

# Guía de diseño

# **VLT® HVAC Drive FC 102**

355-1400 kW











### Índice

| 1   | Introducción                                              | 5  |
|-----|-----------------------------------------------------------|----|
|     | 1.1 Propósito de la Guía de diseño                        | 5  |
|     | 1.2 Recursos adicionales                                  | 5  |
|     | 1.3 Versión del documento y del software                  | 5  |
|     | 1.4 Convenciones                                          | 5  |
| 2 : | Seguridad                                                 | 6  |
|     | 2.1 Símbolos de seguridad                                 | 6  |
|     | 2.2 Personal cualificado                                  | 6  |
|     | 2.3 Medidas de seguridad                                  | 6  |
| 3   | Homologaciones y certificados                             | 8  |
|     | 3.1 Homologaciones normativas / de cumplimiento           | 8  |
|     | 3.2 Clasificaciones de protección de las envolventes      | 10 |
| 4 ' | Vista general de producto                                 | 12 |
|     | 4.1 Convertidores VLT® de alta potencia                   | 12 |
|     | 4.2 Dimensión de las envolventes por potencia de salida   | 12 |
|     | 4.3 Vista general de las envolventes, 380-480 V           | 13 |
|     | 4.4 Vista general de las envolventes, 525-690 V           | 16 |
|     | 4.5 Disponibilidad de los kits                            | 19 |
| 5   | Funciones del producto                                    | 20 |
|     | 5.1 Funciones de funcionamiento automatizadas             | 20 |
|     | 5.2 Funciones de aplicación personalizadas                | 23 |
|     | 5.3 Funciones específicas del convertidor VLT® HVAC Drive | 28 |
|     | 5.4 Controlador de cascada básico                         | 42 |
|     | 5.5 Vista general del freno dinámico                      | 44 |
|     | 5.6 Vista general de la función de carga compartida       | 44 |
|     | 5.7 Vista general de la regeneración                      | 46 |
| 6 ' | Vista general de opciones y accesorios                    | 47 |
|     | 6.1 Dispositivos de fieldbus                              | 47 |
|     | 6.2 Extensiones funcionales                               | 48 |
|     | 6.3 Control de movimientos y tarjetas de relé             | 49 |
|     | 6.4 Resistencias de frenado                               | 49 |
|     | 6.5 Filtros senoidales                                    | 50 |
|     | 6.6 Filtros dU/dt                                         | 50 |
|     | 6.7 Filtros de modo común                                 | 50 |
|     | 6.8 Filtros armónicos                                     | 50 |
|     | 6.9 Opciones integradas del alojamiento                   | 50 |
|     |                                                           |    |







|    | 6.10 Kits de alta potencia                                          | 53  |
|----|---------------------------------------------------------------------|-----|
| 7  | Especificaciones                                                    | 54  |
|    | 7.1 Datos eléctricos, 380-480 V                                     | 54  |
|    | 7.2 Datos eléctricos, 525-690 V                                     | 60  |
|    | 7.3 Fuente de alimentación de red                                   | 66  |
|    | 7.4 Salida del motor y datos del motor                              | 66  |
|    | 7.5 Condiciones ambientales                                         | 66  |
|    | 7.6 Especificaciones del cable                                      | 67  |
|    | 7.7 Entrada/salida de control y datos de control                    | 67  |
|    | 7.8 Pesos de los alojamientos                                       | 70  |
|    | 7.9 Caudal de aire para los alojamientos E1-E2 y F1-F13             | 71  |
| 8  | Dimensiones exteriores y de los terminales                          | 73  |
|    | 8.1 Dimensiones exteriores y de los terminales del alojamiento E1   | 73  |
|    | 8.2 Dimensiones exteriores y de los terminales del alojamiento E2   | 81  |
|    | 8.3 Dimensiones exteriores y de los terminales del alojamiento F1   | 89  |
|    | 8.4 Dimensiones exteriores y de los terminales del alojamiento F2   | 96  |
|    | 8.5 Dimensiones exteriores y de los terminales del alojamiento F3   | 103 |
|    | 8.6 Dimensiones exteriores y de los terminales del alojamiento F4   | 115 |
|    | 8.7 Dimensiones exteriores y de los terminales del alojamiento F8   | 126 |
|    | 8.8 Dimensiones exteriores y de los terminales del alojamiento F9   | 130 |
|    | 8.9 Dimensiones exteriores y de los terminales del alojamiento F10  | 136 |
|    | 8.10 Dimensiones exteriores y de los terminales del alojamiento F11 | 142 |
|    | 8.11 Dimensiones exteriores y de los terminales del alojamiento F12 | 150 |
|    | 8.12 Dimensiones exteriores y de los terminales del alojamiento F13 | 156 |
| 9  | Consideraciones de instalación mecánica                             | 164 |
|    | 9.1 Almacenamiento                                                  | 164 |
|    | 9.2 Elevación de la unidad                                          | 164 |
|    | 9.3 Entorno de funcionamiento                                       | 165 |
|    | 9.4 Configuraciones de montaje                                      | 166 |
|    | 9.5 Refrigeración                                                   | 167 |
|    | 9.6 Reducción de potencia                                           | 168 |
| 1( | 0 Consideraciones de instalación eléctrica                          | 171 |
|    | 10.1 Instrucciones de seguridad                                     | 171 |
|    | 10.2 Esquema de cableado                                            | 172 |
|    | 10.3 Conexiones                                                     | 173 |
|    | 10.4 Terminales y cableado de control                               | 177 |
|    | 10.5 Fusibles y magnetotérmicos                                     | 184 |
|    | 10.6 Sistemas de desconexión y contactores                          | 189 |
|    |                                                                     |     |



Índice Guía de diseño

| 10      | 0.7 Motor                                                                                      | 190 |
|---------|------------------------------------------------------------------------------------------------|-----|
| 10      | ).8 Frenado                                                                                    | 193 |
|         | 0.9 Dispositivos de corriente diferencial (RCD) y monitor de resistencia de aislamiento<br>RM) | 195 |
| 10      | ).10 Corriente de fuga                                                                         | 195 |
| 10      | 0.11 Red IT                                                                                    | 197 |
| 10      | ).12 Rendimiento                                                                               | 197 |
| 10      | 0.13 Ruido acústico                                                                            | 198 |
| 10      | ).14 Condiciones dU/dt                                                                         | 198 |
| 10      | ).15 Vista general de compatibilidad electromagnética (CEM)                                    | 199 |
| 10      | ).16 Instalación conforme a CEM                                                                | 203 |
| 10      | ).17 Resumen de armónicos                                                                      | 206 |
| 11 Prin | ncipios básicos de funcionamiento de un convertidor                                            | 210 |
| 11      | I.1 Descripción del funcionamiento                                                             | 210 |
| 11      | .2 Controles de la unidad                                                                      | 210 |
| 12 Ejer | mplos de aplicaciones                                                                          | 218 |
| 12      | 2.1 Configuraciones de cableado para adaptación automática del motor (AMA)                     | 218 |
| 12      | 2.2 Configuraciones de cableado para referencia analógica de velocidad                         | 218 |
| 12      | 2.3 Configuraciones de cableado de arranque/parada                                             | 219 |
| 12      | 2.4 Configuración de cableado para el reinicio de alarma externa                               | 220 |
|         | 2.5 Configuración de cableado para velocidad de referencia mediante un potencióme-<br>o manual | 221 |
| 12      | 2.6 Configuración de cableado para aceleración/desaceleración                                  | 221 |
| 12      | 2.7 Configuración de cableado para la conexión de red RS485                                    | 222 |
| 12      | 2.8 Configuración de cableado de un termistor del motor                                        | 222 |
| 12      | 2.9 Configuración de cableado para controlador de cascada                                      | 223 |
| 12      | 2.10 Configuración de cableado para un ajuste de relé con Smart Logic Control                  | 224 |
| 12      | 2.11 Configuración de cableado para una bomba de velocidad fija variable                       | 224 |
| 12      | 2.12 Configuración de cableado para alternancia de bomba principal                             | 225 |
| 13 Cón  | no encargar un convertidor de frecuencia                                                       | 226 |
| 13      | 3.1 Configurador de convertidores de frecuencia                                                | 226 |
| 13      | 3.2 Números de pedido de los kits de opción                                                    | 230 |
| 13      | 3.3 Números de pedido para filtros y resistencias de frenado                                   | 233 |
| 13      | 3.4 Repuestos                                                                                  | 233 |
| 14 Ane  | exo                                                                                            | 234 |
| 14      | 1.1 Abreviaturas y símbolos                                                                    | 234 |
| 14      | 1.2 Definiciones                                                                               | 235 |
| 14      | 1.3 Instalación y ajuste de RS485                                                              | 236 |



### Índice VLT® HVAC Drive FC 102

| 14.4 RS485: Aspectos generales del protocolo FC              | 237 |
|--------------------------------------------------------------|-----|
| 14.5 RS485: estructura de telegrama del protocolo FC         | 238 |
| 14.6 RS485: ejemplos de parámetros del protocolo FC          | 242 |
| 14.7 RS485: Visión general de Modbus RTU                     | 242 |
| 14.8 RS485: Estructura de telegrama Modbus RTU               | 244 |
| 14.9 RS485: códigos de función de los mensajes de Modbus RTU | 246 |
| 14.10 RS485: Parámetros de Modbus RTU                        | 247 |
| 14.11 RS485: Perfil de control FC de                         | 248 |



#### 1 Introducción

#### 1.1 Propósito de la Guía de diseño

Esta guía de diseño está dirigida a:

- Ingenieros de proyectos y sistemas.
- Asesores de diseño.
- Especialistas de productos y aplicaciones.

La guía de diseño proporciona información técnica para entender la capacidad de integración del convertidor en los sistemas de control y seguimiento del motor.

VLT® es una marca registrada.

#### 1.2 Recursos adicionales

Tiene a su disposición otros recursos para comprender el funcionamiento avanzado del convertidor, su programación y su conformidad con las directivas.

- Este manual de funcionamiento ofrece información detallada acerca de la instalación y el arranque del convertidor.
- La guía de programación proporciona información detallada sobre cómo trabajar con parámetros e incluye muchos ejemplos de aplicación.
- El Manual de funcionamiento de Safe Torque Off para convertidores VLT® de la serie FC describe cómo utilizar los convertidores de frecuencia de Danfoss en aplicaciones de seguridad funcional. Este manual se suministra junto al convertidor de frecuencia cuando se incluye la opción de Safe Torque Off.
- La Guía de diseño de la resistencia de frenado VLT<sup>®</sup>
   Brake Resistor MCE 101 describe cómo seleccionar
  la resistencia de frenado óptima.
- La Guía de diseño de los filtros armónicos avanzados VLT® Advanced Harmonic Filters AHF 005/AHF 010 describe los armónicos, varios métodos de mitigación y el principio de funcionamiento del filtro armónico avanzado. Asimismo, esta guía describe cómo seleccionar el filtro armónico avanzado correcto para una aplicación concreta.
- La Guía de diseño de filtros de salida explica por qué es necesario usar filtros de salida en determinadas aplicaciones, y cómo seleccionar el filtro senoidal o dU/dt óptimo.
- Hay equipos opcionales disponibles cuyos datos pueden variar respecto a lo descrito en estas publicaciones. Para los requisitos específicos, lea las instrucciones suministradas con las opciones.

Danfoss proporciona publicaciones y manuales complementarios. Consulte *drives.danfoss.com/downloads/portal/#/* para ver un listado.

#### 1.3 Versión del documento y del software

Este manual se revisa y se actualiza de forma periódica. Le agradecemos cualquier sugerencia de mejoras. La *Tabla 1.1* muestra las versiones de documento y software.

| Edición  | Comentarios                      | Versión de<br>software |
|----------|----------------------------------|------------------------|
| MG16C3xx | Eliminado el contenido sobre los | 5.11                   |
|          | bastidores D1h-D8h y aplicada    |                        |
|          | nueva estructura.                |                        |

Tabla 1.1 Versión del documento y del software

#### 1.4 Convenciones

- Las listas numeradas indican procedimientos.
- Las listas de viñetas indican otra información y descripción de ilustraciones.
- El texto en cursiva indica:
  - Referencia cruzada.
  - Vínculo.
  - Nota al pie.
  - Nombre del parámetro, nombre del grupo de parámetros y opción del parámetro.
- Todas las dimensiones de las figuras se indican en mm (in).
- Un asterisco (\*) indica el ajuste predeterminado de un parámetro.

2

### 2 Seguridad

#### 2.1 Símbolos de seguridad

En esta guía se han utilizado los siguientes símbolos:

### **▲**ADVERTENCIA

Indica situaciones potencialmente peligrosas que pueden producir lesiones graves o incluso la muerte.

### **▲**PRECAUCIÓN

Indica una situación potencialmente peligrosa que puede producir lesiones leves o moderadas. También puede utilizarse para alertar contra prácticas no seguras.

#### AVISO!

Indica información importante, entre la que se incluyen situaciones que pueden producir daños en el equipo u otros bienes.

#### 2.2 Personal cualificado

Este equipo únicamente puede ser manejado o instalado por personal cualificado.

El personal cualificado es aquel personal formado que está autorizado para realizar la instalación, la puesta en marcha y el mantenimiento de equipos, sistemas y circuitos conforme a la legislación y la regulación vigentes.

Asimismo, el personal debe estar familiarizado con las instrucciones y medidas de seguridad descritas en este manual.

#### 2.3 Medidas de seguridad

### **A**ADVERTENCIA

#### TENSIÓN ALTA

Los convertidores de frecuencia contienen tensión alta cuando están conectados a una entrada de red de CA, a un suministro de CC, a una carga compartida o a motores permanentes. Si la instalación, la puesta en marcha y el mantenimiento del convertidor de frecuencia son realizados por personal no cualificado, pueden causarse lesiones graves o incluso la muerte.

 La instalación, la puesta en marcha y el mantenimiento del convertidor de frecuencia deberán estar a cargo exclusivamente de personal cualificado.

### **A**ADVERTENCIA

#### PELIGRO DE CORRIENTE DE FUGA

Las corrientes de fuga superan los 3,5 mA. No realizar la conexión toma a tierra adecuada del convertidor de frecuencia puede ser causa de lesiones graves e incluso de muerte.

 La correcta conexión a tierra del equipo debe estar garantizada por un instalador eléctrico certificado.



### **A**ADVERTENCIA

#### TIEMPO DE DESCARGA

El convertidor contiene condensadores de enlace de CC que podrán seguir cargados aunque el convertidor esté apagado. Puede haber tensión alta presente aunque las luces del indicador LED de advertencia estén apagadas. Si, después de desconectar la alimentación, no espera 40 minutos antes de realizar cualquier trabajo de reparación o tarea de mantenimiento, pueden producirse lesiones graves e incluso mortales.

- 1. Pare el motor.
- Desconecte la red de CA y las fuentes de alimentación de enlace de CC remotas, incluidas las baterías de emergencia, los SAI y las conexiones de enlace de CC a otros convertidores de frecuencia.
- 3. Desconecte o bloquee el motor.
- 4. Espere 40 minutos para que los condensadores se descarguen por completo.
- Antes de realizar cualquier trabajo de reparación o mantenimiento, utilice un dispositivo de medición de tensión adecuado para asegurarse de que los condensadores se han descargado por completo.

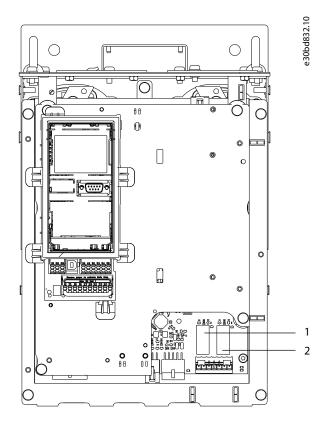
### **A**ADVERTENCIA

#### **RIESGO DE INCENDIO**

Las resistencias de frenado se calientan durante y después del frenado. Debe colocarse la resistencia de frenado en un entorno seguro para evitar el riesgo de daños materiales o lesiones graves.

- Asegúrese de que la resistencia de frenado se coloque en un entorno seguro para evitar el riesgo de incendio.
- No toque nunca la resistencia de frenado, ni durante ni después del frenado, para evitar quemaduras graves.

#### AVISO!


## OPCIÓN DE SEGURIDAD DE LA PANTALLA DE LA ALIMENTACIÓN

Existe una opción de pantalla de alimentación disponible para los alojamientos con clasificación de protección IP21/IP54 (tipo 1 / tipo 12). La pantalla de la alimentación es una cubierta instalada en el interior del alojamiento para protección contra contactos accidentales con los terminales de potencia, conforme a las normas BGV A2 y VBG-4.

#### 2.3.1 Instalación conforme a ADN

Para evitar la formación de chispas conforme al Acuerdo europeo relativo al transporte internacional de mercancías peligrosas por vías navegables (ADN), deben tomarse precauciones con los convertidores de frecuencia que tengan una clasificación de protección IP00 (chasis), IP20 (chasis), IP21 (tipo 1) o IP54 (tipo 12).

- No instale un conmutador de alimentación.
- Asegúrese de que parámetro 14-50 RFI Filter está ajustado en [1] Sí.
- Retire todos los conectores de relé marcados como RELAY. Consulte Ilustración 2.1.
- Compruebe qué opciones de relé están instaladas, si es que las hay. La única opción de relé permitida es VLT<sup>®</sup> Extended Relay Card MCB 113.



1, 2 Conectores de relé

Ilustración 2.1 Ubicación de los conectores de relé

3

### 3 Homologaciones y certificados

En esta sección se incluye una breve descripción de las distintas homologaciones y certificaciones que se pueden encontrar en los convertidores Danfoss. No todas las homologaciones corresponden a todos los convertidores.

## 3.1 Homologaciones normativas / de cumplimiento

#### AVISO!

#### LIMITACIONES IMPUESTAS A LA FRECUENCIA DE SALIDA

A partir de la versión 3.92 del software, la frecuencia de salida del convertidor de frecuencia está limitada a 590 Hz, debido a las normativas de control de exportaciones.

#### 3.1.1.1 Marca CE

La marca CE (Comunidad Europea) indica que el fabricante del producto cumple todas las directivas aplicables de la UE. Las directivas europeas aplicables al diseño y a la fabricación de convertidores de frecuencia se enumeran en la *Tabla 3.1.* 

#### AVISO!

La marca CE no regula la calidad del producto. Las especificaciones técnicas no pueden deducirse de la marca CE.

| Directiva de la UE                  | Versión     |
|-------------------------------------|-------------|
| Directiva de tensión baja           | 2014/35/EU  |
| Directiva CEM                       | 2014/30/EU  |
| Directiva de máquinas <sup>1)</sup> | 2014/32/EU  |
| Directiva ErP                       | 2009/125/EC |
| Directiva ATEX                      | 2014/34/EU  |
| Directiva RoHS                      | 2002/95/EC  |

Tabla 3.1 Directivas de la UE aplicables a los convertidores de frecuencia

1) La conformidad con la Directiva de máquinas solo se exige en los convertidores de frecuencia dotados de una función de seguridad integrada.

#### AVISO!

Los convertidores con una función de seguridad integrada, como Safe Torque Off (STO), deben cumplir la Directiva de máquinas.

Las declaraciones de conformidad están disponibles previa solicitud.

#### Directiva de tensión baja

Los convertidores deben incluir la marca CE de conformidad con la Directiva de baja tensión, vigente desde el 1 de enero de 2014. La Directiva de baja tensión se aplica a todos los equipos eléctricos situados en los intervalos de tensión 50-1000 V CA y 75-1500 V CC.

La finalidad de esta directiva es garantizar la seguridad personal y evitar los daños materiales cuando se manejen, para su aplicación prevista, equipos eléctricos correctamente instalados y mantenidos.

#### **Directiva CEM**

El propósito de la Directiva CEM (compatibilidad electromagnética) es reducir las interferencias electromagnéticas y mejorar la inmunidad de los equipos e instalaciones eléctricos. Los requisitos de protección básicos de la Directiva CEM exigen que aquellos dispositivos que generan interferencias electromagnéticas (EMI), o los dispositivos cuyo funcionamiento pueda verse afectado por las EMI, se diseñen para limitar la generación de interferencias electromagnéticas. Estos dispositivos deben tener un grado adecuado de inmunidad a las EMI cuando se instalan correctamente, se mantienen y se usan conforme a lo previsto.

Los dispositivos eléctricos que se utilizan independientemente o como parte de un sistema deben disponer de la marca CE. Los sistemas no necesitan la marca CE pero deben cumplir con los requisitos básicos de protección de la Directiva CEM.

#### Directiva de máquinas

La finalidad de la Directiva de máquinas es garantizar la seguridad personal y evitar daños materiales en los equipos mecánicos utilizados para su aplicación prevista. La Directiva de máquinas es aplicable a una máquina que conste de un conjunto de componentes o dispositivos interconectados de los cuales al menos uno sea capaz de realizar un movimiento mecánico.

Aquellos convertidores que poseen una función de seguridad integrada deben cumplir la Directiva de máquinas. Los convertidores sin función de seguridad no se ven afectados por la Directiva de máquinas. Si un convertidor está integrado en un sistema de maquinaria, Danfoss puede proporcionar información sobre los aspectos de seguridad relativos al convertidor.

Cuando los convertidores se utilizan en máquinas con al menos una parte móvil, el fabricante de la máquina debe proporcionar una declaración de cumplimiento de todas las normas y medidas de seguridad pertinentes.



#### 3.1.1.2 Directiva ErP

La directiva ErP es la Directiva europea de diseño ecológico de productos relacionados con la energía, incluidos los convertidores de frecuencia. El objetivo de la directiva es incrementar el rendimiento energético y el nivel de protección del medio ambiente, mientras se aumenta la seguridad del suministro energético. El impacto medioambiental de los productos relacionados con la energía incluye el consumo de energía en todo el ciclo de vida útil del producto.

#### 3.1.1.3 Certificado UL

El sello del Underwriters Laboratory (UL) certifica la seguridad de los productos y sus declaraciones ambientales a partir de pruebas estandarizadas. Los convertidores con tensión T7 (525-690 V) tienen certificación UL únicamente para el intervalo 525-600 V.

#### 3.1.1.4 CSA/cUL

La homologación CSA/cUL corresponde a convertidores de frecuencia con una tensión nominal de 600 V o menos. La norma garantiza que, cuando el convertidor se instale conforme al manual de instalación/funcionamiento suministrado, el equipo cumplirá los requisitos UL de seguridad térmica y eléctrica. Este sello certifica que el producto ha superado todas las pruebas y especificaciones de ingeniería requeridas. Podrá emitirse un certificado de conformidad si así se solicita.

#### 3.1.1.5 EAC

El sello de conformidad EAC (EurAsian Conformity) indica que el producto cumple todos los requisitos y normas técnicas aplicables al producto por parte de la Unión Aduanera Euroasiática, que está compuesta por los estados miembros de la Unión Económica Euroasiática.

El logotipo de la EAC debe constar tanto en la etiqueta del producto como en la del embalaje. Todos los productos utilizados dentro del área de la EAC deberán comprarse a Danfoss dentro del área de la EAC.

#### 3.1.1.6 UKrSEPRO

El certificado UKrSEPRO garantiza la calidad y seguridad tanto de los productos como de los servicios, así como la estabilidad del proceso de fabricación conforme a la normativa ucraniana. El certificado UkrSepro es necesario para el despacho de aduana de cualquier producto que entre o salga del territorio de Ucrania.

#### 3.1.1.7 TÜV

TÜV SÜD es una organización europea de seguridad que certifica la seguridad funcional de los convertidores conforme a la norma EN/CEI 61800-5-2. TÜV SÜD somete los productos a pruebas y hace un seguimiento de su producción para garantizar que las empresas sigan cumpliendo las normativas.

#### 3.1.1.8 RCM

La marca de conformidad reglamentaria australiana (Regulatory Compliance Mark, RCM) indica la conformidad de los equipos de telecomunicaciones y radiocomunicaciones/CEM con las normas de etiquetado CEM de la Agencia Australiana de Telecomunicaciones (Australian Communications and Media Authority, ACMA). En la actualidad, el sello RCM constituye una marca única que agrupa las marcas de conformidad A-Tick y C-Tick. Su uso es obligatorio para poder comercializar dispositivos eléctricos y electrónicos en Australia y Nueva Zelanda.

#### 3.1.1.9 Marítima

Para que los barcos y las plataformas de extracción de hidrocarburos reciban la correspondiente licencia y puedan contratar un seguro, estas aplicaciones deberán estar certificadas por una o varias sociedades de certificación naval. Los convertidores de Danfoss han sido certificados por hasta doce sociedades de clasificación naval diferentes.

Para consultar o imprimir las homologaciones y certificados, diríjase a la zona de descargas en drives.danfoss.com/industries/marine-and-offshore/marine-type-approvals/#/.

#### 3.1.2 Normativa de control de exportación

Los convertidores pueden estar sujetos a normativas regionales y/o nacionales de control de exportaciones.

Aquellos convertidores sujetos a normativas de control de exportaciones se clasificarán con un código ECCN. El código ECCN se incluye en los documentos adjuntos al convertidor.

En caso de reexportación, recaerá en el exportador la responsabilidad de garantizar la conformidad con las normativas pertinentes de control de exportaciones.

#### 3.2 Clasificaciones de protección de las envolventes

Los convertidores de la serie VLT<sup>®</sup> están disponibles con varios tipos de protección para adaptarse a las necesidades de cada aplicación. Las clasificaciones de protección se basan en dos normas internacionales:

- El tipo UL confirma que las protecciones cumplan las normas NEMA (de la Asociación Nacional de Fabricantes Eléctricos de EE. UU.) Los requisitos de construcción y prueba para protecciones se estipulan en la Publicación de normas NEMA 250-2003 y UL 50, decimoprimera edición.
- Clasificaciones IP (Ingress Protection) redactadas por la CEI (Comisión Electrotécnica Internacional) en el resto del mundo.

Los convertidores de frecuencia estándar de la serie VLT<sup>®</sup> de Danfoss están disponibles con varios tipos de alojamiento para adaptarse a los requisitos de IP00 (chasis) IP20 (chasis protegido), IP21 (tipo UL 1) o IP54 (tipo UL 12). En el presente manual, el tipo UL se identifica como «Tipo». Por ejemplo, IP21/Tipo 1.

#### Norma UL

Tipo 1: protecciones construidas para su uso en interiores que ofrecen un grado de protección al personal frente a contactos imprevistos con las unidades protegidas y un grado de protección frente a la caída de suciedad.

Tipo 12: los alojamientos de uso general están previstos para uso en interiores a fin de proteger las unidades frente a:

- fibras
- pelusa
- polvo y suciedad
- salpicaduras leves
- pérdidas
- goteo y condensación externa de líquidos no corrosivos

No puede haber orificios a través de la protección, ni tampoco troqueles o aberturas de conducto, excepto cuando se utilizan con juntas resistentes al aceite para montar mecanismos herméticos al aceite y al polvo. Las puertas también disponen de juntas resistentes al aceite. Además, las protecciones para controladores de combinación tienen puertas con bisagras, que se balancean horizontalmente y necesitan una herramienta para abrirse.

#### Estándar IP

La *Tabla 3.2* muestra una referencia cruzada entre las dos normas. La *Tabla 3.3* explica cómo leer el número IP y define los niveles de protección. Los convertidores de frecuencia cumplen los requisitos de ambas.

| NEMA y UL        | IP . |
|------------------|------|
| Chasis           | IP00 |
| Chasis protegido | IP20 |
| Tipo 1           | IP21 |
| Tipo 12          | IP54 |

Tabla 3.2 Referencia cruzada de los números NEMA e IP

| _  | ٠ |  |  |
|----|---|--|--|
| ,  | и |  |  |
| ٠. | ٠ |  |  |
|    | п |  |  |

| Primer dígito | Segundo dígito | Nivel de protección                                                                       |
|---------------|----------------|-------------------------------------------------------------------------------------------|
| 0             | -              | Sin protección.                                                                           |
| 1             | -              | Protegido a 50 mm (2,0 in). No es posible que una mano acceda al alojamiento.             |
| 2             | -              | Protegido a 12,5 mm (0,5 in). No es posible que ningún dedo acceda al alojamiento.        |
| 3             | -              | Protegido a 2,5 mm (0,1 in). No es posible que ninguna herramienta acceda al alojamiento. |
| 4             | -              | Protegido a 1,0 mm (0,04 in). No es posible que ningún cable acceda al alojamiento.       |
| 5             | -              | Protegido contra polvo, entrada limitada.                                                 |
| 6             | -              | Protegido totalmente contra polvo.                                                        |
| -             | 0              | Sin protección.                                                                           |
| -             | 1              | Protegido frente al goteo vertical de agua.                                               |
| -             | 2              | Protegido frente al goteo de agua en un ángulo de 15°.                                    |
| -             | 3              | Protegido frente al agua en un ángulo de 60°.                                             |
| -             | 4              | Protegido frente a salpicaduras de agua.                                                  |
| -             | 5              | Protegido frente a chorros de agua.                                                       |
| -             | 6              | Protegido frente a chorros de agua potentes.                                              |
| -             | 7              | Protegido frente a inmersiones temporales.                                                |
| _             | 8              | Protegido frente a inmersión permanente.                                                  |

Tabla 3.3 Desglose del número IP



### 4 Vista general de producto

### 4.1 Convertidores VLT® de alta potencia

Los convertidores DanfossVLT® descritos en este manual están disponibles como unidades independientes, de montaje en pared o de montaje en armario. Todos los convertidores VLT® se pueden configurar, son compatibles y tienen una eficiencia optimizada para todos los tipos de motores estándar, lo cual evita las restricciones a ofertas combinadas de motor y convertidor. Estos convertidores se presentan en dos configuraciones de entrada: de seis pulsos y de doce.

#### Ventajas de los convertidores VLT® de seis pulsos.

- Disponibles con varios tamaños de alojamiento y distintas clasificaciones de protección.
- Una eficacia del 98 % reduce los costes operativos.
- El exclusivo diseño de refrigeración a través de canal posterior reduce la necesidad de equipamiento de refrigeración adicional, lo que se traduce en menores costes recurrentes y de instalación.
- Menor consumo de energía del equipo de refrigeración de la sala de control.
- Menores costes de propiedad.
- Interfaz de usuario constante en toda la gama de convertidores de Danfoss.
- Asistentes de inicio orientados a las aplicaciones.
- Interfaz de usuario multilingüe.

#### Ventajas de los convertidores VLT® de doce pulsos.

El VLT® de doce pulsos es un convertidor de frecuencia de alto rendimiento que proporciona reducción de armónicos sin añadir componentes capacitivos ni inductivos, que a menudo requieren un análisis de la red para evitar posibles problemas de resonancia en el sistema. El convertidor de doce pulsos está montado con el mismo diseño modular que el popular convertidor VLT® de seis pulsos. Para obtener más métodos de reducción de armónicos, consulte la *Guía de diseño del filtro armónico VLT® Advanced Harmonic Filter AHF 005/AHF 010*.

Los convertidores de doce pulsos ofrecen las mismas prestaciones que los de seis pulsos, además de:

- Ser robustos y muy estables en todas las condiciones de red y de funcionamiento.
- Resultar ideales para aplicaciones en las que haya que reducir gradualmente la tensión media o sea necesario un aislamiento de la red.
- Poseer una excelente inmunidad transitoria de entrada.

## 4.2 Dimensión de las envolventes por potencia de salida

|                  |                  | Envolventes disponibles |             |  |
|------------------|------------------|-------------------------|-------------|--|
| kW <sup>1)</sup> | CV <sup>1)</sup> | Seis pulsos             | Doce pulsos |  |
| 315              | 450              | -                       | F8-F9       |  |
| 355              | 500              | E1-E2                   | F8-F9       |  |
| 400              | 550              | E1-E2                   | F8-F9       |  |
| 450              | 600              | E1-E2                   | F8-F9       |  |
| 500              | 650              | F1-F3                   | F10-F11     |  |
| 560              | 750              | F1-F3                   | F10-F11     |  |
| 630              | 900              | F1-F3                   | F10-F11     |  |
| 710              | 1000             | F1-F3                   | F10-F11     |  |
| 800              | 1200             | F2-F4                   | F12-F13     |  |
| 1000             | 1350             | F2-F4                   | F12-F13     |  |

Tabla 4.1 Potencias de salida de las envolventes, 380-480 V

1) Todas las potencias de salida se determinan con sobrecarga normal

La salida se mide a 400 V (kW) y 460 V (CV).

|                  |                  | Envolventes disponibles |             |  |
|------------------|------------------|-------------------------|-------------|--|
| kW <sup>1)</sup> | CV <sup>1)</sup> | Seis pulsos             | Doce pulsos |  |
| 450              | 450              | E1-E2                   | F8-F9       |  |
| 500              | 500              | E1-E2                   | F8-F9       |  |
| 560              | 600              | E1-E2                   | F8-F9       |  |
| 630              | 650              | E1-E2                   | F8-F9       |  |
| 710              | 750              | F1-F3                   | F10-F11     |  |
| 800              | 950              | F1-F3                   | F10-F11     |  |
| 900              | 1050             | F1-F3                   | F10-F11     |  |
| 1000             | 1150             | F2-F4                   | F12-F13     |  |
| 1200             | 1350             | F2-F4                   | F12-F13     |  |
| 1400             | 1550             | F2-F4                   | F12-F13     |  |

Tabla 4.2 Potencias de salida de las envolventes, 525-690 V

1) Todas las potencias de salida se determinan con sobrecarga normal.

La salida se mide a 690 V (kW) y 575 V (CV).



### 4.3 Vista general de las envolventes, 380-480 V

| Tamaño del alojamiento                               | E1                | E2                |
|------------------------------------------------------|-------------------|-------------------|
| Potencia de salida <sup>1)</sup>                     | •                 |                   |
| Salida a 400 V (kW)                                  | 355–450           | 355–450           |
| Salida a 460 V (CV)                                  | 500–600           | 500–600           |
| Configuración de entrada                             | •                 |                   |
| Seis pulsos                                          | S                 | S                 |
| Doce pulsos                                          | -                 | -                 |
| Clasificación de protección                          | •                 |                   |
| IP                                                   | IP21/54           | IP00              |
| Tipo UL                                              | Tipo 1/12         | Chasis            |
| Opciones de hardware <sup>2)</sup>                   | •                 |                   |
| Canal posterior de acero inoxidable                  | -                 | 0                 |
| Apantallamiento de red                               | 0                 | -                 |
| Resistencia calefactora y termostato                 | -                 | -                 |
| Luz de alojamiento con enchufe de alimentación       | -                 | -                 |
| Filtro RFI (clase A1)                                | 0                 | 0                 |
| Terminales NAMUR                                     | -                 | -                 |
| Monitor de resistencia de aislamiento (IRM)          | -                 | -                 |
| Relé diferencial de corriente de fuga a tierra (RCM) | -                 | -                 |
| Chopper de frenado (IGBT)                            | 0                 | 0                 |
| Safe Torque Off                                      | 0                 | 0                 |
| Terminales regenerativos                             | 0                 | 0                 |
| Terminales de motor comunes                          | -                 | -                 |
| Parada de emergencia con relé de seguridad Pilz      | -                 | -                 |
| Safe Torque Off con relé de seguridad Pilz           | -                 | -                 |
| Sin LCP                                              | -                 | -                 |
| LCP gráfico                                          | S                 | S                 |
| LCP numérico                                         | 0                 | 0                 |
| Fusibles                                             | 0                 | 0                 |
| Terminales de carga compartida                       | 0                 | 0                 |
| Fusibles y terminales de carga compartida            | 0                 | 0                 |
| Desconexión                                          | 0                 | 0                 |
| Magnetotérmicos                                      | -                 | -                 |
| Contactores                                          | -                 | -                 |
| Arrancadores manuales del motor                      | -                 | -                 |
| 30 A, terminales protegidos con fusible              | -                 | -                 |
| Suministro externo de 24 V CC (SMPS, 5 A)            | 0                 | 0                 |
| Supervisión de temperatura externa                   | -                 | -                 |
| Dimensiones                                          |                   | ,                 |
| Altura, mm (in)                                      | 2000 (78,8)       | 1547 (60,9)       |
| Anchura, mm (in)                                     | 600 (23,6)        | 585 (23,0)        |
| Profundidad, mm (in)                                 | 494 (19,4)        | 498 (19,5)        |
| Peso, kg (lb)                                        | 270–313 (595–690) | 234–277 (516–611) |

Tabla 4.3 Convertidores E1-E2, 380-480 V

<sup>1)</sup> Todas las potencias de salida se determinan con sobrecarga normal. La salida se mide a 400 V (kW) y 460 V (CV).

<sup>2)</sup> S = estándar, O = opcional, y una raya indica que la opción no está disponible.

4

| Tamaño del alojamiento                  | F1            | F2            | F3            | F4            |
|-----------------------------------------|---------------|---------------|---------------|---------------|
| Potencia de salida <sup>1)</sup>        |               |               |               |               |
| Salida a 400 V (kW)                     | 500–710       | 800-1000      | 500-710       | 800-1000      |
| Salida a 460 V (CV)                     | 650-1000      | 1200-1350     | 650-1000      | 1200–1350     |
| Configuración de entrada                |               | •             |               |               |
| Seis pulsos                             | S             | S             | S             | S             |
| Doce pulsos                             | -             | -             | -             | _             |
| Clasificación de protección             |               | !             |               |               |
| IP                                      | IP21/54       | IP21/54       | IP21/54       | IP21/54       |
| Tipo UL                                 | Tipo 1/12     | Tipo 1/12     | Tipo 1/12     | Tipo 1/12     |
| Opciones de hardware <sup>2)</sup>      | ·             |               |               |               |
| Canal posterior de acero inoxidable     | 0             | 0             | 0             | 0             |
| Apantallamiento de red                  | _             | _             | _             | _             |
| Resistencia calefactora y termostato    | 0             | 0             | 0             | 0             |
| Luz de alojamiento con enchufe de       |               |               |               |               |
| alimentación                            | 0             | 0             | 0             | 0             |
| Filtro RFI (clase A1)                   | _             | _             | _             | _             |
| Terminales NAMUR                        | _             | _             | _             | _             |
| Monitor de resistencia de aislamiento   |               |               |               |               |
| (IRM)                                   | -             | _             | 0             | 0             |
| Relé diferencial de corriente de fuga a |               |               | _             | _             |
| tierra (RCM)                            | -             | -             | 0             | 0             |
| Chopper de frenado (IGBT)               | 0             | 0             | 0             | 0             |
| Safe Torque Off                         | 0             | 0             | 0             | 0             |
| Terminales regenerativos                | 0             | 0             | 0             | 0             |
| Terminales de motor comunes             | 0             | 0             | 0             | 0             |
| Parada de emergencia con relé de        |               |               | _             | _             |
| seguridad Pilz                          | -             | -             | 0             | 0             |
| Safe Torque Off con relé de seguridad   |               | _             | _             | _             |
| Pilz                                    | 0             | 0             | 0             | 0             |
| Sin LCP                                 | -             | -             | -             | _             |
| LCP gráfico                             | S             | S             | S             | S             |
| LCP numérico                            | -             | -             | -             | _             |
| Fusibles                                | 0             | 0             | 0             | 0             |
| Terminales de carga compartida          | 0             | 0             | 0             | 0             |
| Fusibles y terminales de carga          | 0             |               | 0             | ^             |
| compartida                              | 0             | 0             | 0             | 0             |
| Desconexión                             | -             | -             | 0             | 0             |
| Magnetotérmicos                         | -             | -             | 0             | 0             |
| Contactores                             | -             | -             | 0             | 0             |
| Arrancadores manuales del motor         | 0             | 0             | 0             | 0             |
| 30 A, terminales protegidos con fusible | 0             | 0             | 0             | 0             |
| Suministro externo de 24 V CC (SMPS,    | 0             |               |               | ^             |
| 5 A)                                    | 0             | 0             | 0             | 0             |
| Supervisión de temperatura externa      | 0             | 0             | 0             | 0             |
| Dimensiones                             |               | •             | •             |               |
| Altura, mm (in)                         | 2204 (86,8)   | 2204 (86,8)   | 2204 (86,8)   | 2204 (86,8)   |
| Anchura, mm (in)                        | 1400 (55,1)   | 1800 (70,9)   | 2000 (78,7)   | 2400 (94,5)   |
| Profundidad, mm (in)                    | 606 (23,9)    | 606 (23,9)    | 606 (23,9)    | 606 (23,9)    |
| Peso, kg (lb)                           | 1017 (2242,1) | 1260 (2777,9) | 1318 (2905,7) | 1561 (3441,5) |

#### Tabla 4.4 Convertidores F1-F4, 380-500 V

- 1) Todas las potencias de salida se determinan con sobrecarga normal. La salida se mide a 400 V (kW) y 460 V (CV).
- 2) S = estándar, O = opcional, y una raya indica que la opción no está disponible.



| Tamaño del alojamiento                  | F8          | F9           | F10          | F11           | F12           | F13           |
|-----------------------------------------|-------------|--------------|--------------|---------------|---------------|---------------|
| Potencia de salida <sup>1)</sup>        | •           |              | •            | •             | •             |               |
| Salida a 400 V (kW)                     | 315–450     | 315–450      | 500-710      | 500-710       | 800-1000      | 800-1000      |
| Salida a 460 V (CV)                     | 450-600     | 450-600      | 650–1000     | 650–1000      | 1200–1350     | 1200–1350     |
| Configuración de entrada                | 1           | 1            | l            |               | l             |               |
| Seis pulsos                             | _           | _            | _            | _             | _             | _             |
| Doce pulsos                             | S           | S            | S            | S             | S             | S             |
| Clasificación de protección             | 1           | 1            | l            |               |               |               |
| IP                                      | IP21/54     | IP21/54      | IP21/54      | IP21/54       | IP21/54       | IP21/54       |
| NEMA                                    | Tipo 1/12   | Tipo 1/12    | Tipo 1/12    | Tipo 1/12     | Tipo 1/12     | Tipo 1/12     |
| Opciones de hardware <sup>2)</sup>      | 1 1         |              | 1 1          |               | 1             |               |
| Canal posterior de acero inoxidable     | T -         | _            | _            | _             | _             | _             |
| Apantallamiento de red                  | _           | _            | _            | _             | _             | _             |
| Resistencia calefactora y termostato    | _           | _            | 0            | 0             | 0             | 0             |
| Luz de alojamiento con enchufe de       |             |              |              | J             |               |               |
| alimentación                            | -           | -            | 0            | 0             | 0             | 0             |
| Filtro RFI (clase A1)                   | _           | 0            | _            | _             | 0             | 0             |
| Terminales NAMUR                        | _           | _            | _            | _             | _             | _             |
| Monitor de resistencia de aislamiento   |             |              |              |               |               |               |
| (IRM)                                   | -           | 0            | -            | _             | 0             | 0             |
| Relé diferencial de corriente de fuga a |             |              |              |               |               |               |
| tierra (RCM)                            | -           | 0            | -            | _             | 0             | 0             |
| Chopper de frenado (IGBT)               | 0           | 0            | 0            | 0             | 0             | 0             |
| Safe Torque Off                         | 0           | 0            | 0            | 0             | 0             | 0             |
| Terminales regenerativos                | _           | _            | _            | _             | _             | _             |
| Terminales de motor comunes             | _           | _            | 0            | 0             | 0             | 0             |
| Parada de emergencia con relé de        |             |              |              |               |               | -             |
| seguridad Pilz                          | -           | -            | -            | _             | -             | _             |
| Safe Torque Off con relé de seguridad   |             |              |              |               |               |               |
| Pilz                                    | 0           | 0            | 0            | 0             | 0             | 0             |
| Sin LCP                                 | _           | -            | _            | _             | _             | _             |
| LCP gráfico                             | S           | S            | S            | S             | S             | S             |
| LCP numérico                            | _           | _            | _            | _             | _             | _             |
| Fusibles                                | 0           | 0            | 0            | 0             | 0             | 0             |
| Terminales de carga compartida          | _           | -            | _            | _             | _             | _             |
| Fusibles y terminales de carga          |             |              |              |               |               |               |
| compartida                              | _           | -            | _            | _             | -             | _             |
| Desconexión                             | -           | 0            | 0            | 0             | 0             | 0             |
| Magnetotérmicos                         | _           | -            | -            | _             | -             | -             |
| Contactores                             | _           | -            | -            | _             | -             | -             |
| Arrancadores manuales del motor         | _           | -            | 0            | 0             | 0             | 0             |
| 30 A, terminales protegidos con fusible | _           | -            | 0            | 0             | 0             | 0             |
| Suministro externo de 24 V CC (SMPS,    | _           | _            | _            |               |               |               |
| 5 A)                                    | 0           | 0            | 0            | 0             | 0             | 0             |
| Supervisión de temperatura externa      | _           | -            | 0            | 0             | 0             | 0             |
| Dimensiones                             | 1           | 1            | 1            | 1             |               | ı             |
| Altura, mm (in)                         | 2204 (86,8) | 2204 (86,8)  | 2204 (86,8)  | 2204 (86,8)   | 2204 (86,8)   | 2204 (86,8)   |
| Anchura, mm (in)                        | 800 (31,5)  | 1400 (55,2)  | 1600 (63,0)  | 2400 (94,5)   | 2000 (78,7)   | 2800 (110,2)  |
| Profundidad, mm (in)                    | 606 (23,9)  | 606 (23,9)   | 606 (23,9)   | 606 (23,9)    | 606 (23,9)    | 606 (23,9)    |
| Peso, kg (lb)                           | 447 (985,5) | 669 (1474,9) | 893 (1968,8) | 1116 (2460,4) | 1037 (2286,4) | 1259 (2775,7) |
| . 3 . ,                                 |             |              | , . ,        |               | , . ,         | ,-,           |

#### Tabla 4.5 Convertidores F8-F13, 380-480 V

<sup>1)</sup> Todas las potencias de salida se determinan con sobrecarga normal. La salida se mide a 400 V (kW) y 460 V (CV).

<sup>2)</sup> S = estándar, O = opcional, y una raya indica que la opción no está disponible.

#### 4

### 4.4 Vista general de las envolventes, 525-690 V

| Tamaño del alojamiento                               | E1                | E2                |
|------------------------------------------------------|-------------------|-------------------|
| Potencia de salida <sup>1)</sup>                     |                   |                   |
| Salida a 690 V (kW)                                  | 450–630           | 450–630           |
| Salida a 575 V (CV)                                  | 450–650           | 450–650           |
| Configuración de entrada                             | -                 |                   |
| Seis pulsos                                          | S                 | S                 |
| Doce pulsos                                          | -                 | -                 |
| Clasificación de protección                          |                   |                   |
| IP                                                   | IP21/54           | IP00              |
| Tipo UL                                              | Tipo 1/12         | Chasis            |
| Opciones de hardware <sup>2)</sup>                   |                   |                   |
| Canal posterior de acero inoxidable                  | -                 | 0                 |
| Apantallamiento de red                               | 0                 | -                 |
| Resistencia calefactora y termostato                 | -                 | -                 |
| Luz de alojamiento con enchufe de alimentación       | -                 | -                 |
| Filtro RFI (clase A1)                                | 0                 | 0                 |
| Terminales NAMUR                                     | -                 | -                 |
| Monitor de resistencia de aislamiento (IRM)          | -                 | -                 |
| Relé diferencial de corriente de fuga a tierra (RCM) | -                 | _                 |
| Chopper de frenado (IGBT)                            | 0                 | 0                 |
| Safe Torque Off                                      | S                 | S                 |
| Terminales regenerativos                             | 0                 | 0                 |
| Terminales de motor comunes                          | -                 | -                 |
| Parada de emergencia con relé de seguridad Pilz      | -                 | -                 |
| Safe Torque Off con relé de seguridad Pilz           | -                 | -                 |
| Sin LCP                                              | -                 | -                 |
| LCP gráfico                                          | S                 | S                 |
| LCP numérico                                         | 0                 | 0                 |
| Fusibles                                             | 0                 | 0                 |
| Terminales de carga compartida                       | 0                 | 0                 |
| Fusibles y terminales de carga compartida            | 0                 | 0                 |
| Desconexión                                          | 0                 | 0                 |
| Magnetotérmicos                                      | -                 | -                 |
| Contactores                                          | -                 | -                 |
| Arrancadores manuales del motor                      | -                 | -                 |
| 30 A, terminales protegidos con fusible              | _                 | _                 |
| Suministro externo de 24 V CC (SMPS, 5 A)            | 0                 | 0                 |
| Supervisión de temperatura externa                   | -                 | _                 |
| Dimensiones                                          |                   |                   |
| Altura, mm (in)                                      | 2000 (78,8)       | 1547 (60,9)       |
| Anchura, mm (in)                                     | 600 (23,6)        | 585 (23,0)        |
| Profundidad, mm (in)                                 | 494 (19,4)        | 498 (19,5)        |
| Peso, kg (lb)                                        | 263–313 (580–690) | 221–277 (487–611) |

#### Tabla 4.6 Convertidores E1-E2, 525-690 V

- 1) Todas las potencias de salida se determinan con sobrecarga normal. La salida se mide a 690 V (kW) y 575 V (CV).
- 2) S = estándar, O = opcional, y una raya indica que la opción no está disponible.



| Tamaño del alojamiento                  | F1            | F2            | F3            | F4            |
|-----------------------------------------|---------------|---------------|---------------|---------------|
| Potencia de salida <sup>1)</sup>        |               |               |               |               |
| Salida a 690 V (kW)                     | 710–900       | 1000–1400     | 710–900       | 1000–1400     |
| Salida a 575 V (CV)                     | 750–1050      | 1150–1550     | 750–1050      | 1150–1550     |
| Configuración de entrada                |               |               |               |               |
| Seis pulsos                             | S             | S             | S             | S             |
| Doce pulsos                             | _             | -             | -             | _             |
| Clasificación de protección             |               |               |               |               |
| IP                                      | IP21/54       | IP21/54       | IP21/54       | IP21/54       |
| Tipo UL                                 | Tipo 1/12     | Tipo 1/12     | Tipo 1/12     | Tipo 1/12     |
| Opciones de hardware <sup>2)</sup>      |               |               |               |               |
| Canal posterior de acero inoxidable     | 0             | 0             | 0             | 0             |
| Apantallamiento de red                  | -             | -             | -             | -             |
| Resistencia calefactora y termostato    | 0             | 0             | 0             | 0             |
| Luz de alojamiento con enchufe de       | 0             | 0             | 0             | 0             |
| alimentación                            | 0             | 0             | 0             | O             |
| Filtro RFI (clase A1)                   | -             | -             | 0             | 0             |
| Terminales NAMUR                        | -             | -             | -             | -             |
| Monitor de resistencia de aislamiento   | _             | _             | 0             | 0             |
| (IRM)                                   |               |               |               |               |
| Relé diferencial de corriente de fuga a |               |               | 0             | 0             |
| tierra (RCM)                            | _             |               |               | 0             |
| Chopper de frenado (IGBT)               | 0             | 0             | 0             | 0             |
| Safe Torque Off                         | 0             | 0             | 0             | 0             |
| Terminales regenerativos                | 0             | 0             | 0             | 0             |
| Terminales de motor comunes             | 0             | 0             | 0             | 0             |
| Parada de emergencia con relé de        |               | _             | 0             | 0             |
| seguridad Pilz                          | _             | _             | O             | 0             |
| Safe Torque Off con relé de seguridad   | 0             | 0             | 0             | 0             |
| Pilz                                    |               |               | · ·           |               |
| Sin LCP                                 | -             | -             | _             | -             |
| LCP gráfico                             | S             | S             | S             | S             |
| LCP numérico                            | -             | -             | -             | -             |
| Fusibles                                | 0             | 0             | 0             | 0             |
| Terminales de carga compartida          | 0             | 0             | 0             | 0             |
| Fusibles y terminales de carga          | 0             | 0             | 0             | 0             |
| compartida                              |               |               |               |               |
| Desconexión                             | _             | -             | 0             | 0             |
| Magnetotérmicos                         |               | _             | 0             | 0             |
| Contactores                             | _             | _             | 0             | 0             |
| Arrancadores manuales del motor         | 0             | 0             | 0             | 0             |
| 30 A, terminales protegidos con fusible | 0             | 0             | 0             | 0             |
| Suministro externo de 24 V CC (SMPS,    | 0             | 0             | 0             | 0             |
| 5 A)                                    |               |               |               |               |
| Supervisión de temperatura externa      | 0             | 0             | 0             | 0             |
| Dimensiones                             |               |               |               |               |
| Altura, mm (in)                         | 2204 (86,8)   | 2204 (86,8)   | 2204 (86,8)   | 2204 (86,8)   |
| Anchura, mm (in)                        | 1400 (55,1)   | 1800 (70,9)   | 2000 (78,7)   | 2400 (94,5)   |
| Profundidad, mm (in)                    | 606 (23,9)    | 606 (23,9)    | 606 (23,9)    | 606 (23,9)    |
| Peso, kg (lb)                           | 1017 (2242,1) | 1260 (2777,9) | 1318 (2905,7) | 1561 (3441,5) |

#### Tabla 4.7 Convertidores F1-F4, 525-690 V

- 1) Todas las potencias de salida se determinan con sobrecarga normal. La salida se mide a 690 V (kW) y 575 V (CV).
- 2) S = estándar, O = opcional, y una raya indica que la opción no está disponible.



| Tamaño del alojamiento                   | F8                       | F9                        | F10                       | F11         | F12         | F13         |
|------------------------------------------|--------------------------|---------------------------|---------------------------|-------------|-------------|-------------|
| Potencia de salida <sup>1)</sup>         |                          |                           |                           |             |             |             |
| Salida a 690 V (kW)                      | 450-630                  | 450-630                   | 710–900                   | 710–900     | 1000-1400   | 1000-1400   |
| Salida a 575 V (CV)                      | 450–650                  | 450-650                   | 750–1050                  | 750–1050    | 1150–1550   | 1150–1550   |
| Configuración de entrada                 |                          |                           | •                         | '           |             |             |
| Seis pulsos                              | _                        | _                         | _                         | _           | _           | -           |
| Doce pulsos                              | S                        | S                         | S                         | S           | S           | S           |
| Clasificación de protección              | L                        | I.                        | l.                        | l           |             |             |
| IP                                       | IP21/54                  | IP21/54                   | IP21/54                   | IP21/54     | IP21/54     | IP21/54     |
| NEMA                                     | Tipo 1/12                | Tipo 1/12                 | Tipo 1/12                 | Tipo 1/12   | Tipo 1/12   | Tipo 1/12   |
| Opciones de hardware <sup>2)</sup>       |                          |                           |                           |             |             |             |
| Canal posterior de acero inoxidable      | _                        | _                         | _                         | _           | _           | _           |
| Apantallamiento de red                   | _                        | _                         | _                         | _           | _           | _           |
| Resistencia calefactora y termostato     | _                        | _                         | 0                         | 0           | 0           | 0           |
| Luz de alojamiento con enchufe de        |                          |                           |                           |             |             |             |
| alimentación                             | _                        | _                         | 0                         | 0           | 0           | 0           |
| Filtro RFI (clase A1)                    | _                        | 0                         | _                         | _           | 0           | 0           |
| Terminales NAMUR                         |                          | _                         | _                         | _           | _           | _           |
| Monitor de resistencia de aislamiento    | _                        | _                         | _                         | _           | _           | _           |
| (IRM)                                    | -                        | 0                         | _                         | -           | 0           | 0           |
| Relé diferencial de corriente de fuga a  |                          |                           |                           |             |             |             |
| tierra (RCM)                             | -                        | 0                         | _                         | _           | 0           | 0           |
| Chopper de frenado (IGBT)                | 0                        | 0                         | 0                         | 0           | 0           | 0           |
|                                          | 0                        | 0                         | 0                         | 0           | 0           | 0           |
| Safe Torque Off                          |                          |                           |                           |             | _           | 0           |
| Terminales regenerativos                 | -                        | _                         | -                         | -           | -           | -           |
| Terminales de motor comunes              | _                        | _                         | 0                         | 0           | 0           | 0           |
| Parada de emergencia con relé de         | _                        | _                         | _                         | _           | _           | _           |
| seguridad Pilz                           |                          |                           |                           |             |             |             |
| Safe Torque Off con relé de seguridad    | 0                        | 0                         | 0                         | 0           | 0           | 0           |
| Pilz                                     |                          |                           |                           |             |             |             |
| Sin LCP                                  | -                        | _                         | -                         | _           | -           | _           |
| LCP gráfico                              | S                        | S                         | S                         | S           | S           | S           |
| LCP numérico                             | _                        | _                         | -                         | -           | _           | _           |
| Fusibles                                 | 0                        | 0                         | 0                         | 0           | 0           | 0           |
| Terminales de carga compartida           | -                        | _                         | -                         | -           | -           | _           |
| Fusibles y terminales de carga           | _                        | _                         | _                         | _           | _           | _           |
| compartida                               |                          |                           |                           |             |             |             |
| Desconexión                              | -                        | 0                         | 0                         | 0           | 0           | 0           |
| Magnetotérmicos                          | -                        | -                         | -                         | -           | -           | _           |
| Contactores                              | _                        | _                         | _                         | _           | _           | _           |
| Arrancadores manuales del motor          | -                        | _                         | 0                         | 0           | 0           | 0           |
| 30 A, terminales protegidos con fusible  | _                        | _                         | 0                         | 0           | 0           | 0           |
| Suministro externo de 24 V CC (SMPS,     | 0                        | 0                         | 0                         | 0           | 0           | _           |
| 5 A)                                     | 0                        | 0                         | 0                         | 0           | 0           | 0           |
| Supervisión de temperatura externa       | -                        | -                         | 0                         | 0           | 0           | 0           |
| Dimensiones                              | •                        |                           |                           | •           | •           |             |
| Altura, mm (in)                          | 2204 (86,8)              | 2204 (86,8)               | 2204 (86,8)               | 2204 (86,8) | 2204 (86,8) | 2204 (86,8) |
|                                          | 222 (24.5)               |                           | 1600 (62.0)               | 2400 (94,5) | 2000 (78,7) | 2800 (110,2 |
| Anchura, mm (in)                         | 800 (31,5)               | 1400 (55,1)               | 1000 (03,0)               | 2400 (34,3) | 2000 (70,7) | 2000 (110,2 |
| Anchura, mm (in)<br>Profundidad, mm (in) | 800 (31,5)<br>606 (23,9) | 1400 (55,1)<br>606 (23,9) | 1600 (63,0)<br>606 (23,9) | 606 (23,9)  | 606 (23,9)  | 606 (23,9)  |

#### Tabla 4.8 Convertidores F8-F13, 525-690 V

- 1) Todas las potencias de salida se determinan con sobrecarga normal. La salida se mide a 690 V (kW) y 575 V (CV).
- 2) S = estándar, O = opcional, y una raya indica que la opción no está disponible.



### 4.5 Disponibilidad de los kits

| Descripción del kit <sup>1)</sup>                 | E1 | E2 | F1 | F2 | F3 | F4 | F8 | F9 | F10 | F11 | F12 | F13 |
|---------------------------------------------------|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| USB en la puerta                                  | 0  | _  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| LCP numérico                                      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| LCP gráfico <sup>2)</sup>                         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| Cable del LCP, 3 m (9 ft)                         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| Kit de montaje del LCP numérico                   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| (LCP, sujeciones, junta y cable)                  |    |    |    |    |    |    |    |    |     |     |     |     |
| Kit de montaje del LCP gráfico                    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| (LCP, sujeciones, junta y cable)                  |    |    |    |    |    |    |    |    |     |     |     |     |
| Kit de montaje para todos los LCP                 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| (sujeciones, junta y cable)                       |    |    |    |    |    |    |    |    |     |     |     |     |
| Entrada superior para los cables del motor        | _  | _  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| Entrada superior para cables de red               | -  | _  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| Entrada superior para cables de red con           | -  | _  | _  | _  | 0  | 0  | -  | -  | -   | _   | -   | -   |
| desconexión                                       |    |    |    |    |    |    |    |    |     |     |     |     |
| Entrada superior para cables de fieldbus          | -  | 0  | -  | -  | -  | -  | -  | -  | -   | _   | -   | -   |
| Terminales de motor comunes                       | -  | _  | 0  | 0  | 0  | 0  | -  | -  | -   | _   | -   | -   |
| Alojamiento NEMA 3R                               | -  | 0  | _  | -  | -  | -  | -  | -  | -   | -   | -   | -   |
| Pedestal                                          | 0  | 0  | _  | _  | -  | -  | _  | _  | -   | -   | -   | -   |
| Placa de opciones de entrada                      | 0  | 0  | _  | _  | -  | -  | _  | _  | -   | -   | -   | -   |
| Conversión a IP20                                 | -  | 0  | _  | _  | -  | -  | _  | -  | -   | _   | -   | -   |
| Refrigeración de salida superior (exclusivamente) | -  | 0  | _  | -  | -  | -  | -  | -  | -   | -   | -   | -   |
| Refrigeración de canal posterior (entrada         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| posterior / salida posterior)                     |    |    |    |    |    |    |    |    |     |     |     |     |
| Refrigeración de canal posterior (entrada         | -  | 0  | -  | -  | -  | -  | -  | -  | -   | -   | -   | -   |
| inferior / salida superior)                       |    |    |    |    |    |    |    |    |     |     |     |     |

#### Tabla 4.9 Kits disponibles para los alojamientos E1-E2, F1-F4 y F8-F13

<sup>1)</sup> S = estándar, O = opcional, y una raya indica que el kit no está disponible para el alojamiento en cuestión. Para obtener las referencias y las descripciones de los kits, consulte el capétulo 13.2 Números de pedido de los kits de opción.

<sup>2)</sup> El LCP gráfico incorpora de serie los alojamientos E1-E2, F1-F4 y F8-F13. Si se requiere más de un LCP gráfico, el kit está disponible para su compra.



### 5 Funciones del producto

## 5.1 Funciones de funcionamiento automatizadas

Las funciones operativas automatizadas estarán activas mientras el convertidor de frecuencia esté en funcionamiento. La mayoría no necesitan programación ni configuración. El convertidor tiene todo un abanico de funciones de protección integradas para protegerse a sí mismo y al motor cuando está en funcionamiento.

Para obtener más detalles sobre cualquier configuración requerida y, en especial, sobre los parámetros del motor, consulte la *Guía de programación*.

#### 5.1.1 Protección ante cortocircuitos

#### Motor (entre fases)

El convertidor está protegido contra cortocircuitos en el lado del motor con la medición de la corriente en cada una de las tres fases del motor. Un cortocircuito entre dos fases de salida provoca una sobreintensidad en el inversor. El inversor se apaga cuando la corriente de cortocircuito excede el valor permitido (*Alarma 16, Trip Lock (Bloqueo por alarma*)).

#### Lado de alimentación

Un convertidor que funciona correctamente limita la corriente que puede consumir de la fuente de alimentación. En cualquier caso, se recomienda utilizar fusibles y/o magnetotérmicos en el lado de la fuente de alimentación, a modo de protección en caso de avería de componentes internos del convertidor (primer fallo). Los fusibles del lado de alimentación son obligatorios para la conformidad con UL.

#### AVISO!

Para garantizar la conformidad con las normas CEI 60364 (CE) o NEC 2009 (UL), es obligatorio utilizar fusibles y/o magnetotérmicos.

#### Resistencia de frenado

El convertidor está protegido contra cortocircuitos en la resistencia de frenado.

#### Carga compartida

Para proteger el bus de CC contra cortocircuitos y los convertidores contra sobrecargas, instale los fusibles de CC en serie con los terminales de carga compartida de todas las unidades conectadas.

#### 5.1.2 Protección contra sobretensión

#### Sobretensión generada por el motor

La tensión del enlace de CC aumenta cuando el motor actúa como generador. Esto ocurre en los siguientes casos:

- La carga hace rotar el motor a una frecuencia de salida constante del convertidor de frecuencia, es decir, la carga genera energía.
- Durante la desaceleración (rampa de deceleración), si el momento de inercia es alto, la fricción es baja y el tiempo de deceleración es demasiado corto para que la energía sea disipada como una pérdida en el sistema de convertidores.
- Un ajuste incorrecto de la compensación de deslizamiento produce una tensión más alta en el enlace de CC.
- Fuerza contraelectromotriz desde el funcionamiento del motor PM. Si queda en inercia a unas r/min altas, la fuerza contraelectromotriz del motor PM puede superar, potencialmente, la tolerancia de tensión máxima del convertidor y provocar daños. Para evitar esta situación, el valor del parámetro 4-19 Max Output Frequency se limita automáticamente de acuerdo con un cálculo interno basado en el valor del parámetro 1-40 Back EMF at 1000 RPM, el parámetro 1-25 Motor Nominal Speed y el parámetro 1-39 Motor Poles.

#### AVISO!

Para evitar que el motor supere la velocidad (p. ej., debido a efectos excesivos de autorrotación), equipe el convertidor de frecuencia con una resistencia de frenado.

La sobretensión se puede controlar o bien con una función de freno (parámetro 2-10 Brake Function) o con un control de sobretensión (parámetro 2-17 Over-voltage Control).

#### Funciones de freno

Conecte una resistencia de frenado para disipar el exceso de energía de freno. La conexión de una resistencia de frenado permite una mayor tensión de CC durante el frenado.

El freno de CA es una alternativa para mejorar el frenado sin usar una resistencia de frenado. Esta función controla una sobremagnetización del motor cuando funciona como generador. El aumento de las pérdidas eléctricas en el motor permite que la función OVC aumente el par de frenado sin superar el límite de sobretensión.



#### AVISO!

El freno de CA no es tan eficaz como el freno dinámico con resistencia.

#### Control de sobretensión (OVC)

Al prolongar automáticamente el tiempo de deceleración, el OVC reduce el riesgo de desconexión del convertidor debido a una sobretensión en el enlace de CC.

#### AVISO!

El OVC se puede activar para un motor PM con núcleo de control, PM VVC+, flujo OL y flujo CL para motores PM

## 5.1.3 Detección de que falta una fase del motor

La función Falta una fase del motor (parámetro 4-58 Missing Motor Phase Function) está activada de manera predeterminada para evitar daños en el motor en caso de caída de fase. El ajuste predeterminado es 1000 ms, pero se puede ajustar para una detección más rápida.

### 5.1.4 Detección de desequilibrios en la tensión de alimentación

El funcionamiento en condiciones graves de desequilibrio de la tensión de alimentación reduce la vida útil del motor y el convertidor. Si el motor se utiliza continuamente cerca del valor nominal de carga, las condiciones se consideran duras. El ajuste predeterminado desconecta el convertidor de frecuencia en caso de desequilibrio de la tensión de alimentación (parámetro 14-12 Response to Mains Imbalance).

#### 5.1.5 Conmutación en la salida

Está permitido añadir un conmutador a la salida entre el motor y el convertidor, pero pueden aparecer mensajes de fallo. Danfoss no recomienda utilizar esta función con convertidores de 525-690 V conectados a una red de alimentación IT.

#### 5.1.6 Protección de sobrecarga

#### Límite de par

La función de límite de par protege el motor ante sobrecargas, independientemente de la velocidad. El límite de par se controla en *parámetro 4-16 Torque Limit Motor Mode* y *parámetro 4-17 Torque Limit Generator Mode*. El intervalo de tiempo anterior a que la advertencia de límite de par realice la desconexión se controla en el *parámetro 14-25 Trip Delay at Torque Limit*.

#### Límite de intensidad

El límite de intensidad se controla en el parámetro 4-18 Current Limit y el intervalo de tiempo anterior a la desconexión del convertidor se controla en el parámetro 14-24 Trip Delay at Current Limit.

#### Límite de velocidad

Límite mínimo de velocidad: el *Parámetro 4-11 Motor Speed Low Limit [RPM]* o el *parámetro 4-12 Motor Speed Low Limit [Hz]* limitan el intervalo de velocidad operativa mínima del convertidor.

Límite máximo de velocidad: el *Parámetro 4-13 Motor Speed High Limit [RPM]* o el *parámetro 4-19 Max Output Frequency* limitan la velocidad máxima de salida que puede proporcionar el convertidor.

#### Relé termoelectrónico (ETR)

El ETR es un dispositivo electrónico que simula un relé bimetal basado en mediciones internas. Las características se muestran en la *llustración 5.1*.

#### Límite tensión

El inversor se apaga para proteger los transistores y los condensadores del enlace de CC cuando se alcanza un determinado nivel de tensión de codificación fija.

#### Sobretemperatura

El convertidor tiene sensores de temperatura integrados y reacciona inmediatamente a valores críticos mediante los límites de codificación fija.

#### 5.1.7 Protecc. rotor bloqueado

Puede haber situaciones en las que el rotor se bloquee debido a una carga excesiva o a otros factores. El rotor bloqueado no puede producir una refrigeración suficiente, lo que a su vez puede sobrecalentar el bobinado del motor. El convertidor de frecuencia puede detectar la situación de rotor bloqueado con un control de flujo de PM en lazo abierto y control PM VVC+ (parámetro 30-22 Locked Rotor Detection).

#### 5.1.8 Reducción de potencia automática

El convertidor de frecuencia comprueba constantemente los siguientes niveles críticos:

- Alta temperatura en la tarjeta de control o el disipador.
- Carga del motor alta.
- Tensión del enlace de CC alta.
- Velocidad del motor baja.

Como respuesta a un nivel crítico, el convertidor de frecuencia ajusta la frecuencia de conmutación. Para temperaturas internas altas y velocidades de motor bajas, el convertidor de frecuencia también puede forzar el patrón de PWM a SFAVM.



#### AVISO!

La reducción de potencia automática es diferente cuando parámetro 14-55 Output Filter está ajustado en [2] Filtro senoidal fijo.

## 5.1.9 Optimización automática de la energía

La optimización automática de energía (AEO) dirige el convertidor de frecuencia para que controle continuamente la carga del motor y ajuste la tensión de salida para aumentar al máximo la eficacia. Con una carga ligera, la tensión disminuye y la intensidad del motor se reduce al mínimo. El motor obtiene:

- Mayor rendimiento.
- Calentamiento reducido.
- Funcionamiento más silencioso.

No es necesario seleccionar una curva de V/Hz porque el convertidor de frecuencia ajusta automáticamente la tensión del motor.

## 5.1.10 Modulación automática de frecuencia de conmutación

El convertidor de frecuencia genera pulsos eléctricos cortos para formar un patrón de onda de CA. La frecuencia de conmutación es el ritmo de estos pulsos. Una frecuencia de conmutación baja (ritmo de pulsos lento) causa ruido audible en el motor, de modo que es preferible una frecuencia de conmutación más elevada. Una frecuencia de conmutación alta, sin embargo, genera calor en el convertidor de frecuencia, lo que puede limitar la cantidad de corriente disponible en el motor.

La modulación automática de frecuencia de conmutación regula estas condiciones automáticamente para ofrecer la frecuencia de conmutación más elevada sin sobrecalentar el convertidor de frecuencia. Al ofrecer una frecuencia de conmutación alta regulada, se silencia el ruido de funcionamiento del motor a velocidades bajas, cuando el control del ruido audible es crítico, y se produce una plena potencia de salida al motor cuando la demanda lo requiere.

## 5.1.11 Reducción automática de potencia por alta frecuencia de conmutación

El convertidor de frecuencia está diseñado para un funcionamiento continuo a plena carga a frecuencias de conmutación comprendidas entre 1,5 y 2 kHz para 380-480 V, y entre 1 y 1,5 kHz para 525-690 V. El rango de frecuencia depende del nivel de potencia y de la tensión nominal. Una frecuencia de conmutación que supere el rango máximo permitido genera un aumento del calor en el convertidor de frecuencia y requiere que se reduzca la potencia de la intensidad de salida.

Una característica automática del convertidor de frecuencia es que el control de la frecuencia de conmutación depende de la carga. Esta característica permite al motor obtener la máxima frecuencia de conmutación permitida por la carga.

## 5.1.12 Rendimiento de fluctuación de potencia

El convertidor de frecuencia soporta fluctuaciones de la alimentación como:

- Transitorios.
- Cortes momentáneos.
- Caídas cortas de tensión.
- Sobretensiones.

El convertidor de frecuencia compensa automáticamente las tensiones de entrada de ±10 % del valor nominal para ofrecer un par y una tensión nominal del motor completos. Con el reinicio automático seleccionado, el convertidor de frecuencia se enciende automáticamente tras una desconexión de tensión. Con la función de motor en giro, el convertidor de frecuencia se sincroniza con el giro del motor antes del arranque.

#### 5.1.13 Amortiguación de resonancia

La amortiguación de resonancia elimina el ruido de resonancia del motor a alta frecuencia. Está disponible la amortiguación de frecuencia automática o seleccionada manualmente.

## 5.1.14 Ventiladores controlados por temperatura

El funcionamiento de los ventiladores de refrigeración interna se regula mediante sensores ubicados en el convertidor de frecuencia. Los ventiladores de refrigeración suelen no funcionar durante el funcionamiento a baja carga, así como en el modo reposo y en espera. Estos sensores reducen el ruido, aumentan el rendimiento y alargan la vida útil del ventilador.



#### 5.1.15 Conformidad con CEM

Las interferencias electromagnéticas (EMI) y las interferencias de radiofrecuencia (RFI) son perturbaciones que pueden afectar al circuito eléctrico a causa de la inducción o radiación electromagnética de una fuente externa. El convertidor de frecuencia está diseñado para cumplir con la norma de productos CEM para convertidores de frecuencia CEI 61800-3 y la norma europea EN 55011. Los cables del motor deben estar apantallados y correctamente acabados para cumplir con los niveles de emisión de la norma EN 55011. Para obtener más información sobre el rendimiento de CEM, consulte el capétulo 10.15.1 Resultados de las pruebas de CEM.

## 5.1.16 Aislamiento galvánico de los terminales de control

Todos los terminales de control y los terminales de relé de salida están galvánicamente aislados de la alimentación, lo cual protege completamente los circuitos de control de la intensidad de entrada. Los terminales de relé de salida necesitan su propia toma de tierra. Estos aislamientos cumplen con los estrictos requisitos de protección de tensión muy baja (PELV) para el aislamiento.

## Los componentes que conforman el aislamiento galvánico son:

- Fuente de alimentación, incluyendo aislamiento
  de señal
- Accionamiento de puerta para los IGBT, los transformadores de disparo y los optoacopladores.
- Los transductores de efecto Hall de intensidad de salida.

#### 5.2 Funciones de aplicación personalizadas

Las funciones de aplicación personalizadas son las funciones más comunes programadas en el convertidor de frecuencia para un rendimiento mejorado del sistema. Requieren una programación o configuración mínimas. Consulte la *guía de programación* para obtener instrucciones sobre la activación de estas funciones.

#### 5.2.1 Adaptación automática del motor

La adaptación automática del motor (AMA) es un procedimiento de prueba automatizado utilizado para medir las características eléctricas del motor. El AMA proporciona un modelo electrónico preciso del motor y permite al convertidor de frecuencia calcular el rendimiento y la eficacia óptimos. Llevar a cabo el procedimiento AMA también aumenta al máximo la función de optimización automática de energía del convertidor de frecuencia. El AMA se realiza sin que el motor esté girando y sin desacoplar la carga del motor.

#### 5.2.2 Controlador PID integrado

El controlador proporcional, integral y derivativo (PID) integrado elimina la necesidad de dispositivos de control auxiliares. El controlador PID mantiene un control constante de los sistemas de lazo cerrado en los que se deben mantener regulados la presión, el flujo, la temperatura u otros requisitos del sistema.

El convertidor de frecuencia puede utilizar dos señales de realimentación de dos dispositivos diferentes, lo cual permite regular el sistema con requisitos de realimentación diferentes. El convertidor de frecuencia toma decisiones de control comparando las dos señales para optimizar el rendimiento del sistema.

#### 5.2.3 Protección térmica motor

La protección térmica del motor se puede proporcionar mediante:

- Medición directa de la temperatura mediante un
  - sensor KTY o PTC en los bobinados del motor, con conexión a una entrada analógica o digital estándar.
  - PT100 o PT1000 en los bobinados y cojinetes del motor, conectado a VLT<sup>®</sup> Sensor Input Card MCB 114.
  - Entrada de termistor PTC en la tarjeta VLT<sup>®</sup> PTC Thermistor Card MCB 112 (con certificación ATEX).
- Mediante un conmutador termomecánico (tipo Klixon) en una entrada digital.



Relé termoelectrónico (ETR) integrado

El ETR calcula la temperatura del motor midiendo la intensidad, la frecuencia y el tiempo de funcionamiento. El convertidor de frecuencia muestra la carga térmica del motor en forma de porcentaje y puede emitir una advertencia cuando llega a un valor de consigna de sobrecarga programable.

Las opciones programables en la sobrecarga permiten que el convertidor de frecuencia detenga el motor, reduzca la salida o ignore la condición. Incluso a velocidades bajas, el convertidor de frecuencia cumple con las normas de sobrecarga electrónica del motor 12t de clase 20.

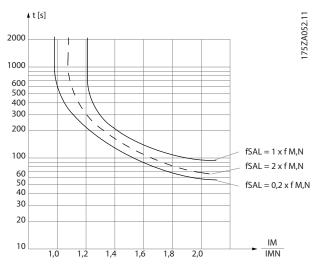



Ilustración 5.1 Características ETR

el eje X muestra la relación entre los valores  $I_{motor}$  e  $I_{motor}$  nominal. El eje Y muestra el intervalo en segundos antes de que el ETR se corte y desconecte el convertidor de frecuencia. Las curvas muestran la velocidad nominal característica, al doble de la velocidad nominal y al 0,2 x de la velocidad nominal.

A una velocidad inferior, el ETR se desconecta con un calentamiento inferior debido a una menor refrigeración del motor. De ese modo, el motor queda protegido frente a un posible sobrecalentamiento, incluso a baja velocidad. La función ETR calcula la temperatura del motor en función de la intensidad y la velocidad reales. La temperatura calculada puede verse como un parámetro de lectura de datos en el *parámetro 16-18 Motor Thermal*. También está disponible una versión especial del ETR para motores EX-e en zonas ATEX. Esta función hace posible introducir una curva específica para proteger el motor Ex-e. Consulte las instrucciones de configuración en la *guía de programación*.

## 5.2.4 Protección térmica del motor para motores Ex-e

El convertidor está equipado con una función de control térmico ETR ATEX para el funcionamiento de motores Execonforme a la norma EN-60079-7. Cuando se combina con un dispositivo de control PTC homologado para ATEX, como la opción de la tarjeta del termistor VLT® PTC Thermistor Card MCB 112 o un dispositivo externo, la instalación no requiere la aprobación individual por parte de una organización homologada.

La función de control térmico ATEX ETR permite el uso de un motor Ex-e en lugar de un motor Ex-d, que resulta más caro, pesado y voluminoso. Esta función garantiza que el convertidor limite la intensidad del motor para evitar un sobrecalentamiento.

#### Requisitos relativos al motor Ex-e

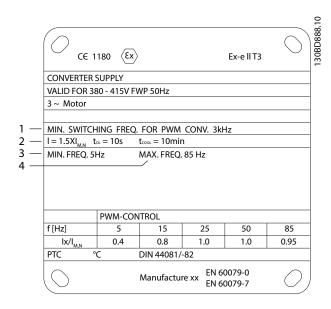
- Asegúrese de que el motor Ex-e esté homologado para su uso en áreas peligrosas (zona ATEX 1/21, zona ATEX 2/22) con convertidores de frecuencia. El motor debe estar certificado para la zona de riesgo específica.
- Instale el motor Ex-e en la zona 1/21 o 2/22 del área de riesgo, conforme a su homologación.

#### AVISO!

Instale el convertidor fuera del área peligrosa.

- Asegúrese de que el motor Ex-e cuente con un dispositivo de protección de sobrecarga homologado por ATEX. Dicho dispositivo controlará la temperatura de los bobinados del motor. En caso de alcanzarse un nivel de temperatura crítico o de producirse una avería, el dispositivo desconectará el motor.
  - La opción VLT® PTC Thermistor MCB 112 ofrece un control de la temperatura del motor homologado para ATEX. Un requisito previo es que el convertidor cuente con 3-6 termistores PTC en serie, de conformidad con las normas DIN 44081 o 44082.
  - De forma alternativa, también puede usarse un dispositivo externo de protección PTC con certificación ATEX.




- Se requiere un filtro senoidal cuando se dan las siguientes circunstancias:
  - Los cables largos (picos de tensión) o un aumento de la tensión de red producen tensiones que exceden la tensión máxima permitida en los terminales del motor.
  - La frecuencia de conmutación mínima del convertidor no cumple los requisitos indicados por el fabricante del motor. La frecuencia de conmutación mínima del convertidor se muestra como valor predeterminado en el parámetro 14-01 Switching Frequency.

#### Compatibilidad del motor y el convertidor

En el caso de motores certificados conforme a la norma EN-60079-7, el fabricante del motor facilita una serie de límites y normas en la hoja de datos o en la placa de características del motor. Durante la planificación, instalación, puesta en servicio, funcionamiento y mantenimiento, respete los límites y reglas indicados por el fabricante en lo referente a:

- Frecuencia de conmutación mínima.
- Corriente máxima.
- Frecuencia mínima del motor.
- Frecuencia máxima del motor.

En la *llustración 5.2* se indica la ubicación de estos requisitos en la placa de características del motor.



| 1 | Frecuencia de conmutación mínima |
|---|----------------------------------|
| 2 | Corriente máxima                 |
| 3 | Frecuencia mínima del motor      |
| 4 | Frecuencia máxima del motor      |

Ilustración 5.2 Placa de características del motor con los requisitos del convertidor

A la hora de acoplar el convertidor y el motor, Danfoss especifica los siguientes requisitos adicionales para garantizar la adecuada protección térmica del motor:

- No supere la proporción máxima permitida entre el tamaño del convertidor y el del motor. El valor normal es I<sub>VLT, n</sub>≤2xI<sub>m,n</sub>
- Tenga en cuenta todas las caídas de tensión del convertidor al motor. Si el motor funciona con una tensión más baja de la indicada en las características u/f, puede aumentar la corriente, lo cual activará una alarma.

Para obtener más información, consulte el ejemplo de aplicación disponible en el *capétulo 12 Ejemplos de aplicaciones*.



#### 5.2.5 Corte de red

Durante un corte de red, el convertidor de frecuencia sigue funcionando hasta que la tensión del enlace de CC desciende por debajo del nivel mínimo de parada. Generalmente, dicho nivel es un 15 % inferior a la tensión de alimentación nominal más baja. La tensión de red antes del corte y la carga del motor determinan el tiempo necesario para la parada de inercia del convertidor.

El convertidor de frecuencia se puede configurar (parámetro 14-10 Mains Failure) para diferentes tipos de comportamientos durante un corte de red:

- Bloqueo por alarma cuando el enlace de CC se agote.
- Inercia con función de motor en giro cuando vuelva la alimentación (parámetro 1-73 Flying Start).
- Energía regenerativa.
- Rampa de deceleración controlada.

#### Función de Motor en giro

Esta selección hace posible «atrapar» un motor que, por un corte de red, gira sin control. Esta opción es importante para centrífugas y ventiladores.

#### Energía regenerativa

Esta selección garantiza que el convertidor de frecuencia funcione mientras haya energía en el sistema. En cortes de red breves, el funcionamiento se restablece cuando vuelve la alimentación, sin que se detenga la aplicación o se pierda el control en ningún momento. Se pueden seleccionar diferentes variantes de energía regenerativa.

Configure el comportamiento del convertidor de frecuencia en caso de corte de red en el *parámetro 14-10 Mains* Failure y el *parámetro 1-73 Flying Start*.

#### 5.2.6 Rearrangue automático

El convertidor de frecuencia puede programarse para reiniciar el motor automáticamente tras una pequeña desconexión, como una fluctuación o pérdida de potencia momentáneas. Esta característica elimina la necesidad de reinicio manual y mejorar el funcionamiento automatizado para sistemas controlados remotamente. Se pueden limitar tanto la cantidad de intentos de reinicio como la duración entre intentos.

#### 5.2.7 Par completo a velocidad reducida

El convertidor de frecuencia sigue una curva V/Hz variable para ofrecer un par del motor completo incluso a velocidades reducidas. El par de salida completo puede coincidir con la velocidad de funcionamiento máxima diseñada del motor. Este convertidor actúa de forma diferente a los convertidores de par variable y a los convertidores de par constante. Los convertidores de frecuencia de par variable ofrecen un par motor reducido a baja velocidad. Los convertidores de frecuencia de par constante proporcionan un exceso de tensión, calor y ruido del motor a una velocidad inferior a la máxima.

#### 5.2.8 Bypass de frecuencia

En algunas aplicaciones, el sistema puede tener velocidades de funcionamiento que crean una resonancia mecánica. Esto puede generar un ruido excesivo y puede dañar los componentes mecánicos del sistema. El convertidor de frecuencia dispone de cuatro anchos de banda de frecuencia de bypass programables, que permiten al motor evitar velocidades que generen resonancia en el sistema.

#### 5.2.9 Precalentador del motor

Para precalentar un motor en un entorno húmedo o frío, puede suministrarse continuamente una pequeña cantidad de corriente CC al motor para protegerlo de la condensación y de un arranque en frío. Esta función puede eliminar la necesidad de resistencia calefactora.

#### 5.2.10 Ajustes programables

El convertidor de frecuencia tiene cuatro ajustes que se pueden programar independientemente. Utilizando un ajuste múltiple, es posible alternar entre funciones programadas independientemente activadas por entradas digitales o una orden de serie. Los ajustes independientes se utilizan, por ejemplo, para cambiar las referencias, para el funcionamiento día/noche o verano/invierno o para controlar varios motores. En el LCP se muestra el ajuste activo.

Los datos de ajuste se pueden copiar de un convertidor de frecuencia a otro descargando la información desde el LCP extraíble.

#### 5.2.11 Smart Logic Control (SLC)

El Smart Logic Control (SLC) es una secuencia de acciones definidas por el usuario (consulte el *parámetro 13-52 SL Controller Action* [x]) y ejecutadas por el SLC cuando este evalúa como VERDADERO el evento asociado definido por el usuario (consulte el *parámetro 13-51 SL Controller Event* [x]).

La condición para que se produzca un evento puede ser un estado determinado o que la salida de una regla lógica o un operando comparador pase a ser VERDADERO. Esta condición da lugar a una acción asociada, como se muestra en la *llustración 5.3*.

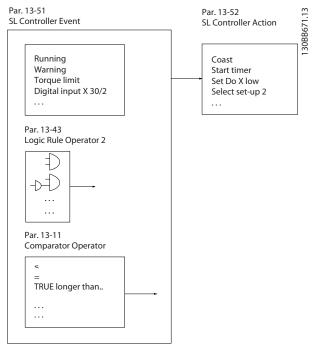



Ilustración 5.3 Evento y acción SLC

Los eventos y acciones están numerados y enlazados en parejas (estados), lo que significa que cuando el evento [0] se cumple (cuando alcanza el valor VERDADERO), se ejecuta la acción [0]. Después de ejecutarse la primera acción, se evalúan las condiciones del siguiente evento. Si dicho evento se evalúa como verdadero, entonces se ejecutará la acción correspondiente. En cada momento solo se evalúa un evento. Si un evento se evalúa como falso, no sucede nada en el SLC durante el intervalo de exploración actual y no se evaluarán otros eventos. Cuando se inicia el SLC, solo evalúa el evento [0] en cada intervalo de exploración. El SLC ejecuta una acción [0] e inicia la evaluación del siguiente evento solo si el evento [0] se considera verdadero. Se pueden programar de 1 a 20 eventos y acciones.

Cuando se haya ejecutado el último evento o acción, la secuencia volverá a comenzar desde el evento o acción [0]. En la *llustración 5.4* se muestra un ejemplo con cuatro eventos/acciones:

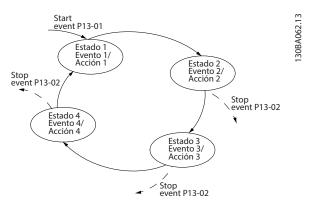



Ilustración 5.4 Orden de ejecución cuando están programados 4 eventos/acciones

#### Comparadores

Los comparadores se usan para comparar variables continuas (frecuencia o intensidad de salida, entrada analógica, etc.) con valores fijos predeterminados.

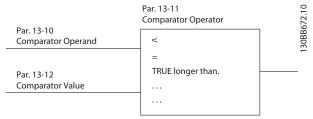



Ilustración 5.5 Comparadores

#### Reglas lógicas

Se pueden combinar hasta tres entradas booleanas (entradas VERDADERO/FALSO) de temporizadores, comparadores, entradas digitales, bits de estado y eventos mediante los operadores lógicos Y, O y NO.

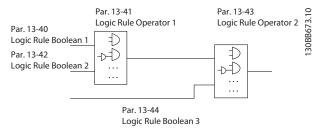



Ilustración 5.6 Reglas lógicas



#### 5.2.12 Safe Torque Off

La función de Safe Torque Off (STO) se utiliza para detener el convertidor de frecuencia en situaciones de parada de emergencia. El convertidor puede utilizar la función STO con motores síncronos, asíncronos y de magnetización permanente.

Para obtener más información acerca de la función Safe Torque Off, incluidas su instalación y puesta en servicio, consulte el *Manual de funcionamiento de Safe Torque Off para convertidores VLT® de la serie FC*.

#### Responsabilidad

El cliente debe garantizar que el personal sabe cómo instalar y hacer funcionar la función de Safe Torque Off porque:

- Ha leído y comprendido las normas de seguridad relativas a la salud, la seguridad y la prevención de accidentes.
- Ha entendido las indicaciones generales y de seguridad incluidas en el Manual de funcionamiento de Safe Torque Off para convertidores VLT® de la serie FC.
- Conoce a la perfección las normas generales y de seguridad de la aplicación específica.

## 5.3 Funciones específicas del convertidor VLT® HVAC Drive

Un convertidor de frecuencia saca partido de que las bombas y los ventiladores centrífugos sigan las leyes de proporcionalidad de dichas aplicaciones. Para obtener más información, consulte el *capétulo 5.3.1 Uso de un convertidor para ahorrar energía*.

## 5.3.1 Uso de un convertidor para ahorrar energía

La gran ventaja de emplear un convertidor para controlar la velocidad de los ventiladores y las bombas está en el ahorro de electricidad. Si se compara con sistemas de control y tecnologías alternativos, un convertidor es el sistema de control de energía óptimo para controlar sistemas de ventiladores y bombas.

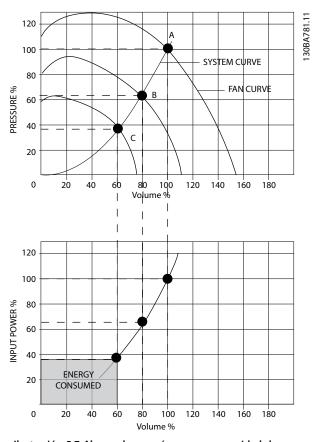



Ilustración 5.7 Ahorro de energía con una capacidad de ventilador reducida

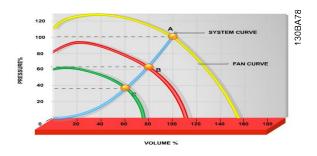


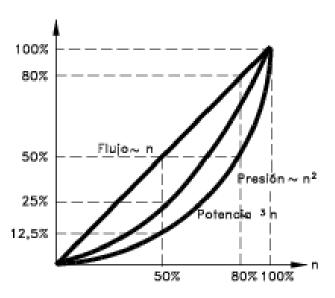

Ilustración 5.8 Curvas de ventilador para bajos volúmenes de ventilación



#### Ejemplo de ahorro de energía

La *llustración 5.9* describe la dependencia del caudal, la presión y el consumo de energía de las r/min. Como se muestra en la *llustración 5.9*, el caudal se controla cambiando las r/min. Al reducir la velocidad solo un 20 % respecto a la velocidad nominal, el caudal también se reduce en un 20 %. El caudal es directamente proporcional a las r/min. El consumo eléctrico, sin embargo, se reduce en un 50 %

Si el sistema únicamente funciona con un caudal del 100 % durante unos días al año, mientras que el promedio es inferior al 80 % del caudal nominal, el ahorro de energía es incluso superior al 50 %.


Caudal: 
$$\frac{Q_1}{Q_2} = \frac{n_1}{n_2}$$

Presión:  $\frac{H_1}{H_2} = \left(\frac{n_1}{n_2}\right)^2$ 

Potencia:  $\frac{P_1}{P_2} = \left(\frac{n_1}{n_2}\right)^3$ 

| Q              | Caudal           | Р              | Potencia             |
|----------------|------------------|----------------|----------------------|
| Q <sub>1</sub> | Caudal nominal   | P <sub>1</sub> | Potencia nominal     |
| Q <sub>2</sub> | Caudal reducido  | P <sub>2</sub> | Potencia reducida    |
| Н              | Presión          | n              | Control de velocidad |
| H <sub>1</sub> | Presión nominal  | n <sub>1</sub> | Velocidad nominal    |
| H <sub>2</sub> | Presión reducida | n <sub>2</sub> | Velocidad reducida   |

Tabla 5.1 Definiciones de las leyes de proporcionalidad



175HA208.10 Ilustración 5.9 Leyes de proporcionalidad

#### Comparación de ahorro de energía

El convertidor de Danfoss ofrece un gran ahorro en comparación con los productos tradicionales de ahorro de energía. El convertidor de frecuencia regula la velocidad del ventilador en función de la carga térmica del sistema y funciona como un sistema de gestión de edificios (BMS).

El gráfico (*Ilustración 5.10*) muestra el ahorro de energía típico que puede obtenerse con 3 productos conocidos cuando el volumen del ventilador se reduce hasta un 60 %. Como muestra el gráfico, puede conseguirse en equipos convencionales más del 50 % del ahorro energético.

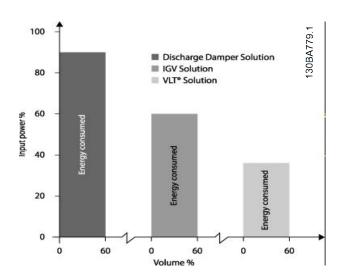



Ilustración 5.10 Los tres sistemas de ahorro de energía convencionales

Los amortiguadores de descarga reducen el consumo de energía. Las aletas guiadoras variables de entrada ofrecen un 40 % de reducción pero su instalación es costosa. El convertidor de Danfoss reduce el consumo de energía en más de un 50 % y es fácil de instalar.

#### Ejemplo con caudal variable durante 1 año

La *llustración 5.11* se basa en las características de una bomba según la hoja de datos de una bomba. El resultado obtenido muestra un ahorro de energía superior al 50 % para el caudal dado, durante un año. El periodo de amortización depende del precio del kWh y del precio del convertidor de frecuencia. En este ejemplo, es inferior a un año comparado con las válvulas y la velocidad constante.

Danfvis

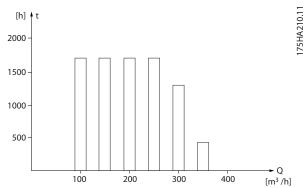



Ilustración 5.11 Distribución del caudal durante 1 año

| m³/h | Dist | tribución | Regul                          | Regulación por válvula |                                | ntrol de la unidad |
|------|------|-----------|--------------------------------|------------------------|--------------------------------|--------------------|
|      | %    | Horas     | Potencia                       | Consumo                | Potencia                       | Consumo            |
|      |      |           | A <sub>1</sub> -B <sub>1</sub> | kWh                    | A <sub>1</sub> -C <sub>1</sub> | kWh                |
| 350  | 5    | 438       | 42,5                           | 18615                  | 42,5                           | 18615              |
| 300  | 15   | 1314      | 38,5                           | 50589                  | 29,0                           | 38106              |
| 250  | 20   | 1752      | 35,0                           | 61320                  | 18,5                           | 32412              |
| 200  | 20   | 1752      | 31,5                           | 55188                  | 11,5                           | 20148              |
| 150  | 20   | 1752      | 28,0                           | 49056                  | 6,5                            | 11388              |
| 100  | 20   | 1752      | 23,0                           | 40296                  | 3,5                            | 6132               |
| Σ    | 100  | 8760      | _                              | 275064                 | -                              | 26801              |

Tabla 5.2 Cálculo del ahorro energético

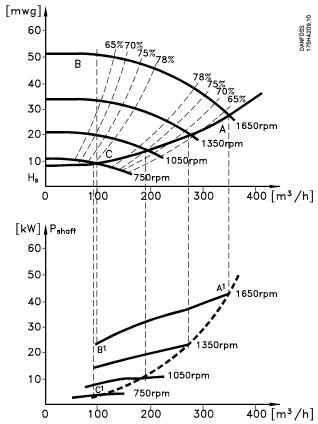
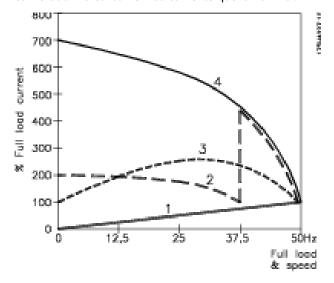



Ilustración 5.12 Ahorro energético en una aplicación de bomba

## 5.3.2 Uso de un convertidor para obtener un mejor control

Si se utiliza un convertidor para controlar el caudal o la presión de un sistema, se obtiene un control mejorado. Un convertidor de frecuencia puede variar la velocidad de un ventilador o una bomba, de forma que puede obtenerse un control variable del caudal y la presión gracias al control de PID integrado. Además, un convertidor puede adaptar rápidamente la velocidad de un ventilador o de una bomba a las nuevas condiciones de caudal o presión del sistema.


#### Compensación de cos $\phi$

Normalmente, el VLT® HVAC Drive FC 102 tiene un cos  $\phi$  igual a 1 y proporciona una corrección del factor de potencia para el cos  $\phi$  del motor, lo que significa que no es necesario tener en cuenta el cos  $\phi$  del motor cuando se dimensiona la unidad de corrección del factor de potencia.

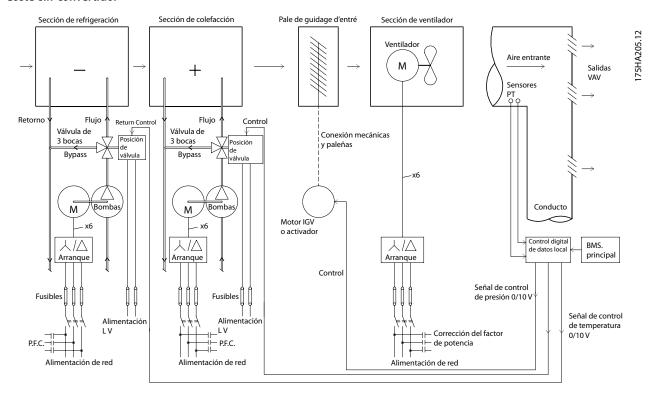


## No es necesario un arrancador en estrella/triángulo ni un arrancador suave

Cuando se necesita arrancar motores relativamente grandes, en muchos países es necesario usar equipos que limitan la tensión de arranque. En sistemas más tradicionales, se suele utilizar un arrancador en estrella/ triángulo o un arrancador suave se utiliza habitualmente. Estos arrancadores de motor no se necesitan si se usa un convertidor. Como se muestra en la *llustración 5.13*, un convertidor no consume más corriente que la nominal.



| 1 | VLT <sup>®</sup> HVAC Drive FC 102               |
|---|--------------------------------------------------|
| 2 | Arrancador en estrella/triángulo                 |
| 3 | Arrancador suave                                 |
| 4 | Arranque directamente con la alimentación de red |


Ilustración 5.13 Consumo de corriente con un convertidor de frecuencia.



### 5.3.3 Uso de un convertidor para ahorrar dinero

El convertidor de frecuencia elimina la necesidad de algunos equipos que se usarían normalmente. Los dos sistemas mostrados en la *llustración 5.14* y la *llustración 5.15* tienen aproximadamente el mismo precio.

#### Coste sin convertidor



| DDC      | Control digital directo       |
|----------|-------------------------------|
| VAV      | Volumen de aire variable      |
| Sensor P | Presión                       |
| EMS      | Sistema de gestión de energía |
| Sensor T | Temperatura                   |

Ilustración 5.14 Sistema de ventilador tradicional



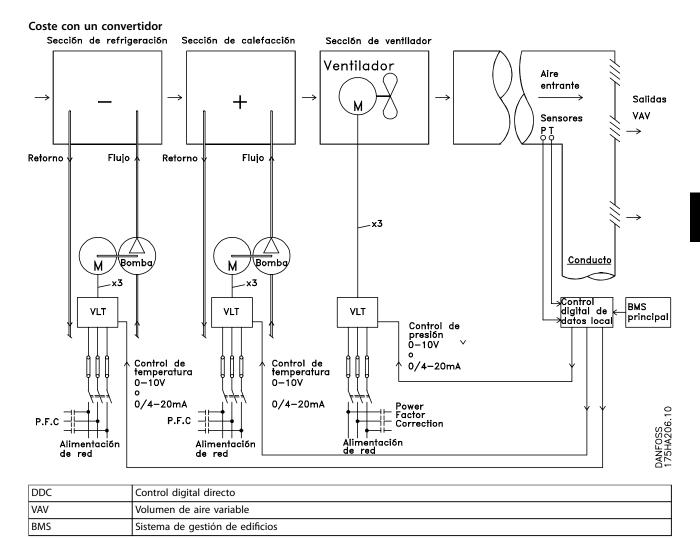



Ilustración 5.15 Sistema de ventilador controlado por convertidores



#### 5.3.4 Soluciones de convertidor HVAC VLT® HVAC Drive FC 102

#### 5.3.4.1 Volumen de aire variable

Los sistemas de volumen de aire variable (VAV) sirven para controlar la ventilación y la temperatura de un edificio en función de sus necesidades específicas. Se considera que los sistemas centrales VAV constituyen el método de mayor rendimiento energético para el acondicionamiento de aire en edificios. Los sistemas centrales son más eficaces que los sistemas distribuidos.

Este rendimiento se deriva del uso de ventiladores y enfriadores de mayor tamaño, cuyo rendimiento es muy superior al de los enfriadores de aire distribuidos y motores pequeños. También se produce un ahorro como consecuencia de la disminución de los requisitos de mantenimiento.

#### Solución VLT®

Mientras que los amortiguadores y los IGV sirven para mantener una presión constante en los conductos, una solución de convertidor ahorra más energía y reduce la complejidad de la instalación. En lugar de crear un descenso de presión artificial o provocar una reducción en el rendimiento del ventilador, el convertidor reduce la velocidad del ventilador para proporcionar el caudal y la presión que precisa el sistema.

Los dispositivos centrífugos, como los ventiladores, reducen la presión y el caudal que producen a medida que disminuye su velocidad. Por lo tanto, el consumo de energía se reduce.

Normalmente se controla el ventilador de retorno para mantener una diferencia fija entre el caudal de aire de alimentación y el de retorno. Para eliminar la necesidad de controladores adicionales, puede utilizarse el controlador PID avanzado del convertidor HVAC.

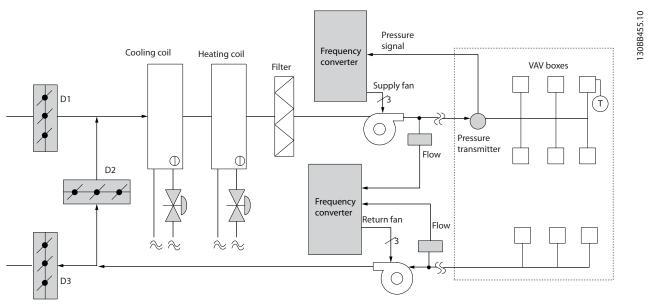



Ilustración 5.16 Convertidores utilizados en un sistema de volumen de aire variable

Si desea obtener más información, solicite al distribuidor de Danfoss la nota sobre la aplicación *Volumen de aire variable:* mejora de los sistemas de ventilación VAV.



#### 5.3.4.2 Volumen de aire constante

Los sistemas de volumen de aire constante (CAV) son sistemas centralizados de ventilación que se utilizan para abastecer grandes zonas comunes con la mínima cantidad de aire acondicionado. Estos sistemas son anteriores a los sistemas VAV y también pueden encontrarse en edificios comerciales antiguos divididos en varias zonas. Estos sistemas precalientan el aire fresco con unidades de tratamiento del aire (AHU) que tienen bobinas de calefacción. Muchos se utilizan también para edificios con aire acondicionado y disponen de bobinas de refrigeración. Los ventiloconvectores suelen emplearse para satisfacer los requisitos de calefacción y refrigeración de zonas individuales.

#### Solución VLT®

Un convertidor permite obtener importantes ahorros energéticos y, al mismo tiempo, mantener un control adecuado del edificio. Los sensores de temperatura y de CO<sub>2</sub> pueden utilizarse como señales de realimentación para los convertidores. Tanto si se utiliza para controlar la temperatura como la calidad del aire, o ambas cosas, un sistema CAV puede controlarse para funcionar de acuerdo con las condiciones reales del edificio. A medida que disminuye el número de personas en el área controlada, disminuye la necesidad de aire nuevo. El sensor de CO<sub>2</sub> detecta niveles inferiores y reduce la velocidad de los ventiladores de alimentación. El ventilador de retorno se modula para mantener un valor de consigna de presión estática o una diferencia fija entre los caudales de aire de alimentación y de retorno.

Las necesidades de control de la temperatura varían en función de la temperatura externa y del número de personas de la zona controlada. Cuando la temperatura desciende por debajo del valor de consigna, el ventilador de alimentación puede disminuir su velocidad. El ventilador de retorno se modula para mantener un valor de consigna de presión estática. Si se reduce el caudal de aire, también se reduce la energía utilizada para calentar o enfriar el aire nuevo, lo que supone un aborro adicional

Varias características del convertidor de frecuencia HVAC especializado de Danfoss pueden emplearse para mejorar el rendimiento de un sistema CAV. Uno de los aspectos que hay que tener en cuenta para controlar un sistema de ventilación es la mala calidad del aire. Es posible ajustar la frecuencia mínima programable para mantener un mínimo de alimentación de aire, al margen de la señal de realimentación o de referencia. El convertidor también incluye un controlador PID de tres zonas y tres valores de consigna que permite controlar tanto la temperatura como la calidad del aire. Aunque se alcance una temperatura adecuada, el convertidor mantiene una alimentación de aire suficiente como para ajustarse a los requisitos del sensor de calidad de aire. El controlador puede verificar y comparar dos señales de realimentación para controlar el ventilador de retorno manteniendo un diferencial de caudal de aire fijo entre los conductos de alimentación y de retorno.

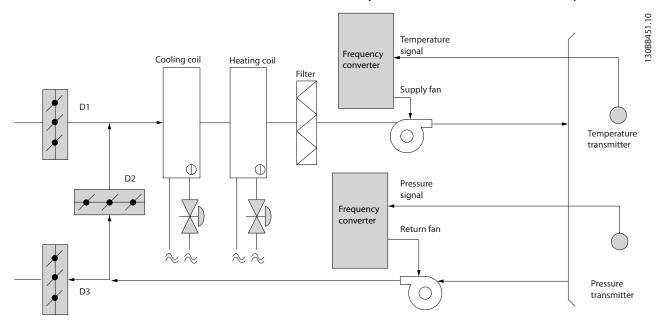



Ilustración 5.17 Convertidor utilizado en un sistema de volumen de aire constante

Si desea obtener más información, solicite al distribuidor de Danfoss la nota sobre la aplicación *Volumen de aire constante:* mejora de los sistemas de ventilación CAV.



## 5.3.4.3 Ventilador de torre de refrigeración

Los ventiladores de torres de refrigeración sirven para refrigerar el agua del condensador en sistemas enfriadores refrigerados por agua. Estos enfriadores refrigerados por agua constituyen el medio más eficaz para obtener agua fría. Son hasta un 20 % más eficaces que los enfriadores de aire. Según el clima, las torres de refrigeración a menudo constituyen el método de mayor rendimiento energético para refrigerar el agua del condensador de un enfriador.

Las torres de refrigeración enfrían el agua del condensador por evaporación. El agua del condensador se esparce con un pulverizador sobre la «bandeja» de la torre de refrigeración para aumentar su área superficial. El ventilador de la torre distribuye el aire a la bandeja y al agua rociada para ayudar a que esta se evapore. La evaporación extrae energía del agua reduciendo su temperatura. El agua enfriada se recoge en el depósito de la torre de refrigeración, donde vuelve a bombearse al condensador de los enfriadores y el ciclo vuelve a empezar.

#### Solución VLT®

Con un convertidor de frecuencia, es posible controlar la velocidad de los ventiladores de las torres de refrigeración para mantener la temperatura del agua del condensador. También pueden utilizarse convertidores de frecuencia para encender y apagar el ventilador cuando sea necesario. Con el convertidor de frecuencia Danfoss VLT® HVAC Drive, cuando la velocidad de los ventiladores de torre de refrigeración desciende por debajo de un valor determinado, el efecto de refrigeración disminuye. Cuando se utiliza una caja de engranajes para controlar la frecuencia del ventilador de torre, puede ser necesaria una velocidad mínima del 40-50 %. El ajuste de frecuencia mínima programable por el usuario está disponible para mantener esta frecuencia mínima, incluso si la realimentación o la referencia de velocidad solicita una velocidad inferior.

El convertidor de frecuencia se puede programar para entrar en modo reposo y detener el ventilador hasta que se requiera una velocidad mayor. Por otro lado, en algunas torres de refrigeración hay ventiladores con frecuencias no deseadas que pueden provocar vibraciones. Estas frecuencias pueden suprimirse fácilmente programando los rangos de frecuencias de bypass en el convertidor de frecuencia.



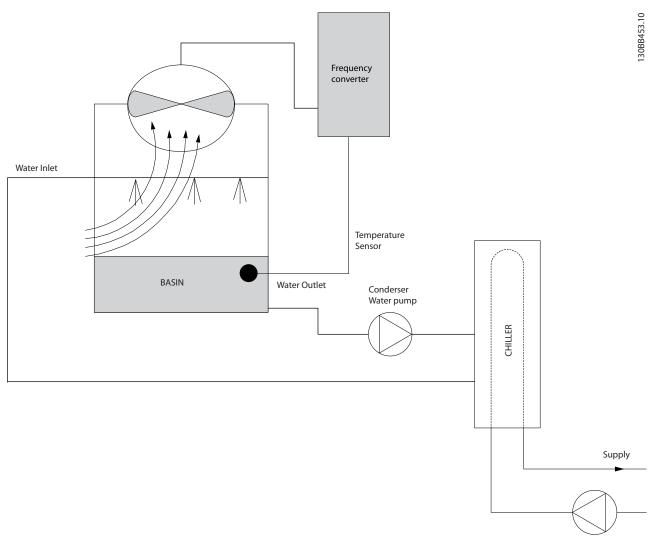



Ilustración 5.18 Convertidores de frecuencia utilizados con un ventilador de torre de refrigeración

Si desea obtener más información, solicite al distribuidor de Danfoss la nota sobre la aplicación *Ventilador de torre de refrige*ración: mejora del control del ventilador en torres de refrigeración.



#### 5.3.4.4 Bombas del condensador

Las bombas de agua del condensador se usan principalmente para impulsar la circulación del agua a través de la sección de condensación de los enfriadores refrigerados por agua fría y sus respectivas torres de refrigeración. El agua del condensador absorbe el calor de la sección de condensación y lo libera a la atmósfera en la torre de refrigeración. Estos sistemas constituyen el medio más eficaz para obtener agua fría. Son hasta un 20 % más eficaces que los enfriadores de aire.

#### Solución VLT®

Se pueden añadir convertidores de frecuencia a las bombas de agua del condensador en lugar de equilibrarlas con una válvula de estrangulamiento o de calibrar el rodete de la bomba.

El uso de un convertidor de frecuencia en lugar de una válvula de estrangulamiento permite ahorrar la energía que absorbería la válvula. Este cambio puede suponer un ahorro de entre un 15 y un 20 %, o incluso mayor. La calibración del rodete de la bomba es irreversible. Si las condiciones cambian y se necesita un caudal mayor, será necesario cambiar el rodete.

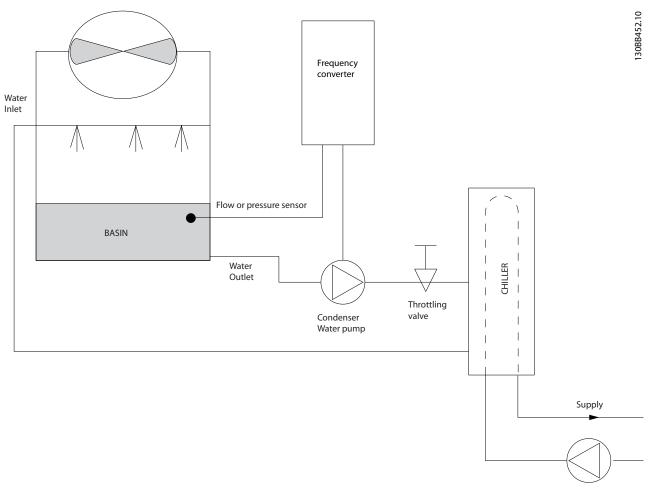



Ilustración 5.19 Convertidor de frecuencia utilizado con una bomba de condensador

Si desea obtener más información, solicite al distribuidor de Danfoss la nota sobre la aplicación *Bombas de condensador:* mejora de los sistemas de bombeo de agua del condensador.



## 5.3.4.5 Bombas primarias

Las bombas primarias de un sistema de bombeo primario / secundario pueden mantener un caudal constante a través de dispositivos que presentan dificultades de funcionamiento o control cuando se exponen a un caudal variable. La técnica de bombeo primario/secundario desacopla el lazo de producción primario del lazo de distribución secundario. El desacoplamiento permite que algunos dispositivos, como los enfriadores, puedan mantener un caudal de diseño uniforme y funcionar correctamente aunque el caudal varíe en el resto del sistema. A medida que disminuye el caudal del evaporador de un enfriador, el agua comienza a enfriarse en exceso. Cuando esto ocurre, el enfriador intenta reducir su capacidad de refrigeración. Si el caudal disminuye demasiado o con demasiada rapidez, el enfriador no podrá esparcir suficientemente la carga y el dispositivo de seguridad de baja temperatura del evaporador desconectará el enfriador, lo que hará necesario un reinicio manual. Esta situación es habitual en grandes instalaciones, especialmente cuando se instalan dos o varios enfriadores en paralelo y no se utiliza bombeo primario ni secundario.

#### Solución VLT®

Para reducir los gastos de funcionamiento, puede incorporarse un convertidor al sistema primario que sustituya la válvula de estrangulamiento y/o la calibración de los rodetes. Existen dos métodos de control comunes:

- Puede utilizarse un medidor de caudal en la descarga de cada enfriador para controlar la bomba directamente, dado que se conoce el caudal deseado y este es uniforme. Mediante el uso del controlador PID, el convertidor de frecuencia mantiene siempre el caudal adecuado e incluso compensa la resistencia cambiante del lazo de tuberías primario cuando se activan y desactivan los enfriadores y sus bombas.
- El operador puede recurrir a la determinación de la velocidad local disminuyendo la frecuencia de salida hasta que se alcance el caudal de diseño. Utilizar un convertidor de frecuencia para reducir la velocidad de las bombas es parecido a equilibrar los rodetes de las bombas, salvo que es más eficaz. El compensador de contracción simplemente disminuye la velocidad de la bomba hasta que se alcanza el caudal correcto y, entonces, fija la velocidad. La bomba funciona a esta velocidad siempre que el enfriador entre en funcionamiento. Dado que el lazo primario no tiene válvulas de control ni otros dispositivos que puedan cambiar la curva del sistema y que la variación procedente de la conexión y desconexión por etapas de bombas y enfriadores es pequeña, dicha velocidad fija sigue siendo correcta. En caso de que más adelante haya que aumentar el caudal del sistema, bastará con que el convertidor de frecuencia aumente la velocidad de la bomba en lugar de tener que cambiar el rodete.

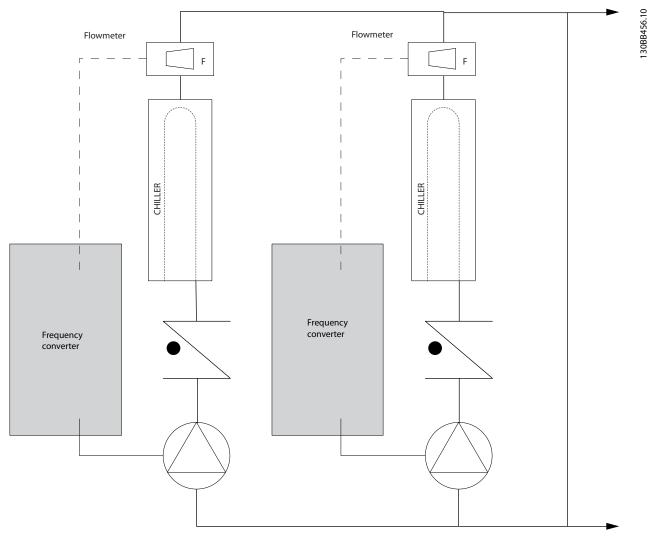



Ilustración 5.20 Convertidores utilizados con bombas primarias en un sistema de bombeo primario/secundario

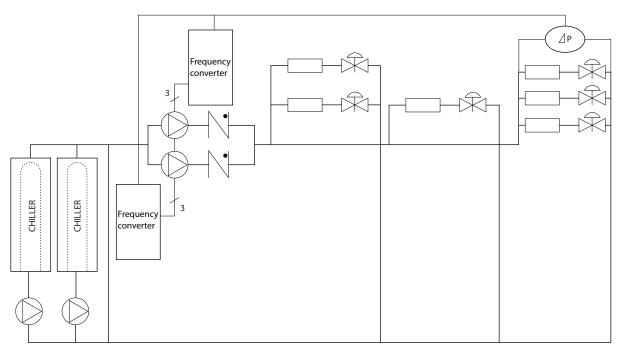
Si desea obtener más información, solicite al distribuidor de Danfoss la nota sobre la aplicación *Bombas primarias: mejora del bombeo primario en sistemas Pri/Sec.* 



#### 5.3.4.6 Bombas secundarias

Las bombas secundarias de un sistema de bombeo primario / secundario de agua fría sirven para distribuir el agua refrigerada a las cargas procedentes del lazo de producción primario. El sistema de bombeo primario/secundario sirve para desacoplar hidráulicamente un lazo de tuberías de otro. En este caso, la bomba primaria mantiene constante el caudal de los enfriadores mientras varía el caudal de las secundarias, lo cual aumenta el control y ahorra energía.

Si no se emplea el concepto de diseño primario/secundario y se diseña un sistema de volumen variable, cuando el caudal descienda demasiado o demasiado rápidamente, el enfriador no podrá distribuir la carga correctamente. El dispositivo de seguridad de baja temperatura del evaporador desconectará el enfriador, lo que requerirá un reinicio manual. Esta situación es habitual en grandes instalaciones, especialmente cuando se instalan dos o más enfriadores en paralelo.


#### Solución VLT®

Mientras el sistema primario/secundario con válvulas bidireccionales mejora el control de energía y del sistema, el uso de convertidores de frecuencia aumenta aún más el ahorro energético y el potencial de control. Con la incorporación de convertidores de frecuencia, y colocando el sensor adecuado en el lugar adecuado, las bombas pueden adaptar su velocidad a la curva del sistema en lugar de a la curva de la bomba. De este modo, se malgasta menos energía y se elimina la mayor parte de la sobrepresurización a la que en ocasiones se ven sometidas las válvulas bidireccionales.

Una vez satisfechas las cargas controladas, se cierran las válvulas bidireccionales, lo cual aumenta la presión diferencial medida en toda la carga y la válvula bidireccional. Cuando esta presión diferencial comienza a subir, se aminora la velocidad de la bomba para mantener el cabezal de control o valor de consigna. Este valor se calcula sumando la caída de presión conjunta de la carga y de la válvula bidireccional en las condiciones de diseño.

## AVISO!

Si se utilizan varias bombas en paralelo, deben funcionar a la misma velocidad para aumentar al máximo el ahorro energético, ya sea con varios convertidores de frecuencia individuales especializados o con un solo convertidor controlando varias bombas en paralelo.



llustración 5.21 Convertidores utilizados con bombas secundarias en un sistema de bombeo primario/secundario

Si desea obtener más información, solicite al distribuidor de Danfoss la nota sobre la aplicación *Bombas secundarias: mejora del bombeo secundario en sistemas Pri/Sec.* 

RR454 10



## 5.4 Controlador de cascada básico

El controlador de cascada básico se utiliza en aplicaciones de bombeo en las que es necesario mantener una cierta presión (altura) o nivel en un amplio rango dinámico. Hacer funcionar una bomba grande a velocidad variable y en un amplio rango no es una solución ideal debido al bajo rendimiento de las bombas a baja velocidad. En la práctica, el límite es el 25 % de la velocidad nominal de la bomba a plena carga.

En el controlador de cascada básico, el convertidor de frecuencia controla un motor de velocidad variable (guía) como bomba de velocidad variable, y puede activar y desactivar hasta dos bombas de velocidad constante adicionales. Conecte las bombas de velocidad constante adicionales directamente a la alimentación o mediante arrancadores suaves. Variando la velocidad de la bomba inicial, se consigue el control de velocidad variable de todo el sistema. La velocidad variable mantiene la presión constante, lo que se traduce en una menor fatiga del sistema y en un funcionamiento más silencioso en los sistemas de bombeo.

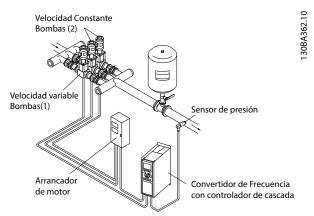



Ilustración 5.22 Controlador de cascada básico

## Bomba principal fija

Los motores deben tener el mismo tamaño. El controlador de cascada básico permite que el convertidor de frecuencia controle hasta tres bombas de igual tamaño utilizando sus dos relés internos. Cuando la bomba variable (principal) está conectada directamente al convertidor de frecuencia, los dos relés internos controlan las otras dos bombas. Cuando está activada la alternancia de la bomba principal, las bombas se conectan a los relés internos y el convertidor de frecuencia es capaz de hacer funcionar dos bombas.

#### Alternancia de bomba principal

Los motores deben tener el mismo tamaño. Esta función permite alternar el convertidor de frecuencia entre las bombas del sistema (máximo 2 bombas). En este modo, el tiempo de funcionamiento entre bombas se iguala, de manera que se reduce la necesidad de mantenimiento de las bombas y se incrementa la fiabilidad y el tiempo de vida útil del sistema. La alternancia de la bomba principal puede tener lugar por una orden o conexión por etapas (añadiendo otra bomba).

La orden puede ser una alternancia manual o una señal de evento de alternancia. Si se selecciona el evento de alternancia, la alternancia de bomba principal se produce cada vez que se produzca el evento. Entre las selecciones se incluyen:

- Cuando concluye un temporizador de alternancia.
- A una hora determinada del día.
- Cuando la bomba principal pasa al modo de reposo.

La carga actual del sistema determina la conexión por etapas.

Un parámetro individual limita la alternancia para que solo se produzca si la capacidad total requerida es superior al 50 %. La capacidad total de bombeo está determinada por la capacidad de la bomba principal más las capacidades de las bombas de velocidad fija.

## Gestión del ancho de banda

En los sistemas de control en cascada, para evitar el cambio frecuente de bombas de velocidad fija, la presión deseada del sistema se mantiene normalmente dentro de un ancho de banda en lugar de mantenerse a un nivel constante. El ancho de banda de conexión por etapas proporciona el ancho de banda requerido para el funcionamiento. Cuando se produce un cambio grande y rápido en la presión del sistema, la anulación de ancho de banda anula el ancho de banda de conexión por etapas para evitar una respuesta inmediata a un cambio en la presión de corta duración. Se puede programar un temporizador de anulación de ancho de banda para evitar la conexión por etapas hasta que la presión del sistema se haya estabilizado y se haya establecido el control normal.

Cuando el controlador de cascada está activado y el convertidor de frecuencia emite una alarma de desconexión, la altura del sistema se mantiene activando y desactivando por etapas las bombas de velocidad fija. Para evitar una frecuente conexión y desconexión por etapas y minimizar las fluctuaciones de la presión, se utiliza un ancho de banda de velocidad fija más amplio, en lugar del ancho de banda por etapas.



# 5.4.1.1 Conexión por etapas de bombas con alternancia de bomba principal

Con la alternancia de bomba principal activada, se controlan un máximo de dos bombas. En una orden de alternancia, el PID se detiene, la bomba principal realiza una rampa hasta la frecuencia mínima ( $f_{\text{mín.}}$ ) y, después de un retardo, realiza una rampa hasta la frecuencia máxima ( $f_{\text{máx.}}$ ). Cuando la velocidad de la bomba principal alcanza la frecuencia de desactivación por etapas, se excluye la bomba de velocidad fija (se desactiva por etapas). La bomba principal continúa en rampa de aceleración y después realiza una rampa de deceleración hasta la parada y los dos relés son desconectados.

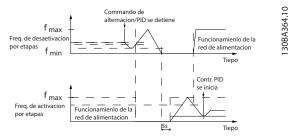



Ilustración 5.23 Alternancia bomba principal

Tras un retardo de tiempo, el relé de la bomba de velocidad fija se conecta (por etapas) y esta bomba se convierte en la nueva bomba principal. La nueva bomba principal realiza una rampa de aceleración hasta la velocidad máxima y después decelera hasta la velocidad mínima. Cuando la rampa de deceleración alcanza la frecuencia de conexión por etapas, se conecta a la alimentación (por etapas) la antigua bomba principal como nueva bomba de velocidad fija.

Si la bomba principal ha estado funcionando a la frecuencia mínima ( $f_{\text{mín.}}$ ) durante un lapso de tiempo programado, con una bomba de velocidad fija funcionando, la bomba principal contribuye poco al sistema. Cuando expira el lapso de tiempo programado, se elimina la bomba principal para evitar problemas de calentamiento de agua.

# 5.4.1.2 Estado y funcionamiento del sistema

Si la bomba principal pasa a modo reposo, la función se muestra en el LCP. Es posible alternar la bomba principal estando en modo reposo.

Cuando el controlador de cascada está activado, el estado de funcionamiento de cada bomba y del propio controlador de cascada se muestran en el LCP. La información mostrada incluye:

- El estado de las bombas es una lectura de datos de estado de los relés asignados a cada bomba.
   La pantalla muestra las bombas que están desactivadas, apagadas, funcionando en el convertidor y funcionando con la alimentación de red o el arrancador del motor.
- El estado de cascada es una lectura de datos del estado del controlador de cascada. La pantalla muestra lo siguiente:
  - El controlador de cascada está desactivado.
  - Todas las bombas están desactivadas.
  - Una emergencia ha detenido todas las bombas.
  - Todas las bombas están en funcionamiento.
  - Las bombas de velocidad fija se están conectando/desconectando por etapas.
  - Alternancia de bomba principal.
- La desconexión por etapas cuando no hay caudal asegura que todas las bombas de velocidad fija sean detenidas individualmente hasta que desaparezca el estado de falta de caudal.

5



## 5.5 Vista general del freno dinámico

El frenado dinámico desacelera el motor mediante uno de los siguientes métodos:

- Freno de CA
  - La energía del freno se distribuye en el motor mediante la modificación de las condiciones de pérdida del motor (parámetro 2-10 Brake Function = [2]). La función de freno de CA no puede utilizarse en aplicaciones con alta frecuencia de reseteo, ya que esta situación sobrecalienta el motor.
- Freno CC
  - Una intensidad de CC sobremodulada añadida a la intensidad de CA funciona como un freno de corriente parásita (parámetro 2-02 DC Braking Time  $\neq$  0 s).
- Resistor brake (Freno con resistencia)

Un IGBT del freno mantiene una sobretensión bajo un umbral determinado dirigiendo la energía del freno desde el motor a la resistencia de frenado conectada (parámetro 2-10 Brake Function = [1]) Para obtener más información sobre la selección de la resistencia de frenado, consulte la Guía de diseño de la resistencia de frenado VLT® Brake Resistor MCE 101.

En los convertidores de frecuencia equipados con la opción de freno, se incluye un IGBT del freno junto con los terminales 81(R-) y 82(R+) para la conexión de una resistencia de frenado externa.

La función del IGBT del freno consiste en limitar la tensión del enlace de CC cuando se exceda el límite máximo de tensión. Para limitar la tensión, conmuta la resistencia montada externamente a través del bus de CC para eliminar el exceso de tensión de CC presente en los condensadores del bus.

Colocar externamente la resistencia de frenado tiene las ventajas de seleccionar la resistencia en función de las necesidades de la aplicación, disipar la energía fuera del panel de control y proteger al convertidor de frecuencia del sobrecalentamiento si la resistencia de frenado está sobrecargada.

La señal de puerta del IGBT del freno se origina en la tarjeta de control y se envía al IGBT de freno mediante la tarjeta de potencia y la tarjeta de accionamiento de puerta. Asimismo, las tarjetas de potencia y control vigilan el IGBT del freno por si se produjesen cortocircuitos. La tarjeta de potencia también controla la posibilidad de sobrecargas en la resistencia de frenado

## 5.6 Vista general de la función de carga compartida

La carga compartida es una función que permite la conexión de los circuitos CC de varios convertidores, de forma que se crea un sistema de varios convertidores para hacer funcionar una carga mecánica. La función de carga compartida tiene los siguientes beneficios:

#### Ahorro de energía

Un motor que funciona en modo regenerativo puede dar suministro a convertidores que funcionan en modo motor.

#### Menores necesidades de repuestos

Normalmente, solo se necesitará una resistencia de frenado para todo el sistema de convertidores, en lugar de una resistencia de frenado por cada convertidor.

#### Fuente de alimentación de seguridad

En caso de fallo de red, todos los convertidores vinculados pueden recibir alimentación a través del enlace de CC desde una fuente de alimentación de seguridad. La aplicación puede seguir en funcionamiento o someterse a un proceso de desconexión controlada.

#### Requisitos previos

Deben reunirse los siguientes requisitos previos para poder valorarse la posibilidad de la carga compartida:

- El convertidor deberá contar con terminales de carga compartida.
- Los productos deben ser de la misma serie. Utilice exclusivamente convertidores de frecuencia VLT<sup>®</sup> HVAC Drive FC
   102 con otros convertidores VLT<sup>®</sup> HVAC Drive FC 102.



- Los convertidores deberán colocarse físicamente cerca entre ellos para permitir que la longitud del cableado entre unos y otros no supere los 25 m (82 ft).
- Los convertidores deben tener la misma tensión nominal.
- Al añadir una resistencia de frenado en una configuración de carga compartida, todos los convertidores deberán contar con chopper de frenado.
- Deben añadirse fusibles a los terminales de carga compartida.

En la *llustración 5.24*, puede consultar el diagrama de una aplicación de carga compartida en la que se aplican las mejores prácticas.

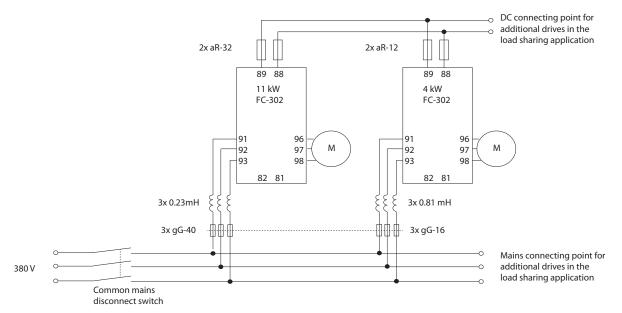



Ilustración 5.24 Diagrama de una aplicación de carga compartida en la que se aplican las mejores prácticas.

## Carga compartida

Las unidades con la opción de carga compartida integrada contienen terminales (+) 89 CC y (-) 88 CC. Dentro del convertidor de frecuencia, estos terminales se conectan al bus de CC frente al reactor del enlace de CC y los condensadores del bus.

Los terminales de carga compartida pueden conectarse en dos configuraciones diferentes.

- Los terminales enlazan los circuitos de bus de CC de múltiples convertidores de frecuencia. Esta configuración permite que una unidad en modo regenerativo comparta su exceso de tensión de bus con otra unidad que está haciendo funcionar un motor. La carga compartida de esta forma puede reducir la necesidad de resistencias de frenado dinámicas externas, al tiempo que se ahorra energía. El número de unidades que se pueden conectar de este modo es infinito, siempre que todas las unidades tengan la misma clasificación de tensión. Adicionalmente, y en función del tamaño y del número de unidades, puede ser necesario instalar bobinas y fusibles de CC en las conexiones del enlace de CC, y reactores de CA en la alimentación. Intentar dicha configuración requiere un estudio específico.
- El convertidor recibe la alimentación exclusivamente a partir de una fuente de CC. Esta configuración requiere:
  - Una fuente de CC.
  - Un medio para realizar una carga suave del bus de CC en el encendido.



## 5.7 Vista general de la regeneración

La regeneración suele darse en aplicaciones con frenado continuo, como grúas o elevadores, transportadoras descendentes y centrífugas en las que la energía se extrae de un motor desacelerado.

El exceso de energía se elimina del convertidor mediante una de las siguientes opciones:

- El chopper de frenado permite que el exceso de energía se disipe en forma de calor dentro de las bobinas de la resistencia de frenado.
- Los terminales de regeneración permiten que se conecte al convertidor una unidad de regeneración de otro fabricante, de forma que la energía sobrante pueda devolverse a la red eléctrica.

La devolución de la energía sobrante a la red eléctrica constituye el uso más eficaz de la energía regenerada en las aplicaciones de frenado continuo.



## 6 Vista general de opciones y accesorios

## 6.1 Dispositivos de fieldbus

En este apartado se describen los dispositivos de fieldbus disponibles para la serie VLT® HVAC Drive FC 102. Mediante un dispositivo de fieldbus se reduce el coste del sistema, se consigue una comunicación más rápida y eficaz, y se ofrece una interfaz de usuario más sencilla. Para obtener los números de pedido, consulte el capétulo 13.2 Números de pedido de los kits de opción.

## 6.1.1 VLT® PROFIBUS DP-V1 MCA 101

La opción VLT® PROFIBUS DP-V1 MCA 101 proporciona:

- Un gran nivel de compatibilidad y disponibilidad, servicio técnico para los principales proveedores de PLC y compatibilidad con futuras versiones.
- Comunicación rápida y eficaz, fácil instalación, diagnóstico avanzado y parametrización y autoconfiguración de los datos de proceso mediante un archivo GSD.
- Parametrización acíclica mediante equipos de configuración PROFIBUS DP V1, PROFIdrive o las máquinas de estado de perfil FC de Danfoss.

## 6.1.2 VLT® DeviceNet MCA 104

La opción VLT® DeviceNet MCA 104 proporciona:

- La validez del perfil de convertidor de frecuencia de ODVA mediante el uso de las instancias de I/O 20/70 y 21/71 garantiza la compatibilidad con los sistemas existentes.
- Cuenta con las rígidas políticas de comprobación de conformidad de ODVA, que garantizan la interoperabilidad de los productos.

## 6.1.3 VLT® LonWorks MCA 108

LonWorks es un sistema de fieldbus desarrollado para la automatización de edificios. Permite la comunicación entre unidades individuales del mismo sistema (punto a punto), así como la descentralización del control.

- No es necesaria una gran estación principal (maestro/esclavo).
- Las unidades reciben las señales directamente.
- Permite el uso de la interfaz de topología libre Echelon (cableado e instalación flexibles).
- Admite I/O incrustadas y opciones de I/O (fácil implementación de I/O descentralizadas).

- Las señales de los sensores pueden pasar rápidamente a otro controlador a través de los cables de bus.
- Certificado como conforme con las especificaciones de la versión 3.4 de LonMark.

## 6.1.4 VLT® BACnet MCA 109

El protocolo abierto de comunicación para su uso en sistemas automatizados de edificios en todo el mundo. El protocolo BACnet es un protocolo internacional que integra de forma eficaz todas las partes de los equipos de automatización de edificios, desde el accionamiento de sistemas hasta el sistema de control de edificios.

- BACnet es el estándar mundial en automatización de edificios.
- Norma Internacional ISO 16484-5.
- Sin necesidad de pagar licencias, el protocolo puede utilizarse en sistemas de automatización de edificios de cualquier tamaño.
- La opción BACnet permite que el convertidor de frecuencia se comunique con los sistemas de control de edificios que utilizan el protocolo BACnet.
- BACnet se suele utilizar para calefacción, ventilación, refrigeración y control de sistemas de climatización.
- El protocolo BACnet se integra fácilmente en las redes de equipos de control existentes.

## 6.1.5 VLT® PROFINET MCA 120

La opción VLT® PROFINET MCA 120 combina de forma única el rendimiento más elevado con el mayor grado de transparencia. Esta opción se ha diseñado de manera que se puedan reutilizar muchas de las características de la opción VLT® PROFIBUS MCA 101, lo que reduce al mínimo el esfuerzo del usuario para migrar PROFINET y garantiza la inversión en el programa PLC.

- Tipos de PPO iguales a los del VLT® PROFIBUS DP V1 MCA 101 para una sencilla migración a PROFINET.
- Servidor web incorporado para diagnóstico remoto y lectura de parámetros básicos del convertidor de frecuencia.
- Admite MRP.



- Admite DP-V1. Este diagnóstico permite un manejo sencillo, rápido y estandarizado de la información de errores y avisos en el PLC, lo que mejora el ancho de banda del sistema.
- Compatible con PROFISAFE cuando se combina con la opción de seguridad VLT<sup>®</sup> Safety Option MCB 152.
- Aplicación de acuerdo con la clase de conformidad B.

## 6.1.6 VLT® EtherNet/IP MCA 121

EtherNet es el futuro estándar para las comunicaciones de las fábricas. La opción VLT<sup>®</sup> EtherNet/IP MCA 121 se basa en la tecnología más avanzada disponible para uso industrial y satisface incluso las necesidades más exigentes. EtherNet/IP™ amplía la opción comercial estándar de Ethernet al Protocolo Industrial Común (CIP™), el mismo protocolo de capa superior y modelo de objetos de DeviceNet.

Esta opción ofrece funciones avanzadas, como:

- Conmutador de alto rendimiento integrado, que permite la topología en línea y elimina la necesidad de conmutadores externos.
- Anillo DLR (desde octubre de 2015).
- Funciones avanzadas de conmutación y diagnóstico.
- Servidor web integrado.
- Cliente de correo electrónico para notificación de servicio.
- Comunicación unicast y multicast.

## 6.1.7 VLT® Modbus TCP MCA 122

El VLT® Modbus TCP MCA 122 establece una conexión con redes basadas en Modbus TCP. Puede manejar intervalos de conexión mínimos de hasta 5 ms en ambas direcciones, posicionándolo entre los dispositivos Modbus TCP de comportamiento más rápido del mercado. Para la redundancia del maestro, incluye intercambio en caliente entre dos maestros.

Asimismo, la unidad presenta las siguientes funciones:

- Servidor web incorporado para diagnóstico remoto y lectura de parámetros básicos del convertidor de frecuencia.
- Notificación de correo electrónico que puede configurarse para enviar un mensaje a uno o varios receptores en el caso de que se produzcan determinadas advertencias o alarmas, o cuando estas se hayan solucionado.
- Conexión dual maestro PLC para redundancia.

## 6.1.8 VLT® BACnet/IP MCA 125

La opción VLT® BACnet/IP MCA 125 permite una integración rápida y sencilla del convertidor en los sistemas de gestión de edificios (BMS), mediante el protocolo BACnet/IP o ejecutando BACnet en Ethernet. Puede leer y compartir puntos de datos y transferir los valores reales y solicitados a los sistemas o desde estos.

La opción MCA 125 tiene dos terminales Ethernet, lo que hace posible una configuración en cadena sin necesidad de conmutadores externos. El conmutador integrado administrado con tres puertos de la opción VLT® BACnet/IP MCA 125 incluye dos puertos Ethernet externos y uno interno. Este conmutador permite utilizar una estructura de línea para el cableado de Ethernet. Esta opción hace posible controlar en paralelo varios motores de magnetización permanente de alto rendimiento y controlar los puntos necesarios en las aplicaciones HVAC habituales. Además de las funciones estándar, la opción MCA 125 incluye:

- COV (cambio de valor).
- Múltiple lectura/escritura de propiedades.
- Notificaciones de alarmas/advertencias.
- Posibilidad de cambiar los nombres de los objetos BACnet para una mayor facilidad de uso.
- Objeto BACnet Loop.
- Transferencia de datos segmentada.
- Tendencias, en función del tiempo o de los eventos.

#### 6.2 Extensiones funcionales

En este apartado se describen las opciones de extensión funcional disponibles para la serie VLT® HVAC Drive FC 102. Para obtener los números de pedido, consulte el capétulo 13.2 Números de pedido de los kits de opción.

# 6.2.1 VLT® General Purpose I/O Module MCB 101

El VLT® General Purpose I/O Module MCB 101 ofrece un número ampliado de entradas y salidas de control:

- Tres entradas digitales de 0-24 V: 0 lógico <5 V; 1 lógico >10 V.
- Dos entradas analógicas de 0-10 V: resolución de 10 bits más signo.
- Dos salidas digitales NPN/PNP en contrafase.
- Una salida analógica de 0/4-20 mA.
- Conexión con resorte.



## 6.2.2 VLT® Relay Card MCB 105

La VLT<sup>®</sup> Relay Card MCB 105 amplía las opciones de relé con tres salidas de relé adicionales.

- Protección de la conexión del cable de control.
- Conexión del cable de control con resorte.

Frecuencia máxima de conmutación (carga nominal / carga mínima)

6 minutos $^{-1}/20 \text{ s}^{-1}$ .

### Carga máxima del terminal

Carga resistiva CA-1: 240 V CA, 2 A

## 6.2.3 Opción VLT<sup>®</sup> Analog I/O Option MCB 109

La opción de entrada/salida analógica VLT® Analog I/O Option MCB 109 se instala fácilmente en el convertidor para mejorar el rendimiento y el control mediante entradas/salidas adicionales. Esta opción también actualiza el convertidor con un sistema de alimentación auxiliar mediante batería de emergencia para su reloj interno. Esta batería de emergencia permite un uso estable de todas las acciones temporizadas ejecutadas por el convertidor.

- Tres entradas analógicas, cada una de ellas configurable como entrada de tensión y de temperatura.
- Conexión de señales analógicas de 0 a 10 V, así como de entradas de temperatura PT1000 y NI1000.
- Tres salidas analógicas, cada una de ellas configurable como salida de 0-10 V.

## 6.2.4 VLT® PTC Thermistor Card MCB 112

La tarjeta del termistor PTC VLT® PTC Thermistor Card MCB 112 ofrece un control adicional del estado del motor en comparación con la función ETR integrada y el terminal del termistor.

- Protege el motor contra el sobrecalentamiento.
- Autorizado según la directiva ATEX para su uso con motores EX d.
- Utiliza la función de Safe Torque Off, homologada conforme a la norma SIL 2 CEI 61508.

## 6.2.5 Opción VLT® Sensor Input MCB 114

La opción VLT® Sensor Input MCB 114 evita el sobrecalentamiento del motor controlando la temperatura de sus cojinetes y bobinados.

- Tres entradas de sensor de detección automática para sensores PT100/PT1000 de 2 o 3 cables.
- Una entrada analógica adicional de 4-20 mA.

# 6.3 Control de movimientos y tarjetas de relé

En este apartado se describen las opciones de tarjeta de relé y control de movimientos disponibles para la serie VLT<sup>®</sup> AutomationDrive FC 302. Para obtener los números de pedido, consulte el *capétulo 13.2 Números de pedido de los kits de opción*.

## 6.3.1 VLT® Extended Relay Card MCB 113

La VLT<sup>®</sup> Extended Relay Card MCB 113 añade entradas/ salidas para conseguir una mayor flexibilidad.

- Siete entradas digitales.
- Dos salidas analógicas.
- Cuatro relés SPDT.
- Cumple con las recomendaciones de NAMUR.
- Posibilidad de aislamiento galvánico.

## 6.4 Resistencias de frenado

En aplicaciones en las que el motor se utiliza como freno, se genera energía en el motor y se devuelve al convertidor de frecuencia. Si la energía no puede ser transportada de nuevo al motor, se incrementará la tensión en la línea de CC del convertidor. En aplicaciones con frenados frecuentes y/o cargas de inercia elevada, este aumento puede producir una desconexión por sobretensión en el convertidor de frecuencia y, finalmente, una parada del sistema. Se utilizan resistencias de frenado para disipar el exceso de energía resultante del frenado regenerativo. La resistencia se selecciona conforme a su valor en ohmios, su velocidad de disipación de potencia y su tamaño físico. Danfoss ofrece una amplia variedad de resistencias diferentes especialmente diseñadas para los convertidores de frecuencia de Danfoss. Para conocer los números de pedido y obtener más información sobre la selección de la resistencia de frenado, consulte la Guía de diseño de la resistencia de frenado VLT® Brake Resistor MCE 101.

## 6

## 6.5 Filtros senoidales

Cuando un convertidor de frecuencia controla un motor, se oyen ruidos de resonancias procedentes del motor. Este ruido, resultado del diseño del motor, aparece cada vez que se activa uno de los conmutadores del inversor en el convertidor de frecuencia. La frecuencia del ruido de resonancia corresponde a la frecuencia de conmutación del convertidor de frecuencia.

Danfoss suministra un filtro senoidal para amortiguar el ruido acústico del motor. El filtro reduce el tiempo de aceleración de la tensión, la tensión pico de carga (UPICO) y la corriente de rizado (ΔI) al motor, lo que significa que la corriente y la tensión se vuelven casi senoidales. Así se reduce al mínimo el ruido acústico del motor.

La corriente de rizado en las bobinas del filtro senoidal también produce algo de ruido. Resuelva este problema integrando el filtro en un armario o alojamiento.

Para conocer los números de pedido y obtener más información sobre filtros senoidales, consulte la *Guía de diseño de los filtros de salida*.

## 6.6 Filtros dU/dt

Danfoss suministra filtros dU/dt, que son filtros de paso bajo de modo diferencial que reducen las tensiones pico entre fases en el terminal del motor y reducen el tiempo de subida a un nivel que rebaja la presión sobre el aislamiento de los bobinados del motor. Este es un problema habitual en configuraciones con cables de motor cortos.

En comparación con los filtros senoidales, la frecuencia de corte de los filtros dU/dt es mayor a la de conmutación.

Para conocer los números de pedido y obtener más información sobre filtros dU/dt, consulte la *Guía de diseño de los filtros de salida*.

#### 6.7 Filtros de modo común

Los núcleos de modo común de alta frecuencia (núcleos HF-CM) reducen la interferencia electromagnética y eliminan el daño generado a los cojinetes por las descargas eléctricas. Son núcleos magnéticos nanocristalinos especiales que tienen un rendimiento de filtrado superior en comparación con los núcleos de ferrita habituales. El núcleo HF-CM actúa como un inductor de modo común entre fases y tierra.

Instalados alrededor de las tres fases del motor (U, V y W), los filtros de modo común reducen las intensidades de modo común de alta frecuencia. Como resultado, se reduce la interferencia electromagnética de alta frecuencia del cable de motor.

Para conocer los números de pedido, consulte la *Guía de diseño de los filtros de salida*.

#### 6.8 Filtros armónicos

Los filtros armónicos VLT® Advanced Harmonic Filter AHF 005 y AHF 010 no deben compararse con filtros de trampa armónica tradicionales. Los filtros armónicos de Danfoss han sido especialmente diseñados para adaptarse a los convertidores de frecuencia de Danfoss.

Conectando los filtros armónicos AHF 005 o AHF 010 delante de un convertidor de frecuencia de Danfoss, la distorsión de corriente armónica total devuelta a la alimentación se reduce al 5 y 10 %, respectivamente.

Para conocer los números de pedido y obtener más información sobre la selección de la resistencia de frenado, consulte la Guía de diseño de los filtros armónicos VLT® Advanced Harmonic Filters AHF 005/AHF 010.

## 6.9 Opciones integradas del alojamiento

Las siguientes opciones integradas se especifican en el código descriptivo al encargar el convertidor de frecuencia.

## Alojamiento con canal posterior resistente a la corrosión

Para una protección adicional frente a la corrosión en entornos agresivos, pueden solicitarse unidades con un alojamiento que incluya canal posterior de acero inoxidable, disipadores térmicos con chapas más pesadas y un ventilador mejorado. Esta opción se recomienda en entornos salinos, como por ejemplo, cerca del mar.

#### Apantallamiento de red

El apantallamiento Lexan<sup>®</sup> se puede montar frente a los terminales de potencia de entrada y la placa de entrada para protección contra contactos físicos cuando la puerta del alojamiento esté abierta.



#### Calefactores y termostato

Se montan dentro del armario de los convertidores de frecuencia con alojamientos de tamaño F y se controlan mediante un termostato automático. Los calefactores controlados mediante termostato automático evitan la formación de condensación en el interior del alojamiento.

Con los ajustes predeterminados, el termostato enciende los calefactores a 10  $^{\circ}$ C (50  $^{\circ}$ F) y los apaga a 15,6  $^{\circ}$ C (60  $^{\circ}$ F).

#### Luz de alojamiento con enchufe de alimentación

Para aumentar la visibilidad durante las operaciones de servicio y mantenimiento, puede instalarse una luz dentro del armario de los convertidores con alojamientos de tamaño F. El alojamiento de dicha luz incluye una toma eléctrica para conectar temporalmente el ordenador portátil u otros dispositivos. Disponible en dos tipos de tensión:

- 230 V, 50 Hz, 2,5 A, CE/ENEC
- 120 V, 60 Hz, 5 A, UL/cUL

#### Filtros RFI

La versión estándar de los convertidores de la serie VLT<sup>®</sup> incluye filtros integrados RFI de clase A2. Si se requieren niveles adicionales de protección RFI/CEM, pueden obtenerse utilizando filtros RFI opcionales de clase A1 para la supresión de interferencias de radiofrecuencia y radiación electromagnética de conformidad con la norma EN 55011. También hay disponibles filtros RFI de uso marítimo.

En los convertidores de frecuencia con alojamiento de tamaño F, el filtro RFI de clase A1 requiere el uso del armario de opciones.

#### Monitor de resistencia de aislamiento (IRM)

Supervisa la resistencia del aislamiento en sistemas sin toma de tierra (sistemas IT en terminología CEI) entre los conductores de fase del sistema y la toma de tierra. Hay una advertencia previa mediante resistencia y un valor de consigna de alarma principal para el nivel de aislamiento. Para cada valor de consigna hay asociado un relé de alarma SPDT para uso externo. Solo puede conectarse un sistema de control de resistencia del aislamiento a cada sistema sin toma de tierra (IT).

- Integrado en el circuito de parada segura.
- Pantalla LCD de la resistencia de aislamiento.
- Memoria de fallos.
- Teclas de información, de prueba y de reinicio.

#### Dispositivo de corriente diferencial (RCD)

Utiliza el método de equilibrado central para supervisar las corrientes de fallo a tierra en sistemas conectados a tierra y en sistemas conectados a tierra de alta resistencia (sistemas TN y TT en la terminología CEI). Hay una advertencia previa (50 % del valor de consigna de alarma principal) y un valor de consigna de alarma principal. Para cada valor de consigna hay asociado un relé de alarma SPDT para uso externo. Requiere un transformador de intensidad externo de tipo ventana (suministrado e instalado por el cliente).

- Integrado en el circuito de parada segura.
- El dispositivo CEI 60755 de tipo B supervisa las intensidades de fallo a tierra CC con pulsos y CC pura.
- Indicador LED de gráfico de barras para el nivel de corriente de fallo a tierra desde el 10 hasta el 100 % del valor de consigna.
- Memoria de fallos.
- Teclas de prueba y reinicio.

## Safe Torque Off con relé de seguridad Pilz

Disponible para convertidores con alojamiento de tamaño F. Permite el ajuste del relé Pilz en el alojamiento sin necesidad de utilizar un armario de opciones. El relé se usa en la opción de monitorización externa de la temperatura. Si se requiere control de PTC, deberá encargarse la opción de tarjeta del termistor PTC VLT® PTC Thermistor Card MCB 112.

#### Parada de emergencia con relé de seguridad Pilz

Incluye un pulsador de parada de emergencia redundante de 4 hilos instalado en el panel frontal de la protección y un relé Pilz que lo vigila junto con el circuito de parada segura y la posición del contactor. Requiere un contactor y el armario de opciones para convertidores con un alojamiento de tamaño F.

#### Chopper de frenado (IGBT)

Los terminales de freno con un circuito de chopper de frenado de IGBT permiten la conexión de resistencias de frenado externas. Para obtener más datos sobre las resistencias de frenado, consulte la *Guía de Diseño de la resistencia de frenado VLT® Brake Resistor MCE 101*, que está disponible en *drives.danfoss.com/downloads/portal/#/*.

#### Terminales regenerativos

Permite la conexión de las unidades regenerativas al bus de CC en el lado del banco del condensador de las bobinas de enlace de CC para frenado regenerativo. Los terminales de regeneración con alojamiento de tamaño F están dimensionados para aproximadamente la mitad de la potencia de salida del convertidor. Consulte a la fábrica para obtener los límites de potencia de regeneración en función del tamaño y de la tensión específicos del convertidor.



#### Terminales de carga compartida

Estos terminales se conectan al bus de CC en el lado de rectificador del reactor de enlace de CC y permiten compartir la potencia del bus de CC entre varios convertidores de frecuencia. Para convertidores con alojamiento de tamaño F, los terminales de carga compartida están dimensionados para aproximadamente un tercio de la potencia de salida del convertidor. Consulte a la fábrica los límites de carga compartida en función del tamaño y tensión específicos del convertidor de frecuencia.

#### Desconexión

Un mango montado en la puerta permite el funcionamiento manual de un interruptor de desconexión de potencia para activar y desactivar la potencia al convertidor de frecuencia, aumentando la seguridad durante el mantenimiento. La desconexión se bloquea con las puertas del armario para evitar que se abran mientras se está aplicando potencia.

#### Magnetotérmicos

Un magnetotérmico puede dispararse por control remoto, aunque su reposición debe realizarse manualmente. Los magnetotérmicos están bloqueados con las puertas del armario para evitar que se abran mientras se aplica potencia. Cuando se realiza un pedido de un magnetotérmico como elemento opcional, también se incluyen fusibles para contar con una protección rápida frente a sobreintensidad en el convertidor de frecuencia.

#### Contactores

Un conmutador contactor controlado eléctricamente permite la activación y desactivación remota de la alimentación al convertidor de frecuencia. Si se solicita la opción de parada de emergencia CEI, el relé Pilz supervisará el contacto auxiliar con el contactor.

#### Arrancadores manuales del motor

Ofrecen una alimentación eléctrica trifásica para ventiladores externos, que a menudo son necesarios para motores grandes. La alimentación de los arrancadores proviene del lado de carga de cualquier contactor, magnetotérmico o interruptor de desconexión suministrado. Si se solicita una opción de filtro RFI de clase 1, el lado de entrada de RFI proporciona la alimentación al arrancador. La alimentación se activa antes de cada arrancador del motor, y se desactiva cuando la alimentación de entrada a la unidad está desconectada. Se permite el uso de hasta dos arrancadores. Si se ha solicitado un circuito de 30 A protegido con fusible, solo se podrá utilizar un arrancador. Los arrancadores están integrados en el circuito de parada segura. Características:

- Conmutador de funcionamiento (activado/ desactivado).
- Protección contra cortocircuitos y sobrecargas con función de prueba.
- Función de reset manual.

#### 30 A, terminales protegidos con fusible

- Potencia trifásica ajustada a la tensión de red entrante para alimentar equipos auxiliares del cliente.
- No disponible si se seleccionan dos arrancadores manuales del motor.
- Los terminales permanecen desactivados mientras la alimentación de entrada al convertidor de frecuencia está desconectada.
- La alimentación de los terminales proviene del lado de carga de cualquier contactor, magnetotérmico o interruptor de desconexión suministrado. Si se solicita una opción de filtro RFI de clase 1, el lado de entrada de RFI proporciona la alimentación al arrancador.

#### Terminales de motor comunes

La opción habitual de terminal del motor ofrece las barras de bus y el hardware necesario para conectar los terminales del motor desde los inversores paralelos a un terminal único (por fase) para adaptar la instalación al kit de entrada superior del lado del motor.

Esta opción también se recomienda para conectar la salida de un convertidor de frecuencia a un filtro de salida o a un contactor de salida. Los terminales comunes del motor eliminan la necesidad de que haya una misma longitud de cable desde cada inversor hasta el punto común del filtro de salida (o motor).

#### Suministro externo de 24 V CC

- 5 A, 120 W, 24 V CC.
- Protegida frente a sobreintensidad de salida, sobrecarga, cortocircuitos y sobretemperatura.
- Para la alimentación de accesorios suministrados por el cliente, como sensores, dispositivos PLC de E/S, contactores, detectores de temperatura, luces indicadoras y/u otros dispositivos electrónicos.
- El diagnóstico incluye un contacto seco de estado de CC, un LED verde de estado de CC y un LED rojo de sobrecarga.

#### Supervisión de temperatura externa

Diseñada para supervisar la temperatura de componentes de sistema externos, como las bobinas y/o los cojinetes del motor. Incluye ocho módulos de entrada universal más dos módulos exclusivos de entrada de termistor. Los diez módulos están integrados en el circuito de parada segura y pueden vigilarse a través de una red de fieldbus, que requiere la compra de un módulo/acoplador de bus independiente. Se debe solicitar una opción de freno de Safe Torque Off al seleccionar la supervisión de la temperatura externa.



#### Tipos de señales

- Entradas RTD (incluida la Pt100), de 3 o 4 cables.
- Termopar.
- Corriente analógica o tensión analógica.

#### Más funciones

- Una salida universal, configurable para tensión analógica o corriente analógica.
- Dos relés de salida (NO).
- Pantalla de cristal líquido de dos líneas y LED de diagnóstico.
- Detección de interrupciones en el cableado del sensor, cortocircuitos y polaridad incorrecta.
- Detección de interrupciones en el cableado del sensor, cortocircuitos y polaridad incorrecta.
- Software de configuración de la interfaz.
- Si se requieren 3 PTC, deberá añadirse la opción de tarjeta del termistor PTC VLT® PTC Thermistor Card MCB 112.

Para obtener los números de pedido de las opciones integradas en el alojamiento, consulte el capétulo 13.1 Configurador de convertidores de frecuencia.

## 6.10 Kits de alta potencia

Existen kits de alta potencia disponibles, como los de refrigeración de pared posterior, los de calefactor y los de pantalla de alimentación. Consulte el capétulo 13.2 Números de pedido de los kits de opción para obtener una breve descripción y conocer los números de pedido de todos los kits disponibles.



# 7 Especificaciones

## 7.1 Datos eléctricos, 380-480 V

| VLT® HVAC Drive FC 102                                              | P355              | P400              | P450              |
|---------------------------------------------------------------------|-------------------|-------------------|-------------------|
| Sobrecarga normal                                                   | NO                | NO                | NO                |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |                   |                   |                   |
| Eje de salida típico a 400 V [kW]                                   | 355               | 400               | 450               |
| Eje de salida típico a 460 V [CV]                                   | 500               | 600               | 600               |
| Eje de salida típico a 480 V [kW]                                   | 400               | 500               | 530               |
| Tamaño del alojamiento                                              | E1/E2             | E1/E2             | E1/E2             |
| Intensidad de salida (trifásica)                                    |                   |                   |                   |
| Continua (a 400 V) [A]                                              | 658               | 745               | 800               |
| Intermitente (sobrecarga de 60 s) (a 400 V) [A]                     | 724               | 820               | 880               |
| Continua (a 460/480 V) [A]                                          | 590               | 678               | 730               |
| Intermitente (sobrecarga de 60 s, a 460/480 V) [A]                  | 649               | 746               | 803               |
| kVA continua (a 400 V) [kVA]                                        | 456               | 516               | 554               |
| kVA continua (a 460 V) [kVA]                                        | 470               | 540               | 582               |
| kVa continua (a 480 V) [kVa]                                        | 511               | 587               | 632               |
| Intensidad de entrada máxima                                        | •                 |                   |                   |
| Continua (a 400 V) [A]                                              | 634               | 718               | 771               |
| Continua (a 460/480 V) [A]                                          | 569               | 653               | 704               |
| Tamaño y número máximo de cables por fase                           | •                 |                   |                   |
| Alimentación y motor [mm² (AWG)]                                    | 4x240 (4x500 mcm) | 4x240 (4x500 mcm) | 4x240 (4x500 mcm) |
| Freno [mm² (AWG)]                                                   | 2 × 185 (2 × 350  | 2 × 185 (2 × 350  | 2 × 185 (2 × 350  |
|                                                                     | mcm)              | mcm)              | mcm)              |
| Carga compartida [mm² (AWG)]                                        | 4x240 (4x500 mcm) | 4x240 (4x500 mcm) | 4x240 (4x500 mcm) |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 900               | 900               | 900               |
| Pérdida de potencia estimada en 400 V [W] <sup>2) y 3)</sup>        | 7532              | 8677              | 9473              |
| Pérdida de potencia estimada en 460 V [W] <sup>2) y 3)</sup>        | 6724              | 7819              | 8527              |
| Rendimiento <sup>3)</sup>                                           | 0,98              | 0,98              | 0,98              |
| Frecuencia de salida [Hz]                                           | 0–590             | 0–590             | 0–590             |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)          | 85 (185)          | 85 (185)          |

Tabla 7.1 Datos eléctricos de los alojamientos E1/E2, alimentación de red 3 imes 380-480 V CA

<sup>1)</sup> Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.

<sup>2)</sup> La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.

<sup>3)</sup> Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                              | P500          | P560          | P630          | P710          |
|---------------------------------------------------------------------|---------------|---------------|---------------|---------------|
| Sobrecarga normal                                                   | NO            | NO            | NO            | NO            |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |               |               |               |               |
| Eje de salida típico a 400 V [kW]                                   | 500           | 560           | 630           | 710           |
| Eje de salida típico a 460 V [CV]                                   | 650           | 750           | 900           | 1000          |
| Eje de salida típico a 480 V [kW]                                   | 560           | 630           | 710           | 800           |
| Tamaño del alojamiento                                              | F1/F3         | F1/F3         | F1/F3         | F1/F3         |
| Intensidad de salida (trifásica)                                    | 1             | •             | •             |               |
| Continua (a 400 V) [A]                                              | 880           | 990           | 1120          | 1260          |
| Intermitente (sobrecarga de 60 s) (a 400 V) [A]                     | 968           | 1089          | 1680          | 1890          |
| Continua (a 460/480 V) [A]                                          | 780           | 890           | 1050          | 1160          |
| Intermitente (60 s de sobrecarga)                                   | 858           | 979           | 1155          | 1276          |
| (a 460/480 V) [A]                                                   |               |               |               |               |
| kVA continua (a 400 V) [kVA]                                        | 610           | 686           | 776           | 873           |
| kVA continua (a 460 V) [kVA]                                        | 621           | 709           | 837           | 924           |
| kVa continua (a 480 V) [kVa]                                        | 675           | 771           | 909           | 1005          |
| Intensidad de entrada máxima                                        | •             | •             | •             |               |
| Continua (a 400 V) [A]                                              | 848           | 954           | 1079          | 1214          |
| Continua (a 460/480 V) [A]                                          | 752           | 858           | 1012          | 1118          |
| Tamaño y número máximo de cables por fase                           | -1            | •             | •             |               |
| - Motor [mm² (AWG)]                                                 | 8 × 150 (8 ×  | 8 × 150 (8 ×  | 8 × 150 (8 ×  | 8 × 150 (8 ×  |
|                                                                     | 300 mcm)      | 300 mcm)      | 300 mcm)      | 300 mcm)      |
| - Alimentación [mm² (AWG)] (F1)                                     | 8 × 240 (8 ×  | 8 × 240 (8 ×  | 8 × 240 (8 ×  | 8 × 240 (8 ×  |
|                                                                     | 500 mcm)      | 500 mcm)      | 500 mcm)      | 500 mcm)      |
| - Alimentación [mm² (AWG)] (F3)                                     | 8 × 456 (8 ×  | 8 × 456 (8 ×  | 8 × 456 (8 ×  | 8 × 456 (8 ×  |
|                                                                     | 900 mcm)      | 900 mcm)      | 900 mcm)      | 900 mcm)      |
| - Carga compartida [mm² (AWG)]                                      | 8 × 120       | 8 × 120       | 8 × 120       | 8 × 120       |
|                                                                     | (8 × 250 mcm) |
| - Freno [mm² (AWG)]                                                 | 8 × 185       | 8 × 185       | 8 × 185       | 8 × 185       |
|                                                                     | (8 × 350 mcm) |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 1600          | 1600          | 2000          | 2000          |
| Pérdida de potencia estimada en 400 V [W] <sup>2) y 3)</sup>        | 10162         | 11822         | 12512         | 14674         |
| Pérdida de potencia estimada en 460 V [W] <sup>2) y 3)</sup>        | 8876          | 10424         | 11595         | 13213         |
| Pérdidas máximas agregadas del filtro RFI de clase A1, el magneto-  | 963           | 1054          | 1093          | 1230          |
| térmico o disyuntor y el contactor [W], (solo F3)                   |               |               |               |               |
| Pérdidas máximas de opciones de panel [W]                           | 400           | 400           | 400           | 400           |
| Rendimiento <sup>3)</sup>                                           | 0,98          | 0,98          | 0,98          | 0,98          |
| Frecuencia de salida [Hz]                                           | 0–590         | 0–590         | 0–590         | 0–590         |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)      | 85 (185)      | 85 (185)      | 85 (185)      |

#### Tabla 7.2 Datos eléctricos de los alojamientos F1/F3, alimentación de red 3 imes 380-480 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                                                    | P800               | P1000              |
|-------------------------------------------------------------------------------------------|--------------------|--------------------|
| Sobrecarga normal                                                                         | NO                 | NO                 |
| (Sobrecarga normal = 110 % corriente en 60 s)                                             |                    |                    |
| Eje de salida típico a 400 V [kW]                                                         | 800                | 1000               |
| Eje de salida típico a 460 V [CV]                                                         | 1200               | 1350               |
| Eje de salida típico a 480 V [kW]                                                         | 1000               | 1100               |
| Tamaño del alojamiento                                                                    | F2/F4              | F2/F4              |
| Intensidad de salida (trifásica)                                                          |                    |                    |
| Continua (a 400 V) [A]                                                                    | 1460               | 1720               |
| Intermitente (60 s de sobrecarga)                                                         | 1606               | 1892               |
| (a 400 V) [A]                                                                             |                    |                    |
| Continua (a 460/480 V) [A]                                                                | 1380               | 1530               |
| Intermitente (60 s de sobrecarga)(a 460/480 V) [A]                                        | 1518               | 1683               |
| kVA continua (a 400 V) [kVA]                                                              | 1012               | 1192               |
| kVA continua (a 460 V) [kVA]                                                              | 1100               | 1219               |
| kVa continua (a 480 V) [kVa]                                                              | 1195               | 1325               |
| Intensidad de entrada máxima                                                              | •                  |                    |
| Continua (a 400 V) [A]                                                                    | 1407               | 1658               |
| Continua (a 460/480 V) [A]                                                                | 1330               | 1474               |
| Tamaño y número máximo de cables por fase                                                 | •                  |                    |
| - Motor [mm² (AWG)]                                                                       | 12 × 150 (12 × 300 | 12 × 150 (12 × 300 |
|                                                                                           | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)] (F2)                                                           | 8 × 240 (8 × 500   | 8 × 240 (8 × 500   |
|                                                                                           | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)] (F4)                                                           | 8 × 456 (8 × 900   | 8 × 456 (8 × 900   |
|                                                                                           | mcm)               | mcm)               |
| - Carga compartida [mm² (AWG)]                                                            | 4 × 120 (4 × 250   | 4 × 120 (4 × 250   |
|                                                                                           | mcm)               | mcm)               |
| - Freno [mm² (AWG)]                                                                       | 6× 185 (6 × 350    | 6× 185 (6 × 350    |
|                                                                                           | mcm)               | mcm)               |
| Fusibles de red externos máximos [A] <sup>1)</sup>                                        | 2500               | 2500               |
| Pérdida de potencia estimada en 400 V [W] <sup>2) y 3)</sup>                              | 17293              | 19278              |
| Pérdida de potencia estimada en 460 V [W] <sup>2) y 3)</sup>                              | 16229              | 16624              |
| Pérdidas máximas agregadas del filtro RFI de clase A1, el magnetotérmico o disyuntor y el | 2280               | 2541               |
| contactor [W], (solo F4)                                                                  |                    |                    |
| Pérdidas máximas de opciones de panel [W]                                                 | 400                | 400                |
| Rendimiento <sup>3)</sup>                                                                 | 0,98               | 0,98               |
| Frecuencia de salida [Hz]                                                                 | 0-590              | 0–590              |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)]                       | 85 (185)           | 85 (185)           |

#### Tabla 7.3 Datos eléctricos de los alojamientos F2/F4, alimentación de red 3 imes 380-480 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                              | P355             | P400             | P450             |
|---------------------------------------------------------------------|------------------|------------------|------------------|
| Sobrecarga normal                                                   | NO               | NO               | NO               |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |                  |                  |                  |
| Eje de salida típico a 400 V [kW]                                   | 355              | 400              | 450              |
| Eje de salida típico a 460 V [CV]                                   | 500              | 600              | 600              |
| Eje de salida típico a 480 V [kW]                                   | 400              | 500              | 530              |
| Tamaño del alojamiento                                              | F8/F9            | F8/F9            | F8/F9            |
| Intensidad de salida (trifásica)                                    |                  |                  |                  |
| Continua (a 400 V) [A]                                              | 658              | 745              | 800              |
| Intermitente (sobrecarga de 60 s) (a 400 V) [A]                     | 724              | 820              | 880              |
| Continua (a 460/480 V) [A]                                          | 590              | 678              | 730              |
| Intermitente (sobrecarga de 60 s, a 460/480 V) [A]                  | 649              | 746              | 803              |
| kVA continua (a 400 V) [kVA]                                        | 456              | 516              | 554              |
| kVA continua (a 460 V) [kVA]                                        | 470              | 540              | 582              |
| kVa continua (a 480 V) [kVa]                                        | 511              | 587              | 632              |
| Intensidad de entrada máxima                                        |                  |                  |                  |
| Continua (a 400 V) [A]                                              | 634              | 718              | 771              |
| Continua (a 460/480 V) [A]                                          | 569              | 653              | 704              |
| Tamaño y número máximo de cables por fase                           |                  |                  |                  |
| - Motor [mm² (AWG)]                                                 | 4x240 (4x500     | 4x240 (4x500     | 4x240 (4x500     |
|                                                                     | mcm)             | mcm)             | mcm)             |
| - Alimentación [mm² (AWG)]                                          | 4 × 90           | 4x240 (4x500     | 4x240 (4x500     |
|                                                                     | (4 × 3/0 mcm)    | mcm)             | mcm)             |
| - Freno [mm² (AWG)]                                                 | 2 × 185 (2 × 350 | 2 × 185 (2 × 350 | 2 × 185 (2 × 350 |
|                                                                     | mcm)             | mcm)             | mcm)             |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 700              | 700              | 700              |
| Pérdida de potencia estimada en 400 V [W] <sup>2) y 3)</sup>        | 7701             | 8879             | 9670             |
| Pérdida de potencia estimada en 460 V [W] <sup>2) y 3)</sup>        | 6953             | 8089             | 8803             |
| Rendimiento <sup>3)</sup>                                           | 0,98             | 0,98             | 0,98             |
| Frecuencia de salida [Hz]                                           | 0-590            | 0–590            | 0-590            |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)         | 85 (185)         | 85 (185)         |
|                                                                     |                  |                  |                  |

## Tabla 7.4 Datos eléctricos de los alojamientos F8/F9, alimentación de red 6 imes 380-480 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                              | P500         | P560         | P630         | P710         |
|---------------------------------------------------------------------|--------------|--------------|--------------|--------------|
| Sobrecarga normal                                                   | NO           | NO           | NO           | NO           |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |              |              |              |              |
| Eje de salida típico a 400 V [kW]                                   | 500          | 560          | 630          | 710          |
| Eje de salida típico a 460 V [CV]                                   | 650          | 750          | 900          | 1000         |
| Eje de salida típico a 480 V [kW]                                   | 560          | 630          | 710          | 800          |
| Tamaño del alojamiento                                              | F10/F11      | F10/F11      | F10/F11      | F10/F11      |
| Intensidad de salida (trifásica)                                    |              |              |              |              |
| Continua (a 400 V) [A]                                              | 880          | 990          | 1120         | 1260         |
| Intermitente (sobrecarga de 60 s) (a 400 V) [A]                     | 968          | 1089         | 1232         | 1386         |
| Continua (a 460/480 V) [A]                                          | 780          | 890          | 1050         | 1160         |
| Intermitente (sobrecarga de 60 s, a 460/480 V) [A]                  | 858          | 979          | 1155         | 1276         |
| kVA continua (a 400 V) [kVA]                                        | 610          | 686          | 776          | 873          |
| kVA continua (a 460 V) [kVA]                                        | 621          | 709          | 837          | 924          |
| kVa continua (a 480 V) [kVa]                                        | 675          | 771          | 909          | 1005         |
| Intensidad de entrada máxima                                        |              |              |              |              |
| Continua (a 400 V) [A]                                              | 848          | 954          | 1079         | 1214         |
| Continua (a 460/480 V) [A]                                          | 752          | 858          | 1012         | 1118         |
| Tamaño y número máximo de cables por fase                           |              |              |              |              |
| - Motor [mm² (AWG)]                                                 | 8 × 150 (8 × | 8 × 150 (8 × | 8 × 150 (8 × | 8 × 150 (8 × |
|                                                                     | 300 mcm)     | 300 mcm)     | 300 mcm)     | 300 mcm)     |
| - Alimentación [mm² (AWG)]                                          | 6 × 120 (6 × | 6 × 120 (6 × | 6 × 120 (6 × | 6 × 120 (6 × |
|                                                                     | 250 mcm)     | 250 mcm)     | 250 mcm)     | 250 mcm)     |
| - Freno [mm² (AWG)]                                                 | 4 × 185 (4 × | 4 × 185 (4 × | 4 × 185 (4 × | 4 × 185 (4 × |
|                                                                     | 350 mcm)     | 350 mcm)     | 350 mcm)     | 350 mcm)     |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 900          | 900          | 900          | 1500         |
| Pérdida de potencia estimada en 400 V [W] <sup>2) y 3)</sup>        | 10647        | 12338        | 13201        | 15436        |
| Pérdida de potencia estimada en 460 V [W] <sup>2) y 3)</sup>        | 9414         | 11006        | 12353        | 14041        |
| Pérdidas máximas agregadas del filtro RFI de clase A1, el magneto-  | 963          | 1054         | 1093         | 1230         |
| térmico o disyuntor y el contactor [W], (solo F11)                  |              |              |              |              |
| Pérdidas máximas de opciones de panel [W]                           | 400          | 400          | 400          | 400          |
| Rendimiento <sup>3)</sup>                                           | 0,98         | 0,98         | 0,98         | 0,98         |
| Frecuencia de salida [Hz]                                           | 0-590        | 0–590        | 0–590        | 0-590        |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)     | 85 (185)     | 85 (185)     | 85 (185)     |

## Tabla 7.5 Datos eléctricos de los alojamientos F10/F11, alimentación de red 6 imes 380-480 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                                                    | P800               | P1000              |
|-------------------------------------------------------------------------------------------|--------------------|--------------------|
| Sobrecarga normal                                                                         | NO                 | NO                 |
| (Sobrecarga normal = 110 % corriente en 60 s)                                             |                    |                    |
| Eje de salida típico a 400 V [kW]                                                         | 800                | 1000               |
| Eje de salida típico a 460 V [CV]                                                         | 1200               | 1350               |
| Eje de salida típico a 480 V [kW]                                                         | 1000               | 1100               |
| Tamaño del alojamiento                                                                    | F12/F13            | F12/F13            |
| Intensidad de salida (trifásica)                                                          | -                  | •                  |
| Continua (a 400 V) [A]                                                                    | 1460               | 1720               |
| Intermitente (sobrecarga de 60 s) (a 400 V) [A]                                           | 1606               | 1892               |
| Continua (a 460/480 V) [A]                                                                | 1380               | 1530               |
| Intermitente (60 s de sobrecarga)(a 460/480 V) [A]                                        | 1518               | 1683               |
| kVA continua (a 400 V) [kVA]                                                              | 1012               | 1192               |
| kVA continua (a 460 V) [kVA]                                                              | 1100               | 1219               |
| kVa continua (a 480 V) [kVa]                                                              | 1195               | 1325               |
| Intensidad de entrada máxima                                                              |                    |                    |
| Continua (a 400 V) [A]                                                                    | 1407               | 1658               |
| Continua (a 460/480 V) [A]                                                                | 1330               | 1474               |
| Tamaño y número máximo de cables por fase                                                 |                    |                    |
| - Motor [mm² (AWG)]                                                                       | 12 × 150 (12 × 300 | 12 × 150 (12 × 300 |
|                                                                                           | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)]                                                                | 6 × 120 (6 × 250   | 6 × 120 (6 × 250   |
|                                                                                           | mcm)               | mcm)               |
| - Freno [mm² (AWG)]                                                                       | 6× 185 (6 × 350    | 6× 185 (6 × 350    |
|                                                                                           | mcm)               | mcm)               |
| Fusibles de red externos máximos [A] <sup>1)</sup>                                        | 1500               | 1500               |
| Pérdida de potencia estimada en 400 V [W] <sup>2) y 3)</sup>                              | 18084              | 20358              |
| Pérdida de potencia estimada en 460 V [W] <sup>2) y 3)</sup>                              | 17137              | 17752              |
| Pérdidas máximas agregadas del filtro RFI de clase A1, el magnetotérmico o disyuntor y el | 2280               | 2541               |
| contactor [W], (solo F4)                                                                  |                    |                    |
| Pérdidas máximas de opciones de panel [W]                                                 | 400                | 400                |
| Rendimiento <sup>3)</sup>                                                                 | 0,98               | 0,98               |
| Frecuencia de salida [Hz]                                                                 | 0–590              | 0–590              |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)]                       | 85 (185)           | 85 (185)           |

## Tabla 7.6 Datos eléctricos de los alojamientos F12/F13, alimentación de red 6 imes 380-480 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



## 7.2 Datos eléctricos, 525-690 V

| VLT® HVAC Drive FC 102                                              | P450         | P500         | P560         | P630         |
|---------------------------------------------------------------------|--------------|--------------|--------------|--------------|
| Sobrecarga normal                                                   | NO           | NO           | NO           | NO           |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |              |              |              |              |
| Eje de salida típico a 550 V [kW]                                   | 355          | 400          | 450          | 500          |
| Eje de salida típico a 575 V [CV]                                   | 450          | 500          | 600          | 650          |
| Eje de salida típico a 690 V [kW]                                   | 450          | 500          | 560          | 630          |
| Tamaño del alojamiento                                              | E1/E2        | E1/E2        | E1/E2        | E1/E2        |
| Intensidad de salida (trifásica)                                    |              |              |              |              |
| Continua (a 550 V) [A]                                              | 470          | 523          | 596          | 630          |
| Intermitente (sobrecarga de 60 s) (a 550 V) [A]                     | 517          | 575          | 656          | 693          |
| Continua (a 575 / 690 V) [A]                                        | 450          | 500          | 570          | 630          |
| Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]                 | 495          | 550          | 627          | 693          |
| kVA continua (a 550 V) [kVA]                                        | 448          | 498          | 568          | 600          |
| kVA continua (a 575 V) [KVA]                                        | 448          | 498          | 568          | 627          |
| kVA continua (a 690 V) [KVA]                                        | 538          | 598          | 681          | 753          |
| Intensidad de entrada máxima                                        | •            |              |              |              |
| Continua (a 550 V) [A]                                              | 453          | 504          | 574          | 607          |
| Continua (a 575 V) [A]                                              | 434          | 482          | 549          | 607          |
| Continua (a 690 V)                                                  | 434          | 482          | 549          | 607          |
| Tamaño y número máximo de cables por fase                           |              |              |              |              |
| - Alimentación, motor y carga compartida [mm² (AWG)]                | 4x240 (4x500 | 4x240 (4x500 | 4x240 (4x500 | 4x240 (4x500 |
|                                                                     | mcm)         | mcm)         | mcm)         | mcm)         |
| - Freno [mm² (AWG)]                                                 | 2 × 185 (2 × | 2 × 185 (2 × | 2 × 185 (2 × | 2 × 185 (2 × |
|                                                                     | 350 mcm)     | 350 mcm)     | 350 mcm)     | 350 mcm)     |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 700          | 700          | 900          | 900          |
| Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup>        | 5323         | 6010         | 7395         | 8209         |
| Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup>          | 5529         | 6239         | 7653         | 8495         |
| Rendimiento <sup>3)</sup>                                           | 0,98         | 0,98         | 0,98         | 0,98         |
| Frecuencia de salida [Hz]                                           | 0-500        | 0–500        | 0–500        | 0–500        |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)     | 85 (185)     | 85 (185)     | 85 (185)     |

Tabla 7.7 Datos eléctricos de los alojamientos E1/E2, alimentación de red 3 × 525-690 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| (Sobrecarga normal = 110 % corriente en 60 s)         Eje de salida tipico a 555 V [KW]         560         670         750           Eje de salida tipico a 555 V [KW]         750         950         1050           Eje de salida tipico a 690 V [KW]         710         800         900           Tamaño del alojamiento         F1/F3         F1/F3         F1/F3           Internidad de salida (trifásica)         Continua (a 550 V) [A]         763         889         988           Internitente (sobrecarga de 60 s) (a 550 V) [A]         839         978         1087           Continua (a 575 / 690 V) [A]         730         850         945           Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]         803         935         1040           KVA continua (a 550 V) [KWA]         727         847         941           KVA continua (a 550 V) [KWA]         727         847         941           KVA continua (a 575 V) [KVA]         727         847         941           KVA continua (a 575 V) [KVA]         727         847         941           KVA continua (a 575 V) [A]         704         819         911           Continua (a 575 V) [A]         704         819         911           Tamaño Y número máximo         704 <td< th=""><th>VLT® HVAC Drive FC 102</th><th>P710</th><th>P800</th><th>P900</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VLT® HVAC Drive FC 102                                              | P710             | P800             | P900             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|------------------|------------------|
| Eje de salida típico a 550 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sobrecarga normal                                                   | NO               | NO               | NO               |
| Eje de salida típico a 575 V [CV] 750 950 1050  Eje de salida típico a 690 V [kW] 710 800 900  Tamaño del alojamiento F1/F3 F1/F3 F1/F3 F1/F3  Internisidad de salida (trifásica)  Continua (a 550 V) [A] 763 889 988  Internitente (sobrecarga de 60 s) (a 550 V) [A] 730 850 945  Internitente (sobrecarga de 60 s) (a 555 V) [A] 803 935 1040  KWA continua (a 550 V) [kWA] 727 847 941  KWA continua (a 550 V) [kWA] 727 847 941  KWA continua (a 550 V) [kWA] 727 847 941  KWA continua (a 550 V) [KVA] 872 1016 1129  Intensidad de entrada máxima  Continua (a 550 V) [A] 735 857 952  Continua (a 550 V) [A] 704 819 911  Tamaño y número máximo de cables por fase  - Motor [mm² (AWG)] 8 × 240 (8 × 500 mcm) mcm) mcm)  - Alimentación [mm² (AWG)] (F1) 8 × 456 (4 × 900 mcm) (4 × 900 mcm) (4 × 900 mcm)  - Carga compartida [mm² (AWG)] 4 × 185 (4 × 350 mcm) mcm)  - Freno [mm² (AWG)] 4 × 185 (4 × 350 mcm) mcm) mcm)  - Freno [mm² (AWG)] 4 × 185 (4 × 350 mcm) mcm)  - Freno [mm² (AWG)] 4 × 185 (4 × 350 mcm) mcm)  - Freno [mm² (AWG)] 9 × 100 1000 1000 1000 1000 1000 1000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Sobrecarga normal = 110 % corriente en 60 s)                       |                  |                  |                  |
| Fee de salida tipico a 690 V   [kW]   710   800   900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eje de salida típico a 550 V [kW]                                   | 560              | 670              | 750              |
| Tamaño del alojamiento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eje de salida típico a 575 V [CV]                                   | 750              | 950              | 1050             |
| Intensidad de salida (trifásica)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Eje de salida típico a 690 V [kW]                                   | 710              | 800              | 900              |
| Continua (a 550 V) [A]   763   889   988   988   10termitente (sobrecarga de 60 s) (a 550 V) [A]   839   978   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1087   1   | Tamaño del alojamiento                                              | F1/F3            | F1/F3            | F1/F3            |
| Intermitente (sobrecarga de 60 s) (a 550 V) [A] 839 978 1087  Continua (a 575 / 690 V) [A] 730 850 945  Intermitente (sobrecarga de 60 s) (a 575/690 V) [A] 803 935 1040  KVA continua (a 550 V) [KVA] 727 847 941  KVA continua (a 550 V) [KVA] 727 847 941  KVA continua (a 690 V) [KVA] 872 1016 1129  Intensidad de entrada máxima  Continua (a 555 V) [A] 735 857 952  Continua (a 575 V) [A] 704 819 911  Continua (a 550 V) [A] 704 819 911  Tamaño y número máximo de cables por fase  - Motor [mm² (AWG)] 8 × 150 (8 × 300 mcm) mcm) mcm)  - Alimentación [mm² (AWG)] (F1) 8 × 240 (8 × 500 mcm) mcm) mcm)  - Alimentación [mm² (AWG)] (F3) 8 × 456 8 × 456 8 × 456 (4 × 900 mcm) (4 × 900 mcm)  - Carga compartida [mm² (AWG)] 8 × 120 (4 × 250 mcm) mcm) mcm)  - Freno [mm² (AWG)] 4 × 120 (4 × 250 mcm) mcm) mcm)  Fusibles de red externos máximos [A] <sup>1)</sup> 1600 1600 1600  Pérdida de potencia estimada en 600 V [W] <sup>2) y 3</sup> 9863 11304 12798  Pérdidas máximas agregadas del magnetotérmico o disyuntor y el 427 532 615  Contactor [W], (solo F3)  Pércuencia de salida [Hz] 0-500 0-500 0-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intensidad de salida (trifásica)                                    | '                | •                | •                |
| Continua (a 575 / 690 V) [A]   730   850   945     Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]   803   935   1040     KVA continua (a 550 V) [KVA]   727   847   941     KVA continua (a 690 V) [KVA]   727   847   941     KVA continua (a 690 V) [KVA]   872   1016   1129     Intensidad de entrada máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Continua (a 550 V) [A]                                              | 763              | 889              | 988              |
| Intermitente (sobrecarga de 60 s) (a 575/690 V) [A] 803 935 1040  kVA continua (a 550 V) [kVA] 727 847 941  kVA continua (a 550 V) [kVA] 727 847 941  kVA continua (a 690 V) [KVA] 872 1016 1129  Intensidad de entrada máxima  Continua (a 557 V) [A] 735 857 952  Continua (a 550 V) [A] 704 819 911  Continua (a 690 V) [A] 704 819 911  Tamaño y número máximo de cables por fase  - Motor [mm² (AWG)] (F1) 8 × 150 (8 × 300 8 × 150 (8 × 300 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 350 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 240 (8 × 500 8 × 24 | Intermitente (sobrecarga de 60 s) (a 550 V) [A]                     | 839              | 978              | 1087             |
| KVA continua (a 550 V) [KVA]   727   847   941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Continua (a 575 / 690 V) [A]                                        | 730              | 850              | 945              |
| KVA continua (a 575 V)   KVA    727   847   941     KVA continua (a 690 V)   KVA    872   1016   1129     Intensidad de entrada máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]                 | 803              | 935              | 1040             |
| RVA continua (a 690 V) [RVA]   872   1016   1129   Intensidad de entrada máxima   Continua (a 550 V) [A]   735   857   952   Continua (a 575 V) [A]   704   819   911   Continua (a 690 V) [A]   88 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8 × 300   8 × 150 (8    | kVA continua (a 550 V) [kVA]                                        | 727              | 847              | 941              |
| Intensidad de entrada máxima   Continua (a 550 V) [A]   735   857   952     Continua (a 575 V) [A]   704   819   911     Continua (a 690 V) [A]   704   819   911     Tamaño y número máximo de cables por fase   8 × 150 (8 × 300   mcm)   mcm)   mcm)     - Alimentación [mm² (AWG)] (F1)   8 × 240 (8 × 500   mcm)   mcm)   mcm)   mcm)     - Alimentación [mm² (AWG)] (F3)   8 × 456   8 × 456   8 × 456   4 × 900 mcm)   (4 × 900 mcm)   (4 × 900 mcm)   mcm)     - Carga compartida [mm² (AWG)]   4 × 120 (4 × 250   mcm)   mcm)   mcm)   mcm)     - Freno [mm² (AWG)]   4 × 185 (4 × 350   mcm)   mcm)   mcm)   mcm)     - Freno [mm² (AWG)]   4 × 185 (4 × 350   mcm)   mcm)   mcm)   mcm)     - Freno [mm² (AWG)]   4 × 185 (4 × 350   mcm)   mcm)   mcm)   mcm)     - Freno [mm² (AWG)]   4 × 185 (4 × 350   mcm)      | kVA continua (a 575 V) [KVA]                                        | 727              | 847              | 941              |
| Continua (a 550 V) [A]   735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kVA continua (a 690 V) [KVA]                                        | 872              | 1016             | 1129             |
| Continua (a 575 V) [A]   704   819   911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intensidad de entrada máxima                                        |                  | •                | !                |
| Tamaño y número máximo de cables por fase   S x 150 (8 x 300 mcm) mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm) mcm) mcm)   S x 240 (8 x 500 mcm)   S x 240 (8 x 500 mcm) mcm)   S x 240 (8 x 500 mcm)   S x 2   | Continua (a 550 V) [A]                                              | 735              | 857              | 952              |
| Tamaño y número máximo de cables por fase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Continua (a 575 V) [A]                                              | 704              | 819              | 911              |
| - Motor [mm² (AWG)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Continua (a 690 V) [A]                                              | 704              | 819              | 911              |
| mcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tamaño y número máximo de cables por fase                           | •                | •                |                  |
| - Alimentación [mm² (AWG)] (F1)  - Alimentación [mm² (AWG)] (F3)  - Alimentación [mm² (AWG)] (F3)  - Alimentación [mm² (AWG)] (F3)  - Carga compartida [mm² (AWG)]  - Freno [mm² (AWG)]  - | - Motor [mm² (AWG)]                                                 | 8 × 150 (8 × 300 | 8 × 150 (8 × 300 | 8 × 150 (8 × 300 |
| mcm    |                                                                     | mcm)             | mcm)             | mcm)             |
| - Alimentación [mm² (AWG)] (F3)  - Alimentación [mm² (AWG)] (F3)  - Carga compartida [mm² (AWG)]  - Freno [mm² (AWG)]  - Fr | - Alimentación [mm² (AWG)] (F1)                                     | 8 × 240 (8 × 500 | 8 × 240 (8 × 500 | 8 × 240 (8 × 500 |
| (4 × 900 mcm)   (6 × 900 mcm)   (7 × 900 mcm   |                                                                     | mcm)             | mcm)             | mcm)             |
| - Carga compartida [mm² (AWG)]  - Carga compartida [mm² (AWG)]  - Freno  | - Alimentación [mm² (AWG)] (F3)                                     | 8 × 456          | 8 × 456          | 8 × 456          |
| mcm  mcm  mcm  mcm  mcm  mcm  mcm  mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | (4 × 900 mcm)    | (4 × 900 mcm)    | (4 × 900 mcm)    |
| Freno [mm² (AWG)]  4 × 185 (4 × 350 mcm)  mcm)  Fusibles de red externos máximos [A]¹¹)  Pérdida de potencia estimada en 600 V [W]²¹ y ³¹  Pérdida de potencia estimada a 690 V [W]²¹ y ³  Pérdidas máximas agregadas del magnetotérmico o disyuntor y el contactor [W], (solo F3)  Pérdidas máximas de opciones de panel [W]  Rendimiento³¹  A × 185 (4 × 350 mcm)  1600  1600  10872  12316  1304  12798  615  615  607  609  609  609  609  609  609  609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Carga compartida [mm² (AWG)]                                      | 4 × 120 (4 × 250 | 4 × 120 (4 × 250 | 4 × 120 (4 × 250 |
| mcm    |                                                                     | mcm)             | mcm)             | mcm)             |
| Fusibles de red externos máximos [A] <sup>1)</sup> Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup> Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup> Pérdidas máximas agregadas del magnetotérmico o disyuntor y el  contactor [W], (solo F3)  Pérdidas máximas de opciones de panel [W]  Rendimiento <sup>3)</sup> Frecuencia de salida [Hz]  1600  1600  1600  1872  12316  12798  427  532  615  615  609  400  400  400  400  400  6098  60,98  60,98  60,98  60,98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - Freno [mm² (AWG)]                                                 | 4 × 185 (4 × 350 | 4 × 185 (4 × 350 | 4 × 185 (4 × 350 |
| Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup> 9500       10872       12316         Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup> 9863       11304       12798         Pérdidas máximas agregadas del magnetotérmico o disyuntor y el contactor [W], (solo F3)       427       532       615         Pérdidas máximas de opciones de panel [W]       400       400       400         Rendimiento <sup>3)</sup> 0,98       0,98       0,98         Frecuencia de salida [Hz]       0–500       0–500       0–500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | mcm)             | mcm)             | mcm)             |
| Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup> 9863       11304       12798         Pérdidas máximas agregadas del magnetotérmico o disyuntor y el contactor [W], (solo F3)       427       532       615         Pérdidas máximas de opciones de panel [W]       400       400       400         Rendimiento <sup>3)</sup> 0,98       0,98       0,98         Frecuencia de salida [Hz]       0–500       0–500       0–500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fusibles de red externos máximos [A] <sup>1)</sup>                  | 1600             | 1600             | 1600             |
| Pérdidas máximas agregadas del magnetotérmico o disyuntor y el contactor [W], (solo F3)       427       532       615         Pérdidas máximas de opciones de panel [W]       400       400       400         Rendimiento³)       0,98       0,98       0,98         Frecuencia de salida [Hz]       0–500       0–500       0–500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup>        | 9500             | 10872            | 12316            |
| contactor [W], (solo F3)       400       400       400         Pérdidas máximas de opciones de panel [W]       400       400       400         Rendimiento³)       0,98       0,98       0,98         Frecuencia de salida [Hz]       0-500       0-500       0-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup>          | 9863             | 11304            | 12798            |
| Pérdidas máximas de opciones de panel [W]         400         400         400           Rendimiento³)         0,98         0,98         0,98           Frecuencia de salida [Hz]         0-500         0-500         0-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pérdidas máximas agregadas del magnetotérmico o disyuntor y el      | 427              | 532              | 615              |
| Rendimiento³)         0,98         0,98         0,98           Frecuencia de salida [Hz]         0-500         0-500         0-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | contactor [W], (solo F3)                                            |                  |                  |                  |
| Frecuencia de salida [Hz] 0–500 0–500 0–500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pérdidas máximas de opciones de panel [W]                           | 400              | 400              | 400              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rendimiento <sup>3)</sup>                                           | 0,98             | 0,98             | 0,98             |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] 85 (185) 85 (185) 85 (185)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frecuencia de salida [Hz]                                           | 0–500            | 0–500            | 0-500            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)         | 85 (185)         | 85 (185)         |

#### Tabla 7.8 Datos eléctricos de los alojamientos F1/F3, alimentación de red 3 imes 525-690 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                              | P1M0               | P1M2               | P1M4               |
|---------------------------------------------------------------------|--------------------|--------------------|--------------------|
| Sobrecarga normal                                                   | NO                 | NO                 | NO                 |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |                    |                    |                    |
| Eje de salida típico a 550 V [kW]                                   | 850                | 1000               | 1100               |
| Eje de salida típico a 575 V [CV]                                   | 1150               | 1350               | 1550               |
| Eje de salida típico a 690 V [kW]                                   | 1000               | 1200               | 1400               |
| Tamaño del alojamiento                                              | F2/F4              | F2/F4              | F2/F4              |
| Intensidad de salida (trifásica)                                    | •                  |                    | •                  |
| Continua (a 550 V) [A]                                              | 1108               | 1317               | 1479               |
| Intermitente (sobrecarga de 60 s) (a 550 V) [A]                     | 1219               | 1449               | 1627               |
| Continua (a 575 / 690 V) [A]                                        | 1060               | 1260               | 1415               |
| Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]                 | 1166               | 1386               | 1557               |
| kVA continua (a 550 V) [kVA]                                        | 1056               | 1255               | 1409               |
| kVA continua (a 575 V) [KVA]                                        | 1056               | 1255               | 1409               |
| kVA continua (a 690 V) [KVA]                                        | 1267               | 1506               | 1691               |
| Intensidad de entrada máxima                                        | •                  |                    | •                  |
| Continua (a 550 V) [A]                                              | 1068               | 1269               | 1425               |
| Continua (a 575 V) [A]                                              | 1022               | 1214               | 1364               |
| Continua (a 690 V) [A]                                              | 1022               | 1214               | 1364               |
| Tamaño y número máximo de cables por fase                           | •                  |                    |                    |
| - Motor [mm² (AWG)]                                                 | 12 × 150 (12 × 300 | 12 × 150 (12 × 300 | 12 × 150 (12 × 300 |
|                                                                     | mcm)               | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)] (F2)                                     | 8 × 240 (8 × 500   | 8 × 240 (8 × 500   | 8 × 240 (8 × 500   |
|                                                                     | mcm)               | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)] (F4)                                     | 8 × 456 (8 × 900   | 8 × 456 (8 × 900   | 8 × 456 (8 × 900   |
|                                                                     | mcm)               | mcm)               | mcm)               |
| - Carga compartida [mm² (AWG)]                                      | 4 × 120 (4 × 250   | 4 × 120 (4 × 250   | 4 × 120 (4 × 250   |
|                                                                     | mcm)               | mcm)               | mcm)               |
| - Freno [mm² (AWG)]                                                 | 6× 185 (6 × 350    | 6× 185 (6 × 350    | 6× 185 (6 × 350    |
|                                                                     | mcm)               | mcm)               | mcm)               |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 1600               | 2000               | 2500               |
| Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup>        | 13731              | 16190              | 18536              |
| Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup>          | 14250              | 16821              | 19247              |
| Pérdidas máximas agregadas del magnetotérmico o disyuntor y el      | 665                | 863                | 1044               |
| contactor [W], (solo F4)                                            |                    |                    |                    |
| Pérdidas máximas de opciones de panel [W]                           | 400                | 400                | 400                |
| Rendimiento <sup>3)</sup>                                           | 0,98               | 0,98               | 0,98               |
| Frecuencia de salida [Hz]                                           | 0-500              | 0–500              | 0–500              |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)           | 85 (185)           | 85 (185)           |

#### Tabla 7.9 Datos eléctricos de los alojamientos F2/F4, alimentación de red 3 × 525-690 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                       | P450          | P500                         | P560                         | P630                         |
|--------------------------------------------------------------|---------------|------------------------------|------------------------------|------------------------------|
| Sobrecarga normal                                            | NO            | NO                           | NO                           | NO                           |
| (Sobrecarga normal = 110 % corriente en 60 s)                |               |                              |                              |                              |
| Eje de salida típico a 550 V [kW]                            | 355           | 400                          | 450                          | 500                          |
| Eje de salida típico a 575 V [CV]                            | 450           | 500                          | 600                          | 650                          |
| Eje de salida típico a 690 V [kW]                            | 450           | 500                          | 560                          | 630                          |
| Tamaño del alojamiento                                       | F8/F9         | F8/F9                        | F8/F9                        | F8/F9                        |
| Intensidad de salida (trifásica)                             | •             |                              |                              |                              |
| Continua (a 550 V) [A]                                       | 470           | 523                          | 596                          | 630                          |
| Intermitente (sobrecarga de 60 s) (a 550 V) [A]              | 517           | 575                          | 656                          | 693                          |
| Continua (a 575 / 690 V) [A]                                 | 450           | 500                          | 570                          | 630                          |
| Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]          | 495           | 550                          | 627                          | 693                          |
| kVA continua (a 550 V) [kVA]                                 | 448           | 498                          | 568                          | 600                          |
| kVA continua (a 575 V) [KVA]                                 | 448           | 498                          | 568                          | 627                          |
| kVA continua (a 690 V) [KVA]                                 | 538           | 598                          | 681                          | 753                          |
| Intensidad de entrada máxima                                 |               |                              |                              |                              |
| Continua (a 550 V) [A]                                       | 453           | 504                          | 574                          | 607                          |
| Continua (a 575 V) [A]                                       | 434           | 482                          | 549                          | 607                          |
| Continua (a 690 V)                                           | 434           | 482                          | 549                          | 607                          |
| Tamaño y número máximo de cables por fase                    | •             |                              |                              |                              |
| - Motor [mm² (AWG)]                                          | 4x240 (4x500  | 4x240 (4x500                 | 4x240 (4x500                 | 4x240 (4x500                 |
|                                                              | mcm)          | mcm)                         | mcm)                         | mcm)                         |
| - Alimentación [mm² (AWG)]                                   | 4 × 85        | 4 × 85                       | 4 × 85                       | 4 × 85                       |
|                                                              | (4 × 3/0 mcm) | $(4 \times 3/0 \text{ mcm})$ | $(4 \times 3/0 \text{ mcm})$ | $(4 \times 3/0 \text{ mcm})$ |
| - Freno [mm² (AWG)]                                          | 2 × 185 (2 ×  | 2 × 185 (2 ×                 | 2 × 185 (2 ×                 | 2 × 185 (2 ×                 |
|                                                              | 350 mcm)      | 350 mcm)                     | 350 mcm)                     | 350 mcm)                     |
| Fusibles de red externos máximos [A] <sup>1)</sup>           | 630           | 630                          | 630                          | 630                          |
| Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup> | 5323          | 6010                         | 7395                         | 8209                         |
| Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup>   | 5529          | 6239                         | 7653                         | 8495                         |
| Rendimiento <sup>3)</sup>                                    | 0,98          | 0,98                         | 0,98                         | 0,98                         |
| Frecuencia de salida [Hz]                                    | 0-500         | 0-500                        | 0-500                        | 0-500                        |
|                                                              | 1             |                              | 0 300                        | 0 500                        |

### Tabla 7.10 Datos eléctricos de los alojamientos F8/F9, alimentación de red 6 $\times$ 525-690 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                              | P710             | P800             | P900             |
|---------------------------------------------------------------------|------------------|------------------|------------------|
| Sobrecarga normal                                                   | NO               | NO               | NO               |
| (Sobrecarga normal = 110 % corriente en 60 s)                       |                  |                  |                  |
| Eje de salida típico a 550 V [kW]                                   | 560              | 670              | 750              |
| Eje de salida típico a 575 V [CV]                                   | 750              | 950              | 1050             |
| Eje de salida típico a 690 V [kW]                                   | 710              | 800              | 900              |
| Tamaño del alojamiento                                              | F10/F11          | F10/F11          | F10/F11          |
| Intensidad de salida (trifásica)                                    | •                |                  |                  |
| Continua (a 550 V) [A]                                              | 763              | 889              | 988              |
| Intermitente (sobrecarga de 60 s) (a 550 V) [A]                     | 839              | 978              | 1087             |
| Continua (a 575 / 690 V) [A]                                        | 730              | 850              | 945              |
| Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]                 | 803              | 935              | 1040             |
| kVA continua (a 550 V) [kVA]                                        | 727              | 847              | 941              |
| kVA continua (a 575 V) [KVA]                                        | 727              | 847              | 941              |
| kVA continua (a 690 V) [KVA]                                        | 872              | 1016             | 1129             |
| Intensidad de entrada máxima                                        | •                |                  | •                |
| Continua (a 550 V) [A]                                              | 735              | 857              | 952              |
| Continua (a 575 V) [A]                                              | 704              | 819              | 911              |
| Continua (a 690 V) [A]                                              | 704              | 819              | 911              |
| Tamaño y número máximo de cables por fase                           | •                |                  | •                |
| - Motor [mm² (AWG)]                                                 | 8 × 150 (8 × 300 | 8 × 150 (8 × 300 | 8 × 150 (8 × 300 |
|                                                                     | mcm)             | mcm)             | mcm)             |
| - Alimentación [mm² (AWG)]                                          | 6 × 120          | 6 × 120          | 6 × 120          |
|                                                                     | (4 × 900 mcm)    | (4 × 900 mcm)    | (4 × 900 mcm)    |
| - Freno [mm² (AWG)]                                                 | 4 × 185 (4 × 350 | 4 × 185 (4 × 350 | 4 × 185 (4 × 350 |
|                                                                     | mcm)             | mcm)             | mcm)             |
| Fusibles de red externos máximos [A] <sup>1)</sup>                  | 900              | 900              | 900              |
| Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup>        | 9500             | 10872            | 12316            |
| Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup>          | 9863             | 11304            | 12798            |
| Pérdidas máximas agregadas del magnetotérmico o disyuntor y el      | 427              | 532              | 615              |
| contactor [W], (solo F11)                                           |                  |                  |                  |
| Pérdidas máximas de opciones de panel [W]                           | 400              | 400              | 400              |
| Rendimiento <sup>3)</sup>                                           | 0,98             | 0,98             | 0,98             |
| Frecuencia de salida [Hz]                                           | 0–500            | 0–500            | 0-500            |
| Desconexión por sobretemperatura de la tarjeta de control [°C (°F)] | 85 (185)         | 85 (185)         | 85 (185)         |

#### Tabla 7.11 Datos eléctricos de los alojamientos F10/F11, alimentación de red 6 × 525-690 V CA

- 1) Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.
- 2) La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.
- 3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.



| VLT® HVAC Drive FC 102                                         | P1M0               | P1M2               | P1M4               |
|----------------------------------------------------------------|--------------------|--------------------|--------------------|
| Sobrecarga normal                                              | NO                 | NO                 | NO                 |
| (Sobrecarga normal = 110 % corriente en 60 s)                  |                    |                    |                    |
| Eje de salida típico a 550 V [kW]                              | 850                | 1000               | 1100               |
| Eje de salida típico a 575 V [CV]                              | 1150               | 1350               | 1550               |
| Eje de salida típico a 690 V [kW]                              | 1000               | 1200               | 1400               |
| Tamaño del alojamiento                                         | F12/F13            | F12/F13            | F12/F13            |
| Intensidad de salida (trifásica)                               | -                  |                    | •                  |
| Continua (a 550 V) [A]                                         | 1108               | 1317               | 1479               |
| Intermitente (sobrecarga de 60 s) (a 550 V) [A]                | 1219               | 1449               | 1627               |
| Continua (a 575 / 690 V) [A]                                   | 1060               | 1260               | 1415               |
| Intermitente (sobrecarga de 60 s) (a 575/690 V) [A]            | 1166               | 1386               | 1557               |
| kVA continua (a 550 V) [kVA]                                   | 1056               | 1255               | 1409               |
| kVA continua (a 575 V) [KVA]                                   | 1056               | 1255               | 1409               |
| kVA continua (a 690 V) [KVA]                                   | 1267               | 1506               | 1691               |
| Intensidad de entrada máxima                                   |                    |                    | !                  |
| Continua (a 550 V) [A]                                         | 1068               | 1269               | 1425               |
| Continua (a 575 V) [A]                                         | 1022               | 1214               | 1364               |
| Continua (a 690 V) [A]                                         | 1022               | 1214               | 1364               |
| Tamaño y número máximo de cables por fase                      |                    |                    | !                  |
| - Motor [mm² (AWG)]                                            | 12 × 150 (12 × 300 | 12 × 150 (12 × 300 | 12 × 150 (12 × 300 |
|                                                                | mcm)               | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)] (F12)                               | 8 × 240 (8 × 500   | 8 × 240 (8 × 500   | 8 × 240 (8 × 500   |
|                                                                | mcm)               | mcm)               | mcm)               |
| - Alimentación [mm² (AWG)] (F13)                               | 8 × 456 (8 × 900   | 8 × 456 (8 × 900   | 8 × 456 (8 × 900   |
|                                                                | mcm)               | mcm)               | mcm)               |
| - Freno [mm² (AWG)]                                            | 6× 185 (6 × 350    | 6× 185 (6 × 350    | 6× 185 (6 × 350    |
|                                                                | mcm)               | mcm)               | mcm)               |
| Fusibles de red externos máximos [A] <sup>1)</sup>             | 1600               | 2000               | 2500               |
| Pérdida de potencia estimada en 600 V [W] <sup>2) y 3)</sup>   | 13731              | 16190              | 18536              |
| Pérdida de potencia estimada a 690 V [W] <sup>2) y 3</sup>     | 14250              | 16821              | 19247              |
| Pérdidas máximas agregadas del magnetotérmico o disyuntor y el | 665                | 863                | 1044               |
| contactor [W], (solo F13)                                      |                    |                    |                    |
| Pérdidas máximas de opciones de panel [W]                      | 400                | 400                | 400                |
| Rendimiento <sup>3)</sup>                                      | 0,98               | 0,98               | 0,98               |
| Frecuencia de salida [Hz]                                      | 0-500              | 0–500              | 0-500              |
|                                                                |                    |                    |                    |

Tabla 7.12 Datos eléctricos de los alojamientos F12/F13, alimentación de red 6 imes 525-690 V CA

3) Se mide utilizando cables de motor apantallados de 5 m (16,5 ft) y en condiciones de carga y frecuencia nominales. Rendimiento medido en corriente nominal. Para conocer la clase de rendimiento energético, consulte el capétulo 10.12 Rendimiento. Para conocer las pérdidas a carga parcial, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

<sup>1)</sup> Consulte la clasificación de los fusibles en capétulo 10.5 Fusibles y magnetotérmicos.

<sup>2)</sup> La pérdida de potencia típica se calcula en condiciones normales y se espera que esté comprendida en un margen del ±15 % (la tolerancia está relacionada con las distintas condiciones de cable y tensión). Estos valores están basados en el rendimiento típico de un motor (en el límite de IE/IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia. Esto es aplicable al dimensionamiento de la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, las pérdidas de potencia pueden aumentar. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Las opciones y carga del cliente pueden sumar hasta 30 W a las pérdidas, aunque normalmente una tarjeta de control a plena carga y las opciones para las ranuras A o B solo añaden 4 W cada una.



## 7.3 Fuente de alimentación de red

Fuente de alimentación de red

| Terminales de alimentación (6 pulsos)    | L1, L2, L3                          |
|------------------------------------------|-------------------------------------|
| Terminales de alimentación (doce pulsos) | L1-1, L2-1, L3-1, L1-2, L2-2 y L3-2 |
| Tensión de alimentación                  | 380-480 V ±10 %, 525-690 V ±10 %    |

Tensión de red baja / corte de tensión de red:

durante un episodio de tensión de red baja o un corte de red, el convertidor de frecuencia sigue funcionando hasta que la tensión del enlace de CC desciende por debajo del nivel de parada mínimo, que generalmente es un 15 % inferior a la tensión de alimentación nominal más baja del convertidor de frecuencia. No se puede esperar un arranque y un par completo con una tensión de red inferior al 10 % por debajo de la tensión de alimentación nominal más baja del convertidor.

| Frecuencia de alimentación                                             | 50/60 Hz ±5 %                                             |
|------------------------------------------------------------------------|-----------------------------------------------------------|
| Máximo desequilibrio transitorio entre fases de red                    | 3,0 % de la tensión de alimentación nominal <sup>1)</sup> |
| Factor de potencia real (λ)                                            | ≥0,9 nominal con carga nominal                            |
| Factor de potencia de desplazamiento (cos $\Phi$ ) cercano a la unidad | (>0,98)                                                   |
| Conmutación en la alimentación de entrada L1, L2 y L3 (arranques)      | Una vez cada dos minutos, como máximo                     |
| Entorno según la norma EN 60664-1                                      | Categoría de sobretensión III / grado de contaminación 2  |

El convertidor es adecuado para utilizarse en un circuito capaz de proporcionar una intensidad nominal de cortocircuito (SCCR) máxima de 100 kA a 480/600 V.

1) Cálculos basados en las normas UL / CEI 61800-3.

## 7.4 Salida del motor y datos del motor

Salida del motor (U, V y W)

| Tensión de salida        | 0-100 % de la tensión de alimentación |
|--------------------------|---------------------------------------|
| Frecuencia de salida     | 0-590 Hz <sup>1)</sup>                |
| Conmutación en la salida | Ilimitada                             |
| Tiempos de rampa         | 0,01-3600 s                           |

<sup>1)</sup> Dependiente de la potencia y de la tensión.

Características de par

| Par de arranque (par constante)   | Máximo del | 150 % durante 60 s <sup>1) y 2)</sup> |
|-----------------------------------|------------|---------------------------------------|
| Par de sobrecarga (par constante) | Máximo del | 150 % durante 60 s <sup>1) y 2)</sup> |

- 1) Porcentaje relativo a la corriente nominal del convertidor de frecuencia.
- 2) Una vez cada 10 minutos.

## 7.5 Condiciones ambientales

| ) |
|---|
|   |

| Alojamientos E1/F1/F2/F3/F4/F8/F9/F10/F11/F12             | 2/F13                                        | IP21 / Tipo 1 e IP54 / Tipo 12      |
|-----------------------------------------------------------|----------------------------------------------|-------------------------------------|
| Alojamiento E2                                            |                                              | IP00/Chasis                         |
| Prueba de vibración                                       |                                              | 1,0 g                               |
| Humedad relativa                                          | 5-95 % (CEI 721-3-3; clase 3K3 [sin condens  | ación] durante el funcionamiento)   |
| Entorno agresivo (CEI 60068-2-43) prueba H <sub>2</sub> S |                                              | Clase Kd                            |
| Gases agresivos (CEI 60721-3-3)                           |                                              | Clase 3C3                           |
| Método de prueba conforme a CEI 60068-2-43                |                                              | H2S (10 días)                       |
| Temperatura ambiente (con modo de conmutado               | ción SFAVM)                                  |                                     |
| - con reducción de potencia                               |                                              | Máximo 55 °C (131 °F) <sup>1)</sup> |
| - con potencia de salida completa de motores E            | EFF2 típicos (hasta un 90 % de la intensidad | de Máximo 50 °C                     |
| salida)                                                   |                                              | (122 °F) <sup>1)</sup>              |
| - a plena intensidad de salida continua del con           | vertidor de frecuencia                       | Máximo 45 °C (113 °F) <sup>1)</sup> |
| Temperatura ambiente mínima durante el funci              | onamiento a escala completa                  | 0 °C (32 °F)                        |
| Temperatura ambiente mínima con rendimiento               | reducido                                     | –10 °C (14 °F)                      |
| Temperatura durante el almacenamiento/transp              | orte De –25                                  | s a 65/70 °C (de –13 a 149/158 °F)  |



| Especificaciones | Guía de diseño  |
|------------------|-----------------|
| Lanecilleaciones | Quia de disello |

| Altitud máxima sobre el nivel del mar sin reducción de potencia                            | 1000 m (3281 ft)       |
|--------------------------------------------------------------------------------------------|------------------------|
| Altitud máxima sobre el nivel del mar con reducción de potencia                            | 3000 m (9842 ft)       |
| 1) Para obtener más información sobre la reducción de potencia, consulte el capétulo 9.6 l | Reducción de potencia. |
| Normas CEM, emisión                                                                        | EN 61800-3             |
| Normas CEM, inmunidad                                                                      | EN 61800-3             |
| Clase de rendimiento energético <sup>1)</sup>                                              | IE2                    |

- 1) Determinada conforme a la norma EN 50598-2 en:
  - Carga nominal.
  - 90 % de la frecuencia nominal.
  - Ajustes de fábrica de la frecuencia de conmutación.
  - Ajustes de fábrica del patrón de conmutación.

## 7.6 Especificaciones del cable

Longitudes de cable y secciones transversales para cables de control

| Longitud máxima del cable de motor, apantallado                                         | 150 m (492 ft)                                                  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Longitud máxima del cable de motor, sin apantallar                                      | 300 m (984 ft)                                                  |
|                                                                                         | Consulte el capétulo 7 Especifica-                              |
| Sección transversal máxima al motor, la alimentación, la carga compartida y el freno    | ciones <sup>1)</sup>                                            |
| Sección transversal máxima para los terminales de control (cable rígido)                | 1,5 mm <sup>2</sup> / 16 AWG (2 $\times$ 0,75 mm <sup>2</sup> ) |
| Sección transversal máxima para los terminales de control (cable flexible)              | 1 mm <sup>2</sup> / 18 AWG                                      |
| Sección transversal máxima para los terminales de control (cable con núcleo recubierto) | 0,5 mm <sup>2</sup> /20 AWG                                     |
| Sección transversal mínima para los terminales de control                               | 0,25 mm² / 23 AWG                                               |

<sup>1)</sup> Para obtener detalles sobre los cables de alimentación, consulte los datos eléctricos del capétulo 7.1 Datos eléctricos, 380-480 V y el capétulo 7.2 Datos eléctricos, 525-690 V.

## 7.7 Entrada/salida de control y datos de control

## Entradas digitales

| Entradas digitales programables        | 4 (6)                                                |
|----------------------------------------|------------------------------------------------------|
| Número de terminal                     | 18, 19, 27 <sup>1)</sup> , 29 <sup>1)</sup> , 32, 33 |
| Lógica                                 | PNP o NPN                                            |
| Nivel de tensión                       | 0-24 V CC                                            |
| Nivel de tensión, 0 lógico PNP         | <5 V CC                                              |
| Nivel de tensión, 1 lógico PNP         | >10 V CC                                             |
| Nivel de tensión, 0 lógico NPN         | >19 V CC                                             |
| Nivel de tensión, 1 lógico NPN         | <14 V CC                                             |
| Tensión máxima de entrada              | 28 V CC                                              |
| Resistencia de entrada, R <sub>i</sub> | Aproximadamente 4 kΩ                                 |

Todas las entradas digitales están galvánicamente aisladas de la tensión de alimentación (PELV) y de otros terminales de tensión alta.

1) Los terminales 27 y 29 también pueden programarse como salidas.

## Entradas analógicas

| N.º de entradas analógicas             | 2                            |
|----------------------------------------|------------------------------|
| Número de terminal                     | 53, 54                       |
| Modos                                  | Tensión o intensidad         |
| Selección de modo                      | Conmutadores A53 y A54       |
| Modo tensión                           | Conmutador A53 / A54 = (U)   |
| Nivel de tensión                       | De −10 V a +10 V (escalable) |
| Resistencia de entrada, R <sub>i</sub> | Aproximadamente 10 kΩ        |
| Tensión máxima                         | ±20 V                        |
| Modo de intensidad                     | Conmutador A53 / A54 = (I)   |
| Nivel de intensidad                    | De 0/4 a 20 mA (escalable)   |



| Resistencia de entrada, R <sub>i</sub> | Aproximadamente 200 $\Omega$              |
|----------------------------------------|-------------------------------------------|
| Corriente máxima                       | 30 mA                                     |
| Resolución de entradas analógicas      | 10 bit (signo +)                          |
| Precisión de las entradas analógicas   | Error máximo del 0,5 % de la escala total |
| Ancho de banda                         | 100 Hz                                    |

Las entradas analógicas están galvánicamente aisladas de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.

VLT® HVAC Drive FC 102

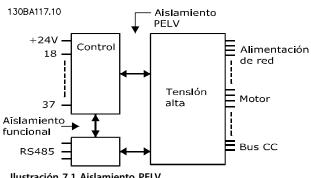



Ilustración 7.1 Aislamiento PELV

## Entradas de pulsos

| Entradas de pulsos program                               | ables                                     | 2                                                            |
|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| Número de terminal de puls                               | 50                                        | 29, 33                                                       |
| Frecuencia máxima en el terminal 29 y 33 (en contrafase) |                                           | 110 kHz                                                      |
| Frecuencia máxima en el ter                              | rminal 29 y 33 (colector abierto)         | 5 kHz                                                        |
| Frecuencia mínima en los te                              | erminales 29 y 33                         | 4 Hz                                                         |
| Nivel de tensión                                         | Consulte las <i>Entradas digitales</i> en | el capétulo 7.7 Entrada/salida de control y datos de control |
| Tensión máxima de entrada                                |                                           | 28 V CC                                                      |
| Resistencia de entrada, R <sub>i</sub>                   |                                           | Aproximadamente 4 kΩ                                         |
| Precisión de la entrada de p                             | oulsos (0,1-1 kHz)                        | Error máximo: un 0,1 % de la escala completa                 |

| Salida analógica                                           |                                        |
|------------------------------------------------------------|----------------------------------------|
| Número de salidas analógicas programables                  | 1                                      |
| Número de terminal                                         | 42                                     |
| Rango de intensidad en la salida analógica                 | 0/4-20 mA                              |
| Carga de resistencia máxima a común en la salida analógica | 500 Ω                                  |
| Precisión en la salida analógica                           | Error máximo: 0,8 % de escala completa |
| Resolución en la salida analógica                          | 8 bit                                  |

La salida analógica está galvánicamente aislada de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.

## Tarjeta de control, comunicación serie RS485

| Número de terminal | 68 (P, TX+, RX+), 69 (N, TX-, RX-) |
|--------------------|------------------------------------|
| N.º de terminal 61 | Común para los terminales 68 y 69  |
|                    |                                    |

El circuito de comunicación serie RS485 se encuentra separado funcionalmente de otros circuitos centrales y galvánicamente aislado de la tensión de alimentación (PELV).

## Calida digital

| Intensidad de salida máxima (disipador o fuente)  Carga máxima en salida de frecuencia  Carga capacitiva máxima en salida de frecuencia  Frecuencia de salida mín. en salida de frecuencia  Frecuencia de salida máxima en salida de frecuencia  32 kHz                                                                                                                    | Salida digital                                               |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|
| Nivel de tensión en la salida digital / salida de frecuencia  Intensidad de salida máxima (disipador o fuente)  Carga máxima en salida de frecuencia  Carga capacitiva máxima en salida de frecuencia  Trecuencia de salida mín. en salida de frecuencia  Frecuencia de salida máxima en salida de frecuencia  Trecuencia de salida máxima en salida de frecuencia  32 kHz | Salidas digitales / de pulsos programables                   | 2                                            |
| Intensidad de salida máxima (disipador o fuente)  Carga máxima en salida de frecuencia  Carga capacitiva máxima en salida de frecuencia  Frecuencia de salida mín. en salida de frecuencia  Trecuencia de salida máxima en salida de frecuencia  Trecuencia de salida máxima en salida de frecuencia  32 kHz                                                               | Número de terminal                                           | 27, 29 <sup>1)</sup>                         |
| Carga máxima en salida de frecuencia 1 kC Carga capacitiva máxima en salida de frecuencia 10 nf Frecuencia de salida mín. en salida de frecuencia 0 H: Frecuencia de salida máxima en salida de frecuencia 32 kH:                                                                                                                                                          | Nivel de tensión en la salida digital / salida de frecuencia | 0-24 V                                       |
| Carga capacitiva máxima en salida de frecuencia 10 nf<br>Frecuencia de salida mín. en salida de frecuencia 0 Hz<br>Frecuencia de salida máxima en salida de frecuencia 32 kHz                                                                                                                                                                                              | Intensidad de salida máxima (disipador o fuente)             | 40 mA                                        |
| Frecuencia de salida mín. en salida de frecuencia 0 Hz Frecuencia de salida máxima en salida de frecuencia 32 kHz                                                                                                                                                                                                                                                          | Carga máxima en salida de frecuencia                         | 1 kΩ                                         |
| Frecuencia de salida máxima en salida de frecuencia 32 kHz                                                                                                                                                                                                                                                                                                                 | Carga capacitiva máxima en salida de frecuencia              | 10 nF                                        |
|                                                                                                                                                                                                                                                                                                                                                                            | Frecuencia de salida mín. en salida de frecuencia            | 0 Hz                                         |
| Pracisión de salida de frecuencia Error máximo: un 0.1 % de la escala complet                                                                                                                                                                                                                                                                                              | Frecuencia de salida máxima en salida de frecuencia          | 32 kHz                                       |
| Trecision de sanda de frecuencia                                                                                                                                                                                                                                                                                                                                           | Precisión de salida de frecuencia                            | Error máximo: un 0,1 % de la escala completa |



## Especificaciones Guía de diseño

#### Resolución de salidas de frecuencia

12 bits

1) Los terminales 27 y 29 también pueden programarse como entradas.

La salida digital está galvánicamente aislada de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.

## Tarjeta de control, salida de 24 V CC

| Número de terminal | 12, 13 |
|--------------------|--------|
| Carga máxima       | 200 mA |

El suministro externo de 24 V CC está galvánicamente aislado de la tensión de alimentación (PELV), aunque tiene el mismo potencial que las entradas y salidas analógicas y digitales.

#### Salidas de relé

| Salidas de relé programables                                                                 | 2                                                        |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Sección transversal máxima para terminales de relé                                           | 2,5 mm <sup>2</sup> (12 AWG)                             |
| Sección transversal mínima para terminales de relé                                           | 0,2 mm <sup>2</sup> (30 AWG)                             |
| Longitud del cable pelado                                                                    | 8 mm (0,3 in)                                            |
| N.º de terminal del relé 01                                                                  | 1-3 (desconexión), 1-2 (conexión)                        |
| Carga máxima del terminal (CA-1) $^{1)}$ en 1-2 (NO) (carga resistiva) $^{2)}$ y             | <sup>3)</sup> 400 V CA, 2 A                              |
| Máxima carga del terminal (CA-15 )11 en 1-2 (NO) (Carga inductiva                            | a cosφ 0,4) 240 V CA, 0,2 A                              |
| Máxima carga del terminal (CC-1) <sup>1)</sup> en 1-2 (NO) (Carga resistiva)                 | 80 V CC, 2 A                                             |
| Máxima carga del terminal (CC-13) <sup>1)</sup> en 1-2 (NO) (Carga inductiva)                | 24 V CC, 0,1 A                                           |
| Máxima carga del terminal (CA-1) <sup>1)</sup> en 1-3 (NC) (Carga resistiva)                 | 240 V CA, 2 A                                            |
| Máxima carga del terminal (CA-15)1) en 1-3 (NC) (Carga inductiva a                           | cosφ 0,4) 240 V CA, 0,2 A                                |
| Máxima carga del terminal (CC-1) <sup>1)</sup> en 1-3 (NC) (Carga resistiva)                 | 50 V CC, 2 A                                             |
| Máxima carga del terminal (CC-13) <sup>1)</sup> en 1-3 (NC) (Carga inductiva)                | 24 V CC, 0,1 A                                           |
| Carga mínima del terminal en 1-3 (NC), 1-2 (NO)                                              | 24 V CC 10 mA, 24 V CA 2 mA                              |
| Ambiente conforme a la norma EN 60664-1                                                      | Categoría de sobretensión III / grado de contaminación 2 |
| N.º de terminal del relé 02                                                                  | 4-6 (desconexión), 4-5 (conexión)                        |
| Carga máxima del terminal (CA-1) <sup>1)</sup> en 4-5 (NO) (carga resistiva) <sup>2) y</sup> | <sup>3)</sup> 400 V CA, 2 A                              |
| Máxima carga del terminal (CA-15 ) <sup>1)</sup> en 4-5 (NO) (Carga inductiva                | a cosφ 0,4) 240 V CA, 0,2 A                              |
| Máxima carga del terminal (CC-1) <sup>1)</sup> en 4-5 (NO) (Carga resistiva)                 | 80 V CC, 2 A                                             |
| Máxima carga del terminal (CC-13) <sup>1)</sup> en 4-5 (NO) (Carga inductiva)                | 24 V CC, 0,1 A                                           |
| Máxima carga del terminal (CA-1) <sup>1)</sup> en 4-6 (NC) (Carga resistiva)                 | 240 V CA, 2 A                                            |
| Máxima carga del terminal (CA-15) <sup>1)</sup> en 4-6 (NC) (Carga inductiva a               | cosφ 0,4) 240 V CA, 0,2 A                                |
| Máxima carga del terminal (CC-1) <sup>1)</sup> en 4-6 (NC) (Carga resistiva)                 | 50 V CC, 2 A                                             |
| Máxima carga del terminal (CC-13) <sup>1)</sup> en 4-6 (NC) (Carga inductiva)                | 24 V CC, 0,1 A                                           |
| Carga mínima del terminal en 4-6 (NC), 4-5 (NO)                                              | 24 V CC 10 mA, 24 V CA 2 mA                              |
| Ambiente conforme a la norma EN 60664-1                                                      | Categoría de sobretensión III / grado de contaminación 2 |
|                                                                                              |                                                          |

Los contactos del relé están galvánicamente aislados con respecto al resto del circuito con un aislamiento reforzado (PELV).

- 1) CEI 60947 partes 4 y 5.
- 2) Categoría de sobretensión II.
- 3) Aplicaciones UL 300 V CA 2 A.

## Tarjeta de control, salida de +10 V CC

| Número de terminal | 50            |
|--------------------|---------------|
| Tensión de salida  | 10,5 V ±0,5 V |
| Carga máxima       | 25 mA         |

El suministro de 10 V CC está galvánicamente aislado de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.



Conector de dispositivos USB tipo B

| (ar | acte | rísticas | dρ | contro | ١I |
|-----|------|----------|----|--------|----|
|     |      |          |    |        |    |

| Resolución de frecuencia de salida a 0-1000 Hz                                                                       | ±0,003 Hz                   |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Tiempo de respuesta del sistema (terminales 18, 19, 27, 29, 32 y 33)                                                 | ≤2 m/s                      |
| Rango de control de velocidad (lazo abierto)                                                                         | 1:100 de velocidad síncrona |
| Precisión de velocidad (lazo abierto) 30-4000 r/min: error máximo o                                                  |                             |
| Todas las características de control se hasan en un motor asincrono de 4 nolo                                        | c                           |
| Todas las características de control se basan en un motor asíncrono de 4 polo.  Pondimiento de la tariota de control | S.                          |
| Rendimiento de la tarjeta de control Intervalo de exploración                                                        | s.<br>5 M/S                 |
| Rendimiento de la tarjeta de control                                                                                 | 5 M/S                       |

## AVISO!

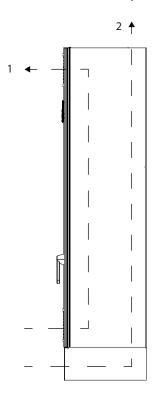
Conector USB

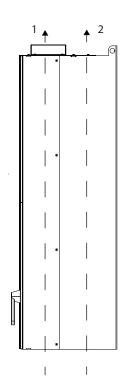
La conexión al PC se realiza por medio de un cable USB de dispositivo o host estándar.

La conexión USB se encuentra galvánicamente aislada de la tensión de alimentación (PELV) y del resto de los terminales de tensión alta.

La conexión USB no está galvánicamente aislada de la conexión toma a tierra. Utilice únicamente un ordenador portátil o PC aislado como conexión al terminal USB del convertidor de frecuencia o un convertidor / cable USB aislado.

## 7.8 Pesos de los alojamientos


| Protección | 380-480/500 V           | 525-690 V               |
|------------|-------------------------|-------------------------|
| E1         | 270-313 kg (595-690 lb) | 263-313 kg (580-690 lb) |
| E2         | 234-277 kg (516-611 lb) | 221-277 kg (487-611 lb) |


Tabla 7.13 Pesos de los alojamientos E1-E2, kg (lb)

| Protección | 380-480/500 V       | 525-690 V           |
|------------|---------------------|---------------------|
| F1         | 1017 kg (2242,1 lb) | 1017 kg (2242,1 lb) |
| F2         | 1260 kg (2777,9 lb) | 1260 kg (2777,9 lb) |
| F3         | 1318 kg (2905,7 lb) | 1318 kg (2905,7 lb) |
| F4         | 1561 kg (3441,5 lb) | 1561 kg (3441,5 lb) |
| F8         | 447 kg (985,5 lb)   | 447 kg (985,5 lb)   |
| F9         | 669 kg (1474,9 lb)  | 669 kg (1474,9 lb)  |
| F10        | 893 kg (1968,8 lb)  | 893 kg (1968,8 lb)  |
| F11        | 1116 kg (2460,4 lb) | 1116 kg (2460,4 lb) |
| F12        | 1037 kg (2286,4 lb) | 1037 kg (2286,4 lb) |
| F13        | 1259 kg (2775,7 lb) | 1259 kg (2775,7 lb) |

Tabla 7.14 Pesos de los alojamientos F1-F13, kg (lb)

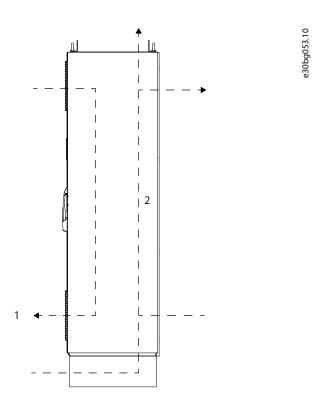
# 7.9 Caudal de aire para los alojamientos E1-E2 y F1-F13





| 1 | Caudal de aire del canal frontal, 340 m <sup>3</sup> /h (200 cfm) |
|---|-------------------------------------------------------------------|
|---|-------------------------------------------------------------------|

<sup>2</sup> Caudal de aire del canal posterior, 1105 m<sup>3</sup>/h (650 cfm) o 1444 m<sup>3</sup>/h (850 cfm)


Ilustración 7.2 Caudal de aire para el alojamiento E1

|                                                                     | 1 | Caudal de aire del canal frontal, 255 m³/h (150 cfm) |  |  |  |  |
|---------------------------------------------------------------------|---|------------------------------------------------------|--|--|--|--|
|                                                                     | 2 | Caudal de aire del canal posterior,                  |  |  |  |  |
| 1105 m <sup>3</sup> /h (650 cfm) o 1444 m <sup>3</sup> /h (850 cfm) |   |                                                      |  |  |  |  |

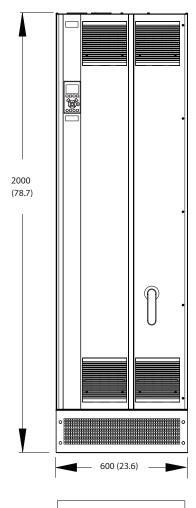
Ilustración 7.3 Caudal de aire para el alojamiento E2

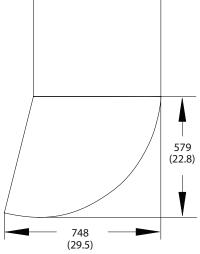
7





| 1 | Flujo de aire del canal frontal                   |  |  |  |  |
|---|---------------------------------------------------|--|--|--|--|
|   | - IP21 / tipo 1, 700 m³/h (412 cfm)               |  |  |  |  |
|   | - IP54 / tipo 12, 525 m <sup>3</sup> /h (309 cfm) |  |  |  |  |


2 Caudal de aire del canal posterior, 985 m<sup>3</sup>/h (580 cfm)


Ilustración 7.4 Caudal de aire para los alojamientos F1-F13



# 8 Dimensiones exteriores y de los terminales

- 8.1 Dimensiones exteriores y de los terminales del alojamiento E1
- 8.1.1 Dimensiones exteriores del alojamiento E1





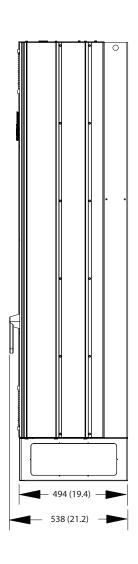



Ilustración 8.1 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento E1

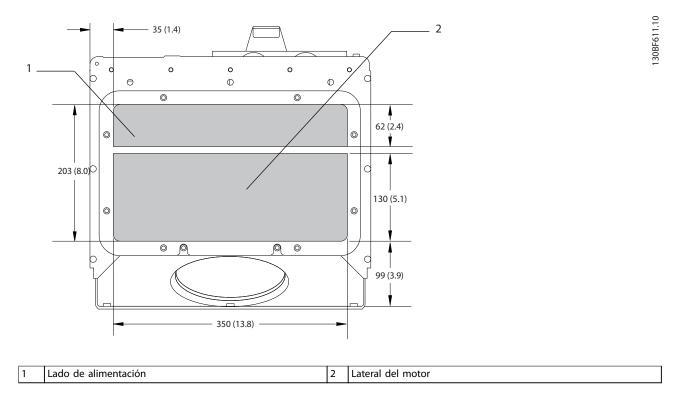
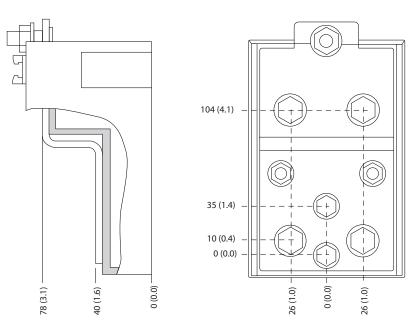
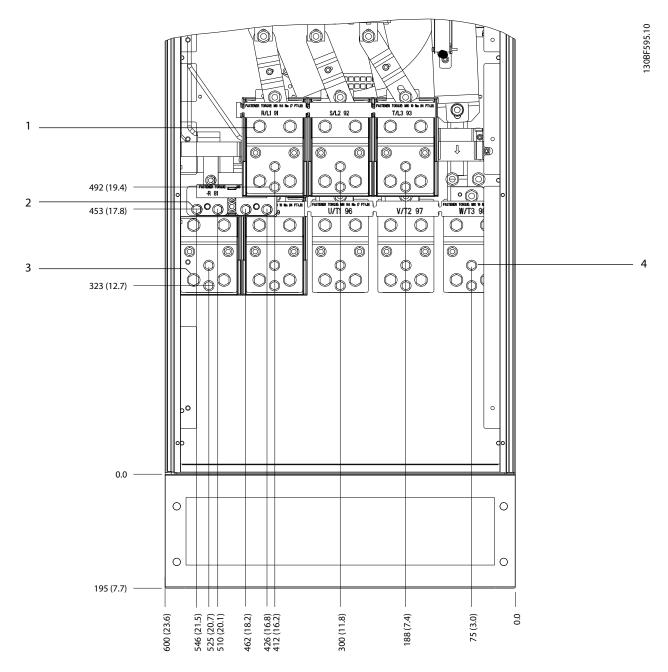



Ilustración 8.2 Dimensiones de la placa prensacables de los alojamientos E1/E2

#### 8.1.2 Dimensiones de los terminales del alojamiento E1

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.

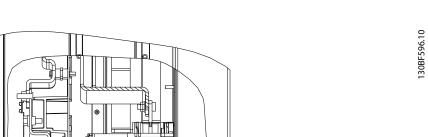


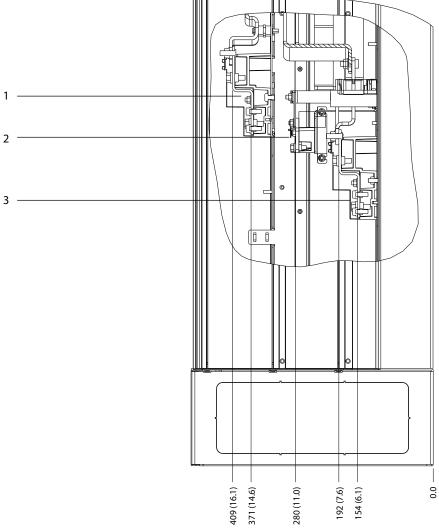


Ilustración 8.3 Detalle de las dimensiones de los terminales de los alojamientos E1/E2

74

130BF647.10

Danfoss




 1
 Terminales de alimentación
 3
 Terminales de carga compartida / regeneración

 2
 Terminales de freno
 4
 Terminales de motor

Ilustración 8.4 Dimensiones de los terminales del alojamiento E1 (vista frontal)





| 1 | Terminales de alimentación | 2 | Terminales de freno |
|---|----------------------------|---|---------------------|
| 3 | Terminales de motor        | - | -                   |

llustración 8.5 Dimensiones de los terminales del alojamiento E1 (vista lateral)



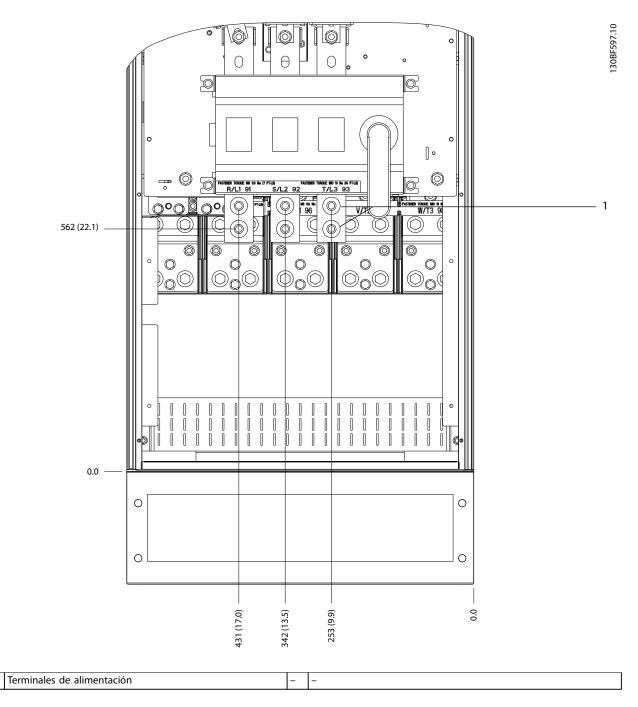



Ilustración 8.6 Dimensiones de los terminales del alojamiento E1 con desconexión (modelos de 380-480/500 V: P315; modelos de 525-690 V: P355-P560), vista frontal



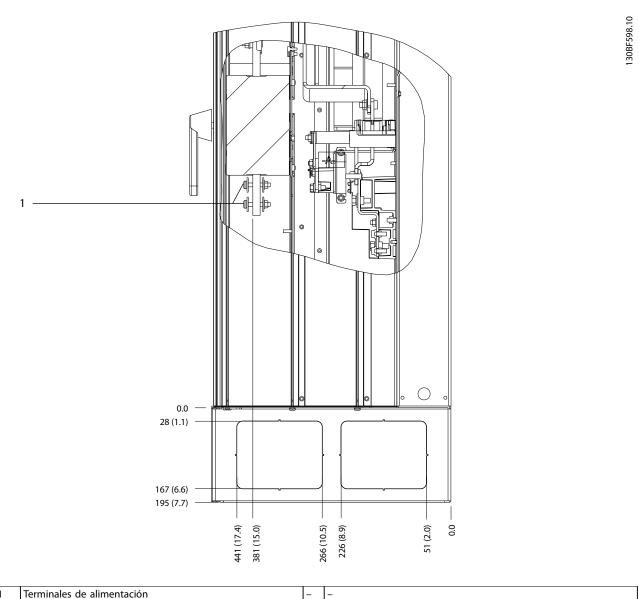



Ilustración 8.7 Dimensiones de los terminales del alojamiento E1 con desconexión (modelos de 380-480/500 V: P315; modelos de 525-690 V: P355-P560), vista lateral



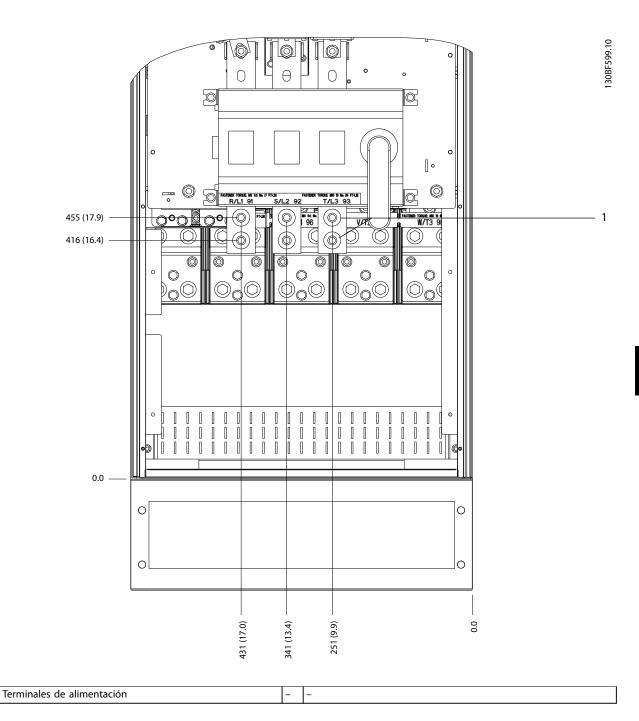



Ilustración 8.8 Dimensiones de los terminales del alojamiento E1 con desconexión (modelos de 380-480/500 V: P355-P400), vista frontal

Terminales de alimentación

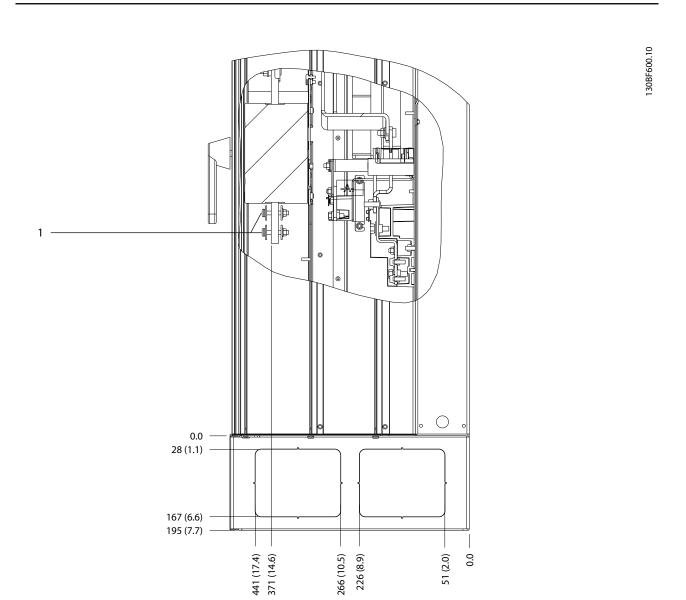
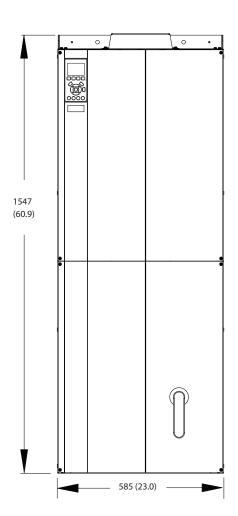




Ilustración 8.9 Dimensiones de los terminales del alojamiento E1 con desconexión (modelos de 380-480/500 V: P355-P400), vista lateral

Danfvss

- 8.2 Dimensiones exteriores y de los terminales del alojamiento E2
- 8.2.1 Dimensiones exteriores del alojamiento E2



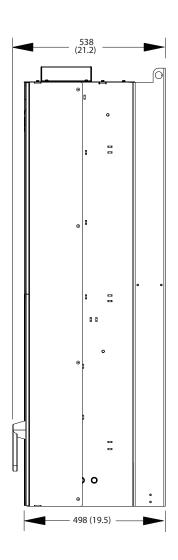



Ilustración 8.10 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento E2

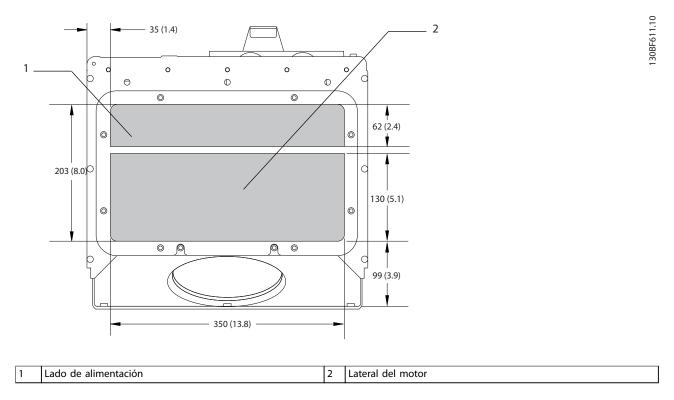



Ilustración 8.11 Dimensiones de la placa prensacables de los alojamientos E1/E2

#### 8.2.2 Dimensiones de los terminales del alojamiento E2

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.

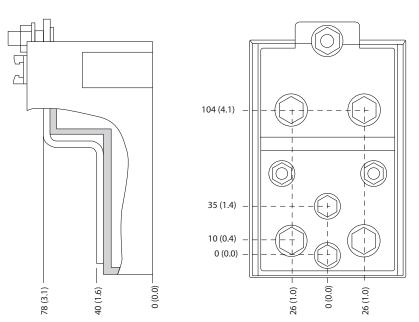
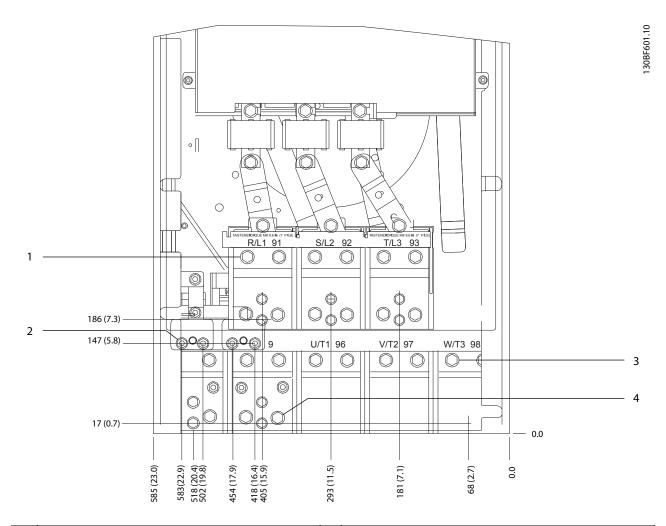
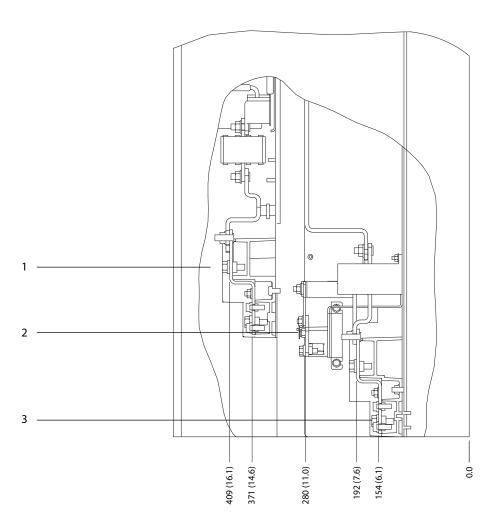




Ilustración 8.12 Detalle de las dimensiones de los terminales de los alojamientos E1/E2

130BF647.10

Danfoss




 1
 Terminales de alimentación
 3
 Terminales de motor

 2
 Terminales de freno
 4
 Terminales de carga compartida / regeneración

Ilustración 8.13 Dimensiones de los terminales del alojamiento E2 (vista frontal)

Q

Danfoss



| 1 | Terminales de alimentación | 2 | Terminales de freno |
|---|----------------------------|---|---------------------|
| 3 | Terminales de motor        | - | -                   |

Ilustración 8.14 Dimensiones de los terminales del alojamiento E2 (vista lateral)



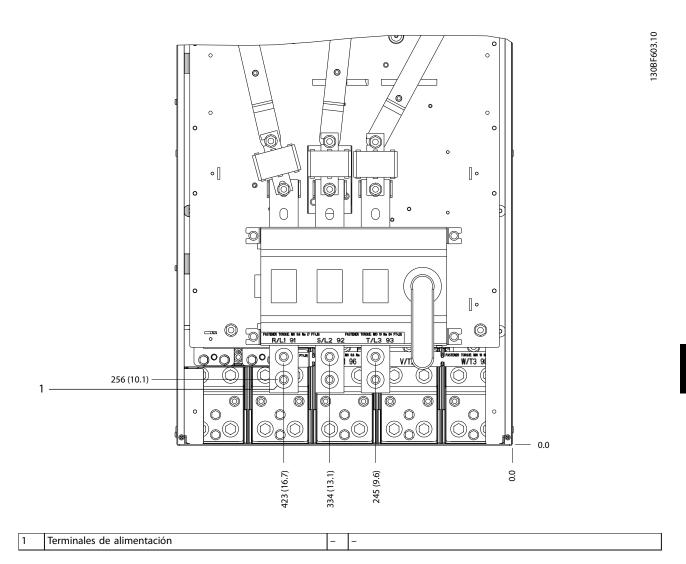



Ilustración 8.15 Dimensiones de los terminales del alojamiento E2 con desconexión (modelos de 380-480/500 V: P315; modelos de 525-690 V: P355-P560), vista frontal

MG16C305

Danfvss

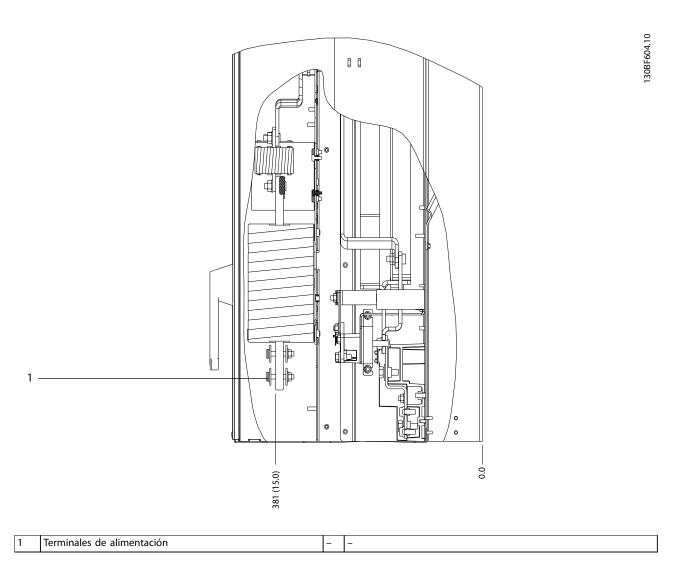



Ilustración 8.16 Dimensiones de los terminales del alojamiento E2 con desconexión (modelos de 380-480/500 V: P315; modelos de 525-690 V: P355-P560), vista lateral



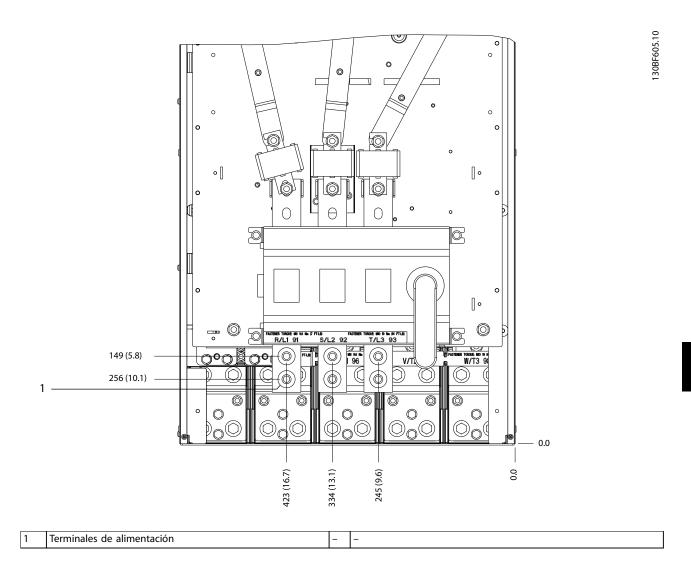



Ilustración 8.17 Dimensiones de los terminales del alojamiento E2 con desconexión (modelos de 380-480/500 V: P355-P400), vista frontal

MG16C305

R

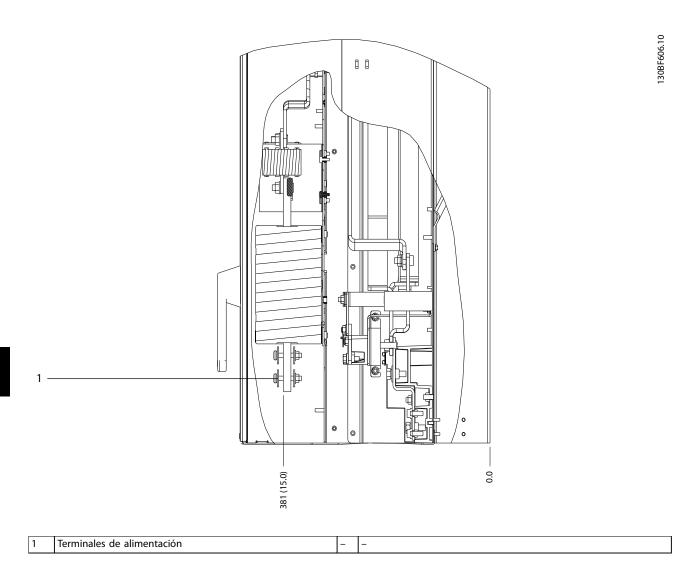
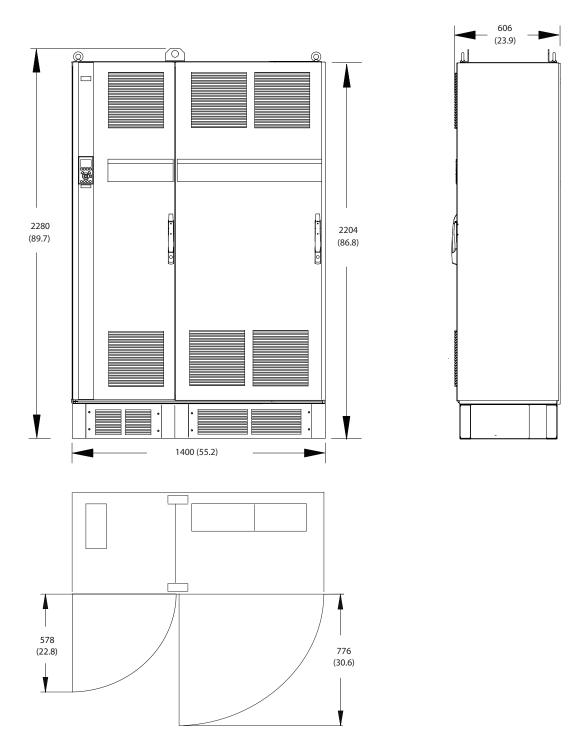




Ilustración 8.18 Dimensiones de los terminales del alojamiento E2 con desconexión (modelos de 380-480/500 V: P355-P400), vista lateral

3

# 8.3 Dimensiones exteriores y de los terminales del alojamiento F1

## 8.3.1 Dimensiones exteriores del alojamiento F1



llustración 8.19 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F1

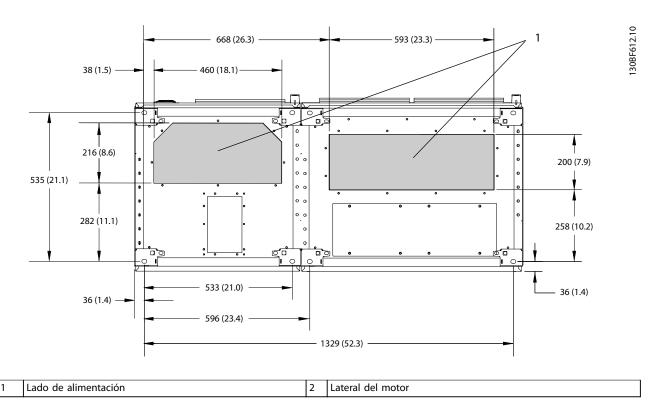
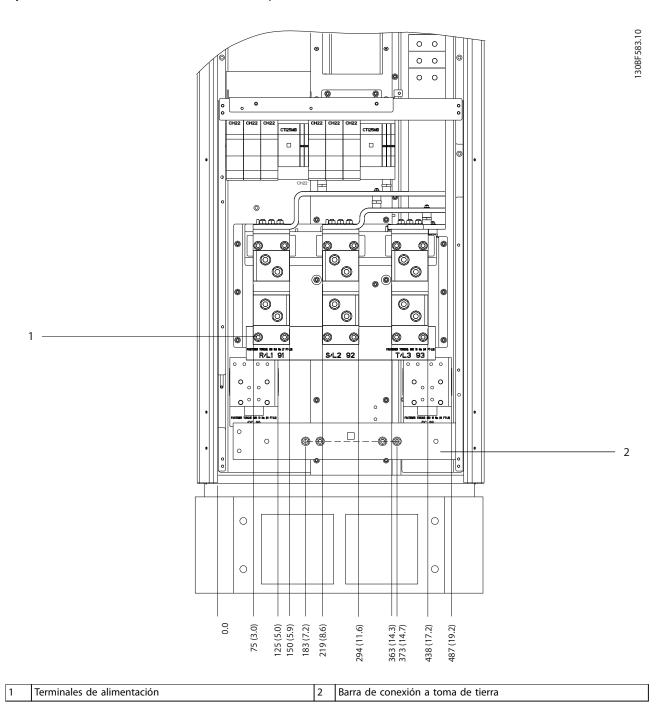
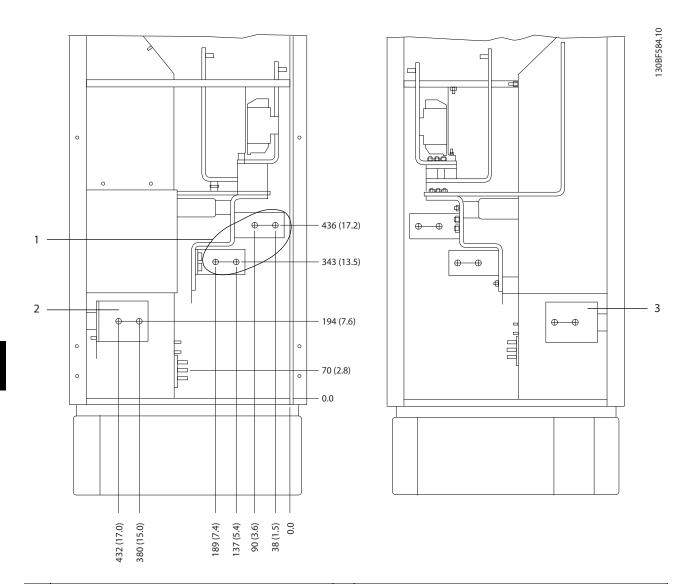




Ilustración 8.20 Dimensiones de la placa prensacables del alojamiento F1

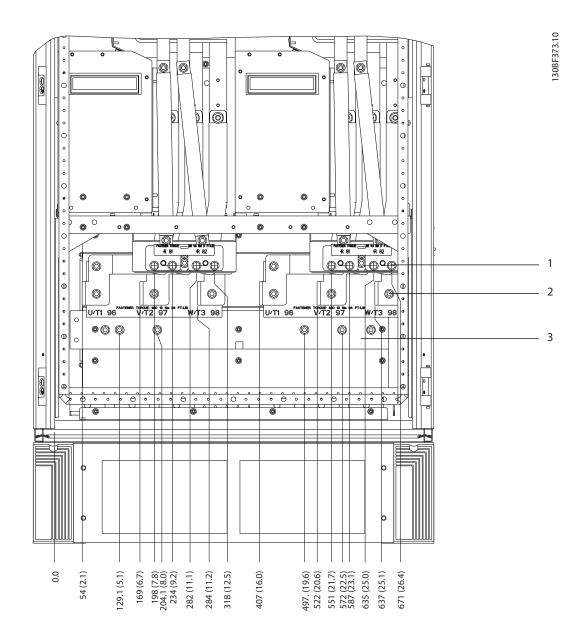



#### 8.3.2 Dimensiones de los terminales del alojamiento F1

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.



llustración 8.21 Dimensiones de los terminales para el armario del rectificador F1-F4 (vista frontal)

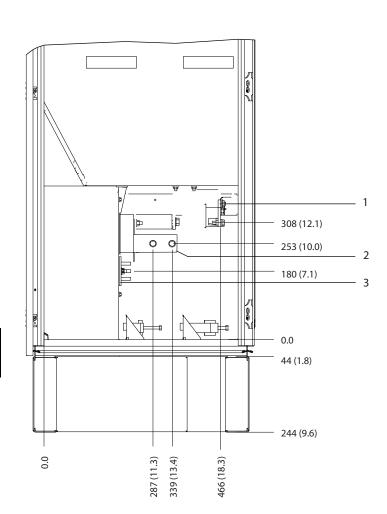





| 1 | Terminales de alimentación         | 3 | Terminales de carga compartida (–) |
|---|------------------------------------|---|------------------------------------|
| 2 | Terminales de carga compartida (+) | - | -                                  |

Ilustración 8.22 Dimensiones de los terminales para el armario del rectificador F1-F2 (vista lateral)





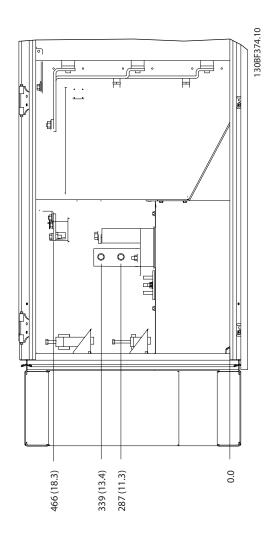


| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.23 Dimensiones de los terminales para el armario del inversor F1/F3 (vista frontal)

R







| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

llustración 8.24 Dimensiones de los terminales para el armario del inversor F1/F3 (vista lateral)

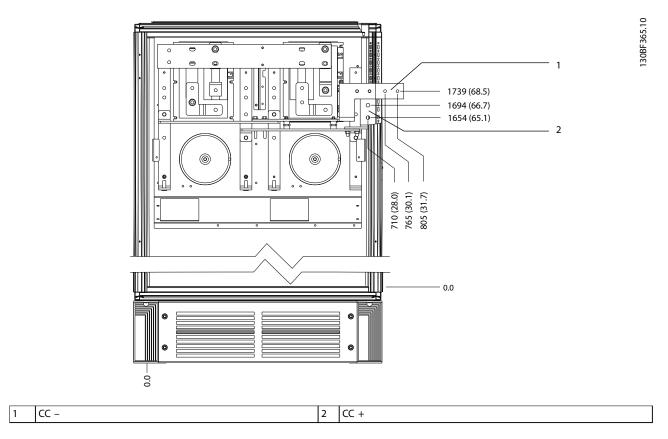



Ilustración 8.25 Dimensiones de los terminales de regeneración F1/F3 (vista frontal)

Danfoss



## 8.4.1 Dimensiones exteriores del alojamiento F2

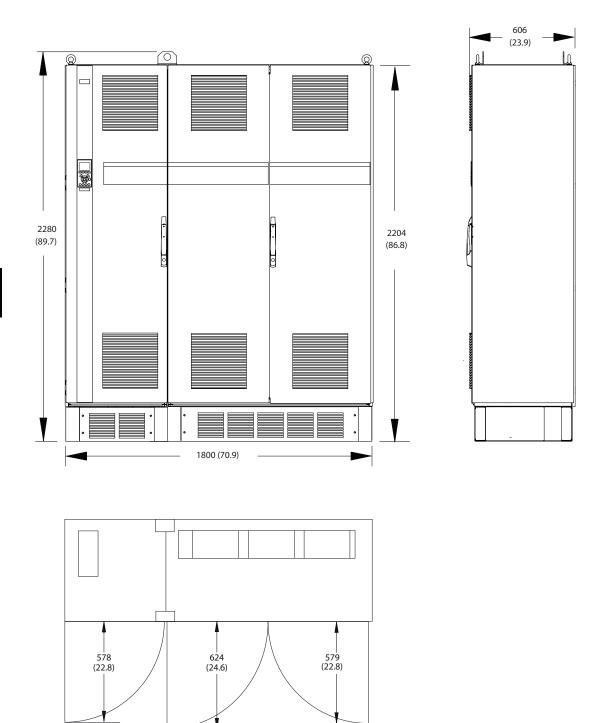
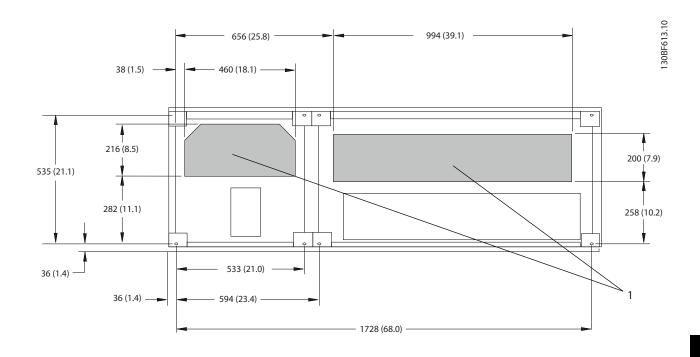



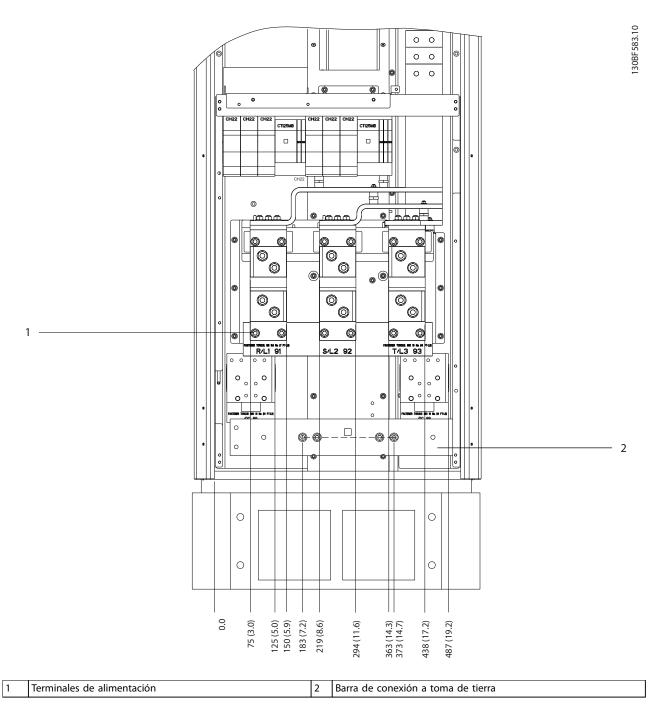

Ilustración 8.26 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F2

Lado de alimentación

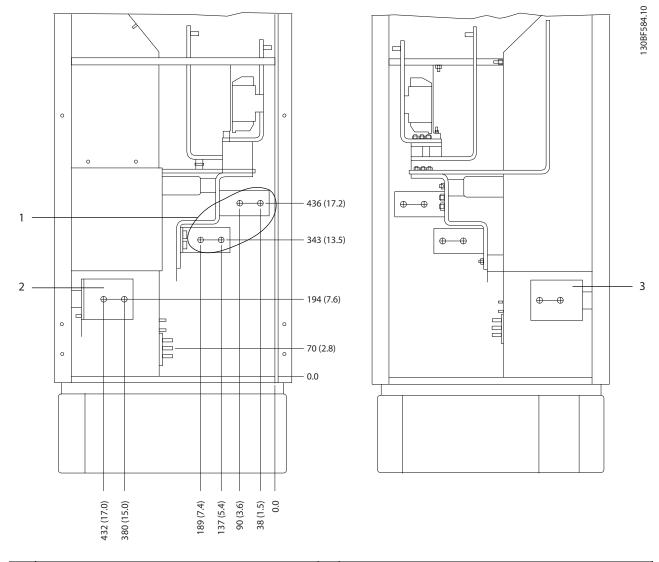




Lateral del motor


Ilustración 8.27 Dimensiones de la placa prensacables del alojamiento F2

R

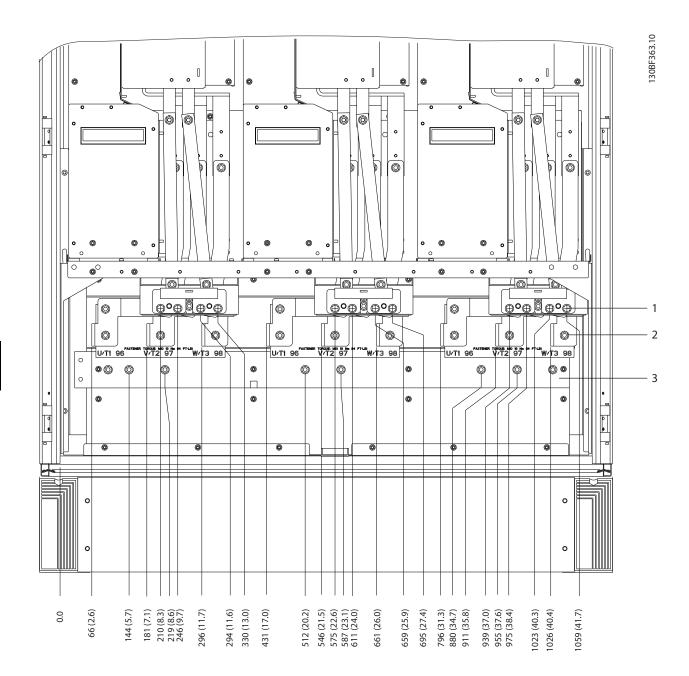



#### 8.4.2 Dimensiones de los terminales del alojamiento F2

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.



llustración 8.28 Dimensiones de los terminales para el armario del rectificador F1-F4 (vista frontal)

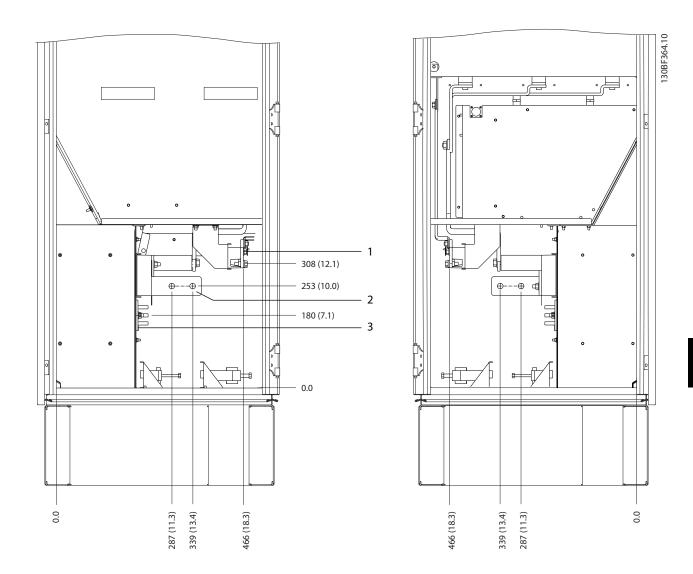



| 1 | Terminales de alimentación         | 3 | Terminales de carga compartida (–) |
|---|------------------------------------|---|------------------------------------|
| 2 | Terminales de carga compartida (+) | - | -                                  |

Ilustración 8.29 Dimensiones de los terminales para el armario del rectificador F1-F2 (vista lateral)

R






| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.30 Dimensiones de los terminales para el armario del inversor F2/F4 (vista frontal)

Q





 1
 Terminales de freno
 3
 Barra de conexión a toma de tierra

 2
 Terminales de motor

Ilustración 8.31 Dimensiones de los terminales para el armario del inversor F2/F4 (vista lateral)

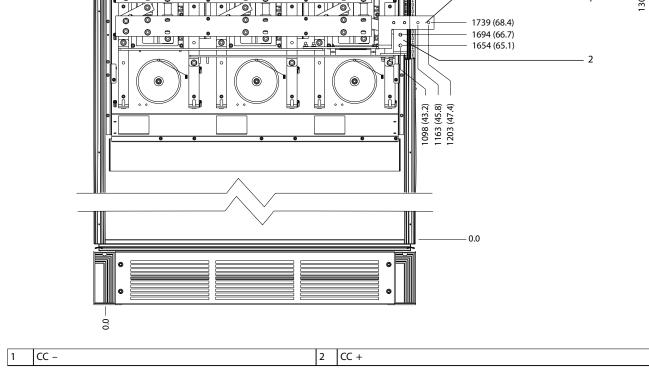



Ilustración 8.32 Dimensiones de los terminales de regeneración F2/F4 (vista frontal)



# 8.5 Dimensiones exteriores y de los terminales del alojamiento F3

## 8.5.1 Dimensiones exteriores del alojamiento F3

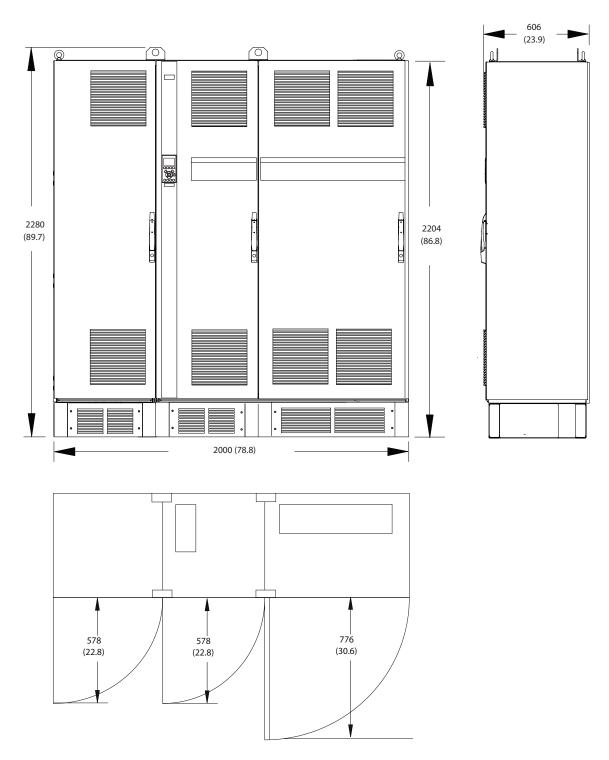
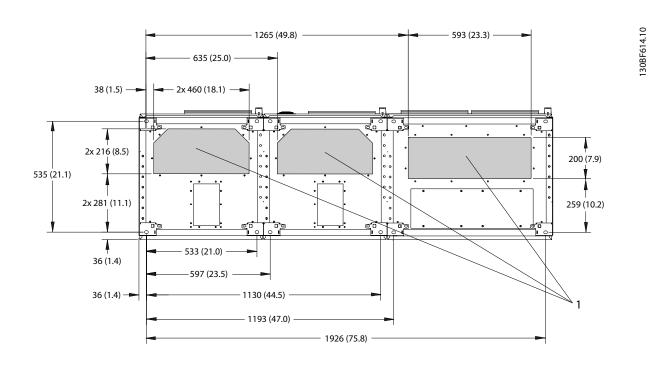




Ilustración 8.33 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F3



1 Lado de alimentación 2 Lateral del motor

Ilustración 8.34 Dimensiones de la placa prensacables del alojamiento F3

#### 8.5.2 Dimensiones de los terminales del alojamiento F3

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.

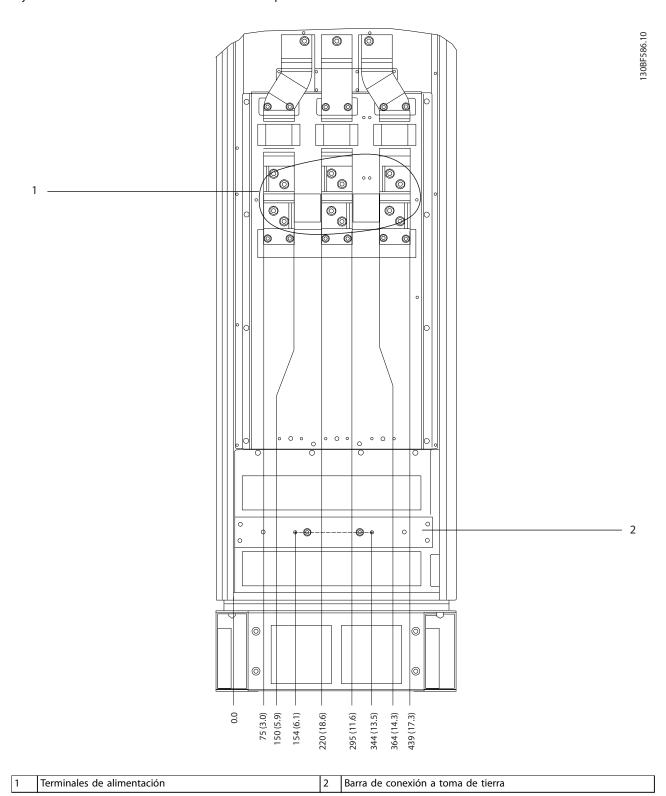



Ilustración 8.35 Dimensiones de los terminales del armario del rectificador F3-F4 (vista frontal)



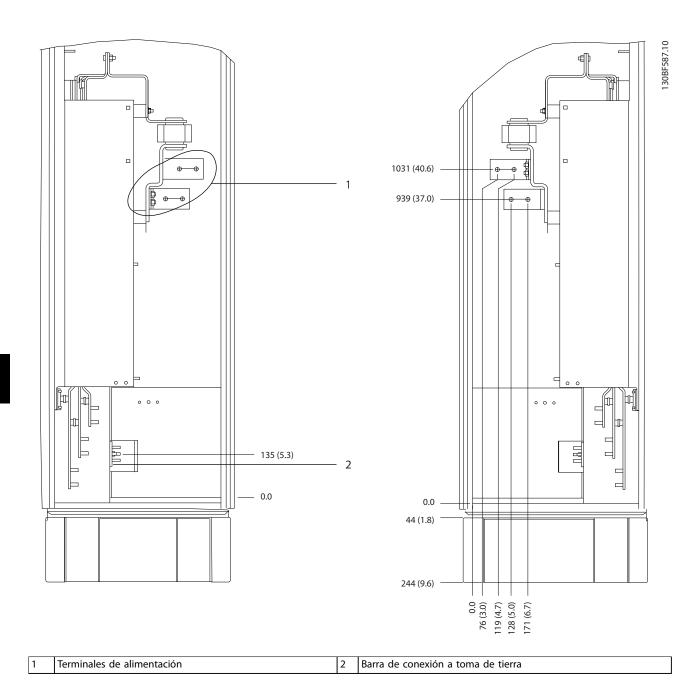



Ilustración 8.36 Dimensiones de los terminales del armario del rectificador F3-F4 (vista lateral)



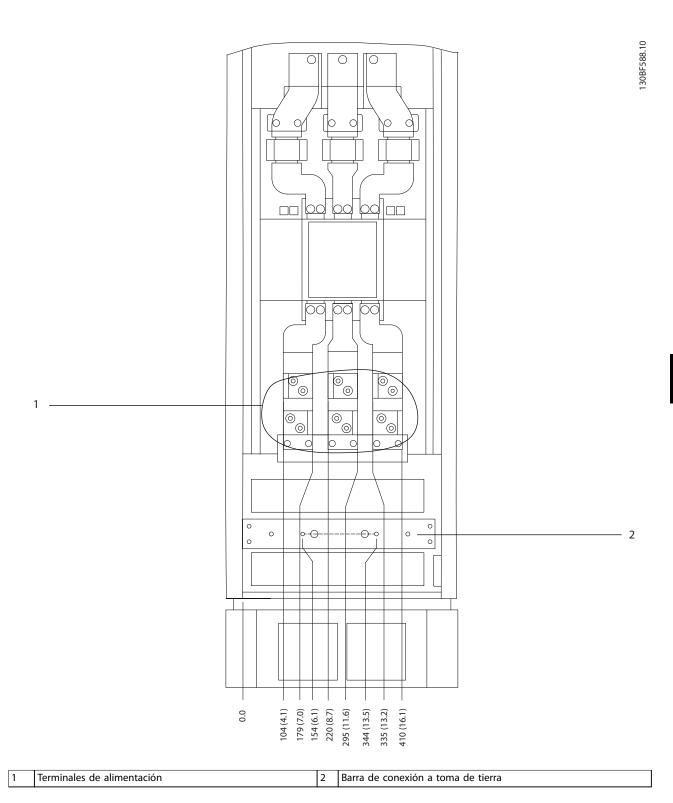



Ilustración 8.37 Dimensiones de los terminales del armario de opciones con magnetotérmico / conmutador de caja moldeada para alojamiento F3-F4 (vista frontal)

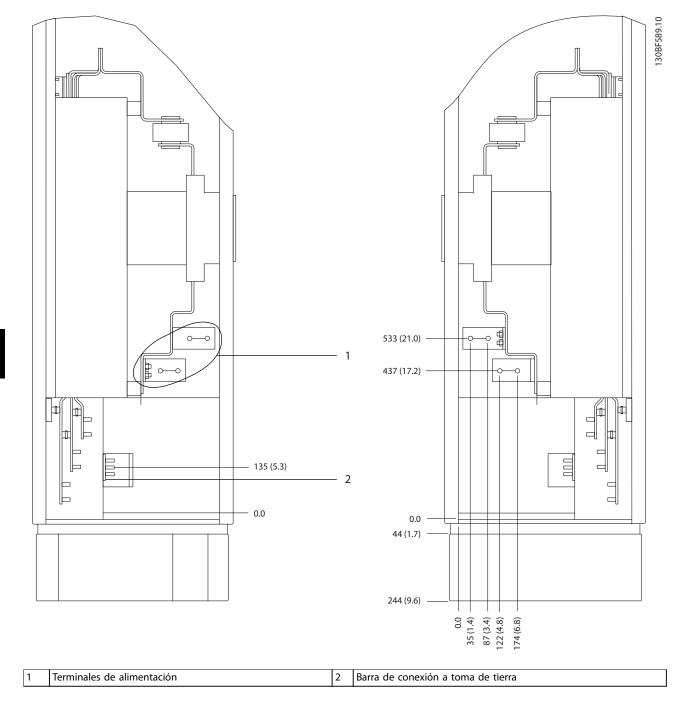
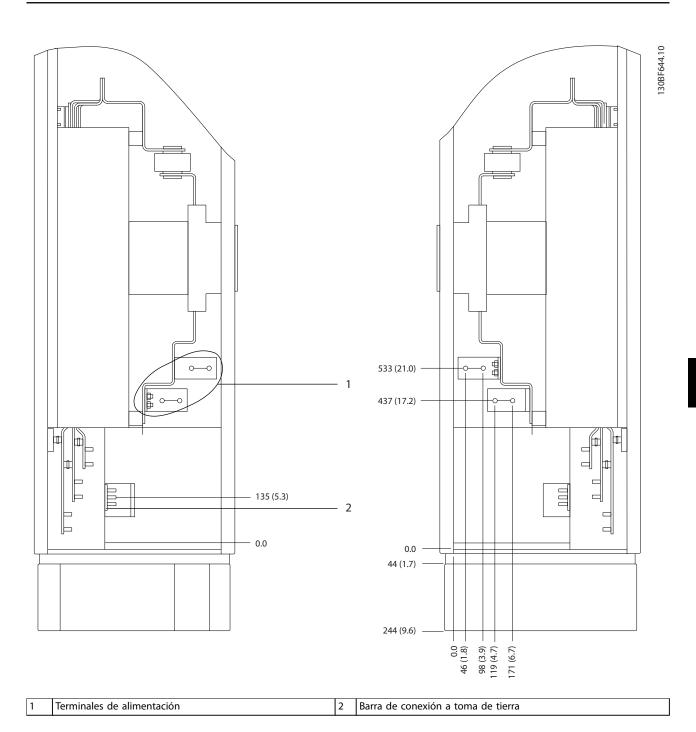



Ilustración 8.38 Dimensiones de los terminales del armario de opciones con magnetotérmico / conmutador de caja moldeada para alojamiento F3-F4 (modelos de 380-480/500 V: P450; modelos de 525-690 V: P630-P710), vista lateral





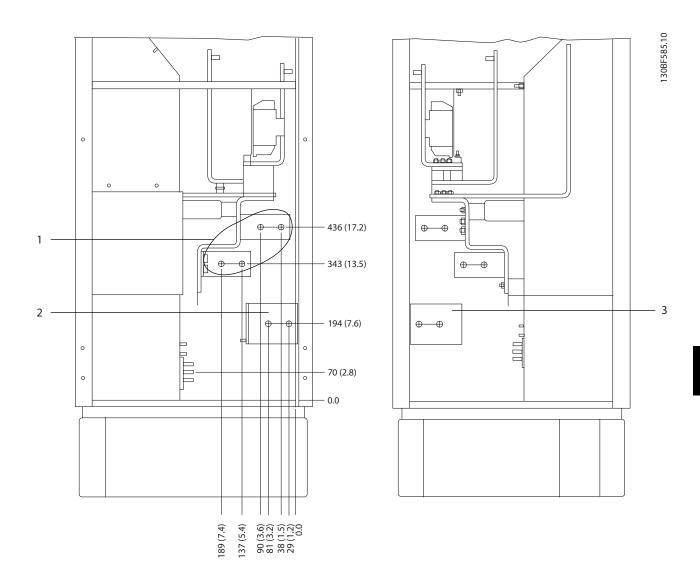
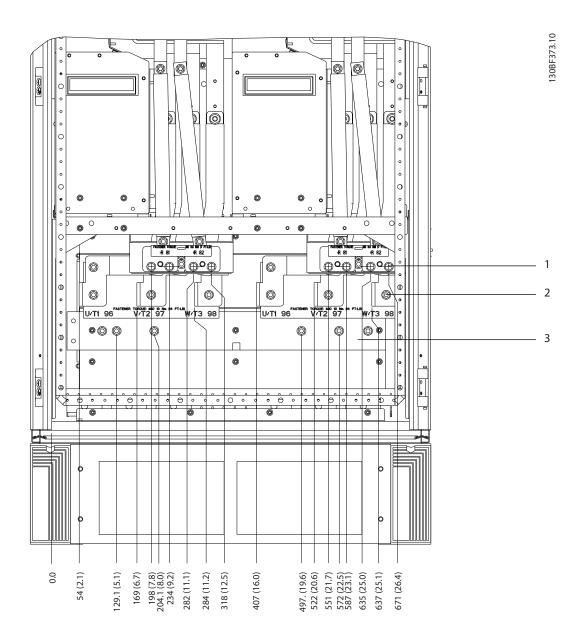


Ilustración 8.39 Dimensiones de los terminales del armario de opciones con magnetotérmico / conmutador de caja moldeada para alojamiento F3-F4 (modelos de 380-480/500 V: P500-P630; modelos de 525-690 V: P800), vista lateral



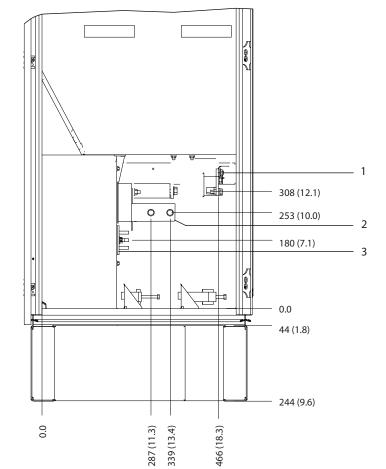


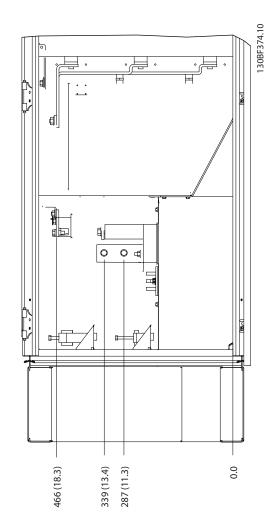
Ilustración 8.40 Dimensiones de los terminales para el armario del rectificador F1-F4 (vista frontal)






| 1 | Terminales de alimentación         | 3 | Terminales de carga compartida (–) |
|---|------------------------------------|---|------------------------------------|
| 2 | Terminales de carga compartida (+) | _ | -                                  |


Ilustración 8.41 Dimensiones de los terminales para el armario del rectificador F3-F4 (vista lateral)






| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | _ | -                                  |

Ilustración 8.42 Dimensiones de los terminales para el armario del inversor F1/F3 (vista frontal)





| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

llustración 8.43 Dimensiones de los terminales para el armario del inversor F1/F3 (vista lateral)

Q

CC -

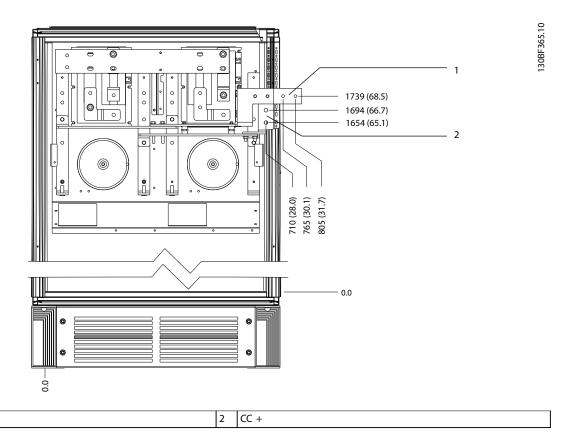
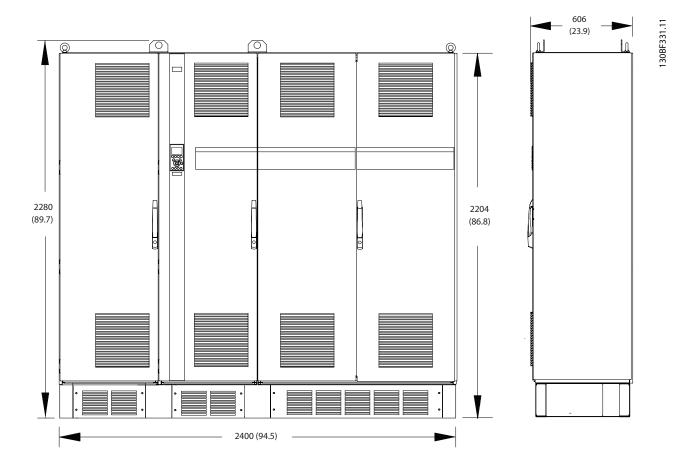




Ilustración 8.44 Dimensiones de los terminales de regeneración F1/F3 (vista frontal)



- 8.6 Dimensiones exteriores y de los terminales del alojamiento F4
- 8.6.1 Dimensiones exteriores del alojamiento F4



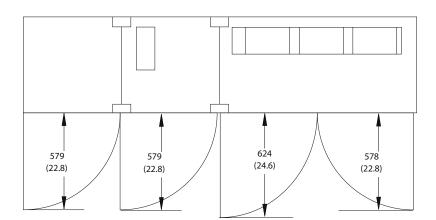



Ilustración 8.45 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F4



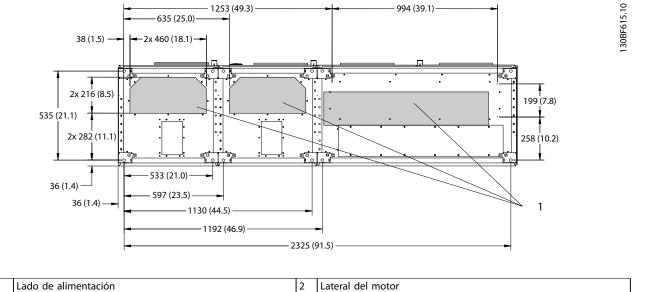



Ilustración 8.46 Dimensiones de la placa prensacables del alojamiento F4

#### 8.6.2 Dimensiones de los terminales del alojamiento F4

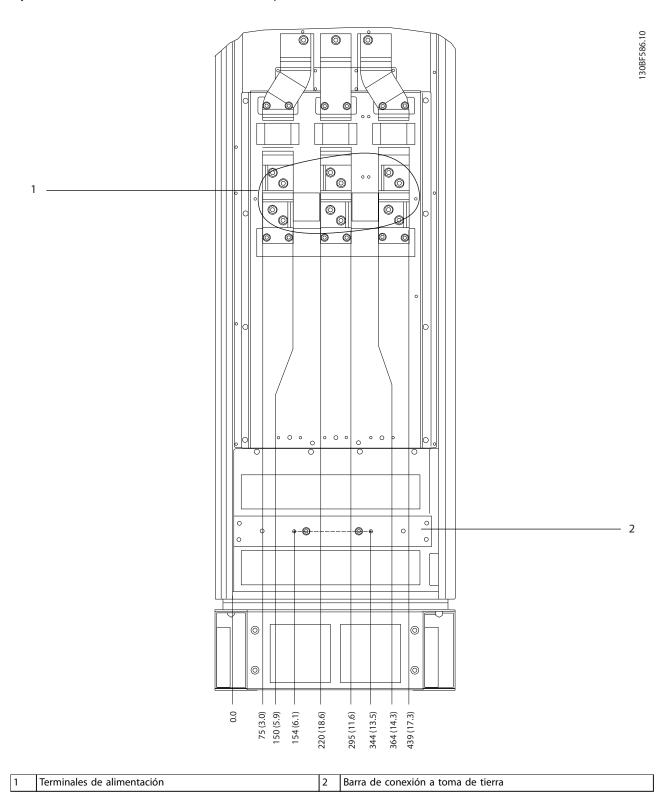



Ilustración 8.47 Dimensiones de los terminales del armario del rectificador F3-F4 (vista frontal)

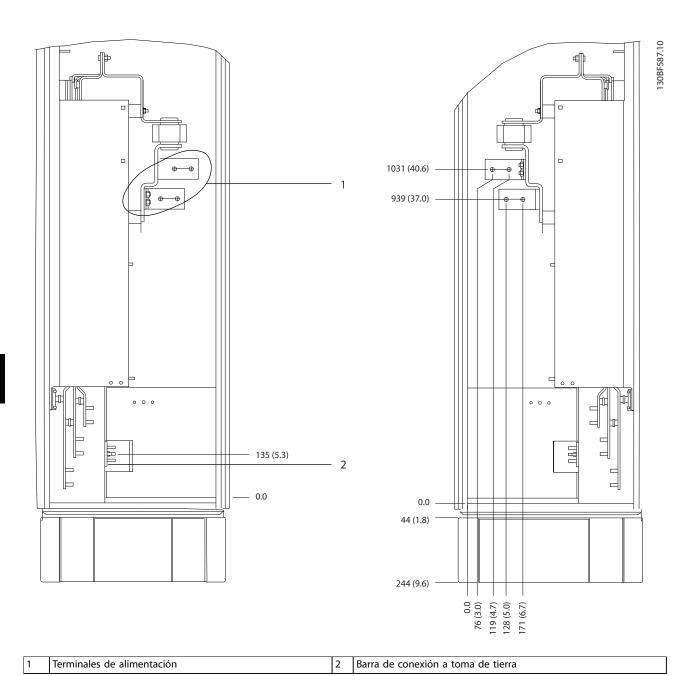



Ilustración 8.48 Dimensiones de los terminales del armario del rectificador F3-F4 (vista lateral)

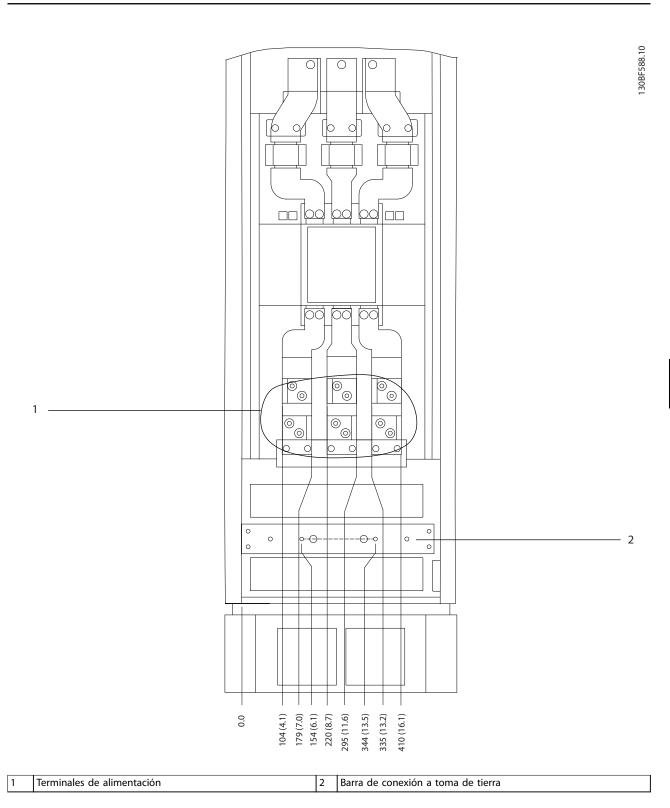



Ilustración 8.49 Dimensiones de los terminales del armario de opciones con magnetotérmico / conmutador de caja moldeada para alojamiento F3-F4 (vista frontal)



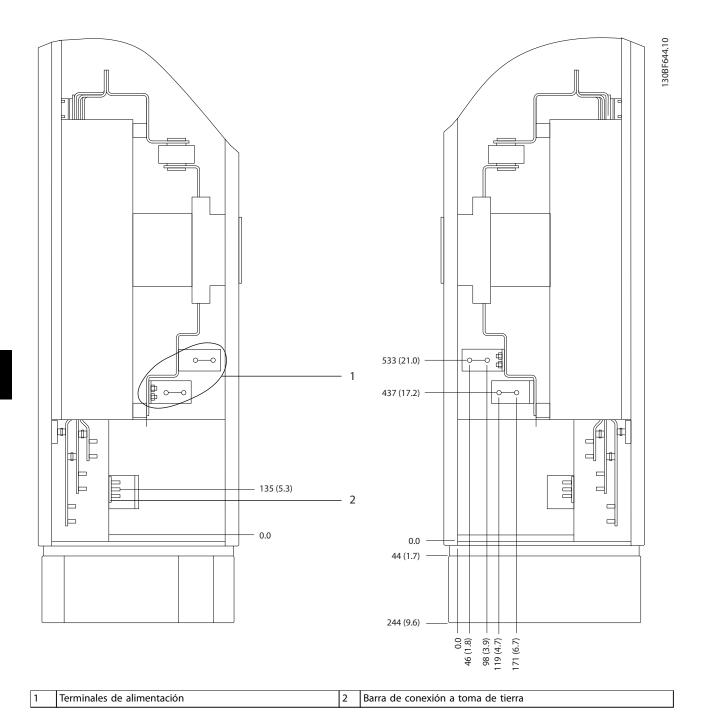



Ilustración 8.50 Dimensiones de los terminales del armario de opciones con magnetotérmico / conmutador de caja moldeada para alojamiento F3-F4 (vista lateral)

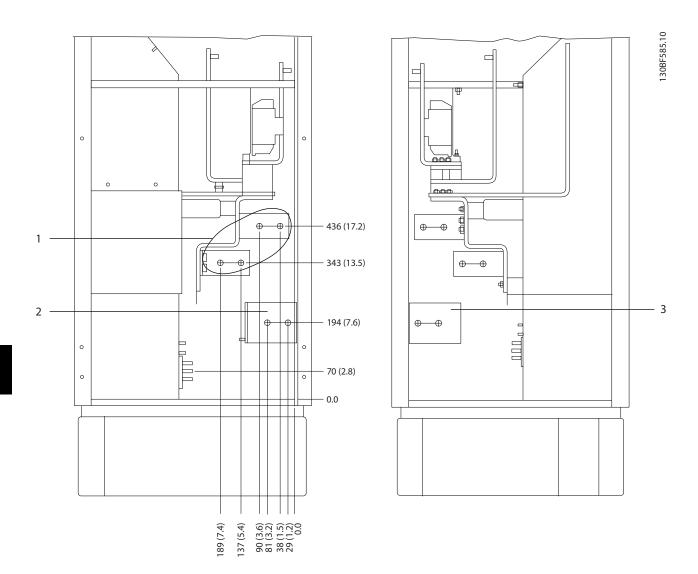
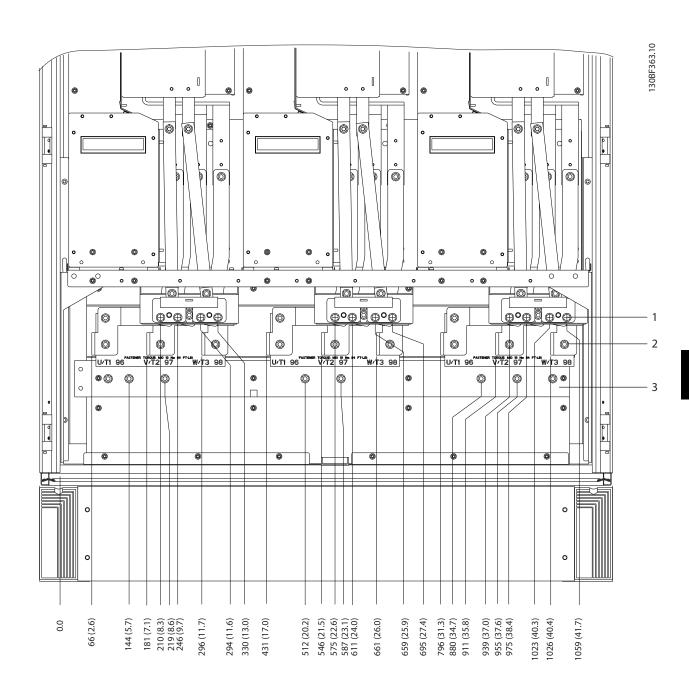



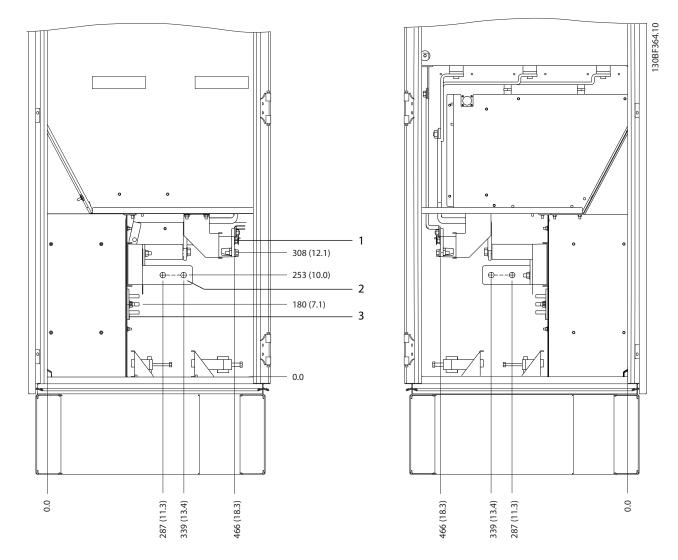

Ilustración 8.51 Dimensiones de los terminales para el armario del rectificador F1-F4 (vista frontal)






|    | 1 | Terminales de alimentación         | 3 | Terminales de carga compartida (–) |
|----|---|------------------------------------|---|------------------------------------|
| [: | 2 | Terminales de carga compartida (+) | _ | -                                  |

Ilustración 8.52 Dimensiones de los terminales para el armario del rectificador F3-F4 (vista lateral)






| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.53 Dimensiones de los terminales para el armario del inversor F2/F4 (vista frontal)

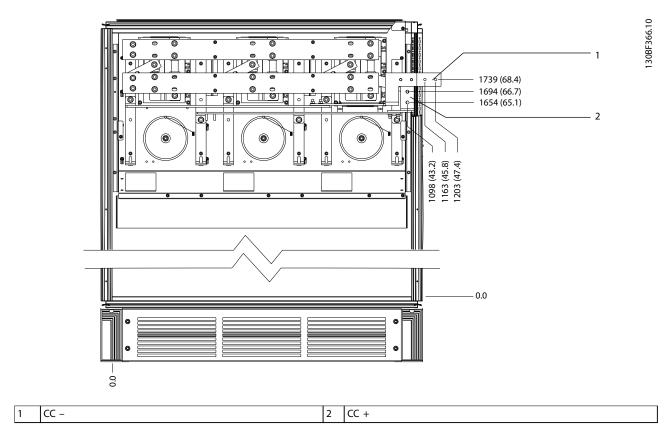
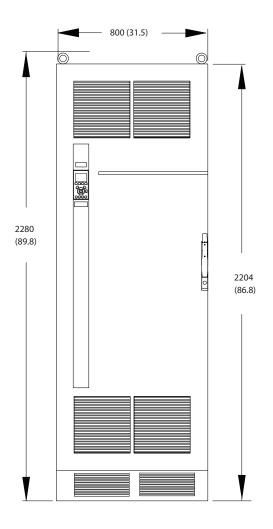


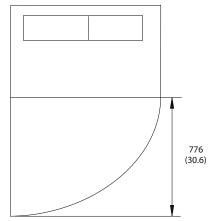


| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.54 Dimensiones de los terminales para el armario del inversor F2/F4 (vista lateral)





Ilustración 8.55 Dimensiones de los terminales de regeneración F2/F4 (vista frontal)

# 8.7 Dimensiones exteriores y de los terminales del alojamiento F8

## 8.7.1 Dimensiones exteriores del alojamiento F8







llustración 8.56 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F8



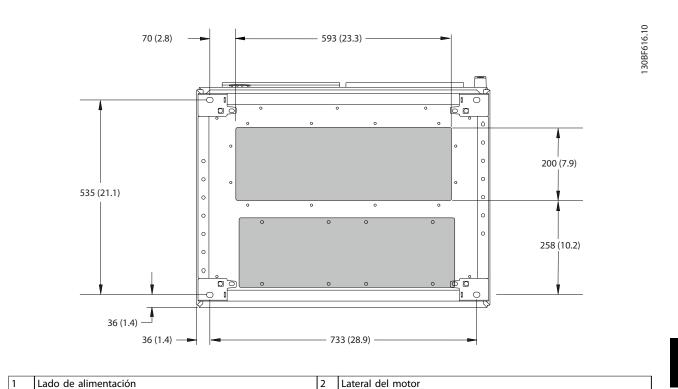
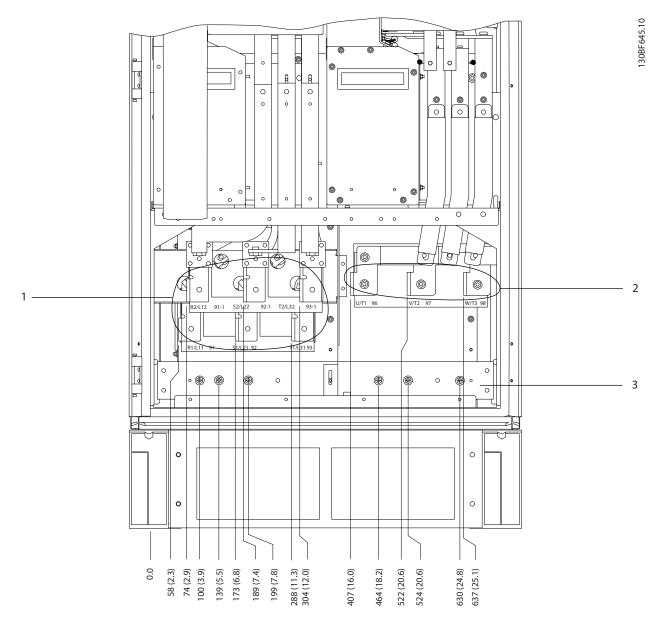
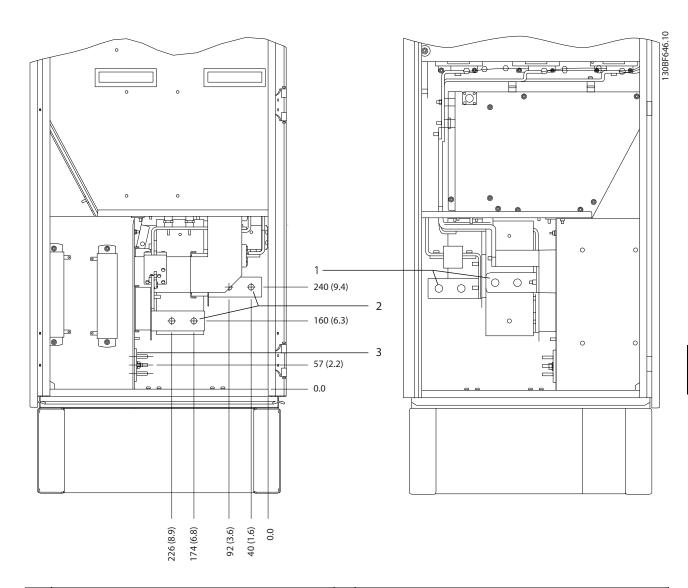




Ilustración 8.57 Dimensiones de la placa prensacables del alojamiento F8




#### 8.7.2 Dimensiones de los terminales del alojamiento F8



| 1 | Terminales de alimentación | 3 | Barra de conexión a toma de tierra |
|---|----------------------------|---|------------------------------------|
| 2 | Terminales de motor        | - | -                                  |

Ilustración 8.58 Dimensiones de los terminales del armario del inversor/rectificador F8-F9 (vista frontal)





| 1 | Terminales de alimentación | 3 | Barra de conexión a toma de tierra |
|---|----------------------------|---|------------------------------------|
| 2 | Terminales de motor        | - | -                                  |

llustración 8.59 Dimensiones de los terminales del armario del inversor/rectificador F8-F9 (vista lateral)

Danfoss

# 8.8 Dimensiones exteriores y de los terminales del alojamiento F9

## 8.8.1 Dimensiones exteriores del alojamiento F9

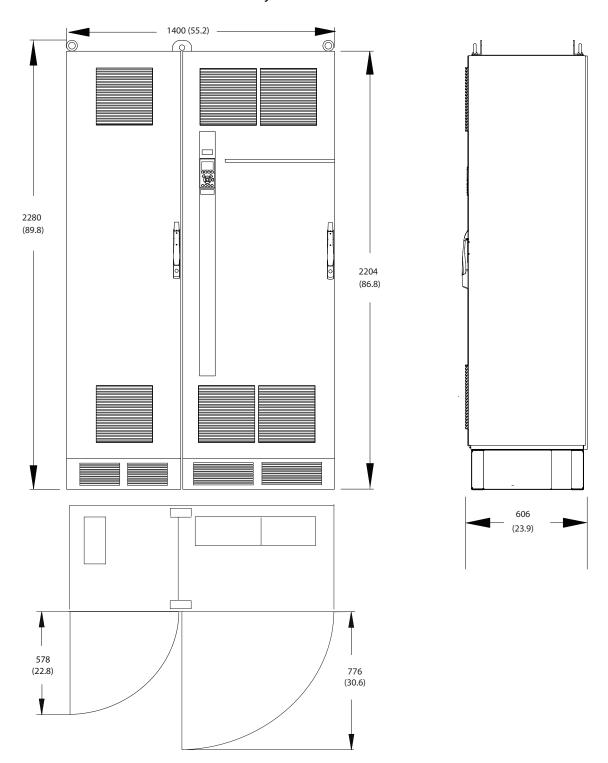



Ilustración 8.60 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F9

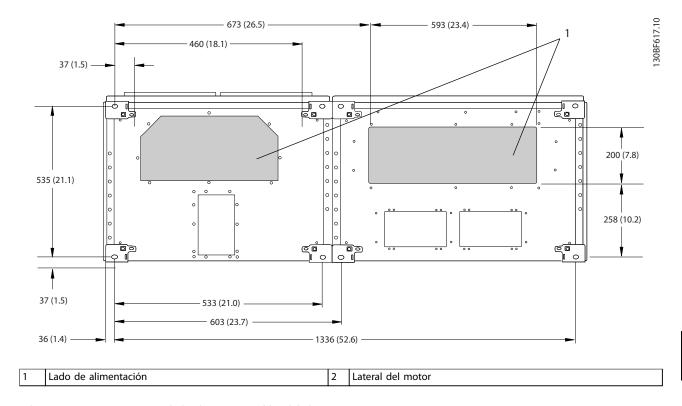



Ilustración 8.61 Dimensiones de la placa prensacables del alojamiento F9



#### 8.8.2 Dimensiones de los terminales del alojamiento F9

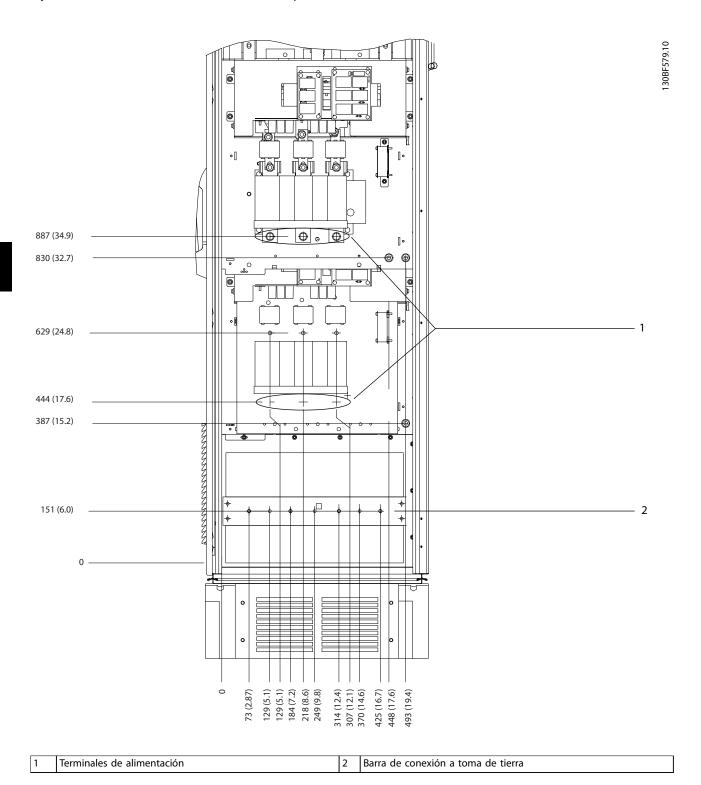



Ilustración 8.62 Dimensiones de los terminales del armario de opciones F9 (vista frontal)



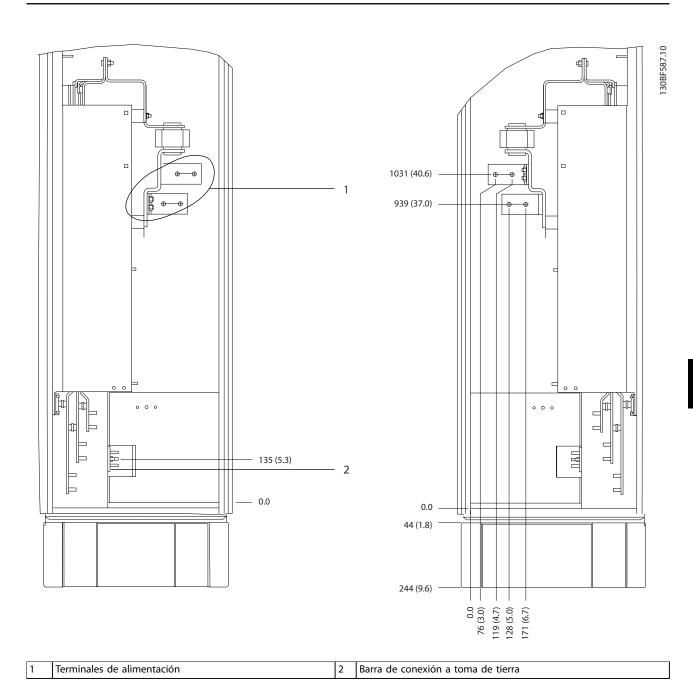
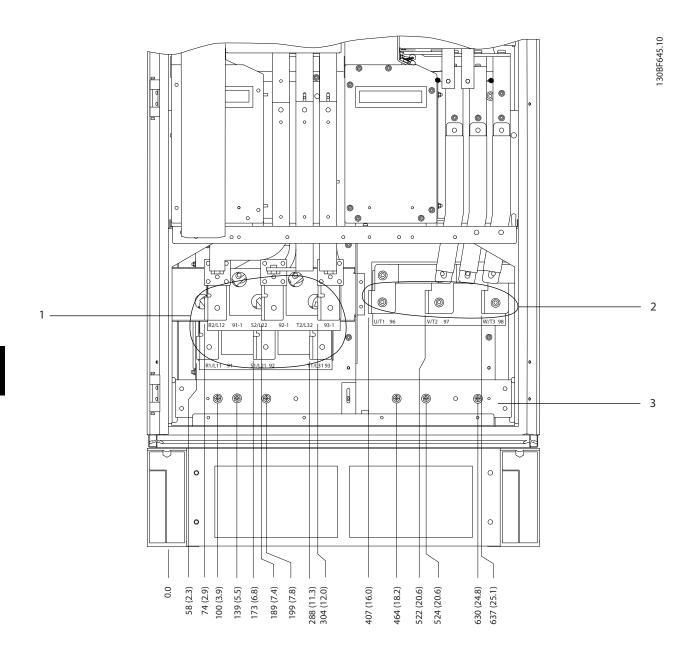
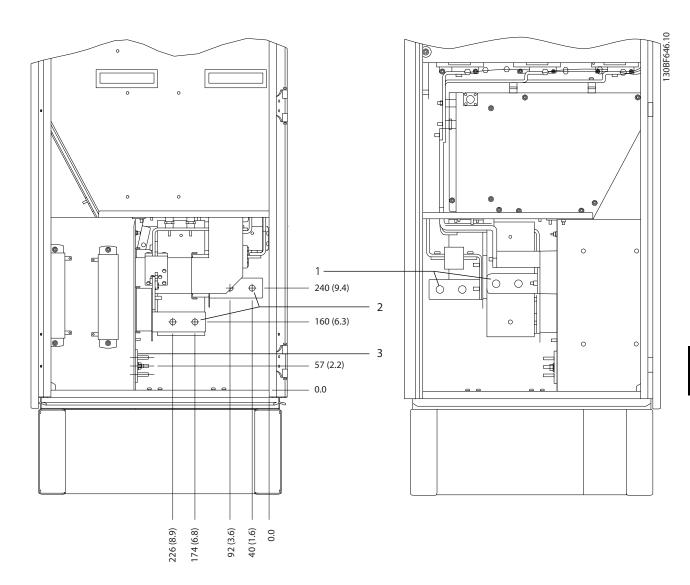
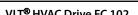




Ilustración 8.63 Dimensiones de los terminales del armario de opciones F9 (vista lateral)






|   | 1 | Terminales de alimentación | 3 | Barra de conexión a toma de tierra |
|---|---|----------------------------|---|------------------------------------|
| ſ | 2 | Terminales de motor        | - | -                                  |


Ilustración 8.64 Dimensiones de los terminales del armario del inversor/rectificador F8-F9 (vista frontal)





| 1 | Terminales de alimentación | 3 | Barra de conexión a toma de tierra |
|---|----------------------------|---|------------------------------------|
| 2 | Terminales de motor        | - | -                                  |

Ilustración 8.65 Dimensiones de los terminales del armario del inversor/rectificador F8-F9 (vista lateral)



# 8.9 Dimensiones exteriores y de los terminales del alojamiento F10

## 8.9.1 Dimensiones exteriores del alojamiento F10

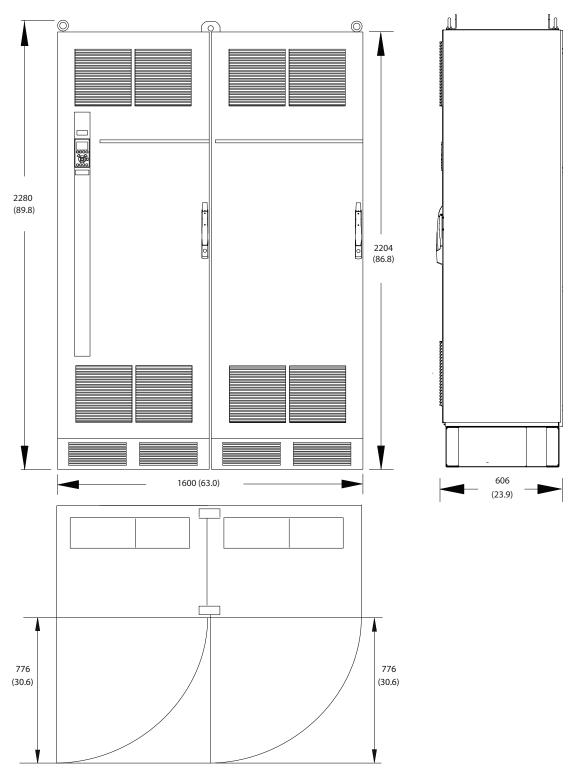



Ilustración 8.66 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F10



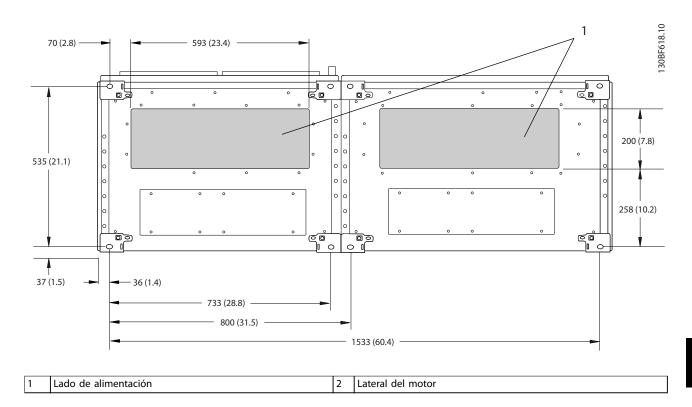
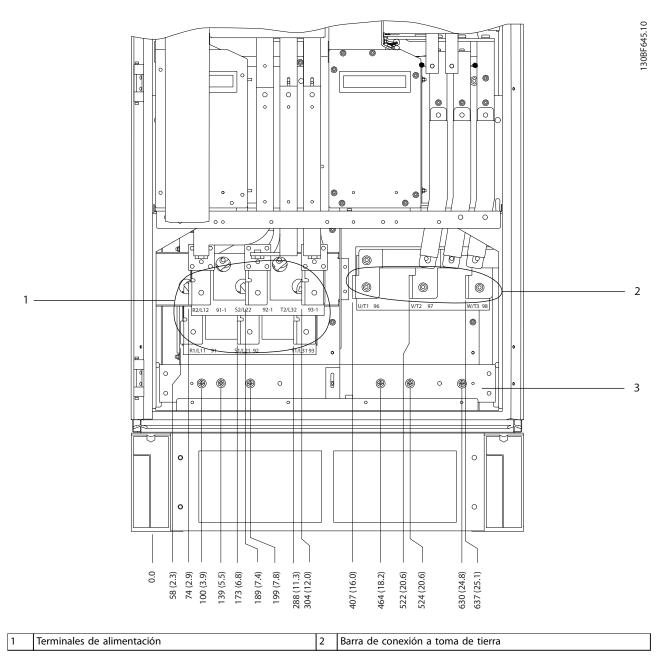
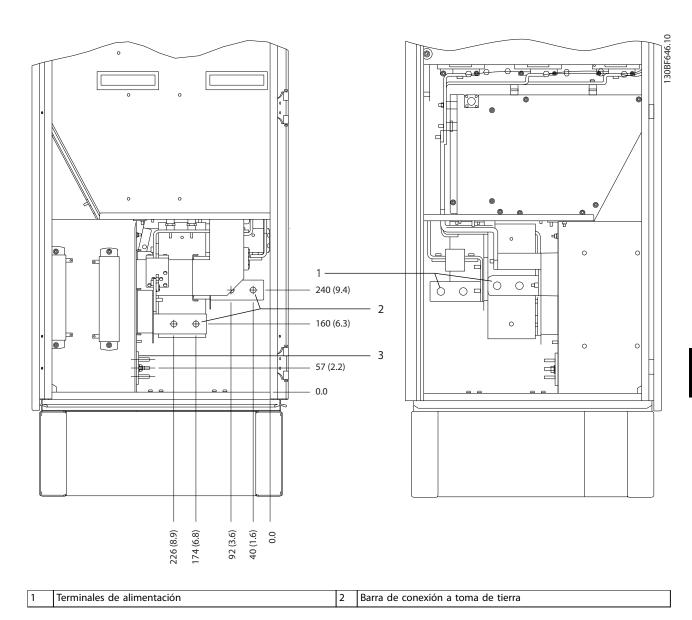
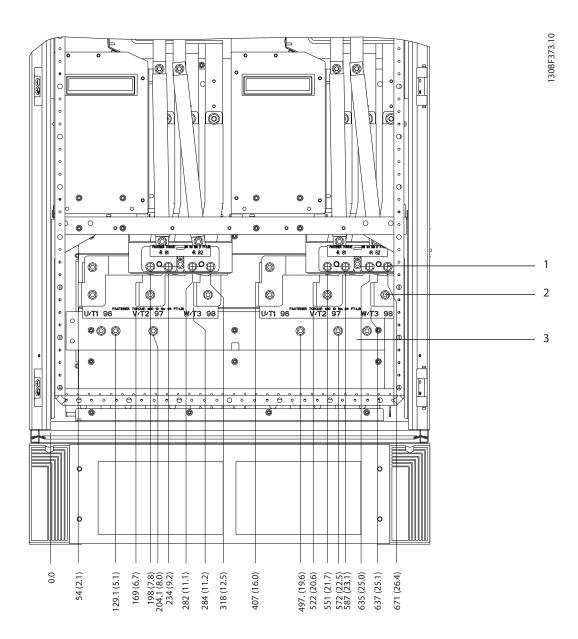



Ilustración 8.67 Dimensiones de la placa prensacables del alojamiento F10



#### 8.9.2 Dimensiones de los terminales del alojamiento F10

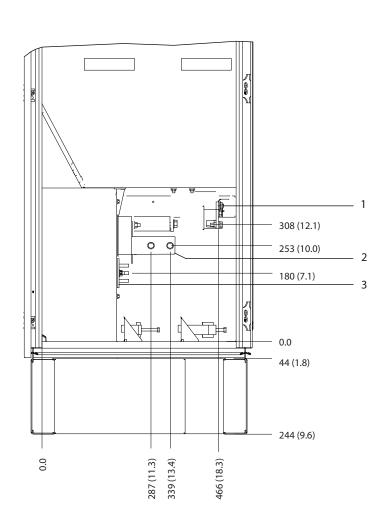



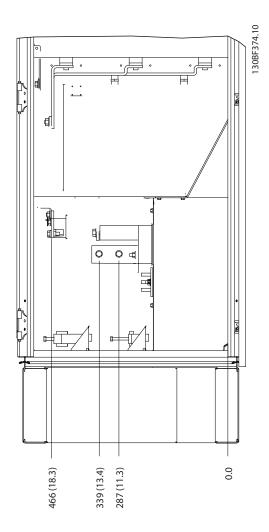


Ilustración 8.68 Dimensiones de los terminales del armario del rectificador F10-F13 (vista frontal)





llustración 8.69 Dimensiones de los terminales del armario del rectificador F10-F13 (vista lateral)



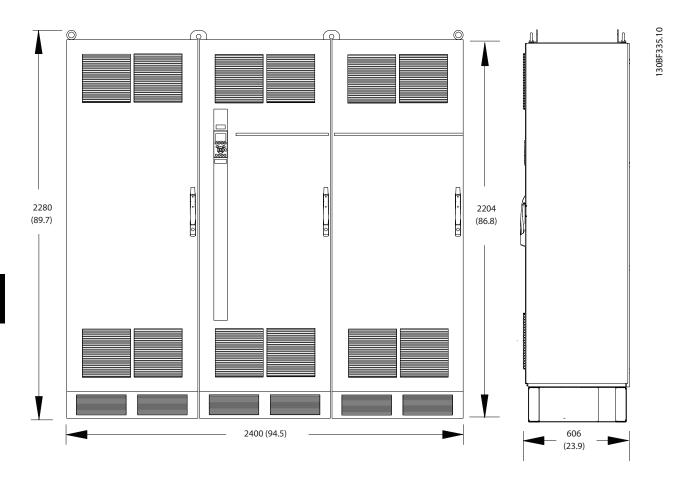




| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.70 Dimensiones de los terminales para el armario del inversor F10-F11 (vista frontal)








| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.71 Dimensiones de los terminales del armario del inversor F10-F11 (vista lateral)



- 8.10 Dimensiones exteriores y de los terminales del alojamiento F11
- 8.10.1 Dimensiones exteriores del alojamiento F11



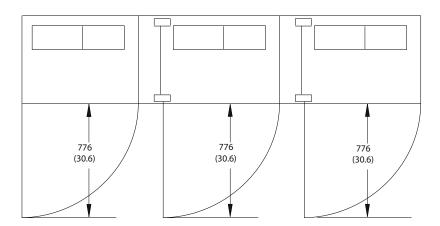



Ilustración 8.72 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F11

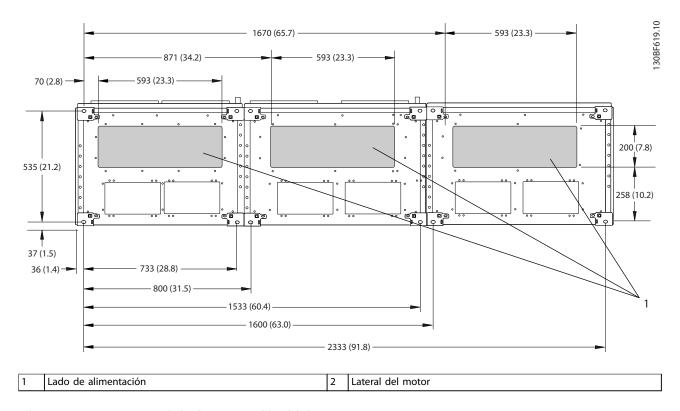




Ilustración 8.73 Dimensiones de la placa prensacables del alojamiento F11

8



## 8.10.2 Dimensiones de los terminales del alojamiento F11

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.



1 Terminales de alimentación 2 Barra de conexión a toma de tierra

Ilustración 8.74 Dimensiones de los terminales del armario de opciones F11/F13 (vista frontal)

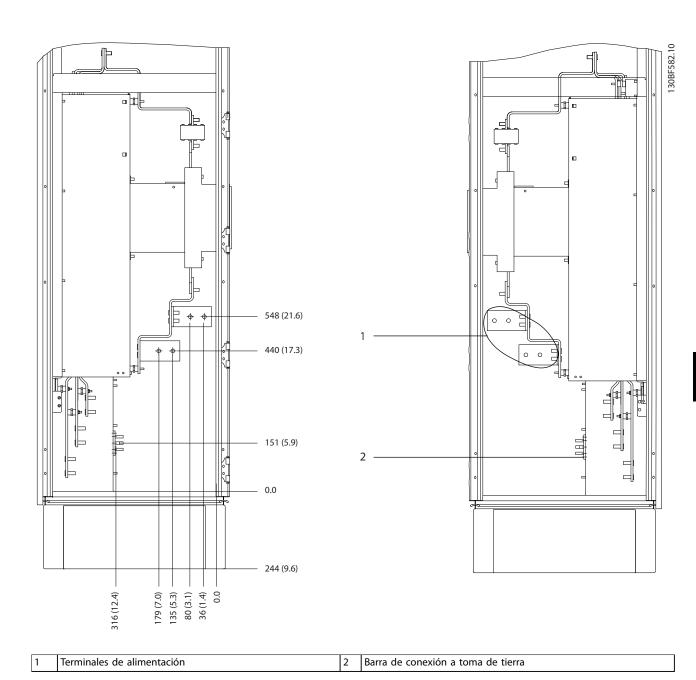



Ilustración 8.75 Dimensiones de los terminales del armario de opciones F11/F13 (vista lateral)



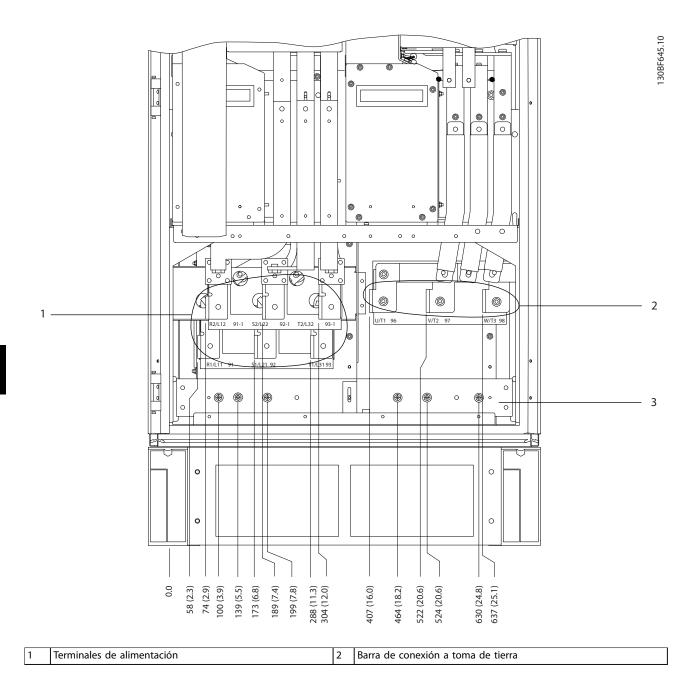



Ilustración 8.76 Dimensiones de los terminales del armario del rectificador F10-F13 (vista frontal)



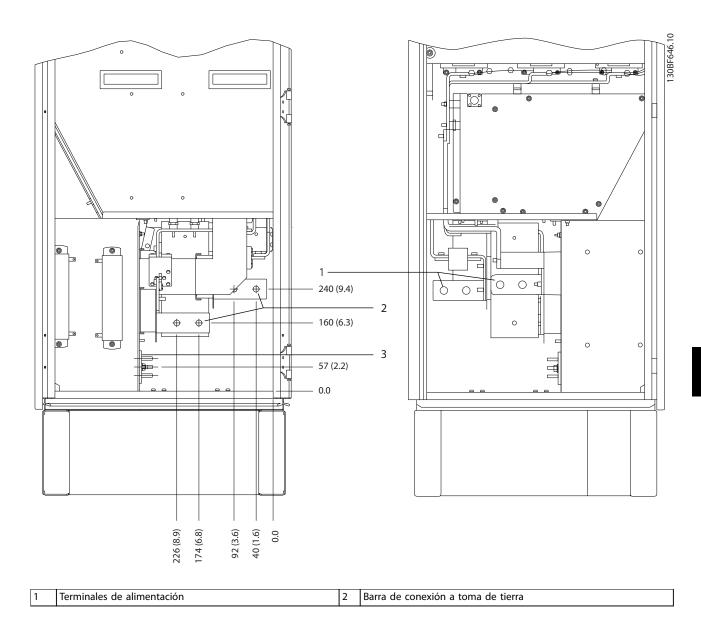
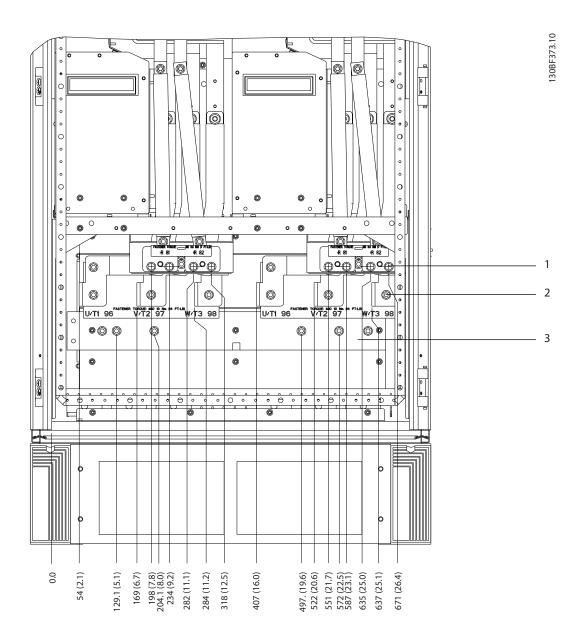
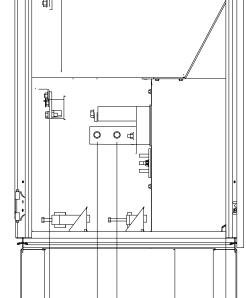




Ilustración 8.77 Dimensiones de los terminales del armario del rectificador F10-F13 (vista lateral)





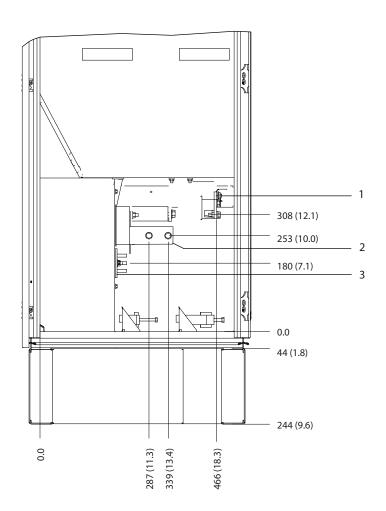


| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.78 Dimensiones de los terminales para el armario del inversor F10-F11 (vista frontal)

130BF374.10



339 (13.4) 287 (11.3)



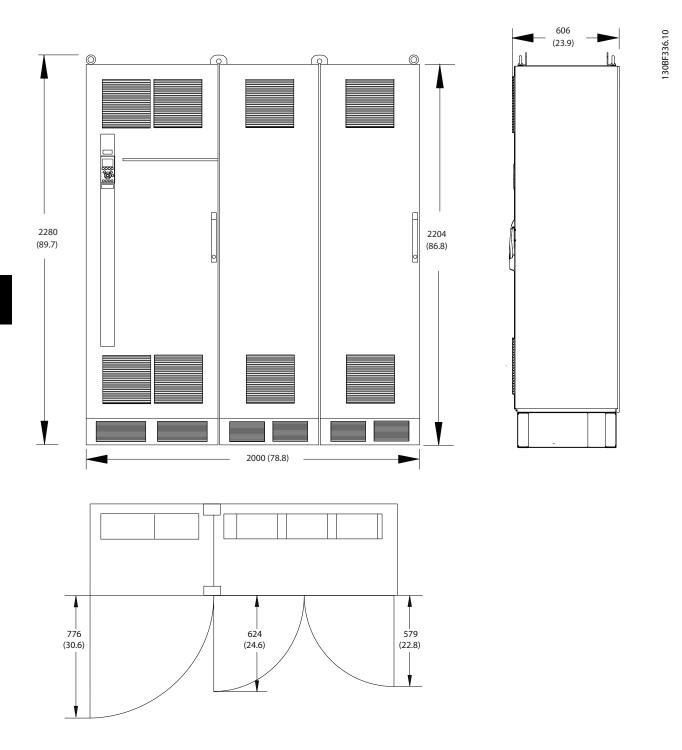

| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.79 Dimensiones de los terminales del armario del inversor F10-F11 (vista lateral)

8

## 8.11 Dimensiones exteriores y de los terminales del alojamiento F12

## 8.11.1 Dimensiones exteriores del alojamiento F12



llustración 8.80 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F12

Q



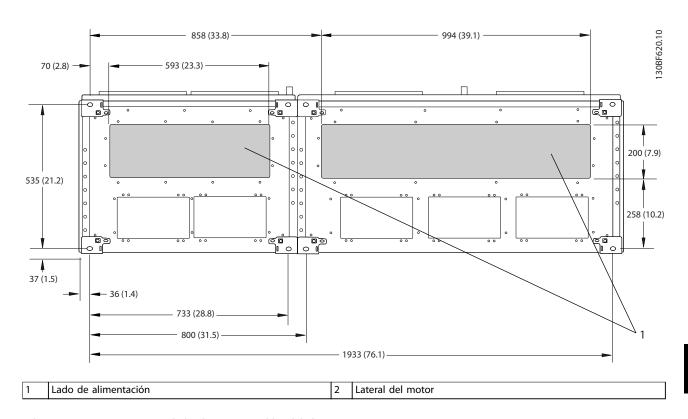



Ilustración 8.81 Dimensiones de la placa prensacables del alojamiento F12



## 8.11.2 Dimensiones de los terminales del alojamiento F12

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.

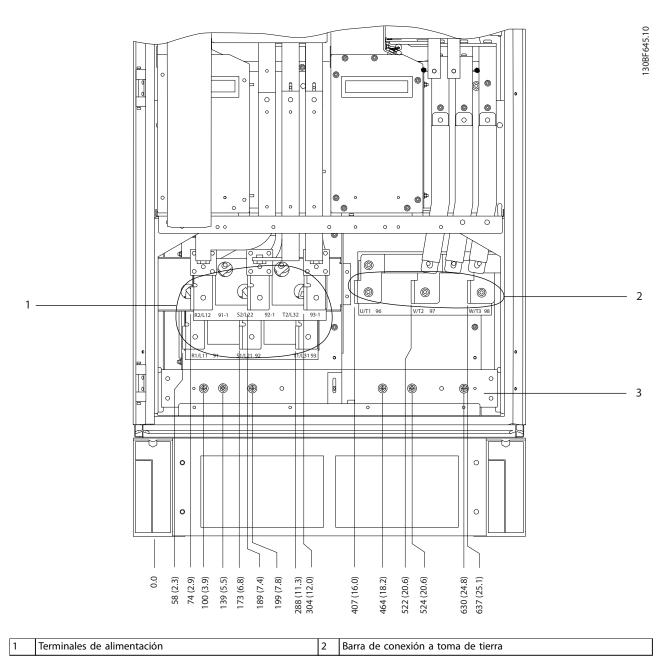
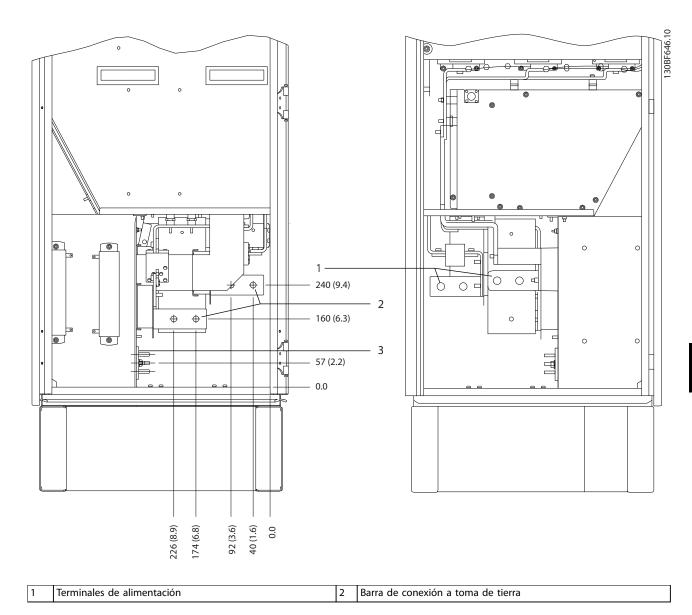
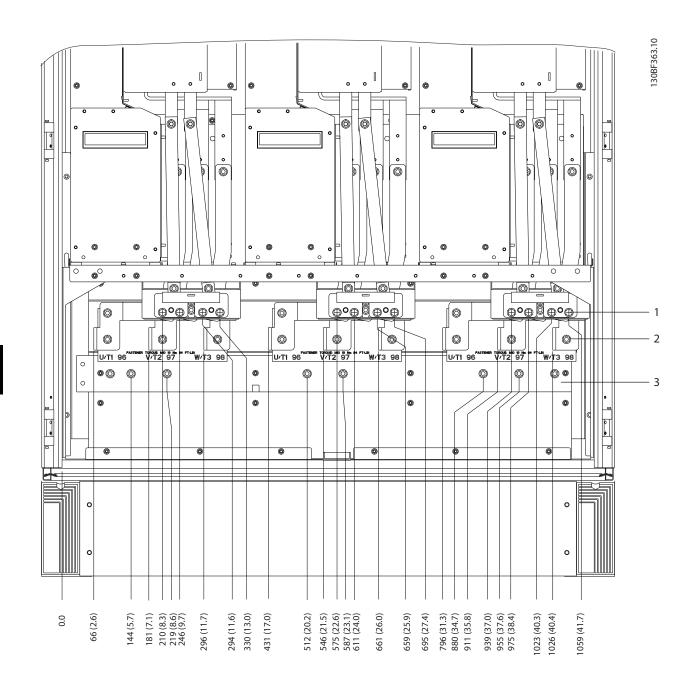
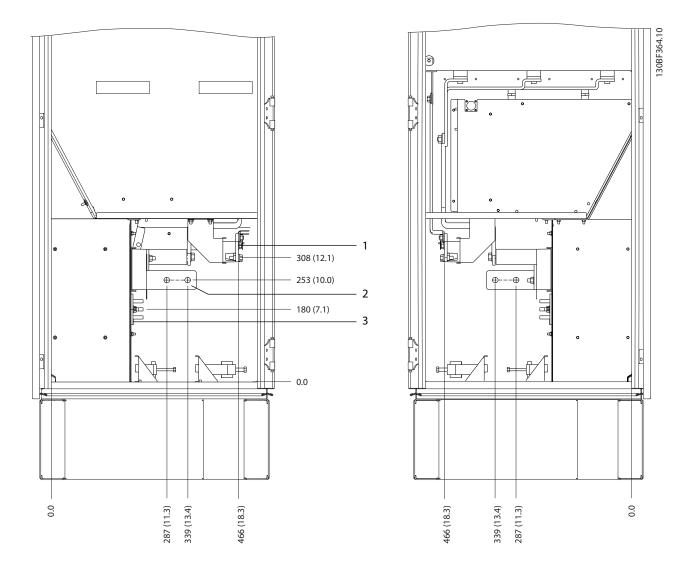



Ilustración 8.82 Dimensiones de los terminales del armario del rectificador F10-F13 (vista frontal)





Ilustración 8.83 Dimensiones de los terminales del armario del rectificador F10-F13 (vista lateral)





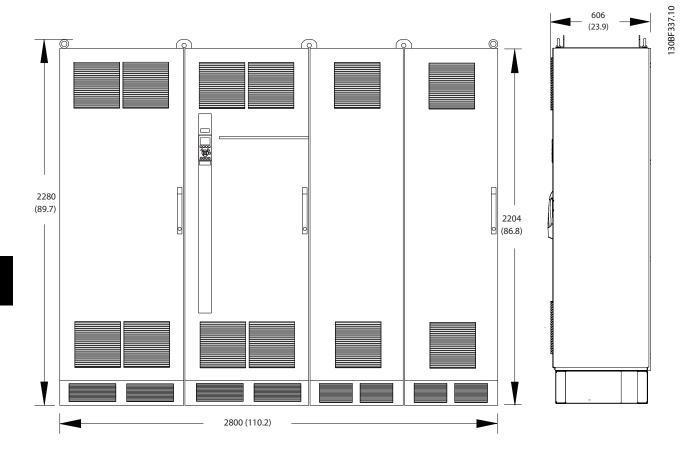
| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.84 Dimensiones de los terminales del armario del inversor F12-F13 (vista frontal)



 1
 Terminales de freno
 3
 Barra de conexión a toma de tierra

 2
 Terminales de motor


Ilustración 8.85 Dimensiones de los terminales para el armario del inversor F12-F13 (vista lateral)

Q



## 8.12 Dimensiones exteriores y de los terminales del alojamiento F13

## 8.12.1 Dimensiones exteriores del alojamiento F13



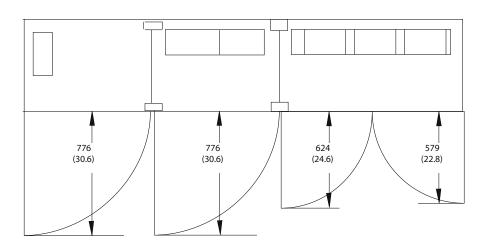



Ilustración 8.86 Dimensiones frontales, laterales y del espacio de la puerta del alojamiento F13



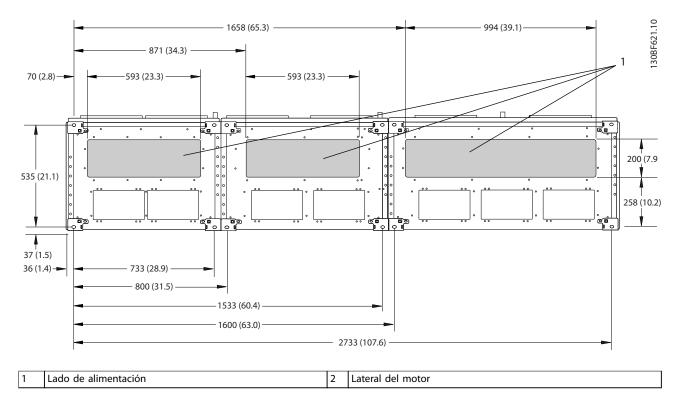
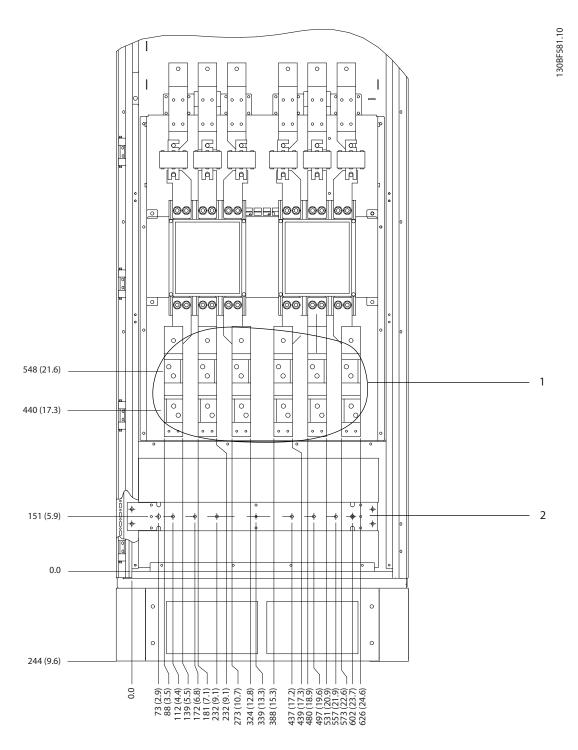




Ilustración 8.87 Dimensiones de la placa prensacables del alojamiento F13



## 8.12.2 Dimensiones de los terminales del alojamiento F13

Los cables de alimentación son pesados y difíciles de doblar. Determine la ubicación óptima del convertidor para facilitar una sencilla instalación de los cables. Cada terminal permite utilizar hasta 4 cables con terminales de cable o una orejeta de caja estándar. La conexión a tierra se realiza en un punto de terminación adecuado de la unidad.



1 Terminales de alimentación 2 Barra de conexión a toma de tierra

Ilustración 8.88 Dimensiones de los terminales del armario de opciones F11/F13 (vista frontal)



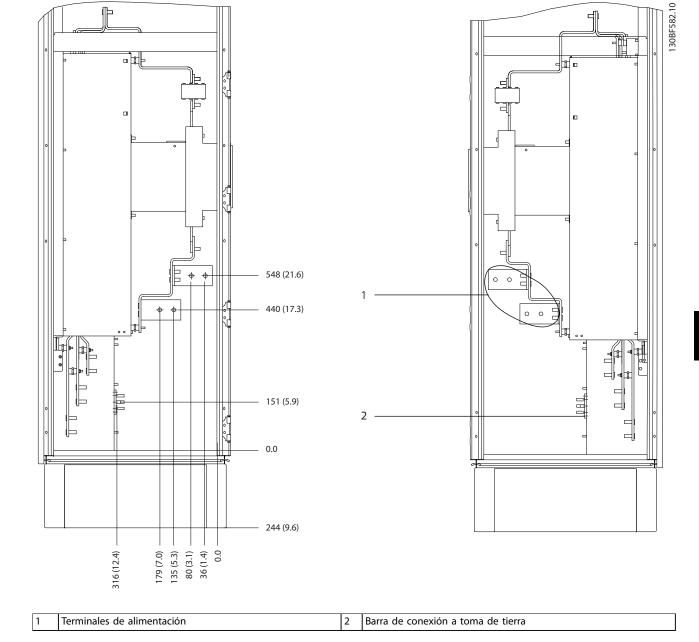



Ilustración 8.89 Dimensiones de los terminales del armario de opciones F11/F13 (vista lateral)




Ilustración 8.90 Dimensiones de los terminales del armario del rectificador F10-F13 (vista frontal)



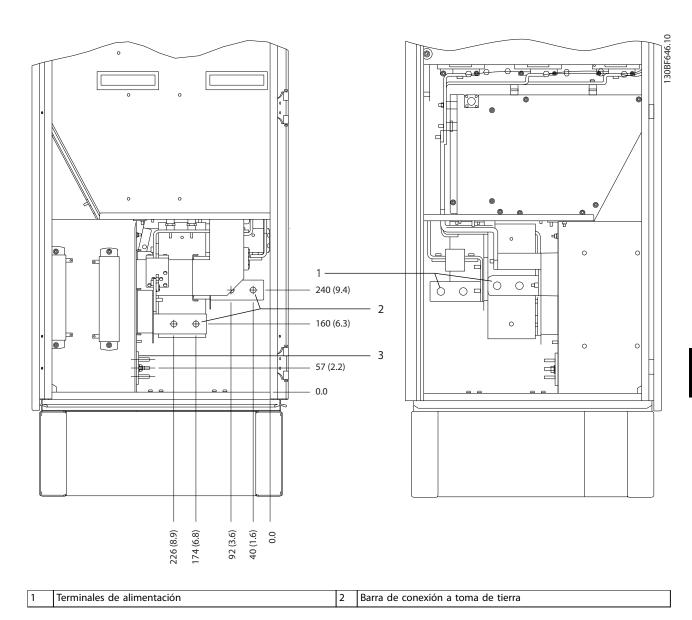
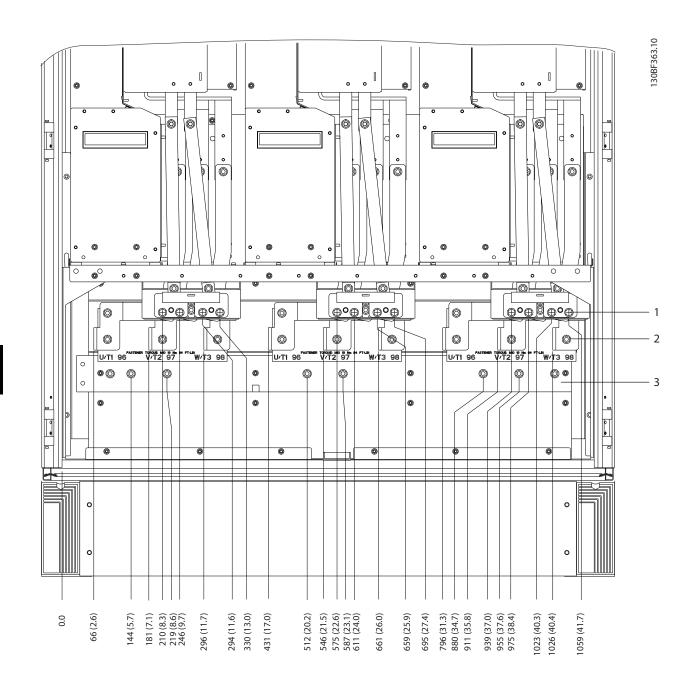
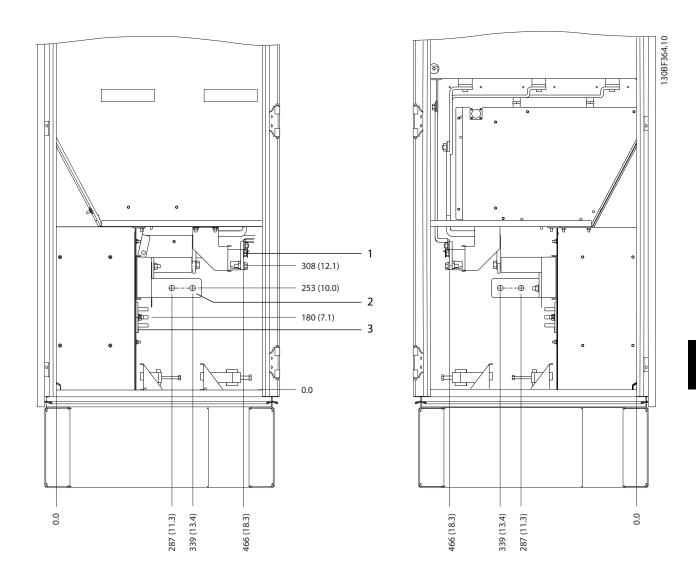




Ilustración 8.91 Dimensiones de los terminales del armario del rectificador F10-F13 (vista lateral)






| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.92 Dimensiones de los terminales del armario del inversor F12-F13 (vista frontal)





| 1 | Terminales de freno | 3 | Barra de conexión a toma de tierra |
|---|---------------------|---|------------------------------------|
| 2 | Terminales de motor | - | -                                  |

Ilustración 8.93 Dimensiones de los terminales para el armario del inversor F12-F13 (vista lateral)



## 9 Consideraciones de instalación mecánica

### 9.1 Almacenamiento

Conserve el convertidor en un lugar seco. Mantenga el equipo sellado en su embalaje hasta la instalación. Consulte la temperatura ambiente recomendada en el capétulo 7.5.1 Condiciones ambientales.

El conformado periódico (carga del condensador) no será necesario durante el almacenamiento, a menos que este supere los 12 meses.

#### 9.2 Elevación de la unidad

Eleve siempre el convertidor de frecuencia mediante las argollas de elevación dispuestas para tal fin. Utilice una barra para evitar doblar las anillas de elevación.

## **A**ADVERTENCIA

## **RIESGO DE MUERTE O LESIONES**

Respete todas las normas de seguridad locales para la elevación de cargas pesadas. Si no se siguen las recomendaciones y las normativas de seguridad locales, pueden producirse lesiones graves o incluso la muerte.

- Asegúrese de que el equipo de elevación se encuentre en buen estado.
- Consulte el capétulo 4 Vista general de producto para conocer el peso de los diferentes tamaños de alojamientos.
- Diámetro máximo de la barra: 20 mm (0,8 in).
- Ángulo existente entre la parte superior del convertidor de frecuencia y el cable de elevación: 60° o superior.

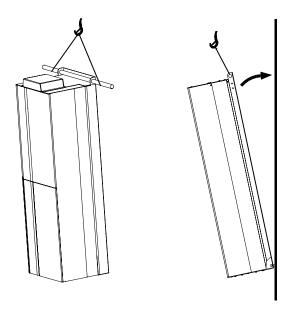



Ilustración 9.1 Método recomendado de elevación de los alojamientos E1-E2

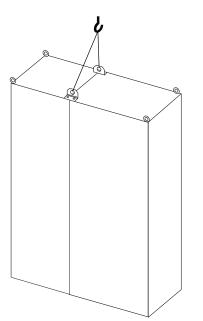



Ilustración 9.2 Método recomendado de elevación de los alojamientos F1/F2/F9/F10



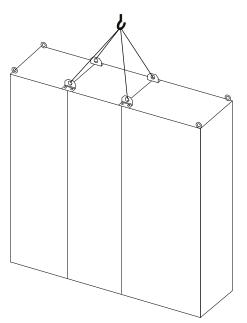



Ilustración 9.3 Método recomendado de elevación de los alojamientos F3/F4/F11/F12/F13

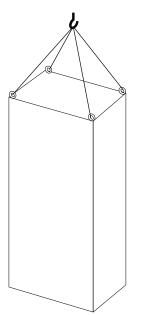



Ilustración 9.4 Método recomendado de elevación del alojamiento F8

### 9.3 Entorno de funcionamiento

En entornos con líquidos, partículas o gases corrosivos transmitidos por el aire, asegúrese de que la clasificación IP / de tipo del equipo se corresponde con el entorno de instalación. Para obtener especificaciones sobre las condiciones ambientales, consulte el capétulo 7.5 Condiciones ambientales.

## AVISO!

### **CONDENSACIÓN**

La humedad puede condensarse en los componentes electrónicos y provocar cortocircuitos. Evite la instalación en áreas con escarcha. Instale un calefactor de ambiente cuando el convertidor esté más frío que el aire ambiental. El funcionamiento en modo de espera reducirá el riesgo de condensación mientras la disipación de potencia mantenga los circuitos sin humedad.

## AVISO!

#### **CONDICIONES AMBIENTALES EXTREMAS**

Las temperaturas frías o calientes ponen en riesgo el rendimiento y la longevidad de la unidad.

- No utilice el equipo en entornos donde la temperatura ambiente sea superior a 55 °C (131 °F).
- El convertidor puede funcionar a bajas temperaturas hasta –10 °C (14 °F). No obstante, solo se garantiza un funcionamiento correcto con la carga nominal a temperaturas de 0 °C (32 °F) o superiores.
- Si la temperatura supera los límites de temperatura ambiente, será necesaria una climatización adicional del alojamiento o del lugar de instalación.

#### 9.3.1 Gases

Los gases agresivos, como el sulfuro de hidrógeno, el cloro o el amoníaco, pueden dañar los componentes mecánicos y eléctricos. La unidad utiliza placas de circuitos con barnizado protector para reducir los efectos de los gases agresivos. Para conocer las especificaciones y clasificaciones de los barnizados de protección, consulte el capétulo 7.5 Condiciones ambientales.



#### 9.3.2 Polyo

Al instalar el convertidor en entornos con mucho polvo, tenga en cuenta lo siguiente:

#### Mantenimiento periódico

Cuando el polvo se acumula en los componentes electrónicos, este actúa como una capa aislante. Dicha capa reduce la capacidad de refrigeración de los componentes y su temperatura aumenta. Ese entorno más caliente reduce la vida útil de los componentes electrónicos.

Evite que se acumule polvo en el disipador y los ventiladores. Para obtener más información de servicio y mantenimiento, consulte el *manual de funcionamiento*.

### Ventiladores de refrigeración

Los ventiladores proporcionan un caudal de aire para refrigerar el convertidor. En presencia de mucho polvo, este puede dañar los cojinetes del ventilador y producir una avería prematura del mismo. También puede acumularse polvo en las aspas del ventilador y generar un desequilibrio que impida la correcta refrigeración de la unidad.

## 9.3.3 Entornos potencialmente explosivos

# **A**ADVERTENCIA

## ATMÓSFERA EXPLOSIVA

No instale el convertidor de frecuencia en un entorno potencialmente explosivo. Instale la unidad en un armario situado fuera de dicha área. Si lo hace, aumentará el riesgo de muerte o de sufrir lesiones graves.

Los sistemas que funcionan en entornos potencialmente explosivos deben cumplir condiciones especiales. La directiva 94/9/CE de la UE (ATEX 95) clasifica el funcionamiento de los dispositivos electrónicos en entornos potencialmente explosivos.

- La clase «d» determina que, en caso de producirse una chispa, esta se contendrá en una zona protegida.
- La clase «e» prohíbe que se genere cualquier tipo de chispa.

#### Motores con protección de clase «d»

No requieren aprobación. Son necesarios un cableado y una contención especiales.

#### Motores con protección de clase «e»

Cuando se combina con un dispositivo de control PTC homologado para ATEX, como la VLT® PTC Thermistor Card MCB 112, la instalación no requiere la aprobación individual por parte de una organización homologada.

#### Motores con protección de clase «d/e»

El propio motor tiene una clase de protección de ignición «e», mientras que el cable de motor y el entorno de conexión cumplen con la clasificación «d». Para atenuar la tensión pico elevada, utilice un filtro senoidal en la salida del convertidor.

Al utilizar un convertidor de frecuencia en una atmósfera potencialmente explosiva, recurra a lo siguiente:

- Motores con protección de ignición de clase «d» o «e».
- Sensor de temperatura PTC para supervisar la temperatura del motor.
- Cables de motor cortos.
- Filtros de salida senoidales cuando no se utilicen cables de motor apantallados.

### AVISO!

# SUPERVISIÓN DEL SENSOR DEL TERMISTOR DEL MOTOR

Los convertidores con la opción VLT® PTC Thermistor Card MCB 112 cuentan con la certificación PTB para entornos potencialmente explosivos.

## 9.4 Configuraciones de montaje

En la *Tabla 9.1* se enumeran las configuraciones de montaje disponibles para cada envolvente. Consulte el *manual de funcionamiento* para obtener instrucciones específicas de instalación con montaje en panel o en pared. Consulte también el *capétulo 8 Dimensiones exteriores y de los terminales*.

## AVISO!

Un montaje incorrecto puede provocar un sobrecalentamiento y disminuir el rendimiento.

| Protección | Montaje        | Montaje del pedestal |
|------------|----------------|----------------------|
|            | en pared/panel | (independiente)      |
| E1         | _              | X                    |
| E2         | X              | _                    |
| F1         | _              | X                    |
| F2         | -              | X                    |
| F3         | _              | Х                    |
| F4         | _              | X                    |
| F8         | _              | Х                    |
| F9         | -              | Х                    |
| F10        | -              | Х                    |
| F11        | -              | X                    |
| F12        | -              | X                    |
| F13        | _              | X                    |

Tabla 9.1 Configuraciones de montaje



#### Consideraciones de montaje:1)

- Coloque la unidad lo más cerca posible del motor. Consulte el capétulo 7.6 Especificaciones del cable para obtener la longitud máxima del cable de motor.
- Garantice la estabilidad de la unidad montándola sobre una superficie sólida.
- Asegúrese de que el lugar donde va a realizar el montaje soporte el peso de la unidad.
- Asegúrese de dejar un espacio suficiente alrededor de la unidad para permitir una adecuada refrigeración. Consulte la capétulo 9.5 Refrigeración.
- Asegúrese de dejar el debido acceso para abrir la puerta.
- Asegúrese de permitir la entrada de cables desde la parte inferior.
- 1) Para instalaciones atípicas, póngase en contacto con la fábrica.

## 9.5 Refrigeración

## AVISO!

Un montaje incorrecto puede provocar un sobrecalentamiento y disminuir el rendimiento. Para realizar un montaje correcto, consulte el capétulo 8 Dimensiones exteriores y de los terminales.

- Asegúrese de que exista un espacio libre por encima y por debajo para la refrigeración por aire. Espacio libre requerido: 225 mm (9 in).
- Asegúrese de que exista un caudal de aire suficiente. Consulte *Tabla 9.2*.
- Tenga en cuenta la reducción de potencia para temperaturas entre 45 °C (113 °F) y 50 °C (122 °F) y una elevación de 1000 m (3300 ft) sobre el nivel del mar. Para obtener información detallada sobre la reducción de potencia, consulte el *capétulo 9.6 Reducción de potencia*.

El convertidor de frecuencia utiliza un sistema de refrigeración de canal posterior que elimina el aire de refrigeración del disipador. El aire de refrigeración del disipador extrae aproximadamente el 90 % del calor a través del canal posterior del convertidor de frecuencia. Redirija el aire del canal posterior desde el panel o la sala mediante:

#### Refrigeración de tuberías

Hay kits de refrigeración de canal posterior disponibles para dirigir el aire de refrigeración del disipador fuera del panel en convertidores de frecuencia IP20/chasis instalados en armarios Rittal. El uso de estos kits reduce el calor en el panel y también pueden colocarse ventiladores de puerta más pequeños.

#### • Refrigeración trasera

La instalación en la unidad de las cubiertas inferior y superior permite extraer de la habitación el aire de refrigeración del canal posterior.

## AVISO!

Se requiere un ventilador de puerta en el alojamiento para eliminar las pérdidas térmicas no contenidas en el canal posterior del convertidor de frecuencia y las pérdidas adicionales generadas en el resto de componentes montados en el alojamiento. Es necesario calcular el caudal de aire total necesario para poder seleccionar el ventilador adecuado. Algunos fabricantes de alojamientos ofrecen software para la realización de los cálculos del caudal de aire.

Asegúrese de que exista el caudal de aire necesario sobre el disipador.

| Protección | Modelos   |           | Ventilador de puerta / ventilador | Ventilador del disipador [m³/h (cfm)] |
|------------|-----------|-----------|-----------------------------------|---------------------------------------|
|            | 380-480 V | 525-690 V | superior[m³/h (cfm)]              |                                       |
| E1         | -         | P450-P500 | 340 (200)                         | 1105 (650)                            |
| E2         |           |           | 255 (150)                         | 1105 (650)                            |
| E1         | P355-P450 | P560-P630 | 340 (200)                         | 1445 (850)                            |
| E2         |           |           | 255 (150)                         | 1445 (850)                            |

Tabla 9.2 Caudal de aire de los alojamientos E1-E2



| Protección | Tipo de protección | Ventilador de puerta / ventilador | Ventilador del disipador [m³/h (cfm)] |
|------------|--------------------|-----------------------------------|---------------------------------------|
|            |                    | superior[m³/h (cfm)]              |                                       |
| F1-F4      | IP21/Tipo 1        | 700 (412)                         | 985 (580)                             |
|            | IP54 / Tipo 12     | 525 (309)                         | 985 (580)                             |
| F8-F13     | IP21/Tipo 1        | 700 (412)                         | 985 (580)                             |
|            | IP54 / Tipo 12     | 525 (309)                         | 985 (580)                             |

Tabla 9.3 Caudales de aire de los alojamientos F1-F4 y F8-F13

# 9.5.1 Tuberías externas y reducción de potencia

Si se añaden tuberías externas adicionales al armario Rittal, debe calcularse la caída de presión en las tuberías mediante los gráficos *Ilustración 9.5 - Ilustración 9.7*.

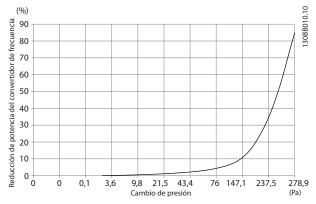



Ilustración 9.5 Reducción de potencia frente a cambio de presión para los alojamientos E1-E2, modelos de 380-480 V: P315, y modelos de 525-690 V: P450-P500. Caudal de aire 650 cfm (1105 m³/h)

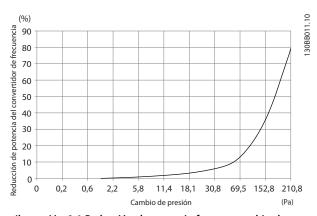
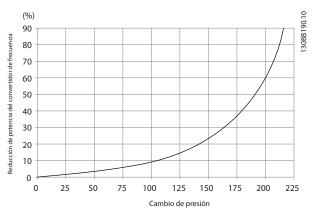




Ilustración 9.6 Reducción de potencia frente a cambio de presión para los alojamientos E1-E2, modelos de 380-480 V: P355-P450, y modelos de 525-690 V: P560-P630. Caudal de aire 850 cfm (1445 m³/h)



llustración 9.7 Reducción de potencia frente a cambio de presión para los alojamientos F1-F4. Caudal de aire 580 cfm (985 m³/h)

## 9.6 Reducción de potencia

La reducción de potencia es un método que se utiliza para reducir la intensidad de salida, a fin de evitar la desconexión del convertidor en caso de que la temperatura dentro del alojamiento sea alta. Si se esperan determinadas condiciones de funcionamiento extremas, para eliminar la necesidad de reducción de potencia puede seleccionarse un convertidor de mayor potencia. Esto es lo que se denomina «reducción de potencia manual». De lo contrario, el convertidor reducirá automáticamente la intensidad de salida para eliminar el calor excesivo generado por las condiciones extremas.

#### Reducción de potencia manual

Cuando se dan las siguientes condiciones, Danfoss recomienda seleccionar un convertidor de frecuencia con una magnitud de potencia un grado superior (por ejemplo, P710 en lugar de P630):

- Velocidad baja: en funcionamiento continuo con r/min bajas en aplicaciones de par constante.
- Presión atmosférica baja: funcionamiento en altitudes superiores a 1000 m (3281 ft).
- Temperatura ambiente alta: funcionamiento en temperaturas ambiente de 10 °C (50 °F).
- Frecuencia de conmutación alta.
- Cables de motor largos.
- Cables con una gran sección transversal.



#### Reducción de potencia automática

Si se dan las siguientes condiciones de funcionamiento, el convertidor cambia automáticamente la frecuencia de conmutación o el patrón de conmutación (de PWM a SFAVM) a fin de reducir el calor excesivo dentro del alojamiento:

- Alta temperatura en la tarjeta de control o el disipador.
- Carga del motor elevada o velocidad del motor baja.
- Tensión del enlace de CC alta.

## AVISO!

La reducción de potencia automática es diferente cuando parámetro 14-55 Output Filter está ajustado en [2] Filtro senoidal fijo.

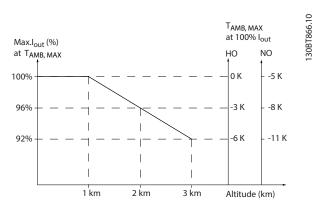
# 9.6.1 Reducción de potencia por funcionamiento a baja velocidad

Cuando se conecta un motor a un convertidor de frecuencia, es necesario comprobar si la refrigeración del motor es la adecuada. El nivel de refrigeración requerido depende de lo siguiente:

## 9.6.2 Reducción de potencia por altitud

- Carga en el motor.
- Velocidad de funcionamiento.
- Duración del tiempo de funcionamiento.

#### Aplicaciones de par constante


Se puede producir un problema con valores bajos de r/min en aplicaciones de par constante. En una aplicación de par constante, un motor puede sobrecalentarse a velocidades bajas debido a una escasez de aire de refrigeración proveniente del ventilador integrado en el motor.

Si el motor funciona continuamente a unas r/min menores que la mitad del valor nominal, es necesario suministrar más aire de enfriamiento al motor. Si no puede suministrarse aire de refrigeración adicional, puede utilizarse en su lugar un motor diseñado para aplicaciones de par constante / bajas r/min.

#### Aplicaciones de par variable (cuadrático)

No hay necesidad de un enfriamiento adicional ni de una reducción de potencia del motor en aplicaciones de par variable, en las que el par es proporcional a la raíz cuadrada de la velocidad y la potencia es proporcional al cubo de la velocidad. Las bombas centrífugas y los ventiladores son aplicaciones comunes de par variable.

La capacidad de refrigeración del aire disminuye al disminuir la presión atmosférica. No es necesario reducir la potencia a una altitud igual o inferior a 1000 m (3281 ft). Por encima de los 1000 m (3281 ft), debe reducirse la temperatura ambiente (T<sub>AMB.</sub>) o la intensidad de salida máxima (I<sub>MÁX.</sub>). Consulte la *llustración 9.8*.



llustración 9.8 Reducción de potencia de la intensidad de salida en función de la altitud a TAMB, MÁX.

La *llustración 9.8* muestra que a una temperatura de 41,7 °C (107 °F), está disponible el 100 % de la corriente nominal de salida. A una temperatura de 45 °C (113 °F) (T<sub>AMB, MÁX.</sub>–3 K), está disponible el 91 % de la corriente nominal de salida.



## 9.6.3 Reducción de potencia en función de la temperatura ambiente

Los gráficos se presentan individualmente para AVM de 60° y SFAVM. La AVM de 60° solo conmuta dos terceras partes del tiempo, mientras que la SFAVM conmuta durante todo el periodo. La frecuencia de conmutación máxima es de 16 kHZ para AVM de 60° y de 10 kHz para SFAVM. Las distintas frecuencias de conmutación se presentan en *Tabla 9.4* y *Tabla 9.5*.

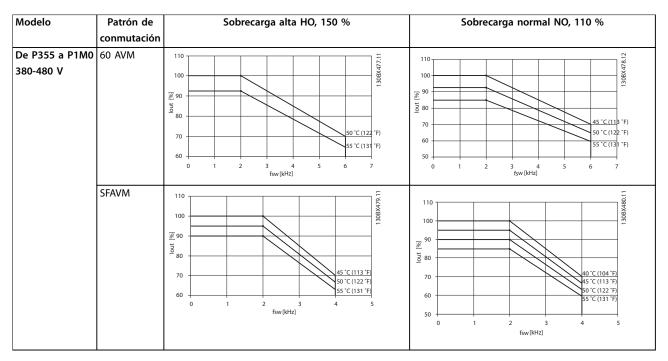



Tabla 9.4 Tablas de reducción de la temperatura ambiente para los alojamientos E1-E2, F1-F4 y F8-F13, de 380-480 V

| Modelo                      | Patrón de<br>conmutación<br>60 AVM | Sobrecarga alta HO, 150 %                                  | Sobrecarga normal NO, 110 %  110 100 100 80 70 60 50 C (122 °F) 55 °C (131 °F) |  |
|-----------------------------|------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| De P450 a P1M4<br>525-690 V |                                    | 110<br>100<br>100<br>100<br>100<br>100<br>100<br>100       |                                                                                                                                                                                                                       |  |
|                             | SFAVM                              | 110 100 2E 90 80 70 60 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 | 110<br>90<br>90<br>70<br>40°C (104°F)<br>45°C (113°F)<br>50°C (122°F)<br>55°C (121°F)<br>55°C (121°F)<br>55°C (121°F)                                                                                                 |  |

Tabla 9.5 Tablas de reducción de la temperatura ambiente para los alojamientos E1-E2, F1-F4 y F8-F13, de 525-690 V



## 10 Consideraciones de instalación eléctrica

### 10.1 Instrucciones de seguridad

Consulte *capétulo 2 Seguridad* para obtener instrucciones generales de seguridad.

# **A**ADVERTENCIA

#### TENSIÓN INDUCIDA

La tensión inducida desde los cables de motor de salida de diferentes convertidores de frecuencia que están juntos puede cargar los condensadores del equipo, incluso aunque este esté apagado y bloqueado. No colocar los cables del motor de salida separados o no utilizar cables apantallados puede provocar lesiones graves o incluso la muerte.

- Coloque los cables de motor de salida separados o utilice cables apantallados.
- Bloquee todos los convertidores de frecuencia de forma simultánea.

## **A**ADVERTENCIA

#### RIESGO DE DESCARGA

El convertidor de frecuencia puede generar una corriente de CC en el conductor de conexión toma a tierra y producir lesiones graves o incluso la muerte.

 Cuando se utilice un dispositivo de protección de corriente residual (RCD) como protección antidescargas eléctricas, este solo podrá ser de tipo B en el lado de la fuente de alimentación.

Si no se respeta la recomendación, el RCD no proporcionará la protección prevista.

#### Protección de sobreintensidad

- En aplicaciones con varios motores, es necesario un equipo de protección adicional entre el convertidor de frecuencia y el motor, como protección contra cortocircuitos o protección térmica del motor.
- Es necesario un fusible de entrada para proporcionar protección de sobreintensidad y contra cortocircuitos. Si no vienen instalados de fábrica, los fusibles deben ser suministrados por el instalador. Consulte los valores nominales máximos de los fusibles en el capétulo 10.5 Fusibles y magnetotérmicos.

#### Tipo de cable y clasificaciones

- Todos los cableados deben cumplir las normas nacionales y locales sobre los requisitos de sección transversal y temperatura ambiente.
- Recomendación de conexión de cable de alimentación: cable de cobre con una temperatura nominal mínima de 75 °C (167 °F).

Consulte el *capétulo 7.6 Especificaciones del cable* para obtener información sobre los tamaños y tipos de cable recomendados.

## **APRECAUCIÓN**

#### DAÑOS MATERIALES

La protección contra sobrecarga del motor no está incluida en los ajustes predeterminados. Para añadir esta función, ajuste el parámetro 1-90 Motor Thermal Protection como [Descon. ETR] o [Advert. ETR]. Para el mercado norteamericano, la función ETR proporciona protección de sobrecarga del motor de clase 20, conforme a las normas NEC. Si no se ajusta el parámetro 1-90 Motor Thermal Protection como [Descon. ETR] o [Advert. ETR], no se dispone de protección de sobrecarga del motor y pueden producirse daños materiales en caso de sobrecalentamiento del motor.



## 10.2 Esquema de cableado

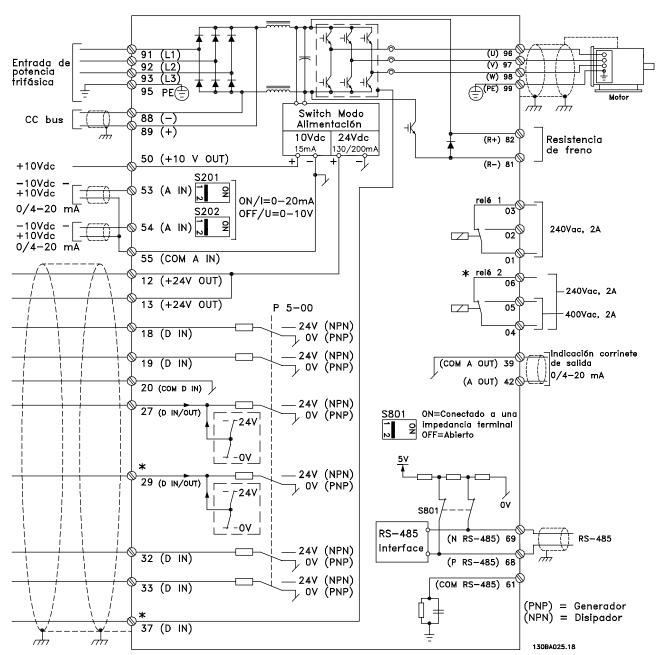



Ilustración 10.1 Esquema básico del cableado

A = analógico, D = digital

1) El terminal 37 (opcional) se utiliza para la función Safe Torque Off. Para conocer las instrucciones de instalación de la función Safe Torque Off.



### 10.3 Conexiones

## 10.3.1 Conexiones de potencia

## AVISO!

Todos los cableados deben cumplir las normas locales y nacionales sobre secciones transversales de cables y temperatura ambiente. Para las aplicaciones UL, se requieren conductores de cobre de 75 °C (167 °F). Las aplicaciones que no son UL pueden utilizar conductores de cobre de 75 °C (167 °F) y 90 °C (194 °F).

Las conexiones para los cables de alimentación están situadas como en la *llustración 10.2*. Consulte las *capétulo 7.6 Especificaciones del cable* para elegir las dimensiones correctas de sección transversal y longitud del cable de motor.

Para la protección del convertidor de frecuencia, utilice los fusibles recomendados, a no ser que la unidad tenga fusibles incorporados. Los fusibles recomendados se enumeran en el *capétulo 10.5 Fusibles y magnetotérmicos*. Asegúrese de que el fusible se ajuste a las normativas locales.

Si se incluye un seccionador de alimentación, la conexión de la red de alimentación se conectará al mismo.

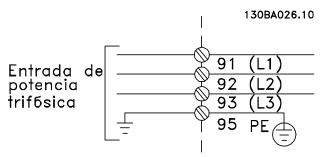



Ilustración 10.2 Conexión de la red de alimentación, alojamientos E1-E2 y F1-F4

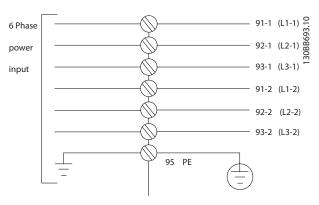
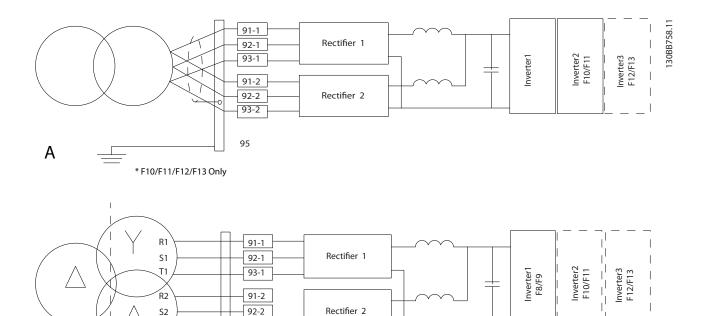
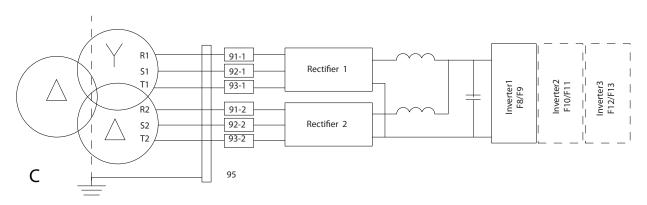





Ilustración 10.3 Conexión de la red de alimentación, alojamientos F8-F13

В





| Α | Conexión de seis pulsos <sup>1), 2) y 3)</sup>              |  |  |  |  |
|---|-------------------------------------------------------------|--|--|--|--|
| В | B Conexión de seis pulsos modificada <sup>2), 3) y 4)</sup> |  |  |  |  |
| С | Conexión de doce pulsos <sup>3) y 5)</sup>                  |  |  |  |  |

Ilustración 10.4 Conexión de las opciones de red para convertidores de doce pulsos

93-2

95

\* F10/F11/F12/F13 Only

- 1) Se muestra la conexión en paralelo. Puede utilizarse un único cable trifásico con suficiente capacidad portadora. Deben instalarse barras conectoras de cortocircuito.
- 2) La conexión de seis pulsos elimina las ventajas de la reducción de armónicos del rectificador de doce pulsos.
- 3) Adecuado para conexión de red IT y TN.
- 4) En caso de que uno de los rectificadores modulares de seis pulsos no funcione, el convertidor de frecuencia podrá funcionar, con una carga reducida, con un rectificador de seis pulsos. Póngase en contacto con Danfoss para conocer los detalles de reconexión.
- 5) Aquí no se muestra la colocación en paralelo del cableado de red. Un convertidor de frecuencia de doce pulsos utilizado como uno de seis pulsos debe tener cables de red del mismo número y longitud.

75ZA114.11



## Apantallamiento de cables

## AVISO!

El cable de motor debe estar apantallado. Si se utiliza un cable no apantallado, no se estarán cumpliendo algunos de los requisitos de CEM. Utilice un cable de motor apantallado para cumplir con las especificaciones de emisión CEM. Para obtener más información, consulte el capétulo 10.16 Instalación conforme a CEM.

Evite la instalación con extremos de pantalla retorcidos (cables de pantalla retorcidos y embornados). Eliminan el efecto de apantallamiento a frecuencias elevadas. Si necesita interrumpir el apantallamiento, continúelo con la menor impedancia de AF posible.

Conecte el apantallamiento de los cables de motor a la placa de desacoplamiento del convertidor de frecuencia y al chasis metálico del motor. Realice las conexiones de la pantalla con la mayor superficie posible (abrazadera de cables) utilizando los dispositivos de instalación suministrados con el convertidor de frecuencia.

#### Longitud y sección transversal del cable

Las pruebas de CEM efectuadas en el convertidor de frecuencia se han realizado con una longitud de cable determinada. Mantenga el cable de motor tan corto como sea posible para reducir el nivel de interferencias y las corrientes de fuga.

#### Frecuencia de conmutación

Si los convertidores de frecuencia se utilizan con filtros senoidales para reducir el ruido acústico de un motor, la frecuencia de conmutación debe ajustarse según las instrucciones del *parámetro 14-01 Switching Frequency*.

| Termina | les |    |                  | Tipo de conexión              |
|---------|-----|----|------------------|-------------------------------|
| 96      | 97  | 98 | 99               |                               |
| U       | ٧   | W  | PE <sup>1)</sup> | Tensión del motor un 0-100 %  |
|         |     |    |                  | de la tensión de red. Tres    |
|         |     |    |                  | cables que salen del motor.   |
| U1      | V1  | W1 | PE <sup>1)</sup> | Conexión en triángulo.        |
| W2      | U2  | V2 |                  | Seis cables que salen del     |
|         |     |    |                  | motor.                        |
| U1      | V1  | W1 | PE <sup>1)</sup> | Conexión en estrella U2, V2 y |
|         |     |    |                  | W2.                           |
|         |     |    |                  | U2, V2 y W2 tienen que        |
|         |     |    |                  | interconectarse de forma      |
|         |     |    |                  | independiente.                |

Tabla 10.1 Conexiones de los cables de motor, alojamientos E1-E2 y F1-F4

| Termina | les |    |                  | Tipo de conexión              |
|---------|-----|----|------------------|-------------------------------|
| 96      | 97  | 98 | 99               |                               |
| U       | ٧   | W  | PE <sup>1)</sup> | Tensión del motor un 0-100 %  |
|         |     |    |                  | de la tensión de red.         |
|         |     |    |                  | Tres cables que salen del     |
|         |     |    |                  | motor.                        |
| U1      | V1  | W1 | PE <sup>1)</sup> | Conexión en triángulo.        |
| W2      | U2  | V2 |                  | Seis cables que salen del     |
|         |     |    |                  | motor.                        |
| U1      | V1  | W1 | PE <sup>1)</sup> | Conexión en estrella U2, V2 y |
|         |     |    |                  | W2.                           |
|         |     |    |                  | U2, V2 y W2 tienen que        |
|         |     |    |                  | interconectarse de forma      |
|         |     |    |                  | independiente.                |

Tabla 10.2 Conexiones de los cables de motor, alojamientos F8-F13

1) Conexión a tierra de protección

## AVISO!

Para los motores sin papel de aislamiento de fase o cualquier otro refuerzo de aislamiento adecuado para su funcionamiento con suministro de tensión, utilice un filtro senoidal en la salida del convertidor.

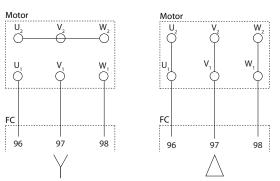



Ilustración 10.5 Conexión del cable de motor

### 10.3.2 Conexión de bus de CC

El terminal de bus de CC se utiliza para reserva de CC, con el enlace de CC alimentado desde una fuente externa.

| Terminal | Función   |
|----------|-----------|
| 88, 89   | Bus de CC |

Tabla 10.3 Terminales de bus de CC

<sup>1)</sup> Conexión a tierra protegida



## 10.3.3 Conexión para carga compartida

La carga compartida enlaza los circuitos intermedios de CC de varios convertidores de frecuencia. Para obtener una vista general, consulte el *capétulo 5.6 Vista general de la función de carga compartida*.

La carga compartida requiere equipos y condiciones de seguridad adicionales. Consulte con Danfoss las recomendaciones para el pedido y la instalación.

| Terminal | Función          |
|----------|------------------|
| 88, 89   | Carga compartida |

Tabla 10.4 Terminales de carga compartida

El cable de conexión debe estar apantallado y la longitud máxima desde el convertidor de frecuencia hasta la barra de CC está limitada a 25 m (82 ft).

#### 10.3.4 Conexión del cable de freno

El cable de conexión a la resistencia de frenado debe estar apantallado y la longitud máxima desde el convertidor de frecuencia hasta la barra de CC está limitada a 25 m (82 ft).

- Utilice abrazaderas de cables para conectar el apantallamiento a la placa posterior conductora del convertidor de frecuencia y al armario metálico de la resistencia de frenado.
- Elija un cable de freno cuya sección transversal se adecue al par de frenado.

| Terminal | Función                              |
|----------|--------------------------------------|
| 81, 82   | Terminales de resistencia de frenado |

Tabla 10.5 Terminales de resistencia de frenado

Para obtener más detalles, consulte la *Guía de diseño de la resistencia de frenado VLT® Brake Resistor MCE 101*.

## AVISO!

De producirse un cortocircuito en el módulo del freno, evite una disipación de potencia excesiva en la resistencia de frenado utilizando un contactor o conmutador de red para desconectar de la alimentación el convertidor de frecuencia.

## 10.3.5 Conexión del transformador

Los transformadores utilizados junto a convertidores de frecuencia de doce pulsos (F8-F13) deben cumplir con las siguientes especificaciones.

La carga se basa en un transformador de doce pulsos con clasificación K-4, una tensión de 0,5 % y un equilibrio de impedancia entre bobinados secundarios. La longitud de los cables del transformador a los terminales de entrada del convertidor de frecuencia debe ser la misma, dentro de un margen del 10 %.

| Conexión                                   |                                        | Dy11 d0 o Dyn 11d0                                  |  |
|--------------------------------------------|----------------------------------------|-----------------------------------------------------|--|
| Cambio de fase entre se                    | cundarios                              | 30°                                                 |  |
| Diferencia de tensión er                   | itre secundarios                       | <0,5 %                                              |  |
| Impedancia de cortocircuito de secundarios |                                        | >5%                                                 |  |
| Diferencia de impedanci                    | a de cortocircuito entre secundarios   | <5 % de impedancia de cortocircuito                 |  |
| Otras                                      | No está permitida la conexión a tierra | de los secundarios. Se recomienda pantalla estática |  |

# 10.3.6 Conexión de la fuente de alimentación del ventilador externo

En caso de que el convertidor de frecuencia se alimente con CC o de que el ventilador deba funcionar independientemente de la fuente de alimentación de red, puede conectarse una fuente de alimentación externa mediante la tarjeta de potencia.

El conector, que está situado en la tarjeta de potencia, conecta la tensión de red a los ventiladores de refrigeración. Los ventiladores se configuran de fábrica para conectarse a una línea común de CA. Utilice puentes entre los terminales 100-102 y 101-103. Si se necesita una alimentación externa, se retirarán los puentes y se conectará la alimentación a los terminales 100 y 101. Utilice un fusible de 5 A para protección. En aplicaciones UL, utilice un fusible Littelfuse KLK-5 o equivalente.

| Terminal | Función                               |  |
|----------|---------------------------------------|--|
| 100, 101 | Fuente de alimentación auxiliar S y T |  |
| 102, 103 | Fuente de alimentación interna S y T  |  |

Tabla 10.6 Alimentación externa

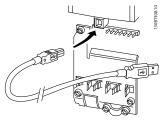
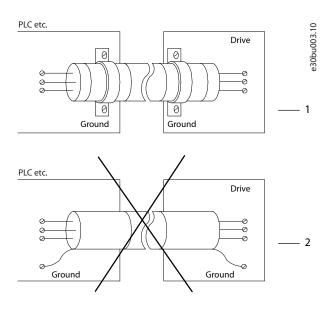


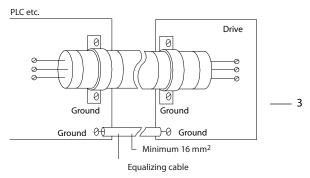
## 10.3.7 Conexión de ordenador personal

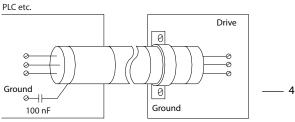
Para controlar el convertidor de frecuencia desde un PC, instale el software de configuración MCT 10. El PC se conecta mediante un cable USB estándar (ordenador/dispositivo), o mediante la interfaz RS485, tal y como se muestra en la sección *Conexión de bus* de la *Guía de programación*.

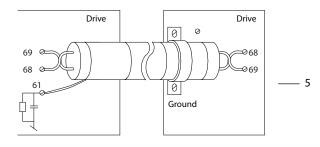
El USB es un bus serie que emplea cuatro cables apantallados con cuatro clavijas de toma a tierra conectadas a la pantalla del puerto USB del PC. Todos los PC estándar se fabrican sin aislamiento galvánico en el puerto USB. Para evitar daños en el controlador host USB a través de la pantalla del cable USB, siga las recomendaciones de conexión toma a tierra que se describen en la *guía de* funcionamiento.

Al conectar el PC al convertidor de frecuencia mediante un cable USB, Danfoss recomienda utilizar un aislamiento USB con aislamiento galvánico para proteger el controlador del host USB del PC de las diferencias potenciales de conexión toma a tierra. También se recomienda no utilizar un cable de alimentación de PC con un conector de tierra si el PC está conectado a un convertidor de frecuencia a través de un cable USB. Estas recomendaciones reducen la diferencia de potencial de la conexión toma a tierra, pero no eliminan todas las diferencias de potencial debidas a la toma de tierra y al apantallamiento conectado al puerto USB del PC.



Ilustración 10.6 Conexión USB


## 10.4 Terminales y cableado de control


Los cables de control deben ser apantallados y la pantalla debe conectarse al armario metálico de la unidad con una abrazadera en cada extremo.

Para una conexión a tierra correcta de los cables de control, consulte la *llustración 10.7*.









- Los cables de control y los cables para comunicación serie deben fijarse con abrazaderas en ambos extremos para asegurar el mejor contacto eléctrico posible.
  - No utilice extremos de cable retorcidos (cables de conexión flexibles). Incrementan la impedancia del apanta-llamiento a altas frecuencias.



- Si el potencial de conexión toma a tierra entre el convertidor de frecuencia y el PLC es distinto, puede producirse ruido eléctrico que perturbará todo el sistema. Instale un cable ecualizador junto al cable de control. Sección transversal mínima del cable: 16 mm² (6 AWG).

  Si se utilizan cables de control largos, pueden producirse lazos de tierra de 50/60 Hz. Conecte un extremo del
- Si se utilizan cables de control largos, pueden producirse lazos de tierra de 50/60 Hz. Conecte un extremo del apantallamiento a tierra mediante un condensador de 100 nF (manteniendo los cables cortos).
- Si se utilizan cables para una comunicación serie, pueden eliminarse corrientes de ruido de baja frecuencia entre dos convertidores de frecuencia si se conecta un extremo del apantallamiento al terminal 61. Este terminal se conecta a tierra mediante un enlace RC interno. Utilice cables de par trenzado a fin de reducir la interferencia de modo diferencial entre los conductores.

Ilustración 10.7 Ejemplos de puesta a tierra

### 10.4.1 Recorrido de los cables de control

Sujete y dirija todos los cables de control como se muestra en la *llustración 10.8* y la *llustración 10.9*. Recuerde conectar los apantallamientos de un modo correcto para asegurar una óptima inmunidad eléctrica.

- Aísle el cableado de control de los cables de alta potencia.
- Cuando el convertidor esté conectado a un termistor, asegúrese de que el cableado de control del termistor esté apantallado y reforzado o doblemente aislado. Se recomienda un suministro externo de 24 V CC.

#### Conexión del fieldbus

La conexiones se hacen a las opciones correspondientes de la tarjeta de control. Consulte las instrucciones del fieldbus correspondiente. El cable debe sujetarse y dirigirse junto con otros cables de control dentro de la unidad. Consulte *llustración 10.8* y *llustración 10.9*.

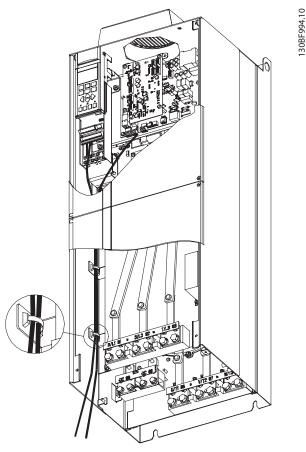
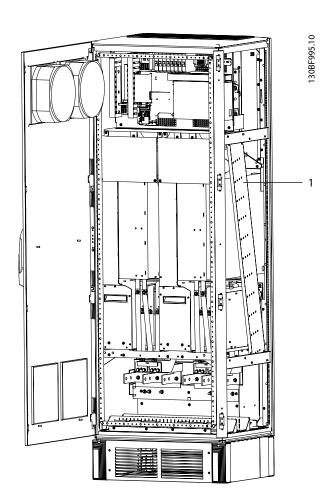




Ilustración 10.8 Ruta del cableado de la tarjeta de control para los alojamientos E1 y E2



Soporte de cables para tender los cables de control en los alojamientos F1-F13

llustración 10.9 Ruta del cableado de la tarjeta de control para los alojamientos F1/F3. El cableado de la tarjeta de control para los alojamientos F2/F4 y F8-F13 utiliza la misma ruta

En los convertidores de frecuencia con alojamiento E, es posible conectar el fieldbus desde la parte superior de la unidad, como se muestra en las siguientes ilustraciones. En la unidad IP21 / 54 (NEMA 1 / NEMA 12) debe retirarse una cubierta metálica.

El número de kit para la conexión superior de fieldbus es 176F1742.

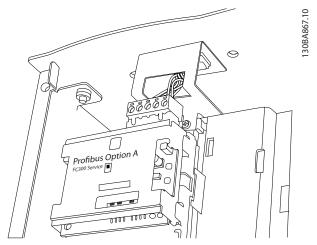



Ilustración 10.10 Conexión superior para fieldbus

## 10.4.2 Terminales de control

La *llustración 10.11* muestra los terminales extraíbles del convertidor de frecuencia. Las funciones de los terminales y los ajustes predeterminados están resumidos en las siguientes tablas: *Tabla 10.7 - Tabla 10.9*.

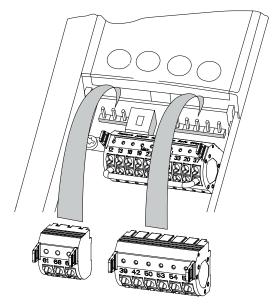
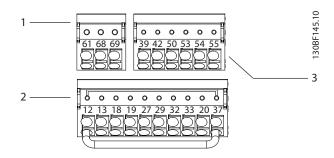




Ilustración 10.11 Ubicación de los terminales de control





| 1 | Terminales de comunicación serie       |
|---|----------------------------------------|
| 2 | Terminales de entrada/salida digital   |
| 3 | Terminales de entrada/salida analógica |

Ilustración 10.12 Números de los terminales ubicados en los conectores

| Terminal | Parámetro        | Ajustes   | Descripción            |
|----------|------------------|-----------|------------------------|
|          |                  | predeter- |                        |
|          |                  | minados   |                        |
| 61       | -                | -         | Filtro RC integrado    |
|          |                  |           | para conectar el       |
|          |                  |           | apantallamiento de     |
|          |                  |           | cables en caso de      |
|          |                  |           | problemas de CEM.      |
| 68 (+)   | Grupo de         | -         | Interfaz RS485. En la  |
|          | parámetros 8-3*  |           | tarjeta de control, se |
|          | Ajuste puerto FC |           | incluye un             |
| 69 (-)   | Grupo de         | -         | conmutador (BUS        |
|          | parámetros 8-3*  |           | TER. ) para la         |
|          | Ajuste puerto FC |           | resistencia de         |
|          |                  |           | terminación de bus.    |

Tabla 10.7 Descripciones de los terminales de comunicación serie

| Terminal | Parámetro | Ajustes<br>predeter-<br>minados | Descripción                                                                                                                                                           |
|----------|-----------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12, 13   | -         | +24 V CC                        | Tensión de suministro externo de 24 V CC para entradas digitales y transductores externos. La intensidad máxima de salida es de 200 mA para todas las cargas de 24 V. |

| Terminal | inal Parámetro Ajustes predeter- |              | Descripción            |  |
|----------|----------------------------------|--------------|------------------------|--|
|          |                                  | minados      |                        |  |
| 18       | Parámetro 5-10                   | [8] Arranque | Entradas digitales.    |  |
|          | Terminal 18                      |              |                        |  |
|          | Digital Input                    |              |                        |  |
| 19       | Parámetro 5-11                   | [10] Cambio  |                        |  |
|          | Terminal 19                      | de sentido   |                        |  |
|          | Digital Input                    |              |                        |  |
| 32       | Parámetro 5-14                   | [0] Sin      |                        |  |
|          | Terminal 32                      | función      |                        |  |
|          | Digital Input                    |              |                        |  |
| 33       | Parámetro 5-15                   | [0] Sin      |                        |  |
|          | Terminal 33                      | función      |                        |  |
|          | Digital Input                    |              |                        |  |
| 27       | Parámetro 5-12                   | [2] Inercia  | Para entrada o salida  |  |
|          | Terminal 27                      |              | digital. El ajuste     |  |
|          | Digital Input                    |              | predeterminado es      |  |
| 29       | Parámetro 5-13                   | [14]         | entrada.               |  |
|          | Terminal 29                      | Velocidad    |                        |  |
|          | Digital Input                    | fija         |                        |  |
| 20       | _                                | -            | Común para entradas    |  |
|          |                                  |              | digitales y potencial  |  |
|          |                                  |              | de 0 V para una        |  |
|          |                                  |              | fuente de alimen-      |  |
|          |                                  |              | tación de 24 V.        |  |
| 37       | _                                | STO          | Cuando no se use la    |  |
|          |                                  |              | función opcional STO,  |  |
|          |                                  |              | será necesario un      |  |
|          |                                  |              | puente entre el        |  |
|          |                                  |              | terminal 12 (o 13) y   |  |
|          |                                  |              | el 37. Este ajuste     |  |
|          |                                  |              | permite al convertidor |  |
|          |                                  |              | de frecuencia          |  |
|          |                                  |              | funcionar con los      |  |
|          |                                  |              | valores de progra-     |  |
|          |                                  |              | mación ajustados en    |  |
|          |                                  |              | fábrica.               |  |

Tabla 10.8 Descripciones de los terminales de entrada/salida digital

| Terminal | Parámetro      | Ajustes   | Descripción                 |
|----------|----------------|-----------|-----------------------------|
|          |                | predeter- |                             |
|          |                | minados   |                             |
| 39       | -              | -         | Común para salida           |
|          |                |           | analógica.                  |
| 42       | Parámetro 6-50 | [0] Sin   | Salida analógica            |
|          | Terminal 42    | función   | programable.                |
|          | Output         |           | 0-20 mA o 4-20 mA a         |
|          |                |           | un máximo de 500 $\Omega$ . |



| Terminal | Parámetro       | Ajustes    | Descripción         |
|----------|-----------------|------------|---------------------|
|          |                 | predeter-  |                     |
|          |                 | minados    |                     |
| 50       | -               | +10 V CC   | Tensión de alimen-  |
|          |                 |            | tación analógica de |
|          |                 |            | 10 V CC para        |
|          |                 |            | potenciómetro o     |
|          |                 |            | termistor. Máximo   |
|          |                 |            | 15 mA.              |
| 53       | Grupo de        | Referencia | Entrada analógica.  |
|          | parámetros 6-1* |            | Para tensión o      |
|          | Analog Input 1  |            | corriente. Los      |
|          | (Entrada        |            | conmutadores A53 y  |
|          | analógica 1)    |            | A54 seleccionan mA  |
| 54       | Grupo de        | Realimen-  | o V.                |
|          | parámetros 6-2* | tación     |                     |
|          | Analog Input 2  |            |                     |
|          | (Entrada        |            |                     |
|          | analógica 2)    |            |                     |
| 55       | -               | -          | Común para entradas |
|          |                 |            | analógicas.         |

Tabla 10.9 Descripciones de los terminales de entrada/salida analógica

#### Terminales de relé

| n        | n        |
|----------|----------|
| RELAY 1  | RELAY 2  |
|          |          |
| 01 02 03 | 04 05 06 |

Ilustración 10.13 Terminales del relé 1 y el relé 2

- Relé 1 y relé 2. La ubicación depende de la configuración del convertidor de frecuencia. Consulte la guía de funcionamiento.
- Terminales ubicados en equipo opcional integrado. Consulte las instrucciones suministradas con la opción del equipo.

| Terminal   | Parámetro      | Ajustes<br>predeter-<br>minados | Descripción          |
|------------|----------------|---------------------------------|----------------------|
| 01, 02, 03 | Parámetro 5-40 | [0] Sin                         | Salida de relé en    |
| 01, 02, 03 |                | función                         | forma de C. Para     |
|            | Function Relay | luncion                         | iorma de C. Para     |
|            | [0]            |                                 | tensión de CA o CC y |
| 04, 05, 06 | Parámetro 5-40 | [0] Sin                         | cargas resistivas o  |
|            | Function Relay | función                         | inductivas.          |
|            | [1]            |                                 |                      |

Tabla 10.10 Descripciones de los terminales de relé

## 10.4.3 Polaridad de entrada de los cables de control

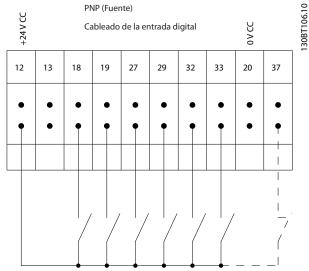



Ilustración 10.14 Polaridad de entrada de los terminales de control (fuente PNP)

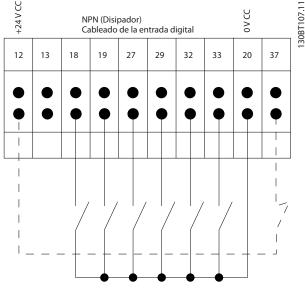



Ilustración 10.15 Polaridad de entrada de los terminales de control (disipador NPN)

## AVISO!

caciones de emisión CEM. Para obtener más información, consulte capétulo 10.16 Instalación conforme a CEM.

130BF156.10



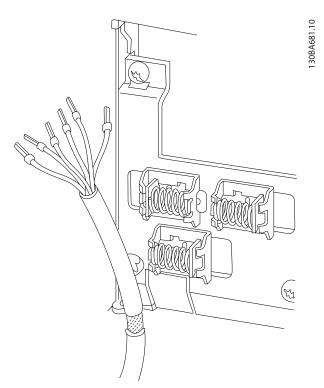



Ilustración 10.16 Terminación de pantalla y protector del cable de control

10



## 10.4.4 Terminales de control de doce pulsos

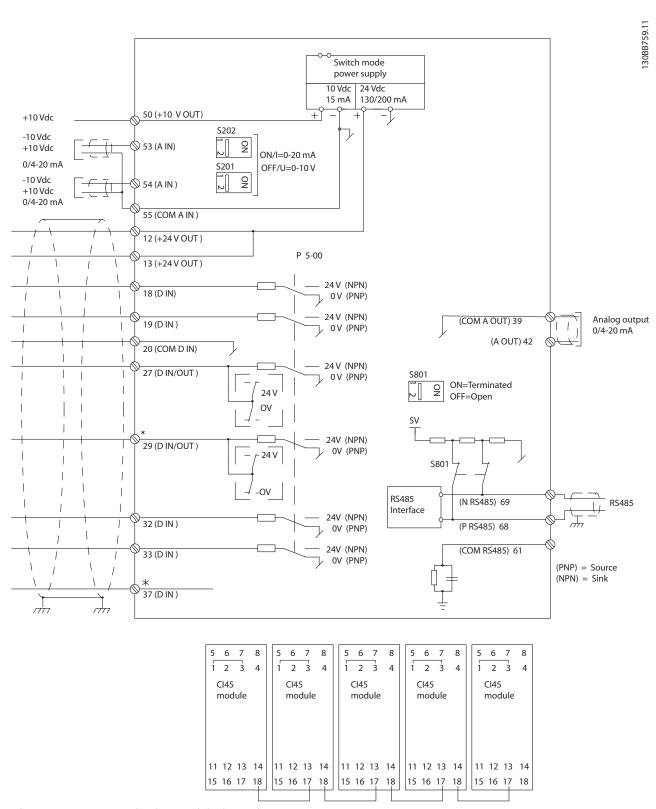



Ilustración 10.17 Terminales de control de doce pulsos



## 10.5 Fusibles y magnetotérmicos

Los fusibles garantizan que la posibilidad de daños en el convertidor de frecuencia se limite a daños en el interior de la unidad. Para garantizar la conformidad con la norma EN 50178, utilice los fusibles recomendados como recambios. El uso de fusibles en el lado de la fuente de alimentación es obligatorio para garantizar que las instalaciones cumplan las normas CEI 60364 (CE) y NEC 2009 (UL).

#### Protección de circuito derivado

Para proteger la instalación de peligros eléctricos e incendios, todos los circuitos derivados de una instalación, como los que se encuentran en aparatos de conexión y máquinas, deben estar protegidos frente a cortocircuitos y sobrecorrientes de acuerdo con las normativas nacionales e internacionales.

Los fusibles o magnetotérmicos son obligatorios para cumplir con la norma CEI 60364.

| Protección | Modelo | Tamaño de fusible | Fusible máximo |
|------------|--------|-------------------|----------------|
|            |        | recomendado       | recomendado    |
| E          | P315   | aR-900            | aR-900         |
|            | P355   | aR-900            | aR-900         |
|            | P400   | aR-900            | aR-900         |
|            | P450   | aR-900            | aR-900         |
| F          | P500   | aR-1600           | aR-1600        |
|            | P500   | aR-2000           | aR-2000        |
|            | P560   | aR-2500           | aR-2500        |
|            | P630   | aR-2500           | aR-2500        |
|            | P710   | aR-2500           | aR-2500        |
|            | P1000  | aR-2500           | aR-2500        |

Tabla 10.11 Fusibles recomendados para el cumplimiento de la normativa CE, 380-480 V

| Protección | Modelo | Tamaño de fusible | Fusible máximo |
|------------|--------|-------------------|----------------|
|            |        | recomendado       | recomendado    |
| E          | P450   | aR-700            | aR-700         |
|            | P500   | aR-900            | aR-900         |
|            | P560   |                   |                |
|            | P630   |                   |                |
| F          | P710   | aR-1600           | aR-1600        |
|            | P800   | aR-2000           | aR-2000        |
|            | P900   | aR-2500           | aR-2500        |
|            | P1M0   |                   |                |
|            | P1M2   |                   |                |
|            | P1M4   |                   |                |

Tabla 10.12 Fusibles recomendados para el cumplimiento de la normativa CE, 525-690 V

## 10.5.1 Opciones de fusible semiconductor / de potencia

| Modelo | Fusible externo de<br>convertidor de<br>frecuencia<br>recomendado<br>Bussmann PN | Clasificación | Opción interna<br>de convertidor de<br>frecuencia<br>Bussmann PN | Alternativa Externa<br>Siba PN | Alternativa externa<br>Ferraz Shawmut PN |
|--------|----------------------------------------------------------------------------------|---------------|------------------------------------------------------------------|--------------------------------|------------------------------------------|
| P315   | 170M6013                                                                         | 900 A, 700 V  | 170M6013                                                         | 22 610 32.900                  | 6.9URD33D08A0900                         |
| P355   | 170M6013                                                                         | 900 A, 700 V  | 170M6013                                                         | 22 610 32.900                  | 6.9URD33D08A0900                         |
| P400   | 170M6013                                                                         | 900 A, 700 V  | 170M6013                                                         | 22 610 32.900                  | 6.9URD33D08A0900                         |

Tabla 10.13 380-480 V, alojamiento E, opciones de fusibles de red para conformidad con UL



| Modelo | Fusible externo recomendado<br>para el convertidor de<br>frecuencia<br>Bussmann PN | Clasificación | Opción interna de<br>convertidor de frecuencia<br>Bussmann PN | Alternativa Siba PN |
|--------|------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------|---------------------|
| P450   | 170M7081                                                                           | 1600 A, 700 V | 170M7082                                                      | 20 695 32.1600      |
| P500   | 170M7081                                                                           | 1600 A, 700 V | 170M7082                                                      | 20 695 32.1600      |
| P560   | 170M7082                                                                           | 2000 A, 700 V | 170M7082                                                      | 20 695 32.2000      |
| P630   | 170M7082                                                                           | 2000 A, 700 V | 170M7082                                                      | 20 695 32.2000      |
| P710   | 170M7083                                                                           | 2500 A, 700 V | 170M7083                                                      | 20 695 32.2500      |
| P800   | 170M7083                                                                           | 2500 A, 700 V | 170M7083                                                      | 20 695 32.2500      |

Tabla 10.14 380-480 V, alojamiento F, opciones de fusibles de red para conformidad con UL

| Modelo | Convertidor de frecuencia Bussmann | Clasificación  | Alternativa Siba PN |
|--------|------------------------------------|----------------|---------------------|
|        | PN interno                         |                |                     |
| P450   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P500   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P560   | 170M6467                           | 1400 A, 700 V  | 20 681 32.1400      |
| P630   | 170M6467                           | 1400 A, 700 V  | 20 681 32.1400      |
| P710   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P800   | 170M6467                           | 1400 A, 700 V  | 20 681 32.1400      |

Tabla 10.15 380-480 V, alojamiento F, fusibles del enlace de CC del módulo del inversor

## AVISO!

Para cumplir la conformidad con UL, se deben utilizar los fusibles de la serie Bussmann 170M en las unidades suministradas sin opción de solo contactor. Para las unidades con opción de solo contactor, consulte *Tabla 10.32* para la clasificación SCCR y los criterios UL.

| Modelo | Fusible externo de | Clasificación | Opción interna    | Alternativa Externa | Alternativa externa |
|--------|--------------------|---------------|-------------------|---------------------|---------------------|
|        | convertidor de     |               | de convertidor de | Siba PN             | Ferraz Shawmut PN   |
|        | frecuencia         |               | frecuencia        |                     |                     |
|        | recomendado        |               | Bussmann PN       |                     |                     |
|        | Bussmann PN        |               |                   |                     |                     |
| P355   | 170M4017           | 700 A, 700 V  | 170M4017          | 20 610 32.700       | 6.9URD31D08A0700    |
| P400   | 170M4017           | 700 A, 700 V  | 170M4017          | 20 610 32.700       | 6.9URD31D08A0700    |
| P500   | 170M6013           | 900 A, 700 V  | 170M6013          | 22 610 32.900       | 6.9URD33D08A0900    |
| P560   | 170M6013           | 900 A, 700 V  | 170M6013          | 22 610 32.900       | 6.9URD33D08A0900    |

Tabla 10.16 525-690 V, alojamiento E, opciones de fusibles de red para conformidad con UL

| Modelo | Fusible externo recomendado<br>para el convertidor de<br>frecuencia<br>Bussmann PN | ra el convertidor de<br>frecuencia |          | Alternativa Siba PN |  |
|--------|------------------------------------------------------------------------------------|------------------------------------|----------|---------------------|--|
| P630   | 170M7081                                                                           | 1600 A, 700 V                      | 170M7082 | 20 695 32.1600      |  |
| P710   | 170M7081                                                                           | 1600 A, 700 V                      | 170M7082 | 20 695 32.1600      |  |
| P800   | 170M7081                                                                           | 1600 A, 700 V                      | 170M7082 | 20 695 32.1600      |  |
| P900   | 170M7081                                                                           | 1600 A, 700 V                      | 170M7082 | 20 695 32.1600      |  |
| P1000  | 170M7082                                                                           | 2000 A, 700 V                      | 170M7082 | 20 695 32.2000      |  |
| P1200  | 170M7083                                                                           | 2500 A, 700 V                      | 170M7083 | 20 695 32.2500      |  |

Tabla 10.17 525-690 V, alojamiento F, opciones de fusibles de red para conformidad con UL



| Modelo | Convertidor de frecuencia Bussmann | Clasificación  | Alternativa Siba PN |
|--------|------------------------------------|----------------|---------------------|
|        | PN interno                         |                |                     |
| P630   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P710   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P800   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P900   | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P1000  | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |
| P1200  | 170M8611                           | 1100 A, 1000 V | 20 781 32.1000      |

Tabla 10.18 525-690 V, alojamiento F, fusibles del enlace de CC del módulo del inversor

Los fusibles 170M de Bussmann indicados utilizan el indicador visual –/80. Los fusibles con indicador –TN/80 tipo T, –/110 o TN/110 tipo T del mismo tamaño y amperaje pueden sustituirse para su uso externo. Para cumplir con los requisitos de UL, puede utilizarse cualquier fusible listado como UL de al menos 500 V, con la intensidad nominal correspondiente.

## 10.5.2 Fusibles complementarios

| Protección | Bussmann PN | Clasificación |
|------------|-------------|---------------|
| EyF        | KTK-4       | 4 A, 600 V    |

#### Tabla 10.19 Fusible SMPS

| Tamaño/tipo          | Bussmann PN | Littelfuse | Clasificación |
|----------------------|-------------|------------|---------------|
| P355-P400, 525-690 V | KTK-4       | -          | 4 A, 600 V    |
| P315-P800, 380-480 V | -           | KLK-15     | 15 A, 600 V   |
| P500-P1M2, 525-690 V | -           | KLK-15     | 15 A, 600 V   |

#### Tabla 10.20 Fusibles de ventilador

| Fusible   | Tamaño/tipo          | Bussmann PN     | Clasificación | Fusibles alternativos   |
|-----------|----------------------|-----------------|---------------|-------------------------|
| 2,5-4,0 A | P450-P800, 380-480 V | LPJ-6 SP o SPI  | 6 A, 600 V    | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 6 A             |
|           | P630-P1M2, 525-690 V | LPJ-10 SP o SPI | 10 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 10 A            |
| 4,0-6,3 A | P450-P800, 380-480 V | LPJ-10 SP o SPI | 10 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 10 A            |
|           | P630-P1M2, 525-690 V | LPJ-15 SP o SPI | 15 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 15 A            |
| 6,3-10 A  | P450-P800, 380-480 V | LPJ-15 SP o SPI | 15 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 15 A            |
|           | P630-P1M2, 525-690 V | LPJ-20 SP o SPI | 20 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 20 A            |
| 10-16 A   | P450-P800, 380-480 V | LPJ-25 SP o SPI | 25 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 25 A            |
|           | P630-P1M2, 525-690 V | LPJ-20 SP o SPI | 20 A, 600 V   | Cualquier elemento dual |
|           |                      |                 |               | de clase J, retardo de  |
|           |                      |                 |               | tiempo, 20 A            |

Tabla 10.21 Fusibles de controlador del motor manual

10



| Protección | Bussmann PN     | Clasificación | Fusibles alternativos                                  |
|------------|-----------------|---------------|--------------------------------------------------------|
| F          | LPJ-30 SP o SPI | 30 A, 600 V   | Cualquier elemento dual de clase J, retardo de tiempo, |
|            |                 |               | 30 A                                                   |

Tabla 10.22 Fusible de terminales con protección de 30 A

| Protección | Bussmann PN    | Clasificación | Fusibles alternativos                                    |
|------------|----------------|---------------|----------------------------------------------------------|
| F          | LPJ-6 SP o SPI | 6 A, 600 V    | Cualquier elemento dual de clase J, retardo de tiempo, 6 |
|            |                |               | A                                                        |

Tabla 10.23 Fusible de transformador de control

| Protección | Bussmann PN | Clasificación | Fusibles alternativos      |  |
|------------|-------------|---------------|----------------------------|--|
| F          | LP-CC-6     | 6 A, 600 V    | Cualquier clase de CC, 6 A |  |

Tabla 10.24 Fusible de bobina de relé de seguridad con relé Pilz

## 10.5.3 Fusibles de red, F8-F13

Los siguientes fusibles son adecuados para su uso en circuitos capaces de proporcionar 100 000  $A_{rms}$  (simétricos) a 240 V, 480 V o 600 V, dependiendo de la clasificación de tensión del convertidor de frecuencia. Con los fusibles adecuados, la intensidad nominal de cortocircuito (SCCR) del convertidor es de 100 000  $A_{rms}$ .

| Modelo | Tamaño del alojamiento | Clasit   | ficación | P/N de<br>Bussmann | Repuesto<br>P/N de | Pérdida estimada de potencia<br>los fusibles [W] |       |
|--------|------------------------|----------|----------|--------------------|--------------------|--------------------------------------------------|-------|
|        |                        |          |          |                    | Bussmann           |                                                  |       |
|        |                        | [V] (UL) | [A]      |                    |                    | 400 V                                            | 460 V |
| P250   | F8-F9                  | 700      | 700      | 170M4017           | 176F8591           | 25                                               | 19    |
| P315   | F8-F9                  | 700      | 700      | 170M4017           | 176F8591           | 30                                               | 22    |
| P355   | F8-F9                  | 700      | 700      | 170M4017           | 176F8591           | 38                                               | 29    |
| P400   | F8-F9                  | 700      | 700      | 170M4017           | 176F8591           | 3500                                             | 2800  |
| P450   | F10-F11                | 700      | 900      | 170M6013           | 176F8592           | 3940                                             | 4925  |
| P500   | F10-F11                | 700      | 900      | 170M6013           | 176F8592           | 2625                                             | 2100  |
| P560   | F10-F11                | 700      | 900      | 170M6013           | 176F8592           | 3940                                             | 4925  |
| P630   | F10-F11                | 700      | 1500     | 170M6018           | 176F8592           | 45                                               | 34    |
| P710   | F12-F13                | 700      | 1500     | 170M6018           | 176F9181           | 60                                               | 45    |
| P800   | F12-F13                | 700      | 1500     | 170M6018           | 176F9181           | 83                                               | 63    |

Tabla 10.25 Fusibles de red, 380-480 V

| Modelo | Tamaño del<br>alojamiento | Clasi    | ficación | P/N de<br>Bussmann | Repuesto<br>P/N de | Pérdida estimada de potencia<br>los fusibles [W] |       |
|--------|---------------------------|----------|----------|--------------------|--------------------|--------------------------------------------------|-------|
|        |                           |          |          |                    | Bussmann           |                                                  |       |
|        |                           | [V] (UL) | [A]      |                    |                    | 600 V                                            | 690 V |
| P355   | F8-F9                     | 700      | 630      | 170M4016           | 176F8335           | 13                                               | 10    |
| P400   | F8-F9                     | 700      | 630      | 170M4016           | 176F8335           | 17                                               | 13    |
| P500   | F8-F9                     | 700      | 630      | 170M4016           | 176F8335           | 22                                               | 16    |
| P560   | F8-F9                     | 700      | 630      | 170M4016           | 176F8335           | 24                                               | 18    |
| P630   | F10-F11                   | 700      | 900      | 170M6013           | 176F8592           | 26                                               | 20    |
| P710   | F10-F11                   | 700      | 900      | 170M6013           | 176F8592           | 35                                               | 27    |
| P800   | F10-F11                   | 700      | 900      | 170M6013           | 176F8592           | 44                                               | 33    |
| P900   | F12-F13                   | 700      | 1500     | 170M6018           | 176F9181           | 26                                               | 20    |
| P1M0   | F12-F13                   | 700      | 1500     | 170M6018           | 176F9181           | 37                                               | 28    |
| P1M2   | F12-F13                   | 700      | 1500     | 170M6018           | 176F9181           | 47                                               | 36    |

Tabla 10.26 Fusibles de red, 525-690 V



| Modelo | Bussmann PN | Clasificación  | Siba           |
|--------|-------------|----------------|----------------|
| P450   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P500   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P560   | 170M6467    | 1400 A, 700 V  | 20 681 32.1400 |
| P630   | 170M6467    | 1400 A, 700 V  | 20 681 32.1400 |
| P710   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P800   | 170M6467    | 1400 A, 700 V  | 20 681 32.1400 |

Tabla 10.27 Fusibles de enlace de CC del módulo del inversor, 380-480 V

| Modelo | Bussmann PN | Clasificación  | Siba           |
|--------|-------------|----------------|----------------|
| P630   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P710   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P800   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P900   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P1M0   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |
| P1M2   | 170M8611    | 1100 A, 1000 V | 20 781 32.1000 |

Tabla 10.28 Fusibles de enlace de CC del módulo del inversor, 525-690 V

Los fusibles 170M de Bussmann indicados utilizan el indicador visual –/80. Los fusibles con indicador –TN/80 tipo T, –/110 o TN/110 tipo T del mismo tamaño y amperaje pueden sustituirse para su uso externo. Para cumplir con los requisitos de UL, puede utilizarse cualquier fusible listado como UL de al menos 480 V, con la intensidad nominal correspondiente.

| Protección | Modelos                    | Tipo                | Ajustes de interruptor predeterminados |            |
|------------|----------------------------|---------------------|----------------------------------------|------------|
|            |                            |                     | Nivel de desconexión [A]               | Tiempo [s] |
| F3         | Modelo de 380-480 V: P450  | Merlin Gerin        | 1200                                   | 0,5        |
|            | Modelo de 525-690 V: P630- | NPJF36120U31AABSCYP |                                        |            |
|            | -P710                      |                     |                                        |            |
| F3         | Modelo de 380-480 V: P500- | Merlin Gerin        | 2000                                   | 0,5        |
|            | -P630                      | NRJF36200U31AABSCYP |                                        |            |
|            | Modelo de 525-690 V: P800  |                     |                                        |            |
| F4         | Modelo de 380-480 V: P710  | Merlin Gerin        | 2000                                   | 0,5        |
|            | Modelo de 525-690 V: P900- | NRJF36200U31AABSCYP |                                        |            |
|            | -P1M2                      |                     |                                        |            |
| F4         | Modelo de 380-480 V: P800  | Merlin Gerin        | 2500                                   | 0,5        |
|            |                            | NRJF36250U31AABSCYP |                                        |            |

Tabla 10.29 Magnetotérmicos, F3-F4



# 10.6 Sistemas de desconexión y contactores

# 10.6.1 Sistemas de desconexión de red, E1-E2 y F3-F4

| Tamaño del  |           |                               |  |
|-------------|-----------|-------------------------------|--|
| alojamiento | Modelo    | Tipo                          |  |
| 380-480 V   |           |                               |  |
| E1-E2       | P315-P400 | ABB OETL-NF800A               |  |
| F3          | P450      | Merlin Gerin NPJF36000S12AAYP |  |
| F3          | P500-P630 | Merlin Gerin NRKF36000S20AAYP |  |
| F4          | P710-P800 | Merlin Gerin NRKF36000S20AAYP |  |
| 525-690 V   |           | ·                             |  |
| E1-E2       | P355-P560 | ABB OETL-NF600A               |  |
| F3          | P630-P710 | Merlin Gerin NPJF36000S12AAYP |  |
| F3          | P800      | Merlin Gerin NRKF36000S20AAYP |  |
| F4          | P900-P1M2 | Merlin Gerin NRKF36000S20AAYP |  |

Tabla 10.30 Sistemas de desconexión de red, alojamientos E1-E2 y F3-F4

## 10.6.2 Sistemas de desconexión de red, F9/F11/F13

| Tamaño del alojamiento | Modelo | Тіро                          |  |
|------------------------|--------|-------------------------------|--|
| 380-480 V              |        |                               |  |
| F9                     | P250   | ABB OETL-NF600A               |  |
| F9                     | P315   | ABB OETL-NF600A               |  |
| F9                     | P355   | ABB OETL-NF600A               |  |
| F9                     | P400   | ABB OETL-NF600A               |  |
| F11                    | P450   | ABB OETL-NF800A               |  |
| F11                    | P500   | ABB OETL-NF800A               |  |
| F11                    | P560   | ABB OETL-NF800A               |  |
| F11                    | P630   | ABB OT800U21                  |  |
| F13                    | P710   | Merlin Gerin NPJF36000S12AAYP |  |
| F13                    | P800   | Merlin Gerin NPJF36000S12AAYP |  |
| 525-690 V              |        |                               |  |
| F9                     | P355   | ABB OT400U12-121              |  |
| F9                     | P400   | ABB OT400U12-121              |  |
| F9                     | P500   | ABB OT400U12-121              |  |
| F9                     | P560   | ABB OT400U12-121              |  |
| F11                    | P630   | ABB OETL-NF600A               |  |
| F11                    | P710   | ABB OETL-NF600A               |  |
| F11                    | P800   | ABB OT800U21                  |  |
| F13                    | P900   | ABB OT800U21                  |  |
| F13                    | P1M0   | Merlin Gerin NPJF36000S12AAYP |  |
| F13                    | P1M2   | Merlin Gerin NPJF36000S12AAYP |  |

Tabla 10.31 Sistemas de desconexión de red, alojamientos F9/F11/F13

## 10.6.3 Contactores de red, F3-F4

| Tamaño del  | Modelo y tensión     | Contactor         |
|-------------|----------------------|-------------------|
| alojamiento |                      |                   |
| F3          | P450-P500, 380-480 V | Eaton XTCE650N22A |
|             | P630-P800, 525-690 V |                   |
| F3          | P560, 380-480 V      | Eaton XTCE820N22A |
| F3          | P630. 380-480 V      | Eaton XTCEC14P22B |
| F4          | P900. 525-690 V      | Eaton XTCE820N22A |
| F4          | P710-P800. 380-480 V | Eaton XTCEC14P22B |
|             | P1M2, 525-690 V      |                   |

Tabla 10.32 Contactores de red, alojamientos F3-F4

## AVISO!

Fuente de alimentación de 230 V suministrada por el cliente necesaria para contactores de red.

## 10.7 Motor

Cualquier tipo de motor trifásico asíncrono estándar puede utilizarse con un convertidor.

| Terminal | Función |
|----------|---------|
| 96       | U/T1    |
| 97       | V/T2    |
| 98       | W/T3    |
| 99       | Tierra  |

Tabla 10.33 Terminales del cable del motor con rotación en sentido horario (ajuste de fábrica)

El sentido de giro puede cambiarse invirtiendo dos fases en el cable de motor o modificando el ajuste de parámetro 4-10 Motor Speed Direction.

La verificación de la rotación del motor puede efectuarse mediante el *parámetro 1-28 Motor Rotation Check* y siguiendo la configuración indicada en la *Ilustración 10.18*.

10



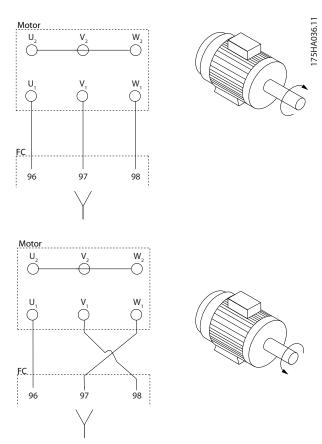



Ilustración 10.18 Cambio de giro del motor

## Requisitos de los alojamientos F1/F3

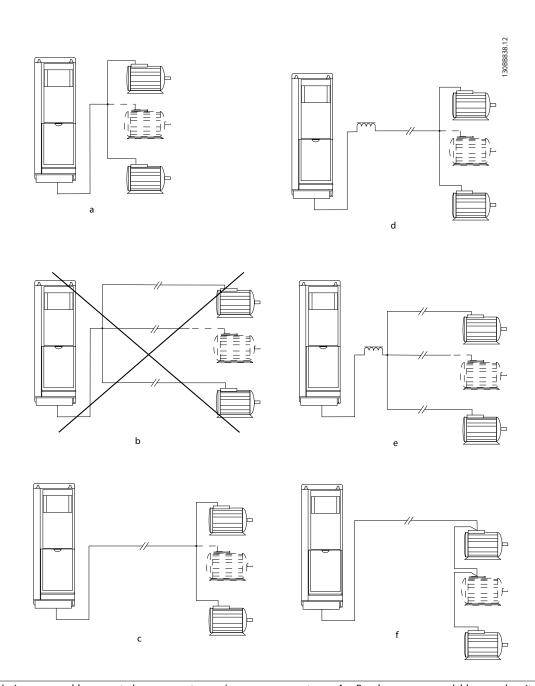
Todos los terminales del módulo del inversor deben tener el mismo número de cables de fase del motor y deben ser múltiplos de 2 (por ejemplo, 2, 4, 6 o 8). No se permite un cable. Es necesario que los cables tengan la misma longitud, dentro de un margen del 10 %, entre los terminales del módulo del inversor y el primer punto común de una fase. El punto común recomendado son los terminales del motor. Por ejemplo, si el módulo del inversor A utiliza un cable de 100 m (328 ft), los siguientes módulos del inversor pueden utilizar un cable de entre 90 y 110 m (295-360 ft) de longitud.

### Requisitos de los alojamientos F2/F4

Todos los módulos del inversor deben tener el mismo número de cables de fase del motor y deben ser múltiplos de 3 (por ejemplo, 3, 6, 9 o 12). No se permiten uno o dos cables. Es necesario que los cables tengan la misma longitud, dentro de un margen del 10 %, entre los terminales del módulo del inversor y el primer punto común de una fase. El punto común recomendado son los terminales del motor. Por ejemplo, si el módulo del inversor A utiliza un cable de 100 m (328 ft), los siguientes módulos del inversor pueden utilizar un cable de entre 90 y 110 m (295-360 ft) de longitud.

#### 10.7.1 Protección térmica del motor

El relé termoelectrónico del convertidor de frecuencia ha recibido la aprobación UL para protección de sobrecarga de motor único cuando el *parámetro 1-90 Motor Thermal Protection* se ajusta en *Descon. ETR* y el *parámetro 1-24 Motor Current* está ajustado a la corriente nominal del motor (consulte la placa de características del motor).


Para la protección térmica del motor, también se puede utilizar la opción de tarjeta del termistor PTC VLT® PTC Thermistor Card MCB 112. Esta tarjeta cuenta con la certificación ATEX para proteger motores en las zonas con peligro de explosiones: zona 1/21 y zona 2/22. Si el parámetro 1-90 Motor Thermal Protection está ajustado en [20] ATEX ETR y se combina con el uso de MCB 112, se puede controlar un motor Ex-e en zonas con riesgo de explosión. Consulte la guía de programación para más detalles sobre cómo configurar el convertidor de frecuencia para un funcionamiento seguro de motores Ex-e.

## 10.7.2 Conexión en paralelo de motores

El convertidor puede controlar varios motores conectados en paralelo. Para conocer diferentes configuraciones de motores conectados en paralelo, consulte la *llustración 10.19*.

Al utilizar la conexión del motor en paralelo, deben observarse los siguientes puntos:

- Ejecute las aplicaciones con motores paralelos en modo U/F (voltios por hercios).
- El modo VVC<sup>+</sup> se puede utilizar en algunas aplicaciones.
- El consumo de corriente total de los motores no debe superar la corriente nominal de salida l<sub>INV</sub> del convertidor.
- Al arrancar, y con valores bajos de r/min, pueden surgir problemas si los tamaños de los motores son muy diferentes, ya que la resistencia óhmica del estátor, relativamente alta en los motores pequeños, necesita tensiones más altas en el arranque y a pocas revoluciones.
- El relé termoelectrónico (ETR) del convertidor de frecuencia no puede utilizarse como protección de sobrecarga del motor. Proporcione una mayor protección del motor mediante termistores en cada bobinado del motor o en los relés térmicos individuales.
- Cuando los motores se encuentran conectados en paralelo, parámetro 1-02 Flux Motor Feedback Source no se puede utilizar y parámetro 1-01 Motor Control Principle debe estar ajustado a [0] U/f.



| A | Las instalaciones con cables conectados a un punto común, como se muestra en A y B, solo son recomendables para longitudes de               |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|
|   | cable cortas.                                                                                                                               |
| В | Tenga en cuenta la longitud máxima del cable del motor especificada en el capétulo 7.6 Especificaciones del cable.                          |
| C | La longitud total del cable de motor detallada en el <i>capétulo 7.6 Especificaciones del cable</i> es válida siempre y cuando se mantengan |
|   | cortos los cables paralelos, a menos de 10 m (32 ft) cada uno.                                                                              |
| D | Tenga en cuenta la caída de tensión en todos los cables de motor.                                                                           |
| E | Tenga en cuenta la caída de tensión en todos los cables de motor.                                                                           |
| F | La longitud total del cable de motor detallada en el capétulo 7.6 Especificaciones del cable es válida siempre y cuando los cables          |

Ilustración 10.19 Conexiones en paralelo diferentes de motores

paralelos tengan una longitud inferior a 10 m (32 ft) cada uno.



#### 10.7.3 Aislamiento del motor

Para longitudes del cable de motor inferiores o iguales a la longitud del cable máxima incluida en la lista del capétulo 7.6 Especificaciones del cable, utilice las clasificaciones de aislamiento del motor indicadas en la Tabla 10.34. Si un motor tiene una clasificación de aislamiento inferior, Danfoss recomienda la utilización de un filtro dU/dt o senoidal.

| Tensión nominal de red       | Aislamiento del motor              |
|------------------------------|------------------------------------|
| U <sub>N</sub> ≤420 V        | Estándar U <sub>LL</sub> = 1300 V  |
| 420 V <u<sub>N≤500 V</u<sub> | Reforzada U <sub>LL</sub> = 1600 V |
| 500 V <u<sub>N≤600 V</u<sub> | U <sub>LL</sub> reforzada = 1800 V |
| 600 V <u<sub>N≤690 V</u<sub> | U <sub>LL</sub> reforzada = 2000 V |

Tabla 10.34 Clasificaciones del aislamiento del motor

## 10.7.4 Corrientes en los cojinetes del motor

Deben instalarse cojinetes aislados NDE (no acoplados) para eliminar las corrientes circulantes en los cojinetes en todos los motores instalados con el convertidor. Para reducir al mínimo las corrientes en el eje y los rodamientos de la transmisión (DE), asegure una adecuada conexión a tierra del convertidor de frecuencia, el motor, la máquina accionada y la conexión entre el motor y la máquina.

Estrategias estándar de mitigación:

- Utilizar un cojinete aislado.
- Seguir procedimientos de instalación adecuados.
  - Comprobar que el motor y el motor de carga estén alineados.
  - Seguir las directrices de instalación EMC.
  - Reforzar la PE de modo que la impedancia de alta frecuencia sea inferior en la PE que los cables de alimentación de entrada
  - Disponer una buena conexión de alta frecuencia entre el motor y el convertidor de frecuencia. Utilizar un cable apantallado con una conexión de 360º en el motor y el convertidor de frecuencia.
  - Asegurarse de que la impedancia desde el convertidor de frecuencia hasta la tierra sea inferior a la impedancia de conexión a tierra de la máquina. Este procedimiento puede resultar difícil para las bombas.
  - Realizar una conexión a tierra directa entre el motor y el motor de carga.
- Reducir la frecuencia de conmutación de IGBT.

- Modificar la forma de onda del inversor, AVM de 60 ° frente a SFAVM.
- Instalar un sistema de conexión a tierra del eje o usar un acoplador aislante.
- Aplicar un lubricante conductor.
- Usar el ajuste mínimo de velocidad, si es posible.
- Tratar de asegurar que la tensión de red esté equilibrada con la conexión a tierra. Este procedimiento puede resultar difícil para sistemas de patilla conectados a tierra, IT, TT o TN-CS.
- Usar un filtro senoidal o dU/dt.

#### 10.8 Frenado

#### 10.8.1 Selección de resistencias de frenado

Para gestionar mayores demandas debidas a un frenado de resistencia, es necesaria una resistencia de frenado. La resistencia de frenado absorbe la energía en lugar del convertidor. Para obtener más información, consulte la Guía de diseño de la resistencia de frenado VLT® Brake Resistor MCE 101.

Si no se conoce la cantidad de energía cinética transferida a la resistencia en cada periodo de frenado, la potencia media puede calcularse a partir del tiempo de ciclo y del tiempo de frenado (ciclo de trabajo intermitente). El ciclo de trabajo intermitente de la resistencia es un indicador del ciclo de trabajo con el que funciona la misma. En la *llustración 10.20* se muestra un ciclo de frenado típico.

Los proveedores de motores suelen utilizar S5 al declarar la carga admisible, que es una expresión del ciclo de trabajo intermitente. El ciclo de trabajo intermitente de la resistencia se calcula como se indica a continuación:

Ciclo de trabajo =  $t_b/T$ 

T= tiempo del ciclo en s  $t_b$  es el tiempo de frenado en segundos (del tiempo de ciclo total)



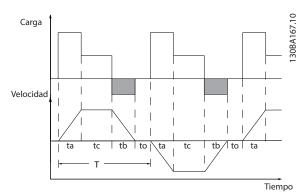



Ilustración 10.20 Ciclo de frenado típico

| 380-480 V<br>Modelo | Tiempo de ciclo (s) | Ciclo de trabajo<br>de frenado al<br>100 % del par | Ciclo de trabajo<br>de frenado a par<br>de sobrecarga |
|---------------------|---------------------|----------------------------------------------------|-------------------------------------------------------|
|                     |                     |                                                    | (150/160 %)                                           |
| P355-P1000          | 600                 | 40%                                                | 10%                                                   |
| 525-690             | Tiempo de           | Ciclo de trabajo                                   | Ciclo de trabajo                                      |
| Modelo              | ciclo (s)           | de frenado al de frenado a                         |                                                       |
|                     |                     | 100 % del par                                      | de sobrecarga                                         |
|                     |                     |                                                    | (150/160 %)                                           |
| P560-P630           | 600                 | 40%                                                | 10%                                                   |
| P710-P1M4           | 600                 | 40%                                                | 10%                                                   |

#### Tabla 10.35 Frenado en nivel alto de par de sobrecarga

Danfoss ofrece resistencias de frenado con ciclo de trabajo del 5 %, del 10 % y del 40 %. Si se aplica un ciclo de trabajo del 10 %, las resistencias de frenado son capaces de absorber potencia de frenado durante un 10 % del tiempo de ciclo. El restante 90 % del tiempo de ciclo se utiliza para disipar el exceso de calor.

## AVISO!

Asegúrese de que la resistencia esté diseñada para manejar el tiempo de frenado requerido.

La carga máxima admisible en la resistencia de frenado se establece como una potencia pico en un determinado ciclo de trabajo intermitente. La resistencia de frenado se calcula de la siguiente manera:

$$R_{br}\left[\Omega\right] = \frac{U_{cc}^2}{P_{pico}}$$

donde

 $P_{pico} = P_{motor} \times M_{br} [\%] x \eta_{motor} x \eta_{VLT} [W]$ 

Como puede verse, la resistencia de frenado depende de la tensión del enlace de CC (Ucc).

| Tamaño                  | Freno  | Advertencia antes de | Corte      |
|-------------------------|--------|----------------------|------------|
|                         | activo | desconexión          | (desconexi |
|                         |        |                      | ón)        |
| 380-480 V <sup>1)</sup> | 810 V  | 828 V                | 855 V      |
| 525-690 V               | 1084 V | 1109 V               | 1130 V     |

Tabla 10.36 Límites de freno de los convertidores FC 102/ FC 202

1) En función de la magnitud de potencia

## AVISO!

Compruebe que la resistencia de frenado tolere una tensión de 410 V, 820 V, 850 V, 975 V o 1130 V. Las resistencias de frenado de Danfoss son aptas para su uso en todos los convertidores de Danfoss.

Danfoss recomienda la resistencia de frenado  $R_{rec}$ . Este cálculo garantiza que el convertidor de frecuencia pueda frenar con la potencia de frenado máxima ( $M_{br(\%)}$ ) del 150 %. La fórmula puede expresarse como:

$$R_{rec}\left[\Omega\right] = \; \frac{U_{cc}^2 \, x \, 100}{P_{motor} \, x \, M_{br\left(\%\right)} \, x \eta_{vLT} \, x \, \eta_{motor}} \label{eq:rec}$$

 $\eta_{motor}$  se encuentra normalmente a 0,90  $\eta_{VLT}$  se encuentra normalmente a 0,98

Para convertidores de frecuencia de 200 V, 480 V, 500 V y 600 V,  $R_{\text{rec}}$  al 160 % de potencia de frenado se escribe como:

$$200V:R_{rec} = \frac{107780}{P_{motor}} \left[\Omega\right]$$

$$500V: R_{rec} = \frac{464923}{P_{motor}} \left[ \Omega \right]$$

$$600V:R_{rec}=\frac{630137}{P_{motor}}\left[\Omega\right]$$

$$690V: R_{rec} = \frac{832664}{P_{motor}} \left[\Omega\right]$$

## AVISO!

La resistencia del circuito de freno seleccionada no debe ser superior a la recomendada por Danfoss.

## AVISO!

Si se produce un cortocircuito en el transistor de freno, la disipación de potencia en la resistencia de frenado solo se puede impedir por medio de un contactor o un conmutador de alimentación que desconecte la alimentación eléctrica del convertidor, o mediante un contacto en el circuito de freno. Una disipación de potencia ininterrumpida en la resistencia de frenado puede causar sobrecalentamiento, desperfectos o un incendio.



# **A**ADVERTENCIA

#### **RIESGO DE INCENDIO**

Las resistencias de frenado se calientan durante y después del frenado. Debe colocarse la resistencia de frenado en un entorno seguro para evitar el riesgo de daños materiales o lesiones graves.

- Asegúrese de que la resistencia de frenado se coloque en un entorno seguro para evitar el riesgo de incendio.
- No toque nunca la resistencia de frenado, ni durante ni después del frenado, para evitar quemaduras graves.

#### 10.8.2 Control con Función de freno

Puede utilizarse un relé o salida digital para proteger la resistencia de frenado contra sobrecargas o sobrecalentamientos mediante la generación de un fallo en el convertidor. Si el IGBT del freno está sobrecargado o sobrecalentado, la señal digital o de relé desde el freno al convertidor desconectará el IGBT del freno. Esta señal de relé / digital no protege contra un cortocircuito en el IGBT del freno o un fallo de conexión a tierra en el módulo del freno o el cableado. Si se produce un cortocircuito en el IGBT del freno, Danfoss recomienda un medio para desconectar el freno.

Además, el freno permite leer la potencia instantánea y la potencia media de los últimos 120 segundos. El freno también puede controlar la potencia y asegurar que no se supere el límite seleccionado en el parámetro 2-12 Brake Power Limit (kW). El parámetro 2-12 Brake Power Limit (kW) selecciona la función que se realiza cuando la potencia que se transmite a la resistencia de frenado sobrepasa el límite ajustado en el Parámetro 2-13 Brake Power Monitoring.

## AVISO!

El control de la potencia de frenado no es una función de seguridad; se necesita un conmutador térmico conectado a un contactor externo para lograr ese objetivo. El circuito de resistencia de frenado no tiene protección de fuga a tierra.

Puede seleccionarse el *Control de sobretensión (OVC)* como función de freno alternativa en *parámetro 2-17 Over-voltage Control*. Esta función está activada para todas las unidades y asegura que, si la tensión del enlace de CC aumenta, la frecuencia de salida también aumenta para limitar la tensión del enlace de CC y así evitar una desconexión.

## AVISO!

OVC no puede activarse cuando está funcionando un motor PM, mientras *parámetro 1-10 Motor Construction* está ajustado en [1] PM no saliente SPM.

## 10.9 Dispositivos de corriente diferencial (RCD) y monitor de resistencia de aislamiento (IRM)

Como protección adicional, utilice relés RCD, conexiones a tierra de protección múltiple o una conexión a tierra, siempre que se cumpla la normativa local en materia de seguridad.

En caso de fuga a tierra, puede desarrollarse una corriente de CC en la corriente defectuosa. Si se utilizan relés RCD, deben cumplirse los reglamentos locales. Los relés deben ser adecuados para proteger equipos trifásicos con un puente rectificador y para una pequeña descarga en el momento de la conexión. Consulte el capétulo 10.10 Corriente de fuga para obtener más detalles.

## 10.10 Corriente de fuga

Siga las normas locales y nacionales sobre la conexión protectora a tierra del equipo con una corriente de fuga superior a 3,5 mA.

La tecnología del convertidor implica una conmutación de alta frecuencia con una elevada potencia. Esta conmutación de alta frecuencia genera una corriente de fuga en la conexión a tierra.

La corriente de fuga a tierra está compuesta por varias contribuciones y depende de las diversas configuraciones del sistema, incluidos:

- Filtrado RFI.
- Longitud del cable de motor.
- Apantallamiento del cable de motor.
- Potencia del convertidor.



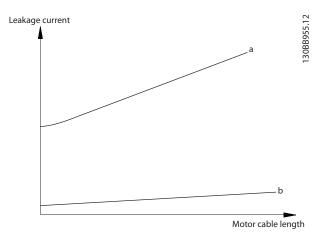
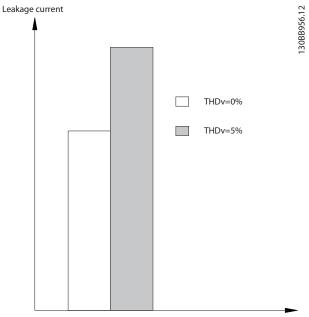




Ilustración 10.21 La longitud del cable de motor y la magnitud de potencia influyen en la corriente de fuga. Magnitud de potencia a > magnitud de potencia b.

La corriente de fuga también depende de la distorsión de la línea.



llustración 10.22 La distorsión de la línea influye en la corriente de fuga

Si la corriente de fuga supera los 3,5 mA, el cumplimiento de la norma EN/CEI 61800-5-1 (estándar de producto de sistemas Power Drive) requiere una atención especial.

Refuerce la conexión a tierra con los siguientes requisitos de conexión a tierra de protección:

- Cable de conexión toma a tierra (terminal 95) con sección transversal de al menos 10 mm<sup>2</sup> (8 AWG).
- Dos cables de conexión a tierra independientes que cumplan con las normas de dimensionamiento.

Consulte las normas EN/CEI 61800-5-1 y EN 50178 para obtener más información.

#### Uso de RCD

En caso de que se usen dispositivos de corriente diferencial (RCD), llamados también disyuntores de fuga a tierra, habrá que cumplir las siguientes indicaciones:

- Utilice únicamente RCD de tipo B, que son capaces de detectar intensidades de CA y CC.
- Utilice RCD con retardo para evitar fallos provocados por las intensidades a tierra transitorias.
- La dimensión de los RCD debe ser conforme a la configuración de sistema y las consideraciones medioambientales.

La corriente de fuga incluye varias frecuencias que proceden tanto de la frecuencia de alimentación como de la frecuencia de conmutación. Que la frecuencia de conmutación se detecte depende del tipo de RCD utilizado.

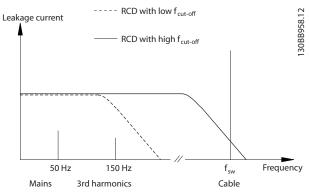



Ilustración 10.23 Contribuciones principales a la corriente de fuga

La cantidad de corriente de fuga detectada por el RCD depende de la frecuencia de corte del RCD.



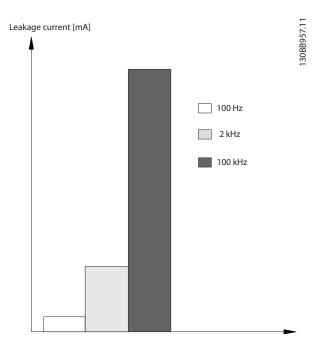



Ilustración 10.24 Influencia de la frecuencia de corte del RCD sobre la corriente de fuga

#### 10.11 Red IT

## Alimentación de red aislada de tierra

Si la alimentación del convertidor proviene de una fuente de red aislada (red IT, triángulo flotante o triángulo conectado a tierra) o de redes TT/TN-S con toma de tierra, se recomienda desconectar el interruptor RFI mediante el parámetro 14-50 RFI Filter en el convertidor y el parámetro 14-50 RFI Filter en el filtro. Para obtener más detalles, consulte CEI 364-3. En la posición OFF, se desconectan los condensadores de filtro entre el chasis y el enlace de CC para impedir que este último se dañe y reducir las corrientes de capacidad de conexión a tierra (conforme a la norma CEI 61800-3).

Si se necesita un rendimiento de CEM óptimo, se conectan motores paralelos o la longitud del cable del motor es de unos 25 m (82 ft), Danfoss recomienda ajustar el parámetro 14-50 RFI Filter a [Sí]. Consulte también la Nota sobre la aplicación «VLT on IT Mains» (VLT en alimentación IT). Es importante utilizar monitores de aislamiento diseñados para su uso con componentes electrónicos de potencia (CEI 61557-8).

Danfoss no recomienda utilizar contactor de salida para convertidores de 525-690 V conectados a una red de alimentación IT.

#### 10.12 Rendimiento

#### Rendimiento del convertidor (ηνιτ)

La carga del convertidor apenas influye en su rendimiento. En general, el rendimiento será el mismo a la frecuencia nominal del motor  $f_{M,N}$ , tanto si este suministra el 100 % del par nominal del eje como si solo suministra el 75 % en caso de cargas parciales.

El rendimiento del convertidor no cambiará aunque se elijan otras características U/f distintas. Sin embargo, las características U/f influyen en el rendimiento del motor.

El rendimiento disminuye un poco si la frecuencia de conmutación se ajusta en un valor superior a 5 kHz. El rendimiento se reduce ligeramente si la tensión de red es de 480 V o si el cable de motor tiene más de 30 m (98 ft) de longitud.

#### Cálculo del rendimiento del convertidor

Calcule el rendimiento del convertidor de frecuencia para diferentes velocidades y cargas basándose en la *llustración 10.25*. El factor de este gráfico debe multiplicarse por el factor de rendimiento específico indicado en las tablas de especificaciones del *capétulo 7.1 Datos eléctricos, 380-480 V* y el *capétulo 7.2 Datos eléctricos, 525-690 V*.

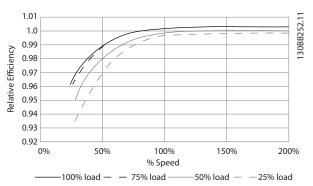



Ilustración 10.25 Curvas de rendimiento típico

Ejemplo: supongamos un convertidor de frecuencia de 160 kW, 380-480/500 V CA al 25 % de su carga y al 50 % de la velocidad. En la *llustración 10.25* se indica 0,97 y el rendimiento nominal para un convertidor de frecuencia de 160 kW es de 0,98. El rendimiento real es:  $0.97 \times 0.98 = 0.95$ .

### Rendimiento del motor (ηΜΟΤΟR)

El rendimiento de un motor conectado al convertidor de frecuencia depende del nivel de magnetización. En general, el rendimiento es igual de bueno que si funcionara conectado a la alimentación. El rendimiento del motor depende del tipo de motor.

En un rango del 75-100 % del par nominal, el rendimiento del motor es prácticamente constante, tanto cuando lo controla el convertidor de frecuencia como cuando funciona directamente con la alimentación de red.



En los motores pequeños, la influencia de la característica U/f sobre el rendimiento es mínima. Sin embargo, en motores a partir de 11 kW (15 CV) se obtienen ventajas considerables.

Normalmente, la frecuencia de conmutación no afecta al rendimiento de los motores pequeños. Los motores de 11 kW (15 CV) y superiores obtienen un rendimiento mejorado (1-2 %) porque la forma senoidal de la intensidad del motor es casi perfecta a frecuencias de conmutación elevadas.

#### Rendimiento del sistema (nsistema)

Para calcular el rendimiento del sistema, el rendimiento del convertidor ( $\eta_{VLT}$ ) se multiplica por el rendimiento del motor ( $\eta_{MOTOR}$ ):

 $\eta_{\text{SISTEMA}} = \eta_{\text{VLT}} \times \eta_{\text{MOTOR}}$ 

#### 10.13 Ruido acústico

El ruido acústico del convertidor de frecuencia procede de tres fuentes:

- Bobinas de enlace de CC.
- Ventiladores internos.
- La bobina de choque del filtro RFI.

La *Tabla 10.37* enumera los valores de ruido acústico habituales calculados a una distancia de 1 m (9 ft) de la unidad.

| Tamaño del alojamiento | dBA a velocidad de ventilador<br>máxima |
|------------------------|-----------------------------------------|
| E1-E2 <sup>1)</sup>    | 74                                      |
| E1-E2 <sup>2)</sup>    | 83                                      |
| F1-F4 y F8-F13         | 80                                      |

#### Tabla 10.37 Ruido acústico

- 1) P450-P500, solo 525-690 V.
- 2) Todos los demás modelos de alojamiento E.

Los resultados de las pruebas se obtuvieron conforme a la norma ISO 3744 de magnitud de ruido audible en un entorno controlado. Se ha cuantificado el tono del ruido para el registro de datos de ingeniería de rendimiento del hardware conforme al anexo D de la norma ISO 1996-2.

## 10.14 Condiciones dU/dt

## AVISO!

Para evitar el desgaste prematuro de los motores que no están diseñados para utilizarse con convertidores de frecuencia, como los motores sin papel de aislamiento de fase o cualquier otro refuerzo de aislamiento, Danfoss recomienda encarecidamente colocar un filtro dU/dt o un filtro senoidal en la salida del convertidor. Para obtener información más detallada sobre los filtros dU/dt o senoidales, consulte la *Guía de diseño de los filtros de salida*.

Cuando se conmuta un transistor en el puente del inversor, la tensión aplicada al motor se incrementa según una relación du/dt que depende de:

- El cable de motor (tipo, sección transversal, longitud apantallado / no apantallado).
- La inductancia.

La inducción natural produce una sobremodulación UPICO en la tensión del motor antes de que se autoestabilice en un nivel dependiente de la tensión en el enlace de CC. Tanto el tiempo de subida como la tensión pico UPICO influyen en la vida útil del motor. En particular, los motores sin aislamiento de fase en la bobina se ven afectados si la tensión pico es demasiado alta. La longitud del cable del motor afecta al tiempo de subida y a la tensión pico. Por ejemplo, si el cable de motor es corto (unos pocos metros), el tiempo de subida y la tensión pico serán más bajos. Si el cable de motor es largo (100 m [328 ft]), el tiempo de subida y la tensión pico serán mayores.

La conmutación de los dispositivos IGBT produce tensión pico en los terminales del motor. El convertidor cumple con las especificaciones de la norma CEI 60034-25 en relación con los motores diseñados para ser controlados mediante convertidores de frecuencia. El convertidor cumple también con la norma CEI 60034-17 relativa a los motores normales controlados por convertidores de frecuencia.

#### Gama de alta potencia

A las tensiones de red adecuadas, los tamaños de potencia indicados en las tablas *Tabla 10.38* y *Tabla 10.39* cumplen con los requisitos de la norma CEI 60034-17 relativa a motores normales controlados por convertidores de frecuencia, con la norma CEI 60034-25 relativa a motores diseñados para ser controlados por convertidores y con la norma NEMA MG 1-1998 Parte 31.4.4.2 para motores alimentados por inversores. Los tamaños de potencia de la *Tabla 10.38* y de la *Tabla 10.39* no cumplen la norma NEMA MG 1-1998, parte 30.2.2.8, para motores de propósito general.



#### 380-480 V

| Modelo      | Longitud  | Tensión           | Tiempo de | Tensión | dU/dt  |
|-------------|-----------|-------------------|-----------|---------|--------|
|             | del cable | de red            | subida    | pico    | [V/µs] |
|             | [m (ft)]  | [V]               | [µs]      | [V]     |        |
| P315-P1M0   | 30 (98,5) | 500               | 0,71      | 1165    | 1389   |
| (380-480 V) | 30 (98,5) | 500 <sup>1)</sup> | 0,80      | 906     | 904    |
|             | 30 (98,5) | 400               | 0,61      | 942     | 1233   |
|             | 30 (98,5) | 400 <sup>1)</sup> | 0,82      | 760     | 743    |

Tabla 10.38 dU/dt de los alojamientos E1-E2 y F1-F13, 380-480 V

#### 525-690 V

| Modelo      | Longitud  | Tensión           | Tiempo de | Tensión | dU/dt           |
|-------------|-----------|-------------------|-----------|---------|-----------------|
|             | del cable | de red            | subida    | pico    | [V/ <b>µ</b> s] |
|             | [m (ft)]  | [V]               | [µs]      | [V]     |                 |
| P450-P1M4   | 30 (98,5) | 690               | 0,57      | 1611    | 2261            |
| (525-690 V) | 30 (98,5) | 575               | 0,25      | -       | 2510            |
|             | 30 (98,5) | 690 <sup>1)</sup> | 1,13      | 1629    | 1150            |

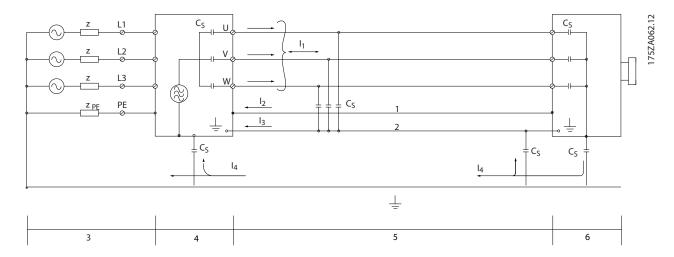
Tabla 10.39 dU/dt de los alojamientos E1-E2 y F1-F13, 525-690 V

## 10.15 Vista general de compatibilidad electromagnética (CEM)

Los dispositivos eléctricos generan interferencias y también se ven afectados por las interferencias de otras fuentes. La compatibilidad electromagnética (CEM) de estos efectos depende de la potencia y de las características armónicas de los dispositivos.

La interacción incontrolada entre dispositivos eléctricos en un sistema puede degradar la compatibilidad y perjudicar su funcionamiento fiable. Las interferencias pueden adoptar la forma de:

- Descargas electrostáticas
- Fluctuaciones rápidas de tensión
- Interferencia de alta frecuencia


Muy a menudo aparecen interferencias eléctricas a frecuencias situadas en el intervalo de 150 kHz a 30 MHz. Las interferencias generadas por el convertidor y transmitidas por el aire, con frecuencias en el rango de 30 MHz a 1 GHz, tienen su origen en el inversor, el cable del motor y el motor.

Las corrientes capacitivas en el cable del motor, junto con una alta dU/dt de la tensión del motor, generan corrientes de fuga. Consulte *llustración 10.26*. Los cables de motor apantallados tienen una mayor capacitancia entre los cables de fase y la pantalla, y, a su vez, entre la pantalla y la conexión toma a tierra. Esta capacitancia del cable añadida, junto a otra capacitancia parásita y a la inductancia del motor, varía el nivel de emisiones electromagnéticas producidas por la unidad. Esta variación en el nivel de emisiones electromagnéticas se produce principalmente en emisiones inferiores a 5 MHz. La mayor parte de la corriente de fuga (I1) se reconduce a la unidad a través de la conexión a tierra de protección (I3), de manera que solo queda un pequeño campo electromagnético (I4) desde el cable apantallado del motor. El apantallamiento reduce la interferencia radiada, aunque incrementa la interferencia de baja frecuencia en la alimentación.

<sup>1)</sup> Con Danfoss filtro dU/dt.

<sup>1)</sup> Con Danfoss filtro dU/dt.





| 1 | Cable de conexión toma a tierra     | Cs             | Posibles trayectos de derivación de capacitancia parásita (varían en función de |
|---|-------------------------------------|----------------|---------------------------------------------------------------------------------|
|   |                                     |                | las distintas instalaciones)                                                    |
| 2 | Pantalla                            | I <sub>1</sub> | Corriente de fuga de modo común                                                 |
| 3 | Fuente de alimentación de red de CA | l <sub>2</sub> | Cable de motor apantallado                                                      |
| 4 | Convertidor                         | l <sub>3</sub> | Conexión toma a tierra de seguridad (cuarto conductor en los cables de motor)   |
| 5 | Cable de motor apantallado          | l <sub>4</sub> | Corriente accidental de modo común                                              |
| 6 | Motor                               | -              | -                                                                               |

Ilustración 10.26 Modelo eléctrico que muestra posibles corrientes de fuga

## 10.15.1 Resultados de las pruebas de CEM

Los siguientes resultados se han obtenido mediante un convertidor de frecuencia (con opciones, en su caso), un cable de control apantallado, un cuadro de control con potenciómetro, un motor y un cable de motor apantallado.

| Tipo de filtro RFI |                | Em           | isión conduc | ida          |                  | Emisión irradiada  | a                  |
|--------------------|----------------|--------------|--------------|--------------|------------------|--------------------|--------------------|
| Estándares y       | EN 55011       | Clase B      | Clase A,     | Clase A,     | Clase B          | Clase A, grupo 1   | Clase A, grupo 2   |
| requisitos         |                | Entorno      | grupo 1      | grupo 2      | Entorno          | Entorno industrial | Entorno industrial |
|                    |                | doméstico,   | Entorno      | Entorno      | doméstico,       |                    |                    |
|                    |                | estableci-   | industrial   | industrial   | estableci-       |                    |                    |
|                    |                | mientos      |              |              | mientos          |                    |                    |
|                    |                | comerciales  |              |              | comerciales e    |                    |                    |
|                    |                | e industria  |              |              | industria ligera |                    |                    |
|                    |                | ligera       |              |              |                  |                    |                    |
|                    | EN/CEI 61800-3 | Categoría C1 | Categoría    | Categoría C3 | Categoría C1     | Categoría C2       | Categoría C3       |
|                    |                | Primer       | C2           | Segundo      | Primer           | Primer ambiente    | Primer ambiente    |
|                    |                | ambiente     | Primer       | ambiente     | ambiente         | Doméstico y        | Doméstico y        |
|                    |                | Doméstico y  | ambiente     | Industrial   | Doméstico y      | oficina            | oficina            |
|                    |                | oficina      | Doméstico    |              | oficina          |                    |                    |
|                    |                |              | y oficina    |              |                  |                    |                    |
| H2                 |                | •            | -            |              |                  |                    |                    |
| FC 102             | 355-1000 kW    | No           | No           | 150 m (492   | No               | No                 | Sí                 |
|                    | 380-480 V      |              |              | ft)          |                  |                    |                    |
|                    | 450-1400 kW    | No           | No           | 150 m (492   | No               | No                 | Sí                 |
|                    | 525-690 V      |              |              | ft)          |                  |                    |                    |

10

| Tipo de filtro RFI |             | Emisión conducida |            |            | Emisión irradiada |    |    |
|--------------------|-------------|-------------------|------------|------------|-------------------|----|----|
|                    |             |                   |            |            |                   |    |    |
| H4                 | H4          |                   |            |            |                   |    |    |
| FC 102             | 355-1000 kW | No                | 150 m (492 | 150 m (492 | No                | Sí | Sí |
|                    | 380-480 V   |                   | ft)        | ft)        |                   |    |    |
|                    | 450-1400 kW | -                 | -          | _          | -                 | -  | -  |
|                    | 525-690 V   |                   |            |            |                   |    |    |

Tabla 10.40 Resultados de las pruebas de CEM (emisión e inmunidad)

## 10.15.2 Requisitos en materia de emisiones

De acuerdo con la norma de productos CEM para convertidores de frecuencia de velocidad ajustable EN/CEI 61800-3:2004, los requisitos de CEM dependen del entorno en el que está instalado el convertidor. Estos entornos junto con los requisitos de tensión de red están definidos en *Tabla 10.41*.

Los convertidores cumplen con los requisitos de CEM descritos en la norma CEI/EN 61800-3 (2004)+AM1 (2011), categoría C3, para equipos con más de 100 A de consumo de corriente por fase e instalados en el segundo ambiente. Las pruebas de conformidad se efectúan con un cable de motor apantallado de 150 m (492 ft).

| Categoría    | Definición                                                                   | Emisión conducida               |
|--------------|------------------------------------------------------------------------------|---------------------------------|
| (EN 61800-3) |                                                                              | (EN 55011)                      |
| C1           | Primer ambiente (hogar y oficina) con una tensión de alimentación inferior a | Clase B                         |
|              | 1000 V.                                                                      |                                 |
| C2           | Primer ambiente (doméstico y oficina) con tensión de alimentación inferior a | Clase A, grupo 1                |
|              | 1000 V, no enchufable ni desplazable, y con necesidad de un profesional para |                                 |
|              | instalar o poner en marcha el sistema.                                       |                                 |
| C3           | Segundo ambiente (industrial) con tensión de alimentación inferior a 1000 V. | Clase A, grupo 2                |
| C4           | Segundo ambiente con lo siguiente:                                           | Sin límite.                     |
|              | Tensión de alimentación igual o superior a 1000 V.                           | Debe elaborarse un plan de CEM. |
|              | Corriente nominal igual o superior a 400 A.                                  |                                 |
|              | Previstos para su uso en sistemas complejos.                                 |                                 |

Tabla 10.41 Requisitos en materia de emisiones

Cuando se utilizan las normas de emisiones generales, los convertidores deben ser conformes con la Tabla 10.42.

| Entorno               | Estándar general                                                | Requisito en materia de emisiones<br>conducidas realizado conforme a los<br>límites de la norma EN 55011. |
|-----------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Primer ambiente       | Norma de emisiones para entornos residenciales, comerciales e   | Clase B                                                                                                   |
| (doméstico y oficina) | industria ligera EN/CEI 61000-6-3.                              |                                                                                                           |
| Segundo ambiente      | Norma de emisiones para entornos industriales EN/CEI 61000-6-4. | Clase A, grupo 1                                                                                          |
| (entorno industrial)  |                                                                 |                                                                                                           |

Tabla 10.42 Límites de emisión estándar generales



## 10.15.3 Requisitos de inmunidad

Los requisitos de inmunidad de los convertidores dependen del entorno en el que estén instalados. Los requisitos para el entorno industrial son más exigentes que los del entorno doméstico y de oficina. Todos los convertidores de frecuencia de Danfoss cumplen con los requisitos para el entorno industrial y el entorno doméstico y de oficina.

Para documentar la inmunidad ante transitorios de ráfagas, se han realizado las siguientes pruebas de inmunidad con un convertidor de frecuencia (con opciones, en su caso), un cable de control apantallado y un panel de control con potenciómetro, cable de motor y motor. Las pruebas se realizaron de acuerdo con las siguientes normas básicas. Para obtener más detalles, consulte el *Tabla 10.43*.

- EN 61000-4-2 (CEI 61000-4-2): descargas electrostáticas (ESD): simulación de descargas electrostáticas de seres humanos.
- EN 61000-4-3 (CEI 61000-4-3): Radiación del campo electromagnético entrante, simulación modulada en amplitud de los efectos de equipos de radar y de comunicación por radio, así como de comunicaciones móviles.
- **EN 61000-4-4 (CEI 61000-4-4):** Transitorios de conexión/desconexión: Simulación de la interferencia introducida por el acoplamiento de un contactor, relés o dispositivos similares.
- EN 61000-4-5 (CEI 61000-4-5): Transitorios de sobretensión: Simulación de transitorios introducidos al caer rayos cerca de las instalaciones.
- EN 61000-4-6 (CEI 61000-4-6): RF modo común: simulación del efecto del equipo transmisor de radio conectado a cables de conexión.

| Norma básica             | Ráfaga        | Sobretensión           | ESD       | Campo electromagnético | Tensión de RF       |
|--------------------------|---------------|------------------------|-----------|------------------------|---------------------|
|                          | CEI 61000-4-4 | CEI 61000-4-5          | CEI       | irradiado              | modo común          |
|                          |               |                        | 61000-4-2 | CEI 61000-4-3          | CEI 61000-4-6       |
| Criterios de aceptación  | В             | В                      | В         | A                      | Α                   |
| Línea                    | 4 kV CM       | 2 kV/2 Ω DM            | -         | -                      | 10 V <sub>RMS</sub> |
|                          |               | (modo diferencial,     |           |                        |                     |
|                          |               | MD)                    |           |                        |                     |
|                          |               | 4 kV/12 Ω CM           |           |                        |                     |
| Motor                    | 4 kV CM       | 4 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| Freno                    | 4 kV CM       | 4 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| Carga compartida         | 4 kV CM       | 4 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| Cables de control        | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| Bus estándar             | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| Cables de relé           | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| Opciones de bus de campo | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | _         | -                      | 10 V <sub>RMS</sub> |
| y de aplicación          |               |                        |           |                        |                     |
| Cable del LCP            | 2 kV CM       | 2 kV/2 Ω <sup>1)</sup> | -         | -                      | 10 V <sub>RMS</sub> |
| 24 V CC externa          | 2 V CM        | 0,5 kV/2 Ω DM          | -         | -                      | 10 V <sub>RMS</sub> |
|                          |               | 1 kV/12 Ω CM           |           |                        |                     |
| Protección               | -             | _                      | 8 kV AD   | 10 V/m                 | -                   |
|                          |               |                        | 6 kV CC   |                        |                     |

Tabla 10.43 Tabla sobre inmunidad CEM, intervalo de tensión: 380-480/500 V, 525-600 V y 525-690 V

AD: descarga por el aire; CD: descarga por contacto; CM: modo común; DM: modo diferencial.

<sup>1)</sup> Inyección en apantallamiento del cable.



## 10.15.4 Compatibilidad CEM

## AVISO!

## RESPONSABILIDAD DEL OPERADOR

De acuerdo con la norma EN 61800-3 para sistemas de convertidor de velocidad variable, el operador será responsable de garantizar el cumplimiento con CEM. Los fabricantes pueden ofrecer soluciones para que el funcionamiento se ajuste a la norma. Los operadores serán responsables de la aplicación de estas soluciones, así como del pago de los costes asociados.

Existen dos opciones para garantizar la compatibilidad electromagnética.

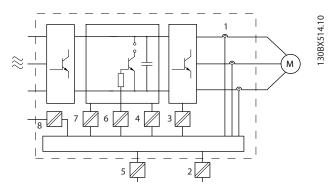
- Eliminar o minimizar la interferencia en la fuente de interferencia emitida.
- Aumentar la inmunidad a la interferencia de los dispositivos afectados por su recepción.

#### Filtros RFI

El objetivo es obtener sistemas que funcionen de forma estable sin interferencias de radiofrecuencia entre sus componentes. Para conseguir un alto nivel de inmunidad, use convertidores con filtros RFI de alta calidad.

## AVISO!

#### **RADIOINTERFERENCIA**


En un entorno residencial, este producto puede producir radiointerferencias, en cuyo caso puede que se tengan que tomar las medidas de mitigación pertinentes.

## Conformidad PELV y de aislamiento galvánico

Todos los terminales de control y de relé de los convertidores E1h-E4h cumplen con los requisitos de PELV (salvo la conexión a tierra en triángulo por encima de 400 V).

El aislamiento galvánico (garantizado) se consigue cumpliendo los requisitos relativos a un mayor aislamiento y proporcionando las distancias necesarias en los circuitos. Estos requisitos se describen en la norma EN 61800-5-1.

El aislamiento eléctrico se proporciona tal y como se indica (consulte la *llustración 10.27*). Los componentes descritos cumplen con los requisitos de aislamiento galvánico y PELV.



| 1 | Transductores de corriente                                     |
|---|----------------------------------------------------------------|
| 2 | Aislamiento galvánico para la interfaz del bus estándar RS485. |
| 3 | Accionamiento de puerta para los IGBT                          |
| 4 | Fuente de alimentación (SMPS), que incluye aislamiento de la   |
|   | señal de V CC e indica la tensión de corriente intermedia.     |
| 5 | Aislamiento galvánico para la opción de seguridad de 24 V      |
| 6 | Optoacoplador, módulo de freno (opcional)                      |
| 7 | Circuitos de aflujo de corriente interna, RFI y medición de    |
|   | temperatura.                                                   |
| 8 | Relés del cliente                                              |

Ilustración 10.27 Aislamiento galvánico

## 10.16 Instalación conforme a CEM

Para conseguir una instalación conforme a CEM, siga las instrucciones que se proporcionan en el *manual de funcionamiento*. Para obtener un ejemplo de instalación correcta en cuanto a CEM, consulte la *llustración 10.28*.

## AVISO!

# EXTREMOS DE PANTALLA TRENZADOS (CABLES DE PANTALLA RETORCIDOS Y EMBORNADOS)

Los extremos de pantalla trenzados en espiral aumentan la impedancia de la pantalla a las frecuencias superiores, lo que reduce el efecto de pantalla y aumenta la corriente de fuga. Evite los extremos de pantalla trenzados mediante el uso de bridas de pantalla integradas.

- Para el uso con relés, cables de control, interfaz de señales, fieldbus o freno, conecte la pantalla al alojamiento por ambos lados. Si la trayectoria de conexión toma a tierra tiene una alta impedancia o si está bajo tensión, rompa la conexión de la pantalla en un extremo para evitar los lazos de corriente a tierra.
- Devuelva las corrientes a la unidad mediante una placa de montaje metálica. Asegúrese de que la placa de montaje y el chasis del convertidor de frecuencia hagan buen contacto eléctrico a través de los tornillos de montaje.

a **AVISO!** 

## **CABLES APANTALLADOS**

Utilice cables apantallados para los cables de salida del motor. Como alternativa, también puede utilizar cables de motor no apantallados dentro de un conducto metálico.

Si no se utilizan cables apantallados ni conductos metálicos, la unidad y la instalación no cumplirán los límites normativos de los niveles de emisión de radiofrecuencias.

- Asegúrese de que los cables de motor y de freno sean lo más cortos posible para reducir el nivel de interferencias de todo el sistema.
- Los cables con un nivel de señal sensible no deben colocarse junto a los cables de motor y de freno.
- Para líneas de comunicación y de control/ órdenes, siga los protocolos estándar de comunicación que correspondan. Por ejemplo, para USB deben utilizarse cables apantallados, pero para RS485/Ethernet pueden usarse cables UTP apantallados o sin apantallar.
- Asegúrese de que todas las conexiones de terminales de control sean PELV.

## AVISO!

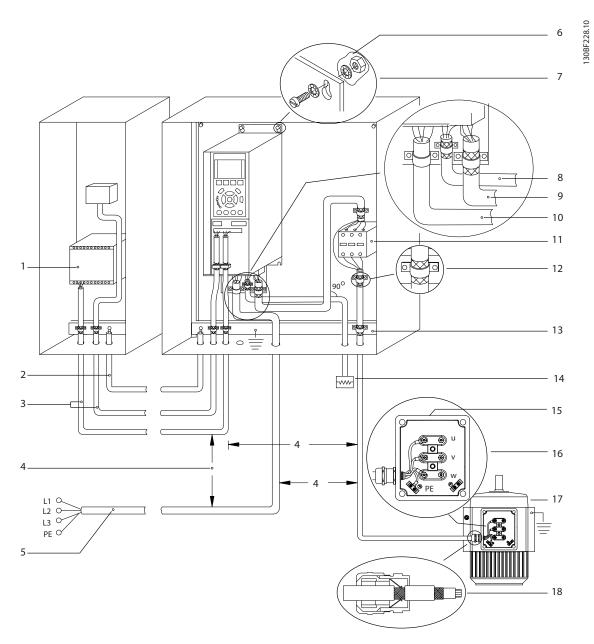
#### **INTERFERENCIA DE CEM**

Utilice cables apantallados para el cableado de control y del motor. Asegúrese de separar los cables de entrada de alimentación, de motor y de control los unos de los otros. Si no se aíslan estos cables se puede provocar un comportamiento inesperado o un rendimiento inferior. Se requiere un espacio libre mínimo de 200 mm (7,9 in) entre los cables de entrada de alimentación, de motor y de control.

## AVISO!

## INSTALACIÓN EN ALTITUDES ELEVADAS

Existe un riesgo de sobretensión. El aislamiento entre los componentes y las piezas esenciales puede resultar insuficiente y no ajustarse a los requisitos de PELV. Reduzca el riesgo de sobretensión usando dispositivos de protección externa o aislamiento galvánico. Para instalaciones situadas a más de 2000 m (6500 ft) de altitud, consulte a Danfoss sobre el cumplimiento de los requisitos de PELV.


## AVISO!

#### **CONFORMIDAD CON PELV**

Evite las descargas eléctricas mediante el uso de una fuente de alimentación eléctrica con tensión de protección muy baja (PELV) y cumpliendo con las normativas locales y nacionales de PELV.

10





| 1 | PLC                                                   | 10 | Cable de red (no apantallado)                                   |
|---|-------------------------------------------------------|----|-----------------------------------------------------------------|
| 2 | Cable de ecualizador de un mínimo de 16 mm² (6 AWG).  | 11 | Contactor de salida                                             |
| 3 | Los cables de control                                 | 12 | Aislamiento de cable pelado                                     |
| 4 | Espacio mínimo de 200 mm (7,9 in) entre los cables de | 13 | Barra conductora de tierra a común. Siga las normativas         |
|   | control, de motor y de red.                           |    | locales y nacionales para la conexión a tierra de alojamientos. |
| 5 | Fuente de alimentación de red                         | 14 | Resistencia de frenado                                          |
| 6 | Superficie no aislada (sin pintar)                    | 15 | Caja metálica                                                   |
| 7 | Arandelas de estrella                                 | 16 | Conexión al motor                                               |
| 8 | Cable de freno (apantallado)                          | 17 | Motor                                                           |
| 9 | Cable de motor (apantallado)                          | 18 | Prensacables CEM                                                |

Ilustración 10.28 Ejemplo de instalación correcta en cuanto a CEM



### 10.17 Resumen de armónicos

Las cargas no lineales, como las que se encuentran en los convertidores de frecuencia, no consumen corriente de forma uniforme de la línea de suministro. Esta corriente no senoidal tiene componentes que son múltiplos de la frecuencia de corriente fundamental. Estos componentes se conocen como armónicos. Es importante controlar la distorsión armónica total en la fuente de alimentación de red. Aunque las corriente armónicas no afectan directamente al consumo de energía eléctrica, generan calor en el cableado y los transformadores que puede afectar a otros dispositivos de la misma línea de suministro.

## 10.17.1 Análisis de armónicos

Dado que los armónicos aumentan las pérdidas de calor, es importante tenerlos en cuenta a la hora de diseñar los sistemas, para evitar sobrecargar el transformador, los inductores y el cableado. Cuando sea necesario, realice un análisis de los armónicos del sistema para determinar los efectos sobre el equipo.

Mediante un análisis de series de Fourier, una corriente no senoidal se transforma en corrientes de onda senoidal con diferentes frecuencias, es decir, con diferentes corrientes armónicas  $I_{\rm N}$  con 50 Hz o 60 Hz como frecuencia fundamental.

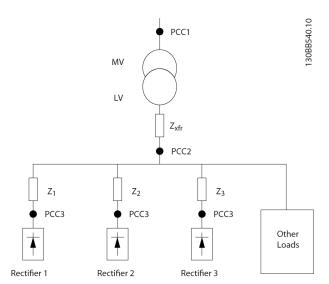
| Abreviatura    | Descripción                                 |
|----------------|---------------------------------------------|
| f <sub>1</sub> | Frecuencia fundamental (50 Hz o 60 Hz)      |
| l <sub>1</sub> | Corriente a la frecuencia básica            |
| U <sub>1</sub> | Tensión a la frecuencia básica              |
| In             | Intensidad a la enésima frecuencia armónica |
| Un             | Tensión a la enésima frecuencia armónica    |
| n              | Orden armónico                              |

Tabla 10.44 Abreviaturas relativas a armónicos

|            | Corriente<br>básica (I <sub>1</sub> ) | Corriente armónica (I <sub>n</sub> ) |                |                 |  |  |
|------------|---------------------------------------|--------------------------------------|----------------|-----------------|--|--|
| Intensidad | I <sub>1</sub>                        | l <sub>5</sub>                       | l <sub>7</sub> | I <sub>11</sub> |  |  |
| Frecuencia | 50 Hz                                 | 250 Hz                               | 350 Hz         | 550 Hz          |  |  |

Tabla 10.45 Corrientes básicas y corrientes armónicas

| Intensidad            | Corriente armónica |                |                |                |                    |
|-----------------------|--------------------|----------------|----------------|----------------|--------------------|
|                       | I <sub>RMS</sub>   | l <sub>1</sub> | l <sub>5</sub> | l <sub>7</sub> | I <sub>11-49</sub> |
| Intensidad de entrada | 1,0                | 0,9            | 0,5            | 0,2            | <0,1               |


Tabla 10.46 Corrientes armónicas frente a intensidad de entrada RMS

La distorsión de la tensión de alimentación de red depende de la magnitud de las corrientes armónicas multiplicada por la impedancia interna de la red para la frecuencia dada. La distorsión de tensión total (THDi) se calcula según los distintos armónicos de tensión individual usando esta fórmula:

$$THDi = \frac{\sqrt{U25 + U27 + ... + U2n}}{U}$$

## 10.17.2 Efecto de los armónicos en un sistema de distribución de potencia

En la *llustración 10.29*, un transformador está conectado en el lado primario a un punto de acoplamiento común PCC1, en la fuente de alimentación de media tensión. El transformador tiene una impedancia  $Z_{xfr}$  y alimenta una serie de cargas. El punto de acoplamiento común al que se conectan todas las cargas es PCC2. Cada carga está conectada a través de cables con una impedancia  $Z_1$ ,  $Z_2$  y  $Z_3$ .



| PCC              | Punto de acoplamiento común                           |
|------------------|-------------------------------------------------------|
| MV               | Media tensión                                         |
| LV               | Tensión baja                                          |
| Z <sub>xfr</sub> | Impedancia del transformador                          |
| Z#               | Modelización de la resistencia y la inductancia en el |
|                  | cableado                                              |

Ilustración 10.29 Sistema de distribución pequeño



Las corrientes armónicas consumidas por cargas no lineales causan distorsión de la tensión debido a la caída de tensión en las impedancias del sistema de distribución. Impedancias más elevadas se traducen en mayores niveles de distorsión de tensión.

La distorsión de corriente está relacionada con el rendimiento del aparato, el cual está relacionado con la carga individual. La distorsión de tensión está relacionada con el rendimiento del sistema. No es posible determinar la distorsión de tensión en el PCC conociendo únicamente el rendimiento armónico de la carga. Para predecir la distorsión en el PCC, deben conocerse tanto la configuración del sistema de distribución como las impedancias relevantes.

Un término empleado comúnmente para describir la impedancia de una red es la relación de cortocircuito  $R_{\text{scer}}$ 

definida como la relación entre la potencia aparente de cortocircuito de la fuente de alimentación en el PCC (Ssc) y la potencia aparente nominal de la carga. (Sequ). $R_{sce} = \frac{S_{sc}}{S_{equ}}$ 

$$\text{donde } S_{sc} = \frac{U^2}{Z_{\textit{fuente de alimentación}}} \text{ y } S_{\textit{equ}} = U \times I_{\textit{equ}}$$

## Efectos negativos de los armónicos

- Las corrientes armónicas contribuyen a las pérdidas del sistema (en el cableado y el transformador).
- La distorsión de tensión armónica provoca interferencias en otras cargas e incrementa las pérdidas en otras cargas.

## 10.17.3 Normas CEI sobre armónicos

En la mayor parte de Europa, la base para la evaluación objetiva de la calidad de la alimentación del sistema es la Ley sobre compatibilidad electromagnética de dispositivos (EMVG). La conformidad con esta normativa garantiza que todos los dispositivos y redes conectados a los sistemas de distribución eléctrica cumplan su objetivo sin causar problemas.

| Standard                       | Definición                                                                                           |
|--------------------------------|------------------------------------------------------------------------------------------------------|
| EN 61000-2-2, EN 61000-2-4, EN | Definen los límites de la tensión de red requeridos en las redes eléctricas públicas e industriales. |
| 50160                          |                                                                                                      |
| EN 61000-3-2, 61000-3-12       | Regulan la interferencia de la red producida por los dispositivos conectados en productos de menor   |
|                                | intensidad.                                                                                          |
| EN 50178                       | Controla los equipos electrónicos que se usan en las instalaciones de potencia.                      |

Tabla 10.47 Normas de diseño EN para la calidad de la alimentación del sistema

Existen dos normas europeas que se aplican a los armónicos situados en el rango de frecuencias desde 0 Hz hasta 9 kHz:

# EN 61000-2-2 (Niveles de compatibilidad para las perturbaciones conducidas de baja frecuencia y la transmisión de señales en las redes de suministro público en baja tensión)

La norma EN 61000-2-2 indica los requisitos de los niveles de compatibilidad para PCC (punto de acoplamiento común) de los sistemas CA de tensión baja en redes públicas de suministro eléctrico. Solo se especifican límites para la tensión armónica y la distorsión armónica total de la tensión. La norma EN 61000-2-2 no define límites para las corrientes armónicas. En situaciones donde la distorsión armónica total THD(V)=8 %, los límites de PCC son idénticos a los límites especificados en la norma EN 61000-2-4 de clase 2.

# EN 61000-2-4 (Niveles de compatibilidad para las perturbaciones conducidas de baja frecuencia y la transmisión de señales en las instalaciones industriales)

La norma EN 61000-2-4 indica los requisitos de los niveles de compatibilidad en redes privadas e industriales. Asimismo, la norma define las siguientes tres clases de entornos electromagnéticos:

- La Clase 1 se refiere a los niveles de compatibilidad inferiores a la red pública de suministro eléctrico, que afectan a equipos sensibles a alteraciones (equipos de laboratorio, algunos equipos de automatización y ciertos dispositivos de protección).
- La Clase 2 se refiere a los niveles de compatibilidad iguales a la red pública de suministro eléctrico. Esta clase se aplica a los PCC de la red pública de suministro eléctrico y a los IPC (puntos internos de acoplamiento) de las redes de suministro industriales o de otras redes privadas. Cualquier equipo diseñado para funcionar en una red pública de suministro eléctrico está permitido en esta clase.

- La Clase 3 se refiere a niveles de compatibilidad superiores a los de la red pública de suministro eléctrico. Esta clase solo se aplica a los IPC de entornos industriales. Utilice esta clase cuando se cuente con los siguientes equipos:
  - Convertidores grandes.
  - Máquinas de soldadura.
  - Grandes motores que arranquen con frecuencia.
  - Cargas que cambian rápidamente.

Normalmente, una clase no puede definirse por adelantado sin tener en cuenta el equipo y los procesos que se utilizarán en el entorno. Los convertidores de alta potencia VLT® cumplen los límites de la Clase 3 en condiciones normales del sistema de suministro (R<sub>SC</sub>>10 o V<sub>k</sub> Línea<10 %).

| Orden armónico (h)                                                                                            | Clase 1 (V <sub>h</sub> %) | Clase 2 (V <sub>h</sub> %) | Clase 3 (V <sub>h</sub> %) |
|---------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| 5                                                                                                             | 3                          | 6                          | 8                          |
| 7                                                                                                             | 3                          | 5                          | 7                          |
| 11                                                                                                            | 3                          | 3,5                        | 5                          |
| 13                                                                                                            | 3                          | 3                          | 4,5                        |
| 17                                                                                                            | 2                          | 2                          | 4                          |
| 17 <h≤49< td=""><td>2,27 × (17/h) – 0,27</td><td>2,27 × (17/h) – 0,27</td><td>4,5 × (17/h) – 0,5</td></h≤49<> | 2,27 × (17/h) – 0,27       | 2,27 × (17/h) – 0,27       | 4,5 × (17/h) – 0,5         |

Tabla 10.48 Niveles de compatibilidad de los armónicos

|      | Clase 1 | Clase 2 | Clase 3 |
|------|---------|---------|---------|
| THDv | 5%      | 8%      | 10%     |

Tabla 10.49 Niveles de compatibilidad de la distorsión de tensión armónica total, THDv

## 10.17.4 Conformidad en materia de armónicos

Los convertidores de Danfoss cumplen las siguientes normas:

- IEC61000-2-4
- IEC61000-3-4
- G5/4

## 10.17.5 Mitigación de armónicos

En casos en los que es necesaria la supresión adicional de armónicos, Danfoss ofrece los siguientes equipos de mitigación:

- Convertidores de frecuencia de 12 pulsos VLT®
- Convertidores de frecuencia de bajos armónicos VLT®
- Filtros armónicos avanzados VLT<sup>®</sup>
- Filtros activos avanzados VLT<sup>®</sup>

La selección de la solución correcta depende de varios factores:

- La red (distorsión de fondo, desequilibrio de red, resonancia y tipo de fuente de alimentación [transformador/ generador]).
- Aplicación (perfil de carga, número de cargas y tamaño de la carga).
- Requisitos/reglamentos locales/nacionales (como IEEE 519, CEI o G5/4).
- Coste total de propiedad (coste inicial, eficiencia y mantenimiento).



## 10.17.6 Cálculo de armónicos

Utilice el software de cálculo gratuito MCT 31 de Danfoss para determinar el grado de contaminación de tensión de la red y las precauciones necesarias. El software VLT® Harmonic Calculation MCT 31 está disponible en www.danfoss.com.



# 11 Principios básicos de funcionamiento de un convertidor

Este capítulo ofrece una visión general de los principales conjuntos y circuitos de un convertidor de frecuencia Danfoss. En él se describen las funciones eléctricas internas y de procesamiento de señal. También se incluye una descripción de la estructura de control interna.

## 11.1 Descripción del funcionamiento

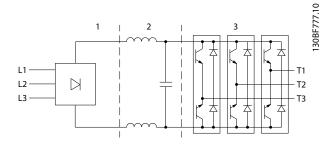
Un convertidor de frecuencia es un controlador electrónico que suministra una cantidad regulada de alimentación de CA a un motor de inducción trifásico. Al suministrar frecuencia y tensión variables al motor, el convertidor de frecuencia varía la velocidad del motor o mantiene una velocidad constante aunque cambie la carga en el motor. Asimismo, el convertidor puede detener y arrancar un motor sin la tensión mecánica asociada a los arranques directos.

En su forma básica, el convertidor se puede dividir en las siguientes cuatro secciones principales:

#### Rectificador

El rectificador consiste en una serie de SCR o diodos que convierten la tensión de CA trifásica en tensión pulsatoria de CC.

## Enlace de CC (bus de CC)


El enlace de CC consiste en una serie de inductores y bancos de condensadores que estabilizan la tensión pulsatoria de CC.

### Inversor

El inversor utiliza los IGBT para convertir la tensión de CC en tensión variable y frecuencia variable de CA.

#### Control

El área de control consiste en un programa que hace funcionar el hardware para que produzca la tensión variable que controla y regula el motor de CA.



| 1 | Rectificador (SCR/diodos) |
|---|---------------------------|
| 2 | Enlace de CC (bus de CC)  |
| 3 | Inversor (IGBT)           |

#### Ilustración 11.1 Procesamiento interno

#### 11.2 Controles de la unidad

Los siguientes procesos se utilizan para controlar y regular el motor:

- Referencia/entrada de usuario.
- Gestión de la realimentación.
- Estructura de control definida por el usuario.
  - Modo lazo abierto / lazo cerrado.
  - Control del motor (velocidad, par o proceso).
- Algoritmos de control (VVC+, control de flujo sin realimentación, flujo con realimentación del motor y control de corriente interna VVC+).

#### 11.2.1 Referencias/entradas de usuario

El convertidor utiliza una fuente de entrada (también denominada referencia) para controlar y regular el motor. El convertidor recibe esta entrada de una de las siguientes maneras:

- Manualmente mediante el LCP. Este método se conoce como «local» (Hand On).
- A distancia, mediante las entradas digitales/ analógicas y diferentes interfaces serie (RS485, USB o un fieldbus opcional). Este método se conoce como «remoto» (Auto On) y es el ajuste de entrada predeterminado.

#### Referencia activa

El término «referencia activa» hace referencia a la fuente de entrada activa. La referencia activa se configura en el parámetro 3-13 Reference Site. Consulte Ilustración 11.2 y Tabla 11.1.

Para obtener más información, consulte la *Guía de progra*mación.



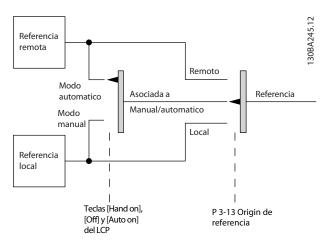



Ilustración 11.2 Selección de la referencia activa

| Teclas LCP       | Parámetro 3-13 Reference | Referencia |  |
|------------------|--------------------------|------------|--|
|                  | Site                     | activa     |  |
| [Hand On]        | Conex. a manual/auto     | Local      |  |
| [Hand On]⇒(Off)  | Conex. a manual/auto     | Local      |  |
| [Auto On]        | Conex. a manual/auto     | Remoto     |  |
| [Auto On]⇒(Off)  | Conex. a manual/auto     | Remoto     |  |
| Todas las teclas | Local                    | Local      |  |
| Todas las teclas | Remoto                   | Remoto     |  |

Tabla 11.1 Configuraciones de referencia remota y referencia local

## 11.2.2 Manejo de referencias a distancia

El manejo de referencias a distancia se aplica tanto al funcionamiento en lazo abierto como en lazo cerrado. Consulte *Ilustración 11.3*.

Es posible programar hasta 8 referencias internas distintas en el convertidor de frecuencia. La referencia interna activa puede seleccionarse de forma externa utilizando entradas de control digitales o mediante el bus de comunicación serie.

También pueden suministrarse referencias externas al convertidor, generalmente a través de una entrada de control analógico. Todas las fuentes de referencias y la referencia de bus se suman para producir la referencia externa total.

La referencia activa puede seleccionarse entre las siguientes:

- Referencia externa
- Referencia interna
- Valor de consigna
- Suma de la referencia externa, la referencia interna y el valor de consigna

La referencia activa puede escalarse. La referencia escalada se calcula de la siguiente forma:

Referencia = 
$$X + X \times \left(\frac{Y}{100}\right)$$

X es la referencia externa, la referencia interna o la suma de ambas e Y es el *parámetro 3-14 Preset Relative Reference* en [%].

Si Y, parámetro 3-14 Preset Relative Reference, se ajusta a 0 %, el escalado no afectará a la referencia.



11

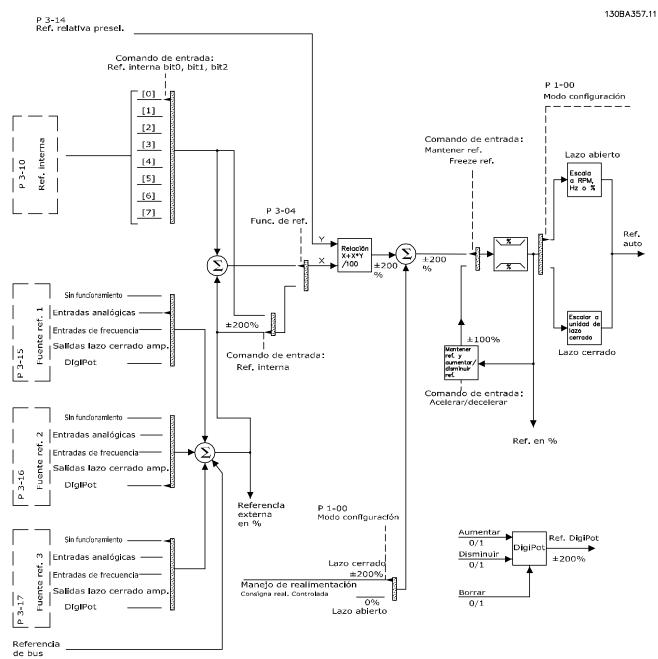



Ilustración 11.3 Manejo de referencias a distancia



## 11.2.3 Manejo de la realimentación

La gestión de la realimentación puede configurarse para trabajar con aplicaciones que requieran un control avanzado, tales como múltiples consignas y múltiples tipos de realimentaciones. Consulte *llustración 11.4*. Son habituales tres tipos de control:

#### Zona única (valor de consigna único)

Este tipo de control es una configuración de realimentación básica. El valor de consigna 1 se añade a cualquier otra referencia (si la hubiese) y se selecciona la señal de realimentación.

#### Multizona (valor de consigna único)

Este tipo de control utiliza dos o tres sensores de realimentación pero solo un valor de consigna. La realimentación puede sumarse, restarse o puede hallarse su promedio. Adicionalmente, puede usarse el valor máximo o el mínimo. El valor de consigna 1 se utiliza exclusivamente en esta configuración.

#### Multizona (realimentación / valor de consigna)

El par valor de consigna / realimentación que tenga la mayor diferencia controla la velocidad del convertidor de frecuencia. El valor máximo intenta mantener todas las zonas en sus respectivos valores de consigna o por debajo, mientras que el valor mínimo intenta mantener todas las zonas en sus respectivos valores de consigna o por encima de estos.

#### **Ejemplo**

Una aplicación de dos zonas y dos valores de consigna. El valor de consigna de la zona 1 es 15 bar y su realimentación es de 5,5 bar. El valor de consigna de la zona 2 es 4,4 bar y la realimentación es de 4,6 bar. Si se selecciona el máximo, el valor de consigna y la realimentación de la zona 2 se envían al controlador PID, puesto que este tiene la diferencia más pequeña (la realimentación es más alta que el valor de consigna, de manera que se obtiene una diferencia negativa). Si se selecciona el mínimo, el valor de consigna y la realimentación de la zona 1 se envían al controlador PID, puesto que este tiene la mayor diferencia (la realimentación es más baja que el valor de consigna, de manera que se obtiene una diferencia positiva).

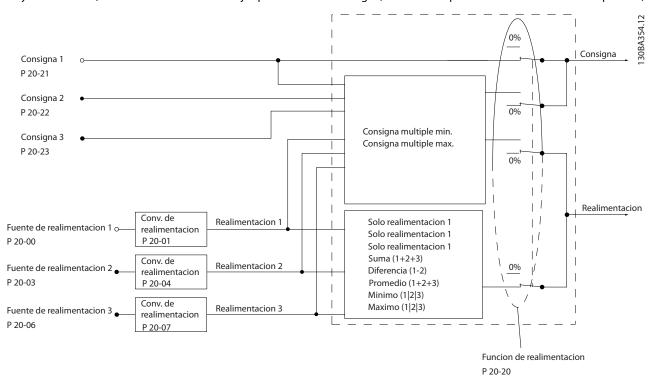



Ilustración 11.4 Diagrama de bloques de procesamiento de señal de realimentación



30BF834.10

#### Conversión de realimentación

En algunas aplicaciones, resulta útil convertir la señal de realimentación. Un ejemplo de ello es el uso de una señal de presión para proporcionar realimentación de caudal. Puesto que la raíz cuadrada de la presión es proporcional al caudal, la raíz cuadrada de la señal de presión suministra un valor proporcional al caudal. Consulte la *llustración 11.5*.

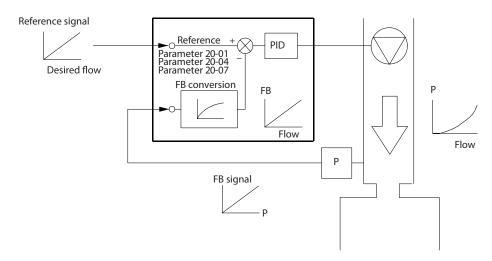



Ilustración 11.5 Conversión de realimentación

## 11.2.4 Aspectos generales de la estructura de control

La estructura de control es un proceso de software que controla el motor conforme a las referencias definidas por el usuario (por ejemplo, RPM) y en función de que se use realimentación o no (lazo cerrado / lazo abierto). El operador define el control en el *parámetro 1-00 Configuration Mode*.

Las estructuras de control son así:

#### Estructura de control de lazo abierto

- Velocidad (r/min)
- Par (Nm)

## Estructura de control de lazo cerrado

- Velocidad (r/min)
- Par (Nm)
- Proceso (unidades definidas por el usuario; por ejemplo: pies, lpm, psi, %, bar)



#### 11.2.5 Estructura de control de lazo abierto

En el modo de lazo abierto, el convertidor utiliza una o más referencias (locales o remotas) para controlar la velocidad o el par del motor. Hay dos tipos de control de lazo abierto:

- Control de velocidad. Sin realimentación desde el motor.
- Control de par. Utilizado en modo VVC<sup>+</sup>. La función se utiliza en aplicaciones mecánicamente robustas, pero su
  precisión es limitada. La función de par de lazo abierto funciona solo en una dirección de velocidad. El par se
  calcula en función de la medida de corriente del convertidor de frecuencia. Consulte capétulo 12 Ejemplos de
  aplicaciones.

En la configuración que se muestra en la *llustración 11.6*, el convertidor de frecuencia funciona en modo de lazo abierto. Recibe datos de entrada desde el LCP (modo manual) o mediante una señal remota (modo automático).

La señal (referencia de velocidad) se recibe y condiciona conforme a lo siguiente:

- Límites de velocidad del motor máximo y mínimo programados (en RPM y Hz).
- Tiempos de deceleración y aceleración.
- Sentido de giro del motor.

A continuación, se transmite la referencia para controlar el motor.

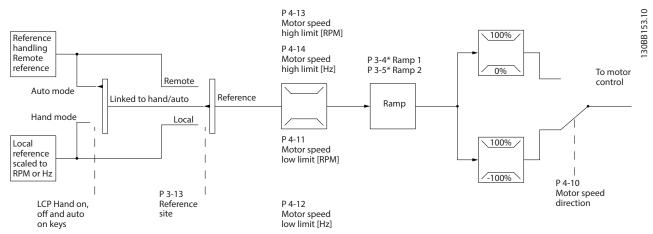
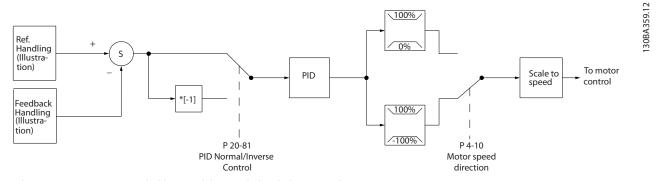



Ilustración 11.6 Diagrama de bloques de una estructura de control de lazo abierto

## 11.2.6 Estructura de control de lazo cerrado

En el modo de lazo cerrado, el convertidor utiliza una o más referencias (locales o remotas) y sensores de realimentación para controlar el motor. El convertidor de frecuencia recibe una señal de realimentación desde un sensor en el sistema. A continuación, compara esta señal con un valor de referencia y determina si existe alguna discrepancia entre ambas señales. Finalmente, el convertidor ajusta la velocidad del motor para corregir la discrepancia.


Por ejemplo, consideremos una aplicación de bombas en la que la velocidad de la bomba se controla para que la presión estática en una tubería sea constante (consulte la *llustración 11.7*). El convertidor de frecuencia recibe una señal de realimentación desde un sensor en el sistema. A continuación, compara esta señal con un valor de referencia y determina la discrepancia entre ambas señales, si la hubiese. Finalmente, ajusta la velocidad del motor para compensar dicha discrepancia.



El valor de consigna de presión estática es la señal de referencia al convertidor de frecuencia. Un sensor de presión estática mide la presión estática real en la tubería y suministra esta información al convertidor de frecuencia en forma de señal de realimentación. Si la señal de realimentación es mayor que el valor de consigna, el convertidor de frecuencia disminuye la velocidad para reducir la presión. De forma similar, si la presión en la tubería es inferior al valor de consigna, el convertidor de frecuencia acelera para aumentar la presión suministrada por la bomba.

Hay tres tipos de control de lazo cerrado:

- Control de velocidad. Este tipo de control requiere una realimentación PID de velocidad hacia una entrada. Un
  control de lazo cerrado de velocidad, debidamente optimizado, tiene una precisión mayor que un control de lazo
  abierto. El control de velocidad solo se utiliza en el VLT<sup>®</sup> AutomationDrive FC 302.
- Control de par. Utilizado en modo de flujo con realimentación de encoder, este control ofrece un rendimiento superior en los cuatro cuadrantes y a todas las velocidades del motor. El control de par solo se utiliza en el VLT<sup>®</sup> AutomationDrive FC 302.
  - La función de control de par se utiliza en aplicaciones en las que el par de salida de eje motor controla la aplicación como control de tensión. El ajuste de par se realiza mediante la configuración de una referencia analógica, digital o controlada mediante bus. Al efectuar el control de par, se recomienda llevar a cabo un procedimiento AMA completo, ya que los datos correctos del motor son esenciales para obtener un rendimiento óptimo.
- Control de proceso. Se utiliza para controlar parámetros de aplicación medidos con diferentes sensores (presión, temperatura y flujo) y que se ven afectados por el motor conectado a través de una bomba o ventilador.



llustración 11.7 Diagrama de bloques del controlador de lazo cerrado

#### **Funciones programables**

Aunque los valores predeterminados del convertidor de frecuencia de lazo cerrado normalmente proporcionan un rendimiento satisfactorio, a menudo puede optimizarse el control del sistema ajustando los parámetros de PID. Para dicha optimización, se facilita el *Auto tune*.

- Regulación inversa: la velocidad del motor se incrementa cuando existe una señal de realimentación alta.
- Frecuencia de arranque: permite que el sistema alcance rápidamente el estado de funcionamiento antes de que el controlador PID tome el control.
- Filtro de paso bajo integrado: reduce el ruido de la señal de realimentación.



#### 11.2.7 Procesamiento de control

Consulte los *Parámetros activos / inactivos en distintos modos de control de la unidad* en la *Guía de programación* para tener una vista general de qué configuración de control está disponible, según la selección de motor de CA o motor de PM no saliente.

### 11.2.7.1 Estructura de control en el VVC+

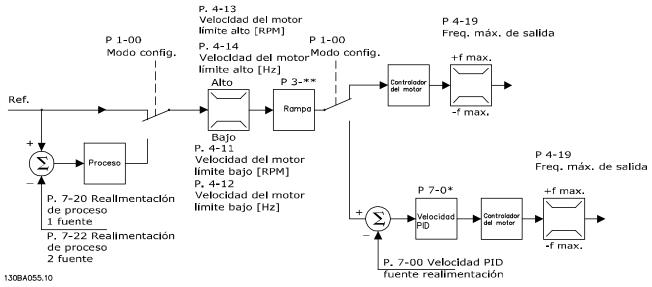



Ilustración 11.8 Estructura de control en configuraciones de lazo abierto y cerrado VVC+

En la *llustración 11.8*, se recibe la referencia resultante del sistema de manejo de referencias y se transfiere a la limitación de rampa y de velocidad antes de enviarse al control del motor. La salida del control del motor se limita entonces según el límite de frecuencia máxima.

El Parámetro 1-01 Motor Control Principle se ajusta a [1] VVC+ y el parámetro 1-00 Configuration Mode se ajusta a [0] Speed open loop. Si parámetro 1-00 Configuration Mode se ajusta a [1] Speed closed loop, la referencia resultante pasará desde la limitación de rampa y limitación de velocidad a un control de PID de velocidad. Los parámetros del control de PID de velocidad se encuentran en el grupo de parámetros 7-0\* Speed PID Ctrl. La referencia resultante del control de PID de velocidad se envía al control de motor limitado por el límite de frecuencia.

Seleccione [3] Process en el parámetro 1-00 Configuration Mode para utilizar el control de PID de procesos para el control de lazo cerrado de, por ejemplo, la velocidad o la presión de la aplicación controlada. Los parámetros del PID de proceso se encuentran en los grupos de parámetros 7-2\* Process Ctrl. Feedb y 7-3\* Process PID Ctrl.

#### 11.2.7.2 Control de corriente interna en modo VVC+

Cuando el par del motor supera los límites de par ajustados en el *parámetro 4-16 Torque Limit Motor Mode*, el *parámetro 4-17 Torque Limit Generator Mode* y el *parámetro 4-18 Current Limit*, se activa el control del límite de corriente integral.

Cuando el convertidor de frecuencia está al límite de intensidad durante el funcionamiento del motor o el funcionamiento regenerativo, intentará situarse lo más rápidamente posible por debajo de los límites de par predeterminados sin perder el control del motor.



## 12 Ejemplos de aplicaciones

Los ejemplos de esta sección pretenden ser una referencia rápida para aplicaciones comunes.

- Los ajustes de parámetros son los valores regionales predeterminados, salvo que se indique lo contrario (seleccionado en parámetro 0-03 Regional Settings).
- Los parámetros asociados con los terminales y sus ajustes se muestran al lado de los dibujos.
- Los ajustes de conmutador para los terminales analógicos A53 o A54 se mostrarán cuando se necesiten.
- Con la función de STO, puede ser necesario un puente entre el terminal 12 y el 37 al usar los valores de programación ajustados en fábrica.

# 12.1 Configuraciones de cableado para adaptación automática del motor (AMA)

|       |        |               |            | Parámo             | etros           |
|-------|--------|---------------|------------|--------------------|-----------------|
| FC    | $\neg$ |               | .10        | Función            | Ajuste          |
| +24 V | 120    |               | 30BB929.10 | Parámetro 1-29     | [1] Act. AMA    |
| +24 V | 130    |               | 30BE       | Automatic Motor    | completo        |
| DIN   | 180    |               | =          | Adaptation         |                 |
| D IN  | 190    |               |            | (AMA)              |                 |
| сом   | 200    |               |            | Parámetro 5-12     | [2]* Inercia    |
| D IN  | 270    | $\overline{}$ |            | Terminal 27        |                 |
| DIN   | 290    |               |            | Digital Input      |                 |
| DIN   | 320    |               |            | *=Valor por defec  | to              |
| DIN   | 330    |               |            | Notas / comenta    | rios: aiuste el |
| DIN   | 370    |               |            | grupo de parámet   | ,               |
|       |        |               |            | de motor conform   |                 |
| +10 V | 500    |               |            | de características | ·               |
| A IN  | 530    |               |            | ac caracteristicas | dei moton       |
| A IN  | 540    |               |            |                    |                 |
| СОМ   | 550    |               |            |                    |                 |
| A OUT | 420    |               |            |                    |                 |
| сом   | 390    |               |            |                    |                 |
|       |        |               |            |                    |                 |
|       |        |               |            |                    |                 |
|       | V      |               |            |                    |                 |
|       |        |               |            |                    |                 |

Tabla 12.1 Configuración de cableado para AMA con T27 conectado

|       |                      | Parám              | etros           |
|-------|----------------------|--------------------|-----------------|
| FC    | .10                  | Función            | Ajuste          |
| +24 V | 12¢ 8888<br>13¢ 01.0 | Parámetro 1-29     | [1] Act. AMA    |
| +24 V | 130                  | Automatic Motor    | completo        |
| DIN   | 180                  | Adaptation         |                 |
| DIN   | 190                  | (AMA)              |                 |
| сом   | 200                  | Parámetro 5-12     | [0] Sin función |
| DIN   | 270                  | Terminal 27        |                 |
| DIN   | 290                  | Digital Input      |                 |
| DIN   | 320                  | *=Valor por defe   | to              |
| DIN   | 330                  | Notas / comenta    |                 |
| DIN   | 370                  | grupo de parámei   | •               |
|       |                      | l                  |                 |
| +10 V | 500                  | de motor conforn   | ·               |
| A IN  | 530                  | de características | del motor.      |
| A IN  | 540                  |                    |                 |
| СОМ   | 550                  |                    |                 |
| A OUT | 420                  |                    |                 |
| СОМ   | 390                  |                    |                 |
|       |                      |                    |                 |
|       |                      |                    |                 |
|       | 7                    |                    |                 |
|       |                      |                    |                 |

Tabla 12.2 Configuración de cableado para AMA sin T27 conectado

## 12.2 Configuraciones de cableado para referencia analógica de velocidad

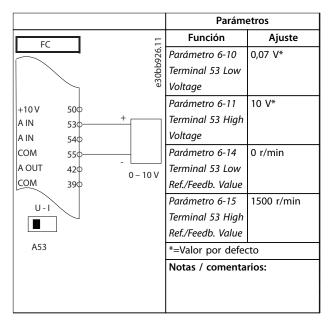



Tabla 12.3 Configuraciones de cableado para referencia analógica de velocidad (tensión)

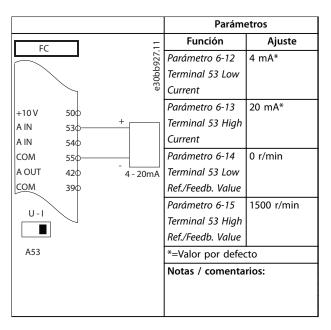



Tabla 12.4 Configuraciones de cableado para referencia analógica de velocidad (Corriente)

## 12.3 Configuraciones de cableado de arranque/parada

|       |      |             | Parán                    | netros           |
|-------|------|-------------|--------------------------|------------------|
| FC    |      | 10          | Función                  | Ajuste           |
| +24 V | 120  | 130BB802.10 | Parámetro 5-10           | [8] Arranque*    |
| +24 V | 130  | 0BB         | Terminal 18              |                  |
| DIN   | 180- | <br>) =     | Digital Input            |                  |
| DIN   | 190  |             | Parámetro 5-12           | [0] Sin función  |
| СОМ   | 200  |             | Terminal 27              |                  |
| DIN   | 270  |             | Digital Input            |                  |
| DIN   | 290  |             | Parámetro 5-19           | [1] Safe Torque  |
| DIN   | 320  |             | Terminal 37              | Off Alarm        |
| DIN   | 33ф  |             | Safe Stop                |                  |
| DIN   | 37ф— |             | *=Valor por defe         | ecto             |
|       |      |             | Notas / coment           | arios:           |
| +10   | 50¢  |             | si el <i>parámetro 5</i> | 5-12 Terminal 27 |
| A IN  | 53ф  |             | Digital Input se a       |                  |
| A IN  | 54φ  |             |                          |                  |
| СОМ   | 550  |             | <i>función</i> , no se n |                  |
| A OUT | 420  |             | puente al termir         | nal 27.          |
| сом   | 390  |             |                          |                  |
|       |      |             |                          |                  |
|       |      |             |                          |                  |
| ]     |      |             |                          |                  |

Tabla 12.5 Configuraciones de cableado de la orden de arranque/parada con Safe Torque Off

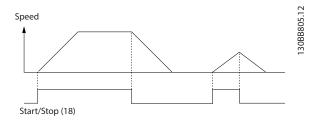



Ilustración 12.1 Arranque/parada con Safe Torque Off

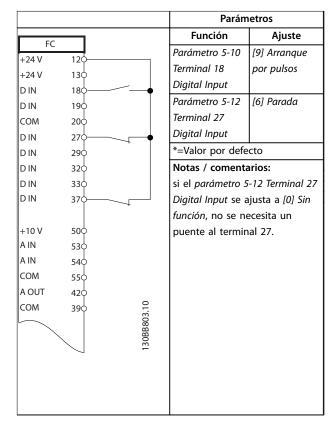



Tabla 12.6 Configuración de cableado del arranque/parada por pulsos

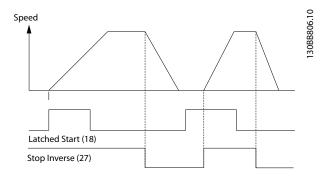



Ilustración 12.2 Arranque por pulsos / parada



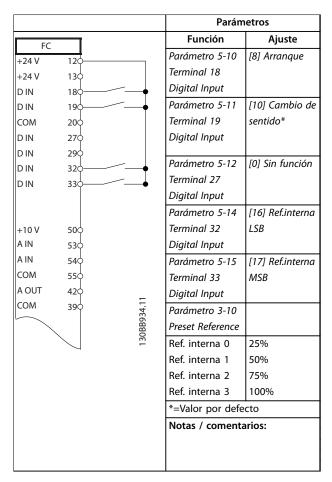



Tabla 12.7 Configuración de cableado para arranque/parada con cambio de sentido y cuatro velocidades predeterminadas

## 12.4 Configuración de cableado para el reinicio de alarma externa

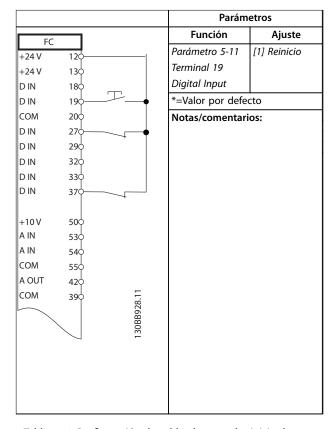



Tabla 12.8 Configuración de cableado para el reinicio de alarma externa



# 12.5 Configuración de cableado para velocidad de referencia mediante un potenciómetro manual

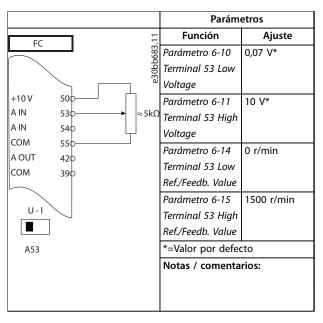



Tabla 12.9 Configuración de cableado para velocidad de referencia (Usando un potenciómetro manual)

## 12.6 Configuración de cableado para aceleración/desaceleración

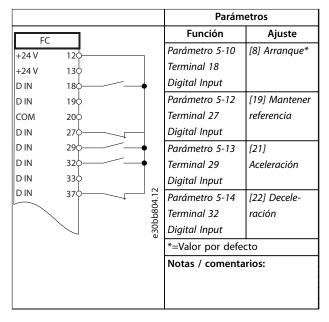



Tabla 12.10 Configuración de cableado para aceleración/desaceleración

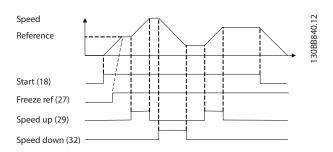



Ilustración 12.3 Aceleración/desaceleración



## 12.7 Configuración de cableado para la conexión de red RS485

| FC                                                                                                                                                                                                  |         |                                  |      | Parám            | etros      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|------|------------------|------------|
| D IN                                                                                                                                                                                                |         |                                  | 0    | Función          | Ajuste     |
| D IN                                                                                                                                                                                                |         | 120                              | 85.1 | Parámetro 8-30   | FC*        |
| D IN                                                                                                                                                                                                |         |                                  | )BB6 | Protocol         |            |
| COM 200 D IN 270 D IN 290 D IN 320 D IN 330 D IN 370  Hotas/comentarios: seleccione el protocolo, la dirección y la velocidad en baudios en los parámetros.  A IN 540 COM 550 A OUT 420 COM 390     |         |                                  | 13(  | Parámetro 8-31   | 1*         |
| D IN 270 D IN 290 D IN 320 D IN 330 D IN 370  Notas/comentarios: seleccione el protocolo, la dirección y la velocidad en baudios en los parámetros.  A IN 540 COM 550 A OUT 420 COM 390             | DIN     | 190                              |      | Address          |            |
| D IN 290 D IN 320 D IN 330 D IN 370  *=Valor por defecto  Notas/comentarios: seleccione el protocolo, la dirección y la velocidad en baudios en los parámetros.  A IN 540 COM 550 A OUT 420 COM 390 | СОМ     | 200                              |      | Parámetro 8-32   | 9600*      |
| D IN 320 D IN 330 D IN 370  Notas/comentarios: seleccione el protocolo, la dirección y la velocidad en baudios en los parámetros.  A IN 530 A IN 540 COM 550 A OUT 420 COM 390                      | DIN     | 270                              |      | Baud Rate        |            |
| D IN 320 D IN 330 D IN 370  Notas/comentarios: seleccione el protocolo, la dirección y la velocidad en baudios en los parámetros.  A IN 530 A IN 540 COM 550 A OUT 420 COM 390                      | DIN     | 290                              |      | *=Valor por defe | cto        |
| DIN 330 DIN 370  seleccione el protocolo, la dirección y la velocidad en baudios en los parámetros.  A IN 530 A IN 540 COM 550 A OUT 420 COM 390                                                    | DIN     | 320                              |      | ·                |            |
| +10 V 500 A IN 530 A IN 540 COM 550 A OUT 420 COM 390                                                                                                                                               |         | 330                              |      |                  |            |
| +10 V 500<br>A IN 530<br>A IN 540<br>COM 550<br>A OUT 420<br>COM 390                                                                                                                                | DIN     | 370                              |      |                  |            |
| A IN 530<br>A IN 540<br>COM 550<br>A OUT 420<br>COM 390                                                                                                                                             |         |                                  |      | · ·              |            |
| A IN 540<br>COM 550<br>A OUT 420<br>COM 390                                                                                                                                                         | ' ' ' ' |                                  |      | baudios en los p | arametros. |
| COM 550<br>A OUT 420<br>COM 390                                                                                                                                                                     |         |                                  |      |                  |            |
| A OUT 420<br>COM 390                                                                                                                                                                                |         |                                  |      |                  |            |
| COM 390                                                                                                                                                                                             |         |                                  |      |                  |            |
|                                                                                                                                                                                                     |         |                                  |      |                  |            |
|                                                                                                                                                                                                     |         | 390                              |      |                  |            |
| □                                                                                                                                                                                                   | R \     | 020                              |      |                  |            |
| 040<br>050<br>060<br>RS-485<br>610<br>680<br>+<br>690                                                                                                                                               | 22 /    | 050<br>060 RS-48<br>610<br>680 + | 35   |                  |            |

Tabla 12.11 Configuración de cableado para la conexión de red RS485

## 12.8 Configuración de cableado de un termistor del motor

## AVISO!

Los termistores deben utilizar aislamiento reforzado o doble para cumplir los requisitos de aislamiento PELV.

|                |     |            | Parám              | etros        |
|----------------|-----|------------|--------------------|--------------|
|                |     |            | Función            | Ajuste       |
| VLT<br>+24 V   | 120 |            | Parámetro 1-90     | [2] Descon.  |
| +24 V<br>+24 V | 130 |            | Motor Thermal      | termistor    |
| D IN           | 180 |            | Protection         |              |
| DIN            | 190 |            | Parámetro 1-93     | [1] Entrada  |
| СОМ            | 200 |            | Thermistor         | analógica 53 |
| D IN           | 270 |            | Source             |              |
| D IN           | 290 |            | *=Valor por defe   | cto          |
| D IN           | 320 |            |                    |              |
| D IN           | 330 |            | Notas / comenta    | rios:        |
| D IN           | 370 |            | si solo se necesit | a una        |
|                |     |            | advertencia, ajust | te el        |
| +10 V          | 500 |            | parámetro 1-90 N   |              |
| A IN           | 530 |            | Protection en [1]  |              |
| A IN           | 540 |            | termistor.         | , laver t.   |
| СОМ            | 550 |            | termistor.         |              |
| A OUT          | 420 |            |                    |              |
| СОМ            | 390 |            |                    |              |
|                |     | 2          |                    |              |
| U-I            |     | 36.1       |                    |              |
|                |     | 30BB686.12 |                    |              |
| A53            |     | 130        |                    |              |
|                |     |            |                    |              |
|                |     |            |                    |              |
|                |     |            |                    |              |

Tabla 12.12 Configuración de cableado de un termistor del motor



## 12.9 Configuración de cableado para controlador de cascada

La *llustración 12.4* muestra un ejemplo del controlador de cascada integrado básico con una bomba de velocidad variable (principal) y dos bombas de velocidad fija, un transmisor de 4-20 mA y un enclavamiento de seguridad del sistema.

#### FC100/200

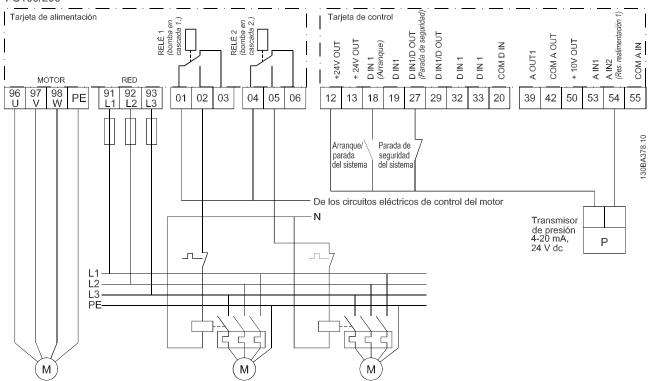



Ilustración 12.4 Diagrama de cableado del controlador de cascada



## 12.10 Configuración de cableado para un ajuste de relé con Smart Logic Control

|               |             |            | Parám             | etros             |
|---------------|-------------|------------|-------------------|-------------------|
| FC            |             | 10         | Función           | Ajuste            |
| +24 V         | 120         | 30BB839.10 | Parámetro 4-30    | [1] Warning       |
| +24 V         | 130         | 0BB        | Motor Feedback    |                   |
| DIN           | 180         | -          | Loss Function     |                   |
| DIN           | 190         |            | Parámetro 4-31    | 100 r/min         |
| сом           | 200         |            | Motor Feedback    |                   |
| DIN           | 270         |            | Speed Error       |                   |
| DIN           | 290         |            | Parámetro 4-32    | 5 s               |
| DIN           | 320         |            | Motor Feedback    |                   |
| DIN           | 330         |            | Loss Timeout      |                   |
| DIN           | 370         |            | Parámetro 7-00    | [2] MCB 102       |
|               |             |            | Speed PID         |                   |
| +10 V<br>A IN | 500         |            | Feedback Source   |                   |
| A IN          | 53¢<br>54¢  |            | Parámetro 17-11   | 1024*             |
| сом           | 550         |            | Resolution (PPR)  |                   |
| A OUT         | 420         |            | Parámetro 13-00   | [1] Activado      |
| сом           | 390         |            | SL Controller     | [1] /iciivado     |
|               |             |            | Mode              |                   |
| l —           | 010         |            | Parámetro 13-01   | [19]              |
| ≂ -/          | 02♦         |            | Start Event       | Advertencia       |
|               | 030         |            | Parámetro 13-02   | [44] Botón        |
|               |             |            | Stop Event        | Reset             |
|               | 040         |            | Parámetro 13-10   | [21] Número       |
| 22 / ─        | 050         |            | Comparator        | de adv.           |
|               | <b>06</b> ¢ |            | Operand           | de dav.           |
|               |             |            | Parámetro 13-11   | [1] - (iqual)*    |
|               |             |            |                   | [1]≈ (igual)*     |
|               |             |            | Comparator        |                   |
|               |             |            | Operator 12.12    | 00                |
|               |             |            | Parámetro 13-12   | 90                |
|               |             |            | Comparator        |                   |
|               |             |            | Value             |                   |
|               |             |            | Parámetro 13-51   | [22]              |
|               |             |            | SL Controller     | Comparador 0      |
|               |             |            | Event             |                   |
|               |             |            | Parámetro 13-52   | [32] Aj. sal.dig. |
|               |             |            | SL Controller     | A baja            |
|               |             |            | Action            |                   |
|               |             |            | Parámetro 5-40    | [80] Salida       |
|               |             |            | Function Relay    | digital SL A      |
|               |             |            | *=Valor por defec | ito               |

## Parámetros

#### Notas / comentarios:

si se supera el límite del monitor de realimentación, se emite la advertencia 90, Control encoder. El SLC supervisa la advertencia 90, Control encoder y si esta se evalúa como verdadera, se activa

Los equipos externos pueden necesitar reparación. Si el valor del error de realimentación vuelve a ser inferior al límite en un intervalo de 5 s, el convertidor de frecuencia continúa funcionando y la advertencia desaparece. Reinicie el relé 1 pulsando [Reset] en el LCP.

Tabla 12.13 Configuración de cableado para un ajuste de relé con Smart Logic Control

## 12.11 Configuración de cableado para una bomba de velocidad fija variable

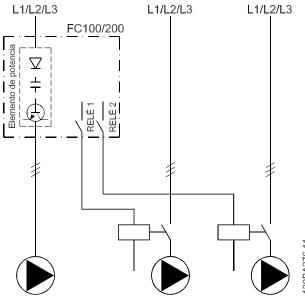



Ilustración 12.5 Diagrama de cableado de bombas de velocidad fija variable

## 12.12 Configuración de cableado para alternancia de bomba principal

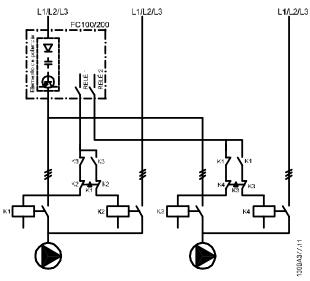



Ilustración 12.6 Diagrama de cableado de alternancia de bomba principal

Cada bomba debe estar conectada a dos contactores (K1/K2 y K3/K4) con un sistema de enclavamiento mecánico. Deben utilizarse relés térmicos u otros dispositivos de protección contra sobrecarga del motor conformes a las normas locales y/o a las necesidades individuales.

- El relé 1 (R1) y el relé 2 (R2) son los relés integrados en el convertidor.
- Cuando todos los relés están sin alimentación, el primer relé integrado que recibe alimentación conecta el contactor correspondiente a la bomba controlada por el relé. Por ejemplo, el relé 1 conecta el contactor K1, que se convierte en la bomba principal.
- El K1 bloquea el K2 mediante el sistema de enclavamiento mecánico, evitando que se conecte la alimentación a la salida del convertidor de frecuencia (a través del K1).
- Un interruptor de corte auxiliar en el K1 evita que el K3 se conecte.
- El relé 2 controla el contactor K4 para controlar el encendido/apagado de la bomba de velocidad fija.
- En la alternancia, ambos relés dejan de recibir alimentación y, a continuación, el relé 2 recibe alimentación como primer relé.



## 13 Cómo encargar un convertidor de frecuencia

## 13.1 Configurador de convertidores de frecuencia

| 1 | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | .10      |
|---|-----|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|
|   | F C | - |   |   |   |   |   |   |    | Т  |    |    |    |    |    |    |    |    |    |    | Χ  | Х  | S  | Х  | Х  | Χ  | Χ  | Α  |    | В  |    | С  |    |    |    |    | D  |    | 130BC530 |

Tabla 13.1 Código descriptivo

| Grupo de productos                                                            | 1–6   |  |
|-------------------------------------------------------------------------------|-------|--|
| Modelo                                                                        | 7–10  |  |
| Tensión de red                                                                | 11–12 |  |
| Protección                                                                    | 13–15 |  |
| Configuración de hardware                                                     | 16–23 |  |
| Filtro RFI / convertidor de frecuencia<br>de bajos armónicos /<br>Doce pulsos | 16–17 |  |
| Freno                                                                         | 18    |  |
| Pantalla (LCP)                                                                | 19    |  |
| Barnizado PCB                                                                 | 20    |  |
| Opción de alimentación                                                        | 21    |  |
| Adaptación A                                                                  | 22    |  |
| Adaptación B                                                                  | 23    |  |
| Versión de software                                                           | 24–27 |  |
| Idioma del software                                                           |       |  |
|                                                                               |       |  |
| Opciones A                                                                    | 29–30 |  |
| Opciones B                                                                    | 31–32 |  |
| Opciones C0, MCO                                                              | 33–34 |  |
| Opciones C1                                                                   | 35    |  |
| Software de opción C                                                          | 36–37 |  |
| Opciones D                                                                    | 38–39 |  |

Tabla 13.2 Ejemplo de código descriptivo para pedir un convertidor

Configure el convertidor correcto para la aplicación adecuada con ayuda del configurador de convertidores de frecuencia disponible en internet. El configurador de convertidores de frecuencia puede encontrarse en el sitio de internet: <a href="https://www.danfoss.com/Spain">www.danfoss.com/Spain</a>. El configurador crea un código descriptivo y un número de ventas de ocho dígitos para su envío a la oficina local de ventas. También puede establecerse una lista de proyectos con varios productos y enviársela a un representante de ventas de Danfoss.

Un ejemplo de código descriptivo sería:

#### FC-102P450T5E54H4CGCXXXSXXXXA0BXCXXXXD0

El significado de los caracteres de la cadena puede encontrarse en este capítulo. En el ejemplo anterior, un convertidor F3 está configurado con las siguientes opciones:

- Filtro RFI
- Safe Torque Off con relé Pilz
- PCB barnizada
- PROFIBUS DP-V1

Los convertidores se suministran automáticamente con un paquete de idioma correspondiente a la región desde la que se realiza el pedido. Cuatro paquetes regionales de idioma cubren los siguientes idiomas:

#### Paquete de idioma 1

Inglés, alemán, francés, danés, holandés, español, sueco, italiano y finés.

## Paquete de idioma 2

Inglés, alemán, chino, coreano, japonés, tailandés, chino tradicional e indonesio.

#### Paquete de idioma 3

Inglés, alemán, esloveno, búlgaro, serbio, rumano, húngaro, checo y ruso.

#### Paquete de idioma 4

Inglés, alemán, español, inglés americano, griego, portugués brasileño, turco y polaco.

Para realizar el pedido con un paquete de idioma diferente, póngase en contacto con su oficina local de ventas de Danfoss.

## 13.1.1 Código descriptivo de pedido de los alojamientos E1-E2

| Descripción            | Pos.  | Opción posible                                                        |
|------------------------|-------|-----------------------------------------------------------------------|
| Grupo de productos     | 1–6   | FC-102                                                                |
| Modelo                 | 8–10  | P355-P630                                                             |
| Tensión de red         | 11–12 | T4: 380-480 V CA                                                      |
|                        |       | T7: 525-690 V CA                                                      |
| Protección             | 13–15 | E00: IP00 (chasis, para instalación en un alojamiento externo)        |
|                        |       | C00: IP00 / chasis con canal trasero de acero inoxidable              |
|                        |       | E21: IP21 (NEMA 1)                                                    |
|                        |       | E54: IP54 (NEMA 12)                                                   |
|                        |       | E2M: IP21 (NEMA 1) con protección de red                              |
|                        |       | E5M: IP54 (NEMA 12) con protección de red                             |
| Filtro RFI             | 16–17 | H2: filtro RFI clase A2 (estándar)                                    |
|                        |       | H4: filtro RFI clase A1 <sup>1)</sup>                                 |
|                        |       | B2: convertidor de frecuencia de doce pulsos con filtro RFI, clase A2 |
|                        |       | B4: convertidor de frecuencia de doce pulsos con filtro RFI clase A1  |
|                        |       | N2: LHD con filtro RFI, clase A2                                      |
|                        |       | N4: LHD con filtro RFI, clase A1                                      |
| Freno                  | 18    | B: IGBT del freno montado                                             |
|                        |       | X: Sin IGBT del freno                                                 |
|                        |       | R: Terminales regenerativos                                           |
|                        |       | S: freno + regeneración                                               |
| Display                | 19    | G: panel de control local gráfico LCP                                 |
|                        |       | N: panel de control local numérico (LCP)                              |
|                        |       | X: sin panel de control local                                         |
| Barnizado PCB          | 20    | C: PCB barnizada                                                      |
| Opción de alimentación | 21    | X: sin opción de alimentación                                         |
|                        |       | 3: desconexión de red y fusible                                       |
|                        |       | 5: desconexión de red, fusible y carga compartida                     |
|                        |       | 7: Fusible                                                            |
|                        |       | A: fusible y carga compartida                                         |
|                        |       | D: carga compartida                                                   |
| Adaptación             | 22    | X: Entradas de cables estándar                                        |
| Adaptación             | 23    | X: sin adaptación                                                     |
| Versión de software    | 24–27 | Software actual                                                       |
| Idioma del software    | 28    | X: paquete de idioma estándar                                         |

Tabla 13.3 Código descriptivo de pedido de los alojamientos E1-E2<sup>2)</sup>

- 1) Disponible únicamente para equipos de 380-480 V.
- 2) Consulte a la fábrica para aplicaciones que requieran certificación marítima.



## 13.1.2 Código descriptivo de pedido de los alojamientos F1-F4 y F8-F13

| Descripción    | Pos.  | Opción posible                                                                                                                                   |
|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Grupo de       | 1–6   | FC-102                                                                                                                                           |
| productos      |       |                                                                                                                                                  |
| Modelo         | 8–10  | P315-P1400 kW                                                                                                                                    |
| Tensión de red | 11–12 | T4: 380-480 V CA                                                                                                                                 |
|                |       | T7: 525-690 V CA                                                                                                                                 |
| Protección     | 13–15 | C21: IP21/NEMA Tipo 1 con canal posterior de acero inoxidable                                                                                    |
|                |       | C54: IP54 / Tipo 12 con canal posterior de acero inoxidable                                                                                      |
|                |       | E21: IP 21 / NEMA tipo 1                                                                                                                         |
|                |       | E54: IP 54 / NEMA, tipo 12                                                                                                                       |
|                |       | L2X: IP21 / NEMA 1\( \text{MonMuminación de armario y\text{Moma de alimentación} \text{MCEI 230 V}                                               |
|                |       | L5X: IP54 / NEMA 12\textbf{X}con\textbf{X}luminación de armario y\textbf{M}oma de alimentación\textbf{X}El 230 V                                 |
|                |       | L2A: IP21 / NEMA 12con Muminación de armario y Moma de alimentación MAM 115 V                                                                    |
|                |       | L5A: IP54 / NEMA 12\textrm{MonMuminación de armario y\textrm{Moma de alimentación\textrm{MNAM 115 V}                                             |
|                |       | H21: IP21 con resistencia calefactora y termostato                                                                                               |
|                |       | H54: IP54 con resistencia calefactora y termostato                                                                                               |
|                |       | R2X: IP21 / NEMA 18ton resistencia calefactora, termostato, iluminación y toma XEI 230 V                                                         |
|                |       | R5X: IP54 / NEMA 12\text{Mon resistencia calefactora, termostato, iluminación\text{My toma\text{MEEI 230 V}                                      |
|                |       | R2A: IP21 / NEMA 12ton resistencia calefactora, termostato, iluminación y toma@NAM 115 V                                                         |
|                |       | R5A: IP 54 / NEMA 12xton resistencia calefactora, termostato, iluminación y tomaxNAM 115 V                                                       |
| Filtro RFI     | 16–17 | H2: filtro RFI clase A2 (estándar)                                                                                                               |
|                |       | H4: Filtro RFI, clase A1                                                                                                                         |
|                |       | HE: RCD con filtro RFI de clase A2                                                                                                               |
|                |       | HF: RCD con filtro RFI clase A1                                                                                                                  |
|                |       | HG: IRM con filtro RFI de clase A2                                                                                                               |
|                |       | HH: IRM con filtro RFI clase A1                                                                                                                  |
|                |       | HJ: Terminales NAMUR y filtro RFI clase A2                                                                                                       |
|                |       | HK: Terminales NAMUR con filtro RFI clase  A1                                                                                                    |
|                |       | HL: RCD con terminales NAMUR y filtro RFI clase A2                                                                                               |
|                |       | HM: RCD con terminales NAMUR y filtro RFI clase A1                                                                                               |
|                |       | HN: IRM\(\text{IRM}\) terminales\(\text{IRM}\) AMUR y filtro RFI de clase A2                                                                     |
|                |       | HP: IRMIcton terminales INAMUR y filtro RFI de clase A1                                                                                          |
|                |       | N2: convertidor de frecuencia de bajos armónicos con filtro RFI de clase A2                                                                      |
|                |       | N4: convertidor de frecuencia de bajos armónicos con filtro RFI de clase A1                                                                      |
|                |       | B2: convertidor de frecuencia de doce pulsos con filtro RFI, clase A2                                                                            |
|                |       | B4: convertidor de frecuencia de doce pulsos con filtro RFI clase A1                                                                             |
|                |       | BE: doce pulsos + RCD para red TN/TT + RFI de clase A2                                                                                           |
|                |       | BF: doce pulsos + RCD para red TN/TT + RFI de clase A1                                                                                           |
|                |       | BG: doce pulsos + IRM para red IT + RFI de clase A2                                                                                              |
|                |       | BH: doce pulsos + IRM para red IT + RFI de clase A1                                                                                              |
|                |       | BM: doce pulsos + RCD para red TN/TT + terminales NAMUR + clase A1 RFI <sup>1)</sup>                                                             |
| Freno          | 18    | B: IGBT del freno montado                                                                                                                        |
|                | 10    | X: Sin IGBT del freno                                                                                                                            |
|                |       | C: Safe Torque Off con relé de seguridad Pilz                                                                                                    |
|                |       | D: Safe Torque Off con relé de seguridad Pilz e IGBT del freno                                                                                   |
|                |       | R: Terminales regenerativos                                                                                                                      |
|                |       | M: botón de parada de emergencia CEI (con relé de seguridad Pilz)                                                                                |
|                |       | N: botón de parada de emergencia CEI (con l'ele de segundad Pilz)  N: botón de parada de emergencia CEI con IGBT del freno y terminales de freno |
|                |       | P: botón de parada de emergencia CEI con terminales de regeneración                                                                              |
| Display        | 19    |                                                                                                                                                  |
| Display        |       | G: Panel de control local gráfico LCP                                                                                                            |
| Barnizado PCB  | 20    | C: PCB barnizada                                                                                                                                 |



| Descripción    | Pos.  | Opción posible                                                                                         |
|----------------|-------|--------------------------------------------------------------------------------------------------------|
| Opción de      | 21    | X: sin opción de alimentación                                                                          |
| alimentación   |       | 3: desconexión de red y fusible                                                                        |
|                |       | 5: desconexión de red, fusible y carga compartida                                                      |
|                |       | 7: Fusible                                                                                             |
|                |       | A: fusible y carga compartida                                                                          |
|                |       | D: Carga compartida                                                                                    |
|                |       | E: desconexión de red, contactor y fusibles                                                            |
|                |       | F: magnetotérmico de red, contactor y fusibles                                                         |
|                |       | G: desconexión de red, contactor, terminales de carga compartida y fusibles                            |
|                |       | H: magnetotérmico de red, contactor, terminales de carga compartida y fusibles                         |
|                |       | J: Magnetotérmico de red y fusibles                                                                    |
|                |       | K: magnetotérmico de red, terminales de carga compartida y fusibles                                    |
| Terminales de  | 22    | X: sin opción                                                                                          |
| potencia y     |       | E: terminales de alimentación protegidos con fusible de 30 A                                           |
| arrancadores   |       | F: terminales de alimentación protegidos con fusible de 30 A y arrancador manual del motor de 2,5-4 A  |
| del motor      |       | G: terminales de alimentación protegidos con fusible de 30 A y arrancador manual del motor de 4-6,3 A  |
|                |       | H: terminales de alimentación protegidos con fusible de 30 A y arrancador manual del motor de 6,3-10 A |
|                |       | J: terminales de alimentación protegidos con fusible de 30 A y arrancador manual del motor de 10-16 A  |
|                |       | K: dos arrancadores manuales del motor de 2,5 a 4 A                                                    |
|                |       | L: dos arrancadores manuales del motor de 4 a 6,3 A                                                    |
|                |       | M: dos arrancadores manuales del motor de 6,3 a 10 A                                                   |
|                |       | N: dos arrancadores manuales del motor de 10 a 16 A                                                    |
| Fuente de      | 23    | X: sin opción                                                                                          |
| alimentación   |       | H: fuente de alimentación de 24 V, 5 A (uso del cliente)                                               |
| auxiliar de    |       | J: Supervisión de temperatura externa                                                                  |
| 24 V y         |       | G: fuente de alimentación de 24 V, 5 A (uso del cliente) y supervisión de la temperatura externa       |
| supervisión de |       |                                                                                                        |
| la temperatura |       |                                                                                                        |
| externa        |       |                                                                                                        |
| Versión de     | 24–27 | Software actual                                                                                        |
| software       |       |                                                                                                        |
| Idioma del     | 28    | X: paquete de idioma estándar                                                                          |
| software       |       |                                                                                                        |

Tabla 13.4 Código descriptivo de pedido de los alojamientos F1-F4 y F8-F13<sup>2)</sup>

 $<sup>1) \</sup> Se \ requiere \ tarjeta \ del \ termistor \ PTC \ VLT^{@} \ PTC \ Thermistor \ Card \ MCB \ 112 \ y \ tarjeta \ de \ rel\'e \ ampliada \ VLT^{@} \ Extended \ Relay \ Card \ MCB \ 113.$ 



## 13.1.3 Opciones de pedido para todos los alojamientos de convertidores VLT® HVAC Drive FC 102

| Descripción                                | Pos.  | Opción posible                                 |
|--------------------------------------------|-------|------------------------------------------------|
| Opciones A                                 | 29–30 | AX: sin opción A                               |
|                                            |       | A0: VLT® PROFIBUS DP V1 MCA 101                |
|                                            |       | A4: VLT® DeviceNet MCA 104                     |
|                                            |       | AG: VLT® LonWorks MCA 108                      |
|                                            |       | AJ: VLT <sup>®</sup> BACnet MCA 109            |
|                                            |       | AK: VLT® BACnet/IP MCA 125                     |
|                                            |       | AL: VLT® PROFINET MCA 120                      |
|                                            |       | AN: VLT® EtherNet/IP MCA 121                   |
|                                            |       | AQ: VLT® POWERLINK MCA 122                     |
| Opciones B                                 | 31–32 | BX: sin opción                                 |
|                                            |       | B0: VLT® Analog I/O Option MCB 109             |
|                                            |       | B2: VLT® PTC Thermistor Card MCB 112           |
|                                            |       | B4: VLT® Sensor Input Option MCB 114           |
|                                            |       | BK: VLT® General Purpose I/O Module MCB 101    |
|                                            |       | BP: VLT® Relay Card MCB 105                    |
| Opciones C0/ E0                            | 33–34 | CX: sin opción                                 |
| Opciones C1 / A/B en adaptador de opción C | 35    | X: sin opción                                  |
|                                            |       | R: VLT® Extended Relay Card MCB 113            |
| Software de opción C /                     | 36–37 | XX: controlador estándar                       |
| opciones E1                                |       |                                                |
| Opciones D                                 | 38–39 | DX: sin opción                                 |
|                                            |       | D0: suministro externo de 24 V CC VLT® MCB 107 |

Tabla 13.5 Código descriptivo de pedido para las opciones de FC 102

## 13.2 Números de pedido de los kits de opción

## 13.2.1 Números de pedido para la opción D: fuente de alimentación de seguridad de 24 V

| Descripción                 | Número de pedido  |           |
|-----------------------------|-------------------|-----------|
|                             | Sin revestimiento | Barnizado |
|                             | barnizado         |           |
| VLT® 24 V DC Supply MCB 107 | 130B1108          | 130B1208  |

Tabla 13.6 Números de pedido para la opción D

## 13.2.2 Números de pedido de las opciones de software

| Descripción                                                 | Número de pedido |
|-------------------------------------------------------------|------------------|
| VLT® Software de configuración MCT 10: 1 usuario.           | 130B1000         |
| VLT® Software de configuración MCT 10: 5 usuarios.          | 130B1001         |
| VLT® Software de configuración MCT 10: 10 usuarios.         | 130B1002         |
| VLT® Software de configuración MCT 10: 25 usuarios.         | 130B1003         |
| VLT® Software de configuración MCT 10: 50 usuarios.         | 130B1004         |
| VLT® Software de configuración MCT 10: 100 usuarios.        | 130B1005         |
| VLT® Software de configuración MCT 10: usuarios ilimitados. | 130B1006         |

Tabla 13.7 Números de pedido de las opciones de software



## 13.2.3 Números de pedido de los kits

| Тіро                             | Descripción                                                                                                                                                                                                                                       | Número de pedido           |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Hardware diverso                 | 1                                                                                                                                                                                                                                                 |                            |
| USB en la puerta, E1 y F1-F13    | Kit de cable prolongador de USB que permite acceder a los controles                                                                                                                                                                               | E1-E2: 130B1156            |
| •                                | de la unidad a través del ordenador portátil sin necesidad de abrir el                                                                                                                                                                            | F1-F13: 176F1784           |
|                                  | convertidor de frecuencia.                                                                                                                                                                                                                        |                            |
| Entrada superior para los cables | Permite la instalación de los cables de motor a través de la parte                                                                                                                                                                                | 400 mm (15,7 in), armario: |
| de motor, F1/F3                  | superior del armario del lado del motor. Debe utilizarse con el kit de                                                                                                                                                                            | 176F1838                   |
|                                  | terminales del motor común. Solo para su uso con alojamientos                                                                                                                                                                                     | 600 mm (23,6 in), armario: |
|                                  | F1/F3.                                                                                                                                                                                                                                            | 176F1839                   |
| Entrada superior de los cables   | Permite la instalación de los cables de motor a través de la parte                                                                                                                                                                                | 400 mm (15,7 in), armario: |
| de motor, F2/F4                  | superior del armario del lado del motor. Debe utilizarse con el kit de                                                                                                                                                                            | 176F1840                   |
|                                  | terminales del motor común. Solo para su uso con alojamientos                                                                                                                                                                                     | 600 mm (23,6 in), armario: |
|                                  | F2/F4.                                                                                                                                                                                                                                            | 176F1841                   |
| Entrada superior de los cables   | Permite la instalación de los cables de motor a través de la parte                                                                                                                                                                                | Consultar en fábrica       |
| del motor,                       | superior del armario del lado del motor. Debe utilizarse con el kit de                                                                                                                                                                            |                            |
| F8-F13                           | terminales del motor común. Solo para su uso con alojamientos F8-                                                                                                                                                                                 |                            |
|                                  | -F13.                                                                                                                                                                                                                                             |                            |
| Entrada superior de los cables   | Permite la instalación de los cables de red a través de la parte                                                                                                                                                                                  | 400 mm (15,7 in), armario: |
| de red, F1-F2                    | superior del armario del lado de alimentación. El kit debe encargarse                                                                                                                                                                             | 176F1832                   |
|                                  | junto al kit de terminales del motor común. Solo para su uso con                                                                                                                                                                                  | 600 mm (23,6 in), armario: |
|                                  | alojamientos F1-F2.                                                                                                                                                                                                                               | 176F1833                   |
| Entrada superior para cables de  | Permite la instalación de los cables de red a través de la parte                                                                                                                                                                                  | 400 mm (15,7 in), armario: |
| red, F3-F4 con sistema de        | superior del armario del lado de alimentación. El kit debe encargarse                                                                                                                                                                             | 176F1834                   |
| desconexión                      | junto al kit de terminales del motor común. Solo para alojamientos                                                                                                                                                                                | 600 mm (23,6 in), armario: |
| desentation                      | F3-F4 con sistema de desconexión.                                                                                                                                                                                                                 | 176F1835                   |
| Entrada superior para cables de  | Permite la instalación de los cables de red a través de la parte                                                                                                                                                                                  | 400 mm (15,7 in), armario: |
| red, F3-F4                       | superior del armario del lado de alimentación. El kit debe encargarse                                                                                                                                                                             | 176F1836                   |
| .ca, . 5                         | junto al kit de terminales del motor común. Solo para alojamientos                                                                                                                                                                                | 600 mm (23,6 in), armario: |
|                                  | F3-F4.                                                                                                                                                                                                                                            | 176F1837                   |
| Entrada superior para cables de  | Permite la instalación de los cables de red a través de la parte                                                                                                                                                                                  | Consultar en fábrica       |
| red,                             | superior del armario del lado de alimentación. El kit debe encargarse                                                                                                                                                                             | Consultar en lastica       |
| F8-F13                           | junto al kit de terminales del motor común. Solo para su uso con                                                                                                                                                                                  |                            |
|                                  | alojamientos F8-F13.                                                                                                                                                                                                                              |                            |
| Entrada superior, cables de      | Permite la instalación de los cables de fieldbus a través de la parte                                                                                                                                                                             | 176F1742                   |
| fieldbus, E2                     | superior del convertidor. Al instalarlo, el kit cuenta con el nivel de                                                                                                                                                                            | ., 5, .2                   |
|                                  | protección IP20/chasis, pero puede utilizarse un terminal de unión                                                                                                                                                                                |                            |
|                                  | diferente para aumentar la clasificación de protección. Solo en el caso                                                                                                                                                                           |                            |
|                                  | del alojamiento E2.                                                                                                                                                                                                                               |                            |
| Terminales comunes del motor,    | Este kit proporciona las barras de bus y el hardware necesarios para                                                                                                                                                                              | 400 mm (15,7 in), armario: |
| F1-F4                            | conectar los terminales del motor desde los inversores paralelos a un                                                                                                                                                                             | 176F1845                   |
|                                  | terminal único (por fase) para adaptar la instalación del kit de entrada                                                                                                                                                                          | 600 mm (23,6 in), armario: |
|                                  | superior del lado del motor. Este kit es equivalente a la opción de                                                                                                                                                                               | 176F1846                   |
|                                  | terminal del motor común de un convertidor de frecuencia. No es                                                                                                                                                                                   | ., 5. 1010                 |
|                                  |                                                                                                                                                                                                                                                   |                            |
|                                  | necesario para instalar el kit de entrada superior del lado del motor si l                                                                                                                                                                        |                            |
|                                  | necesario para instalar el kit de entrada superior del lado del motor si<br>se especificó la opción de terminal del motor común cuando se                                                                                                         |                            |
|                                  | se especificó la opción de terminal del motor común cuando se                                                                                                                                                                                     |                            |
|                                  | se especificó la opción de terminal del motor común cuando se<br>solicitó el convertidor de frecuencia.                                                                                                                                           |                            |
|                                  | se especificó la opción de terminal del motor común cuando se<br>solicitó el convertidor de frecuencia.<br>También se recomienda para conectar la salida de un convertidor de                                                                     |                            |
|                                  | se especificó la opción de terminal del motor común cuando se<br>solicitó el convertidor de frecuencia.<br>También se recomienda para conectar la salida de un convertidor de<br>frecuencia a un filtro de salida o a un contactor de salida. Los |                            |
|                                  | se especificó la opción de terminal del motor común cuando se<br>solicitó el convertidor de frecuencia.<br>También se recomienda para conectar la salida de un convertidor de                                                                     |                            |



| Tipo                                | Descripción                                                              | Número de pedido             |
|-------------------------------------|--------------------------------------------------------------------------|------------------------------|
| Protección NEMA 3R, para E2         | Protección concebida para su uso con convertidores de frecuencia         |                              |
|                                     | IP00/IP20/Chasis, para alcanzar un clasificación de protección de        |                              |
|                                     | entrada NEMA 3R o NEMA 4. Estas protecciones han sido diseñadas          |                              |
|                                     | para exteriores y proporcionar así un cierto grado de protección         | Protección soldada: 176F0298 |
|                                     | frente a la intemperie. Solo para su uso con alojamientos E2.            | Protección Rittal: 176F1852  |
| Pedestal, E1-E2                     | Este kit está formado por un pedestal de 400 mm (15,8 in) de altura,     | 176F6739                     |
|                                     | que permite el montaje en suelo del convertidor. La parte frontal del    |                              |
|                                     | pedestal tiene aberturas para la entrada de aire de refrigeración para   |                              |
|                                     | los componentes de potencia. Solo para su uso con alojamientos E1-       |                              |
|                                     | -E2.                                                                     |                              |
| Placa de opciones de entrada,       | Permite agregar fusibles, conmutadores de desconexión / fusibles,        |                              |
| E1-E2                               | filtros RFI, filtros RFI / fusibles y filtros RFI / conmutadores de      |                              |
|                                     | desconexión / fusibles. Solo para su uso con alojamientos E1-E2.         | Consultar en fábrica         |
| Conversión a IP20, E2               | Suministra al convertidor clasificación de protección de entrada IP20    |                              |
|                                     | con protección de chasis. Solo para alojamientos E2.                     | 176F1884                     |
| Kits de refrigeración de canal po   | osterior                                                                 |                              |
| Entrada/salida posterior, E1        | Permite que el aire de refrigeración entre y salga por la parte          | 176F1946                     |
|                                     | posterior del convertidor. Este kit incluye cubierta superior e inferior |                              |
|                                     | para alojamientos E1 con clasificación de protección IP21/54 (tipo       |                              |
|                                     | 1/12).                                                                   |                              |
| Entrada/salida posterior, E2        | Permite que el aire de refrigeración entre y salga por la parte          | Protección soldada: 176F1861 |
|                                     | posterior del convertidor. Este kit incluye cubierta superior e inferior | Protección Rittal: 176F1783  |
|                                     | para alojamientos E2 con clasificación de protección IP00 (chasis).      |                              |
| Entrada/salida posterior, F1-F13    | Permite que el aire de refrigeración entre y salga por la parte          | Consultar en fábrica         |
|                                     | posterior del convertidor. El convertidor ya incluye las placas. Póngase |                              |
|                                     | en contacto con la fábrica para obtener las instrucciones de             |                              |
|                                     | instalación.                                                             |                              |
| Entrada inferior / salida superior, | Permite que el aire de refrigeración entre por la parte inferior y salga | 2000 mm (78,7 in), armario:  |
| E2                                  | por la parte superior del convertidor. Este kit solo se utiliza para     | 176F1850                     |
|                                     | alojamientos E2.                                                         | 2200 mm (86,6 in), armario:  |
|                                     |                                                                          | 176F0299                     |
| Salida superior, E2                 | Permite que el aire de refrigeración salga por la parte superior del     | 176F1776                     |
|                                     | convertidor. Este kit solo se utiliza para alojamientos E2.              |                              |
| LCP                                 |                                                                          |                              |
| LCP 101                             | Panel de control local numérico (NLCP)                                   | 130B1124                     |
| LCP 102                             | Panel de control local gráfico (GLCP)                                    | 130B1107                     |
| Cable del LCP                       | Cable LCP individual, 3 m (9 ft)                                         | 175Z0929                     |
| Kit LCP, IP21                       | Kit de montaje en panel con LCP gráfico, sujeciones, cable de 3 m        | 130B1113                     |
|                                     | (9 ft) y junta                                                           |                              |
| Kit LCP, IP21                       | Kit de montaje en panel con LCP numérico, sujeciones y junta             | 130B1114                     |
|                                     | incluidos                                                                |                              |
| Kit LCP, IP21                       | Kit de montaje en panel para todos los LCP, con sujeciones, cable de     | 130B1117                     |
|                                     | 3 m (9 ft) y junta                                                       |                              |

Tabla 13.8 Kits disponibles para los alojamientos E1-E2 y F1-F13

### 13.2.4 Códigos de pedido de las opciones A: Buses de campo

| Descripción              | Número de pedido  |           |
|--------------------------|-------------------|-----------|
|                          | Sin revestimiento | Barnizado |
|                          | barnizado         |           |
| VLT® PROFIBUS DP MCA 101 | 130B1100          | 130B1200  |
| VLT® DeviceNet MCA 104   | 130B1102          | 130B1202  |
| VLT® LonWorks MCA 108    | 130B1106          | 130B1206  |
| VLT® BACnet MCA 109      | 130B1144          | 130B1244  |
| VLT® PROFINET MCA 120    | 130B1135          | 130B1235  |
| VLT® EtherNet/IP MCA 121 | 130B1119          | 130B1219  |
| VLT® Modbus TCP MCA 122  | 130B1196          | 130B1296  |
| VLT® Powerlink MCA 123   | 130B1489          | 130B1490  |
| VLT® VACnet/IP MCA 125   | -                 | 130B1586  |

#### Tabla 13.9 Códigos de pedido de las opciones A

Para obtener información sobre el fieldbus y la compatibilidad de opciones de aplicaciones con versiones de software anteriores, póngase en contacto con el distribuidor de Danfoss.

## 13.2.5 Códigos de pedido para las opciones B: Extensiones funcionales

| Descripción                         | Número de pedido  |           |
|-------------------------------------|-------------------|-----------|
|                                     | Sin revestimiento | Barnizado |
|                                     | barnizado         |           |
| VLT® General Purpose I/O MCB 101    | 130B1125          | 130B1212  |
| VLT <sup>®</sup> Relay Card MCB 105 | 130B1110          | 130B1210  |
| VLT® Analog I/O MCB 109             | 130B1143          | 130B1243  |
| VLT® PTC Thermistor Card MCB 112    | -                 | 130B1137  |
| VLT® Sensor Input MCB 114           | 130B1172          | 130B1272  |

Tabla 13.10 Códigos de pedido para las opciones B

## 13.2.6 Códigos de pedido para las opciones C: control de movimientos y tarjeta de relé

| Descripción                      | Número de pedido  |           |
|----------------------------------|-------------------|-----------|
|                                  | Sin revestimiento | Barnizado |
|                                  | barnizado         |           |
| VLT® Extended Relay Card MCB 113 | 130B1164          | 130B1264  |

Tabla 13.11 Códigos de pedido para las opciones C

### 13.3 Números de pedido para filtros y resistencias de frenado

Consulte las siguientes guías de diseño para obtener las especificaciones de dimensionamiento y los números de pedido de los filtros y las resistencias de frenado:

- Guía de diseño de la resistencia de frenado VLT® Brake Resistor MCE 101.
- Guía de diseño de los filtros armónicos VLT<sup>®</sup> Advanced Harmonic Filter AHF 005/AHF 010.
- Guía de diseño de los filtros de salida.

#### 13.4 Repuestos

Consulte la tienda VLT® o el configurador de convertidores de frecuencia (www.danfoss.com/Spain) para obtener información sobre los repuestos disponibles para su aplicación.

## 14 Anexo

## 14.1 Abreviaturas y símbolos

| 60° AVM                     | Modulación asíncrona de vectores de 60°             |
|-----------------------------|-----------------------------------------------------|
| Α                           | Amperio                                             |
| CA                          | Corriente alterna                                   |
| AD                          | Descarga por el aire                                |
| AEO                         | Optimización automática de la energía               |
| Al                          | Entrada analógica                                   |
| AIC                         | Corriente interruptiva en amperios                  |
| AMA                         | Adaptación automática del motor                     |
| AWG                         | Calibre de cables estadounidense                    |
| °C                          | Grados Celsius                                      |
| СВ                          | Magnetotérmico                                      |
| CD                          | Descarga constante                                  |
| CDM                         | Módulo del convertidor de frecuencia completo:      |
|                             | el convertidor de frecuencia, la sección de alimen- |
|                             | tación y los componentes auxiliares                 |
| CE                          | Conformidad europea (normas europeas de             |
|                             | seguridad)                                          |
| CM                          | Modo común                                          |
| СТ                          | Par constante                                       |
| СС                          | Corriente continua                                  |
| DI                          | Entrada digital                                     |
| DM                          | Modo diferencial                                    |
| D-TYPE                      | Dependiente del convertidor de frecuencia           |
| CEM                         | Compatibilidad electromagnética                     |
| EMF                         | Fuerza contraelectromotriz                          |
| ETR                         | Relé termoelectrónico                               |
| °F                          | Grados Fahrenheit                                   |
| f <sub>VELOCIDAD</sub> FIJA | La frecuencia del motor cuando se activa la         |
|                             | función de velocidad fija                           |
| f <sub>M</sub>              | Frecuencia del motor                                |
| f <sub>MÁX.</sub>           | Frecuencia de salida máxima que el convertidor      |
|                             | de frecuencia aplica a su salida                    |
| f <sub>MÍN.</sub>           | Frecuencia mínima del motor desde el convertidor    |
|                             | de frecuencia                                       |
| f <sub>M,N</sub>            | Frecuencia nominal del motor                        |
| FC                          | Convertidor de frecuencia                           |
| FSP                         | Bomba de velocidad fija                             |
| HIPERFACE®                  | HIPERFACE® es una marca registrada de Stegmann      |
| НО                          | Sobrecarga alta                                     |
| CV                          | Caballos de vapor                                   |
| HTL                         | Pulsos del encoder HTL (10-30 V), (lógica de        |
|                             | transistor de tensión alta)                         |
| Hz                          | Hercio                                              |
| linv                        | Intensidad nominal de salida del convertidor        |
| ILÍM.                       | Límite de intensidad                                |
| I <sub>M,N</sub>            | Corriente nominal del motor                         |
| I <sub>VLT</sub> , MÁX.     | Intensidad de salida máxima                         |
| I <sub>VLT,N</sub>          | Corriente nominal de salida suministrada por el     |
|                             | convertidor                                         |

| LUL                    | Wilshamaia                                        |
|------------------------|---------------------------------------------------|
| kHz                    | Kilohercio                                        |
| LCP                    | Panel de control local                            |
| Lsb                    | Bit menos significativo                           |
| m                      | Metro                                             |
| mA                     | Miliamperio                                       |
| MCM                    | Mille Circular Mil, unidad norteamericana de      |
|                        | sección de cables                                 |
| MCT                    | Herramienta de control de movimientos             |
| mH                     | Inductancia en milihenrios                        |
| mm                     | Milímetro                                         |
| ms                     | Milisegundo                                       |
| Msb                    | Bit más significativo                             |
| ηνιτ                   | Rendimiento del convertidor de frecuencia         |
|                        | definido como la relación entre la potencia de    |
|                        | salida y la potencia de entrada                   |
| nF                     | Capacitancia en nanofaradios                      |
| NLCP                   | Panel de control local numérico                   |
| Nm                     | Newton metro                                      |
| NO                     | Sobrecarga normal                                 |
| ns                     | Velocidad del motor síncrono                      |
| Parámetros             | Los cambios realizados en los parámetros en línea |
| en línea y             | se activan inmediatamente después de cambiar el   |
| fuera de               | valor de dato                                     |
| línea                  |                                                   |
| P <sub>br,cont</sub> . | Potencia nominal de la resistencia de frenado     |
|                        | (potencia media durante el frenado continuo)      |
| PCB                    | Placa de circuito impreso                         |
| PCD                    | Datos de proceso                                  |
| PDS                    | Sistema Power Drive: un CDM y un motor            |
| PELV                   | Tensión de protección muy baja                    |
| P <sub>m</sub>         | Potencia nominal de salida del convertidor de     |
|                        | frecuencia como sobrecarga alta                   |
| P <sub>M,N</sub>       | Potencia nominal del motor                        |
| Motor PM               | Motor de magnetización permanente                 |
| PID de                 | Controlador diferencial proporcional integrado    |
| proceso                | que mantiene la velocidad, la presión, la         |
|                        | temperatura, etc.                                 |
| R <sub>br, nom</sub>   | Valor de resistencia nominal que garantiza una    |
|                        | potencia de frenado en el eje del motor del       |
|                        | 150/160 % durante 1 minuto                        |
| RCD                    | Dispositivo de corriente diferencial              |
| Regeneración           | Terminales regenerativos                          |
| R <sub>mín</sub> .     | Resistencia de frenado mínima permitida por el    |
|                        | convertidor de frecuencia                         |
| RMS                    | Media cuadrática                                  |
| RPM                    | Revoluciones por minuto                           |
| R <sub>rec</sub>       | Resistencia recomendada de la resistencia de      |
|                        | frenado de Danfoss                                |
| S                      | Segundo                                           |
| SCCR                   | Intensidad nominal de cortocircuito               |



<u>Janfoss</u>

| SFAVM             | Modulación asíncrona de vectores orientada al      |
|-------------------|----------------------------------------------------|
|                   | flujo del estátor                                  |
| STW               | Código de estado                                   |
| SMPS              | Fuente de alimentación del modo de                 |
|                   | conmutación                                        |
| THD               | Distorsión armónica total                          |
| T <sub>LÍM.</sub> | Límite de par                                      |
| TTL               | Pulsos del encoder TTL (5 V), lógica de transistor |
| U <sub>M,N</sub>  | Tensión nominal del motor                          |
| UL                | Underwriters Laboratories (organización de EE.     |
|                   | UU. para la certificación de seguridad)            |
| V                 | Voltios                                            |
| VSP               | Bomba de velocidad variable                        |
| VT                | Par variable                                       |
| VVC <sup>+</sup>  | Control vectorial de la tensión +                  |

Tabla 14.1 Abreviaturas y símbolos

#### 14.2 Definiciones

#### Resistencia de frenado

La resistencia de frenado es un módulo capaz de absorber la potencia de frenado generada durante el frenado regenerativo. Esta potencia de frenado regenerativo aumenta la tensión del enlace de CC y un chopper de frenado garantiza que la potencia se transmita a la resistencia de frenado.

#### Par de arranque

Ilustración 14.1 Gráfico de par de arranque

#### Inercia

El eje del motor se encuentra en modo libre. Sin par en el motor.

### Características de par constante (CT)

Características de par constante utilizadas para todas las aplicaciones, como cintas transportadoras, bombas de desplazamiento y grúas.

#### Inicialización

Si se lleva a cabo una inicialización (parámetro 14-22 Operation Mode), el convertidor de frecuencia vuelve a los ajustes predeterminados.

#### Ciclo de trabajo intermitente

Una clasificación de trabajo intermitente es una secuencia de ciclos de trabajo. Cada ciclo está formado por un periodo en carga y un periodo sin carga. El funcionamiento puede ser de trabajo periódico o de trabajo no periódico.

#### Factor de potencia

El factor de potencia real (lambda) tiene en cuenta todos los armónicos y siempre es inferior al factor de potencia ( $\cos \phi$ ), que solo tiene en cuenta el armónico fundamental de corriente y de tensión.

$$\cos \phi = \frac{P(kW)}{P(kVA)} = \frac{U\lambda x I\lambda x \cos \phi}{U\lambda x I\lambda}$$

Cos  $\phi$  también se conoce como «factor de potencia de desplazamiento».

Tanto lambda como cos  $\phi$  están indicados para los convertidores de frecuencia VLT® de Danfoss en el capétulo 7.3 Fuente de alimentación de red.

El factor de potencia indica hasta qué punto el convertidor de frecuencia impone una carga a la alimentación. Cuanto menor es el factor de potencia, mayor es IRMS para el mismo rendimiento en kW. Además, un factor de potencia elevado indica que las corrientes armónicas son bajas.

Todos los convertidores de frecuencia de Danfoss tienen bobinas de CC integradas en el enlace de CC para producir un factor de potencia alto y reducir el THD en la fuente de alimentación principal.

#### Entrada de pulsos / codificador incremental

Un sensor digital externo utilizado para proporcionar información sobre la velocidad y la dirección del motor. Los encoders se utilizan para realimentación de precisión para alta velocidad en aplicaciones altamente dinámicas.

#### Aiusta

0 / min.

Guarde ajustes de parámetros en cuatro configuraciones distintas. Cambie entre estos cuatro ajustes de parámetros y editar un ajuste mientras otro está activo.

#### Compensación de deslizamiento

El convertidor de frecuencia compensa el deslizamiento del motor añadiendo un suplemento a la frecuencia que sigue a la carga medida del motor, manteniendo la velocidad del mismo casi constante.

#### Smart logic control (SLC)

SLC es una secuencia de acciones definidas por el usuario que se ejecuta cuando el SLC evalúa como verdaderos los eventos asociados definidos por el usuario. (*Grupo de parámetros 13-\*\* Lógica inteligente*).

#### Bus estándar FC

Incluye el bus RS485 con el protocolo FC o el protocolo MC. Consulte *parámetro 8-30 Protocol*.



#### **Termistor**

Resistencia dependiente de la temperatura que se sitúa en el punto donde ha de controlarse la temperatura (convertidor o motor).

#### Desconexión

Estado al que se pasa en situaciones de fallo; por ejemplo, si el convertidor de frecuencia se sobrecalienta o cuando este protege el motor, el proceso o el mecanismo. Se impide el rearranque hasta que desaparece la causa del fallo y se anula el estado de desconexión.

#### Bloqueo por alarma

Estado al que se pasa en situaciones de fallo cuando el convertidor de frecuencia se protege a sí mismo y requiere una intervención física. Un bloqueo por alarma solo puede cancelarse cortando la alimentación, eliminando la causa del fallo y volviendo a conectar el convertidor. Se impide el rearranque hasta anularse el estado de desconexión mediante la activación del reinicio.

#### Características VT

Características de par variable utilizadas en bombas y ventiladores.

#### 14.3 Instalación y ajuste de RS485

RS485 es una interfaz de bus de dos cables compatible con la topología de red multipunto. Los nodos se puede conectar como bus, o mediante cables de derivación desde una línea de tronco común. Se pueden conectar un total de 32 nodos a un único segmento de red.

Los repetidores dividen los segmentos de la red. Tenga en cuenta que cada repetidor funciona como un nodo dentro del segmento en el que está instalado. Cada nodo conectado en una red determinada debe tener una dirección de nodo única en todos los segmentos.

Cada segmento debe terminarse en ambos extremos, utilizando bien el conmutador de terminación (S801) de los convertidores, o bien una red predispuesta de resistencias de terminación. Utilice siempre cable de par trenzado y apantallado (STP) para cablear el bus y siga siempre unas buenas prácticas de instalación.

Es importante disponer de una conexión a tierra de baja impedancia para el apantallamiento de cada nodo, incluso a frecuencias altas. De este modo, conecte una gran superficie del apantallamiento a la toma de tierra, por ejemplo, mediante una abrazadera o un prensacables conductor. Si es necesario, utilice cables ecualizadores de potencial para mantener el mismo potencial de masa en toda la red, especialmente en instalaciones con cables largos.

Para evitar diferencias de impedancia, utilice siempre el mismo tipo de cable en toda la red. Cuando conecte un motor al convertidor de frecuencia, utilice siempre cable de motor apantallado.

| Cable             | Par trenzado apantallado (STP)            |
|-------------------|-------------------------------------------|
| Impedancia        | 120 Ω                                     |
| Longitud de cable | Máximo 1200 m (3937 ft), incluidos los    |
|                   | ramales conectables.                      |
|                   | Máximo 500 m (1640,5 ft) entre estaciones |

Tabla 14.2 Cable de motor

Uno o más convertidores de frecuencia pueden estar conectados a un controlador (o maestro) utilizando la interfaz normalizada RS485. El terminal 68 está conectado a la señal P (TX+, RX+), mientras que el terminal 69 esta conectado a la señal N (TX-, RX-). Consulte las ilustraciones en el *capétulo 10.16 Instalación conforme a CEM*.

Si hay más de un convertidor conectado a un maestro, utilice conexiones en paralelo.

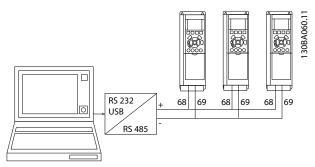



Ilustración 14.2 Conexiones en paralelo

Para evitar posibles corrientes ecualizadoras en el apantallamiento, conecte a tierra el apantallamiento de cables mediante el terminal 61, que está conectado al bastidor a través de un enlace RC.

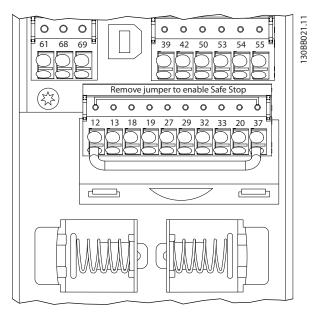



Ilustración 14.3 Terminales de la tarjeta de control

El bus RS485 debe terminarse con una resistencia de red en ambos extremos. Para este propósito, ajuste el interruptor S801 de la tarjeta de control en "ON". Para obtener más información, consulte capétulo 10.2 Esquema de cableado.

El protocolo de comunicación debe ajustarse a parámetro 8-30 Protocol.

## 14.3.1 Precauciones de compatibilidad electromagnética (EMC)

Se recomienda adoptar las siguientes precauciones de CEM para que la red RS485 funcione sin interferencias.

Deben cumplirse las disposiciones nacionales y locales que sean pertinentes, por ejemplo, las relativas a la conexión a tierra de protección. El cable de comunicación RS485 debe mantenerse alejado de los cables del motor y de la resistencia de frenado para evitar el acoplamiento del ruido de alta frecuencia de un cable con otro.

Normalmente una distancia de 200 mm (8 in) es suficiente. Sin embargo, en situaciones en las que los cables van en paralelo durante largas distancias, se recomienda guardar la mayor distancia posible entre los cables. Si el cruce es inevitable, el cable RS485 debe cruzar los cables de motor o de resistencia de frenado en un ángulo de 90°.

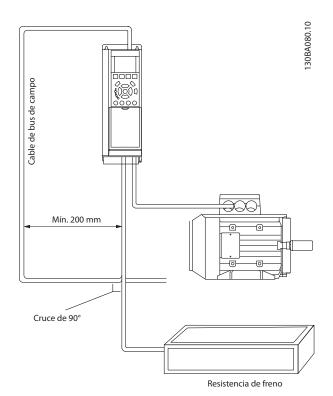



Ilustración 14.4 Precauciones de compatibilidad electromagnética (EMC)

## 14.4 RS485: Aspectos generales del protocolo FC

### 14.4.1 Aspectos generales del protocolo FC

El protocolo FC, también conocido como bus FC o bus estándar, es el fieldbus estándar de Danfoss. Define una técnica de acceso conforme al principio maestro/esclavo para las comunicaciones a través de un fieldbus. Pueden conectarse al bus un maestro y un máximo de 126 esclavos. El maestro selecciona individualmente los esclavos mediante un carácter de dirección incluido en el telegrama. Un esclavo no puede transmitir por sí mismo sin recibir previamente una petición para hacerlo, y tampoco es posible la transmisión directa de mensajes entre esclavos. Las comunicaciones se producen en modo semidúplex.

La función de maestro no se puede transmitir a otro nodo (sistema de maestro único).

La capa física es RS485, de manera que se utiliza el puerto RS485 integrado en el convertidor de frecuencia. El protocolo FC admite varios formatos de telegrama:

- un formato breve de 8 bytes para datos de proceso,
- un formato largo de 16 bytes, que también incluye un canal de parámetros,
- un formato para textos.

#### 14.4.2 Ajustes del convertidor

Ajuste los siguientes parámetros para activar el protocolo FC para el convertidor de frecuencia.

| Número de parámetro     | Ajuste                                  |
|-------------------------|-----------------------------------------|
| Parámetro 8-30 Protocol | FC                                      |
| Parámetro 8-31 Address  | 1–126                                   |
| Parámetro 8-32 Baud     | 2400–115200                             |
| Rate                    |                                         |
| Parámetro 8-33 Parity / | Paridad par, 1 bit de parada (predeter- |
| Stop Bits               | minado)                                 |

Tabla 14.3 Parámetros de protocolo FC

1 /



## 14.5 RS485: estructura de telegrama del protocolo FC

## 14.5.1 Contenido de un carácter (byte)

La transferencia de cada carácter comienza con un bit de inicio. A continuación, se transfieren 8 bits de datos, que corresponden a un byte. Cada carácter está asegurado mediante un bit de paridad. Este bit se ajusta a 1 cuando alcanza la paridad. La paridad se da cuando hay un número equivalente de 1 carácter en los 8 bits de datos y en el bit de paridad en total. Un bit de parada completa un carácter, por lo que consta de 11 bits en total.



Ilustración 14.5 Carácter (byte)

## 14.5.2 Estructura de telegramas

Cada telegrama tiene la siguiente estructura:

- Carácter de inicio (STX) = 02 Hex
- Un byte que indica la longitud del telegrama (LGE).
- Un byte que indica la dirección del convertidor (ADR).

A continuación, están los bytes de datos, en número variable según el tipo de telegrama.

Un byte de control de datos (BCC) completa el telegrama.



Ilustración 14.6 Estructura de telegramas

### 14.5.3 Longitud del telegrama (LGE)

La longitud de un telegrama es el número de bytes de datos más el byte de dirección ADR, más el byte de control de datos BCC.

- La longitud de los telegramas con 4 bytes de datos es: LGE = 4 + 1 + 1 = 6 bytes.
- La longitud de los telegramas con 12 bytes de datos es: LGE = 12 + 1 + 1 = 14 bytes.
- La longitud de los telegramas con textos es 10<sup>1)</sup>+n bytes.

1) El 10 representa los caracteres fijos, mientras que «n» es variable (dependiendo de la longitud del texto).

#### 14.5.4 Dirección del convertidor (ADR)

Se utilizan dos formatos diferentes para la dirección. El intervalo de direcciones del convertidor es de 1 a 31 o de 1 a 126.

- Formato de dirección 1-31
  - Bit 7 = 0 (formato de dirección 1-31 activado).
  - El bit 6 no se utiliza.
  - Bit 5 = 1: transmisión, los bits de dirección (0-4) no se utilizan.
  - Bit 5 = 0: sin transmisión.
  - Bit 0-4 = dirección del convertidor 1-31.
- Formato de dirección 1-126
  - Bit 7 = 1 (formato de dirección 1-126 activado).
  - Bit 0-6 = dirección del convertidor 1-126.
  - Bit 0-6 = 0 transmisión.

El esclavo devuelve el byte de la dirección sin cambios al maestro en el telegrama de respuesta.

## 14.5.5 Byte de control de datos (BCC)

La suma de verificación (checksum) se calcula como una función XOR. Antes de que se reciba el primer byte del telegrama, la suma de verificación calculada es 0.



## 14.5.6 Campo de datos

La estructura de los bloques de datos depende del tipo de telegrama. Hay tres tipos de telegramas y el tipo se aplica tanto a telegramas de control (maestro⇒esclavo) como a telegramas de respuesta (esclavo⇒maestro).

Los 3 tipos de telegrama son:

#### Bloque de proceso (PCD)

El PCD está formado por un bloque de datos de cuatro bytes (2 códigos) y contiene:

- Código de control y valor de referencia (de maestro a esclavo).
- Código de estado y frecuencia de salida actual (de esclavo a maestro).



Ilustración 14.7 PCD

#### Bloque de parámetros

El bloque de parámetros se utiliza para transferir parámetros entre un maestro y un esclavo. El bloque de datos está formado por 12 bytes (6 códigos) y también contiene el bloque de proceso.

130BA271.10

| <del>_</del> _ <del>_</del> _ <del>_</del> _ <del>_</del> _ |     |     |                     |                     |      |      | $\square$ |
|-------------------------------------------------------------|-----|-----|---------------------|---------------------|------|------|-----------|
| STX   LGE   ADR                                             | PKE | IND | PWE <sub>alto</sub> | PWE <sub>bajo</sub> | PCD1 | PCD2 | BCC       |

Ilustración 14.8 Bloque de parámetros

### Bloque de texto

El bloque de texto se utiliza para leer o escribir textos mediante el bloque de datos.

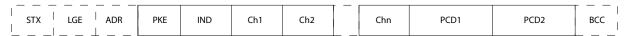



Ilustración 14.9 Bloque de texto

30BA270.10



## 14.5.7 Campo PKE

El campo PKE contiene dos subcampos:

- Orden de parámetro y respuesta AK.
- Número de parámetro PNU.

Ilustración 14.10 Campo PKE

Los números de bits del 12 al 15 transfieren órdenes de parámetros del maestro al esclavo y devuelven las respuestas procesadas del esclavo al maestro.

| Número de bit |    |    |    | Orden de parámetro                   |
|---------------|----|----|----|--------------------------------------|
| 15            | 14 | 13 | 12 |                                      |
| 0             | 0  | 0  | 0  | Sin orden.                           |
| 0             | 0  | 0  | 1  | Leer valor de parámetro.             |
| 0             | 0  | 1  | 0  | Escribir valor de parámetro en RAM   |
|               |    |    |    | (código).                            |
| 0             | 0  | 1  | 1  | Escribir valor de parámetro en RAM   |
|               |    |    |    | (doble código).                      |
| 1             | 1  | 0  | 1  | Escribir valor de parámetro en RAM y |
|               |    |    |    | EEPROM (doble código).               |
| 1             | 1  | 1  | 0  | Escribir valor de parámetro en RAM y |
|               |    |    |    | EEPROM (código).                     |
| 1             | 1  | 1  | 1  | Leer/escribir texto.                 |

Tabla 14.4 Órdenes de parámetro maestro⇒esclavo

| Número de bit |   |    |   | Respuesta                                |  |
|---------------|---|----|---|------------------------------------------|--|
| 15 14 13 12   |   | 12 |   |                                          |  |
| 0             | 0 | 0  | 0 | Sin respuesta.                           |  |
| 0             | 0 | 0  | 1 | Valor de parámetro transferido (código). |  |
| 0             | 0 | 1  | 0 | Valor de parámetro transferido (doble    |  |
|               |   |    |   | código).                                 |  |
| 0             | 1 | 1  | 1 | La orden no se puede ejecutar.           |  |
| 1             | 1 | 1  | 1 | Texto transferido.                       |  |

Tabla 14.5 Respuesta esclavo⇒maestro

Si la orden no se puede realizar, el esclavo envía esta respuesta:

0111 Orden no ejecutable

- y devuelve el siguiente informe de fallo en el valor del parámetro (PWE):

| PWE bajo | Informe de fallo                                   |
|----------|----------------------------------------------------|
| (Hex)    |                                                    |
| 0        | El número de parámetro utilizado no existe.        |
| 1        | No hay acceso de escritura para el parámetro       |
|          | definido.                                          |
| 2        | El valor de dato supera los límites del parámetro. |
| 3        | El subíndice utilizado no existe.                  |
| 4        | El parámetro no es de tipo matriz.                 |
| 5        | El tipo de datos no coincide con el parámetro      |
|          | definido.                                          |
| 11       | No es posible cambiar los datos del parámetro      |
|          | definido en el modo actual del convertidor.        |
|          | Algunos parámetros solo se pueden cambiar con      |
|          | el motor parado.                                   |
| 82       | No hay acceso de bus al parámetro definido.        |
| 83       | No es posible modificar datos por estar            |
|          | seleccionado el ajuste de fábrica.                 |

Tabla 14.6 Informe de fallo

## 14.5.8 Número de parámetro (PNU)

Los bits 0-11 transfieren los números de parámetros. La función del parámetro correspondiente se explica en la descripción del parámetro en la *Guía de programación*.

#### 14.5.9 Índice (IND)

El índice se utiliza junto con el número de parámetro para el acceso de lectura / escritura a los parámetros con un índice, por ejemplo, *parámetro 15-30 Alarm Log: Error Code*. El índice consta de un byte bajo y un byte alto.

Solo el byte bajo se utiliza como índice.

### 14.5.10 Valor de parámetro (PWE)

El bloque de valor de parámetro consta de 2 códigos (4 bytes) y el valor depende de la orden definida (AK). El maestro solicita un valor de parámetro cuando el bloque PWE no contiene ningún valor. Para cambiar el valor de un parámetro (escritura), escriba el nuevo valor en el bloque PWE y envíelo del maestro al esclavo.

Si el esclavo responde a una solicitud de parámetro (orden de lectura), se transfiere el valor de parámetro actual del bloque PWE y es devuelto al maestro. Si un parámetro no contiene un valor numérico, sino varias opciones de datos, por ejemplo, parámetro 0-01 Language [0] Inglés y \* [4]



Español, seleccione el valor de dato escribiéndolo en el bloque PWE. La comunicación serie solo es capaz de leer parámetros que tienen el tipo de dato 9 (cadena de texto).

Guía de diseño

De Parámetro 15-40 FC Type a parámetro 15-53 Power Card Serial Number contienen el tipo de dato 9.

Por ejemplo, se puede leer el tamaño del convertidor de frecuencia y el intervalo de tensión de red en *parámetro 15-40 FC Type*. Cuando se transfiere una cadena de texto (lectura), la longitud del telegrama varía, y los textos pueden tener distinta longitud. La longitud del telegrama se define en su segundo byte, LGE. Cuando se utiliza la transferencia de texto, el carácter de índice indica si se trata de una orden de lectura o de escritura.

Para leer un texto a través del bloque PWE, ajuste la orden del parámetro (AK) a F Hex. El carácter de índice de byte alto debe ser 4.

Algunos parámetros contienen texto que se puede escribir mediante el fieldbus. Para escribir un texto mediante el bloque PWE, ajuste la orden de parámetro (AK) a F Hex. El carácter de índice de byte alto debe ser 5.

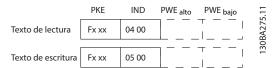



Ilustración 14.11 PWE

## 14.5.11 Tipos de datos admitidos

«Sin signo» significa que el telegrama no tiene ningún signo de funcionamiento.

| Tipos de datos | Descripción          |
|----------------|----------------------|
| 3              | Entero 16            |
| 4              | Entero 32            |
| 5              | Sin signo 8          |
| 6              | Sin signo 16         |
| 7              | Sin signo 32         |
| 9              | Cadena de texto      |
| 10             | Cadena de bytes      |
| 13             | Diferencia de tiempo |
| 33             | Reservado            |
| 35             | Secuencia de bits    |

Tabla 14.7 Tipos de datos admitidos

#### 14.5.12 Conversión

Los distintos atributos de cada parámetro se muestran en la sección de ajustes de fábrica. Los valores de parámetros que se transfieren son únicamente números enteros. Para transferir decimales se utilizan factores de conversión.

El *Parámetro 4-12 Motor Speed Low Limit [Hz]* tiene un factor de conversión de 0,1.

Para preajustar la frecuencia mínima a 10 Hz, transfiera el valor 100. Un factor de conversión de 0,1 significa que el valor transferido se multiplica por 0,1. El valor 100 se considerará, por tanto, como 10,0.

#### Ejemplos:

0 s⇒índice de conversión 0 0,00 s⇒índice de conversión -2 0 m/s⇒índice de conversión -3 0,00 m/s⇒índice de conversión -5

| Índice de conversión | Factor de conversión |
|----------------------|----------------------|
| 100                  |                      |
| 75                   |                      |
| 74                   |                      |
| 67                   |                      |
| 6                    | 1000000              |
| 5                    | 100000               |
| 4                    | 10000                |
| 3                    | 1000                 |
| 2                    | 100                  |
| 1                    | 10                   |
| 0                    | 1                    |
| -1                   | 0,1                  |
| -2                   | 0,01                 |
| -3                   | 0,001                |
| -4                   | 0,0001               |
| -5                   | 0,00001              |
| -6                   | 0,000001             |
| -7                   | 0,0000001            |

Tabla 14.8 Tabla de conversión

## 14.5.13 Códigos de proceso (PCD)

El bloque de códigos de proceso se divide en dos bloques de 16 bits, que siempre se suceden en la secuencia definida.

| PCD 1                                    | PCD 2         |
|------------------------------------------|---------------|
| Telegrama de control (código de control  | Valor de      |
| maestro⇒esclavo)                         | referencia    |
| Código de estado de telegrama de control | Frecuencia de |
| (esclavo⇒maestro)                        | salida actual |

Tabla 14.9 Secuencia de PCD

30BA092.10



## 14.6 RS485: ejemplos de parámetros del protocolo FC

### 14.6.1 Escritura del valor de un parámetro.

Cambie parámetro 4-14 Motor Speed High Limit [Hz] a 100 Hz

Escriba los datos en EEPROM.

PKE=E19E Hex - Escriba un único código en el parámetro 4-14 Motor Speed High Limit [Hz].

IND = 0000 Hex

PWE<sub>ALTO</sub> = 0000 Hex

PWE<sub>LOW</sub> = 03E8 Hex - Valor de dato, 1000, correspondiente a 100 Hz, consulte el *capétulo 14.5.12 Conversión*.

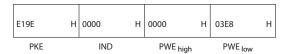



Ilustración 14.12 Telegrama

## AVISO!

El Parámetro 4-14 Motor Speed High Limit [Hz] es un código único, y la orden de parámetro que se debe grabar en la EEPROM es E. El número de parámetro parámetro 4-14 Motor Speed High Limit [Hz] es 19E en hexadecimal.




Ilustración 14.13 Respuesta de maestro a esclavo

## 14.6.2 Lectura del valor de un parámetro

Lea el valor en parámetro 3-41 Ramp 1 Ramp Up Time.

PKE = 1155 Hex - Lea el valor del parámetro en parámetro 3-41 Ramp 1 Ramp Up Time.

IND = 0000 Hex

 $PWE_{ALTO} = 0000 Hex$ 

 $PWE_{BAJO} = 0000 Hex$ 

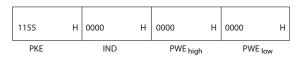



Ilustración 14.14 Valor del parámetro

Si el valor del *parámetro 3-41 Ramp 1 Ramp Up Time* es 10 s, la respuesta del esclavo al maestro será:

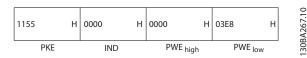



Ilustración 14.15 Respuesta de esclavo a maestro

3E8 Hex corresponde a 1000 en decimal. El índice de conversión para *parámetro 3-41 Ramp 1 Ramp Up Time* es – 2.

Parámetro 3-41 Ramp 1 Ramp Up Time es del tipo Sin signo 32.

## 14.7 RS485: Visión general de Modbus RTU

### 14.7.1 Requisitos previos

Danfoss asume que el controlador instalado es compatible con las interfaces mencionadas en este manual y que se siguen estrictamente todos los requisitos y limitaciones estipulados tanto en el controlador como en el convertidor.

#### 14.7.2 Conocimiento supuesto

El Modbus RTU (unidad de terminal remoto) integrado está diseñado para comunicarse con cualquier controlador compatible con las interfaces definidas en este manual. Se da por supuesto que el lector tiene pleno conocimiento de las capacidades y limitaciones del controlador.

#### 14.7.3 Visión general de Modbus RTU

Independientemente de los tipos de redes de comunicación física, en Visión general de Modbus RTU se describe el proceso que un controlador utiliza para solicitar acceso a otro dispositivo. Esto incluye cómo el Modbus RTU responde a las solicitudes de otro dispositivo y cómo se detectarán y se informará de los errores que se produzcan. También se establece un formato común para el diseño y los contenidos de los campos de mensajes.

Durante las comunicaciones en una red Modbus RTU, el protocolo determina:

- De qué manera cada controlador aprende su dirección de dispositivo.
- Reconoce un mensaje dirigido a él.
- Determina qué acciones tomar.
- Extrae cualquier dato o información incluidos en el mensaje.



Si se requiere una respuesta, el controlador construirá el mensaje de respuesta y lo enviará.

Los controladores se comunican utilizando una técnica maestro-esclavo en la que solo un dispositivo (el maestro) puede iniciar transacciones (llamadas peticiones). Los otros dispositivos (esclavos) responden proporcionando al maestro los datos pedidos, o respondiendo a la petición. El maestro puede dirigirse a un auxiliar individualmente, o puede iniciar la transmisión de un mensaje a todos los auxiliares. Los auxiliares devuelven un mensaje, llamado respuesta, a las peticiones que se les dirigen individualmente. No se responde a las peticiones transmitidas por el maestro. El protocolo Modbus RTU establece el formato para la petición del maestro poniendo en ella la dirección del dispositivo (o de la transmisión), un código de función que define la acción solicitada, los datos que se deban enviar y un campo de comprobación de errores. El mensaje de respuesta del esclavo también se construye utilizando el protocolo Modbus. Contiene campos que confirman la acción realizada, los datos que se tengan que devolver y un campo de comprobación de errores. Si se produce un error en la recepción del mensaje, o si el esclavo no puede realizar la acción solicitada, este genera un mensaje de error y lo envía en respuesta, o se produce un error de tiempo límite.

#### 14.7.4 Convertidor con Modbus RTU

El convertidor se comunica en formato Modbus RTU a través de la interfaz RS485 integrada. Modbus RTU proporciona acceso al código de control y a la referencia de bus del convertidor.

El código de control permite al maestro del Modbus controlar varias funciones importantes del convertidor:

- Arranque
- Parada del convertidor de diversas formas:
   Paro por inercia
   Parada rápida
   Parada por freno de CC
   Parada (de rampa) normal
- Reinicio tras desconexión por avería.
- Funcionamiento a diferentes velocidades predeterminadas.
- Funcionamiento en sentido inverso.
- Cambio del ajuste activo.
- Control del relé integrado del convertidor de frecuencia.

La referencia de bus se utiliza normalmente para el control de la velocidad. También es posible acceder a los parámetros, leer sus valores y, en su caso, escribir valores en ellos, permitiendo así una amplia variedad de opciones de control, incluido el control del valor de consigna del convertidor de frecuencia cuando se utiliza el controlador Pl interno.

#### 14.7.5 Convertidor con Modbus RTU

Para activar la opción Modbus RTU en el convertidor, ajuste los siguientes parámetros:

| Parámetro                | Ajuste                       |
|--------------------------|------------------------------|
| Parámetro 8-30 Protocol  | Modbus RTU                   |
| Parámetro 8-31 Address   | 1–247                        |
| Parámetro 8-32 Baud Rate | 2400–115200                  |
| Parámetro 8-33 Parity /  | Paridad par, 1 bit de parada |
| Stop Bits                | (predeterminado)             |

#### 14.7.6 Convertidor con Modbus RTU

Los controladores están configurados para comunicarse en la red Modbus utilizando el modo RTU, con cada byte de un mensaje que contenga dos caracteres hexadecimales de 4 bits. El formato de cada byte se muestra en *Tabla 14.10*.

| Bit de | Byte de datos |  |  |  |  |  |  | Parada/ | Parada |  |
|--------|---------------|--|--|--|--|--|--|---------|--------|--|
| inicio |               |  |  |  |  |  |  | paridad |        |  |
|        |               |  |  |  |  |  |  |         |        |  |

Tabla 14.10 Ejemplo de formato

| Sistema de codifi- | Binario de 8 bits, hexadecimal 0-9, A-F. Dos     |
|--------------------|--------------------------------------------------|
| cación             | caracteres hexadecimales contenidos en           |
|                    | cada campo de 8 bits del mensaje.                |
| Bits por byte      | 1 bit de inicio.                                 |
|                    | 8 bits de datos, el menos significativo          |
|                    | enviado primero.                                 |
|                    | 1 bit de paridad par/impar; sin bit de no        |
|                    | paridad.                                         |
|                    | 1 bit de parada si se utiliza paridad; 2 bits si |
|                    | no se usa paridad.                               |
| Campo de           | Comprobación de redundancia cíclica (CRC)        |
| comprobación de    |                                                  |
| errores            |                                                  |

Tabla 14.11 Detalle de bit



## 14.8 RS485: Estructura de telegrama Modbus RTU

## 14.8.1 Estructura de telegrama Modbus RTU

El dispositivo emisor coloca un mensaje Modbus RTU en un formato con un comienzo y un punto final conocidos. Los dispositivos receptores pueden comenzar al principio del mensaje, leer la parte de la dirección, determinar a qué dispositivo se dirige (o a todos, si el mensaje es una transmisión) y reconocer cuándo se ha completado el mensaje. Los mensaje parciales se detectan y se determinan los errores resultantes. Los caracteres que se van a transmitir deben estar en formato hexadecimal 00-FF en cada campo. El convertidor supervisa continuamente el bus de red, también durante los intervalos silenciosos. Cuando se recibe el primer campo (el de dirección), cada convertidor o dispositivo lo descodifica para determinar a qué dispositivo se dirige. Los mensajes Modbus RTU dirigidos a cero son mensajes de transmisión. No se permiten respuestas a los mensajes de transmisión. En Tabla 14.12, se muestra un formato típico de mensaje.

| Arran-    | Dirección | Función | Datos | Compro- | Fin       |
|-----------|-----------|---------|-------|---------|-----------|
| que       |           |         |       | bación  |           |
|           |           |         |       | CRC     |           |
| T1-T2-T3- | 8 bits    | 8 bits  | N×8   | 16 bits | T1-T2-T3- |
| -T4       |           |         | bits  |         | -T4       |

Tabla 14.12 Estructura de telegrama típica de Modbus RTU

## 14.8.2 Campo de arranque/parada

Los mensajes comienzan con un periodo de silencio de al menos 3,5 intervalos de caracteres, que se aplica como un múltiplo de intervalos de caracteres a la velocidad en baudios seleccionada (mostrada como arranque T1-T2-T3--T4). El primer campo transmitido es la dirección del dispositivo. Tras el último carácter transmitido, el final del mensaje se indica con un periodo similar de al menos 3,5 intervalos de caracteres. Después de este periodo, puede comenzar otro mensaje. El formato completo del mensaje debe transmitirse como un flujo continuo. Si produce un periodo de silencio de más de 1,5 intervalos de carácter antes de que se complete el cuadro, el dispositivo receptor descarta el mensaje incompleto y asume que el siguiente byte es el campo de dirección de un nuevo mensaje. De forma similar, si un nuevo mensaje comienza antes de que pasen 3,5 intervalos de carácter tras un mensaje previo, el dispositivo receptor lo considerará como la continuación del anterior mensaje, Esto dará lugar a un error de tiempo límite (sin respuesta desde el esclavo), ya que el valor del campo CRC final (comprobación de redundancia cíclica) no es válido para los mensajes combinados.

#### 14.8.3 Campo de dirección

El campo de dirección de un mensaje contiene 8 bits. Las direcciones válidas de dispositivos esclavos están en el rango de 0 a 247 decimal. Los dispositivos esclavos individuales tienen direcciones asignadas en un intervalo comprendido entre 1 y 247. El cero se reserva para el modo de transmisión, que todos los esclavos reconocen. Un maestro se dirige a un esclavo poniendo la dirección de este en el campo de dirección del mensaje. Cuando el esclavo envía su respuesta, pone su propia dirección en dicho campo de dirección, para que el maestro sepa qué esclavo le está contestando.

### 14.8.4 Campo de función

El campo de función de un mensaje contiene 8 bits. Los códigos válidos están en el rango de 1 a FF. Los campos de función se utilizan para enviar mensajes entre el maestro y el esclavo. Cuando se envía un mensaje desde un maestro a un dispositivo esclavo, el campo de código de función le indica al esclavo la clase de acción que debe realizar. Cuando el esclavo responde al maestro, utiliza el campo de código de función para indicar una respuesta normal (sin error), o que se ha producido un error de alguna clase (esta respuesta se denomina «excepción»). Para dar una respuesta normal, el esclavo simplemente devuelve el código de función original. Para responder con una excepción, el esclavo devuelve un código equivalente al de la función original, pero con su bit más significativo cambiado a 1 lógico. Además, el esclavo pone un código único en el campo de datos del mensaje de respuesta. Este código le indica al maestro el tipo de error ocurrido o la razón de la excepción. Consulte capétulo 14.9.1 Códigos de función admitidos por Modbus RTU.

#### 14.8.5 Campo de datos

El campo de datos se construye utilizando grupos de dos dígitos hexadecimales, en el intervalo de 00 a FF en hexadecimal. Estas secuencias se componen de un carácter RTU. El campo de datos de los mensajes enviados desde un maestro a un dispositivo esclavo contiene información más detallada, que el esclavo debe utilizar para realizar la acción definida por el código de función. Este puede incluir elementos tales como direcciones de registro o bobinas, la cantidad de elementos y el contador de los bytes de datos reales del campo.

### 14.8.6 Campo de comprobación CRC

Los mensajes incluyen un campo de comprobación de errores, que opera según el método CRC (comprobación de redundancia cíclica). El campo CRC comprueba el contenido de todo el mensaje. Se aplica independientemente del método de comprobación de paridad utilizado para los caracteres individuales del mensaje. El dispositivo transmisor calcula el valor de CRC que añade al CRC como último campo en el mensaje. El dispositivo receptor vuelve a calcular un CRC durante la recepción del mensaje y compara el valor calculado con el valor recibido en el campo CRC. Si los dos valores son distintos, el resultado es un tiempo límite de bus. El campo de comprobación de errores contiene un valor binario de 16 bits implementado como dos bytes de 8 bits. Tras comprobar el error, el byte de orden bajo del campo se añade primero, seguido del byte de orden alto. El byte de orden alto del CRC es el último byte que se envía en el mensaje.

#### 14.8.7 Direccionamiento de bobinas

En Modbus, todos los datos están organizados en bobinas y registros de retención. Las bobinas almacenan un solo bit, mientras que los registros de retención alojan una palabra de 2 bytes (16 bits). Todas las direcciones de datos de los mensajes Modbus están referenciadas a cero. La primera aparición de un elemento de datos se gestiona como elemento número cero. Por ejemplo: la bobina conocida como «bobina 1» de un controlador programable se direcciona como «bobina 0000» en el campo de dirección de un mensaje Modbus. La bobina 127 decimal se trata como bobina 007E Hex (126 decimal). El registro de retención 40001 se direcciona como registro 0000 en el campo de dirección del mensaje. El campo de código de función ya especifica una operación de registro de retención. Por lo tanto, la referencia 4XXXX es implícita. El registro de retención 40108 se procesa como un registro 006B Hex (107 decimal).

| Número de bobina | Descripción                                                                                                                                                                                                  | Dirección de la señal |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1–16             | Código de control de la unidad (véase la <i>Tabla 14.14</i> ).                                                                                                                                               | Maestro a esclavo     |
| 17–32            | Velocidad del convertidor o intervalo de referencias de valor de consigna 0x0–0xFFFF (–200%–~200 %).                                                                                                         | Maestro a esclavo     |
| 33–48            | Código de estado del convertidor (consulte la <i>Tabla 14.14</i> ).                                                                                                                                          | Maestro a esclavo     |
| 49–64            | Modo de lazo abierto: frecuencia de salida del convertidor.<br>Modo de lazo cerrado: señal de realimentación del convertidor.                                                                                | Esclavo a maestro     |
| 65               | Control de escritura de parámetro (maestro a esclavo).  0 = Los cambios en los parámetros se escriben en la RAM del convertidor.  1 = Los cambios de los parámetros se escriben en la RAM y en la EEPROM del | Maestro a esclavo     |
| 66-65536         | convertidor. Reservado.                                                                                                                                                                                      |                       |

Tabla 14.13 Registros de retención y de bobinas

| Bobina | 0 1                                               |                           |  |
|--------|---------------------------------------------------|---------------------------|--|
| 01     | Referencia interna, bit menos significativo (lsb) |                           |  |
| 02     | Referencia interna, bit m                         | ás significativo (msb)    |  |
| 03     | Freno CC                                          | Sin freno de CC           |  |
| 04     | Paro por inercia                                  | Sin paro por inercia      |  |
| 05     | Parada rápida                                     | Sin parada rápida         |  |
| 06     | Mantener la frecuencia                            | No mantener la frecuencia |  |
| 07     | Parada de rampa                                   | Arranque                  |  |
| 08     | Sin reinicio                                      | Reinicio                  |  |
| 09     | Sin velocidad fija                                | Veloc. fija               |  |
| 10     | Rampa 1                                           | Rampa 2                   |  |
| 11     | Datos no válidos                                  | Datos válidos             |  |
| 12     | Relé 1 desactivado                                | Relé 1 activado           |  |
| 13     | Relé 2 desactivado Relé 2 activado                |                           |  |
| 14     | Ajuste del bit menos significativo (lsb)          |                           |  |
| 15     | Ajuste del bit más significativo (msb)            |                           |  |
| 16     | Sin cambio de sentido Cambio de sentido           |                           |  |

Tabla 14.14 Código de control de la unidad (perfil FC)

| Bobina | 0                          | 1                       |  |
|--------|----------------------------|-------------------------|--|
| 33     | Control no preparado       | Ctrl prep.              |  |
| 34     | Convertidor de frecuencia  | Unidad lista            |  |
|        | no preparado               |                         |  |
| 35     | Paro por inercia           | Cerrado seguro          |  |
| 36     | Sin alarma                 | Alarma                  |  |
| 37     | Sin uso                    | Sin uso                 |  |
| 38     | Sin uso                    | Sin uso                 |  |
| 39     | Sin uso                    | Sin uso                 |  |
| 40     | Sin advertencia            | Advertencia             |  |
| 41     | No en referencia           | En referencia           |  |
| 42     | Modo manual                | Modo automático         |  |
| 43     | Fuera de rango de          | En rangos de frecuencia |  |
|        | frecuencia                 |                         |  |
| 44     | Detenido                   | En funcionamiento       |  |
| 45     | Sin uso                    | Sin uso                 |  |
| 46     | Sin advertencia de tensión | Advertencia de tensión  |  |
| 47     | No en límite de intensidad | Límite de intensidad    |  |
| 48     | Sin advertencia térmica    | Advertencia térmica     |  |

Tabla 14.15 Código de estado del convertidor (perfil FC)



| Número      | Descripción                                                                                |
|-------------|--------------------------------------------------------------------------------------------|
| de registro |                                                                                            |
| 00001-00006 | Reservado.                                                                                 |
| 00007       | Último código de fallo desde una interfaz de objeto de datos de convertidor de frecuencia. |
| 00008       | Reservado.                                                                                 |
| 00009       | Índice de parámetro <sup>1)</sup> .                                                        |
| 00010-00990 | Grupo de parámetros 000 (parámetros de 001 a 099).                                         |
| 01000-01990 | Grupo de parámetros 100 (parámetros de 100 a 199).                                         |
| 02000-02990 | Grupo de parámetros 200 (parámetros de 200 a 299).                                         |
| 03000-03990 | Grupo de parámetros 300 (parámetros de 300 a 399).                                         |
| 04000-04990 | Grupo de parámetros 400 (parámetros de 400 a 499).                                         |
|             |                                                                                            |
| 49000-49990 | Grupo de parámetros 4900 (parámetros de 4900 a 4999).                                      |
| 50000       | Datos de entrada: registro de código de control de la unidad (CTW).                        |
| 50010       | Datos de entrada: registro de referencia de bus (REF)                                      |
|             |                                                                                            |
| 50200       | Datos de salida: registro de código de estado del convertidor (STW).                       |
| 50210       | Datos de salida: registro de valor real principal del convertidor (MAV).                   |

#### Tabla 14.16 Registros de retención

1) Utilizado para especificar el número de índice que se debe usar al acceder a un parámetro indexado.

## 14.9 RS485: códigos de función de los mensajes de Modbus RTU

## 14.9.1 Códigos de función admitidos por Modbus RTU

Modbus RTU admite el uso de los siguientes códigos en *Tabla 14.17* en el campo de función de un mensaje.

| Función                           | Código de función |
|-----------------------------------|-------------------|
| Leer bobinas                      | 1 Hex             |
| Leer registros de retención       | 3 Hex             |
| Escribir una sola bobina          | 5 Hex             |
| Escribir un solo registro         | 6 Hex             |
| Escribir múltiples bobinas        | F Hex             |
| Escribir múltiples registros      | 10 Hex            |
| Coger contador de eventos de com. | B Hex             |
| Informar de ID de esclavo         | 11 Hex            |

Tabla 14.17 Códigos de función

| Función     | Código  | Código de  | Subfunción                |
|-------------|---------|------------|---------------------------|
|             | de      | subfunción |                           |
|             | función |            |                           |
| Diagnóstico | 8       | 1          | Reiniciar comunicación.   |
|             |         | 2          | Devolver registro de      |
|             |         |            | diagnóstico.              |
|             |         | 10         | Borrar contadores y       |
|             |         |            | registro de diagnóstico.  |
|             |         | 11         | Mostrar recuento de       |
|             |         |            | mensajes de bus.          |
|             |         | 12         | Mostrar recuento de       |
|             |         |            | errores de comunicación   |
|             |         |            | de bus.                   |
|             |         | 13         | Devolver recuento de      |
|             |         |            | errores de excepciones de |
|             |         |            | bus.                      |
|             |         | 14         | Mostrar recuento de       |
|             |         |            | mensajes de esclavo.      |

Tabla 14.18 Códigos de función



### 14.9.2 Códigos de excepción Modbus

Para obtener una explicación completa sobre la estructura de un código de excepción, consulte el capétulo 14.8 RS485: Estructura de telegrama Modbus RTU.

| Código | Nombre       | Significado                                |  |
|--------|--------------|--------------------------------------------|--|
| 1      | Función      | El código de función recibido en la        |  |
|        | incorrecta   | petición no es una acción permitida para   |  |
|        |              | el servidor (o esclavo). Este código puede |  |
|        |              | ser debido a que el código de la función   |  |
|        |              | solo se aplica a dispositivos recientes y  |  |
|        |              | no se implementó en la unidad              |  |
|        |              | seleccionada. También puede indicar que    |  |
|        |              | el servidor (o esclavo) se encuentra en un |  |
|        |              | estado incorrecto para procesar una        |  |
|        |              | petición de este tipo, por ejemplo,        |  |
|        |              | porque no esté configurado y se le pide    |  |
|        |              | devolver valores registrados.              |  |
| 2      | Dirección de | La dirección de datos recibida en la       |  |
|        | datos        | petición no es una dirección admisible     |  |
|        | incorrecta   | para el servidor (o esclavo). Más concre-  |  |
|        |              | tamente, la combinación del número de      |  |
|        |              | referencia y la longitud de transferencia  |  |
|        |              | no es válida. Para un controlador con 100  |  |
|        |              | registros, una petición con desviación 96  |  |
|        |              | y longitud 4 sería aceptada, mientras que  |  |
|        |              | una petición con desviación 96 y           |  |
|        |              | longitud 5 genera una excepción 02.        |  |
| 3      | Valor de     | Un valor contenido en el campo de datos    |  |
|        | datos        | de solicitud no es un valor permitido      |  |
|        | incorrecto   | para el servidor (o esclavo). Este código  |  |
|        |              | indica un fallo en la estructura de la     |  |
|        |              | parte restante de una petición compleja    |  |
|        |              | como, por ejemplo, que la longitud         |  |
|        |              | implícita sea incorrecta. Específicamente, |  |
|        |              | NO significa que un conjunto de datos      |  |
|        |              | enviado para su almacenamiento en un       |  |
|        |              | registro cuyo valor se encuentra fuera de  |  |
|        |              | la expectativa del programa de la          |  |
|        |              | aplicación, ya que el protocolo MODBUS     |  |
|        |              | no conoce el significado de cualquier      |  |
|        |              | valor determinado de cualquier registro    |  |
|        |              | en particular.                             |  |
| 4      | Fallo del    | Un error irrecuperable se produjo          |  |
|        | dispositivo  | mientras el servidor (o esclavo) intentaba |  |
|        | auxiliar     | ejecutar la acción solicitada.             |  |

Tabla 14.19 Códigos de excepción Modbus

#### 14.10 RS485: Parámetros de Modbus RTU

## 14.10.1 Gestión de parámetros

El PNU (número de parámetro) se traduce de la dirección del registro contenida en el mensaje de lectura o escritura Modbus. El número de parámetro se traslada a Modbus como ( $10 \times el$  número de parámetro) DECIMAL.

#### 14.10.2 Almacenamiento de datos

La bobina 65 decimal determina si los datos escritos en el convertidor se almacenan en la EEPROM y la RAM (bobina 65 = 1) o solo en la RAM (bobina 65 = 0).

#### 14.10.3 IND

El índice de la matriz se ajusta a registro de retención 9 y se utiliza al acceder a los parámetros de matrices.

#### 14.10.4 Bloques de texto

A los parámetros almacenados como cadenas de texto se accede de la misma forma que a los restantes. El tamaño máximo de un bloque de texto es 20 caracteres. Si se realiza una petición de lectura de un parámetro por más caracteres de los que el parámetro almacena, la respuesta se trunca. Si la petición de lectura se realiza por menos caracteres de los que el parámetro almacena, la respuesta se rellena con espacios en blanco.

#### 14.10.5 Factor de conversión

Debido a que un valor de parámetro solo puede transferirse como un número entero, es necesario utilizar un factor de conversión para transmitir las cifras decimales. Consulte el capétulo 14.6 RS485: ejemplos de parámetros del protocolo FC.

## 14.10.6 Valores de parámetros

### Tipos de datos estándar

Los tipos de datos estándar son int16, int32, uint8, uint16 y uint32. Se guardan como registros 4x (40001-4FFFF). Los parámetros se leen utilizando la función 03 Hex Read holding registers (Lectura de registros de retención). Los parámetros se escriben utilizando la función 6 Hex Preset single register (Preajustar registro único) para 1 registro (16 bits) y la función 10 Hex Preset multiple registers (Preajustar múltiples registros) para 2 registros (32 bits). Los tamaños legibles van desde 1 registro (16 bits) hasta 10 registros (20 caracteres).



#### Tipos de datos no estándar

Los tipos de datos no estándar son cadenas de texto y se almacenan como registros 4x (40001-4FFF). Los parámetros se leen utilizando la función 03 Hex Read holding registers (Lectura de registros de retención) y se escriben utilizando la función 10 Hex Preset multiple registers (Preajustar múltiples registros). Los tamaños legibles van desde 1 registro (2 caracteres) hasta 10 registros (20 caracteres).

#### 14.11 RS485: Perfil de control FC de

### 14.11.1 Código de control según el perfil FC

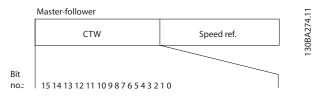



Ilustración 14.16 Código de control, maestro a esclavo

| Bit | Valor de bit = 0       | Valor de bit = 1               |
|-----|------------------------|--------------------------------|
| 00  | Valor de referencia    | Selección externa, bit menos   |
|     |                        | significativo (lsb)            |
| 01  | Valor de referencia    | Selección externa, bit más     |
|     |                        | significativo (msb)            |
| 02  | Freno CC               | Rampa                          |
| 03  | Inercia                | Sin funcionamiento por inercia |
| 04  | Parada rápida          | Rampa                          |
| 05  | Mantener frecuencia de | Usar rampa                     |
|     | salida                 |                                |
| 06  | Parada de rampa        | Arranque                       |
| 07  | Sin función            | Reinicio                       |
| 08  | Sin función            | Veloc. fija                    |
| 09  | Rampa 1                | Rampa 2                        |
| 10  | Datos no válidos       | Datos válidos                  |
| 11  | Sin función            | Relé 01 activo                 |
| 12  | Sin función            | Relé 02 activo                 |
| 13  | Ajuste de parámetros   | Selección del bit menos        |
|     |                        | significativo (Isb)            |
| 14  | Ajuste de parámetros   | Selección del bit más signifi- |
|     |                        | cativo (msb)                   |
| 15  | Sin función            | Cambio sentido                 |

## Explicación de los bits de control Bits 00/01

Los bits 00 y 01 se utilizan para seleccionar entre los cuatro valores de referencia, que están preprogramados en parámetro 3-10 Preset Reference, según la Tabla 14.20.

| Valor de<br>referencia<br>programado | Parámetro                                 | Bit 01 | Bit 00 |
|--------------------------------------|-------------------------------------------|--------|--------|
| 1                                    | [0]<br>parámetro 3-10<br>Preset Reference | 0      | 0      |
| 2                                    | [1]<br>parámetro 3-10<br>Preset Reference | 0      | 1      |
| 3                                    | [2]<br>parámetro 3-10<br>Preset Reference | 1      | 0      |
| 4                                    | [3]<br>parámetro 3-10<br>Preset Reference | 1      | 1      |

Tabla 14.20 Bits de control

## AVISO!

Haga una selección en el *parámetro 8-56 Preset Reference Select* para definir cómo se direccionan los bits 00/01 con la función correspondiente en las entradas digitales.

#### Bit 02: freno de CC

El bit 02 = 0 genera el frenado de CC y la parada. Ajuste la intensidad y duración de frenado en *parámetro 2-01 DC* Brake Current y en parámetro 2-02 DC Braking Time. El bit 02 = 1 provoca una rampa.

#### Bit 03, Inercia

Bit 03=0: el convertidor desconecta inmediatamente los transistores de salida y el motor funciona en inercia hasta pararse.

Bit 03=1: el convertidor arranca el motor si se cumplen las demás condiciones de arranque.

Haga una selección en el *parámetro 8-50 Coasting Select* para definir cómo se direcciona el bit 03 con la función correspondiente en una entrada digital.

#### Bit 04, Parada rápida

Bit 04=0: hace decelerar el motor hasta pararse (se ajusta en *parámetro 3-81 Quick Stop Ramp Time*).

#### Bit 05: mantener la frecuencia de salida

Bit 05=0: la frecuencia de salida actual (en Hz) se mantiene. La frecuencia de salida mantenida solo puede cambiarse con las entradas digitales que se encuentran en los parámetros del parámetro 5-10 Terminal 18 Digital Input al parámetro 5-15 Terminal 33 Digital Input.



## AVISO!

Si está activada la opción «Mantener salida», únicamente las siguientes condiciones pueden detener el convertidor de frecuencia:

- Bit 03 paro por inercia.
- Bit 02 Frenado de CC.
- Entrada digital (parámetro 5-10 Terminal 18
   Digital Input parámetro 5-15 Terminal 33
   Digital Input) programada como Freno CC, Paro por inercia, o Reinicio y parada por inercia.

#### Bit 06, Parada / arranque de rampa

Bit 06=0: provoca una parada y hace que la velocidad del motor decelere hasta detenerse mediante el parámetro de deceleración seleccionado.

Bit 06=1: permite al convertidor arrancar el motor si se cumplen las demás condiciones de arranque.

Haga una selección en el *parámetro 8-53 Start Select* para definir cómo se direcciona el bit 06, Parada arranque de rampa, con la función correspondiente en una entrada digital.

#### Bit 07: reinicio

Bit 07=0: sin reinicio.

Bit 07=1: reinicia una desconexión. Reset se activa en el frente delantero de la señal, es decir, cuando cambia de «0» lógico a «1» lógico.

#### Bit 08: velocidad fija

Bit 08=1: la frecuencia de salida está determinada por el parámetro 3-19 Jog Speed [RPM].

#### Bit 09, Selección de rampa 1/2

Bit 09=0: la rampa 1 está activa (de parámetro 3-41 Ramp 1 Ramp Up Time a parámetro 3-42 Ramp 1 Ramp Down Time). Bit 09=1: la rampa 2 está activa (de parámetro 3-51 Ramp 2 Ramp Up Time a parámetro 3-52 Ramp 2 Ramp Down Time).

#### Bit 10: datos no válidos / datos válidos

Indica al convertidor si debe utilizar o ignorar el código de control. Bit 10=0: el código de control se ignora.

Bit 10=1: el código de control se utiliza. Esta función es relevante porque el telegrama contiene siempre el código de control, independientemente del tipo de telegrama. Por ello, es posible desactivar el código de control si no desea utilizarlo al actualizar o leer parámetros.

#### Bit 11, Relé 01

Bit 11=0: relé no activado.

Bit 11=1: relé 01 activado, siempre que se haya seleccionado [36] Bit código control 11 en el parámetro 5-40 Function Relay.

#### Bit 12, Relé 04

Bit 12=0: el relé 04 no está activado.

Bit 12=1: el relé 04 está activado si se ha seleccionado [37] Bit código control 12 en el parámetro 5-40 Function Relay.

#### Bit 13/14, Selección de ajuste

Los bits 13 y 14 se utilizan para seleccionar entre los cuatro ajustes de menú, según *Tabla 14.21*.

| Ajuste | Bit 14 | Bit 13 |
|--------|--------|--------|
| 1      | 0      | 0      |
| 2      | 0      | 1      |
| 3      | 1      | 0      |
| 4      | 1      | 1      |

Tabla 14.21 Selección de ajuste

Esta función solamente es posible cuando se selecciona [9] Ajuste múltiple en el parámetro 0-10 Active Set-up.

Haga una selección en el *parámetro 8-55 Set-up Select* para definir cómo se direccionan los bits 13/14 con la función correspondiente en las entradas digitales.

#### Bit 15: cambio del sentido

Bit 15=0: sin cambio de sentido.

Bit 15=1: Cambio de sentido. El cambio de sentido se ajusta de fábrica como [0] Entrada digital en el parámetro 8-54 Reversing Select. El bit 15 solo produce el cambio de sentido cuando se selecciona lo siguiente:

- Comunicación serie
- «O» lógico
- «Y» lógico

## 14.11.2 Código de estado según el perfil FC

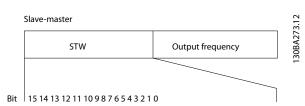



Ilustración 14.17 STW esclavo a maestro

1 /



| Bit | Bit = 0                                     | Bit = 1                 |
|-----|---------------------------------------------|-------------------------|
| 00  | Control no preparado Ctrl prep.             |                         |
| 01  | Convertidor de frecuencia                   | Unidad lista            |
|     | no preparado                                |                         |
| 02  | Inercia                                     | Enable (Activar)        |
| 03  | Sin error                                   | Desconexión             |
| 04  | Sin error                                   | Error (sin desconexión) |
| 05  | Reservado                                   | -                       |
| 06  | Sin error                                   | Bloqueo por alarma      |
| 07  | Sin advertencia                             | Advertencia             |
| 08  | Velocidad≠referencia Velocidad = referencia |                         |
| 09  | Funcionamiento local                        | Control de bus          |
| 10  | Fuera del límite de Límite de frecuencia Ol |                         |
|     | frecuencia                                  |                         |
| 11  | Sin función                                 | En funcionamiento       |
| 12  | Convertidor de frecuencia                   | Detenido, arranque      |
|     | ОК                                          | automático              |
| 13  | Tensión OK                                  | Tensión excedida        |
| 14  | Par OK                                      | Par excedido            |
| 15  | Temporizador OK                             | Temporizador excedido   |

#### Bit 00: control no listo / listo

Bit 00=0: el convertidor se desconecta.

Bit 00=1: los controles del convertidor están preparados, pero el componente de potencia podría no recibir suministro eléctrico en caso de suministro externo de 24 V a los controles.

#### Bit 01, Convertidor preparado

Bit 01=1: el convertidor está listo para funcionar, pero la orden de inercia está activada mediante las entradas digitales o la comunicación serie.

#### Bit 02, Paro por inercia

Bit 02=0: el convertidor libera el motor.

Bit 02=1: el convertidor arranca el motor con una orden de arranque.

#### Bit 03: sin error / desconexión

Bit 03=0: el convertidor no se halla en modo de fallo. Bit 03=1: el convertidor se desconecta. Para restablecer el funcionamiento, pulse [Reset].

#### Bit 04: sin error / error (sin desconexión)

Bit 04=0: el convertidor no se halla en modo de fallo. Bit 04=1: el convertidor muestra un error pero no se desconecta.

#### Bit 05: sin uso

El bit 05 no se utiliza en el código de estado.

#### Bit 06: sin error / bloqueo por alarma

Bit 06=0: el convertidor no se halla en modo de fallo. Bit 06=1: el convertidor se ha desconectado y bloqueado.

#### Bit 07: sin advertencia / advertencia

Bit 07=0: no hay advertencias.

Bit 07=1: se ha producido una advertencia.

#### Bit 08, velocidad ≠ referencia / velocidad = referencia

Bit 08=0: el motor está funcionando pero la velocidad actual es distinta a la referencia interna de velocidad. Por ejemplo, esto puede ocurrir cuando la velocidad sigue una rampa hacia arriba o hacia abajo durante el arranque o la parada.

Bit 08=1: la velocidad del motor es igual a la referencia interna de velocidad.

#### Bit 09: funcionamiento local / control de bus

Bit 09=0: [Stop/reset] está activado en la unidad de control o se ha seleccionado [2] Local en el

parámetro 3-13 Reference Site. El convertidor de frecuencia no puede controlarse mediante comunicación serie.

Bit 09 = 1: es posible controlar el convertidor mediante el fieldbus o la comunicación serie.

#### Bit 10: fuera de límite de frecuencia

Bit 10=0: la frecuencia de salida ha alcanzado el valor ajustado en *parámetro 4-11 Motor Speed Low Limit [RPM]* o *parámetro 4-13 Motor Speed High Limit [RPM]*.

Bit 10=1: la frecuencia de salida está dentro de los límites definidos.

#### Bit 11: sin función / en funcionamiento

Bit 11=0: el motor no está en marcha.

Bit 11=1: el convertidor tiene una señal de arranque o la frecuencia de salida es superior a 0 Hz.

## Bit 12, Convertidor de frecuencia OK / parado, autoarranque

Bit 12=0: no hay una sobretemperatura temporal en el inversor.

Bit 12=1: el inversor se ha parado debido a una temperatura excesiva, pero la unidad no se ha desconectado y terminará su funcionamiento cuando la temperatura disminuya.

#### Bit 13, Tensión OK/límite sobrepasado

Bit 13=0: no hay advertencias de tensión.

Bit 13=1: la tensión de CC en el enlace de CC es demasiado baja o demasiado alta.

#### Bit 14, Par OK/límite sobrepasado

Bit 14=0: la intensidad del motor es inferior al límite de par seleccionado en *parámetro 4-18 Current Limit*.

Bit 14=1: se ha sobrepasado el límite de par en parámetro 4-18 Current Limit.

#### Bit 15: temporizador OK / límite excedido

Bit 15=0: los temporizadores para la protección térmica del motor y la protección térmica no han sobrepasado el 100 %.

Bit 15=1: uno de los temporizadores ha sobrepasado el 100 %.

Si se pierde la conexión entre la opción InterBus y el convertidor de frecuencia, o si se produce un problema de comunicación interna, todos los bits del STW se ajustan a «0».



# 14.11.3 Valor de referencia de la velocidad del bus

El valor de referencia de la velocidad se transmite al convertidor en forma de valor relativo en %. El valor se transmite en forma de una palabra de 16 bits; en enteros (0-32 767), el valor 16 384 (4000 Hex) corresponde al 100 %. Las cifras negativas se codifican en complemento a 2. La frecuencia real de salida (MAV) se escala de la misma forma que la referencia del bus.

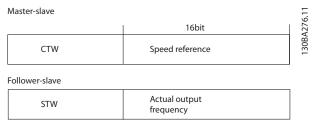



Ilustración 14.18 Valor de referencia de la velocidad del bus

La referencia y la MAV se escalan como se muestra en la *llustración 14.19*.

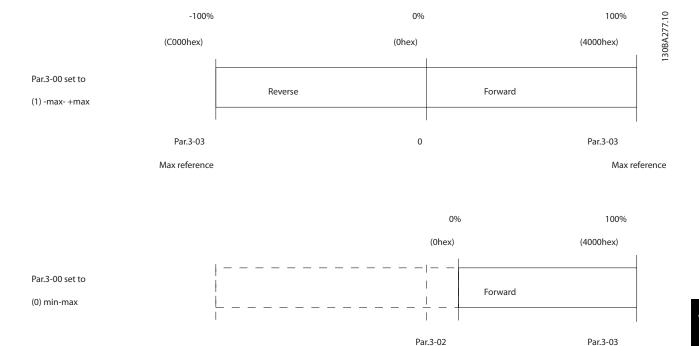



Ilustración 14.19 Referencia y MAV

Min reference

Max reference



# 14.11.4 Código de control según el perfil PROFIdrive (CTW)

El código de control se utiliza para enviar órdenes de un maestro a un esclavo.

| Bit | Bit = 0               | Bit = 1                 |
|-----|-----------------------|-------------------------|
| 00  | Apagado 1             | Encendido 1             |
| 01  | Apagado 2             | Encendido 2             |
| 02  | Apagado 3             | Encendido 3             |
| 03  | Inercia               | Sin funcionamiento por  |
|     |                       | inercia                 |
| 04  | Parada rápida         | Rampa                   |
| 05  | Mantener la salida de | Usar rampa              |
|     | frecuencia            |                         |
| 06  | Parada de rampa       | Arranque                |
| 07  | Sin función           | Reinicio                |
| 08  | Velocidad fija 1      | Velocidad fija 1        |
|     | DESACTIVADO           | ENCENDIDO               |
| 09  | Velocidad fija 2      | Velocidad fija 2        |
|     | DESACTIVADO           | ENCENDIDO               |
| 10  | Datos no válidos      | Datos válidos           |
| 11  | Sin función           | Enganche abajo          |
| 12  | Sin función           | Enganche arriba         |
| 13  | Ajuste de parámetros  | Selección del bit menos |
|     |                       | significativo (lsb)     |
| 14  | Ajuste de parámetros  | Selección del bit más   |
|     |                       | significativo (msb)     |
| 15  | Sin función           | Cambio sentido          |

Tabla 14.22 Valores de bit para el código de control, perfil de PROFIdrive

# Explicación de los bits de control

## Bit 00: APAGADO 1 / ENCENDIDO 1

Las paradas de rampa normal utilizan los tiempos de rampa de la rampa actualmente seleccionada. Bit 00=0 provoca una parada y la activación del relé de salida 1 o 2 si la frecuencia de salida es 0 Hz y si se ha seleccionado [31] Relé 123 en el parámetro 5-40 Function Relay.

Cuando el bit 00 = 1, el convertidor de frecuencia está en el estado 1: encendido inhibido.

#### Bit 01, APAGADO 2 / ENCENDIDO 2

Paro por inercia

Cuando el bit 01=0, se produce un paro por inercia y la activación del relé de salida 1 o 2 si la frecuencia de salida es 0 Hz y si se ha seleccionado [31] Relé 123 en el parámetro 5-40 Function Relay.

Cuando el bit 01 = 1, el convertidor de frecuencia está en el estado 1: encendido inhibido. Consulte la *Tabla 14.23*, al finalizar esta sección.

#### Bit 02, APAGADO 3 / ENCENDIDO 3

Parada rápida mediante el tiempo de rampa de parámetro 3-81 Quick Stop Ramp Time.

Cuando el bit 02=0, se produce una parada rápida y la activación del relé de salida 1 o 2 si la frecuencia de salida es 0 Hz y si se ha seleccionado [31] Relé 123 en el parámetro 5-40 Function Relay.

Cuando el bit 02 = 1, el convertidor de frecuencia está en el estado 1: encendido inhibido.

#### Bit 03: funcionamiento por inercia / sin inercia

Paro por inercia: bit 03=0 produce una parada. Cuando el bit 03=1, el convertidor de frecuencia arranca si se cumplen las demás condiciones de arranque.

# AVISO!

La selección en *parámetro 8-50 Coasting Select* determina cómo el bit 03 enlaza con la correspondiente función de las entradas digitales.

## Bit 04, Parada rápida / rampa

Parada rápida mediante el tiempo de rampa de parámetro 3-81 Quick Stop Ramp Time.

Cuando el bit 04=0, se produce una parada rápida.

Cuando el bit 04=1, el convertidor de frecuencia arranca si se cumplen las demás condiciones de arranque.

# AVISO!

La selección en *parámetro 8-51 Quick Stop Select* determina cómo el bit 04 enlaza con la correspondiente función de las entradas digitales.

Bit 05: mantener la salida de frecuencia / utilizar rampa Cuando el bit 05=0, se mantiene la frecuencia de salida actual aunque se cambie el valor de referencia. Cuando bit 05=1, el convertidor de frecuencia realiza su función reguladora de nuevo; el funcionamiento se produce de acuerdo con el respectivo valor de referencia.

## Bit 06, Parada / arranque de rampa

La parada de rampa normal utiliza los tiempos de rampa de la rampa actualmente seleccionada. Además, se activa el relé de salida 01 o 04 si la frecuencia de salida es 0 Hz y si se ha seleccionado [31] Relé 123 en el parámetro 5-40 Function Relay.

Bit 06=0 da lugar a una parada.

Cuando el bit 06=1, el convertidor de frecuencia arranca si se cumplen las demás condiciones de arranque.

#### AVISO!

La selección en *parámetro 8-53 Start Select* determina cómo el bit 06 enlaza con la correspondiente función de las entradas digitales.

#### Bit 07: sin función / reinicio

Reinicio después de la desconexión. Reconoce el evento en el buffer defectuoso. Cuando el bit 07=0, no se produce el reinicio. Cuando hay un cambio de inclinación del bit 07 a 1, se produce un reinicio tras la desconexión.

Guía de diseño

# Bit 08, Velocidad fija 1 DESACTIVADO / ACTIVADO

Activa la velocidad preprogramada en el parámetro 8-90 Bus Jog 1 Speed. VELOCIDAD FIJA 1 solo es posible cuando el bit 04 = 0 y el bit 00-03 = 1.

#### Bit 09, Velocidad fija 2 DESACTIVADO / ACTIVADO

Activa la velocidad preprogramada en el parámetro 8-91 Bus Jog 2 Speed. VELOCIDAD FIJA 2 solo es posible cuando el bit 04 = 0 y el bit 00-03 = 1.

#### Bit 10: datos no válidos / válidos

Indica al convertidor de frecuencia si debe utilizar o ignorar el código de control.

El bit 10=0 hace que se pase por alto el código de control. El bit 10=1 hace que se pase por alto el código de control. Esta función es importante, debido a que el código de control siempre está contenido en el telegrama, independientemente del tipo de telegrama que se emplee. Por ello, es posible desactivar el código de control si no es necesario utilizarlo al actualizar o leer parámetros.

#### Bit 11: sin función / ralentizar

Reduce el valor de referencia de velocidad en la cantidad dada en el valor *parámetro 3-12 Catch up/slow Down Value*. Cuando el bit 11=0, no se producirá ninguna modificación del valor de referencia. Cuando el bit 11=1, el valor de referencia se reduce.

# Bit 12: sin función / enganche arriba

Aumenta el valor de velocidad de referencia en la cantidad señalada en *parámetro 3-12 Catch up/slow Down Value*. Cuando el bit 12=0, no se producirá ninguna modificación del valor de referencia.

Cuando el bit 12=1, el valor de referencia se incrementa. Si tanto la deceleración como la aceleración están activadas (bits 11 y 12 = 1), la deceleración tiene prioridad, es decir, se reduce el valor de velocidad de referencia.

# Bits 13 / 14, selección de ajustes

Selecciona entre los cuatro ajustes de parámetros de acuerdo con la *Tabla 14.23*.

Esta función solo es posible cuando se selecciona [9] Ajuste múltiple en el parámetro 0-10 Active Set-up. La selección en parámetro 8-55 Set-up Select determina cómo los bits 13 y 14 enlazan con la función correspondiente de las entradas digitales. Solo es posible modificar el ajuste durante el funcionamiento si los ajustes se han enlazado en parámetro 0-12 This Set-up Linked to.

| Ajuste | Bit 13 | Bit 14 |
|--------|--------|--------|
| 1      | 0      | 0      |
| 2      | 1      | 0      |
| 3      | 0      | 1      |
| 4      | 1      | 1      |

Tabla 14.23 Bits 13/14, opciones de ajustes

#### Bit 15, sin función / cambio de sentido

El bit 15=0 hace que no haya cambio de sentido. El bit 15=1 hace que haya un cambio de sentido. Nota: El cambio de sentido se ajusta de fábrica como [0] Entrada digital en el parámetro 8-54 Reversing Select.

# AVISO!

El bit 15 solo produce el cambio de sentido cuando se selecciona lo siguiente:

- Comunicación serie
- «O» lógico
- «Y» lógico

# 14.11.5 Código de estado Según el perfil PROFIdrive (STW)

El código de estado informa a un maestro sobre el estado del esclavo.

| Bit | Bit = 0              | Bit = 1                 |
|-----|----------------------|-------------------------|
| 00  | Control no preparado | Ctrl prep.              |
| 01  | Convertidor de       | Unidad lista            |
|     | frecuencia no        |                         |
|     | preparado            |                         |
| 02  | Inercia              | Enable (Activar)        |
| 03  | Sin error            | Desconexión             |
| 04  | Apagado 2            | Encendido 2             |
| 05  | Apagado 3            | Encendido 3             |
| 06  | Arranque posible     | Arranque imposible      |
| 07  | Sin advertencia      | Advertencia             |
| 08  | Velocidad≠referencia | Velocidad = referencia  |
| 09  | Funcionamiento local | Control de bus          |
| 10  | Fuera del límite de  | Límite de frecuencia OK |
|     | frecuencia           |                         |
| 11  | Sin función          | En funcionamiento       |
| 12  | Convertidor de       | Detenido, arranque      |
|     | frecuencia OK        | automático              |
| 13  | Tensión OK           | Tensión excedida        |
| 14  | Par OK               | Par excedido            |
| 15  | Temporizador OK      | Temporizador excedido   |

Tabla 14.24 Valores de bit para el código de estado, perfil de PROFIdrive

14



#### Explicación de los bits de estado

# Bit 00: control no listo / listo

Cuando el bit 00=0, los bits 00, 01 o 02 del código de control son 0 (OFF 1, OFF 2 u OFF 3) o el convertidor de frecuencia se apaga (desconexión).

Cuando el bit 00=1, el control del convertidor de frecuencia está preparado, pero no hay necesariamente una fuente de alimentación a la unidad (en el caso de suministro externo de 24 V al sistema de control).

# Bit 01: VLT no preparado / preparado

Misma importancia que el bit 00, no obstante, hay suministro desde la unidad de alimentación. El convertidor de frecuencia está preparado cuando recibe las señales de arranque necesarias.

#### Bit 02: inercia/activar

Cuando el bit 02=0, los bits 00, 01 o 02 del código de control son 0 (OFF 1, OFF 2, OFF 3 o inercia) o el convertidor de frecuencia se apaga (desconexión). Cuando bit 02=1, los bits 00, 01 o 02 del código de control son 1; el convertidor de frecuencia no se ha desconectado.

#### Bit 03: sin error / desconexión

Cuando el bit 03=0, hay un estado sin error del convertidor de frecuencia.

Cuando el bit 03=1, el convertidor de frecuencia se ha desconectado y necesita una señal de reinicio para poder arrancar.

# Bit 04: ENCENDIDO 2 / APAGADO 2

Cuando el bit 01 del código de control es 0, el bit 04=0. Cuando el bit 01 del código de control es 1, el bit 04=1.

# Bit 05: ENCENDIDO 3 / APAGADO 3

Cuando el bit 02 del código de control es 0, el bit 05=0. Cuando el bit 02 del código de control es 1, el bit 05=1.

# Bit 06: arranque posible / arranque imposible

Si se ha seleccionado [1] Perfil PROFIdrive en el parámetro 8-10 Control Profile, el bit 06 será 1 tras el reconocimiento de desconexión, tras la activación de APAGADO 2 o APAGADO 3 y tras la conexión de la tensión de red. Un arranque imposible se reinicia con el bit 00 del código de control ajustado como 0 y los bits 01, 02 y 10 ajustados como 1.

# Bit 07: sin advertencia / advertencia

El bit 07=0 significa que no hay advertencias. Bit 07=1 significa que se ha producido una advertencia.

#### Bit 08: velocidad ≠ referencia / velocidad = referencia

Cuando el bit 08=0, la velocidad actual del motor se desvía del valor de referencia de velocidad ajustado. Esto podría suceder, por ejemplo, cuando la velocidad cambia durante el arranque o parada mediante una rampa de aceleración/deceleración.

Cuando el bit 08=1, la velocidad del motor se corresponde con el valor de referencia de velocidad ajustado.

#### Bit 09: funcionamiento local / control de bus

Bit 09 = 0 indica que el convertidor de frecuencia se ha detenido mediante la tecla [Stop] del LCP o que se ha seleccionado la opción [0] *Conex. a manual/auto* o [2] *Local* en el *parámetro 3-13 Reference Site*.

Cuando el bit 09=1, el convertidor se puede controlar mediante la interfaz serie.

# Bit 10: fuera del límite de frecuencia / límite de frecuencia OK

Cuando el bit 10=0, la frecuencia de salida está fuera de los límites ajustados en *parámetro 4-52 Warning Speed Low* y en *parámetro 4-53 Warning Speed High*.

Cuando el bit 10=1, la frecuencia de salida se encuentra dentro de los límites indicados.

### Bit 11: sin función / en funcionamiento

Cuando el bit 11=0, el motor no está en funcionamiento. Cuando el bit 11 = 1, el convertidor tiene una señal de arranque o la frecuencia de salida es mayor que 0 Hz.

# Bit 12: convertidor OK/parado, arranque automático Cuando el bit 12=0, no hay sobrecarga temporal del inversor

Cuando el bit 12=1, el inversor se para debido a sobrecarga. No obstante, el convertidor no está desactivado (desconectado) y arrancará de nuevo cuando finalice la sobrecarga.

# Bit 13: tensión OK/excedida

Cuando el bit 13=0, significa que no se han excedido los límites de tensión del convertidor.

Cuando el bit 13=1, la tensión directa en el circuito intermedio del convertidor es demasiado baja o demasiado alta.

#### Bit 14: par OK/excedido

Cuando el bit 14=0, el par del motor es inferior al límite seleccionado en *parámetro 4-16 Torque Limit Motor Mode* y en *parámetro 4-17 Torque Limit Generator Mode*.

Cuando el bit 14=1, se ha sobrepasado el límite seleccionado en *parámetro 4-16 Torque Limit Motor Mode* o *parámetro 4-17 Torque Limit Generator Mode*.

# Bit 15: temporizador OK / temporizador excedido

Cuando el bit 15 = 0, los temporizadores para la protección térmica del motor y la protección térmica del convertidor no han sobrepasado el 100 %.

Cuando el bit 15=1, uno de los temporizadores ha sobrepasado el 100 %.



# Índice

| A                                                                |
|------------------------------------------------------------------|
| Abrazadera de cables 177                                         |
| Abreviaturas                                                     |
| Adaptación automática del motor (AMA)  Configuración de cableado |
| Advertencia de alta tensión 6                                    |
| Advertencias                                                     |
| Aislamiento                                                      |
| Aislamiento galvánico                                            |
| Alimentación       190         Contactor                         |
| Almacenamiento                                                   |
| Almacenamiento del condensador 164                               |
| Alojamiento E1 Dimensiones de los terminales                     |
| Alojamiento E2 Dimensiones de los terminales                     |
| Alojamiento F1 Dimensiones de los terminales                     |
| Alojamiento F10 Dimensiones de los terminales                    |
| Alojamiento F11 Dimensiones de los terminales                    |
| Alojamiento F12 Dimensiones de los terminales                    |
| Alojamiento F13 Dimensiones de los terminales                    |
| Alojamiento F2 Dimensiones de los terminales                     |

| Alojamiento F3 Dimensiones de los terminales Dimensiones exteriores                    | 103          |
|----------------------------------------------------------------------------------------|--------------|
| Placa prensacables                                                                     | . 104        |
| Alojamiento F4 Dimensiones de los terminales Dimensiones exteriores                    | 115          |
| Placa prensacables                                                                     | . 116        |
| Alojamiento F8 Dimensiones de los terminales Dimensiones exteriores Placa prensacables | 126          |
| Alojamiento F9 Dimensiones de los terminales                                           | . 132        |
| Dimensiones exterioresPlaca prensacables                                               |              |
| Altitud                                                                                | . 169        |
| Amortiguación de resonancia                                                            |              |
| Análisis de series de Fourier                                                          |              |
|                                                                                        | . 200        |
| Analógica<br>Configuraciones de cableado para velocidad de refer<br>                   | encia<br>218 |
| Descripciones de entrada/salida y ajustes predetermin                                  |              |
| Especificaciones de entrada                                                            |              |
| Especificaciones de salida                                                             | 68           |
| Apantallado                                                                            | 181          |
| Apantallamiento                                                                        |              |
| Alimentación                                                                           |              |
| Cables                                                                                 |              |
| Armónicos                                                                              |              |
| Definición de factor de potencia                                                       | . 235        |
| Descripción general                                                                    | 206          |
| Filtro                                                                                 |              |
| Mitigación                                                                             |              |
| Normas CEI<br>Normas EN                                                                |              |
| Arrancador suave                                                                       |              |
| Atmósfera explosiva                                                                    |              |
| Auto on                                                                                |              |
| _                                                                                      | . 210        |
| В                                                                                      |              |
| Bomba                                                                                  | 20           |
| Condensadores<br>Conexión por etapas                                                   |              |
| Primario                                                                               |              |
| Rendimiento                                                                            |              |
| Secundario                                                                             | 41           |
| Bombas del condensador                                                                 | 38           |
| Bombas primarias                                                                       | 39           |
| Bombas secundarias                                                                     |              |
| Bus de CC                                                                              |              |
| Descripción del funcionamiento<br>Terminales                                           |              |
| Bypass de frecuencia                                                                   | 26           |
| 7)                                                                                     |              |







|                                                  |         | Código descriptivo para el formulario de pedido         | . 226              |
|--------------------------------------------------|---------|---------------------------------------------------------|--------------------|
| C                                                |         | Compensación de cos φ                                   | 30                 |
| Cables                                           |         | Compensación de deslizamiento                           |                    |
| Abertura                                         | 73      |                                                         |                    |
| Apantallamiento1                                 |         | Compuertas                                              |                    |
| de motor                                         |         | Comunicación serie                                      | 180                |
| Conexiones de potencia                           |         | Condensación                                            | 165                |
| Control                                          |         |                                                         |                    |
| Ecualizador                                      |         | Condiciones ambientales                                 | 1.05               |
| Especificaciones54                               |         | Descripción general                                     |                    |
| Freno                                            |         | Especificaciones                                        |                    |
| Recorrido                                        |         | Conexión a PC                                           | . 177              |
| Tamaño y número máximo por fase                  |         | Conexión a tierra                                       | <sup>7</sup> . 196 |
| Tipo y clasificaciones                           |         |                                                         | -                  |
| Cables                                           | 171     | Conexión de red                                         |                    |
| consulte también <i>Cables</i>                   |         | Configuración de cableado de arranque/parada 219        |                    |
| Cables de control                                |         | Configuración de cableado para el reinicio de alarma ex |                    |
| Cables de pantalla retorcidos y embornados       | 203     |                                                         | 220                |
| Cálculos                                         |         | Configuraciones de montaje                              | . 167              |
| Ciclo de trabajo de la resistencia               |         | Conformado periódico                                    | 164                |
| Par de frenado                                   |         | Conformidad                                             |                    |
| Referencia escalada                              |         | Con el acuerdo ADN                                      | 7                  |
| Relación de cortocircuito                        |         | Directivas                                              |                    |
| Resistencia de frenado                           |         |                                                         |                    |
| Software de cálculo de armónicos                 |         | Conmutador                                              |                    |
| THDi                                             | 206     | A53 y A54                                               |                    |
| Calentador                                       |         | Desconexión                                             | 52                 |
| Esquema de cableado                              | 172     | Control                                                 |                    |
| Uso                                              | 165     | Características                                         | 70                 |
| Carga compartida                                 |         | Descripción del funcionamiento                          | . 210              |
| Advertencia                                      | 6       | Estructuras                                             | . 214              |
| Descripción general                              |         | Tipos de                                                | 216                |
| Esquema de cableado                              |         | Control ATEX                                            | 1 166              |
| Protección ante cortocircuitos                   |         |                                                         | -                  |
| Terminales                                       |         | Control de proceso                                      | . 216              |
|                                                  | 73, 170 | Controlador de cascada                                  |                    |
| Caudal de aire                                   |         | Diagrama de cableado                                    | . 223              |
| Canal posterior                                  |         | Convenciones                                            |                    |
| Necesario 10                                     | •       | Convenciones                                            | 3                  |
| Protección                                       | •       | Convertidor                                             |                    |
| Tuberías externas                                | 168     | Configurador                                            |                    |
| CEM                                              |         | Descripción general 1                                   |                    |
| Aspectos generales                               | 199     | Pedidos                                                 |                    |
| Compatibilidad                                   | 203     | Potencias de salida 1                                   |                    |
| Directiva                                        | 8       | Requisitos de espacio libre                             | . 167              |
| Instalación                                      | 205     | Corriente de fuga6                                      | i. 195             |
| Interferencia                                    | 204     | _                                                       | ,                  |
| Precauciones de instalación de la interfaz RS485 | 237     | Cortocircuito                                           | 207                |
| Resultados de pruebas                            | 200     | Cálculo de la relación                                  |                    |
| Certificación marítima                           | Q       | Clasificación de SCCR                                   |                    |
|                                                  |         | Definición                                              |                    |
| Certificado TÜV                                  |         | Protección                                              | •                  |
| Certificado UKrSEPRO                             | 9       |                                                         |                    |
| Ciclo de trabajo                                 |         | D                                                       |                    |
| Cálculo                                          |         |                                                         |                    |
| Definición                                       | 235     | Desconexión                                             | 22.5               |
| Clasificación de protección NEMA                 | 10      | Definición                                              |                    |
| Clasificación IP                                 |         | Puntos de los convertidores de 380-480 V                |                    |
|                                                  |         | Puntos de los convertidores de 525-690 V                |                    |
| Código descriptivo                               | 226     | Descripción general del protocolo                       | . 237              |







| Desequilibrio de tensión                               | 21           | Especificaciones eléctricas                                                           |         |
|--------------------------------------------------------|--------------|---------------------------------------------------------------------------------------|---------|
| Determinación de la velocidad local                    | 39           | Convertidores de frecuencia de 6 pulsos<br>Convertidores de frecuencia de doce pulsos |         |
| DeviceNet                                              | 47, 233      |                                                                                       | 37, 03  |
| Diagrama de cableado                                   |              | Esquema de cableado                                                                   | 17:     |
| Alternancia de bomba principal                         | 225          | Conexiones de potencia<br>Convertidor                                                 |         |
| Bomba de velocidad fija variable                       |              | Ejemplos de aplicación típicos                                                        |         |
| Controlador de cascada                                 |              | Terminales de control de doce pulsos                                                  |         |
| Digital                                                |              | ·                                                                                     |         |
| Digital Descripciones de entrada/salida y ajustes prec | determinados | EtherNet/IP                                                                           | 48      |
| Descripciones de entrada/sanda y ajustes prec          | 180          |                                                                                       |         |
| Especificaciones de entrada                            |              | F                                                                                     |         |
| Especificaciones de salida                             |              | Fieldbus                                                                              | 47 170  |
|                                                        |              |                                                                                       |         |
| Dimensiones                                            | 72           | Filtro de modo común                                                                  | 50      |
| Alojamiento E1                                         |              | Filtro senoidal                                                                       | 50, 175 |
| Alojamiento E2                                         |              | Filture                                                                               | ·       |
| Alojamiento F1<br>Alojamiento F10                      |              | Filtros Filtro armónico                                                               | Γ.      |
| Alojamiento F10Alojamiento F11                         |              | Filtro de modo común                                                                  |         |
| Alojamiento F12                                        |              | Filtro dU/dt                                                                          |         |
| Alojamiento F13                                        |              | Filtro RFI                                                                            |         |
| Alojamiento F2                                         |              | Filtro senoidal                                                                       |         |
| Alojamiento F3                                         |              | Pedidos                                                                               | -       |
| Alojamiento F4                                         |              |                                                                                       | 233     |
| Alojamiento F8                                         |              | Fórmula                                                                               |         |
| Alojamiento F9                                         |              | Intensidad de salida                                                                  |         |
| Tabla                                                  |              | Límite de intensidad                                                                  | 234     |
|                                                        |              | Potencia nominal de la resistencia de frenado                                         |         |
| Dimensiones exteriores (ilustraciones)                 | 73           | Rendimiento del convertidor                                                           | 234     |
| Directiva de máquinas                                  | 8            | Frecuencia de conmutación                                                             |         |
| Directiva ErP                                          |              | Conexiones de potencia                                                                | 175     |
| DITECTIVA ETP                                          | 9            | Filtro senoidal                                                                       |         |
| Disipador                                              |              | Reducción de potencia                                                                 |         |
| Caudal de aire necesario                               |              | Uso con RCD                                                                           | 196     |
| Limpieza                                               |              | Frenado                                                                               |         |
| Punto de desconexión por sobretemperatura              | 54, 60       | Control con función de freno                                                          | 10      |
| Dispositivo de corriente diferencial                   | 195, 196     | dinámicodinámico                                                                      |         |
| DU/dt                                                  |              | Límites                                                                               |         |
| DO/at                                                  | 190          | Uso como función de freno alternativa                                                 |         |
| _                                                      |              |                                                                                       |         |
| E                                                      |              | Freno CC                                                                              | 44, 246 |
| Elevación                                              | 164          | Freno de CA                                                                           | 44      |
|                                                        |              | Función de Motor en giro                                                              | 26      |
| Emisión conducida                                      | 200, 201     | Funcionamiento a baja velocidad                                                       |         |
| Emisión irradiada                                      | 200, 201     |                                                                                       | 103     |
| Encoder                                                |              | Fusibles                                                                              |         |
| Definición                                             | 235          | Advertencia de protección de sobreintensidad                                          |         |
|                                                        |              | Alimentación                                                                          |         |
| Energía                                                | 20.20        | Complementarios                                                                       |         |
| Ahorro                                                 | ······       | Conformidad                                                                           |         |
| Clase de rendimiento energético                        | 00           | Contactor de red                                                                      |         |
| Energía regenerativa                                   | 26           | Controlador de motor manual                                                           |         |
| Entorno                                                | 66 165       | Desconexión de red                                                                    |         |
|                                                        |              | Especificaciones para 380-480 V                                                       |         |
| Entorno comercial                                      | 201          | Especificaciones para 525-690 V                                                       |         |
| Entorno residencial                                    | 201          | Opciones                                                                              |         |
| Entrada de usuario                                     |              | Para las conexiones de potencia                                                       |         |
|                                                        |              | Potencia/semiconductor                                                                |         |
| Espacio de la puerta                                   | 73           | Relé Pilz                                                                             |         |
| Especificaciones de entrada                            | 67           | Terminal protegido de 30 A<br>Transformador de control                                |         |
| •                                                      |              | Ventilador de Control<br>Ventilador                                                   |         |
| Especificaciones de USB                                | /0           | *CITCHQQOI                                                                            | 100     |



# VLT® HVAC Drive FC 102



|                                      |          | Marca CE                                         | 8     |
|--------------------------------------|----------|--------------------------------------------------|-------|
| G                                    |          | Marca RCM                                        | 9     |
| Gases                                | 165      | Modbus                                           |       |
| Gestión del ancho de banda           | 42       | Códigos de función de los mensajes RTU           | 246   |
| Guía de funcionamiento               |          | Estructura de telegrama                          | 244   |
|                                      |          | Opción                                           |       |
| Guía de programación                 | 5        | Visión general de RTU                            |       |
| Ц                                    |          | Modulación22                                     |       |
| Н                                    |          | Modulación automática de frecuencia de conmutaci | ón 22 |
| Hand on                              | 210      | Módulo de opción de E/S general                  | 48    |
| Homologación CSA/cUL                 | 9        | Motor                                            |       |
| Humedad                              | 165      | Aislamiento                                      |       |
|                                      |          | Cables                                           |       |
| I                                    |          | Clases de protección<br>Conexión en paralelo     |       |
|                                      | 2.4      | Configuración de cableado de termistor           |       |
| IGV                                  |          | Corriente de fuga                                |       |
| Inercia                              | 248      | Detección de caída de fase                       |       |
| Instalación                          |          | Especificaciones de salida                       |       |
| Eléctrico                            |          | Esquema de cableado                              |       |
| Personal cualificado                 |          | Ex-d                                             |       |
| Requisitos                           | 167      | Ex-eMitigación de corrientes en los cojinetes    |       |
| Instalación a gran altitud           | 204      | Par completo                                     |       |
| Instalación eléctrica                | 181      | Par de arranque                                  |       |
| Intensidad                           |          | Placa de características                         | 25    |
| Conexión toma a tierra transitoria   | 196      | Protección térmica                               |       |
| Control de corriente interno         |          | Rotación                                         | 191   |
| Corriente armónica                   | 206      |                                                  |       |
| Corriente de fuga                    |          | N                                                |       |
| Corriente fundamental                |          | Normativa de control de exportación              | ۵     |
| Corriente nominal de salida          |          | Normativa de control de exportación              | 9     |
| Distorsión                           |          |                                                  |       |
| Fórmula para el límite de intensidad |          | 0                                                |       |
| Mitigación del motor                 |          | Opción de entrada de sensor                      | 49    |
| Interferencias de radiofrecuencia    | 23       | Opciones                                         |       |
| Interferencias electromagnéticas     | 23       | Control de movimiento                            | 49    |
| Inversor                             | 210      | Disponibilidad de las envolventes                |       |
|                                      |          | Extensiones funcionales                          | 48    |
| К                                    |          | Fieldbus                                         |       |
| IX.                                  |          | Fusibles                                         |       |
| Kits                                 |          | Pedidos                                          |       |
| Descripciones                        |          | Tarjetas de relé                                 |       |
| Disponibilidad de las envolventes    |          | Optimización automática de energía (AEO)         | 22    |
| Números de pedido                    | 232      | Ordenador personal                               | 177   |
| L                                    |          | P                                                |       |
| Lazo abierto                         | 214, 215 |                                                  |       |
| Lazo cerrado                         | 214, 215 | Paquetes de idioma                               | 226   |
| Leyes de proporcionalidad            | •        | Par<br>Característica                            | 66    |
| Longitud del telegrama (LGE)         |          | Control                                          |       |
| Los cables de control                |          | Par de arranque                                  |       |
| LOS CADIES DE CONTO                  | 181      | PELV                                             |       |
| M                                    |          | Perfil FC2                                       |       |
|                                      | 100 100  |                                                  |       |
| Magnetotérmico                       |          | Personal cualificado                             | 6     |
| Mantenimiento                        | 166      |                                                  |       |







| PID Control                                   |
|-----------------------------------------------|
| Control                                       |
| Controlador PID de tres valores de consigna35 |
| Placa prensacables                            |
| PLC                                           |
| Potencia                                      |
| Clasificación 12, 54, 60                      |
| Conexiones                                    |
| Pérdidas                                      |
| Potenciómetro                                 |
| Precalentamiento                              |
| PROFIBUS                                      |
| PROFINET                                      |
| Protección                                    |
| Clasificación 10                              |
| Clasificación de protección 13, 14            |
| Cortocircuito                                 |
| Desequilibrios en la tensión de alimentación  |
| Función de freno                              |
| Sobreintensidad                               |
| Sobretensión                                  |
| Térmico motor                                 |
| Protección de circuito derivado 184           |
| Protección de sobreintensidad 171             |
| Protección del armario 10                     |
| Pulso                                         |
| Configuración de cableado de arranque/parada  |
| Especificaciones de entrada                   |
| Punto de acoplamiento común                   |
| R                                             |
| ••                                            |
| Realimentación Conversión                     |
| Manejo                                        |
| Señal                                         |
| Rectificador                                  |
| Red                                           |
| Corte                                         |
| Red IT                                        |
| Reducción de potencia                         |
| Altitud                                       |
| Especificaciones                              |
| Función automática                            |
| Funcionamiento a baja velocidad               |
| Tablas 170                                    |
| Tuberías externas                             |
| Vista general y causas 168                    |
| Referencia                                    |
| Entrada de velocidad                          |
| activa                                        |
| remota                                        |

| Referencia activa                                                                                                                           | 210                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Referencia escalada                                                                                                                         | 211                                                      |
| Referencia remota                                                                                                                           | . 211                                                    |
| Refrigeración Advertencia de polvo                                                                                                          | , 168<br>167<br>36<br>erior                              |
| Refrigeración de tuberías                                                                                                                   | 167                                                      |
| Refrigeración del canal posterior                                                                                                           | 167                                                      |
| Regen Disponibilidad1 Terminales95, 102, 114, 125,                                                                                          |                                                          |
| Regeneración<br>Descripción general                                                                                                         | 46                                                       |
| Reinicio                                                                                                                                    | 26                                                       |
| Reinicio de la alarma                                                                                                                       | 220                                                      |
| Relé Especificaciones Instalación conforme al acuerdo ADN Opción Opción de tarjeta de relé ampliada Tarjeta Terminales                      | 7<br>49<br>49<br>49                                      |
| Relé termoelectrónico (ETR)                                                                                                                 |                                                          |
| Rendimiento  Cálculo                                                                                                                        | . 197<br>4, 60<br>. 234                                  |
| Repuestos                                                                                                                                   | 233                                                      |
| Requisitos de inmunidad                                                                                                                     | 202                                                      |
| Requisitos en materia de emisiones                                                                                                          | . 201                                                    |
| Resistencia de frenado Definición Descripción general Esquema de cableado Fórmula para la potencia nominal Guía de diseño Pedidos Seguridad | 235<br>49<br>.172<br>234<br>5<br>. 233<br>, 195<br>. 193 |
| Resistor brake (Freno con resistencia)                                                                                                      | 44                                                       |
| RFI Filtro Uso de conmutador con red IT                                                                                                     | 197                                                      |
| Rotor                                                                                                                                       |                                                          |
| RPM                                                                                                                                         | 29                                                       |



# VLT® HVAC Drive FC 102



| R5485                                      |        |
|--------------------------------------------|--------|
| Configuración de cableado                  |        |
| Descripción general                        |        |
| Esquema de cableado                        | 172    |
| Instalación                                | 236    |
| Terminales                                 | 180    |
| Valores de parámetro                       | 247    |
| Ruido acústico                             | 100    |
| Nuido acustico                             | 190    |
| _                                          |        |
| S                                          |        |
| Safe Torque Off                            |        |
| Configuración de cableado                  | 219    |
| Cumplimiento de la Directiva de máquinas   |        |
| Descripción general                        |        |
| Esquema de cableado                        |        |
| Guía de funcionamiento                     |        |
| Ubicación del terminal                     |        |
|                                            |        |
| Salida                                     |        |
| Conmutador                                 |        |
| Contactor                                  | ,      |
| Especificaciones                           | 68     |
| Seguridad                                  |        |
| Instrucciones 6                            | 5, 171 |
| C-II- FAC                                  |        |
| Sello EAC                                  |        |
| Sensor de CO2                              | 35     |
| Sistema CAV                                | 35     |
| Sistema de gestión de edificios (BMS)      | 29     |
| Sistemas centralizados VAV                 |        |
|                                            | 34     |
| Smart Logic Control                        |        |
| Configuración de cableado 0                |        |
| Descripción general                        | 27     |
| Sobrecarga                                 |        |
| Límites                                    | 21     |
| Problema con los armónicos                 |        |
| termoelectrónica                           |        |
|                                            |        |
| Sobrecarga termoelectrónica                |        |
| Sobretemperatura                           | . 236  |
| Sobretensión                               |        |
| Frenado                                    | 49     |
| Función de freno alternativa               |        |
| Protección                                 |        |
|                                            |        |
| STO                                        | 5      |
| consulte también Safe Torque Off           |        |
| Suministro externo de 24 V CC              | 180    |
|                                            |        |
| <b>T</b>                                   |        |
| Т                                          |        |
| Tarjeta de control                         |        |
| Especificaciones                           | 70     |
| Especificaciones de RS485                  |        |
| Punto de desconexión por sobretemperatura5 |        |
|                                            |        |
| Tarjeta de relé ampliada                   |        |
| Tarjeta del termistor PTC                  | 49     |
|                                            |        |
| Temperatura                                | 165    |

| Tensión baja<br>Directiva 8                              |
|----------------------------------------------------------|
| Terminales                                               |
| Carga compartida176                                      |
| Comunicación serie                                       |
| Descripciones de control y ajustes predeterminados 179   |
| Dimensiones del alojamiento E1                           |
| Dimensiones del alojamiento E282                         |
| Dimensiones del alojamiento F1 91                        |
| Dimensiones del alojamiento F10 138                      |
| Dimensiones del alojamiento F11 144                      |
| Dimensiones del alojamiento F12 152                      |
| Dimensiones del alojamiento F13 158                      |
| Dimensiones del alojamiento F2                           |
| Dimensiones del alojamiento F3                           |
| Dimensiones del alojamiento F4                           |
| Dimensiones del alojamiento F8                           |
| Dimensiones del alojamiento F9                           |
| Entrada/salida analógica                                 |
| Entrada/salida digital                                   |
| RS485                                                    |
| Terminal 37                                              |
| de relé                                                  |
|                                                          |
| Terminales de control 179                                |
| Termistor                                                |
| Configuración de cableado 222                            |
| Definición 236                                           |
| Recorrido de los cables178                               |
| Ubicación del terminal 181                               |
| Tiempo de descarga 7                                     |
|                                                          |
| Tiempo de subida198                                      |
| Transductor 180                                          |
| Transformador                                            |
| Conexión                                                 |
| Efectos de los armónicos 206                             |
| Triángulo31                                              |
| 11 Idi 19 di 0                                           |
| U                                                        |
| U                                                        |
| UL                                                       |
| Clasificación de protección del alojamiento 10           |
| Logotipo del certificado                                 |
|                                                          |
| V                                                        |
| -<br>//A\/                                               |
| VAV                                                      |
| Velocidad                                                |
| Configuración de cableado para aceleración/desacelera    |
| ción 221                                                 |
| Configuraciones de cableado para velocidad de referencia |
| 221                                                      |
| Control                                                  |
| Realimentación PID 216                                   |
| Ventiladores                                             |
| Alimentación externa176                                  |
| Caudal de aire necesario 167, 168                        |
| controlados por temperatura22                            |
| Versiones de software 233                                |
|                                                          |



| Índice | Guía de diseño |
|--------|----------------|
|        |                |

| Volumen de aire constante | 35   |
|---------------------------|------|
| Volumen de aire variable  | . 34 |
| \/\/C+                    | 217  |



Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso y se reserva el derecho de alterar sus productos sin previo aviso, incluidos los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

