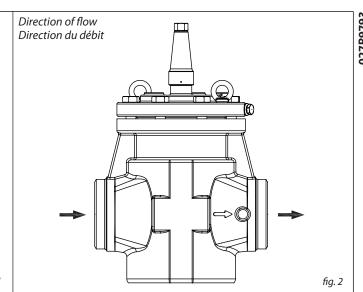
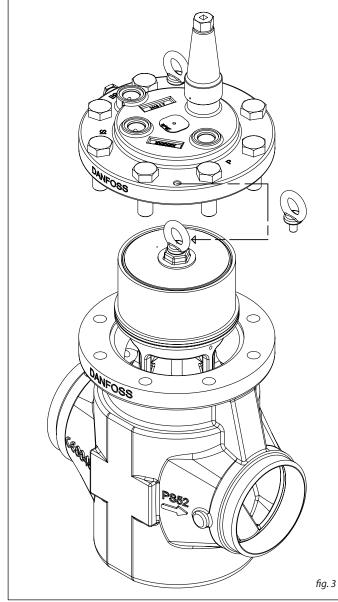
Instruction

Servo Operated Valve ICS 100 - 150 Vanne à servocommande ICS 100 - 150



Installation


027R9793

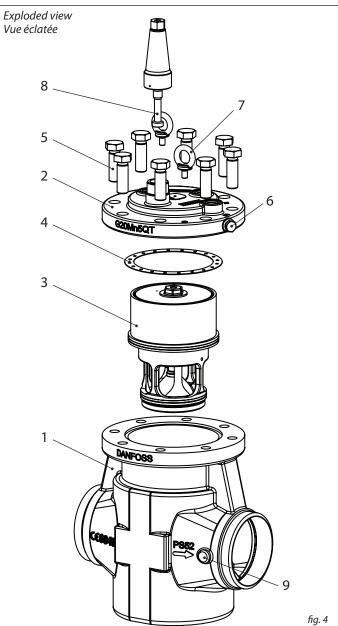
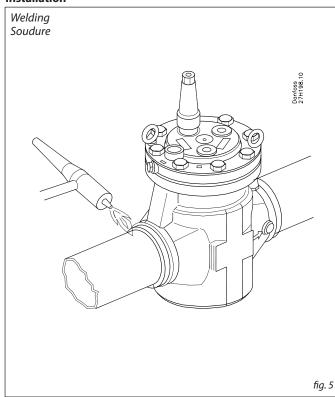
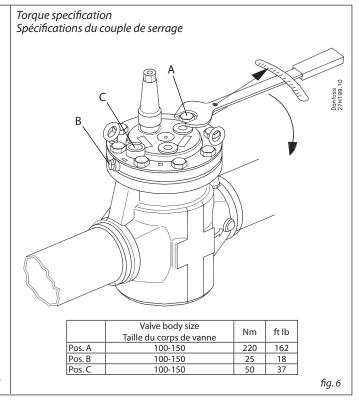
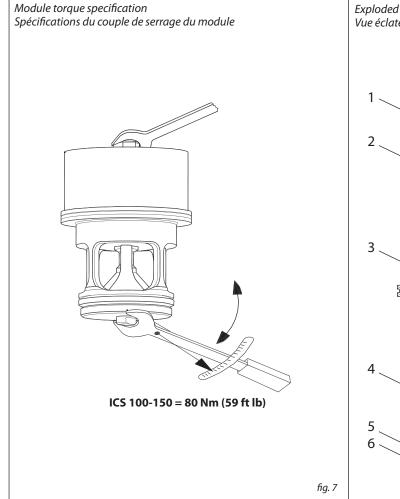
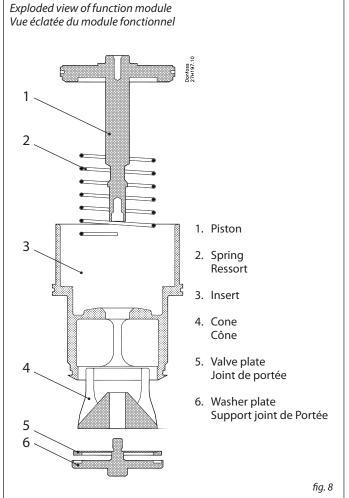

Mounting orientation Sens du montage

fig. 1


Removing function module with eyebolt Retrait du module fonctionnel avec l'anneau de levage






Installation

Maintenance

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

ENGLISH

Installation

Refrigerants

Applicable to R717. For other refrigerants please contact Danfoss Flammable hydrocarbons are not

recommended.

The valve is only recommended for use in closed circuits. For further information please contact Danfoss.

Temperature range

-60/+120°C (-76/+248°F)

Pressure range

The valves are designed for a max. working pressure of 52 bar g (754 psi g).

Technical data

The ICS can be used in suction, liquid, hotgas and liquid/vapor lines. The ICS regulates the flow of the media by modulation or on/off function, depending on the control impulse from the screwed on pilot valve or valves.

Regulating range

Dependent on the chosen type and combination of pilot valves.

Opening differential pressure (p) The ICS main valve requires a minimum opening differential pressure of 0.07 bar (1 psi) to begin to open and 0.2 bar (2.9 psi) to be completely open.

The valve must be protected against back pressure. A check valve should be installed upstream of the ICS in installations where

there is a risk of back pressure. Back pressure can affect the correct position of the piston ring.

Design (fig. 4)

- Body 1.
- 2. Top cover
- 3. Function module
- 4. Gasket
- 5. Bolts
- 6. 7. Plug
- Eye bolt
- 8. Manual operating spindle
- 9. 3/8 NPT plug

(available on certain valve bodies)

Installation

The valve must be installed with the manual opening in vertically upwards position (fig. 1).

The valve must be installed with the arrow in the direction of the flow and the top cover upwards (fig. 2). The top cover can be rotated in any direction.

The valve is fitted with a spindle for manual opening. The spindle can open the ICS 100-150 valves against a differential pressure of 10 bar (154 psi). If an external pilot valve is used, the pilot line must be connected to the upper side of the main line so that any dirt and oil from the plant will not find its way into the pilot line.

If the ICS is to be used as a solenoid valve in a liquid line, external control pressure cannot be recommended because it can cause liquid hammer.

The valve is designed to withstand a high internal pressure. However, the piping system should be designed to avoid liquid traps and reduce the risk of hydraulic pressure caused by thermal expansion.

It must be ensured that the valve is protected from pressure transients like "liquid hammer" in the system.

Welding (fig. 3, 4 and 5)

The valve can stay assembled during the welding process provided that the welding method is controlled and ensuring no welding debris.

The function module can be lifted out using a bolt size M10 or by using one of the eyebolts placed in the topcover (fig 4, pos. 7). Debris blocking the bolt hole will need to be removed.

The internal surfaces and weld connections of the enclosed ICS/ ICM valve have been applied with an anti-corrosion treatment.

In the event that the function modules are to be left disassembled for any length of time, please ensure that the function modules are further protected by placing in a polyethylene bag or by applying a rust protection agent (e.g. refrigeration oil or BRANOROL) on the surfaces.

Only materials and welding methods, compatible with the valve body material, must be welded to the valve body. The valve should be cleaned internally to remove welding debris on completion of welding.

Avoid welding debris and dirt in the valve body and the function module. The valve body must be free from stresses (external loads) after installation.

The valves must not be mounted in systems where the outlet side of the valve is open to atmosphere. The outlet side of the valve must always be connected to the system or properly capped off, for example with a welded-on end plate.

Assembly

Remove welding debris and any dirt from pipes and valve body before assembly. Check that the o-rings are intact before installing the function module. If possible, apply some refrigeration oil to ease the insertion and to protect the o-rings. Check that the top gasket has not been damaged. If the surface has been damaged or the gasket has been bent, it must be replaced.

Tightening (fig. 6)

Tighten the top cover with a torque wrench, to the values indicated in the table.

Colours and identification

The ICS valves are Zinc-Chromated from factory. The Zinc-Chromatization does not cover the welding connections. If further corrosion protection is required, the valves can be painted.

Precise identification of the valve is made via the ID plate on the top cover. The external surface of the valve housing must be protected against corrosion with a suitable top coating after installation involving welding and consequent assembly.

Protection of the ID plate when painting the valve is recommended.

Maintenance

Service

The ICS 100-150 valves are easy to dismantle and can be serviced by using spare parts available from Danfoss. Do not open the valve while the valve is still under pressure.

Pressure relief can be done by carefully opening the manual operating spindle. Because of small grooves along the thread on the spindle, refrigerant can be released into open air when operating the manual opener. This operation must only be done after providing the correct countermeasures under local legislation.

The function module can be lifted out using a bolt size M10 screwed into the threaded hole of the piston on the function module (fig. 3). Debris blocking the bolt hole will need to be removed.

The ICS 100-150 insert can be serviced by dismantling the insert. This is done by screwing off the washer plate fig 7 and removing the parts (fig 8). When reassembling the valve, Danfoss recommends to use Loctite 586 or similar on the thread of the washer plate.

Upon opening and removal of the function module:

- Check that the o-rings on the function module has not been damaged. A valve with a damaged o-ring might not modulate according to the specification.
- Check that the piston and cylinder is free of scratches and look for wear marks. If the wear is excessive the function module should be serviced or replaced to prevent false pilot signal.
- Check that the movement of the cylinder and valve seat is free and with low friction.
- If the teflon valve plate has been damaged the teflon valve plate should be replaced by using a Danfoss sparepart kit.

Assembly

Remove any dirt from the body before the valve is assembled. Check that all channels in the valve are not blocked by particles or similar.

If possible, apply some refrigeration oil to ease the insertion and to protect the o-rings.

Tightening (fig. 6)

Tighten the top cover with a torque wrench, to the values indicated in the

Use only original Danfoss parts, including O-rings and gaskets for replacement. Materials of new parts are certified for the relevant refrigerant.

In cases of doubt, please contact Danfoss.

Drawings are only for illustration, not for dimensioning or construction.

Danfoss accepts no responsibility for errors and omissions. Danfoss Industrial Refrigeration reserves the right to make changes to products and specifications without prior notice.

The following text is applicable to the **UL listed products ICS 100-150**

Applicable to all common non-flammable refrigerants, including/excluding (+) R717 and to non-corrosive gases/ liquids dependent on sealing material compatibility (++). The design pressure shall not be less than the value outlined in Sec. 9.2 of ANSI/ASHRAE 15 for the refrigerant used in the system. (+++).

Installation

Fluides frigorigènes

Utilisable avec le R717. Contacter Danfoss pour les autres fluides frigorigènes. Les hydrocarbures inflammables sont déconseillés.

Cette vanne est préconisée uniquement pour les circuits fermés. Contacter Danfoss pour de plus amples informations.

Plage de température -60/+120 °C (-76/+248 °F)

Plage de pression

Ces vannes ont été conçues pour une pression de service maximale de 52 bar g (754 psi g).

Caractéristiques techniques

Les ICS sont utilisables sur les conduites d'aspiration, de liquide, de refoulement et de liquide/vapeur. L'ICS régule le débit du fluide soit par le biais d'une fonction de modulation, soit par le biais d'une fonction marche/arrêt, en fonction des impulsions de commande de la ou des vannes pilotes raccordées.

Plage de régulation

En fonction du modèle choisi et de la combinaison des vannes pilotes.

Pression différentielle d'ouverture (p) La vanne principale ICS nécessite une pression différentielle d'ouverture minimale de 0,07 bar (1 psi) pour commencer à s'ouvrir et de 0,2 bar (2,9 psi) pour s'ouvrir totalement.

La vanne doit être protégée des contre-pressions. Il convient de prévoir un clapet anti-retour en amont de l'ICS si l'installation

comporte un risque de contre-pression. La contre-pression risque de fausser la position du segment du piston.

Structure (fig. 4)

- 1. Corps
- Couvercle supérieur 3. Module fonctionnel
- 4. Joint
- Boulons
- 5. 6. 7. 8. Bouchon
- Anneau de levage
- Tige de manœuvre manuelle
- Bouchon 3/2 NPT (disponible sur certains corps de vanne)

Installation

Installer la vanne de sorte que la tige de manœuvre manuelle soit orientée à la verticale, vers le haut (fig. 1).

Installer la vanne de sorte que la flèche soit orientée dans le sens de circulation du fluide, le couvercle supérieur vers le haut (fig. 2). Le couvercle supérieur peut être monté dans n'importe quelle direction.

La vanne est équipée d'une tige de manœuvre manuelle. La tige de manœuvre permet d'ouvrir les vannes ICS 100-150 avec une pression différentielle de 10 bar (154 psi). S'il est fait appel à une vanne pilote externe, la conduite pilote doit être raccordée en partie supérieure de la conduite principale, de sorte que les salissures et l'huile ne puissent

y pénétrer. Si l'ICS est utilisée comme électrovanne sur une conduite de liquide, il est déconseillé d'utiliser une pression de commande externe, sous peine de provoquer des coups de bélier. Cette vanne est conçue pour supporter une pression interne élevée. Toutefois, il convient de concevoir le circuit de façon à éviter les pièges liquides et réduire les risques de formation d'une pression hydraulique sous l'effet de la dilatation thermique. Veiller à ce que la vanne soit protégée des variations de pression au sein du circuit comme les « coups de bélier ».

Soudure (fig. 3, 4 et 5)

La vanne peut rester montée pendant la soudure du moment que la méthode de soudure est contrôlée et qu'aucun résidu de soudure n'y pénètre.

Pour dégager le module fonctionnel, utiliser un boulon M10 ou l'anneau de levage placé sur le couvercle supérieur (fig. 4, pos. 7). Retirer toute salissure qui obstrue l'alésage.

Les surfaces internes et les raccords soudés des vannes ICS/ICM sont protégés par un traitement anti-corrosion.

Si les modules fonctionnels restent démontés de manière prolongée, veiller à les protéger en les mettant dans un sac en plastique ou en appliquant une protection antirouille (huile réfrigérante ou BRANOROL, par exemple) sur toutes les surfaces.

Veiller à faire usage de matériaux et de procédures compatibles avec le matériau du corps de vanne pour effectuer des soudures sur ce dernier. Nettoyer l'intérieur de la vanne pour évacuer les résidus de soudure une fois le soudage terminé.

Éviter que des résidus de soudure et des salissures ne pénètrent dans le corps de la vanne et dans le module fonctionnel. Préserver le corps de vanne des contraintes (charges externes) après l'installation.

Ces vannes ne doivent en aucun cas être montées dans des circuits où la sortie de la vanne serait mise à l'atmosphère. La sortie de la vanne doit systématiquement être raccordée au circuit ou obturée comme il se doit, par exemple à l'aide d'un embout soudé.

Montage

Retirer les résidus de soudure et les salissures des conduites et du corps de la vanne avant de procéder au montage. Vérifier que les joints toriques sont intacts avant d'installer le module fonctionnel. Dans la mesure du possible, appliquer de l'huile réfrigérante sur les joints toriques pour les protéger et faciliter leur insertion. Vérifier que le joint supérieur n'est pas endommagé. Si le joint est déformé ou que la surface est détériorée, le remplacer.

Serrage (fig. 6)

Serrer le couvercle supérieur avec une clé dynamométrique en respectant les valeurs prescrites dans le tableau.

Couleurs et identification

Les vannes ICS subissent en usine une phosphatation au zinc. La phosphatation au zinc ne protège pas les raccords soudés. Il est possible d'appliquer de la peinture sur les vannes afin de mieux les protéger de la corrosion.

La référence précise de la vanne figure sur la plaque d'identification apposée sur le couvercle supérieur.

La surface extérieure du boîtier de vanne doit être protégée de la corrosion à l'aide d'un revêtement adéquat, à l'issue de l'installation, c'est-à-dire après que le montage et les soudures ont été effectués.

Il est préconisé de protéger la plaque d'identification lors de l'application de la peinture sur la vanne.

Maintenance

Entretien

Les vannes ICS 100-150 sont facilement démontables et peuvent être entretenues en utilisant des pièces détachées disponibles chez Danfoss.

Ne jamais ouvrir une vanne sous pression.

Pour évacuer la pression, ouvrir délicatement la tige de manœuvre manuelle. Le fluide frigorigène s'écoule alors par le biais des fines rainures situées le long du filetage de la tige.

Il convient donc de prévoir les mesures qui s'imposent au regard de la réglementation locale avant d'effectuer cette opération.

Pour dégager le module fonctionnel. introduire un boulon M10 dans l'alésage du piston de ce même module (fig. 3). Retirer toute salissure qui obstrue l'alésage.

Pour entretenir l'insert ICS 100-150, il faut le démonter. Pour cela, dévisser la plaque porte-rondelle (fig. 7) et retirer les pièces (fig. 8). Au moment du remontage de la vanne, Danfoss recommande d'appliquer du Loctite 586 ou un produit similaire sur le filetage de la plaque porte-rondelle.

Lors de l'ouverture et du retrait du module fonctionnel:

- Vérifier que les joints toriques du module fonctionnel ne sont pas endommagés. Une vanne dont le joint torique est endommagé est susceptible de ne pas offrir une régulation conforme aux spécifications.
- Vérifier que le piston et le cylindre sont exempts de rayures et qu'ils ne comportent pas de traces d'usure. En cas d'usure excessive, entretenir ou remplacer le module fonctionnel pour éviter des signaux pilotes erronés.
- Vérifier que le cylindre et le siège sont bien mobiles et qu'ils ne sont pas entravés par un frottement excessif.
- Remplacer le clapet de la vanne si la portée téflon est abimée à l'aide d'un kit de pièces détachées Danfoss

Montage

Retirer toute salissure du corps de vanne avant de procéder au montage. Vérifier que les canaux internes de la vanne ne sont pas obstrués par des particules ou des salissures.

Dans la mesure du possible, appliquer de l'huile réfrigérante sur les joints toriques pour les protéger et faciliter leur insertion.

Serrage (fig. 6)

Serrer le couvercle supérieur avec une clé dynamométrique en respectant les valeurs prescrites dans le tableau.

Utiliser exclusivement des pièces de rechange Danfoss d'origine, y compris pour ce qui est des joints et joints toriques. Les pièces de rechange homologuées garantissent que le matériau est bien compatible avec le fluide frigorigène concerné.

Contacter Danfoss en cas de doute.

Les plans figurant dans le présent document ont uniquement valeur d'illustration et ne peuvent pas être utilisés aux fins de dimensionnement ou de conception.

Danfoss décline toute responsabilité quant aux éventuelles erreurs et omissions. La société Danfoss Industrial Refrigeration se réserve le droit de modifier les produits et spécifications sans préavis.

Le le re suivant est applicable aux produits ICS 100-150 homologués UL.

S'applique à tous les fluides frigorigènes ininflammables courants, R717 inclus/exclus (+), et aux gaz et liquides non corrosifs, à condition qu'ils soient compatibles avec les joints (++). La pression nominale ne doit pas être inférieure à la valeur indiquée dans la section 9.2 de la norme ANSI/ASHRAE 15 pour les fluides frigorigènes utilisés dans le système (+++).