarowy aktywny Zamknij				DigIN Slot0.1	1619	Otwarty = brak działa- nia Zamknięty = aktywny tryb pożarowy
P3.16.4	Częstotliwość trybu pożarowego	8.00	P3.3.2	Hz	50.00	1598	
P3.16.5	Źródło zadawania częstotliwości trybu pożarowego	0	8		0	1617	0 = częstotliwość trybu pożarowego 1 = prędkości zada- wane 2 = panel 3 = magistrala komuni- kacyjna 4 = AI1 5 = AI2 6 = AI1 + AI2 7 = PID1 8 = potencjometr sil- nika
P3.16.6	Wstecz w trybie pożarowym				DigIN Slot0.1	1618	Otwarty = do przodu Zamknięty = do tyłu
P3.16.7	Wybór częstotliwości stałej trybu pożaro- wego 1	0	50		10	15535	
P3.16.8	Wybór częstotliwości stałej 2 dla trybu pożarowego	0	50	Hz	20	15536	
P3.16.9	Wybór częstotliwości stałej trybu pożaro- wego 3	0	50		30	15537	
M3.16.10	Stan trybu pożaro- wego	0	3		0	1597	A 0 = wyłączony 1 = włączony 2 = aktywny (włączony + otwarte DI) 3 = tryb testowy

Tabela 43: Parametry trybu pożarowego

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
M3.16.11	Licznik trybu pożaro- wego				0	1679	
P3.16.12	Prąd wskaźnika pracy w trybie poża- rowym	0.0	100.0	%	10.0	15580	

5.16 GRUPA 3.17: USTAWIENIA APLIKACJI

Tabela 44: Ustawienia aplikacji

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.17.1	Hasło	0	9999		0	1806	
P3.17.2	Wybór °C/°F			°C		1197	
P3.17.3	Wybór kW/HP			kW		1198	
P3.17.4	KonfPrzyciskFunkcji	0	7		7	1195	B0 = lokalne/zdalne B1 = strona sterowania B2 = zmiana kierunku

5.17 GRUPA 3.18: USTAWIENIA WYZWOLENIA IMPULSU KWH

Tabela 45: Ustawienia wyzwolenia impulsu kWh

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P3.18.1	Długość impulsu kWh	50	200	ms	50	15534	
P3.18.2	Częstotliwość impul- sów kWh	1	100	kWh	1	15533	

6 MENU DIAGNOSTYKA

6.1 AKTYWNE USTERKI

W przypadku wystąpienia usterki lub wielu usterek zaczyna migać wyświetlacz z nazwą usterki. Naciśnij przycisk OK, aby powrócić do menu Diagnostyka. W podmenu Aktywne usterki jest wyświetlana liczba usterek. Aby wyświetlić dane dotyczące czasu wystąpienia usterki, wybierz usterkę i naciśnij przycisk OK.

Usterka będzie aktywna aż do jej skasowania. Istnieją 5 sposoby kasowania usterki.

- Naciśnij przycisk Reset i przytrzymaj go 2 sekundy.
- Przejdź do podmenu Kasuj usterki i użyj parametru Kasuj usterki.
- Podaj sygnał kasowania na WE/WY sterujące.
- Podaj sygnał kasowania za pomocą magistrali.
- Podaj sygnał kasowania w narzędziu Vacon Live.

W podmenu Aktywne usterki może znajdować się lista maksymalnie 10 usterek. Usterki w podmenu są wyświetlane w kolejności ich wystąpienia.

6.2 KASUJ USTERKI

To menu umożliwia kasowanie usterek. Patrz instrukcje w rozdziale *11.1 Na wyświetlaczu pojawia się usterka*.

UWAGA!

Aby uniknąć przypadkowego ponownego rozruchu napędu, należy przed skasowaniem usterki odłączyć sygnał sterowania zewnętrznego.

6.3 HISTORIA USTEREK

W historii usterek może znajdować się lista 40 usterek.

Aby wyświetlić szczegóły usterki, przejdź do niej w historii usterek i naciśnij przycisk OK.

6.4 LICZNIKI GŁÓWNE

Tabela 46: Parametr	y liczników głównych w	menu diagnostyki
---------------------	------------------------	------------------

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
V4.4.1	Licznik energii			Zmienn y		2291	Ilość energii pobranej z sieci zasilającej. Tego licznika nie można wyzerować. Na wyświetlaczu teksto- wym: najwyższa jed- nostka energii, która może pojawić się na wyświetlaczu to MW. Jeśli wartość licznika energii przekroczy 999,9 MW, na wyświet- laczu nie pojawi się żadna jednostka.
V4.4.3	Czas pracy (graficzny panel sterujący)			a d gg:min		2298	Czas pracy modułu sterującego.
V4.4.4	Czas pracy (tekstowy panel sterujący)			а			Łączny czas pracy modułu sterującego (w latach).
V4.4.5	Czas pracy (tekstowy panel sterujący)			d			Łączny czas pracy modułu sterującego (w dniach).
V4.4.6	Czas pracy (tekstowy panel sterujący)			gg:min: ss			Czas pracy modułu sterującego w godzi- nach, minutach i sekundach.
V4.4.7	Czas działania (gra- ficzny panel steru- jący)			a d gg:min		2293	Czas działania silnika.
V4.4.8	Czas działania (tek- stowy panel steru- jący)			а			Łączny czas działania silnika (w latach).
V4.4.9	Czas działania (tek- stowy panel steru- jący)			d			Łączny czas działania silnika (w dniach).
V4.4.10	Czas działania (tek- stowy panel steru- jący)			gg:min: ss			Czas działania silnika w godzinach, minutach i sekundach.

Tabela 46: Parametry liczników głównych w menu diagno	styki
---	-------

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
V4.4.11	Czas zasilania (gra- ficzny panel steru- jący)			a d gg:min		2294	Licznik czasu nieprzer- wanego zasilania modułu mocy. Tego licznika nie można wyzerować.
V4.4.12	Czas zasilania (tek- stowy panel steru- jący)			а			Łączny czas zasilania (w latach).
V4.4.13	Czas zasilania (tek- stowy panel steru- jący)			d			Łączny czas zasilania (w dniach).
V4.4.14	Czas zasilania (tek- stowy panel steru- jący)			gg:min: ss			Czas zasilania w godzi- nach, minutach i sekundach.
V4.4.15	Licznik poleceń uru- chomienia					2295	Liczba uruchomień modułu mocy.

6.5 LICZNIKI KASOWALNE

Tabela 47: Parametr	y liczników kasowaln	ych w menu diagnostyki

Indeks	Ukrywanie	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P4.5.1	Kasowalny licznik energii			Zmienn y		2296	Ten licznik można wyzerować. Na wyświetlaczu teksto- wym: najwyższa jed- nostka energii, która może pojawić się na wyświetlaczu to MW. Jeśli wartość licznika energii przekroczy 999,9 MW, na wyświet- laczu nie pojawi się żadna jednostka. Zerowanie licznika • Na wyświetlaczu tekstowym: Naciśnij przycisk OK i przytrzymaj go 4 sekundy. • Na wyświetlaczu graficznym: Naciśnij przycisk OK. Pojawi się strona zerowania licznika. Ponownie naciśnij przycisk OK.
P4.5.3	Czas pracy (graficzny panel sterujący)			a d gg:min		2299	Ten licznik można wyzerować. Patrz instrukcje w parame- trze P4.5.1 powyżej.
P4.5.4	Czas pracy (tekstowy panel sterujący)			а			Czas pracy jako suma lat.
P4.5.5	Czas pracy (tekstowy panel sterujący)			d			Czas pracy jako suma dni.
P4.5.6	Czas pracy (tekstowy panel sterujący)			gg:min: ss			Czas pracy w godzi- nach, minutach i sekundach.

6.6 INFORMACJE O OPROGRAMOWANIU

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
V4.6.1	Pakiet oprogramo- wania (graficzny panel sterujący)					2524	Kod identyfikacji opro- gramowania
V4.6.2	ID pakietu oprogra- mowania (tekstowy panel sterujący)						
V4.6.3	Wersja pakietu opro- gramowania (tek- stowy panel steru- jący)						
V4.6.4	Obciążenie systemu	0	100	%		2300	Obciążenie procesora modułu sterującego
V4.6.5	Nazwa aplikacji (gra- ficzny panel steru- jący)					2525	Nazwa aplikacji
V4.6.6	ID aplikacji					837	Kod aplikacji
V4.6.7	Wersja aplikacji					838	

Tabela 48: Parametry informacji o oprogramowaniu w menu diagnostyki

7 MENU WE/WY I SPRZĘT

W tym menu znajdują się różne ustawienia związane z opcjami.

7.1 PODSTAWOWE WE/WY

W menu Podstawowe WE/WY można monitorować stan wejść i wyjść.

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
V5.1.1	Wejście cyfr. 1	0	1		0	2502	Stan sygnału wejścia cyfrowego
V5.1.2	Wejście cyfr. 2	0	1		0	2503	Stan sygnału wejścia cyfrowego
V5.1.3	Wejście cyfr. 3	0	1		0	2504	Stan sygnału wejścia cyfrowego
V5.1.4	Wejście cyfr. 4	0	1		0	2505	Stan sygnału wejścia cyfrowego
V5.1.5	Wejście cyfr. 5	0	1		0	2506	Stan sygnału wejścia cyfrowego
V5.1.6	Wejście cyfr. 6	0	1		0	2507	Stan sygnału wejścia cyfrowego
V5.1.7	Tryb wejścia analo- gowego 1	1	3		3	2508	Przedstawia ustawiony tryb sygnału wejścia analogowego. Wybór jest dokonywany za pomocą przełącznika DIP na karcie sterowa- nia. 1 = 0-20 mA 3 = 0-10 V
V5.1.8	WeAn Al 1	0	100	%	0.00	2509	Stan sygnału wejścia analogowego
V5.1.9	Tryb wejścia analo- gowego 2	1	3		3	2510	Przedstawia ustawiony tryb sygnału wejścia analogowego. Wybór jest dokonywany za pomocą przełącznika DIP na karcie sterowa- nia. 1 = 0-20 mA 3 = 0-10 V
V5.1.10	WeAn Al 2	0	100	%	0.00	2511	Stan sygnału wejścia analogowego

Tabela 49: Podstawowe parametry WE/WY w menu WE/WY i sprzęt

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
V5.1.11	Tryb wyjścia analo- gowego 1	1	3		1	2512	Przedstawia ustawiony tryb sygnału wejścia analogowego. Wybór jest dokonywany za pomocą przełącznika DIP na karcie sterowa- nia. 1 = 0–20 mA 3 = 0–10 V
V5.1.12	Wyjście analogowe 1	0	100	%	0.00	2513	Stan sygnału wyjścia analogowego
V5.1.13	Wyjście przekaźni- kowe 1	0	1		0	2514	Stan sygnału wyjścia przekaźnikowego
V5.1.14	Wyjście przekaźni- kowe 2	0	1		0	2515	Stan sygnału wyjścia przekaźnikowego
V5.1.15	Wyjście przekaźni- kowe 3	0	1		0	2516	Stan sygnału wyjścia przekaźnikowego

Tabela 49: Podstawowe parametry WE/WY w menu WE/WY i sprzęt

7.2 GNIAZDA KART OPCJONALNYCH

Parametry w tym menu różnią się w zależności od karty opcjonalnej. Wyświetlane parametry dotyczą zainstalowanej karty opcjonalnej. Jeśli w gniazdach C, D ani E nie ma kart opcjonalnych, nie będą wyświetlane żadne parametry. Więcej informacji na temat położenia gniazd znajduje się w rozdziale *10.5 Konfiguracja WE/WY*.

Po wyjęciu karty opcjonalnej na wyświetlaczu pojawi się kod usterki 39 oraz nazwa usterki *Urządzenie usunięte*. Patrz rozdział *11.3 Kody usterek*.

Tabela 50: Parametry dotyczące karty opcjonalnej

Menu	Funkcja	Opis				
Gniazdo C	Ustawienia	Ustawienia związane z kartą opcjonalną				
Gillazdo C	Monitorowanie	Monitorowanie danych związanych z kartą opcjonalną				
Gniazdo D	Ustawienia	Ustawienia związane z kartą opcjonalną				
	Monitorowanie	Monitorowanie danych związanych z kartą opcjonalną				
Gniazda E	Ustawienia	Ustawienia związane z kartą opcjonalną				
Gillazuo E	Monitorowanie	Monitorowanie danych związanych z kartą opcjonalną				

7.3 ZEGAR CZASU RZECZYWISTEGO

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
V5.5.1	Stan baterii	1	3			2205	Stan baterii. 1 = niezainstalowana 2 = zainstalowana 3 = wymień baterię
P5.5.2	Czas			gg:mm: ss		2201	Bieżąca godzina
P5.5.3	Data			dd.mm.		2202	Bieżąca data
P5.5.4	Rok			rrrr		2203	Bieżący rok
P5.5.5	Czas letni	1	4		1	2204	Reguła czasu letniego 1 = wyłączona 2 = Unia Europejska: początek w ostatnią niedzielę marca, koniec w ostatnią nie- dzielę października 3 = Stany Zjednoczone: początek w drugą nie- dzielę marca, koniec w pierwszą niedzielę lis- topada 4 = Rosja (stale)

Tabela 51: Parametry zegara czasu rzeczywistego w menu WE/WY i sprzęt

7.4 USTAW. MODUŁU MOCY

W tym menu można zmienić ustawienia wentylatora i filtru sinusoidalnego.

Wentylator pracuje w trybie optymalizowanym lub jest zawsze włączony. W trybie optymalizowanym wewnętrzna logika napędu otrzymuje dane dotyczące temperatury i reguluje prędkość wentylatorów. Po przejściu napędu w stan gotowości wentylator zatrzyma się po upływie 5 minut. W trybie Zawsze włączony wentylator pracuje z pełną prędkością i nie zatrzymuje się.

Filtr sinusoidalny ogranicza głębokość przemodulowania i uniemożliwia zmniejszanie częstotliwości kluczowania przez funkcje zarządzania temperaturą.

Tabela 52: Ustawienia modułu mocy, wentylator

Index	Ukrywanie	AI1	AI1	Unit	Domyślni e	ID	Opis
P5.5.1.1	Tryb sterowania wentylatorami	0	1		1	2377	0 = zawsze włączony 1 = optymalizowany
V5.6.1.5	Żywot. wentylatora	Nie dot.	Nie dot.	h		849	Żywot. wentylatora
P5.6.1.6	Limit al. żyw. went.	0	200 000	h	50 000	824	Limit al. żyw. went.
P5.6.1.7	Res żyw. wentylatora	Nie dot.	Nie dot.		0	823	Res żyw. wentylatora

Tabela 53: Ustawienia modułu mocy, filtr sinusoidalny

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P5.6.4.1	Sine Filter	0	1		0	2527	0 = wyłączony 1 = włączony

7.5 PANEL STERUJĄCY

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P5.7.1	Czas powrotu	0	60	min	0	804	Czas, po upływie któ- rego na wyświetlaczu ponownie pojawi się strona ustawiona w parametrze P5.7.2. 0 = nieużywany
P5.7.2	Strona domyślna	0	4		0	2318	0 = brak 1 = otwórz pozycję menu 2 = menu główne 3 = strona sterowania 4 = monitor wielopozy- cyjny
P5.7.3	Indeks menu					2499	Ustawienie strony jako indeksu menu. (Wybór wartości 1 w parame- trze P5.7.2.)
P5.7.4	Kontrast*	30	70	%	50	830	Ustawienie kontrastu wyświetlacza.
P5.7.5	Czas podświetlania	0	60	min	5	818	Ustawienie czasu, po którym nastąpi wyłą- czenie podświetlenia wyświetlacza. Po usta- wieniu wartości 0 pod- świetlenie będzie zawsze włączone.

Tabela 54: Parametry panelu sterującego w menu WE/WY i sprzęt

* Dostępne tylko na graficznym panelu sterującym.

7.6 MAGISTRALA KOMUNIKACYJNA

W menu WE/WY i sprzęt znajdują się parametry związane z różnymi kartami magistrali komunikacyjnej. Instrukcje dotyczące korzystania z tych parametrów znajdują się w podręczniku użytkownika magistrali.

8 USTAWIENIA UŻYTKOWNIKA, ULUBIONE I MENU POZIOMU UŻYTKOWNIKA

8.1 USTAWIENIA UŻYTKOWNIKA

Tabela 55: Ustawienia ogólne w menu ustawień użytkownika

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P6.1	Wybór języka	Zmienny	Zmienny		Zmienny	802	Dostępne opcje zależą od pakietu językowego
M6.5	Kopia zapasowa parametrów						Patrz Tabela 56 Para- metry kopii zapasowej parametrów w menu ustawień użytkownika.
M6.6	Porównywanie para- metrów						
P6.7	Nazwa napędu						Skorzystaj z narzędzia komputerowego Vacon Live, by nadać nazwę napędowi, jeśli uznasz to za konieczne.

8.1.1 KOPIA ZAPASOWA PARAMETRÓW

Indeks	Parametr	Min.	Maks.	Jednos tka	Domyślni e	ID	Opis
P6.5.1	Przywróć dom.ustaw.fabr.					831	Przywraca domyślne wartości parametrów i uruchamia kreatora rozruchu.
P6.5.2	Zapisz w panelu ste- rującym *					2487	Zapisanie wartości parametrów na panelu sterującym. Na przy- kład w celu skopiowa- nia ich do innego napędu.
P6.5.3	Przywróć z panelu sterującego *					2488	Wczytanie wartości parametrów z panelu sterującego do napędu.
P6.5.4	Zapisz w zestawie 1					2489	Zachowuje wartości parametrów w zesta- wie parametrów 1.
P6.5.5	Przywróć z zestawu 1					2490	Wczytanie wartości parametrów z zestawu parametrów 1 do napędu.
P6.5.6	Zapisz w zestawie 2					2491	Zachowuje wartości parametrów w zesta- wie parametrów 2.
P6.5.7	Przywróć z zestawu 2					2492	Wczytanie wartości parametrów z zestawu parametrów 2 do napędu.

Tabela 56: Parametry kopii zapasowej parametrów w menu ustawień użytkownika

* Dostępne tylko na wyświetlaczu graficznym.

Tabela 57: Porównanie parametrów

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P6.6.1	Akt. zest — zestaw 1					2493	Rozpoczyna porówna- nie parametrów z wybranym zestawem.
P6.6.2	Akt. zest — zestaw 2					2494	Rozpoczyna porówna- nie parametrów z wybranym zestawem.
P6.6.3	Akt. zestaw — domyśl					2495	Rozpoczyna porówna- nie parametrów z wybranym zestawem.
P6.6.4	Akt. zest.–zest. panelu sterowania					2496	Rozpoczyna porówna- nie parametrów z wybranym zestawem.

8.2 ULUBIONE

WSKAZÓWKA!

To menu jest dostępne w panelu sterowania z wyświetlaczem graficznym, natomiast nie ma go w panelu sterowania z wyświetlaczem tekstowym.

WSKAZÓWKA!

To menu jest niedostępne w narzędziu Vacon Live.

Elementy często używane można dodać do ulubionych. Można zebrać zestaw parametrów lub sygnałów monitorujących ze wszystkich menu panelu sterującego. Nie jest konieczne odszukiwanie ich w strukturze menu po kolei. Można je dodać do folderu ulubionych, w którym będzie można łatwo je odnaleźć.

DODAWANIE ELEMENTU DO ULUBIONYCH

1 Znajdź element, który chcesz dodać do ulubionych. Naciśnij przycisk OK.

STOP	C READY	I/O
	Basic Settin	gs
8	Motor Nom Voltg 230.0	0 V
	Motor Nom Freq 50.00	Hz
	Motor Nom Speed 1430	rpm
2 Wybierz opcję *Dodaj do ulubionych* i naciśnij przycisk OK.

3 Procedura została zakończona. Aby kontynuować, przeczytaj instrukcje na wyświetlaczu.

STOP C READY	I/O	
Motor Nom Freq		
was added to		
favourites. Press OK		
to continue.		

USUWANIE ELEMENTU Z ULUBIONYCH

- 1 Przejdź do ulubionych.
- 2 Znajdź element, który chcesz usunąć z ulubionych. Naciśnij przycisk OK.

3 Wybierz opcję Usuń z ulubionych.

STOP	\mathbb{C}	READY		I/O
8		Motor	Nom Fr	eq
Monitor				
(i) Help				
	Rem from favourites		tes	

4 Aby usunąć element, ponownie naciśnij przycisk OK.

8.3 POZIOMY UŻYTKOWNIKA

Za pomocą parametrów poziomu użytkownika można uniemożliwić zmiany parametrów osobom, które nie mają odpowiednich uprawnień. Ponadto można zapobiec przypadkowym zmianom parametrów.

Jeśli wybrano opcję poziomu użytkownika, określony użytkownik nie może wyświetlić wszystkich parametrów na wyświetlaczu panelu sterującego.

Tabela 58: Parametry poziomu użytkownika

Indeks	Ukrywanie	AI1	AI1	Jednos tka	Domyślni e	ID	Opis
P8.1	Poziom użytkownika	0	1		0	1194	0 = normalny. 1 = monitorowanie. W menu głównym widoczne są tylko menu monitorowania, ulubionych i poziomów użytkownika.
P8.2	Kod dostępu	0	9		0	2362	Jeśli przed przejściem na poziom <i>monitorowa- nia z</i> (na przykład) poziomu <i>normalny</i> zos- tanie podana wartość różna od 0, powrót do poziomu <i>normalny</i> będzie wymagać wpro- wadzenia kodu dostępu. Zapobiega to wprowadzaniu zmian parametrów na panelu sterującym przez osoby, które nie mają odpowiednich upraw- nień.

UWAGA!

Należy uważać, aby nie utracić kodu dostępu. W razie utraty kodu dostępu należy skontaktować się z najbliższym centrum lub partnerem serwisowym.

ZMIANA KODU DOSTĘPU POZIOMÓW UŻYTKOWNIKA

1 Przejdź do poziomów użytkownika.

2 Przejdź do elementu Kod dostępu i naciśnij przycisk ze strzałką w prawo.

	C			Koynad
STOP		READY	ALARM	кеурао
(͡⊉)		Main	Menu	
		ID:2362	P8	.2
()	U	ser le	vel	
8			Nc	rmal
	A	ccess	code	
l 81			00	000

3 Do zmiany cyfr kodu dostępu służą wszystkie przyciski ze strzałkami.

STOP C	READY	ALARM	I/O
8	Access code ID:2362 P8.2		
\$			
•	<u>0</u> 00	00	
Min:0			
Max:9			

4 Zatwierdź zmianę za pomocą przycisku OK.

9 OPISY MONITOROWANYCH WARTOŚCI

Ten rozdział zawiera podstawowe opisy wszystkich monitorowanych wartości.

9.1 PODSTAWOWE

V2.2.1 CZĘSTOTLIWOŚĆ WYJŚCIOWA (ID 1)

Ta wartość monitorowana określa częstotliwość wyjściową do silnika.

V2.2.2 CZĘSTOTLIWOŚĆ ZADANA (ID 25)

Ta wartość monitorowana określa częstotliwość zadaną do sterowania silnikiem. Jest aktualizowana co 10 ms.

V2.2.3 PRĘDKOŚĆ SILNIKA (ID 2)

Ta wartość monitorowana określa rzeczywistą prędkość silnika w obr./min. (wartość obliczona).

V2.2.4 PRĄD SILNIKA (ID 3)

Ta wartość monitorowana określa zmierzony prąd silnika. Skala wartości zależy od rozmiaru napędu.

V2.2.5 MOMENT SILNIKA (ID 4)

Ta wartość monitorowana określa rzeczywisty moment silnika na wale (wartość obliczona).

V2.2.7 MOC NA WAŁKU SILNIKA (ID 5)

Ta wartość monitorowana wyświetla rzeczywistą moc na wale silnika (wartość obliczona) jako wartość procentową mocy znamionowej silnika.

V2.2.8 MOC NA WAŁKU SILNIKA (ID 73)

Ta wartość monitorowana określa rzeczywistą moc silnika na wale (wartość obliczona). Jednostką miary jest kW lub HP (KM), zależnie od wartości parametru "Wybór kW/HP".

V2.2.9 NAPIĘCIE SILNIKA (ID 6)

Ta wartość monitorowana określa napięcie wyjściowe do silnika.

V2.2.10 NAPIĘCIE SZYN DC (ID 7)

Ta wartość monitorowana określa zmierzone napięcie szyny DC napędu.

V2.2.11 TEMP. FALOWNIKA (ID 8)

Ta wartość monitorowana określa zmierzoną temperaturę radiatora napędu. Jednostką wartości monitorowanej są stopnie Celsjusza lub Fahrenheita, zależnie od wartości parametru "Wybór C/F".

V2.2.12 TEMPERATURA SILNIKA (ID 9)

Ta wartość monitorowana określa obliczoną temperaturę silnika jako procent znamionowej temperatury roboczej. Gdy przekroczy 105%, pojawia się usterka zabeznieczenia przed przegrzaniem silnika.

Gdy przekroczy 105%, pojawia się usterka zabezpieczenia przed przegrzaniem silnika.

V2.2.13 WEJŚCIE ANALOGOWE 1 (ID 59)

Ta wartość monitorowana określa wartość sygnału wejścia analogowego jako wartość procentową wykorzystanego zakresu.

V2.2.14 WEJŚCIE ANALOGOWE 1 (ID 60)

Ta wartość monitorowana określa wartość sygnału wejścia analogowego jako wartość procentową wykorzystanego zakresu.

V2.2.15 WYJŚCIE ANALOGOWE 1 (ID 81)

Ta wartość monitorowana określa wartość wyjścia analogowego jako wartość procentową wykorzystanego zakresu.

V2.2.16 PODGRZEWANIE SILNIKA (ID 1228)

Ta wartość monitorowana określa stan funkcji podgrz. silnika.

V2.2.17 SŁOWO STATUSU DYSKU (ID 43)

Ta wartość monitorowana określa zakodowany bitowo stan napędu.

V2.2.19 STATUS TRYBU POŻAROWEGO (ID 1597)

Ta wartość monitorowana określa stan funkcji trybu pożarowego.

V2.2.20 SŁOWO STANU DIN 1 (ID 56)

Ta wartość monitorowana określa zakodowany bitowo stan cyfrowych sygnałów wej.

16-bitowe słowo, gdzie każdy bit pokazuje stan 1 wejścia cyfrowego. Odczytywanych jest 6 wejść cyfrowych z każdego gniazda. Słowo 1 zaczyna się od wejścia 1 w gnieździe A (bit 0), a kończy na wejściu 4 w gnieździe C (bit 15).

V2.2.21 SŁOWO STANU DIN 2 (ID 57)

Ta wartość monitorowana określa zakodowany bitowo stan cyfrowych sygnałów wej.

16-bitowe słowo, gdzie każdy bit pokazuje stan 1 wejścia cyfrowego. Odczytywanych jest 6 wejść cyfrowych z każdego gniazda. Słowo 2 zaczyna się od wejścia 5 w gnieździe C (bit 0), a kończy na wejściu 6 w gnieździe E (bit 13).

V2.2.22 PRĄD SILNIKA DO 1 MIEJSCA PO PRZECINKU (ID 45)

Ta wartość monitorowana określa zmierzony prąd silnika ze stałą liczbą miejsc po przecinku i mniejszym filtrowaniem.

V2.2.23 ZASTOS. SŁOWO STANU 1 (ID 89)

Ta wartość monitorowana określa stany aplikacji w kodowaniu bitowym.

V2.2.24 ZASTOS. SŁOWO STANU 2 (ID 90)

Ta wartość monitorowana określa stany aplikacji w kodowaniu bitowym.

V2.2.25 MINIMALNY LICZNIK KASOWANIA KWH (ID 1054)

Ta wartość monitorowana określa rzeczywistą wartość licznika kWh (licznik energii).

V2.2.26 MAKSYMALNY LICZNIK KASOWANIA KWH (ID 1067)

Ta wartość monitorowana określa liczbę obrotów licznika kWh (energii).

V2.2.27 KOD OSTATNIEJ AKTYWNEJ USTERKI (ID 37)

Ta wartość monitorowana określa kod ostatniej aktywowanej usterki, która nie została skasowana.

V2.2.28 ID OSTATNIEJ AKTYWNEJ USTERKI (ID 95)

Ta wartość monitorowana określa ID ostatniej aktywowanej usterki, która nie została skasowana.

V2.2.29 KOD OSTATNIEGO AKTYWNEGO ALARMU (ID 74)

Ta wartość monitorowana określa kod ostatniego aktywowanego alarmu, który nie został skasowany.

V2.2.30 ID OSTATNIEGO AKTYWNEGO ALARMU (ID 94)

Ta wartość monitorowana określa ID ostatniego aktywowanego alarmu, który nie został skasowany.

V2.2.31 PRẠD FAZY U (ID 39)

Ta wartość monitorowana określa zmierzoną fazę prądu silnika (pierwsze filtrowanie).

V2.2.32 PRAD FAZY V (ID 40)

Ta wartość monitorowana określa zmierzoną fazę prądu silnika (pierwsze filtrowanie).

V2.2.33 PRAD FAZY W (ID 41)

Ta wartość monitorowana określa zmierzoną fazę prądu silnika (pierwsze filtrowanie).

V2.2.34 STAN REGULATORA SILNIKA (ID 77)

Ta wartość monitorowana określa zakodowany bitowo stan regulatorów limitu silników.

9.2 FUNKCJE STEROWANIA CZASOWEGO

V2.3.1 TC 1, TC 2, TC3 (ID 1441)

Ta wartość monitorowana określa stan kanałów czasu 1, 2 i 3.

V2.3.2 PRZEDZIAŁ CZASU 1 (ID 1442)

Ta wartość monitorowana określa stan funkcji przedz. czasu.

V2.3.3 PRZEDZIAŁ CZASU 2 (ID 1443)

Ta wartość monitorowana określa stan funkcji przedz. czasu.

V2.3.4 PRZEDZIAŁ CZASU 3 (ID 1444)

Ta wartość monitorowana określa stan funkcji przedz. czasu.

V2.3.5 PRZEDZIAŁ CZASU 4 (ID 1445)

Ta wartość monitorowana określa stan funkcji przedz. czasu.

V2.3.6 PRZEDZIAŁ CZASU 5 (ID 1446)

Ta wartość monitorowana określa stan funkcji przedz. czasu.

V2.3.7 STEROWANIE CZASOWE 1 (ID 1447)

Ta wartość monitorowana określa pozostały czas timera, jeśli timer jest aktywny.

V2.3.8 STEROWANIE CZASOWE 2 (ID 1448)

Ta wartość monitorowana określa pozostały czas timera, jeśli timer jest aktywny.

V2.3.9 STEROWANIE CZASOWE 3 (ID 1449)

Ta wartość monitorowana określa pozostały czas timera, jeśli timer jest aktywny.

V2.3.10 ZEGAR CZASU RZECZYWISTEGO (ID 1450)

Ta wartość monitorowana pokazuje rzeczywistą godzinę zegara czasu rzeczywistego w formacie gg:mm:ss.

9.3 REGULATOR PID1

V2.4.1 WART. ZADANA PID1 (ID 20)

Ta wartość monitorowana określa wartość zadaną PID sygnału w jednostkach procesowych. Za pomocą parametru P3.12.1.7 można wybrać jednostkę procesową (patrz *10.12.1 Parametry podstawowe*).

V2.4.2 SPRZ. ZWROTNE PID1 (ID 21)

Ta wartość monitorowana określa wartość sygnału sprz. zwrotnego PID w jednostkach procesowych.

Za pomocą parametru P3.12.1.7 można wybrać jednostkę procesową (patrz *10.12.1 Parametry podstawowe*).

V2.4.3 WARTOŚĆ UCHYBIENIA PID1 (ID 22)

Ta wartość monitorowana określa wartość błędu regulatora PID.

Jest to odchylenie sprzężenia zwrotnego PID od wartości zadanej PID w jednostce procesowej.

V2.4.4 WYJŚCIE PID1 (ID 23)

Ta wartość monitorowana określa wyjście regulatora PID w formie procentowej (0-100%).

V2.4.5 STAN PID1 (ID 24)

Ta wartość monitorowana określa stan regulatora PID.

9.4 **REGULATOR PID2**

V2.5.1 WART. ZADANA PID2 (ID 83)

Ta wartość monitorowana określa wartość zadaną PID sygnału w jednostkach procesowych. Za pomocą parametru P3.13.1.9 można wybrać jednostkę procesową (patrz *10.12.1 Parametry podstawowe*).

V2.5.2 SPRZ. ZWROTNE PID2 (ID 84)

Ta wartość monitorowana określa wartość sygnału sprz. zwrotnego PID w jednostkach procesowych.

Za pomocą parametru P3.13.1.9 można wybrać jednostkę procesową (patrz *10.12.1 Parametry podstawowe*).

V2.4.3 WARTOŚĆ UCHYBIENIA PID2 (ID 85)

Ta wartość monitorowana określa wartość błędu regulatora PID. Wartość błędu jest odchyleniem sprzężenia zwrotnego regulatora PID od wartości zadanej regulatora PID w jednostce procesowej.

Za pomocą parametru P3.13.1.9 można wybrać jednostkę procesową (patrz *10.12.1 Parametry podstawowe*).

V2.5.4 WYJŚCIE PID2 (ID 86)

Ta wartość monitorowana określa wyjście regulatora PID w formie procentowej (0-100%). Można ją na przykład podać do wyjścia analogowego.

V2.5.5 STAN PID2 (ID 87)

Ta wartość monitorowana określa stan regulatora PID.

9.5 STEROWANIE WIELOPOMPOWE

V2.6.1 PRACUJĄCE SILNIKI (ID 30)

Ta wartość monitorowana określa rzeczywistą liczbę silników pracujących w układzie z wieloma pompami.

V2.6.2 AUTOMATYCZNA ZMIANA KOLEJNOŚCI (ID 1114)

Ta wartość monitorowana określa stan żądanej AutoZmKolSilnik.

9.6 DANE MAGISTRALI

V2.8.1 FB CONTROL WORD (ID 874)

Ta wartość monitorowana określa stan słowa sterującego szyny używane przez aplikację w trybie bypass.

W zależności od typu lub profilu szyny dane z niej odbierane mogą być modyfikowane przed przesłaniem do aplikacji.

V2.8.2 FB ZAD PRĘDKOŚĆ (ID 875)

Ta wartość monitorowana wyświetla częstotliwość zadaną szyny jako wartość procentową (0-100,00 %) minimalnej i maksymalnej częstotliwości.

Informacja o zadanej prędkości jest skalowana między prędkością minimalną i maksymalną w chwili, gdy odbierze ją aplikacja sterująca. Po odebraniu częstotliwości zadanej przez aplikację częstotliwość minimalną i maksymalną można zmienić bez wpływu na wartość zadaną.

V2.8.3 FB DATA IN 1 (ID 876)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.4 FB DATA IN 2 (ID 877)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.5 FB DATA IN 3 (ID 878)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.6 FB DATA IN 4 (ID 879)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.7 FB DATA IN 5 (ID 880)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.8 FB DATA IN 6 (ID 881)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.9 FB DATA IN 7 (ID 882)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.10 FB DATA IN 8 (ID 883)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.11 FB SŁOWO STANU (ID 864)

Ta wartość monitorowana określa stan słowa stanu szyny używanego przez aplikację w trybie by-pass.

W zależności od typu lub profilu magistrali dane mogą być modyfikowane przed przesłaniem do magistrali.

V2.8.12 FB RZECZYWISTA PRĘDKOŚĆ (ID 865)

Ta wartość monitorowana wyświetla rzeczywistą prędkość napędu jako wartość procentową minimalnej i maksymalnej częstotliwości.

Wartość 0% wskazuje częstotliwość minimalną, a wartość 100% częstotliwość maksymalną. Wartość jest aktualizowana na bieżąco na podstawie chwilowej prędkości minimalnej i maksymalnej, a także częstotliwości wyjściowej.

V2.8.13 FB DATA OUT 1 (ID 866)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.14 FB DATA OUT 2 (ID 867)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.15 FB DATA OUT 3 (ID 868)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.16 FB DATA OUT 4 (ID 869)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.17 FB DATA OUT 5 (ID 870)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.18 FB DATA OUT 6 (ID 871)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.19 FB DATA OUT 7 (ID 872)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

V2.8.20 FB DATA OUT 8 (ID 873)

Ta wartość monitorowana określa wartość rzeczywistą danych procesowych w formacie 32bitowym ze znakiem.

10 OPIS PARAMETRÓW

W tym rozdziale znajdują się dane dotyczące większość specjalnych parametrów aplikacji. W przypadku większości parametrów aplikacji Vacon 100 wystarczający jest krótki opis. Tego rodzaju podstawowy opis znajduje się w tabelach parametrów w rozdziale *5 Menu parametrów*. Jeśli niezbędne są inne dane, uzyskasz pomoc od dystrybutora.

10.1 USTAWIENIA SILNIKA

10.1.1 PARAMETRY Z TABLICZKI ZNAMIONOWEJ SILNIKA

P3.1.1.1 NAPIĘCIE ZNAMIONOWE SILNIKA (ID 110)

Wartość U_n można znaleźć na tabliczce znamionowej silnika. Sprawdzić, czy podłączenie silnika jest typu trójkąt czy gwiazda.

P3.1.1.2 ZNAMIONOWA CZĘSTOTLIWOŚĆ SILNIKA (ID 111)

Wartość fn można znaleźć na tabliczce znamionowej silnika.

P3.1.1.3 ZNAMIONOWA PRĘDKOŚĆ SILNIKA (ID 112)

Wartość n_n można znaleźć na tabliczce znamionowej silnika.

P3.1.1.4 PRAD ZNAMIONOWY SILNIKA (ID 113)

Wartość In można znaleźć na tabliczce znamionowej silnika.

P3.1.1.5 ZN COS \oplus SILNIKA (ID 120)

Wartość można znaleźć na tabliczce znamionowej silnika.

P3.1.1.6 ZNAMIONOWA MOC SILNIKA (ID 116)

Wartość In można znaleźć na tabliczce znamionowej silnika.

P3.1.1.7 LIMIT PRADU SILNIKA (ID 107)

Ten parametr określa maksymalny prąd silnika z przemiennika częstotliwości.

Zakres wartości parametru zależy od rozmiaru obudowy napędu.

W przypadku osiągnięcia limitu prądu częstotliwość wyjściowa napędu zostanie obniżona.

WSKAZÓWKA!

Limit prądu silnika nie jest limitem zabezpieczenia nadprądowego.

P3.1.1.8 TYP SILNIKA (ID 650)

W tym parametrze można ustawić typ silnika w procesie.

Wybierz typ silnika. Możesz np. wybrać asynchroniczny silnik indukcyjny (IM) lub synchroniczny silnik magnetoelektryczny (PM).

10.1.2 PARAMETRY STEROWANIA SILNIKA

P3.1.2.1 CZĘSTOTLIWOŚĆ KLUCZOWANIA (ID 601)

Ten parametr definiuje częst. przełącz. przemiennika częstotliwości. Zwiększanie częstotliwości kluczowania powoduje zmniejszanie wydajności przemiennika częstotliwości. W przypadku używania długiego kabla silnika zaleca się stosowanie niskiej częstotliwości kluczowania w celu ograniczenia do minimum prądów pojemnościowych na kablu. Hałas silnika można zminimalizować przy użyciu wysokiej częstotliwości kluczowania.

P3.1.2.2 ROZŁĄCZNIK SILNIKOWY (ID 653)

Parametr umożliwia włączenie funkcji przeł. silnika.

Jeśli na przewodzie łączącym silnik z napędem znajduje się przełącznik silnika, można używać funkcji rozłącznika silnikowego. Przełącznik silnika zapewnia odizolowanie silnika od źródła napięcia i zapobiega jego uruchomieniu podczas prac serwisowych.

Aby włączyć tę funkcję, w parametrze P3.1.2.2 ustaw wartość *Włączony*. Otwarcie przełącznika będzie wtedy powodowało automatyczne zatrzymanie napędu, a zamknięcie przełącznika jego uruchomienie. Przy aktywnej funkcji przełącznika silnika napęd nie będzie inicjowany samoczynnie.

Rys. 12: Przełącznik silnika między napędem i silnikiem

A. Przełącznik silnika

B. Zasilanie sieciowe

P3.1.2.4 NAPIĘCIE PRZY ZEROWEJ CZĘSTOTLIWOŚCI (ID 606)

Ten parametr definiuje napięcie przy zerowej częstotliwości dla krzywej U/f. Wartość domyślna parametru zależy od rozmiaru jednostki.

P3.1.2.5 FUNKCJA WSTĘPNEGO PODGRZEWANIA SILNIKA (ID 1225)

Parametr umożliwia włączenie lub wyłączenie funkcji podgrz. silnika.

Funkcja podgrzewania silnika utrzymuje ciepło napędu i silnika podczas stanu zatrzymania, przesyłając do silnika prąd stały.

P3.1.2.6 FUNKCJA PODGRZEWANIA SILNIKA (ID 1226)

Ten parametr służy do ustawienia limitu temperatury funkcji podgrz. silnika.

Kiedy temperatura radiatora lub zmierzona temperatura silnika spada poniżej tego poziomu, aktywowana jest funkcja podgrzewania silnika.

P3.1.2.7 PRĄD PODGRZEWANIA SILNIKA (ID 1227)

Ten parametr służy do ustawienia prądu DC funkcji podgrz. silnika.

P3.1.2.8 WYBÓR WSPÓŁCZYNNIKA U/F (ID 108)

Za pomocą tego parametru można ustawić typ krzywej U/f między częstotliwością zerową a punktem osłabienia pola.

Numer wyboru	Nazwa wyboru	Opis
0	Liniowa	Napięcie silnika zmienia się liniowo jako funkcja częstotli- wości wyjściowej. Napięcie zmienia się z wartości parametru P3.1.2.4 (Napięcie przy zerowej częstotliwości) na wartość Napięcie punktu osłabienia pola przy częstotliwości ustawio- nej w parametrze Częstotliwość punktu osłabienia pola. Jeśli nie jest konieczne korzystanie z innego ustawienia, należy użyć tego ustawienia domyślnego.
1	Kwadratowe	Napięcie silnika zmienia się według krzywej kwadratowej od wartości parametru P3.1.2.4 (Napięcie przy zerowej częstot- liwości) do wartości parametru Częstotliwość punktu osła- bienia pola. Silnik pracuje niedomagnesowany poniżej punktu osłabienia pola i wytwarza mniejszy moment obrotowy. Kwadratowego współczynnika U/f można używać w zastoso- waniach, gdzie wymagany jest moment obrotowy proporcjo- nalny do kwadratu prędkości, np. w wentylatorach i pompach odśrodkowych.

Rys. 13: Liniowa i kwadratowa zmiana napięcia silnika

P3.1.2.15 REGULATOR NADNAPIĘCIOWY (ID 607)

Za pomocą tego parametru można wyłączyć regulator przek. napięcia.

Patrz opis w parametrze P3.1.2.16 Regulator nadnapięciowy.

P3.1.2.16 REGULATOR ZBYT NISKIEGO NAPIĘCIA (ID 608)

Za pomocą tego parametru można wyłączyć regulator za niskiego napięcia.

Po włączeniu parametru P3.1.2.15 lub P3.1.2.16 regulatory rozpoczną monitorowanie zmian napięcia zasilającego. Regulatory zmienią częstotliwość wyjściową, jeśli będzie ona za wysoka lub za niska.

Aby zatrzymać pracę regulatorów zbyt niskiego napięcia i regulatorów nadnapięciowych, należy wyłączyć te dwa parametry. Jest to przydatne, gdy zmiany napięcia zasilającego przekraczają przedział od -15% do +10%, a w danej aplikacji nie jest tolerowane działanie regulatorów.

P3.1.2.17 REGULACJA NAPIĘCIA STOJANA (ID 659)

Parametr ten służy do regulacji napięcia stojana w silnikach magneto-elektrycznych.

Z tego parametru można korzystać tylko wtedy, gdy parametr P3.1.1.8 Typ silnika ma wartość *Silnik PM*. Jeśli jako typ silnika ustawiono *silnik indukcyjny*, wartość zostanie automatycznie ustawiona na 100% i nie będzie można jej zmienić. Przy zmianie wartości parametru P3.1.1.8 (Typ silnika) na *Silnik PM* krzywa U/f automatycznie się zwiększy w celu zrównania jej z napięciem wyjściowym napędu. Ustawiony współczynnik U/f nie zmieni się. Pozwala to zapobiec pracy silnika PM w obszarze osłabienia pola. Napięcie znamionowe silnika PM jest o wiele niższe niż pełne napięcie wyjściowe napędu.

Napięcie znamionowe silnika PM odpowiada napięciu wywołanemu siłą przeciwelektromotoryczną silnika przy częstotliwości znamionowej. Jednak w zależności od producenta silnika, może być ono na przykład równe napięciu stojana przy obciążeniu znamionowym.

Parametr Regulacja napięcia stojana umożliwia łatwe ustawienie krzywej U/f napędu w pobliżu krzywej siły przeciwelektromotorycznej. Nie jest konieczna zmiana wielu parametrów krzywej U/f.

Parametr P3.1.2.17 określa napięcie wyjściowe napędu w procentach napięcia znamionowego silnika przy częstotliwości znamionowej silnika. Krzywą U/f napędu należy ustawić powyżej krzywej siły przeciwelektromotorycznej silnika. Prąd silnika wzrasta tym bardziej, im bardziej krzywa U/f napędu różni się od krzywej siły przeciwelektromotorycznej silnika.

Rys. 14: Regulacja napięcia stojana

P3.1.2.18 OPTYMALIZACJA ZUŻYCIA ENERGII (ID 666)

Parametr ten umożliwia włączenie funkcji opt. zużycia energii.

Aby oszczędzać energię i zapewnić cichszą pracę, napęd ustala minimalny wystarczający prąd silnika. Z tej funkcji można korzystać na przykład przy sterowaniu wentylatorami i pompami. Nie należy korzystać z tej funkcji do obsługi szybkich procesów ze sterowaniem PID.

P3.1.2.19 OPCJE STARTU W BIEGU (ID 1590)

Parametr umożliwia ustawienie opcji startu w biegu. Parametr Opcje startu w biegu umożliwia wybór wartości za pomocą pola wyboru.

Dostępne są poniższe wartości bitów.

- Wyłącz wysz. kier. wstecz
- Przyrost strumienia ze sterowaniem prądem

Bit B0 wyznacza kierunek wyszukiwania. Gdy bit jest ustawiony na wartość 0, częstotliwość wału jest wyszukiwana w dwóch kierunkach – zarówno w kierunku dodatnim, jak i ujemnym. Gdy bit jest ustawiony na wartość 1, częstotliwość wału jest wyszukiwana tylko w kierunku częstotliwości zadanej. Zapobiega to ruchowi wału w innym kierunku.

Bit o wartości 6 odpowiada za rozszerzoną procedurę, mającą na celu namagnesowanie silnika indukcyjnego. Może to być przydatne np. w przypadku silników wysokiej mocy.

P3.1.2.20 START I/F (ID 534)

Parametr umożliwia włączenie funkcji startu I/f.

Ta funkcja uruchamia silnik z regulacją prądu stałego. Zapewnia dostateczny moment obrotowy przy rozruchu silnika. Z tej funkcji można korzystać na przykład w przypadku silników PM (magnetoelektrycznych).

P3.1.2.21 CZĘSTOTLIWOŚĆ STARTU I/F (ID 535)

Za pomocą tego parametru można ustawić limit częstotliwości wyjściowej, poniżej którego ustawiony prąd startu I/f jest podawany do silnika.

Funkcja startu I/f zostanie uaktywniona, gdy częstotliwość wyjściowa napędu spadnie poniżej limitu dla tego parametru. Gdy częstotliwość wyjściowa przekroczy ten limit, tryb pracy napędu zostanie zmieniony z powrotem na normalny tryb sterowania U/f.

P3.1.2.22 PRAD STARTU I/F (ID 536)

Za pomocą tego parametru można ustawić prąd używany po włączeniu funkcji startu I/f.

10.2 USTAWIENIA STARTU/STOPU

P3.2.1 ZDALNE MIEJSCE STEROWANIA (ID 172)

Ten parametr służy do wyboru zdalnego miejsca ster. (start/stop). Umożliwia przełączenie z powrotem na zdalne sterowanie z programu Vacon Live, np. w przypadku uszkodzenia panelu.

P3.2.2 LOKALNE/ZDALNE (ID 211)

Ten parametr przełącza między lokalnym i zdalnym miejscem sterowania. Lokalnym miejscem sterowania jest zawsze panel sterujący. Zdalnym miejscem sterowania może być WE/WY lub magistrala komunikacyjna. Określa to wartość parametru "Zdalne miejsce sterowania".

P3.2.3 PRZYCISK STOP NA PANELU (ID 114)

Parametr umożliwia włączenie przycisku stop.

Po włączeniu tej funkcji naciśnięcie przycisku Stop na panelu zawsze powoduje zatrzymanie napędu (niezależnie od miejsca sterowania). Gdy funkcja jest wyłączona, przycisk Stop zatrzymuje napęd tylko przy sterowaniu lokalnym.

Numer wyboru	Nazwa wyboru	Opis
0	Tak	Przycisk Stop na panelu jest zawsze włączony.
1	Nie	Ograniczone działanie przycisku Stop na panelu.

P3.2.4 FUNKCJA START AR (ID 505)

Ten parametr służy do wyboru typu funkcji startu.

Numer wyboru	Nazwa wyboru	Opis
0	Rampa	Napęd przyspiesza od częstotliwości 0 do częstotliwości zadanej.
1	Start "w biegu"	Napęd wykrywa rzeczywistą prędkość obrotową silnika i przyspiesza od tej wartości do częstotliwości zadanej.

P3.2.5 FUNKCJA STOPU (ID 506)

Ten parametr służy do wyboru typu funkcji stopu.

Numer wyboru	Nazwa wyboru	Opis
0	Wybieg	Silnik zatrzymuje się wskutek własnej bezwładności. Po wydaniu polecenia stop sterowanie z napędu zostanie prze- rwane, a prąd napędu spadnie do zera.
1	Rampa	Po wydaniu polecenia stop prędkość silnika zostanie zmniej- szona do zera zgodnie z parametrami zwalniania.

WSKAZÓWKA!

Zatrzymania z rampą nie można zagwarantować w każdych warunkach. Jeśli zostanie wybrane zatrzymanie z rampą, a napięcie netto zmieni się o ponad 20%, wystąpi błąd szacowania napięcia. W takim przypadku zatrzymanie z rampą nie jest możliwe.

P3.2.6 LOGIKA START/STOP DLA WE/WY (ID 300)

Za pomocą tego parametru można sterować uruchamianiem i zatrzymywaniem napędu za pomocą sygnałów cyfrowych.

Opcje zawierające wyraz "zbocze" pozwalają uniknąć przypadkowego uruchomienia.

Przypadkowe uruchomienie może wystąpić na przykład w poniższych sytuacjach:

- Po podłączeniu zasilania.
- Po ponownym podłączeniu odciętego zasilania.
- Po skasowaniu usterki.
- Kiedy funkcja włączenia pracy zatrzyma napęd.
- Po zmianie miejsca sterowania na sterowanie z WE/WY.

Aby uruchomić silnik, należy rozewrzeć styk Start/Stop.

We wszystkich przykładach na kolejnych stronach tryb stopu to wybieg. CS = sygnał sterujący.

Rys. 15: Logika Start/Stop dla WE/WY A = 0

- Sygnał kontrolny (CS) 1 uaktywnia się i powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu.
- Uaktywnia się sygnał CS2, ale nie ma to wpływu na częstotliwość wyjściową, ponieważ pierwszy wybrany kierunek ma najwyższy priorytet.
- CS1 jest nieaktywny, co powoduje rozpoczęcie zmiany kierunku (przód na tył), ponieważ CS2 jest ciągle aktywny.
- 4. CS2 jest nieaktywny, a częstotliwość podawana do silnika spada do 0.
- 5. CS2 uaktywnia się ponownie, powodując przyspieszanie silnika (do tyłu) do zadanej częstotliwości.

- 6. CS2 jest nieaktywny, a częstotliwość podawana do silnika spada do 0.
- CS1 uaktywnia się, powodując przyspieszanie silnika (do przodu) do zadanej częstotliwości
- Sygnał włączenia pracy zostaje ustawiony na wartość OTWARTY, co powoduje, że częstotliwość spada do zera. Sygnał włączenia pracy można skonfigurować za pomocą parametru P3.5.1.10.
- Sygnał włączenia pracy jest ustawiony na wartość ZAMKNIĘTY, co powoduje wzrost częstotliwości do zadanej wartości, ponieważ sygnał CS1 jest ciągle aktywny.
- Zostaje naciśnięty przycisk STOP na panelu sterującym i częstotliwość podawana do silnika spada do 0. (Sygnał ten działa tylko wtedy, gdy parametr P3.2.3 Przycisk Stop panelu ma wartość *Tak*).
- 11. Napęd uruchamia się po naciśnięciu przycisku START na panelu sterującym.
- 12. Ponownie naciśnięto przycisk STOP na panelu sterującym w celu zatrzymania napędu.
- 13. Próba uruchomienia napędu poprzez naciśnięcie przycisku START nie powiodła się, ponieważ CS1 jest nieaktywny.

Numer wyboru	Nazwa wyboru	Opis
1	CS1 = do przodu (zbocze) CS2 = odwrotny stop	

Rys. 16: Logika Start/Stop dla WE/WY A = 1

- Sygnał kontrolny (CS) 1 uaktywnia się i powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu.
- 2. CS2 jest nieaktywny, a częstotliwość spada do 0.
- CS1 uaktywnia się i ponownie powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu.
- Sygnał włączenia pracy zostaje ustawiony na wartość OTWARTY, co powoduje, że częstotliwość spada do zera. Sygnał włączenia pracy można skonfigurować za pomocą parametru 3.5.1.10.
- Próba uruchomienia przy użyciu sygnału CS1 nie powiodła się, ponieważ sygnał włączenia pracy ma ciągle ustawioną wartość OTWARTY.

- Sygnał CS1 uaktywnia się i silnik przyspiesza (do przodu) do zadanej częstotliwości, ponieważ sygnał włączenia pracy został ustawiony na wartość ZAMKNIETY.
- Zostaje naciśnięty przycisk STOP na panelu sterującym i częstotliwość podawana do silnika spada do 0. (Sygnał ten działa tylko wtedy, gdy parametr P3.2.3 Przycisk Stop panelu ma wartość *Tak*).
- CS1 uaktywnia się i ponownie powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu.
- 9. CS2 jest nieaktywny, a częstotliwość spada do 0.

Numer wyboru	Nazwa wyboru	Opis
2	CS1 = do przodu (zbocze) CS2 = do tyłu (zbocze)	Za pomocą tej funkcji można zapobiec przypadkowemu uru- chomieniu. Aby ponownie uruchomić silnik, należy rozewrzeć styk start/stop.

Rys. 17: Logika Start/Stop dla WE/WY A = 2

- Sygnał kontrolny (CS) 1 uaktywnia się i powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu.
- Uaktywnia się sygnał CS2, ale nie ma to wpływu na częstotliwość wyjściową, ponieważ pierwszy wybrany kierunek ma najwyższy priorytet.
- CS1 jest nieaktywny, co powoduje rozpoczęcie zmiany kierunku (przód na tył), ponieważ CS2 jest ciągle aktywny.
- CS2 jest nieaktywny, a częstotliwość podawana do silnika spada do 0.
- CS2 uaktywnia się ponownie, powodując przyspieszanie silnika (do tyłu) do zadanej częstotliwości.
- 6. CS2 jest nieaktywny, a częstotliwość podawana do silnika spada do 0.
- CS1 uaktywnia się, powodując przyspieszanie silnika (do przodu) do zadanej częstotliwości.
- Sygnał włączenia pracy zostaje ustawiony na wartość OTWARTY, co powoduje, że częstotliwość spada do zera. Sygnał włączenia pracy można skonfigurować za pomocą parametru P3.5.1.10.

- Sygnał włączenia pracy jest ustawiony na wartość ZAMKNIĘTY, co jednak nie ma żadnego wpływu na działanie, ponieważ nawet w przypadku aktywnego sygnału CS1 do uruchomienia wymagane jest zbocze narastające.
- Zostaje naciśnięty przycisk STOP na panelu sterującym i częstotliwość podawana do silnika spada do 0. (Sygnał ten działa tylko wtedy, gdy parametr P3.2.3 Przycisk Stop panelu ma wartość *Tak*).
- CS1 zostaje ponownie otwarty i zamknięty, co powoduje uruchomienie silnika.
- CS1 jest nieaktywny, a częstotliwość podawana do silnika spada do 0.

Nazwa wyboru

OPIS PARAMETRÓW

Numer

wyboru

Rys. 18: Logika Start/Stop dla WE/WY A = 3

- 1. Sygnał kontrolny (CS) 1 uaktywnia się i powoduje wzrost częstotliwości wyjściowej. Silnik obraca sie do przodu.
- 2. CS2 uaktywnia się i powoduje rozpoczęcie zmiany kierunku (przód na tył).
- 3. CS2 jest nieaktywny, co powoduje rozpoczęcie zmiany kierunku (tył na przód), ponieważ CS1 jest ciagle aktywny.
- 4. CS1 jest nieaktywny, a częstotliwość spada do O.
- 5. CS2 uaktywnia się, ale silnik nie startuje, ponieważ CS1 jest nieaktywny.
- 6. CS1 uaktywnia się i ponownie powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu, ponieważ CS2 jest nieaktywny.

7. Sygnał włączenia pracy zostaje ustawiony na wartość OTWARTY, co powoduje, że czestotliwość spada do zera. Sygnał włączenia pracy można skonfigurować za pomocą parametru P3.5.1.10.

Opis

- 8. Sygnał włączenia pracy jest ustawiony na wartość ZAMKNIETY, co powoduje wzrost czestotliwości do zadanej wartości, ponieważ sygnał CS1 jest ciagle aktywny.
- 9. Zostaje naciśnięty przycisk STOP na panelu sterującym i częstotliwość podawana do silnika spada do 0. (Sygnał ten działa tylko wtedy, gdy parametr P3.2.3 Przycisk Stop panelu ma wartość Tak).
- 10. Naped uruchamia sie po naciśnieciu przycisku START na panelu sterującym.

- Napęd został ponownie zatrzymany za pomocą przycisku STOP na panelu sterującym.
- 12. Próba uruchomienia napędu poprzez naciśnięcie przycisku START nie powiodła się, ponieważ CS1 jest nieaktywny.

Numer wyboru	Nazwa wyboru	Opis
4	CS1 = start (zbocze) CS2 = do tyłu	Za pomocą tej funkcji można zapobiec przypadkowemu uru- chomieniu. Aby ponownie uruchomić silnik, należy rozewrzeć styk start/stop.
DO PRZODU	Częstotliwość wyjściowa	а
Prędkość stała		
0 Hz		
Prędkość stała	////	·
DO TYŁU	▼ 1 1 1 1 1	
prac	e Y 	
Sygn sterowania		
Sygna sterowania 2	╡ _{┷┷┷} ┙╴╹┷┿┦╹	
Przycisk Sto na panel	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(5)	

Rys. 19: Logika Start/Stop dla WE/WY A = 4

- Sygnał kontrolny (CS) 1 uaktywnia się i powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu, ponieważ CS2 jest nieaktywny.
- CS2 jest aktywny, co powoduje rozpoczęcie zmiany kierunku (przód na tył).
- CS2 jest nieaktywny, co powoduje rozpoczęcie zmiany kierunku (tył na przód), ponieważ CS1 jest ciągle aktywny.
- CS1 jest nieaktywny, a częstotliwość spada do 0.

- 5. CS2 uaktywnia się, ale silnik nie startuje, ponieważ CS1 jest nieaktywny.
- CS1 uaktywnia się i ponownie powoduje wzrost częstotliwości wyjściowej. Silnik obraca się do przodu, ponieważ CS2 jest nieaktywny.
- Sygnał włączenia pracy zostaje ustawiony na wartość OTWARTY, co powoduje, że częstotliwość spada do zera. Sygnał włączenia pracy można skonfigurować za pomocą parametru P3.5.1.10.

10. Aby uruchomić naped, należy ponownie

rozewrzeć i zewrzeć styk CS1.

spada do O.

11. CS1 jest nieaktywny, a częstotliwość

- 8. Aby uruchomić napęd, należy ponownie rozewrzeć i zewrzeć styk CS1.
- Zostaje naciśnięty przycisk STOP na panelu sterującym i częstotliwość podawana do silnika spada do 0. (Sygnał ten działa tylko wtedy, gdy parametr P3.2.3 Przycisk Stop panelu ma wartość *Tak*).

P3.2.7 LOGIKA START/STOP Z WE/WY B (ID 363)

Za pomocą tego parametru można sterować uruchamianiem i zatrzymywaniem napędu za pomocą sygnałów cyfrowych.

Opcje zawierające wyraz "zbocze" pozwalają uniknąć przypadkowego uruchomienia. Więcej informacji można znaleźć w opisie parametru P3.2.6.

P3.2.8 LOGIKA STARTU Z SZYNY (ID 889)

Parametr umożliwia ustawienie logiki startu szyny. Opcje zawierające wyraz "zbocze" pozwalają uniknąć przypadkowego uruchomienia.

Numer wyboru	Nazwa wyboru	Opis
0	Jest wymagane zbocze naras- tające	
1	Stan We/Wy	

10.3 WARTOŚCI ZADANE

10.3.1 CZĘSTOTLIWOŚĆ ZADAWANA

P3.3.1 MINIMALNA WARTOŚĆ ZADANA CZĘSTOTLIWOŚCI (ID 101)

Parametr ten umożliwia ustawienie minimalnej wart. zadanej częstotliwości.

P3.3.2 CZĘSTOTLIWOŚĆ MAKSYMALNA (ID 102)

Parametr ten umożliwia ustawienie maksymalnej wart. zadanej częstotliwości.

P3.3.3 WYBÓR A DLA STEROWANIA Z WE/WY (ID 117)

Za pomocą tego parametru można wybrać źródło zadanej częstotliwości, gdy miejscem sterowania jest WE/WY A.

P3.3.4 WYBÓR B DLA STEROWANIA Z WE/WY (ID 131)

Za pomocą tego parametru można wybrać źródło zadanej częstotliwości, gdy miejscem sterowania jest WE/WY B.

Miejsce sterowania WE/WY B można uaktywnić tylko za pomocą wejścia cyfrowego (P3.5.1.5).

P3.3.5 WYBÓR ŹRÓDŁA WARTOŚCI ZADANEJ PRZY STEROWANIU Z PANELU (ID 121)

Za pomocą tego parametru można wybrać źródło zadanej częstotliwości, gdy miejscem sterowania jest panel sterujący.

P3.3.6 SYGNZADAZPANELU (ID 184)

Za pomocą tego parametru można dostosować częstotliwość zadawaną z panelu sterującego.

Ten parametr określa wartość zadaną częstotliwości napędu, gdy źródłem zadanej częstotliwości jest panel sterujący.

P3.3.7 KIERUNEK:PANEL (ID 123)

Za pomocą tego parametru można określić kierunek obrotów silnika, gdy miejscem sterowania jest panel sterujący.

P3.3.8 KOPIOWANIE USTAWIEŃ PANELU STERUJĄCEGO (ID 181)

Za pomocą tego parametru można wybrać ustawienia kopiowania przy zmianie miejsca sterowania ze zdalnego na lokalne (panel sterujący).

P3.3.9 WYBÓR ŹRÓDŁA WARTOŚCI ZADANEJ PRZY STEROWANIU Z SZYNY (ID 122)

Za pomocą tego parametru można wybrać źródło zadanej częstotliwości, gdy miejscem sterowania jest szyna.

10.3.2 CZĘSTOTLIWOŚCI STAŁE

Funkcję częstotliwości stałych można stosować w procesach, w których jest wymaganych kilka (więcej niż jedna) stałych częstotliwości zadanych. Dostępnych jest 8 stałych częstotliwości zadanych. Stałą częstotliwość zadaną można wybrać za pomocą sygnałów wejść cyfrowych P3.5.1.15, P3.5.1.16 i P3.5.1.17.

P3.3.10 TRYB STAŁEJ CZĘSTOTLIWOŚCI (ID 182)

Za pomocą tego parametru można wybrać logikę ustalonych częstotliwości cyfrowego sygnału wejściowego.

Za pomocą tego parametru można ustawić logikę, w której będzie używana jedna z wybranych częstotliwości stałych. Dostępne są dwie różne logiki. Dostępne są dwie różne logiki.

Liczba aktywnych cyfrowych wejść zadanej prędkości określająca wstępnie zdefiniowaną częstotliwość.

Numer wyboru	Nazwa wyboru	Opis
0	Kodowane binarnie	Różne wejścia kodowane binarnie. Stała częstotliwość zależy od różnych ustawień aktywnych wejść cyfrowych. Więcej danych zawiera podrozdział <i>Tabela 59 Wybór częstotliwości</i> <i>stałych, gdy parametr P3.3.10 = kodowane binarnie</i> .
1	Liczba (używanych wejść)	Na podstawie liczby aktywnych wejść jest stosowana odpo- wiednia stała częstotliwość: 1, 2 lub 3.

P3.3.11 CZĘSTOTLIWOŚĆ STAŁA 0 (ID 180)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.12 CZĘSTOTLIWOŚĆ STAŁA 1 (ID 105)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.13 CZĘSTOTLIWOŚĆ STAŁA 2 (ID 106)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.14 CZĘSTOTLIWOŚĆ STAŁA 3 (ID 126)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.15 CZĘSTOTLIWOŚĆ STAŁA 4 (ID 127)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.16 CZĘSTOTLIWOŚĆ STAŁA 5 (ID 128)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.17 CZĘSTOTLIWOŚĆ STAŁA 6 (ID 129)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

P3.3.18 CZĘSTOTLIWOŚĆ STAŁA 7 (ID 130)

Za pomocą tego parametru można ustawić częstotliwość zadaną, która będzie używana po uaktywnieniu funkcji częstotliwości zadanych.

Wybierz częstotliwości stałe za pomocą sygnałów wejścia cyfrowego.

Aby wybrać częstotliwość stałą od 1 do 7, należy wybrać wejścia cyfrowe do parametru P3.5.1.15 (Wybór częstotliwości stałej 0), P3.5.1.16 (Wybór częstotliwości stałej 1) i/lub P3.5.1.17 (Wybór częstotliwości stałej 2). Stała częstotliwość zależy od różnych ustawień aktywnych wejść cyfrowych. Więcej informacji znajduje się w tabeli poniżej. Wartości częstotliwości stałych są automatycznie ograniczane na podstawie minimalnej i maksymalnej częstotliwości (P3.3.1 i P3.3.2).

Wymagany krok	Aktywna częstotliwość	
Wybierz wartość 1 dla parametru P3.3.3.	Częstotliwość stała 0	

Aktywny sygnał wejścia cyf	Aktywna wartość zadana czestotliwości		
B2	B1	B0	Częstottiwosci
			Częstotliwość stała 0
		*	Częstotliwość stała 1
	*		Częstotliwość stała 2
	*	*	Częstotliwość stała 3
*			Częstotliwość stała 4
*		*	Częstotliwość stała 5
*	*		Częstotliwość stała 6
*	*	*	Częstotliwość stała 7

Tabela 59: Wybór częstotliwości stałych, gdy parametr P3.3.10 = kodowane binarnie

* Wejście zostało uaktywnione.

P3.3.19 STAŁA CZĘSTOTLIWOŚĆ ALARMU (ID 183)

Parametr ten służy do ustalenia częstotliwości napędu przy aktywnej usterce oraz reakcji na usterkę "alarm + częstotliwość stała".

10.3.3 PARAMETRY POTENCJOMETRU SILNIKA

P3.3.20 CZAS RAMPY POTENCJOMETRU SILNIKA (ID 331)

Za pomocą tego parametru można określić tempo zmian wartości zadanej potencjometru silnika w przypadku, w którym ona rośnie lub maleje. Wartość parametru wpisuje się w Hz/s.

P3.3.21 ZEROWANIE POTENCJOMETRU SILNIKA (ID 367)

Ten parametr określa logikę zerowania zadanej częstotliwości potencjometru silnika.

Wskazuje, kiedy jako wartość zadaną potencjometru silnika ustawia się 0. Funkcja zerowania ma trzy dostępne opcje: brak zerowania, zerowanie po zatrzymaniu napędu albo zerowanie po wyłączeniu napędu.

Numer wyboru	Nazwa wyboru	Opis
0	Brak możliwości kasowania.	Ostatnia częstotliwość zadana potencjometru silnika jest zachowywana po stanie zatrzymania i zapisywana w pamięci w przypadku zaniku zasilania.
1	Stan zatrzymania	Częstotliwość zadana potencjometru silnika jest zerowana po zatrzymaniu napędu lub po zaniku zasilania.
2	Wył. zasilanie	Częstotliwość zadana potencjometru silnika jest zerowana tylko po zaniku zasilania.

P3.3.22 KIERUNEK WSTECZNY (ID 15530)

Tego parametru można użyć, aby umożliwić pracę silnika w kierunku wstecznym.

10.4 KONFIGURACJA RAMP I HAMOWANIA

P3.4.1 KSZTAŁT RAMPY 1 (ID 500)

Za pomocą tego parametru można wygładzić początek i koniec ramp przyspieszania i zwalniania.

Za pomocą parametru Kształt zbocza 1 można wygładzić początek i koniec ramp przyspieszania i zwalniania. Ustawienie wartości 0 daje liniowy kształt rampy. W reakcji na zmiany sygnału zadającego przyspieszanie i zwalnianie odbywa się natychmiast.

Ustawienie wartości od 0,1 do 10 s daje rampę przyspieszania i zwalniania w kształcie S. Ta funkcja służy zwykle do ograniczenia zużycia mechanicznego części i udarów prądowych w przypadku zmian wartości zadanej. Czas przyspieszania można zmodyfikować za pomocą parametrów P3.4.2 (Czas przyspieszania 1) i P3.4.3 (Czas hamowania 1).

Rys. 20: Krzywa przyspieszania/zwalniania (kształt litery S)

P3.4.2 CZAS PRZYSPIESZANIA 1 (ID 103)

Parametr ten określa czas wymagany do zwiększenia częstotliwości wyjściowej od zera do wartości maksymalnej.

P3.4.3 CZAS HAMOWANIA 1 (ID 104)

Parametr ten określa czas wymagany do zmniejszenia częstotliwości wyjściowej od wartości maksymalnej do zera.

P3.4.4 KSZTAŁT RAMPY 2 (ID 501)

Za pomocą tego parametru można wygładzić początek i koniec ramp przyspieszania i zwalniania.

Za pomocą parametru Kształt zbocza 2 można wygładzić początek i koniec ramp przyspieszania i zwalniania. Ustawienie wartości 0 daje liniowy kształt rampy. W reakcji na zmiany sygnału zadającego przyspieszanie i zwalnianie odbywa się natychmiast.

Ustawienie wartości od 0,1 do 10 s daje rampę przyspieszania i zwalniania w kształcie S. Ta funkcja służy zwykle do ograniczenia zużycia mechanicznego części i udarów prądowych w przypadku zmian wartości zadanej. Czas przyspieszania można zmodyfikować za pomocą parametrów P3.4.5 (Czas przyspieszania 2) i P3.4.6 (Czas hamowania 2).

Rys. 21: Krzywa przyspieszania/zwalniania (kształt litery S)

P3.4.5 CZAS PRZYSPIESZANIA 2 (ID 502)

Parametr ten określa czas wymagany do zwiększenia częstotliwości wyjściowej od zera do wartości maksymalnej.

P3.4.6 CZAS HAMOWANIA 2 (ID 503)

Parametr ten określa czas wymagany do zmniejszenia częstotliwości wyjściowej od wartości maksymalnej do zera.

P3.4.7 CZAS MAGNESOWANIA ROZRUCHOWEGO (ID 516)

Parametr ten określa czas podawania prądu stałego do silnika przed przyspieszeniem.

P3.4.8 PRAD MAGNESOWANIA ROZRUCHOWEGO (ID 517)

Za pomocą tego parametru można ustawić prąd stały podawany do silnika po uaktywnieniu funkcji startu.

Jeśli funkcja Magnesowanie rozruchowe jest wyłączona, parametr ma wartość 0.

P3.4.9 CZAS HAMOWANIA DC ZATRZYMANIA (ID 508)

Parametr ten określa, czy hamowanie jest włączone czy wyłączone, oraz określa czas hamowania po zatrzymaniu silnika. Jeśli ten parametr ma wartość 0, funkcja Hamowanie DC jest wyłączona.

P3.4.10 PRAD HAMOWANIA DC (ID 507)

Za pomocą tego parametru można ustawić prąd stały podawany do silnika podczas hamowania DC.

Jeśli ten parametr ma wartość 0, funkcja Hamowanie DC jest wyłączona.

P3.4.11 CZĘSTOTLIWOŚĆ ROZPOCZĘCIA HAMOWANIA PRĄDEM STAŁYM PRZY ZATRZYMYWANIU Z RAMPĄ (ID 515)

Za pomocą tego parametru można ustawić częstotliwość wyjściową, przy której następuje zadziałanie hamowania DC.

P3.4.12 HAMOWANIE STRUMIENIOWE (ID 520)

Parametr umożliwia włączenie funkcji ham. strumieniem.

Hamowanie strumieniem można stosować alternatywnie do hamowania prądem stałym. Hamowanie strumieniowe zwiększa możliwość hamowania w przypadku, gdy nie są wymagane dodatkowe rezystory hamowania.

Gdy wystąpi potrzeba hamowania, układ zmniejszy częstotliwość i wzrośnie strumień w silniku. Zwiększy to zdolność hamowania silnika. W czasie hamowania jest kontrolowana prędkość obrotowa silnika.

Hamowanie strumieniowe można włączyć lub wyłączyć.

UWAGA!

Hamowanie należy stosować wyłącznie z przerwami. Hamowanie strumieniowe przekształca energię w ciepło i może spowodować uszkodzenie silnika.

P3.4.13 PRAD HAMOWANIA STRUMIENIEM (ID 519)

Ten parametr służy do ustawiania poziomu ham. strumieniem.

10.5 KONFIGURACJA WE/WY

10.5.1 PROGRAMOWANIE WEJŚĆ CYFROWYCH I ANALOGOWYCH

Wejścia przemiennika częstotliwości można programować bardzo elastycznie. Można swobodnie korzystać z dostępnych wejść standardowych i opcjonalnych WE/WY do różnych funkcji.

Za pomocą poniższych formatów można przydzielić wartość programowalnym parametrom:

- DigIN SlotA.1 / AnIN SlotA.1 (panel graficzny) lub
- **dl A.1 / al A.1** (panel tekstowy).

Nazwa wyboru	Przykład	Opis
Typ wejścia	DigIN / dl	DigIN / dI = wejście cyfrowe AnIN / aI = wejście analogowe
Typ gniazda	Gniazdo A	Typ karty: A / B = standardowa karta napędu AC Vacon C / D / E = opcjonalna karta 0 = sygnał parametru nie ma połączenia z żadnym zaciskiem
Numer zacisku	1	Numer zacisku na wybranej karcie.

Na przykład "DigIN SlotA.1" lub "dI A.1" oznacza, że DIN1 standardowej karty ma połączenie z gniazdem A karty.

Rys. 22: Gniazda kart opcjonalnych i programowalne wejścia

- A. Gniazdo A karty standardowej i jego zaciski
- B. Gniazdo B karty standardowej i jego zaciski
- C. Gniazdo C kart opcjonalnych
- D. Gniazdo D kart opcjonalnych
- E. Gniazdo E kart opcjonalnych
- F. Programowalne wejścia cyfrowe (DI)
- G. Programowalne wejścia analogowe (AI)

10.5.1.1 Programowanie wejść cyfrowych

Odpowiednie funkcje wejść cyfrowych są dostępne jako parametry w grupie parametrów M3.5.1. Aby podać wejście cyfrowe do funkcji, należy ustawić wartość odpowiedniego parametru. Lista dostępnych funkcji znajduje się w *Tabela 14 Ustawienia wejść cyfrowych*.

Przykład

Rys. 23: Menu wejść cyfrowych na wyświetlaczu graficznym

A. Wyświetlacz graficzny

B. Nazwa parametru, tj. funkcji

C. Wartość parametru, tj. ustawione wejście cyfrowe

Rys. 24: Menu wejść cyfrowych na wyświetlaczu tekstowym

- A. Wyświetlacz tekstowy
- C. Wartość parametru, tj. ustawione B. Nazwa parametru, tj. funkcji wejście cyfrowe

W standardowej konfiguracji karty WE/WY jest dostępnych 6 wejść cyfrowych: zaciski gniazda A 8, 9, 10, 14, 15 i 16.

Typ wejścia (wyświetlacz gra- ficzny)	Typ wejścia (wyświet- lacz tek- stowy)	Gniazdo	Nr wejścia	Wyjaśnienie
DiglN	dI	А	1	Wejście cyfrowe nr 1 (zacisk 8) na karcie w gnieździe A (standardowa karta WE/WY).
DiglN	dl	А	2	Wejście cyfrowe nr 2 (zacisk 9) na karcie w gnieździe A (standardowa karta WE/WY).
DiglN	dl	А	3	Wejście cyfrowe nr 3 (zacisk 10) na karcie w gnieździe A (standardowa karta WE/WY).
DiglN	dl	A	4	Wejście cyfrowe nr 4 (zacisk 14) na karcie w gnieździe A (standardowa karta WE/WY).
DiglN	dl	A	5	Wejście cyfrowe nr 5 (zacisk 15) na karcie w gnieździe A (standardowa karta WE/WY).
DiglN	dl	А	6	Wejście cyfrowe nr 6 (zacisk 16) na karcie w gnieździe A (standardowa karta WE/WY).

Funkcja Usterka zewnętrzna, zestyk zamknięty jest dostępna w menu M3.5.1 jako parametr P3.5.1.11. Ma domyślnie przypisaną wartość DigIN SlotA.3 (na wyświetlaczu graficznym) i wartość dl A.3 (na wyświetlaczu tekstowym). Po wybraniu tej opcji funkcja Usterka zewnętrzna, zestyk zamknięty będzie sterowana za pomocą cyfrowego sygnału na wejściu Dl3 (zacisk 10).

Indeks	Parametr	Domyślnie	ID	Opis
P3.5.1.11	Usterka zew- nętrzna, zestyk zamknięty	DigIN SlotA.3	405	OTWARTY = OK ZAMKNIĘTY = usterka zew- nętrzna

Aby zmienić wejście DI3 na przykład na DI6 (zacisk 16) na standardowej karcie WE/WY, należy postępować zgodnie z poniższymi instrukcjami.

PROGRAMOWANIE NA WYŚWIETLACZU GRAFICZNYM

1 Wybierz parametr. Aby przejść do trybu edycji, naciśnij przycisk ze strzałką w prawo.

STOP	\mathbb{C}	READY		I/O
	D	igital ID:405	inputs P3.	5.1.7
	ľ	Ixt Fau	lt Close DigINSI	otA3
8	Ex	t Fault	: Open DigINSlo	t0.2
8	Fa	ult Res	set Close DigINSlo	∋ tA6
- 2 W trybie edycji wartość gniazda DigIN SlotA jest podkreślona i miga. Gdy jest dostępnych więcej wejść cyfrowych na karcie WE/WY, np. po zainstalowaniu kart opcjonalnych w gniazdach C, D lub E, można je wybrać.
- 3 Aby uaktywnić zacisk 3, naciśnij ponownie przycisk ze strzałką w prawo.

4 Aby zmienić zacisk na 6, naciśnij trzy razy przycisk ze strzałką w górę. Zatwierdź zmianę za pomocą przycisku OK.

5 Jeśli wejście cyfrowe DI6 jest już przypisane do innej funkcji, na wyświetlaczu pojawi się odpowiedni komunikat. Zmień jedno z tych ustawień.

Min: Max:

READY

ID:405

Ext Fault Close

STOP

8

	I/O		
ID:			
At least one digital input has been selected to several operations. To prevent possible unwanted			
operations, please check all digital input selection parameters.			

I/O

P3.5.1.7

PROGRAMOWANIE NA WYŚWIETLACZU TEKSTOWYM

1 Wybierz parametr. Aby przejść do trybu edycji, naciśnij przycisk OK.

1/0

KEYPAD

BUS

REV

W trybie edycji miga litera D. Gdy jest dostępnych 2 więcej wejść cyfrowych na karcie WE/WY, np. po zainstalowaniu kart opcjonalnych w gniazdach D lub E, można je wybrać.

3 Aby uaktywnić zacisk 3, naciśnij ponownie przycisk ze strzałką w prawo. Litera D przestaje migać.

Aby zmienić zacisk na 6, naciśnij trzy razy przycisk 4 ze strzałką w górę. Zatwierdź zmianę za pomocą przycisku OK.

5 Jeśli wejście cyfrowe DI6 jest już przypisane do innej funkcji, na wyświetlaczu będzie przewijany odpowiedni komunikat. Zmień jedno z tych ustawień.

READY	RUN	STOP	ALARM	FAULT
$\ RT $	LEF	75T	0	
		\mathbf{T}		
FWD	REV	1/0	KEYPAD	BUS

Po wykonaniu procedury funkcja Usterka zewnętrzna, zestyk zamknięty będzie sterowana za pomocą cyfrowego sygnału na wejściu DI6.

Funkcja może mieć wartość DigIN Slot0.1 (na wyświetlaczu graficznym) lub wartość dl 0.1 (na wyświetlaczu tekstowym). W takiej sytuacji nie podano zacisku do funkcji lub nie ustawiono wejścia jako zawsze OTWARTE. Jest to domyślna wartość większości parametrów w grupie M3.5.1.

Należy jednak pamiętać, że niektóre wejścia są domyślnie ustawione zawsze na wartość ZAMKNIĘTE. Mają wartość DigIN Slot0.2 (na wyświetlaczu graficznym) i wartość dI 0.2 (na wyświetlaczu tekstowym).

WSKAZÓWKA!

Do wejść cyfrowych można także przypisywać kanały czasowe. Więcej informacji na ten temat znajduje się w tabeli *Tabela 14 Ustawienia wejść cyfrowych*.

10.5.1. <u>2</u>	0	pisy	źródeł	sy	q	nałów
	_	-		-	-	

Źródło	Funkcja
Slot0	1 = zawsze OTWARTY 2–9 = zawsze ZAMKNIĘTY
SlotA	Numer odpowiada wejściu cyfrowemu w gnieździe A.
SlotB	Numer odpowiada wejściu cyfrowemu w gnieździe B.
SlotC	Numer odpowiada wejściu cyfrowemu w gnieździe C.
SlotD	Numer odpowiada wejściu cyfrowemu w gnieździe D.
SlotE	Numer odpowiada wejściu cyfrowemu w gnieździe E.
TimeChannel (tCh)	1 = kanał czasowy 1, 2 = kanał czasowy 2, 3 = kanał czasowy 3

10.5.2 WEJŚCIA CYFROWE

Parametrami są funkcje, które można podłączyć do zacisku wejścia cyfrowego. Tekst *Digln Slot A.2* oznacza drugie wejście w gnieździe A. Istnieje też możliwość podłączenia funkcji do kanałów czasowych. Działają one jako zaciski.

Stany wejść i wyjść cyfrowych można monitorować w widoku monitorowania wielopozycyjnego.

P3.5.1.1 SYGNAŁ STERUJĄCY 1 A (ID 403)

Parametr ten określa cyfrowy sygnał wejściowy (sygnał sterujący 1), który uruchamia i zatrzymuje napęd, gdy miejsce sterowania to WE/WY A (prawe).

P3.5.1.2 SYGNAŁ STERUJĄCY 2 A (ID 404)

Parametr ten określa cyfrowy sygnał wejściowy (sygnał sterujący 2), który uruchamia i zatrzymuje napęd, gdy miejsce sterowania to WE/WY A (lewe).

P3.5.1.3 SYGNAŁ STERUJĄCY 1 B (ID 423)

Parametr ten określa cyfrowy sygnał wejściowy (sygnał sterujący 1), który uruchamia i zatrzymuje napęd, gdy miejsce sterowania to WE/WY B.

P3.5.1.4 SYGNAŁ STERUJĄCY 2 B (ID 424)

Parametr ten określa cyfrowy sygnał wejściowy (sygnał sterujący 2), który uruchamia i zatrzymuje napęd, gdy miejsce sterowania to WE/WY B.

P3.5.1.5 WYMUSZENIE MIEJSCA STEROWANIA WE/WY B (ID 425)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy, który przełącza miejsce sterowania z WE/WY A na WE/WY B.

P3.5.1.6 WYMUSZENIE ŹRÓDŁA WARTOŚCI ZADANEJ WG WE/WY B (ID 343)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy, który przełącza źródło częstotliwości zadanej z WE/WY A na WE/WY B.

P3.5.1.7 USTERKA ZEWNĘTRZNA, ZAMKNIĘTY (ID 405)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego usterkę zewn.

P3.5.1.8 USTERKA ZEWNĘTRZNA, OTWARTY (ID 406)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego usterkę zewn.

P3.5.1.9 KASOWANIE USTERKI, ZAMKNIĘTY (ID 414)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego, który kasuje wszystkie aktywne usterki.

Aktywne usterki są kasowane w przypadku zmiany stanu wejścia cyfrowego z otwartego na zamknięte (zbocze narastające).

P3.5.1.10 KASOWANIE USTERKI, OTWARTY (ID 213)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego, który kasuje wszystkie aktywne usterki.

Aktywne usterki są kasowane w przypadku zmiany stanu wejścia cyfrowego z zamkniętego na otwarte (zbocze opadające).

P3.5.1.11 WŁĄCZENIE PRACY (ID 407)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego przełączającego napęd w stan gotowości.

Jeśli styk jest OTWARTY, funkcja uruchamiania silnika jest wyłączona. Jeśli styk jest ZAMKNIĘTY, funkcja uruchamiania silnika jest włączona.

Aby ją zatrzymać, napęd uwzględnia wartość parametru P3.2.5 Funkcja stopu.

WSKAZÓWKA!

Gdy sygnał ma stan "otwarty", napęd pozostaje w stanie "Brak gotowości".

P3.5.1.12 BLOKADA NAPĘDU DODATKOWEGO 1 (ID 1041)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego zapobiegającego włączeniu się napędu.

Napęd może być gotowy, ale uruchomienie jest niemożliwe, kiedy sygnał blokady ma stan "otwarty" (blokada od przepustnicy).

P3.5.1.13 BLOKADA NAPĘDU DODATKOWEGO 2 (ID 1042)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego zapobiegającego włączeniu się napędu.

Jeśli blokada jest aktywna, nie można uruchomić napędu.

Za pomocą tej funkcji można zapobiec uruchomieniu napędu przy zamkniętej przepustnicy. Jeśli blokada zostanie aktywowana podczas pracy napędu, napęd zatrzyma się.

P3.5.1.14 PODGRZEWANIE SILNIKA WŁĄCZONE (ID 1044)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego funkcję podgrz. silnika.

Funkcja podgrzewania silnika przekazuje prąd stały do silnika, gdy napęd jest w stanie zatrzymania.

P3.5.1.15 WYBÓR CZĘSTOTLIWOŚCI STAŁEJ 0 (ID 419)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy służący do wybierania ustalonych częstotliwości.

P3.5.1.16 WYBÓR CZĘSTOTLIWOŚCI STAŁEJ 1 (ID 420)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję wybieraka ustalonych częstotliwości.

P3.5.1.17 WYBÓR CZĘSTOTLIWOŚCI STAŁEJ 2 (ID 421)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję wybieraka ustalonych częstotliwości.

Aby zastosować częstotliwości stałe od 1 do 7, podłącz wejście cyfrowe do tych funkcji, korzystając z instrukcji w rozdziale 10.5.1 Programowanie wejść cyfrowych i analogowych. Więcej danych w: Tabela 59 Wybór częstotliwości stałych, gdy parametr P3.3.10 = kodowane binarnie oraz Tabela 12 Ustawienia źródeł wartości zadanych i Tabela 14 Ustawienia wejść cyfrowych.

P3.5.1.18 STEROWANIE CZASOWE 1 (ID 447)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego ster czasowe. Sterowanie czasowe uruchamia się po dezaktywacji tego sygnału (zbocze opadające). Wyjście się wyłącza po upływie czasu określonego w parametrze czasu pracy.

P3.5.1.19 STEROWANIE CZASOWE 2 (ID 448)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego ster czasowe. Sterowanie czasowe uruchamia się po dezaktywacji tego sygnału (zbocze opadające). Wyjście się wyłącza po upływie czasu określonego w parametrze czasu pracy.

P3.5.1.20 STEROWANIE CZASOWE 3 (ID 449)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego ster czasowe. Sterowanie czasowe uruchamia się po dezaktywacji tego sygnału (zbocze opadające). Wyjście się wyłącza po upływie czasu określonego w parametrze czasu pracy.

P3.5.1.21 WYŁĄCZ FUNKCJE STEROWANIA CZASOWEGO (ID 1499)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego, który włącza/wyłącza wszystkie funkcje sterowania czasowego.

P3.5.1.22 WZMOCNIENIE WARTOŚCI ZADANEJ PID1 (ID 1046)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy, który będzie używany do wybierania wartości zadanej PID.

P3.5.1.23 WYBÓR WARTOŚCI ZADANEJ PID1 (ID 1047)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy, który będzie używany do wybierania wartości zadanej PID.

P3.5.1.24 SYGNAŁ STARTU PID2 (ID 1049)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego i zatrzymującego zewn. regulator PID.

P3.5.1.25 WYBÓR WARTOŚCI ZADANEJ PID2 (ID 1048)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy, który będzie używany do wybierania wartości zadanej PID.

P3.5.1.26 BLOKADA SILNIKA 1 (ID 426)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję sygnału blokady w systemie sterowania wielopompowego.

P3.5.1.27 BLOKADA SILNIKA 2 (ID 427)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję sygnału blokady w systemie sterowania wielopompowego.

P3.5.1.28 BLOKADA SILNIKA 3 (ID 428)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję sygnału blokady w systemie sterowania wielopompowego.

P3.5.1.29 BLOKADA SILNIKA 4 (ID 429)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję sygnału blokady w systemie sterowania wielopompowego.

P3.5.1.30 BLOKADA SILNIKA 5 (ID 430)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję sygnału blokady w systemie sterowania wielopompowego.

P3.5.1.31 POTENCJOMETR SILNIKA W GÓRĘ (ID 418)

Za pomocą tego parametru można zwiększać częstotliwość wyjściową cyfrowego sygnału wejściowego.

Wartość zadana z potencjometru silnika ROŚNIE aż do otwarcia styku.

P3.5.1.32 POTENCJOMETR SILNIKA W DÓŁ (ID 417)

Za pomocą tego parametru można zmniejszać częstotliwość wyjściową cyfrowego sygnału wejściowego.

Wartość zadana z potencjometru silnika SPADA aż do otwarcia styku.

P3.5.1.33 WYBÓR CZASU PRZYSPIESZANIA/HAMOWANIA (ID 408)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy, który będzie używany do wybierania czasu rampy.

P3.5.1.34 STEROWANIE Z SZYNY KOMUNIKACYJNEJ (ID 411)

Parametr ten określa cyfrowy sygnał wejściowy, który przełącza miejsce sterowania i źródło częstotliwości zadanej na szynę (z WE/WY A, WE/WY B lub sterowanie lokalne).

P3.5.1.39 AKTYWACJA TRYBU POŻAROWEGO PRZY OTWARCIU (ID 1596)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego funkcję trybu pożarowego.

P3.5.1.42 PANEL STERUJĄCY (ID 410)

Parametr ten określa cyfrowy sygnał wejściowy, który przełącza miejsce sterowania i źródło częstotliwości zadanej na panel sterujący (z dowolnego miejsca sterowania).

P3.5.1.43 ZEROWANIE KASOWALNEGO LICZNIKA KWH (ID 1053)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego zerującego kasowalny licznik kWh.

P3.5.1.44 WYBÓR CZĘSTOTLIWOŚCI STAŁEJ TRYBU POŻAROWEGO 0 (ID 15531)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję ustalonych częstotliwości trybu pożarowego.

P3.5.1.45 WYBÓR CZĘSTOTLIWOŚCI STAŁEJ TRYBU POŻAROWEGO 1 (ID 15532)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy pełniący funkcję ustalonych częstotliwości trybu pożarowego.

P3.5.1.46 WYBÓR ZESTAWU PARAMETRÓW 1/2 (ID 496)

Za pomocą tego parametru można wybrać cyfrowy sygnał wejściowy służący do wybierania zestawu parametrów do wykorzystania.

Parametr ten określa wejście cyfrowe, które ma służyć do wyboru zestawu parametrów 1 lub 2. Funkcja jest aktywna, jeśli w tym parametrze wybrano którekolwiek gniazdo inne niż *DigIN Slot0*. Zestaw można zmodyfikować oraz wybrać zestaw parametrów wyłącznie przy zatrzymanym napędzie.

- Styk otwarty = jako aktywny zestaw został ustawiony zestaw parametrów 1
- Styk zamknięty = jako aktywny zestaw został ustawiony zestaw parametrów 2

WSKAZÓWKA!

Wartości parametrów są zapisywane w zestawach 1 i 2 przy użyciu parametrów B6.5.4 Zapisz w zestawie 1 oraz B6.5.4 Zapisz w zestawie 2. Parametrów można używać na panelu sterującym oraz w aplikacji Vacon Live na komputerze.

10.5.3 WEJŚCIA ANALOGOWE

P3.5.2.1 WYBÓR SYGNAŁU AI1 (ID 377)

Za pomocą tego parametru można podłączyć sygnał AI do wybranego wejścia analogowego. Za pomocą tego parametru można podłączyć sygnał AI do wybranego wejścia analogowego.

P3.5.2.2 CZAS FILTROWANIA AI1 (ID 378)

Ten parametr służy do filtrowania zakłóceń w analogowym sygnale wejściowym.

Ten parametr określa czas filtrowania dla sygnału analogowego. Przy czasie filtrowania równym 0 funkcja filtrowania jest wyłączona.

P3.5.2.3 ZAKRES SYGNAŁU AI1 (ID 379)

Ten parametr służy do zmiany zakresu sygnału analogowego.

Parametr jest pomijany w przypadku używania niestandardowych parametrów skalowania.

P3.5.2.4 NIESTANDARDOWE MINIMUM AI1 (ID 380)

Parametry umożliwiają swobodne dostosowanie sygnału na wejściu analogowym w zakresie od -160 do 160%.

P3.5.2.5 NIESTANDARDOWE MAKSIMUM AI1 (ID 381)

Parametry umożliwiają swobodne dostosowanie sygnału na wejściu analogowym w zakresie od -160 do 160%.

P3.5.2.6 INWERSJA SYGNAŁU AI1 (ID 387)

Za pomocą tego parametru można odwrócić sygnał wejścia analogowego.

10.5.4 WYJŚCIA CYFROWE

P3.5.3.2.1 FUNKCJA PODSTAWOWEGO R01 (ID 11001)

Za pomocą tego parametru można wybrać funkcję lub sygnał podłączony do przekaźnika analogowego.

	Tabela 60: Sygnały wyjściowe za pośrednictwem RO1	
--	---	--

Numer wyboru	Nazwa wyboru	Opis
0	Nieużywane	Wyjście jest nieużywane.
1	Gotowość	Przemiennik częstotliwości jest gotowy do pracy.
2	Praca	Przemiennik częstotliwości działa (silnik pracuje).
3	Usterka ogólna	Wystąpiła usterka.
4	Odwrócona usterka ogólna	Usterka nie wystąpiła.
5	Alarm ogólny	
6	Rewers	Wydano polecenie zmiany kierunku na wsteczny.
7	Osiągnięto prędkość zadaną	Częstotliwość wyjściowa osiągnęła ustawioną wartość zadaną.
8	Aktywny regulator silnika	Jeden z ograniczników (np. ogranicznik prądu lub momentu obrotowego) został uaktywniony.
9	Częstotliwości stałe aktywne	Częstotliwość stała została wybrana za pomocą sygnałów wejścia cyfrowego.
10	Aktywny panel sterujący	Wybrano sterowanie z panelu (aktywnym miejscem sterowa- nia jest panel sterujący).
11	Aktywne sterowanie z WE/WY B	Wybrano miejsce sterowania WE/WY B (aktywnym miejscem sterowania jest WE/WY B).
12	Monitorowanie limitu 1	Monitorowanie limitu uaktywnia się, gdy wartość sygnału
13	Monitorowanie limitu 2	przekracza (P3.8.3 lub P3.8.7).
14	Aktywne polecenie Start	Polecenie Start jest aktywne.
15	Zarezerwowane	
16	Tryb pożarowy włączony	
17	Sterowanie regulatorem czaso- wym RTC 1	Używany jest kanał czasowy 1.
18	Sterowanie regulatorem czaso- wym RTC 2	Używany jest kanał czasowy 2.
19	Sterowanie regulatorem czaso- wym RTC 3	Używany jest kanał czasowy 3.
20	Słowo sterujące z magistrali B 13	
21	Słowo sterujące z magistrali B 14	

Tabela 60: Sygnały wyjściowe za pośrednictwem R01

Numer wyboru	Nazwa wyboru	Opis
22	Słowo sterujące z magistrali B 15	
23	PID w trybie uśpienia	
24	Zarezerwowane	
25	Limity monitorowania PID1	Wartość sprzężenia zwrotnego regulatora PID1 wykracza poza limity monitorowania.
26	Limity monitorowania PID2	Wartość sprzężenia zwrotnego regulatora PID2 wykracza poza limity monitorowania.
27	Sterowanie silnikiem 1	Sterowanie stycznikami dla funkcji sterowania wielopompo- wego.
28	Sterowanie silnikiem 2	Sterowanie stycznikami dla funkcji sterowania wielopompo- wego.
29	Sterowanie silnikiem 3	Sterowanie stycznikami dla funkcji sterowania wielopompo- wego.
30	Sterowanie silnikiem 4	Sterowanie stycznikami dla funkcji sterowania wielopompo- wego.
31	Sterowanie silnikiem 5	Sterowanie stycznikami dla funkcji sterowania wielopompo- wego.
32	Zarezerwowane	(Zawsze otwarte)
33	Zarezerwowane	(Zawsze otwarte)
34	Konserwacja — ostrzeżenie	
35	Konserwacja — usterka	
36	Usterka termistora	Wystąpiła usterka termistora.
37	Rozłącznik silnikowy	Funkcja przełącznika silnika wykryła, że został otwarty prze- łącznik między napędem a silnikiem.
38	Podgrzewanie	
39	Wyzwolenie impulsu kWh	
40	Wskaźnik pracy	
41	Zestaw wybranych parametrów	

P3.5.3.2.2 OPÓŹNIENIE WŁĄCZENIA PODSTAWOWEGO RO1 (ID 11002)

Ten parametr służy do ustawiania opóźnienia włączenia wyjścia przekaźnik.

P3.5.3.2.3 OPÓŹNIENIE WYŁĄCZENIA PODSTAWOWEGO RO1 (ID 11003)

Ten parametr służy do ustawiania opóźnienia wyłączenia wyjścia przekaźnik.

10.5.5 WYJŚCIA ANALOGOWE

P3.5.4.1.1 FUNKCJA A01 (ID 10050)

Za pomocą tego parametru można wybrać funkcję lub sygnał podłączony do wyjścia analogowego.

Numer wyboru	Nazwa wyboru	Opis
0	Test 0% (nieużywane)	Wyjście analogowe ustawiono na 0% lub 20% – wartość jest zgodna z parametrem P3.5.4.1.3.
1	TEST 100%	Wyjście analogowe ustawiono na 100% sygnału (10 V / 20 mA).
2	Częstotliwość wyjściowa	Rzeczywista częstotliwość wyjściowa od zera do maksymal- nej wartości zadanej częstotliwości.
3	Częstotliwość zadawana	Rzeczywista wartość zadana częstotliwości od zera do mak- symalnej wartości zadanej częstotliwości.
4	Prędkość obrotowa silnika	Rzeczywista prędkość obrotowa silnika od zera do prędkości znamionowej.
5	Prąd wyjściowy	Prąd wyjściowy napędu od zera do prądu znamionowego sil- nika.
6	Moment obrotowy silnika	Rzeczywisty moment obrotowy silnika od zera do momentu znamionowego (100%).
7	Moc silnika	Rzeczywista moc silnika od zera do mocy znamionowej (100%).
8	Napięcie silnika	Rzeczywiste napięcie silnika od zera do napięcia znamiono- wego.
9	Napięcie w obwodzie prądu sta- łego	Rzeczywiste napięcie w obwodzie prądu stałego (0–1000 V).
10	PID1 wyjście	Wyjście regulatora 1 PID (0–100%).
11	PID2 wyjście	Wyjście regulatora 2 PID (0–100%).
12	Wejście danych procesowych 1	Wejście danych procesowych 1: 0–10 000 (odpowiada war- tości 0–100,00%).
13	Wejście danych procesowych 2	Wejście danych procesowych 2: 0–10 000 (odpowiada war- tości 0–100,00%).
14	Wejście danych procesowych 3	Wejście danych procesowych 3: 0–10 000 (odpowiada war- tości 0–100,00%).
15	Wejście danych procesowych 4	Wejście danych procesowych 4: 0–10 000 (odpowiada war- tości 0–100,00%).
16	Wejście danych procesowych 5	Wejście danych procesowych 5: 0–10 000 (odpowiada war- tości 0–100,00%).
17	Wejście danych procesowych 6	Wejście danych procesowych 6: 0–10 000 (odpowiada war- tości 0–100,00%).
18	Wejście danych procesowych 7	Wejście danych procesowych 7: 0–10 000 (odpowiada war- tości 0–100,00%).

Numer wyboru	Nazwa wyboru	Opis
19	Wejście danych procesowych 8	Wejście danych procesowych 8: 0–10 000 (odpowiada war- tości 0–100,00%).

WSKAZÓWKA!

W przypadku wejścia danych procesowych należy wprowadzić wartość bez przecinka oddzielającego wartość ułamkową, np. 5000 = 50,00%.

P3.5.4.1.2 CZAS FILTROWANIA A01 (ID 10051)

Ten parametr służy do ustawiania czasu filtrowania dla sygnału analogowego. Przy czasie filtrowania równym 0 funkcja filtrowania jest wyłączona.

P3.5.4.1.3 MINIMALNA WARTOŚĆ A01 (ID 10052)

Ten parametr służy do zmiany zakresu sygnału wyjścia analogowego. Przykładowo w przypadku zaznaczenia wartości "4mA" zakres wyjściowego sygnału analogowego wynosi 4...20 mA.

Typ sygnału (prądowy/napięciowy) wybiera się przełącznikami DIP.

P3.5.4.1.4 MINIMALNA SKALA A01 (ID 10053)

Za pomocą tego parametru można skalować sygnał wyjścia analogowego. Wartości skalowania (minimalna i maksymalna) podaje się w jednostkach procesowych określonych poprzez wybór funkcji AO.

P3.5.4.1.5 MAKSYMALNA SKALA A01 (ID 10054)

Za pomocą tego parametru można skalować sygnał wyjścia analogowego. Wartości skalowania (minimalna i maksymalna) podaje się w jednostkach procesowych określonych poprzez wybór funkcji AO.

Na przykład jako zawartość analogowego sygnału wyjściowego można wybrać częstotliwość wyjściową napędu i ustawić parametry P3.5.4.1.4 i P3.5.4.1.5 na wartości z zakresu od 10 do 40 Hz. Gdy częstotliwość wyjściowa napędu zmienia się w zakresie od 10 do 40 Hz, wartość sygnału na wyjściu analogowym zmienia się w zakresie 0–20 mA.

Rys. 25: Skalowanie sygnału A01

- A. Wyjściowy sygnał analogowy
- B. A0 skala min.
- C. AO skala maks.

- D. Maksymalna wartość zadana częstotliwości
- E. Częstotliwość wyjściowa

10.6 MAPA DANYCH SZYNY KOMUNIKACYJNEJ

P3.6.1 WYB WYJ DAN 1 FB (ID 852)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.2 WYB WYJ DAN 2 FB (ID 853)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.3 WYB WYJ DAN 3 FB (ID 854)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.4 WYB WYJ DAN 4 FB (ID 855)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.5 WYB WYJ DAN 5 FB (ID 856)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.6 WYB WYJ DAN 6 FB (ID 857)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.7 WYB WYJ DAN 7 FB (ID 858)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

P3.6.8 WYB WYJ DAN 8 FB (ID 859)

Za pomocą tego parametru można wybrać dane wysyłane do szyny z identyfikatorem parametru lub monitora.

Dane są skalowane do formatu 16-bitowego bez znaku, zgodnie z formatem na panelu sterującym. Przykładowo wartość 25,5 na wyświetlaczu odpowiada liczbie 255.

10.7 CZĘSTOTLIWOŚCI ZABRONIONE

W niektórych systemach może być konieczne unikanie niektórych częstotliwości, które mogą powodować problemy z rezonansem mechanicznym. Za pomocą funkcji Częstotliwości zabronione można zapobiec użyciu takich częstotliwości. Po zwiększeniu wartości zadanej częstotliwości wejściowej jest utrzymywany dolny limit wewnętrznej wartości zadanej częstotliwości aż do momentu, w którym wartość zadana częstotliwości wejściowej znajdzie się powyżej górnego limitu.

P3.7.1 DOLNY LIMIT ZAKRESU ZABRONIONEJ CZĘSTOTLIWOŚCI 1 (ID 509)

Za pomocą tego parametru można uniemożliwić pracę napędu z zabronionymi częstotliwościami.

W niektórych procesach może być konieczne unikanie pewnych częstotliwości, ponieważ mogą one powodować rezonans mechaniczny.

P3.7.2 GÓRNY LIMIT ZAKRESU ZABRONIONEJ CZĘSTOTLIWOŚCI 1 (ID 510)

Za pomocą tego parametru można uniemożliwić pracę napędu z zabronionymi częstotliwościami.

W niektórych procesach może być konieczne unikanie pewnych częstotliwości, ponieważ mogą one powodować rezonans mechaniczny.

P3.7.3 DOLNY LIMIT ZAKRESU ZABRONIONEJ CZĘSTOTLIWOŚCI 2 (ID 511)

Za pomocą tego parametru można uniemożliwić pracę napędu z zabronionymi częstotliwościami.

W niektórych procesach może być konieczne unikanie pewnych częstotliwości, ponieważ mogą one powodować rezonans mechaniczny.

P3.7.4 GÓRNY LIMIT ZAKRESU ZABRONIONEJ CZĘSTOTLIWOŚCI 2 (ID 512)

Za pomocą tego parametru można uniemożliwić pracę napędu z zabronionymi częstotliwościami.

W niektórych procesach może być konieczne unikanie pewnych częstotliwości, ponieważ mogą one powodować rezonans mechaniczny.

P3.7.5 DOLNY LIMIT ZAKRESU ZABRONIONEJ CZĘSTOTLIWOŚCI 3 (ID 513)

Za pomocą tego parametru można uniemożliwić pracę napędu z zabronionymi częstotliwościami.

W niektórych procesach może być konieczne unikanie pewnych częstotliwości, ponieważ mogą one powodować rezonans mechaniczny.

P3.7.6 GÓRNY LIMIT ZAKRESU ZABRONIONEJ CZĘSTOTLIWOŚCI 3 (ID 514)

Za pomocą tego parametru można uniemożliwić pracę napędu z zabronionymi częstotliwościami.

W niektórych procesach może być konieczne unikanie pewnych częstotliwości, ponieważ mogą one powodować rezonans mechaniczny.

- A. Rzeczywista wartość zadana
- C. Dolny limit

B. Górny limit

D. Żądana wartość zadana

P3.7.7 WSPÓŁCZYNNIK CZASU RAMPY (ID 518)

Za pomocą tego parametru można ustawić mnożnik wybranych czasów ramp, gdy częstotliwość wyjściowa napędu znajduje się w limicie zabronionych częstotliwości. Współczynnik skalowania czasu rampy określa czas przyspieszania/hamowania, gdy częstotliwość wyjściowa jest w zakresie zabronionych częstotliwości. Współczynnik czasu rampy jest mnożony przez wartość parametru P3.4.2 (Czas przyspieszania 1) lub P3.4.3 (Czas hamowania 1). Na przykład wartość 0,1 skraca dziesięciokrotnie czas przyspieszania/ hamowania.

Rys. 27: Parametr Współczynnik czasu rampy

- A. CzestWyjsciowa
- B. Górny limit
- C. Dolny limit

- D. Współczynnik skalowania czasu rampy = 0,3
- E. Współczynnik skalowania czasu rampy = 2,5

F. Czas

10.8 MONITOROWANIE LIMITÓW

P3.8.1 WYBÓR ELEMENTU MONITOROWANIA NR 1 (ID 1431)

Za pomocą tego parametru można wybrać monitorowany element. Dane wyjściowe funkcji monitorowania można skierować do wyjścia przekaźnikowego.

P3.8.2 TRYB MONITOROWANIA NR 1 (ID 1432)

Za pomocą tego parametru można ustawić tryb monitorowania. W przypadku wybrania trybu "Dolny limit" wyjście funkcji monitorowania jest aktywne dla wartości sygnału niższych niż limit monitorowania. Po wybrania trybu "Górny limit" wyjście funkcji monitorowania jest aktywne dla wartości sygnału przekraczajacych limit monitorowania.

P3.8.3 LIMIT MONITOROWANIA NR 1 (ID 1433)

Parametr ten umożliwia ustawienie limitu monitorowania dla wybranego elementu. Jednostka jest wyświetlana automatycznie.

P3.8.4 HISTEREZA LIMITU MONITOROWANIA NR 1 (ID 1434)

Parametr ten umożliwia ustawienie limitu monitorowania histerezy dla wybranego elementu. Jednostka jest wyświetlana automatycznie.

P3.8.5 WYBÓR ELEMENTU MONITOROWANIA NR 2 (ID 1435)

Za pomocą tego parametru można wybrać monitorowany element. Dane wyjściowe funkcji monitorowania można skierować do wyjścia przekaźnikowego.

P3.8.6 TRYB MONITOROWANIA NR 2 (ID 1436)

Za pomocą tego parametru można ustawić tryb monitorowania.

P3.8.7 LIMIT MONITOROWANIA NR 2 (ID 1437)

Parametr ten umożliwia ustawienie limitu monitorowania dla wybranego elementu. Jednostka jest wyświetlana automatycznie.

P3.8.8 HISTEREZA LIMITU MONITOROWANIA NR 2 (ID 1438)

Parametr ten umożliwia ustawienie limitu monitorowania histerezy dla wybranego elementu. Jednostka jest wyświetlana automatycznie.

10.9 ZABEZPIECZENIA

P3.9.1 ODPOWIEDŹ NA USTERKĘ ZBYT NISKIEJ WARTOŚCI NA WEJŚCIU ANALOGOWYM (ID 700)

Ten parametr służy do wyboru reakcji napędu na usterkę "syg. Al".

Jeśli sygnał wejścia analogowego spadnie poniżej 50% sygnału minimalnego na 500 ms, jest to interpretowane jako usterka niskiego poziomu sygnału wejścia analogowego.

P3.9.2 ODPOWIEDŹ NA USTERKĘ ZEWNĘTRZNĄ (ID 701)

Ten parametr służy do wyboru reakcji napędu na "usterkę zewnętrzną".

Jeśli wystąpi usterka, napęd może wyświetlić powiadomienie o niej na wyświetlaczu. Usterka zewnętrzna jest uaktywniana cyfrowym sygnałem wejściowym. Domyślne wejście cyfrowe to DI3. Można również zaprogramować dane odpowiedzi na wyjście przekaźnika.

P3.9.3 USTERKA FAZY WEJŚCIOWEJ (ID 730)

Za pomocą tego parametru można wybrać konfigurację fazy prądu napędu.

WSKAZÓWKA!

Jeśli jest używane zasilanie 1-fazowe, w parametrze należy ustawić obsługę zasilania 1-fazowego.

P3.9.4 USTERKA ZBYT NISKIEGO NAPIĘCIA (ID 727)

Za pomocą tego parametru można wybrać, czy usterki za niskiego napięcia są zapisywane w historii usterek czy nie.

P3.9.5 ODPOWIEDŹ NA USTERKĘ FAZY WYJŚCIOWEJ (ID 702)

Ten parametr służy do wyboru reakcji napędu na usterkę "faza wyjścia". Jeśli pomiar natężenia prądu silnika wykaże brak prądu w jednej fazie wyjściowych, jest to interpretowane jako usterka fazy wyjściowej. Więcej informacji można znaleźć w opisie parametru P3.9.2.

10.9.1 ZABEZPIECZENIA TERMICZNE SILNIKA

Zabezpieczenie termiczne silnika chroni silnik przed przegrzaniem.

Przemiennik częstotliwości może dostarczać prąd o parametrach większych niż znamionowe. Prąd o wyższych parametrach może być wymagany ze względu na obciążenie i należy go wykorzystać. W takiej sytuacji istnieje ryzyko przeciążenia termicznego. Przy niższych częstotliwościach ryzyko jest większe. Przy niskich częstotliwościach pogarsza się zdolność chłodzenia silnika i jego wydajność. Jeśli silnik jest wyposażony w zewnętrzny wentylator, zmniejszenie obciążenia przy małych prędkościach jest niewielkie.

Ochrona termiczna silnika opiera się na obliczeniach. Funkcja ochrony korzysta z prądu wyjściowego napędu w celu identyfikacji obciążenia silnika. Jeśli karta sterowania nie jest zasilana, obliczenia zostaną zresetowane.

Aby dostosować ochronę termiczną silnika, użyj parametrów od P3.9.6 do P3.9.10. Prąd termiczny I_T pokazuje obciążenie znamionowe powyżej którego następuje przeciążenie silnika. To ograniczenie prądu jest funkcją częstotliwości wyjściowej.

WSKAZÓWKA!

W przypadku używania długich kabli silnikowych (maks. 100 m) z małymi napędami (<1,5 kW) prąd silnika mierzony przez napęd może być znacznie wyższy od rzeczywistego prądu silnika. Powodem jest występowanie prądów pojemnościowych na kablu silnikowym.

UWAGA!

Upewnij się, że dopływ powietrza do silnika nie jest zablokowany. Jeśli dopływ powietrza jest zablokowany, funkcja nie chroni silnika, który może się przegrzać. Może to prowadzić do uszkodzenia silnika.

P3.9.6 ZABEZPIECZENIE TERMICZNE SILNIKA (ID 704)

Ten parametr służy do wyboru reakcji napędu na usterkę "Przegrzanie silnika". Jeśli funkcja zabezpieczenia termicznego silnika wykryje zbyt wysoką temperaturę silnika, jest to interpretowane jako usterka przegrzania silnika.

P3.9.7 WSPÓŁCZYNNIK TEMPERATURY OTOCZENIA SILNIKA (ID 705)

Za pomocą tego parametru można ustawić temperaturę zewnętrzną panującą w miejscu instalacji silnika.

Wartość temperatury jest podawana w stopniach Celsjusza lub Fahrenheita.

P3.9.8 CHŁODZENIE SILNIKA PRZY PRĘDKOŚCI ZEROWEJ (ID 706)

Parametr ten określa współczynnik chłodzenia przy prędkości zerowej w odniesieniu do punktu, gdy silnik pracuje przy prędkości znamionowej bez chłodzenia zewnętrznego.

Jeśli prędkość jest zerowa, funkcja ta obliczy współczynnik chłodzenia w odniesieniu do punktu, gdy silnik pracuje przy prędkości znamionowej bez chłodzenia zewnętrznego.

Wartość domyślna jest ustawiana przy założeniu, że nie ma żadnego wentylatora zewnętrznego. Jeśli jest używany wentylator zewnętrzny, można ustawić wartość wyższą niż w przypadku braku wentylatora. Na przykład 90%.

W przypadku zmiany parametru P3.1.1.4 (Prąd znamionowy silnika) zostanie automatycznie przywrócona wartość domyślna parametru P3.9.2.3.

Zmiana tego parametru nie ma żadnego wpływu na maksymalny prąd wyjściowy napędu. Maksymalny prąd wyjściowy można zmienić tylko za pomocą parametru P3.1.1.7 Limit prądu silnika.

Częstotliwość charakterystyczna zabezpieczenia termicznego to 70% wartości parametru P3.1.1.2 Częstotliwość znamionowa silnika.

Rys. 28: Krzywa IT charakterystyki cieplnej silnika

P3.9.9 STAŁA CZASOWA CIEPŁA SILNIKA (ID 707)

Ten parametr służy do ustawienia stałej czasu termicznego silnika.

Stała czasowa jest to czas, w ciągu którego obliczona krzywa cieplna osiąga 63% swojej wartości docelowej. Długość stałej czasowej zależy od wymiarów silnika. Im większy silnik, tym dłuższa stała czasowa.

Stała czasowa ciepła silnika różni się w zależności od silnika. Jest również różna dla różnych producentów silników. Wartość domyślna parametru zależy od wymiarów.

Tó jest to czas w sekundach, przez który silnik może bezpiecznie pracować przy sześciokrotnym przekroczeniu prądu znamionowego. Producent silnika może podać ten parametr w informacjach na temat silnika. Jeśli znasz wartość parametru tó silnika, na jego podstawie możesz ustawić stałą czasową. Zwykle stała czasowa ciepła silnika (w minutach) wynosi 2*tó. Jeśli napęd jest w stanie zatrzymania, stała czasowa jest wewnętrznie zwiększana do potrójnej ustawionej wartości parametru, ponieważ chłodzenie opiera się na konwekcji. Patrz *Rys. 29 Obliczanie temperatury silnika*.

P3.9.10 OBCIĄŻALNOŚĆ CIEPLNA SILNIKA (ID 708)

Ten parametr służy do ustawienia dopuszczalnego obciążenia termicznego silnika.

Na przykład po ustawieniu wartości 130% silnik osiągnie temperaturę znamionową przy 130% wartości prądu znamionowego.

Rys. 29: Obliczanie temperatury silnika

10.9.2 ZABEZPIECZENIE SILNIKA PRZED UTYKIEM SILNIKA

Funkcja ochrony przed utykiem silnika zabezpiecza silnik przed krótkimi przeciążeniami. Przyczyną przeciążenia może być na przykład zablokowany wał. Można ustawić czas reakcji zabezpieczenia przed utykiem krótszy niż czas zabezpieczenia termicznego silnika.

Stan utyku silnika jest określany za pomocą parametrów: P3.9.12 Prąd utyku oraz P3.9.14 Limit częstotliwości utyku. Jeśli prąd jest wyższy od ustawionego limitu, a częstotliwość wyjściowa niższa od limitu, silnik znajduje się w stanie utyku.

Ochrona przed utykiem jest rodzajem zabezpieczenia przed przekroczeniem dopuszczalnej wartości prądu.

WSKAZÓWKA!

W przypadku używania długich kabli silnikowych (maks. 100 m) z małymi napędami (<1,5 kW) prąd silnika mierzony przez napęd może być znacznie wyższy od rzeczywistego prądu silnika. Powodem jest występowanie prądów pojemnościowych na kablu silnikowym.

P3.9.11 USTERKA UTYKU SILNIKA (ID 709)

Ten parametr służy do wyboru reakcji napędu na usterkę "Utyk silnika". Jeśli funkcja zabezpieczenia silnika przed utykiem wykryje zablokowanie wału silnika, jest to interpretowane jako usterka utyku silnika.

P3.9.12 PRAD UTYKU (ID 710)

Za pomocą tego parametru można ustawić limit, który prąd musi przekroczyć, aby wystąpił utyk.

Wartość tego parametru można ustawić w zakresie od 0,0 do 2*I_L. Aby wystąpił stan utyku, prąd musi przekroczyć ten limit. W przypadku zmiany parametru P3.1.1.7 Limit prądu silnika wartość tego parametru zostanie automatycznie obliczona na 90% limitu prądu.

WSKAZÓWKA!

Wartość prądu utyku nie może przekraczać limitu prądu silnika.

Rys. 30: Ustawienia charakterystyki utyku

P3.9.13 LIMIT CZASU UTYKU (ID 711)

Za pomocą tego parametru można określić maksymalny czas etapu utyku.

Wartość tego parametru można ustawić w zakresie od 1,0 do 120,0 s. Jest to maksymalny czas aktywnego stanu utyku. Czas utyku jest mierzony za pomocą licznika wewnętrznego.

Jeśli licznik czasu utyku przekroczy limit, zabezpieczenie spowoduje wyłączenie napędu.

P3.9.14 LIMIT CZĘSTOTLIWOŚCI UTYKU (ID 712)

Za pomocą tego parametru można ustawić limit, który częstotliwość wyjściowa napędu musi przekroczyć, aby wystąpił utyk.

WSKAZÓWKA!

Aby wystąpił utyk, częstotliwość wyjściowa musi pozostawać poniżej tego limitu przez określony czas.

10.9.3 ZABEZPIECZENIE PRZED NIEDOCIĄŻENIEM (SUCHA POMPA)

Celem zabezpieczenia silnika przed niedociążeniem jest zapewnienie, że silnik jest obciążony podczas pracy napędu. Jeśli silnik traci obciążenie, być może wystąpił problem w pracy. Na przykład wystąpiło pęknięcie paska lub nastąpił suchobieg pompy.

Zabezpieczenie silnika przed niedociążeniem można dostosować za pomocą parametrów P3.9.16 (Zabezpieczenie przed niedociążeniem: obciążenie w obszarze osłabienia pola) i P3.9.17 (Zabezpieczenie przed niedociążeniem: obciążenie przy zerowej częstotliwości). Krzywa niedociążenia jest krzywą paraboliczną przebiegającą między częstotliwością zerową i punktem osłabienia pola. Ochrona jest nieaktywna poniżej 5 Hz. Licznik czasu niedociążenia nie działa poniżej 5 Hz.

Wartości parametrów zabezpieczenia przed niedociążeniem są ustawiane jako wartości procentowe odnoszące się do znamionowego momentu obrotowego silnika. Do określenia współczynnika skalowania wartości wewnętrznego momentu obrotowego użyj danych z tabliczki znamionowej silnika, parametrów Znamionowy prąd silnika i Znamionowy prąd napędu I_L. W przypadku użycia prądu innego niż znamionowy prąd silnika spadnie dokładność obliczeń.

WSKAZÓWKA!

W przypadku używania długich kabli silnikowych (maks. 100 m) z małymi napędami (<1,5 kW) prąd silnika mierzony przez napęd może być znacznie wyższy od rzeczywistego prądu silnika. Powodem jest występowanie prądów pojemnościowych na kablu silnikowym.

P3.9.15 USTERKA NIEDOCIĄŻENIA (ID 713)

Ten parametr służy do wyboru reakcji napędu na usterkę "SilNiedoc.". Jeśli funkcja ochrony przed niedociążeniem wykryje zbyt niskie obciążenie silnika, jest to interpretowane jako usterka niedociążenia.

P3.9.16 ZABEZPIECZENIE PRZED NIEDOCIĄŻENIEM: OBCIĄŻENIE W OBSZARZE OSŁABIENIA POLA (ID 714)

Za pomocą tego parametru można ustawić minimalny wymagany moment silnika, gdy częstotliwość wyjściowa napędu przekroczy częstotliwość punktu osłabienia.

Wartość tego parametru można ustawić w zakresie od 10,0 do 150,0% x T_{nsilnika}. Ta wartość to minimalny dopuszczalny moment obrotowy, gdy częstotliwość wyjściowa jest powyżej punktu osłabienia pola.

W przypadku zmiany parametru P3.1.1.4 (Prąd znamionowy silnika) zostanie automatycznie przywrócona wartość domyślna tego parametru. Patrz rozdział *5.9 Grupa 3.9: Zabezpieczenia*.

Rys. 31: Ustawianie minimalnego obciążenia

P3.9.17 ZABEZPIECZENIE PRZED NIEDOCIĄŻENIEM: OBCIĄŻENIE PRZY ZEROWEJ CZĘSTOTLIWOŚCI (ID 715)

Ten parametr określa wartość minimalnego wymaganego przez silnik momentu obrotowego, gdy częstotliwość wyjściowa napędu wynosi 0.

P3.9.18 ZABEZPIECZENIE PRZED NIEDOCIĄŻENIEM: LIMIT CZASU (ID 716)

Za pomocą tego parametru można określić maksymalny dopuszczalny czas stanu niedociążenia.

Limit czasu można ustawić w zakresie od 2,0 do 600,0 s.

Jest to maksymalny czas aktywnego stanu niedociążenia. Czas niedociążenia jest mierzony za pomocą licznika wewnętrznego. Jeśli wartość licznika przekroczy ten limit, zabezpieczenie spowoduje wyłączenie napędu. Napęd wyłączy się zgodnie z ustawieniem parametru P3.9.15 Usterka niedociążenia. Jeśli napęd zatrzyma się, licznik niedociążenia zostanie ponownie wyzerowany.

Rys. 32: Funkcja licznika czasu niedociążenia

P3.9.19 ODPOWIEDŹ NA USTERKĘ KOMUNIKACJI SZYNY (ID 733)

Ten parametr służy do wyboru reakcji napędu na usterkę "reakcja przekr. czasu". Jeśli połączenie transmisji danych między kartą szyny a zewnętrznym sterownikiem zostało uszkodzone, jest to interpretowane jako usterka szyny komunikacyjnej.

P3.9.20 USTERKA KOMUNIKACJI GNIAZDA (ID 734)

Ten parametr służy do wyboru reakcji napędu na usterkę "komunikacja gniazda". Jeśli napęd wykryje uszkodzenie karty opcjonalnej, jest to interpretowane jako usterka komunikacji gniazda.

Więcej informacji można znaleźć w opisie parametru P3.9.2.

P3.9.21 USTERKA TERMISTORA (ID 732)

Ten parametr służy do wyboru reakcji napędu na usterkę "termistor". Jeśli termistor wykryje zbyt wysoką temperaturę, jest to interpretowane jako usterka termistora.

Więcej informacji można znaleźć w opisie parametru P3.9.2.

P3.9.22 ODPOWIEDŹ NA USTERKĘ MONITOROWANIA PID1 (ID 749)

Ten parametr służy do wyboru reakcji napędu na usterkę "monitorowanie PID". Jeśli wartość sprzężenia zwrotnego z regulatora PID nie mieści się w limitach monitorowania dłużej niż ustawione opóźnienie monitorowania, jest to interpretowane jako usterka monitorowania PID.

P3.9.23 ODPOWIEDŹ NA USTERKĘ MONITOROWANIA ZEWNĘTRZNEGO REGULATORA PID (ID 757)

Ten parametr służy do wyboru reakcji napędu na usterkę "monitorowanie PID". Jeśli wartość sprzężenia zwrotnego z regulatora PID nie mieści się w limitach monitorowania dłużej niż ustawione opóźnienie monitorowania, jest to interpretowane jako usterka monitorowania PID.

Więcej informacji można znaleźć w opisie parametru P3.9.2.

P3.9.25 SYGNAŁ TEMPERATUR. 1 (ID 739)

Ten parametr służy do ustawiania monitorowanego sygnału wejścia temperatury.

Spośród ustawionych sygnałów jest wybierana maksymalna wartość, która jest następnie używana do wyzwalania alarmów i usterek.

P3.9.26 LIMIT ALARMU 1 (ID 741)

Parametr ten umożliwia ustawienie limitu temperatury do wyzwolenia alarmu.

Jeśli zmierzona temperatura przekroczy ten limit, zostanie wygenerowany alarm temperatury.

P3.9.27 LIMIT USTERKI 1 (ID 742)

Parametr ten umożliwia ustawienie limitu usterki temperatury.

Jeśli zmierzona temperatura przekroczy ten limit, jest to interpretowane jako usterka temperatury.

P3.9.28 REAKCJA NA USTERKĘ TEMPERATURY (ID 740)

Ten parametr służy do wyboru reakcji napędu na usterkę "temperatura".

P3.9.29 ODPOWIEDŹ NA USTERKĘ BEZPIECZNEGO WYŁĄCZENIA MOMENTU OBROTOWEGO (ID 775)

Ten parametr służy do wyboru reakcji napędu na usterkę "ust. bezp. wył. mom.".

Ten parametr definiuje odpowiedź na usterkę F30 – Bezpieczne wyłączenie momentu (ID usterki: 530).

Ten parametr określa pracę napędu po uaktywnieniu się funkcji bezpiecznego wyłączenia momentu (np. naciśnięciu przycisku zatrzymania awaryjnego lub aktywacji innej operacji bezpiecznego wyłączenia momentu).

0 = brak reakcji

1 = alarm

2 = usterka, zatrzymaj bezwładnością

WSKAZÓWKA!

Ten parametr nie jest widoczny, jeśli napęd nie obsługuje funkcjonalności bezpiecznego wyłączenia momentu obrotowego.

10.10 AUTOMATYCZNE WZNOWIENIE PRACY

P3.10.1 AUTOMATYCZNE WZNOWIENIE PRACY (ID 731)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania.

Aby wybrać usterki, które będą kasowane automatycznie, określ wartość 0 lub 1 dla parametrów od P3.10.6 do P3.10.14.

WSKAZÓWKA!

Funkcja automatycznego wznowienia pracy jest dostępna tylko dla niektórych typów usterek.

P3.10.2 FUNKCJA PONOWNEGO STARTU (ID 719)

Ten parametr służy do wyboru trybu startu funkcji AutoKasowUsterki.

P3.10.3 CZAS OCZEKIWANIA (ID 717)

Ten parametr służy do ustawiania czasu zwłoki przed wykonaniem pierwszego kasowania.

P3.10.4 AUTOMATYCZNE KASOWANIE: CZAS PRÓBY (ID 718)

Ten parametr służy do ustawiania czasu próby dla funkcji automatycznego kasowania.

W czasie próby funkcja automatycznego wznowienia pracy próbuje skasować usterki, które wystąpiły. Odliczanie czasu rozpoczyna się od pierwszego automatycznego wznowienia pracy. Przy następnej usterce odliczanie czasu próby rozpoczyna się ponownie.

P3.10.5 LICZBA PRÓB (ID 759)

Za pomocą tego parametru można ustawić całkowitą liczbę prób automatycznego kasowania.

Jeśli liczba prób w czasie próby przekroczy wartość tego parametru, zostanie wyświetlona usterka trwała. W przeciwnym razie – po upływie czasu próby usterka zniknie z wyświetlacza.

Za pomocą parametru P3.10.5 można ustawić maksymalną liczbę automatycznych prób wznowienia pracy w czasie określonym w parametrze P3.10.4. Typ usterki nie ma żadnego wpływu na liczbę maksymalną.

Rys. 33: Funkcja automatycznego wznowienia pracy

P3.10.6 AUTOMATYCZNE WZNAWIANIE: ZANISKIENAP. (ID 720)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce za niskiego napięcia.

P3.10.7 AUTOMATYCZNE WZNAWIANIE: PRZEPIĘCIE (ID 721)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce przek. napięcia.

P3.10.8 AUTOMATYCZNE WZNAWIANIE: PRZETĘŻENIE (ID 722)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce przek. nat. prądu.

P3.10.9 AUTOMATYCZNE WZNAWIANIE: NISKIE AI (ID 723)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce spowodowanej niskim poziomem sygnału AI.

P3.10.10 AUTOMATYCZNE WZNAWIANIE: PRZEGRZANIE MODUŁU (ID 724)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce spowodowanej przegrzaniem jednostki.

P3.10.11 AUTOMATYCZNE WZNAWIANIE: PRZEGRZANIE SILNIKA (ID 725)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce spowodowanej przegrzaniem silnika.

P3.10.12 AUTOMATYCZNE WZNAWIANIE: USTERKA ZEWN. (ID 726)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po ust. zewn.

P3.10.13 AUTOMATYCZNE WZNAWIANIE: USTERKA NIEDOCIĄŻENIA (ID 738)

Parametr ten umożliwia włączenie funkcji automatycznego kasowania po usterce SilNiedoc.

P3.10.14 AUTOMATYCZNE WZNAWIANIE: USTERKA MONITOROWANIA REGULATORA PID (ID 15538)

Za pomocą tego parametru można włączyć funkcję automatycznego kasowania usterek.

10.11 FUNKCJE STEROWANIA CZASOWEGO

10.11.1 FUNKCJE STEROWANIA CZASOWEGO

Funkcje sterowania czasowego umożliwiają sterowanie funkcjami za pomocą wewnętrznego zegara czasu rzeczywistego. Wszystkimi funkcjami, którymi można sterować za pomocą wejścia cyfrowego, można również sterować za pomocą zegara czasu rzeczywistego z kanałami czasowymi 1–3. Sterowanie wejściem cyfrowym nie wymaga instalacji zewnętrznego sterownika PLC. Zamknięte i otwarte przedziały czasowe wejścia można zaprogramować wewnętrznie.

Aby uzyskać najlepsze wyniki z funkcjami sterowania czasowego, zainstaluj baterię, a następnie ostrożnie wprowadź ustawienia zegara czasu rzeczywistego w kreatorze rozruchu. Bateria jest dostępna jako opcja.

WSKAZÓWKA!

Nie jest zalecane korzystanie z funkcji sterowania czasowego bez dodatkowej baterii. Jeśli nie zostanie zainstalowana bateria zegara czasu rzeczywistego, ustawienia daty i godziny napędu będą kasowane przy każdym wyłączeniu zasilania.

KANAŁY CZASOWE

Wyjście przedziału czasowego i/lub funkcje sterowania czasowego można przypisać do kanałów czasowych 1–3. Za pomocą kanałów czasowych można sterować funkcjami typu włącz/wyłącz – na przykład wyjściami przekaźnikowymi lub wejściami cyfrowymi. Aby skonfigurować logikę włączania/wyłączenia kanałów czasowych, przypisz im przedziały czasu i/lub sterowania czasowe. Kanałem czasowym można sterować za pomocą wielu przedziałów czasu lub sterowań czasowych.

Rys. 34: Sposób przypisywania przedziałów czasu i sterowań czasowych do kanałów czasowych jest bardzo elastyczny. Każdy przedział czasu i każde sterowanie czasowe ma parametr umożliwiający przypisanie do kanału czasowego.

PRZEDZIAŁY CZASU

Za pomocą parametrów przypisz każdemu przedziałowi czas włączenia i czas wyłączenia. Jest to codzienny czas aktywności przedziału w poszczególnych dniach, które ustawiono w parametrach Od dnia i Do dnia. Na przykład poniższe ustawienia parametrów oznaczają, że przedział jest aktywny od 7:00 do 9:00 od poniedziałku do piątku. Kanał czasowy przypomina wejście cyfrowe, ale jest wirtualny.

Czas włączenia: 07:00:00 Czas wyłączenia: 09:00:00 Od dnia: Poniedziałek Do dnia: Piątek

STEROWANIA CZASOWE

Sterowania czasowe umożliwiają aktywację kanału czasowego w określonym czasie za pomocą polecenia z wejścia cyfrowego lub innego kanału czasowego.

Rys. 35: Sygnał aktywacji pochodzi z wejścia cyfrowego lub wirtualnego wejścia cyfrowego, takiego jak kanał czasowy. Sterowanie czasowe odlicza od momentu opadania zbocza.

Parametry poniżej uaktywnią sterowanie czasowe, gdy zostanie zamknięte wejście cyfrowe 1 w gnieździe A. Spowodują również aktywację sterowania czasowego na 30 sekund po jego otwarciu.

- Czas pracy: 30 s
- Sterowanie czasowe: Digln SlotA.1

Można ustawić czas pracy 0 sekund, aby zastąpić kanał czasowy aktywowany z wejścia cyfrowego. W ten sposób nie będzie żadnej zwłoki po zboczu opadającym.

Przykład:

Problem:

Przemiennik częstotliwości znajduje się w magazynie i steruje klimatyzacją. Musi pracować od godziny 7 do 17 w dni robocze oraz od godziny 9 do 13 w weekendy. Konieczna jest również praca napędu poza tymi godzinami, jeśli w budynku znajduje się personel. Napęd musi kontynuować pracę 30 minut po wyjściu personelu.

Rozwiązanie:

Ustaw dwa przedziały czasu – jeden dla dni roboczych i jeden dla weekendów. Do aktywacji procesu poza ustawionymi godzinami będzie również wymagane sterowanie czasowe. Patrz konfiguracja poniżej.

Przedział czasu 1

P3.11.1.1: Czas włączenia: 07:00:00 P3.11.1.2: Czas wyłączenia: 17:00:00 P3.11.1.3: Od dnia: 1 (= poniedziałek) P3.11.1.4: Do dnia: 5 (= piątek) P3.11.1.5: Przypisz do kanału: Kanał czasowy 1

Przedział czasu 2

P3.11.2.1: Czas włączenia: 09:00:00 P3.11.2.2: Czas wyłączenia: 13:00:00 P3.11.2.3: Od dnia: Sobota P3.11.2.4: Do dnia: Niedziela P3.11.2.5: Przypisz do kanału: Kanał czasowy 1

Sterowanie czasowe 1

Można uruchomić silnik za pomocą wejścia cyfrowego 1 gniazda A w czasie innym, niż określony w przedziałach czasu. W tym przypadku sterowanie czasowe określa czas pracy silnika.

P3.11.6.1: Czas pracy: 1800 s (30 min)

P3.11.6.2: Przypisz do kanału: Kanał czasowy 1

P3.5.1.18: Sterowanie czasowe 1: Digln SlotA.1 (Parametr znajduje się w menu wejść cyfrowych)

Rys. 36: Sygnał sterujący dla polecenia startu pochodzi z kanału czasowego 1, a nie z wejścia cyfrowego

P3.11.1.1 CZAS WŁĄCZENIA (ID 1464)

Parametr ten umożliwia wybór godziny, o której wyjście funkcji przedziału czasowego jest aktywowane.

P3.11.1.2 CZAS WYŁĄCZENIA (ID 1465)

Parametr ten umożliwia wybór godziny, o której wyjście funkcji przedziału czasowego jest dezaktywowane.

P3.11.1.3 OD DNIA (ID 1466)

Parametr ten umożliwia wybór dnia, kiedy wyjście funkcji przedziału czasowego jest aktywowane.

P3.11.1.4 D0 DNIA (ID 1467)

Parametr ten umożliwia wybór dnia, kiedy wyjście funkcji przedziału czasowego jest wyłączone.

P3.11.1.5 PRZYPISZ DO KANAŁU (ID 1468)

Parametr ten umożliwia wybór kanału czasowego, dla którego przypisane będzie wyjście funkcji przedziału czasowego.

Za pomocą kanałów czasowych można sterować funkcjami typu włącz/wyłącz — na przykład wyjściami przekaźnikowymi lub wszystkimi funkcjami dającymi się sterować sygnałem wejścia cyfrowego.

P3.11.6.1 CZAS PRACY (ID 1489)

Za pomocą tego parametru można ustawić czas pracy ster. czasowego po usunięciu sygnału aktywacji (opóźnienie wyłączenia).

P3.11.6.2 PRZYPISZ DO KANAŁU (ID 1490)

Parametr ten umożliwia wybór kanału czasowego, dla którego przypisane będzie wyjście funkcji sterowania czasowego.

Za pomocą kanałów czasowych można sterować funkcjami typu włącz/wyłącz — na przykład wyjściami przekaźnikowymi lub wszystkimi funkcjami dającymi się sterować sygnałem wejścia cyfrowego.

P3.11.6.3 TRYB (ID 15527)

Za pomocą tego parametru można wybrać, czy opóźnienie ster. czasowego powinno współdziałać ze zboczem narastaj. czy opadaj.

10.12 REGULATOR PID 1

10.12.1 PARAMETRY PODSTAWOWE

P3.12.1.1 WZMOCNIENIE PID (ID 118)

Ten parametr służy do regulacji wzmocnienia gain regulatora PID. Jeśli ten parametr zostanie ustawiony na 100%, zmiana wartości uchybu o 10% powoduje zmianę wyjścia regulatora o 10%.

P3.12.1.2 CZAS CAŁKOWANIA PID (ID 119)

Ten parametr określa czas całkowania regulatora PID. Jeśli ten parametr zostanie ustawiony na 1,00 s, zmiana wartości uchybu o 10% powoduje zmianę wyjścia regulatora o 10,00%/s.

P3.12.1.3 CZAS RÓŻNICZKOWANIA PID (ID 132)

Ten parametr służy do regulacji czasu różniczkow. regulatora PID. Jeśli ten parametr zostanie ustawiony na 1,00 s, zmiana wartości uchybu o 10% w trakcie 1,00 s powoduje zmianę wyjścia regulatora o 10,00%.

P3.12.1.4 WYBÓR JEDNOSTKI PROCESOWEJ (ID 1036)

Za pomocą tego parametru można wybrać jednostkę dla sygnałów sprzężenia zwrotnego i wartości zadanej regulatora PID.

Wybór jednostki wartości rzeczywistej.

P3.12.1.5 WARTOŚĆ MINIMALNA JEDNOSTKI PROCESOWEJ (ID 1033)

Ten parametr służy do ustawienia minimalnej wartości sygnału sprz. zwrotnego PID. Przykładowo wartość sygnału analogowego 4...20 mA odpowiada ciśnieniu 0...10 barów.

P3.12.1.6 WARTOŚĆ MAKSYMALNA JEDNOSTKI PROCESOWEJ (ID 1034)

Ten parametr służy do ustawienia maksymalnej wartości sygnału sprz. zwrotnego PID. Przykładowo wartość sygnału analogowego 4...20 mA odpowiada ciśnieniu 0...10 barów.

P3.12.1.7 MIEJSCA DZIESIĘTNE JEDNOSTKI PROCESOWEJ (ID 1035)

Ten parametr służy do ustawienia liczby miejsc po przecinku dla wartości jednostki procesowej.

Przykładowo wartość sygnału analogowego 4...20 mA odpowiada ciśnieniu 0...10 barów.

P3.12.1.8 NEGACJAUCHYBU (ID 340)

Ten parametr służy do zamiany wartości błędu regulatora PID.

P3.12.1.9 HISTEREZA STREFY MARTWEJ (ID 1056)

Ten parametr służy do wyboru obszaru strefy nieczułości wart. zadanej PID.

Wartość tego parametru jest podana w wybranej jednostce procesowej. Jeśli przez ustalony czas wartość sprzężenia zwrotnego pozostaje w martwej strefie, wyjście regulatora PID jest blokowane.

P3.12.1.10 OPÓŹNIENIE W STREFIE MARTWEJ (ID 1057)

Za pomocą tego parametru można ustawić czas, w którym sprz. zwrotne musi pozostać w obrębie strefy martwej zanim wyjście regulatora PID zostanie zablokowane. Jeśli rzeczywista wartość pozostaje w obrębie strefy martwej przez określony czas, wyjście regulatora PID zostanie zablokowane. Ta funkcja zapobiega niepożądanym ruchom i zużyciu siłowników, np. zaworów.

Rys. 37: Funkcja martwej strefy

- A. Strefa martwa (ID1056)
- B. Opóźnienie w strefie martwej (ID1057)
- C. Reference

10.12.2 WARTOŚCI ZADANE

- D. Wartość rzeczywista
- E. Wyjście zablokowane

P3.12.2.1 WARTOŚĆ ZADANA Z PANELU 1 (ID 167)

Za pomocą tego parametru można określić wartość zadaną regulatora PID, gdy źródłem wartości zadanej jest "panel sterujący SP".

Wartość tego parametru jest podana w wybranej jednostce procesowej.

P3.12.2.2 WARTOŚĆ ZADANA Z PANELU 2 (ID 168)

Za pomocą tego parametru można określić wartość zadaną regulatora PID, gdy źródłem wartości zadanej jest "panel sterujący SP". Wartość tego parametru jest podana w wybranej jednostce procesowej.

P3.12.2.3 CZAS RAMPY DLA WARTOŚCI ZADANEJ (ID 1068)

Parametr ten umożliwia ustawienie czasów wznoszenia i opadania rampy dla zmian wartości zadanych.

Czas rampy to czas wymagany do zmiany wartości zadanej z minimalnej do maksymalnej. Ustawienie wartości 0 w tym parametrze powoduje, że nie są używane żadne rampy.

P3.12.2.4 WYBÓR ŹRÓDŁA WARTOŚCI ZADANEJ 1 (ID 332)

Ten parametr służy do wyboru źródła sygnału wart. zadanej PID.

P3.12.2.5 WARTOŚĆ ZADANA 1 — MINIMUM (ID 1069)

Ten parametr służy do ustawienia minimalnej wartości sygnału wartości zadanej.

P3.12.2.6 WARTOŚĆ ZADANA 1 — MAKSIMUM (ID 1070)

Ten parametr służy do ustawienia maksymalnej wartości sygnału wartości zadanej.

P3.12.2.7 LIMIT CZĘSTOTLIWOŚCI UŚPIENIA 1 (ID 1016)

Za pomocą tego parametru można ustawić limit, poniżej którego utrzymująca się przez określony czas częstotliwość wyjściowa napędu spowoduje przejście w stan uśpienia.

Zobacz opis parametru P3.12.2.10.

P3.12.2.8 OPÓŹNIENIE UŚPIENIA 1 (ID 1017)

Za pomocą tego parametru można ustawić minimalny czas, w jakim częstotliwość wyjściowa napędu musi pozostać poniżej określonego limitu, co spowoduje przejście w stan uśpienia.

Zobacz opis parametru P3.12.2.10.

P3.12.2.9 POZIOM BUDZENIA 1 (ID 1018)

Za pomocą tego parametru można określić moment wybudzenia napędu ze stanu uśpienia.

Zobacz opis parametru P3.12.2.10.

P3.12.2.10 TRYB BUDZENIA SP1 (ID 15539)

Za pomocą tego parametru można wybrać konfigurację parametru poziomu wybudzenia.

Za pomocą tych parametrów można określić moment wybudzenia napędu z trybu uśpienia.

Napęd wybudzi się z trybu uśpienia, gdy wartość sprzężenia zwrotnego regulatora PID spadnie poniżej poziomu budzenia.

Ten parametr określa, czy poziom budzenia działa jako statyczny poziom bezwzględny czy też jako poziom względny zależny od wartości zadanej regulatora PID.

Wybór 0 = poziom bezwzględny (poziom budzenia to poziom statyczny niezależny od wartości zadanej).

Wybór 1 = względna wartość zadana (poziom budzenia jest przesunięty poniżej rzeczywistej wartości zadanej i jest z nią skorelowany).

Rys. 39: Tryb budzenia: względna wartość zadana

P3.12.2.11 WZMOCNIENIE WARTOŚCI ZADANEJ 1 (ID 1071)

Ten parametr służy do ustawiania mnożnika dla funkcji wzmocnienia wartości zadanej. Po wydaniu polecenia wzmocnienia wartości zadanej jest ona mnożona o współczynnik określony w tym parametrze.

10.12.3 SPRZĘŻENIE ZWROTNE

P3.12.3.1 FUNKCJA SPRZĘŻENIA ZWROTNEGO (ID 333)

Za pomocą tego parametru można wybrać, czy wartość sprz. zwrotnego jest brana z jednego czy z dwóch sygnałów.

Można wybrać funkcję matematyczną, która będzie używana przy łączeniu dwóch sygnałów sprzężenia zwrotnego.

P3.12.3.2 WZMOCNIENIE FUNKCJI SPRZĘŻENIA ZWROTNEGO (ID 1058)

Ten parametr służy do regulacji wzmocnienia gain sygnału sprzęż. zwrotnego. Jest używany na przykład z wartością 2 w funkcji sprzężenia zwrotnego.

P3.12.3.3 WYBÓR ŹRÓDŁA SPRZĘŻENIA ZWROTNEGO 1 (ID 334)

Ten parametr służy do wyboru źródła sygnału sprz. zwrotnego PID. Wejścia analogowe i wejścia danych procesowych są obsługiwane jako wartości procentowe (0,00–100,00%) i skalowane według minimum i maksimum wartości sprzężenia zwrotnego.

WSKAZÓWKA!

Sygnały wejściowe danych procesowych są określane z dokładnością do dwóch miejsc dziesiętnych.

Jeśli zostaną wybrane wejścia temperaturowe, należy tak ustawić wartości parametrów P3.13.1.7 Wartość minimalna jednostki procesowej i P3.13.1.8 Wartość maksymalna jednostki procesowej, aby odpowiadały skali karty pomiaru temperatury: MinJednostProc = -50°C i MaksJednostProc = 200°C.

P3.12.3.4 SPRZĘŻENIE ZWROTNE 1 — MINIMUM (ID 336)

Ten parametr służy do ustawienia minimalnej wartości sygnału sprz. zwrotnego.

P3.12.3.5 SPRZĘŻENIE ZWROTNE 1 — MAKSIMUM (ID 337)

Ten parametr służy do ustawienia maksymalnej wartości sygnału sprz. zwrotnego.

10.12.4 SPRZĘŻENIE WYPRZEDZAJĄCE

P3.12.4.1 FUNKCJA SPRZĘŻENIA WYPRZEDZAJĄCEGO (ID 1059)

Za pomocą tego parametru można wybrać, czy wartość sprz. wyprzedz. jest brana z jednego czy z dwóch sygnałów.

Funkcja sprzężenia wyprzedzającego wymaga zwykle dokładnych modeli procesów. W niektórych przypadkach wystarcza sprzężenie typu wzmocnienie + przesunięcie. W sprzężeniu wyprzedzającym nie korzysta się z żadnych pomiarów sprzężenia zwrotnego odnoszących się do rzeczywistej wartości sterowanej procesu. W sterowaniu sprzężeniem wyprzedzającym stosuje się inne pomiary, które wpływają na wartość sterowanego procesu.

PRZYKŁAD 1:

Poziom wody w zbiorniku można kontrolować za pomocą sterowania przepływem. Docelowy poziom wody został ustawiony jako wartość zadana, a rzeczywisty poziom jako sprzężenie zwrotne. Sygnał sterujący umożliwia monitorowanie przypływu.

Odpływ można uznać za możliwe do zmierzenia zakłócenie. Na podstawie pomiaru zakłócenia można podjąć próbę jego regulacji za pomocą funkcji sterowania sprzężeniem wyprzedzającym (wzmocnienie i przesunięcie), którą dodaje się do wyjścia regulatora PID. Regulator PID reaguje szybciej na zmiany poziomu odpływu niż w przypadku bezpośredniego pomiaru tego poziomu.

Rys. 40: Sterowanie sprzężeniem wyprzedzającym

P3.12.4.2 WZMOCNIENIE SPRZĘŻENIA WYPRZEDZAJĄCEGO (ID 1060)

Ten parametr służy do regulacji wzmocnienia gain sygnału sprzęż. wyprzedz.

P3.12.4.3 WYBÓR ŹRÓDŁA SPRZĘŻENIA WYPRZEDZAJĄCEGO 1 (ID 1061)

Ten parametr służy do wyboru źródła sygnału sprzęż. wyprzedz. PID.

P3.12.4.4 SPRZĘŻENIE WYPRZEDZAJĄCE 1 — MINIMUM (ID 1062)

Ten parametr służy do ustawienia minimalnej wartości sygnału sprzęż. wyprzedz.

P3.12.4.5 SPRZĘŻENIE WYPRZEDZAJĄCE 1 — MAKSIMUM (ID 1063)

Ten parametr służy do ustawienia maksymalnej wartości sygnału sprzęż. wyprzedz.

10.12.5 MONITOROWANIE PROCESU

Dzięki monitorowaniu sprzężenia zwrotnego można upewnić się, że wartość sprzężenia zwrotnego regulatora PID (wartość procesowa lub wartość rzeczywista) mieści się w ustalonych limitach. Za pomocą tej funkcji można na przykład odnaleźć uszkodzoną rurę i zatrzymać wyciek.

Rys. 41: Funkcja monitorowania sprzężenia zwrotnego

Parametr ten umożliwia włączenie funkcji monitorow. sprz. zwrotnego.

Ustawienie górnego i dolnego limitu wokół wartości zadanej. Jeśli wartość rzeczywista przekroczy limit, licznik zaczyna zliczać czas w górę. Gdy wartość rzeczywista mieści się w dozwolonym zakresie, licznik zlicza czas w dół. Gdy licznik osiągnie wartość większą niż wartość parametru P3.12.5.4 Opóźnienie, pojawi się alarm lub usterka.

P3.12.5.2 GÓRNY LIMIT (ID 736)

Ten parametr służy do ustawiania górnego limitu dla sygnału sprz. zwrotnego PID.

Jeśli wartość sygnału sprzężenia zwrotnego z regulatora PID przekroczy ten limit dłużej niż przez ustawiony czas, jest to interpretowane jako usterka monitorowania sprzężenia zwrotnego.

P3.12.5.3 DOLNY LIMIT (ID 758)

Ten parametr służy do ustawiania dolnego limitu dla sygnału sprz. zwrotnego PID. Jeśli wartość sygnału sprzężenia zwrotnego z regulatora PID nie osiągnie tego limitu dłużej niż przez ustawiony czas, jest to interpretowane jako usterka monitorowania sprzężenia zwrotnego.

P3.12.5.4 OPÓŹNIENIE (ID 737)

Za pomocą tego parametru można określić maksymalny czas pozostawania sygnału sprz. zwrotnego PID poza limitami monitorow. zanim wystąpi usterka sprzęż. zwrotnego monitorow.

Jeśli w tym okresie nie zostanie osiągnięta wartość docelowa, pojawi się usterka lub alarm.

10.12.6 KOMPENSACJA SPADKU CIŚNIENIA

W przypadku zwiększania ciśnienia w długiej rurze z wieloma wylotami najlepszym miejscem ustawienia czujnika będzie połowa długości rury (pozycja 2 na rysunku). Czujnik można również umieścić bezpośrednio za pompą. W ten sposób prawidłowe ciśnienie zostanie osiągnięte bezpośrednio za pompą, jednak na dalszych odcinkach rury spadnie ono wraz z przepływem.

Rys. 42: Pozycja czujnika ciśnienia

- A. Ciśnienie
- B. Brak przepływu
- C. Przepływ

- D. Długość rury
- E. Pozycja 1
- F. Pozycja 2

P3.12.6.1 WŁĄCZ WARTOŚĆ ZADANĄ 1 (ID1189)

Parametr ten umożliwia włączenie kompensacji utraty ciśnienia w systemie pomp.

P3.12.6.2 MAKS. KOMPENSACJA WARTOŚCI ZADANEJ 1 (ID 1190)

Za pomocą tego parametru można ustawić maksymalną kompensację wartości zadanej PID stosowanej, gdy częstotliwość wyjściowa napędu jest na maksymalnym poziomie.

Czujnik jest umieszczony w pozycji 1. Ciśnienie w rurze będzie utrzymywać się na stałym poziomie w przypadku braku przepływu. Jednak wraz z przepływem ciśnienie spada na dalszych odcinkach rury. Aby skompensować spadek ciśnienia, można zwiększać wartość zadaną w miarę wzrostu natężenia przepływu. Przepływ jest obliczany za pomocą częstotliwości wyjściowej, a wartość zadana zwiększa się liniowo wraz ze wzrostem natężenia przepływu.

Rys. 43: Włączanie wartości zadanej 1 w celu kompensacji spadku ciśnienia

10.13 REGULATOR PID 2

10.13.1 PARAMETRY PODSTAWOWE

P3.13.1.1 WŁĄCZENIE PID (ID 1630)

Parametr umożliwia włączenie regulatora PID.

WSKAZÓWKA!

Regulator jest przeznaczony tylko do użytku zewnętrznego. Można go podłączyć do wyjścia analogowego.

P3.13.1.2 WYJŚCIE W STOP (ID 1100)

Ten parametr służy do ustawiania wartości wyjściowej regulatora PID jako procentu jego maksymalnej wartości wyjściowej w przypadku zatrzymania za pomocą wyjścia cyfrowego.

10.14 FUNKCJA STEROWANIA WIELOPOMPOWEGO

Funkcja sterowania wielopompowego umożliwia sterowanie maksymalnie 4 silnikami, pompami lub wentylatorami za pomocą regulatora PID.

Przemiennik częstotliwości jest podłączony do silnika, który jest regulowany. Silnik sterujący podłącza pozostałe silniki do sieci i odłącza je od niej za pomocą przekaźników. Ma to na celu utrzymanie odpowiedniej wartości zadanej. Funkcja automatycznej zmiany kolejności napędów steruje kolejnością uruchamiania silników, aby zapewnić ich jednakowe zużycie. Silnik sterujący można dodać do logiki automatycznej zmiany kolejności napędów i blokady albo ustawić go trwale jako Silnik 1. Za pomocą funkcji blokady silniki można tymczasowo wyłączyć – na przykład w celu ich konserwacji.

Rys. 44: Funkcja sterowania wielopompowego

Jeśli regulator PID nie jest w stanie utrzymać wartości sprzężenia zwrotnego w ustalonej szerokości pasma, nastąpi podłączenie/odłączenie silnika lub silników.

Podłączanie i/lub dodawanie silników:

- Wartość sprzężenia zwrotnego jest poza szerokością pasma.
- Silnik sterujący pracuje przy częstotliwości zbliżonej do maksymalnej (+2 Hz).
- Powyższe warunki są spełnione przez czas dłuższy od opóźnienia szerokości pasma.
- istnieją inne dostępne silniki.

Odłączanie i/lub usuwanie silników:

- Wartość sprzężenia zwrotnego jest poza szerokością pasma.
- Silnik sterujący pracuje przy częstotliwości zbliżonej do minimalnej (+2 Hz).
- Powyższe warunki są spełnione przez czas dłuższy od opóźnienia szerokości pasma.
- Poza silnikiem sterującym pracują także inne silniki.

P3.14.1 LICZBA SILNIKÓW (ID 1001)

Za pomocą tego parametru można ustawić łączną liczbę silników/pomp używanych w systemie wielopompowym.

P3.14.2 FUNKCJA BLOKADY (ID 1032)

Za pomocą tego parametru można włączać i wyłączać blokady.

Blokady informują układ wielopompowy, że silnik jest niedostępny. Może się zdarzyć, że silnik został usunięty z układu w celach konserwacyjnych lub przełączony na sterowanie ręczne.

Aby korzystać z blokad, należy włączyć parametr P3.14.2. Wybór stanu poszczególnych silników za pomocą wejścia cyfrowego (parametry od P3.5.1.25 do P3.5.1.28). Jeśli wejście jest ZAMKNIĘTE (aktywne), silnik jest dostępny w układzie wielopompowym. W przeciwnym przypadku logika wielopompowa nie podłączy go.

Rys. 45: Logika blokady 1

Kolejność silników to 1, 2, 3, 4, 5.

Jeśli zostanie usunieta blokada silnika 3, tj. parametr P3.5.1.36 zostanie ustawiony na wartość OTWARTY, kolejność zmienić się na **1, 2, 4, 5**.

Rys. 46: Logika blokady 2

Jeśli silnik 3 zostanie dodany ponownie (parametr P3.5.1.36 zostanie ustawiony na wartość ZAMKNIĘTY), system umieści silnik 3 jako ostatni w kolejności: **1, 2, 4, 5, 3**. System nie zatrzyma się – będzie pracować dalej.

Rys. 47: Logika blokady 3

Po kolejnym zatrzymaniu układu lub jego przejściu w tryb uśpienia kolejność zmieni się z powrotem na **1, 2, 3, 4, 5**.

P3.14.3 UWZGLĘDNIJ PRZEMIENNIK CZĘSTOTLIWOŚCI (ID 1028)

Parametr ten umożliwia uwzględnienie sterowanego silnika/pompy w układzie automatycznej zmiany kolejności napędów i blokowania napędu.

Numer wyboru	Nazwa wyboru	Opis
0	Disabled	Napęd jest zawsze podłączony do silnika 1. Blokady nie mają żadnego wpływu na silnik 1, który nie jest uwzględniony w logice automatycznej zmiany kolejności.
1	Włączony	Napęd można podłączyć do dowolnych silników w systemie. Blokady mają wpływ na wszystkie silniki. Logika automatycz- nej zmiany kolejności dotyczy wszystkich silników.

OKABLOWANIE

Połączenia różnią się w zależności od wartości parametrów – 0 i 1.

WYBÓR 0, WYŁĄCZONE

Napęd jest podłączony bezpośrednio do silnika 1. Pozostałe silniki pełnią funkcję dodatkowych. Są one podłączone do zasilania poprzez styczniki i sterowane za pomocą przekaźników w napędzie. Logika automatycznej zmiany kolejności lub blokady nie dotyczy silnika 1.

Rys. 48: Wybór 0

WYBÓR 1, WŁĄCZONE

Aby w logice automatycznej zmiany kolejności napędów i blokad uwzględnić silnik sterujący, należy postępować zgodnie z instrukcjami na rysunku poniżej. 1 przekaźnik umożliwia sterowanie jednym silnikiem. W logice styczników napęd jest zawsze podłączony do pierwszego silnika, a kolejne silniki do sieci.

Rys. 49: Wybór 1

P3.14.4 AUTOMATYCZNA ZMIANA KOLEJNOŚCI (ID 1027)

Parametr ten umożliwia włączenie lub wyłączenie rotacji kolejności rozruchu i priorytetu silników.

Numer wyboru	Nazwa wyboru	Opis
0	Disabled	Podczas normalnej pracy silniki są zawsze uruchamiane w kolejności 1, 2, 3, 4, 5 . Kolejność może się zmienić podczas pracy wraz z dodawaniem lub usuwaniem blokad. Po zatrzy- maniu napędu kolejność zawsze zmieni się na poprzednią.
1	Włączony	System zmienia kolejność co określony czas, aby zapewnić równomierne zużycie silników. Istnieje możliwość zmiany przedziałów czasu automatycznej zmiany kolejności.

Aby dostosować przedziały czasu automatycznej zmiany kolejności, użyj parametru P3.14.5 Przedział czasu automatycznej zmiany. Maksymalną liczbę silników, które mogą pracować, można ustawić za pomocą parametru Automatyczna zmiana kolejności silników: limit liczby silników (P3.14.7). Można również ustawić maksymalną częstotliwość silnika sterującego (Automatyczna zmiana: Limit częstotliwości (P3.14.6).

Jeśli proces mieści się w limitach ustawionych za pomocą parametrów P3.14.6 i P3.14.7, następuje automatyczna zmiana. W przeciwnym przypadku system zaczeka, aż proces wróci do ustalonych limitów, a następnie wykona automatyczną zmianę. Zapobiega to nagłym spadkom ciśnienia podczas automatycznej zmiany kolejności, gdy niezbędna jest wysoka wydajność stacji pomp.

PRZYKŁAD

Po automatycznej zmianie kolejności pierwszy silnik zostanie ustawiony jako ostatni. Pozostałe silniki zostaną przesunięte o 1 pozycję w górę.

Kolejność uruchamiania silników: 1, 2, 3, 4, 5 --> Automatyczna zmiana kolejności --> Kolejność uruchamiania silników: 2, 3, 4, 5, 1

--> Automatyczna zmiana kolejności -->

Kolejność uruchamiania silników: 3, 4, 5, 1, 2

P3.14.5 PRZEDZIAŁ CZASU AUTOMATYCZNEJ ZMIANY (ID 1029)

Parametr ten umożliwia dostosowywanie przedziału czasu automatycznej zmiany kolejności. Parametr określa częstotliwość zmiany kolejności uruchamiania silników/pomp. Automatyczna zmiana następuje w przypadku, gdy liczba pracujących silników i częstotliwość są mniejsze od wartości granicznych.

Po upływie przedziału czasu automatycznej zmiany zostanie uruchomiona funkcja automatycznej zmiany, jeśli wykorzystywana wydajność będzie poniżej poziomu określonego parametrami P3.14.6 i P3.14.7.

P3.14.6 AUTOMATYCZNA ZMIANA KOLEJNOŚCI SILNIKÓW: LIMIT CZĘSTOTLIWOŚCI (ID 1031)

Parametr ten umożliwia ustawienie limitu częstotliwości auto zmiany. Automatyczna zmiana następuje w przypadku, gdy upłynie przedział czasu automatycznej zmiany, liczba pracujących silników jest poniżej wartości granicznej, a napęd sterujący pracuje poniżej limitu częstotliwości automatycznej zmiany.

P3.14.7 AUTOMATYCZNA ZMIANA KOLEJNOŚCI SILNIKÓW: LIMIT SILNIKÓW (ID 1030)

Za pomocą tego parametru można ustawić liczbę pomp używanych w funkcji wielu pomp. Automatyczna zmiana następuje w przypadku, gdy upłynie przedział czasu automatycznej zmiany, liczba pracujących silników jest poniżej wartości granicznej, a napęd sterujący pracuje poniżej limitu częstotliwości automatycznej zmiany.

P3.14.8 SZEROKOŚĆ PASMA (ID 1097)

Za pomocą tego parametru można ustawić obszar przepustowości wokół zart. zadanej PID dla startu i zatrzymywania zewnętrznych silników.

Jeśli wartość sprzężenia zwrotnego regulatora PID pozostaje w granicach pasma, silniki pomocnicze nie są uruchamiane ani zatrzymywane. Wartość tego parametru jest podana jako procent wartości zadanej.

P3.14.9 OPÓŹNIENIE SZEROKOŚCI PASMA (ID 1098)

Ten parametr służy do ustawienia czasu pracy przed startem lub zatrzymaniem zewnętrznych silników.

Jeśli wartość sprzężenia zwrotnego PID wykracza poza szerokość pasma, za pomocą tego parametru ustawiany jest czas, jaki musi upłynąć przed uruchomieniem lub zatrzymaniem silników pomocniczych. Liczba pracujących pomp jest zwiększana lub zmniejszana, jeśli regulator PID nie może utrzymać wartości procesu (sprzężenia zwrotnego) w podanej szerokości pasma wokół wartości zadanej.

Szerokość pasma jest określana jako procent wartości zadanej PID. Gdy wartość sprzężenia zwrotnego PID pozostaje w obrębie szerokości pasma, nie trzeba zwiększać ani zmniejszać liczby pracujących pomp.

Gdy wartość sprzężenia znajdzie się poza szerokością pasma, liczba pracujących pomp zostanie zwiększona lub zmniejszona po upływie czasu określonego w parametrze P3.14.8. Musi być dostępna większa liczba pomp.

Rys. 50: Uruchamianie lub zatrzymywanie pomp pomocniczych (P3.14.8 = szerokość pasma, P3.14.9 = opóźnienie szerokości pasma)

- Pompa sterująca układem pracuje na częstotliwości zbliżonej do maksymalnej (-2 Hz). Powoduje do zwiększenie liczby działających pomp.
- B. Pompa sterująca układem pracuje na częstotliwości zbliżonej do minimalnej (+2 Hz). Powoduje do zmniejszenie liczby działających pomp.
- C. Liczba pracujących pomp jest zwiększana lub zmniejszana, jeśli regulator PID nie może utrzymać wartości procesu (sprzężenia zwrotnego) w podanej szerokości pasma wokół wartości zadanej.
- Podana szerokość pasma wokół wartości zadanej.

10.15 TRYB POŻAROWY

Po uaktywnieniu trybu pożarowego w napędzie będą kasowane wszystkie pojawiające się usterki i napęd będzie kontynuować pracę z tą samą prędkością tak długo, jak to możliwe. Napęd będzie ignorować wszystkie polecenia z panelu sterującego, magistral i narzędzia komputerowego.

Funkcja trybu pożarowego ma dwa tryby pracy: tryb Test i tryb Włączony. Aby wybrać tryb, wpisz hasło w parametrze P3.16.1 (Hasło trybu pożarowego). W trybie Test pojawiające się usterki nie będą kasowane automatycznie i napęd zatrzyma się po wystąpieniu usterki.

WSKAZÓWKA!

To wejście jest zwykle zamknięte.

Po uaktywnieniu funkcji Tryb pożarowy na wyświetlaczu pojawi się alarm.

UWAGA!

Aktywacja funkcji Tryb pożarowy powoduje unieważnienie gwarancji! Aby sprawdzić działanie trybu pożarowego bez unieważniania gwarancji, należy użyć trybu Test.

P3.16.1 HASŁO TRYBU POŻAROWEGO (ID 1599)

Parametr umożliwia włączenie funkcji trybu pożarowego.

WSKAZÓWKA!

Wszystkie pozostałe parametry trybu pożarowego będą zablokowane, jeśli zostanie włączony tryb pożarowy, a w parametrze podano poprawne hasło.

Numer wyboru	Nazwa wyboru	Opis
1001	Tryb włączony	W napędzie będą kasowane wszystkie pojawiające się usterki i napęd będzie kontynuować pracę z tą samą prędkością tak długo, jak to możliwe
1234	Tryb testowy	Pojawiające się usterki nie będą kasowane automatycznie i napęd zatrzyma się po wystąpieniu usterki.

P3.16.2 AKTYWACJA TRYBU POŻAROWEGO PRZY OTWARCIU (ID 1596)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego funkcję trybu pożarowego.

Po aktywacji sygnału wejścia cyfrowego na wyświetlaczu pojawi się alarm, a gwarancja zostanie unieważniona. Jest to sygnał wejścia cyfrowego typu NC (zwykle zamknięte).

Można przetestować tryb pożarowy, wpisując hasło aktywujące tryb testowy. W ten sposób gwarancja nie zostanie unieważniona.

WSKAZÓWKA!

Jeśli zostanie włączony tryb pożarowy i podane prawidłowe hasło w parametrze Hasło trybu pożarowego, wszystkie parametry trybu pożarowego zostaną zablokowane. Aby zmienić parametry trybu pożarowego, należy najpierw ustawić parametr P3.16.1 Hasło trybu pożarowego na wartość 0.

Rys. 51: Funkcja trybu pożarowego

P3.16.3 AKTYWACJA TRYBU POŻAROWEGO PRZY ZAMKNIĘCIU (ID 1619)

Ten parametr służy do ustawiania sygnału wejścia cyfrowego uaktywniającego funkcję trybu pożarowego.

Jest to sygnał wejścia cyfrowego typu NO (zwykle otwarte). Patrz opis parametru P3.16.2 Aktywacja trybu pożarowego przy otwarciu.

P3.16.4 CZĘSTOTLIWOŚĆ TRYBU POŻAROWEGO (ID 1598)

Za pomocą tego parametru można ustawić częstotliwość, która będzie używana po uaktywnieniu trybu pożarowego.

Napęd będzie korzystać z tej częstotliwości, gdy parametr P3.16.5 Źródło zadawania częstotliwości trybu pożarowego zostanie ustawiony na wartość *Częstotliwość trybu pożarowego*.

P3.16.5 ŹRÓDŁO ZADAWANIA CZĘSTOTLIWOŚCI TRYBU POŻAROWEGO (ID 1617)

Parametr ten umożliwia wybór źródła wartości zadanej częstotliwości, gdy jest aktywny tryb pożarowy.

Parametr umożliwia wybór na przykład wejścia AI1 lub regulatora PID jako źródła wartości zadanej podczas pracy w trybie pożarowym.

P3.16.6 WSTECZ W TRYBIE POŻAROWYM (ID 1618)

Ten parametr umożliwia wybór sygnału wejścia cyfrowego przesyłającego polecenie pracy wstecznej po uaktywnieniu funkcji trybu pożarowego.

Parametr nie jest uwzględniany podczas normalnej pracy.

Jeśli konieczne jest, aby silnik w trybie pożarowym pracował zawsze DO PRZODU lub zawsze DO TYŁU, należy wybrać odpowiednie wejście cyfrowe.

DigIn Slot0.1 = zawsze DO PRZODU DigIn Slot0.2 = zawsze DO TYŁU

P3.16.7 WYBÓR CZĘSTOTLIWOŚCI STAŁEJ TRYBU POŻAROWEGO 1 (ID 15535)

Parametr ten umożliwia ustawienie częstotliwości zadanej dla trybu pożarowego.

M3.16.10 STATUS TRYBU POŻAROWEGO (ID 1597)

Ta wartość monitorowana określa stan funkcji trybu pożarowego.

P3.16.12 PRĄD WSKAŹNIKA PRACY W TRYBIE POŻAROWYM (ID 15580)

Za pomocą tego parametru można ustawić limit prądu dla sygnału wskaźnika pracy wyjścia cyfrowego.

Ten parametr ma wpływ tylko wtedy, gdy wybrano opcję "Wskaźnik pracy" dla wyjścia przekaźnika, a tryb pożarowy jest aktywny. Funkcjonalność wyjścia przekaźnika "Wskaźnik pracy" szybko wskaże czy podczas pożaru prąd jest dostarczany do silnika.

Wartość tego parametru to wartość procentowa naliczana na podstawie wartości znamionowego poboru prądu przez silnik. Jeśli w przypadku pożaru wartość prądu dostarczanego do silnika przekracza wartość prądu znamionowego pomnożoną przez wartość tego parametru, wyjście przekaźnikowe zamyka się.

Na przykład jeśli natężenie prądu znamionowego silnika wynosi 5 A, a ustawiono wartość domyślną równą 20% dla tego parametru, wyjście przekaźnikowe zamyka się, a tryb pożarowy jest aktywowany, gdy natężenie prądu wyjściowego osiąga wartość 1 A.

WSKAZÓWKA!

Ten parametr nie ma wpływu, jeśli tryb pożarowy nie jest aktywny. Jeśli podczas normalnego działania wybierzesz opcję "Wskaźnik pracy" dla wyjścia przekaźnika, to efekt będzie taki sam jak w przypadku wyboru opcji "Praca" dla wyjścia przekaźnika.

M3.16.11 LICZNIK TRYBU POŻAROWEGO (ID 1679)

Ta wartość monitorowana określa liczbę wł. trybu pożarowego.

WSKAZÓWKA!

Tego licznika nie można wyzerować.

10.16 USTAWIENIA APLIKACJI

P3.17.1 HASŁO (ID 1806)

Ten parametr służy do ustawienia hasła administratora.

P3.17.2 WYBÓR C/F (ID 1197)

Parametr ten umożliwia ustawienie jednostki pomiaru temperatury. System wyświetla wszystkie wartości związane z temperaturą i wartości monitorowane w wybranej jednostce.

P3.17.3 WYBÓR KW/HP (ID 1198)

Parametr ten umożliwia ustawienie jednostki pomiaru mocy. System wyświetla wszystkie wartości związane z mocą i wartości monitorowane w wybranej jednostce.

P3.17.4 KONFIGURACJA PRZYCISKU FUNCT (ID 1195)

Ten parametr służy do ustawienia wartości przycisku FUNCT.

Ten parametr określa, które wybory są wyświetlane po wciśnięciu przycisku Funct.

- Lokalne/zdalne
- Strona sterowan
- Zmiana kierunku (widoczna tylko w przypadku sterowania za pomocą panelu)

10.17 WYZWOLENIE IMPULSU KWH

P3.18.1 DŁUGOŚĆ IMPULSU KWH (ID 15534)

Parametr ten definiuje długość impulsu kWh w milisekundach.

P3.18.2 CZĘSTOTLIWOŚĆ IMPULSÓW KWH (ID 15533)

Parametr ten definiuje wartości przedziału czasu kWh między poszczególnymi impulsami.

11 ŚLEDZENIE USTEREK

W przypadku wykrycia nietypowych warunków pracy przez układ diagnostyczny sterowania przemiennika częstotliwości zostanie wyświetlone odpowiednie powiadomienie. Powiadomienie pojawi się na wyświetlaczu panelu sterującego. Na wyświetlaczu pojawią się kod, nazwa i krótki opis usterki lub alarmu.

Informacje o źródle mówią użytkownikowi o pochodzeniu usterki, jej przyczynie, miejscu wystąpienia i innych szczegółach.

Istnieją trzy różne typy powiadomień.

- Informacja nie jest uwzględniana podczas pracy napędu. Należy ją skasować.
- Alarm informujący o nietypowej pracy napędu. Napęd nie zostanie zatrzymany. Należy skasować alarm.
- Usterka zatrzymująca napęd. Należy ponownie uruchomić napęd i znaleźć rozwiązanie problemu.

W aplikacji można zaprogramować różne reakcje na niektóre usterki. Więcej informacji znajduje się w rozdziale *5.9 Grupa 3.9: Zabezpieczenia*.

Usterkę można skasować przyciskiem Reset na panelu sterującym, poprzez WE/WY sterujące lub przy użyciu magistrali albo narzędzia komputerowego. Informacje o usterkach pozostaną w historii usterek, skąd można będzie je pobrać i przeanalizować. Różne kody usterek znajdują się w rozdziale *11.3 Kody usterek*.

Przed kontaktem z dystrybutorem lub producentem z powodu nietypowego działania sprzętu należy przygotować odpowiednie informacje. Należy zawsze zapisać wszelkie informacje tekstowe pojawiające się na wyświetlaczu: kod oraz ID usterki, informacje o źródle, listę aktywnych usterek i historię usterek.

11.1 NA WYŚWIETLACZU POJAWIA SIĘ USTERKA

W przypadku wystąpienia usterki i zatrzymania napędu należy zbadać przyczynę usterki oraz skasować usterkę.

Istnieją dwie procedury kasowania usterki: za pomocą przycisku Reset lub za pomocą odpowiedniego parametru.

KASOWANIE ZA POMOCĄ PRZYCISKU RESET

1 Na panelu sterującym naciśnij przycisk Reset i przytrzymaj go 2 sekundy.

KASOWANIE ZA POMOCĄ PARAMETRU NA WYŚWIETLACZU GRAFICZNYM

1 Przejdź do menu Diagnostyka.

2 Przejdź do podmenu Kasowanie usterek.

STOP	C READY		I/O
C	D. ID:	iagnosti ^{M4.1}	CS
	Active	faults	
	Reset f	aults	
	Fault h (39)	istory	

3 Wybierz wartość parametru Kasuj usterki.

STOP	\mathbb{C}	REA	DY			I/O
8		ID:	Re	set M4.	fau 2	lts
*	R	eset	fa	ults		
i	н	elp				

STOP

ALARM

FAULT

READY

RUN

KASOWANIE ZA POMOCĄ PARAMETRU NA WYŚWIETLACZU TEKSTOWYM

1 Przejdź do menu Diagnostyka

- 2 Znajdź parametr Kasuj usterki za pomocą przycisków ze strzałkami w górę i w dół.
- 3 Wybierz wartość *Tak* i naciśnij przycisk OK.

11.2 HISTORIA USTEREK

W historii usterek znajduje się więcej informacji na temat usterek. Może ona zawierać informacje o maksymalnie 40 usterkach.

ANALIZOWANIE HISTORII USTEREK NA WYŚWIETLACZU GRAFICZNYM

1 Aby wyświetlić więcej informacji na temat usterki, przejdź do historii usterek.

2 Aby przeanalizować informacje na temat usterki, naciśnij przycisk ze strzałką w prawo.

STOP	\mathbb{C}	READ	(I/O
	Fa	ault h	istory ™4.3.3	
!⊘	Ext Fau	ernal lt old	Fault 8913	51 884s
!⊘	Ext Fau	ernal	Fault 8710	51)61s
!⊘	De [.] Inf	vice r to old	emoved 862	39 537s

3 Pojawi się lista informacji.

STOP 👅	READ	γ	I/O
F.	ault h	nistory	
	D:	М4.3.3	.2
Code			39
ID			380
State		In	fo old
Date		7.1	2.2009
Time		04	:46:33
Operating t	ime	8	62537s
Source 1			
Source 2			
Source 3			

ANALIZOWANIE HISTORII USTEREK NA WYŚWIETLACZU TEKSTOWYM

 Naciśnij przycisk OK, aby przejść do historii usterek.

2 Aby przeanalizować informacje na temat usterki, ponownie naciśnij przycisk OK.

READY RUN STOP ALARM FAULT FAULT HIST ▼ FWD REV 1/0 KEYPAD BUS FAULT READY RUN STOP ALARM EOMMUNIERT

1/0

KEYPAD

BUS

▼

FWD

REV

3 Aby przeanalizować wszystkie informacje, użyj przycisku ze strzałką w dół.

11.3 KODY USTEREK

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usunięcia usterki
1	1	Przekroczenie dopuszczalnej war- tości prądu (błąd sprzętowy)	Zbyt duży prąd (powyżej 4*IH) w kablach silnikowych. Możliwa jest jedna z nastę- pujących przyczyn:	Sprawdź obciążenie silnika. Sprawdź silnik. Sprawdź kable i podłączenia. Sprawdź czasy rampy.
	2	Przekroczenie dopuszczalnej war- tości prądu (błąd pro- gramowy)	 nagły, duży wzrost obciążenia; zwarcie w kablach sil- nikowych; nieprawidłowy typ sil- nika; 	
2	10	Przekroczenie dopuszczalnej war- tości napięcia (błąd sprzętowy)	Napięcie w obwodzie prądu stałego przekracza ustalony limit.	Ustaw dłuższy czas hamowania. Uaktywnij regulator nadnapię- ciowy. Sprawdź napięcie wejściowe.
	11	Przekroczenie dopuszczalnej war- tości napięcia (błąd programowy)	 zbyt krótki czas hamo- wania duże przepięcia w sieci energetycznej zbyt szybka sekwencja startu/stopu. 	
3	20	Usterka zwarcia do uziemienia (błąd sprzętowy)	Pomiar prądu wykazuje, że suma prądów fazowych sil- nika jest różna od zera.	Sprawdź silnik i jego kable.
	21	Usterka zwarcia do uziemienia (błąd pro- gramowy)	 nieprawidłowa izolacja kabli lub silnika 	
5	40	Przełącznik ładowa- nia	Przełącznik ładowania pozo- staje otwarty po sygnale START. • nieprawidłowa praca • wadliwy podzespół,	Skasuj usterkę i ponownie uru- chom napęd. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
7	60	Nasycenie	• Wadliwy podzespół	Tej usterki nie można skasować z panelu sterującego. Wyłącz zasilanie. NIE URUCHA- MIAJ PONOWNIE NAPĘDU ANI NIE PODŁĄCZAJ ZASILANIA! Poproś producenta o dalsze instrukcje. Jeśli usterka ta występuje równo- cześnie z usterką F1, sprawdź kable silnikowe i silnik.

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usuniẹcia usterki
8	600	Usterka systemowa	Brak komunikacji między kartą sterującą a modułem zasilania.	Skasuj usterkę i ponownie uru- chom napęd. Jeśli usterka pojawi się ponownie,
	602		Układ monitorujący dokonał resetu procesora.	butorem w celu uzyskania dalszych instrukcji.
	603 604	Zbyt niskie napięcie dodat- kowego źródła zasilania w module mocy.		
			Usterka fazy: Napięcie wyj- ściowe fazy jest niezgodne z wartością zadaną.	
605	605		Nastąpiła usterka układu CPLD, ale brak szczegóło- wych informacji o usterce.	
	606	Oprogramowanie modułu sterującego jest niezgodne z oprogramowaniem modułu mocy.	Pobierz najnowsze oprogramowa- nie z witryny Danfoss. Przy jego użyciu zaktualizuj napęd. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.	
607 608 609		Nie można odczytać wersji oprogramowania. Brak oprogramowania w module mocy.	Zaktualizuj oprogramowanie modułu mocy. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.	
	608		Przeciążenie procesora. Jeden z elementów opro- gramowania (na przykład aplikacja) spowodował prze- ciążenie.	Wyzeruj usterkę i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych
	609		Uzyskiwanie dostępu do pamięci nie powiodło się. Na przykład nie było możliwe przywrócenie zachowanych zmiennych.	instrukcji.
	610		Nie można odczytać nie- zbędnych właściwości urzą- dzenia.	

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usunięcia usterki
8	647	Usterka systemowa	Błąd oprogramowania.	Pobierz najnowsze oprogramowa-
	648		W aplikacji wykorzystano nieprawidłowy blok funkcji. Oprogramowanie syste- mowe jest niezgodne z apli- kacją.	użyciu zaktualizuj napęd. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
	649		Przeciążenie zasobów. Błąd podczas wczytywania para- metrów, ich przywracania lub zapisywania.	
9	80	Zbyt niskie napięcie (usterka)	Napięcie w obwodzie prądu stałego jest niższe niż usta-	W przypadku chwilowej awarii zasi- lania skasuj usterkę i ponownie
	81	Zbyt niskie napięcie (alarm)	 zbyt niskie napięcie zasilające usterka wewnętrzna napędu AC, wadliwy bezpiecznik wejściowy; zewnętrzny wyłącznik ładowania nie jest zamknięty. WSKAZÓWKA! Ta usterka aktywuje się tylko wtedy, gdy napęd jest 	Sprawdź napięcie zasilania. Jeśli napięcie zasilania jest wystarcza- jące, oznacza to usterkę wew- nętrzną. Skontaktuj się z najbliższym dystrybutorem w celu uzyskania dalszych instrukcji.
			w stanie pracy.	
10	91	Faza napięcia wejś- ciowego	Brak fazy linii wejściowej.	Sprawdź napięcie zasilania, bez- pieczniki i kabel zasilania.
11	100	Kontrola faz wyjścio- wych	Pomiar prądu wykazuje brak prądu w 1 fazie silnika.	Sprawdź silnik i jego kable.
13	120	Zbyt niska tempera- tura napędu prądu przemiennego (usterka)	Zbyt niska temperatura w radiatorze modułu mocy lub na karcie zasilania. Tempe- ratura radiatora jest niższa niż -10°C.	
	121	Zbyt niska tempera- tura napẹdu AC (alarm)		

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usunięcia usterki
14	130	Zbyt wysoka tempe- ratura napędu prądu przemiennego (usterka, radiator)	Zbyt wysoka temperatura w radiatorze modułu mocy lub na karcie zasilania. Tempe- ratura radiatora jest wyższa niż 100°C	Sprawdź rzeczywistą ilość i prze- pływ powietrza chłodzącego. Sprawdź, czy radiator nie jest zakurzony.
	131	Zbyt wysoka tempe- ratura napędu prądu przemiennego (alarm, radiator)		Sprawdź, czy częstotliwość kluczo- wania nie jest zbyt wysoka w sto- sunku do temperatury otoczenia oraz obciążenia silnika.
	132	Zbyt wysoka tempe- ratura napędu prądu przemiennego (usterka, karta)		
	133	Zbyt wysoka tempe- ratura napędu prądu przemiennego (alarm, karta)		
15	140	Utyk silnika	Utyk silnika.	Sprawdź silnik i jego obciążenie.
16	150	Przegrzanie silnika	Zbyt duże obciążenie silnika.	Zmniejsz obciążenie silnika. Jeśli silnik nie jest przeciążony, sprawdź parametry modelowania tempera- tury.
17	160	Silnik niedociążony	Silnik nie jest wystarczająco obciążony.	Sprawdź obciążenie.
19	180	Przeciążenie mocy (monitorowanie krót- kotrwałe)	Napęd obciążony zbyt dużą mocą.	Zmniejsz obciążenie.
	181	Przeciążenie mocy (monitorowanie dłu- gotrwałe)		
25		Usterka sterowania silnika	Nieprawidłowa identyfikacja kąta początkowego. Ogólna usterka sterowania silnika.	

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usuniẹcia usterki
30	290	Bezpieczne wyłącza- nie	Sygnał A bezpiecznego wyłączenia nie pozwala na przełączenie napędu w stan gotowości.	Skasuj usterkę i ponownie uru- chom napęd. Sprawdź sygnały wychodzące z karty sterowania do modułu mocy i złacza D
	291	Bezpieczne wyłącza- nie	Sygnał B bezpiecznego wyłączenia nie pozwala na przełączenie napędu w stan gotowości.	219020 D.
	500	Konfiguracja bezpie- czeństwa	Został zainstalowany prze- łącznik konfiguracji bezpie- czeństwa.	Wyjmij przełącznik konfiguracji bezpieczeństwa z karty sterowania.
	501	Konfiguracja bezpie- czeństwa	Za duża liczba kart opcjo- nalnych STO. Można zain- stalować tylko jedną.	Zostaw jedną z kart opcjonalnych STO. Inne usuń. Patrz Instrukcja bezpieczeństwa.
	502	Konfiguracja bezpie- czeństwa	Karta opcjonalna STO zos- tała zainstalowana w nie- właściwym gnieździe.	Umieść kartę opcjonalną STO we właściwym gnieździe. Patrz Instrukcja bezpieczeństwa.
	503	Konfiguracja bezpie- czeństwa	Brak przełącznika konfigu- racji bezpieczeństwa na kar- cie sterowania.	Zainstaluj przełącznik konfiguracji bezpieczeństwa na karcie sterowa- nia. Patrz Instrukcja bezpieczeń- stwa.
	504	Konfiguracja bezpie- czeństwa	Przełącznik konfiguracji bezpieczeństwa został nie- właściwie zainstalowany na karcie sterowania.	Zainstaluj przełącznik konfiguracji bezpieczeństwa we właściwym miejscu na karcie sterowania. Patrz Instrukcja bezpieczeństwa.
	505	Konfiguracja bezpie- czeństwa	Przełącznik konfiguracji bezpieczeństwa został nie- właściwie zainstalowany na karcie opcjonalnej STO.	Sprawdź instalację przełącznika konfiguracji bezpieczeństwa na karcie opcjonalnej STO. Patrz Instrukcja bezpieczeństwa.
	506	Konfiguracja bezpie- czeństwa	Brak komunikacji z opcjo- nalną kartą STO.	Sprawdź instalację karty opcjonal- nej STO. Patrz Instrukcja bezpie- czeństwa.
	507	Konfiguracja bezpie- czeństwa	Karta opcjonalna STO jest niezgodna ze sprzętem.	Wyzeruj napęd i uruchom go ponownie. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliż- szym dystrybutorem w celu uzys- kania dalszych instrukcji.

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usuniẹcia usterki
30	520	Diagnostyka bezpie- czeństwa	Wejścia karty STO mają różny stan.	Sprawdź zewnętrzny przełącznik bezpieczeństwa. Sprawdź połącze- nie wejściowe i kabel przełącznika bezpieczeństwa. Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
	521	Diagnostyka bezpie- czeństwa	Nieprawidłowe działanie diagnostyki termistora ATEX. Brak połączenia na wejściu termistora ATEX.	Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, wymień kartę opcjonalną.
	522	Diagnostyka bezpie- czeństwa	Zwarcie w obwodzie podłą- czenia wejściowego termis- tora ATEX.	Sprawdź termistor ATEX i jego podłączenie wejściowe. Sprawdź podłączenie zewnętrz- nego termistora ATEX. Sprawdź zewnętrzny termistor ATEX.
	523	Diagnostyka bezpie- czeństwa	Wystąpił problem w wew- nętrznym obwodzie bezpie- czeństwa.	Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
	524	Diagnostyka bezpie- czeństwa	Przepięcie na karcie opcjo- nalnej bezpieczeństwa	Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
	525	Diagnostyka bezpie- czeństwa	Za niskie napięcie na karcie opcjonalnej bezpieczeństwa	Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usuniẹcia usterki
30	526	Diagnostyka bezpie- czeństwa	Wewnętrzna usterka w pro- cesorze lub obsłudze pamięci karty opcjonalnej bezpieczeństwa	Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
	527	Diagnostyka bezpie- czeństwa	Wewnętrzna usterka funkcji bezpieczeństwa	Wyzeruj napęd i dokonaj ponow- nego rozruchu. Jeśli usterka pojawi się ponownie, skontaktuj się z najbliższym dystry- butorem w celu uzyskania dalszych instrukcji.
	530	Bezp. wył. momentu	Podłączono funkcję zatrzy- mania awaryjnego lub uak- tywniono inną operację STO.	Gdy funkcja STO jest aktywna, napęd jest w stanie bezpiecznym.
32	312	Chłodzenie wentyla- tora	Żywotność wentylatora dobiegła końca.	Wymień wentylator i wyzeruj licz- nik czasu eksploatacji wentylatora.
33		Tryb pożarowy włą- czony	Tryb pożarowy napędu jest włączony. Zabezpieczenia napędu nie są używane.	
37	360	Zmieniono urządzenie (ten sam typ)	Karta opcjonalna została wymieniona na nową, która była już wcześniej używana w tym gnieździe. Parametry są dostępne w napędzie.	Napęd jest gotowy do użycia. Napęd rozpocznie korzystanie ze starych ustawień parametrów.
38	370	Dodano urządzenie (ten sam typ)	Dodano opcjonalną kartę. Wcześniej używano tej samej opcjonalnej karty w tym samym gnieździe. Para- metry są dostępne w napę- dzie.	Napęd jest gotowy do użycia. Napęd rozpocznie korzystanie ze starych ustawień parametrów.
39	380	Urządzenie usunięte	Karta opcjonalna została wyjęta z gniazda.	Urządzenie jest niedostępne. Ska- suj usterkę.
40	390	Nieznane urządzenie	Podłączono nieznane urzą- dzenie (moduł mocy/kartę opcjonalną)	Urządzenie jest niedostępne.
41	400	Temperatura modułu IGBT	Obliczona temperatura modułu IGBT (temperatura przemiennika + I2T) jest zbyt wysoka.	Sprawdź obciążenie silnika. Sprawdź parametry silnika.

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usuniẹcia usterki
43	420	Usterka kodera	Brak kanału A kodera 1	Sprawdź połączenia kodera. Sprawdź koder i jego kable. Sprawdź kartę kodera. Sprawdź częstotliwość kodera w otwartej pętli.
	421		Brak kanału B kodera 1	
	422		Brak obu kanałów kodera 1.	
	423		Koder odwrócony.	
	424		Brak karty kodera.	
44	430	Zmieniono urządzenie (inny typ)	Karta opcjonalna została wymieniona na nową, która nie była wcześniej używana w tym gnieździe. Ustawienia parametrów nie zostały zapisane.	Ustaw ponownie parametry modułu mocy.
45	440	Dodano urządzenie (inny typ)	Jest dostępna nowa opcjo- nalna karta innego typu. Parametry nie są dostępne w ustawieniach.	Ustaw ponownie parametry modułu mocy.
50	1050	Usterka niskiej war- tości sygnału Al	Co najmniej jeden z dostęp- nych sygnałów na wejściach analogowych spadł poniżej 50% minimalnego zakresu sygnału. Kabel sterujący jest uszkodzony lub poluzowany. Nieprawidłowe źródło syg- nału.	Wymień uszkodzone części. Sprawdź obwód wejścia analogo- wego. Sprawdź, czy parametr Zakres syg- nału Al1 jest ustawiony poprawnie.
51	1051	Usterka zewnętrzna	Został uaktywniony sygnał wejścia cyfrowego, który ustawiono za pomocą para- metru P3.5.1.7 lub P3.5.1.8.	
52	1052	Błąd w komunikacji z panelem sterowania	Połączenie między panelem sterującym a napędem jest uszkodzone.	Sprawdź podłączenie panelu steru- jącego i jego kabel.
	1352			
53	1053	Usterka komunikacji magistrali	Połączenie między kartą magistrali a zewnętrznym sterownikiem zostało usz- kodzone.	Sprawdź instalację oraz sterownik magistrali.
54	1354	Usterka gniazda A	Uszkodzone gniazdo lub karta opcjonalna.	Sprawdź kartę i gniazdo.
	1454	Usterka gniazda B		
	1654	Usterka gniazda D		
	1754	Usterka gniazda E		

Kod usterki	ID usterki	Nazwa usterki	Możliwa przyczyna	Sposób usunięcia usterki
65	1065	Błąd komunikacji z komputerem	Połączenie transmisji danych między komputerem a napędem jest uszkodzone	
66	1066	Usterka termistora	Wzrosła temperatura sil- nika.	Sprawdź chłodzenie i obciążenie silnika. Sprawdź podłączenie termistora. Jeśli wejście termistora nie jest używane, musiało nastąpić zwar- cie.
69	1310	Błąd mapowania magistrali	Do mapowania wartości wyj- ścia danych procesowych magistrali użyto nieprawid- łowego numeru ID.	Sprawdź parametry w menu mapo- wania danych magistrali.
	1311		Nie jest możliwa konwersja jednej lub większej liczby wartości dla wyjścia danych procesowych magistrali.	Niezdefiniowany typ wartości. Sprawdź parametry w menu mapo- wania danych magistrali.
	1312		Wystąpiło przepełnienie podczas mapowania i kon- wersji (16-bitowych) war- tości dla wyjścia danych procesowych magistrali.	
101	1101	Usterka monitorowa- nia procesu (PID1)	Regulator PID: wartość sprzężenia zwrotnego nie mieści się w limitach moni- torowania i opóźnienia, o ile ustawiono opóźnienie.	
105	1105	Usterka monitorowa- nia procesu (PID2)	Regulator PID: wartość sprzężenia zwrotnego nie mieści się w limitach moni- torowania i opóźnienia, o ile ustawiono opóźnienie.	
VACON®

www.danfoss.com

Vacon Ltd Member of the Danfoss Group Runsorintie 7 65380 Vaasa Finland

Rev. K

Sales code: DOC-APP100HVAC+DLPL