用户指南
智能空分系统 (IPS 8)

230 V AC, 50 Hz. CE 标志
目录

<table>
<thead>
<tr>
<th>部分</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>法律声明</td>
<td>3</td>
</tr>
<tr>
<td>技术参数</td>
<td>4</td>
</tr>
<tr>
<td>订购</td>
<td>5</td>
</tr>
<tr>
<td>简介</td>
<td>6</td>
</tr>
<tr>
<td>功能特点</td>
<td>6</td>
</tr>
<tr>
<td>工作原理</td>
<td>7</td>
</tr>
<tr>
<td>工作循环</td>
<td>8</td>
</tr>
<tr>
<td>气阱</td>
<td>9</td>
</tr>
<tr>
<td>连接位置</td>
<td>10</td>
</tr>
<tr>
<td>连接点</td>
<td>12</td>
</tr>
<tr>
<td>安装</td>
<td>14</td>
</tr>
<tr>
<td>起吊规程</td>
<td>14</td>
</tr>
<tr>
<td>电气接线</td>
<td>16</td>
</tr>
<tr>
<td>指示灯</td>
<td>18</td>
</tr>
<tr>
<td>快速启动</td>
<td>19</td>
</tr>
<tr>
<td>通过 MCX15B2 控制器上的 HMI® 配置 IPS</td>
<td>21</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>28</td>
</tr>
<tr>
<td>维护/检修/处置</td>
<td>28</td>
</tr>
</tbody>
</table>
法律声明

本产品信息是丹佛斯交付范围文件的一部分，用于产品演示和客户咨询服务。其中包含产品的相关信息和技术数据。

本产品信息应补充工业安全相关信息以及产品安装地点的健康相关法规。安装地的适用法规各有不同，因此，本产品信息不涉及这些法规。

除本产品信息以及产品使用地所在国家和地区适用的事故防范法规外，还必须遵守安全专业作业的技术法规。

本产品信息的撰写尽可能做到准确可靠。然而，丹佛斯对本文件可能包含的任何错误或其后果概不负责。

对于本产品信息所涵盖的设备，丹佛斯保留在其进一步开发过程中进行技术更改的权利。

本产品信息中的示例和图示均经过简化处理。由于不断改进和更改，示例可能与当前的开发状态不完全一致。技术数据和尺寸随时会有变更。不接受任何以此提出的索赔。

EU DECLARATION OF CONFORMITY

Danfoss A/S
Refrigeration & Air Conditioning Controls

declares under our sole responsibility that the
Product category: Intelligent Purger System (Air Purger)
Type designation(s): IPS 8
Covered by this declaration is in conformity with the following directive(s), standard(s) or other normative
document(s), provided that the product is used in accordance with our instructions.

Machine Directive 2006/42/EC
EN 378-2:2016 Refrigerating systems and heat pumps - Safety and environmental requirements - Part 2: Design,
construction, testing, marking and documentation
IEC 60204-1:2018 Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1:
General requirements
Pressure Equipment Directive 2014/68/EU (PED)
EN 378-2:2016 Refrigerating systems and heat pumps - Safety and environmental requirements - Part 2: Design,
construction, testing, marking and documentation
Ammonia side (R717): Category A4P3. Fluid group: 1. PS = 40 bar. TS: -40 °C to 60 °C
R452A side: Category 1. Fluid group: 2. PS = 28 bar. TS: -40 °C to 60 °C
Ambient temperature: -10 °C to 43 °C
Electromagnetic Compatibility Directive 2014/30/EU (EMC)
IEC 61000-6-2 Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity standard for industrial
environments (IEC77/488/CDV:2015)
EN 61000-6-4 Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial
environments
Note: EMC test performed with cable length < 30m.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006/42/EC</td>
<td>EN 378-2</td>
<td></td>
</tr>
<tr>
<td>60204-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014/68/EU (PED)</td>
<td>EN 378-2</td>
<td></td>
</tr>
<tr>
<td>2014/30/EU (EMC)</td>
<td>IEC 61000-6-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EN 61000-6-4</td>
<td></td>
</tr>
</tbody>
</table>

Date: YYYY.MM.DD
Place of issue:

Signature: Name: Su Cheong Ho
Title: Lead Design Engineer

Signature: Name: Behzad Parastar
Title: Product Manager

Danfoss only vouches for the correctness of the English version of this declaration. In the event of the declaration being translated into any other
language, the translator concerned shall be liable for the correctness of the translation.
技术参数

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>供电电压范围: IPS 8 现场连接电磁线圈</td>
<td>230V +/-10% AC, 1ph, 50Hz</td>
</tr>
<tr>
<td>电流</td>
<td>5.7 A (最大 6.5 A)</td>
</tr>
<tr>
<td>功耗</td>
<td>最大 1.3 kW</td>
</tr>
<tr>
<td>额定短路电流</td>
<td><10 kA</td>
</tr>
<tr>
<td>环境温度范围</td>
<td>-10 °C 至 +43 °C (14 °F 至 109 °F)</td>
</tr>
<tr>
<td>运输/储存温度范围</td>
<td>-30 °C 至 +60 °C (22 °F 至 140 °F)</td>
</tr>
<tr>
<td>机箱</td>
<td>IP55</td>
</tr>
<tr>
<td>重量</td>
<td>最大 100 kg (221 lbs)</td>
</tr>
<tr>
<td>尺寸（长 x 宽 x 高）</td>
<td>1051 x 441 x 703 毫米 (41.4 x 17.4 x 27.7 英寸)</td>
</tr>
<tr>
<td>空分制冷剂</td>
<td>R452A 900 g (31.7 oz)</td>
</tr>
<tr>
<td>最大运行压力 (PS) R452A</td>
<td>28 bar (406 psi)</td>
</tr>
<tr>
<td>系统制冷剂</td>
<td>R717</td>
</tr>
<tr>
<td>最大运行压力 R717</td>
<td>40 bar/580 psi</td>
</tr>
<tr>
<td>工作温度 R717</td>
<td>-40 °C 至 +60 °C (40 °F 至 140 °F)</td>
</tr>
</tbody>
</table>

说明
- 数字输出，DO6
- 数字量输出，DO7 Y1 阀 — 放空点 1
- 数字量输出，DO8 Y2 阀 — 放空点 2
- 数字量输出，DO9 Y3 阀 — 放空点 3
- 数字量输出，DO10 Y4 阀 — 放空点 4
- 数字量输出，DO11 Y5 阀 — 放空点 5
- 数字量输出，DO12 Y6 阀 — 放空点 6
- 数字量输出，DO13 Y7 阀 — 放空点 7
- 数字量输出，DO14 Y8 阀 — 放空点 8
- 数字量输出，DO15 Y9 阀 — 鼓泡器 (可选) / 常规警报 (可选)

另请参见图 18
订购

<table>
<thead>
<tr>
<th>单位</th>
<th>货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>丹佛斯智能空分系统 IPS 8</td>
<td>084H5001</td>
</tr>
</tbody>
</table>

附件/备件

<table>
<thead>
<tr>
<th>附件/备件</th>
<th>用于服务的备件</th>
<th>货号</th>
</tr>
</thead>
<tbody>
<tr>
<td>法兰盲板，包括螺栓、螺母和垫片*</td>
<td>x</td>
<td>084H5053</td>
</tr>
<tr>
<td>5/8 浮球阀</td>
<td>x</td>
<td>027B2023</td>
</tr>
<tr>
<td>ICF 15-4 电磁阀组件, 对接焊 DIN 15毫米 ½ 英寸</td>
<td>x</td>
<td>027L4543</td>
</tr>
<tr>
<td>ICF 15-4 电磁阀组件, 承插焊 ANSI 15毫米 ½ 英寸</td>
<td>x</td>
<td>027L4538</td>
</tr>
<tr>
<td>ICF 15-4 电磁阀组件, 对接焊 ANSI 15毫米 ½ 英寸</td>
<td>x</td>
<td>027L4602</td>
</tr>
<tr>
<td>焊接法兰, 包括螺栓、螺母和垫片</td>
<td>x</td>
<td>084H5056</td>
</tr>
<tr>
<td>主放空阀的维修包 (阀体、管件、密封件、阀芯、过滤器芯)。参见图 1 中的项目 16</td>
<td>x x</td>
<td>084H5057</td>
</tr>
<tr>
<td>电磁阀组件, 220 – 230V, 50 Hz, 适用于现场连接电磁阀</td>
<td>x</td>
<td>018F6801</td>
</tr>
<tr>
<td>电磁阀组件, 24V DC, 适用于主放空阀。参见图 1 中的项目 16</td>
<td>x x</td>
<td>018F6757</td>
</tr>
<tr>
<td>PSU, 24V DC — 放空点可选电源</td>
<td>x</td>
<td>080Z0055</td>
</tr>
<tr>
<td>循环器, 位于主放空阀后的放空气管中。参见图 1 中的项目 18 以及图 13</td>
<td>x</td>
<td>084H5054</td>
</tr>
<tr>
<td>压缩机轴箱加热器</td>
<td>x</td>
<td>084H5058</td>
</tr>
<tr>
<td>冷凝器盘管组件, 包括螺丝</td>
<td>x</td>
<td>084H5059</td>
</tr>
<tr>
<td>冷凝器风机马达, 包括风机隔栅和螺丝</td>
<td>x</td>
<td>084H5060</td>
</tr>
<tr>
<td>排气风箱</td>
<td>x</td>
<td>084H5056</td>
</tr>
<tr>
<td>带滤网的空气隔栅 (2 片)</td>
<td>x</td>
<td>084H5057</td>
</tr>
<tr>
<td>预编程的 MCX15B2, 包括应用软件</td>
<td>x</td>
<td>084H5067</td>
</tr>
<tr>
<td>压力传感器, 用于蒸发器, 焊接 (AKS 32R)</td>
<td>x</td>
<td>060G3552</td>
</tr>
<tr>
<td>压缩机, 包括启动继电器箱及启动和运行电容</td>
<td>x</td>
<td>123B2126</td>
</tr>
<tr>
<td>压缩机高温传感器</td>
<td>x</td>
<td>084N2003</td>
</tr>
<tr>
<td>R452A 视镜阀</td>
<td>x</td>
<td>068U3881</td>
</tr>
<tr>
<td>视镜</td>
<td>x</td>
<td>014-0191</td>
</tr>
<tr>
<td>压力传感器 — R717, 螺纹连接, AKS2050</td>
<td>x</td>
<td>060G5750</td>
</tr>
<tr>
<td>曲轴箱加热温控器</td>
<td>x</td>
<td>060L111166</td>
</tr>
<tr>
<td>温度传感器 — R717, AKS 21M</td>
<td>x</td>
<td>084N2003</td>
</tr>
<tr>
<td>LLS 4000 液位开关 G 1/4” **</td>
<td>x</td>
<td>084H6001</td>
</tr>
<tr>
<td>风扇压力开关</td>
<td>x</td>
<td>联系丹佛斯</td>
</tr>
<tr>
<td>压力安全开关</td>
<td>x</td>
<td>联系丹佛斯</td>
</tr>
</tbody>
</table>

* 执行系统压力测试过程中，用于封闭系统的法兰

** 参见图 1 和图 10a
用户指南 | 智能空分系统 (IPS 8)

简介

丹佛斯智能空分系统 (IPS 8) 是一个独立式空分装置，适用于排除工业氨制冷系统中的不凝性气体（不凝性气体 = 空气及其他多余的杂质气体）。IPS 控件最多可以处理 8 个放空点进行自动放空。

由氨气和不凝性气体构成的混合气体可通过法兰接口进入空分换热器，然后分离为氨气冷凝液和不凝性气体。由于重力的作用，氨气冷凝液会返回到主设备中，而不凝性气体会通过水浴器等排到大气中。

该空分装置是一个电子控制的独立式 R452A 制冷剂系统，该系统可独立于氨制冷系统运行，与氨制冷设备之间仅设有单个法兰连接。通过该法兰接口，空分装置可以与氨制冷系统连接来采集所需的系统参数实现完全自动控制。

为了确保和保持氨制冷系统的设计制冷量并防止在未来出现空气集聚，我们强烈建议您安装丹佛斯的 IPS 8 系统。

功能特点

- 采用最新技术设计的电子控制设备，该装置以丹佛斯的 MCX 控制器为基础而设计
- 有助于降低氨制冷系统的功耗
- 能够自动排除制冷系统中的不凝性气体
- 能够持续智能监控制冷系统制冷剂与空分制冷剂之间的压差
- 采用智能空分方式，能够最大程度地减少制冷剂（氨气）向空气中的排放量
- 采用独立式运行设计，可独立于主设备运行
- 提供运行日志，便于轻松监控放空循环数据
- 远程监测和系统集成标准工业 Modbus 通讯协议
- 由于设备按实际系统情况运行，与其他装置相比，降低了空分功耗
- 加载方案以确定哪个放空点正在排除大多数 NCC
- 准备管理/控制水浴鼓泡器
- 可选择安装 LLS 4000，防止液柱过高以保护 IPS
- 具备自诊断功能，一旦出现故障，装置和系统即会立即停止运行
- 采用即插即用的独立式设计，非常便于安装和调试，仅需少量的机械和电气连接
- 采用全面铜焊连接且经过泄漏测试的 R452A 冷凝系统，可最大程度地降低泄漏风险
- 采用即插即用的独立式设计，简化了安装和调试，并减少了潜在出错的风险
- 无需复杂设置
- 采用紧凑且易于装卸的设计
- IPS 拥有注册专利
工作原理

丹佛斯 IPS 8 已经过工厂测试，可供氨制冷设备在超过 6.5 bar (94 psi) 的冷凝器压力条件下使用。该空分充注 900 克 (31.7 oz) 的 R452A 制冷剂。

该空分只需要 1 个机械连接 (参见图 1)。主设备的氨气/不凝性气体与主设备之间的连接通过法兰实现 (参见图 1 中的 13)，而不凝性气体的排除则通过排气电磁阀 (18) 之后的排气管实现。

由氨气和不凝性气体构成的混合气体通过法兰接口 (13) 进入空分蒸发器 (12)。这种由氨气和不凝性气体构成的混合气体通过 R452A 回路冷却至氨气的冷凝温度以下。在此处，氨气会冷凝并在重力的作用下返回到氨制冷设备，而不凝性气体则被集聚在换热器 (12) 中，然后再排除掉。

在氨气冷凝之后，系统中的氨气和不凝性混合气体与此同时继续进入空分进行分离。新的混合气体会持续进行分离。当蒸发器 (12) 中的不凝性气体浓度增加时，R452A 蒸发器的压力和温度将持续降低。

控制器持续监控 R452A 换热器的压力及氨气的压力和温度。当 R452A 压力与氨气压力 (温度) 达到预设的压差时，将会通过电磁阀 (16) 排除不凝性气体。之后，通过电磁阀 (16) 的不凝性气体进入排气管排出，而排气管则通过适当的配管与水浴器相连接。该过程结束后，会留下少量的氨气（参见“安装”章节）。

图 1 — 空分 R452A 布局

<table>
<thead>
<tr>
<th>序号</th>
<th>设备或部件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>通过数字量输出 DO1 控制压缩机 (900 g (31.7 oz) R452A)</td>
</tr>
<tr>
<td>1a</td>
<td>压缩机曲轴箱加热器</td>
</tr>
<tr>
<td>2</td>
<td>预热器和后热温控器</td>
</tr>
<tr>
<td>3</td>
<td>通过模拟量输入 AI3 排气温度传感器 R452A, Pt 1000</td>
</tr>
<tr>
<td>3a</td>
<td>通过模拟量输入 AI4 的吸气温度传感器 R452A, Pt 1000</td>
</tr>
<tr>
<td>4</td>
<td>压力安全开关</td>
</tr>
<tr>
<td>5</td>
<td>冷凝器</td>
</tr>
<tr>
<td>6</td>
<td>排气风扇</td>
</tr>
<tr>
<td>7</td>
<td>冷凝器风扇的压力开关</td>
</tr>
<tr>
<td>8</td>
<td>电磁阀 (16) 开关</td>
</tr>
<tr>
<td>9</td>
<td>过滤器</td>
</tr>
<tr>
<td>10</td>
<td>视液镜</td>
</tr>
<tr>
<td>11</td>
<td>R452A 膨胀阀</td>
</tr>
<tr>
<td>12</td>
<td>R452A 蒸发器</td>
</tr>
<tr>
<td>13</td>
<td>法兰接口 (13)</td>
</tr>
<tr>
<td>14</td>
<td>R452A 压力变送器，通过模拟量输入 AI1, 压力变送器 AKS 32R 测量</td>
</tr>
<tr>
<td>15</td>
<td>压力变送器 R717，通过模拟量输入 AI2 压力变送器 AKS 2050 测量</td>
</tr>
<tr>
<td>16</td>
<td>主放空阀通过数字量输出 DO2 控制</td>
</tr>
<tr>
<td>17</td>
<td>NC 温度传感器 R717，通过模拟量输入 AI5, 温度变送器 AKS 4000 测量</td>
</tr>
<tr>
<td>18</td>
<td>排气管限流器</td>
</tr>
<tr>
<td>19</td>
<td>LS 4000 液位开关，配件不包括在标配 IPS 中</td>
</tr>
</tbody>
</table>
工作循环

丹佛斯 IPS 8 的运行周期为 24 小时，其中有 45 分钟专用于 R452A 降温控温。接通电源后，会立即开始控温。如果在 40 分钟的控温过程中未检测到不凝性气体，系统将关闭放空点 1 处的电磁阀，并打开放空点 2 处的电磁阀。在 24 小时/N（放空点数）的循环周期之后，压缩机将再次控温降温，让氨冷凝。24 小时后，所有放空点将一次性全部完成放空。

控制器会利用 R452A 蒸发温度的上下阈值来识别不凝性气体。在控温期间，如果温度持续降低并超过下阈值，控制器将会认为系统中的不凝性气体达到了较高浓度，并打开排气电磁阀。放空阀将一直保持开启状态，直到系统中维持足够的冷凝氨，将 R452A 的蒸发温度提升到超过上阈值。

之后，压缩机将会继续运行；如果温度再次降低到下阈值以下，将会执行新的排气循环。在放空阀上次关闭后，将重复执行该过程，直至 R452A 换热器温度超过下阈值并维持 40 分钟以上。

控制循环会利用 R452A 蒸发温度的上下阈值来识别不凝性气体。在控温期间，如果温度持续降低并超过下阈值，控制器将会认为系统中的不凝性气体达到了较高浓度，并打开排气电磁阀。放空阀将一直保持开启状态，直到系统中维持足够的冷凝氨，将 R452A 的蒸发温度提升到超过上阈值。

之后，压缩机将会继续运行；如果温度再次降低到下阈值以下，将会执行新的排气循环。在放空阀上次关闭后，将重复执行该过程，直至 R452A 换热器温度超过下阈值并维持 40 分钟以上。

### 标签 ID	参数名称	说明和选项	出厂设置值
CM3 | PDT | 压缩机降温控温时间 | 40 分钟
CM4 | CST | 压缩机启动时间参见图 2 了解详情 | 1440 分钟（24 小时）
VA5 | PLT | 无限放空最长时间一个点上无限放空的最长时间。到时间后，IPS 将转至下一个放空点 (PP) | 24 h

参见完整参数列表 — 表 01

图 2 — 打开电源及系统中没有不凝性气体存在：CST（压缩机启动时间）及 PDT（降温控温时间）均可配置

* 压缩周期 CST = 24 小时/N（放空点数）

图 3 — 放空流程 — 在 PDT 期间检测到 R452A 蒸发温度较低：阈值可配置

* 如果检测到蒸发温度较低（低于下阈值），将会立即重复放空程序
气阱

对于带有低压液位控制装置的系统而言，应安装恰当的冷凝器/储液器，如图4和图5所示。

压缩机 (1) 的排气将会被输送至冷凝器 (2) 进行冷凝。储液器 (3) 会储存液体，直至低压侧出现液体需求，例如膨胀阀 (4) 打开时。如果膨胀阀关闭，在冷凝器中冷凝的液体将需要储存在储液器中，液位将会增加。为了确保液体能够通畅地流至储液器，必须允许气体离开储液器。此过程通过压力平衡管路 (a) 来实现。压力平衡管路的作用是确保储液器中的压力与压缩机排气管路中的压力保持一致。由于冷凝器中的压力损失，冷凝器出口处的压力会变低。由于冷凝器出口压力低于储液器中的压力值，因此必须将冷凝器安装在高于储液器的位置，同时在冷凝器和储液器之间的管路 (b) 维持较高的液位。
连接位置

在低压液位控制的系统中安装空气分离器

空气分离器与氨制冷设备的正确连接位置是：
(参见图6和图7)
— 储液器上方
— 冷凝器液封存液弯中液体的上方。

空气分离器(5)通过电磁阀(px和py)与两个排放点相连接。请注意，在任何给定时间内，只能打开一个电磁阀，否则，冷凝器中的液柱将会出现旁通。

空气分离器自带的回液用液封存液弯(c)必须与冷凝器的液封存液弯(b)并行连接。

当空气分离器连接到储液器时，即电磁阀(px)打开，空气分离器液封存液弯(c)中的液位将等于储液器液位(3)；空气分离器连接到冷凝器出口时，即电磁阀(py)打开，液位将等于液封存液弯(b)中的液位。

或者，可通过与低压侧连接的高压浮球阀(6)有效实现空气分离器的排液(参见图7)。

图6——空气分离器的连接(px)和(py)，排液配管(c)必须垂直布置或呈下斜坡布置

图7——空气分离器的连接(px)和(py)，排液配管(c)必须垂直布置或呈下斜坡布置
在高压液位控制装置中安装空分

对于带有高压液位控制装置的系统，空气将集聚在浮球阀 (3) 中。（参见图 8）。

压缩机 (1) 负责向用于冷凝的冷凝器 (2) 提供高压气体。

浮球阀 (3) 将会快速将任何液体送回到低压侧。空气分离器 (5) 必须通过电磁阀 (pv) 与浮球阀相连。在空气分离器中冷凝的液氨必须通过排放管 (c) 和浮球阀 (6) 排放到低压侧。

图 8—空气分离器的连接 (pv)，排液配管 (c) 必须垂直布置或呈下斜坡布置

概述

空气分离器的安装位置务必高于最高液位，以便排出其中经冷凝的氨气。否则，空气分离器可能会出现满溢，进而导致液氨被放空。

空气分离器的回液管路 (c) 必须垂直布置或至少呈下斜坡布置。

连接点处的电磁阀不得同时激活。先完成某个位置的放空后才能切换到另一个。

注意！

请严格按照安装指南进行空分的安装。安装空分时，空分底部法兰和气体进口安装在高于制冷剂液面以上的位置。

从空分接出的排液管道应下坡安装。

在底部法兰接口处安装截止阀以便隔离氨的高压侧来拆卸空分。

放空出口管道连接合适的耐腐蚀管道，确保不凝性气体通过最大 200 升的水浴槽排放。
连接点

多点放空

丹佛斯 IPS 8 出厂默认配置为最多管理 8 个放空点。（多点放空，请参见图 10）。

接通电源后，需在 MCX 控制器中设置实际连接的放空点数量。

用于输入实际放空点数的相关参数：V10, Max_PP (参见表 3)。

可以进行单点放空设置（参见图 09 — 无放空电磁阀）。

对于单点放空，用于输入实际放空点数的相关参数：V10, Max_PP 必须设定为 1 (参见表 3)。

应在首次通电之前，完成所安装的电磁阀线圈的电源和控制接线。

切勿同时打开一个以上的放空点。

务必依次打开放空阀，不得同时打开。

具体操作方法是：打开空分装置的电源，然后在程序中输入放空点 (V10, Max_PP) 的实际数量。请参见“编程/配置”章节。

图 9 — 储液器单点放空

图 10 — 多点放空 (最多 8 个放空点)

请注意防止积液

对于上面所示斜坡，确保下斜坡的管道向液封存液弯。液体流至低压侧

请参阅丹佛斯浮球阀的安装指南：

SV3 — 文献编号：AN149486432996

ICF 中使用的 ICFD 型 — 文献编号：AN250286497620

请参阅 LLS 4000 液位开关安装指南：AN31752397313
图 10a — 安装有 LLS 4000 的 IPS
安装

Danfoss IPS 8 必须按照本文件“采气点位置”和“采气点”章节中推荐的位置安装。

本装置的防护等级为 IP55,可在环境温度范围-10°C ~ 43°C (14°F ~ 109°F) 的室外条件下安装。避免在阳光直射处，这可能会导致过多的阳光照射和超过允许的环境温度限值。如果环境温度低于-10°C (14°F)，则必须将空气分离器安装在加热通风区域。该空分装置必须安装在非ATEX 环境中，因为该装置不防爆。

从收到空分装置到最终安装期间，该装置必须始终保持直立静置。

使用 4 个吊耳和适合的起重装置过程 (设备重量 = 100 kg/220 lbs)。

应将该装置安装在操作平台上方 0.05 ~ 1.1 米 (2 ~ 43 英寸)，具有足够支撑力的水平基座上，并通过螺栓将装置的底架固定到支撑面上（见图 12 中的示例）。装置四周的各个方向上均应保持推荐的距离（参见图 12），以确保充足的通风条件及维护空间。

完成安装后，务必让该装置静置至少 12 个小时，之后方可首次通电运行。

非常重要的一点是，支撑结构必须保持水平，以确保内部集液管能够正确加注。与水平面的夹角应小于 2 度。

起吊规程

所有 4 个吊环必须位于正确位置，与实际使用的起吊装置相配套。必须使用所有 4 个吊环。*为便于操作主开关和检修，应将该装置安装在操作平台上方 0.05 至 1.1 米 (2 至 43 英寸) 处。
安装（续）

1. 按照图 13 和图 14 准备焊接法兰连接的氨管道。主配管/排放配管的内径不得小于 Ø37 mm (1.5 in)。
2. 准备好承重量可达到 100 kg (221 lbs) 的支撑结构。
3. 使用空分柜体两侧的吊耳将空分提升到适当位置。取下法兰开口上的橡胶塞。参见图 13。
4. 使用内附垫片将焊接法兰连接到空分法兰上，并使用 60 Nm (44.3 ft-lb) 的扭矩对角拧紧随附的 4 个螺栓。
5. 将 4 个螺栓（未提供）穿过空分底架及支撑结构并拧紧。
6. 进行泄漏测试，确保已紧密连接。
7. 如果需要拆除空分装置，请联系丹佛斯获取相关指导。
8. 按照国家或地方法规的规定，正确安装与排气电磁阀连接的不凝性气体排放管道/软管。
9. 准备最大容量为 200 升 (53 gal) 的外部水箱，并确保相应配管能够将排出的气体输送到水中。
10. 定期检查水箱内溶液的 pH 值。
11. pH 值不得超过 12.6，否则必须予以更换。
12. 高浓度废水的处置必须符合当地/国家法规的规定。

注意：在更换水箱内的水之前，确保空分已关机，且空分法兰出口处的截止阀已关闭。将空分在该条件下保持一段时间，以便管路中的残余气体溶解/逸散。留意气泡。

制定相应的程序，以便定期检查 pH 值和气泡。如果在正常工作中的“待机”模式（绿色指示灯点亮）下，水箱中持续出现气泡，则表示一个或多个排气电磁阀需要维修或更换。
电气接线

空分的内部接线已在工厂内完成。在现场安装时，只需完成主电源的电气接线、放空点电磁阀和可选的主控系统的总线通信。强烈建议用金属管道保护从 IPS 8 到电源和所有放空点电磁阀的所有外部电缆。

电气危险。仅允许授权人员进行操作。

警告

电气危险。仅允许授权人员进行操作。

注意: 仅允许授权人员进行操作。

启动开关

启动开关

图15 — 外部控制箱

只有在已使用钥匙解锁且主开关关闭的情况下才能打开控制箱盖。

图16 — 内部控制箱
电气接线（续）

图17—电源

图18—控制器MCX15B2输入和输出
指示灯

<table>
<thead>
<tr>
<th>指示灯点亮</th>
<th>状态</th>
<th>压缩机开</th>
<th>压缩机关</th>
<th>放空阀开</th>
<th>放空阀关</th>
<th>报警</th>
</tr>
</thead>
<tbody>
<tr>
<td>绿色</td>
<td>待机</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>黄色</td>
<td>运行</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>绿色和黄色</td>
<td>放空排气</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>绿色、黄色和红色</td>
<td>持续长时放空排气（超过150个小时）</td>
<td>x</td>
<td></td>
<td>x**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>红色</td>
<td>发生条件：查看报警描述列表</td>
<td>(x**)</td>
<td></td>
<td>x**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*空分持续运行达到最长允许运行时间（默认为160个小时），空分压缩机将停止运行
**出现报警时，空分压缩机将停止运行
快速启动

将所有放空点连接至 IPS 并首次启动 IPS 后，按照以下简单的说明可尽快完成系统配置：
1. 从主菜单导航到登录
2. 输入密码“200”
3. 选择“参数”
4. 选择“装置配置”
5. 选择“阀门设置”
6. 输入与 IPS 相连的放空电磁阀数量。

导航 — 内置 MCX 控制器
（位于前面板门的后部）

在启动控制器后，显示窗口将会显示实际软件版本，然后会显示默认的主运行窗口，如图 26 所示。在运行模式下，可通过上下箭头按钮引导用户切换到下表所列的各个状态窗口。

图 21 — 默认主窗口：运行（启动）模式（仅示例）

水浴鼓泡器功能。参见图 22
请参阅表 01 的 "Unit config > Bubbler settings" 部分的鼓泡器参数说明

图 21a

图 22

当水浴鼓泡器的水路电磁阀（连接到 DO15）打开时，将显示图标。
按下(), 将会出现主菜单，选项如下所示

<table>
<thead>
<tr>
<th>参数名称</th>
<th>说明和选项</th>
<th>最小值</th>
<th>最大值</th>
<th>值/类型</th>
<th>单位</th>
<th>RW</th>
<th>MODBUS 寄存器</th>
</tr>
</thead>
<tbody>
<tr>
<td>y01 Main switch</td>
<td>开机IPS 以便运行</td>
<td>0</td>
<td>1</td>
<td>0 - OFF</td>
<td>Enum 1</td>
<td>RW</td>
<td>3001</td>
</tr>
<tr>
<td>y07回复默认值</td>
<td>恢复出厂设置</td>
<td>0</td>
<td>1</td>
<td>0 - NO</td>
<td>Enum 2</td>
<td>RW</td>
<td>3002</td>
</tr>
<tr>
<td>bAU串行波特率 (Modbus)</td>
<td>波特率</td>
<td>0</td>
<td>8</td>
<td>8 - 384</td>
<td>Enum 3</td>
<td>RW</td>
<td>3007</td>
</tr>
<tr>
<td>Ex2 Expansion address (Modbus)</td>
<td>输入控制ID</td>
<td>0</td>
<td>255</td>
<td>125</td>
<td>RW</td>
<td>3014</td>
<td></td>
</tr>
<tr>
<td>CM3 PDT</td>
<td>降温控温时间</td>
<td>1</td>
<td>CM4</td>
<td>40</td>
<td>min</td>
<td>RW</td>
<td>3016</td>
</tr>
<tr>
<td>CM4 CST</td>
<td>控制启动时间</td>
<td>180</td>
<td>2000</td>
<td>1440</td>
<td>min</td>
<td>RW</td>
<td>3017</td>
</tr>
<tr>
<td>VA5 PLT</td>
<td>无限放空最长时间</td>
<td>2</td>
<td>768</td>
<td>24</td>
<td>H</td>
<td>RW</td>
<td>3018</td>
</tr>
<tr>
<td>VA2 Delta Valve OFF</td>
<td>安全关闭一放空点</td>
<td>2.0</td>
<td>10.0</td>
<td>5.0</td>
<td>RW</td>
<td>3019</td>
<td></td>
</tr>
<tr>
<td>V10 Max_PP</td>
<td>最大放空点数</td>
<td>1</td>
<td>16</td>
<td>8</td>
<td>RW</td>
<td>3026</td>
<td></td>
</tr>
<tr>
<td>BU6 On/Off Bubbler</td>
<td>是否连接水浴鼓泡器</td>
<td>0</td>
<td>1</td>
<td>0 - OFF</td>
<td>Enum 1</td>
<td>RW</td>
<td>3032</td>
</tr>
<tr>
<td>BU1 Bubbler time</td>
<td>水浴鼓泡器时间</td>
<td>0</td>
<td>720</td>
<td>30</td>
<td>s</td>
<td>RW</td>
<td>3033</td>
</tr>
<tr>
<td>BU2 Bubbler manual off time</td>
<td>水浴鼓泡器手动关闭时间</td>
<td>0</td>
<td>100</td>
<td>1</td>
<td>min</td>
<td>RW</td>
<td>3034</td>
</tr>
<tr>
<td>BU3 Bubbler man start</td>
<td>手动打开水浴鼓泡器时间</td>
<td>0</td>
<td>1</td>
<td>0 - OFF</td>
<td>Enum 1</td>
<td>RW</td>
<td>3035</td>
</tr>
</tbody>
</table>

1) 人机界面 (HMI) 是 IPS 和用户交互的界面。此处为 MCX15B2 上的键盘和显示屏

© Danfoss | Climate Solutions | 2023.05
BC306932151284zh-000601 | 21
用户指南 | 智能空分系统 (IPS 8)

BU4 Clean period
水浴鼓泡器清洁程序
设置鼓泡器再次开始时清洁之间的时间。请参阅 BU2 [Clean duration] 的说明。

BU5 Clean duration
水浴鼓泡器清洁程序—持续时间
一旦 BU4 [Clean period] 给定的清洁周期已过, 水阀 DO15 将打开, 直到 BU5 [Clean duration] 给定的时间结束。

BU7 Water stop delay
水停止延迟
主放空阀 DO2 关闭后, 关闭水阀 DO15 的延迟

BU4
Clean period
水浴鼓泡器清洁程序
设置鼓泡器再次开始时清洁之间的时间。请参阅 BU2 [Clean duration] 的说明。

BU5
Clean duration
水浴鼓泡器清洁程序—持续时间
一旦 BU4 [Clean period] 给定的清洁周期已过, 水阀 DO15 将打开, 直到 BU5 [Clean duration] 给定的时间结束。

BU7
Water stop delay
水停止延迟
主放空阀 DO2 关闭后, 关闭水阀 DO15 的延迟
用户指南 | 智能空分系统 (IPS 8)

<table>
<thead>
<tr>
<th>标签 ID</th>
<th>参数名称</th>
<th>说明和选项</th>
<th>最小值</th>
<th>最大值</th>
<th>值/类型</th>
<th>单位</th>
<th>RW</th>
<th>MODBUS 寄存器</th>
</tr>
</thead>
<tbody>
<tr>
<td>V15</td>
<td>ValveClose</td>
<td>主放空阀设定值, 用于关闭 DO2 上的主放空阀 AKVA 的温度阈值。请参见 HMI 中的 “VClseT”和 “VOpenT”</td>
<td>-2147483648</td>
<td>2147483647</td>
<td>0</td>
<td>读取</td>
<td>8117</td>
<td></td>
</tr>
<tr>
<td>V16</td>
<td>Event1</td>
<td>放空事件 1, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8118</td>
<td></td>
</tr>
<tr>
<td>V17</td>
<td>Event2</td>
<td>放空事件 2, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8120</td>
<td></td>
</tr>
<tr>
<td>V18</td>
<td>Event3</td>
<td>放空事件 3, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8122</td>
<td></td>
</tr>
<tr>
<td>V19</td>
<td>Event4</td>
<td>放空事件 4, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8124</td>
<td></td>
</tr>
<tr>
<td>V20</td>
<td>Event5</td>
<td>放空事件 5, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8126</td>
<td></td>
</tr>
<tr>
<td>V21</td>
<td>Event6</td>
<td>放空事件 6, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8128</td>
<td></td>
</tr>
<tr>
<td>V22</td>
<td>Event7</td>
<td>放空事件 7, 记录在已完成的循环期间, 放空阀打开的分钟数</td>
<td>-3276.8</td>
<td>3276.7</td>
<td>0.0</td>
<td>读取</td>
<td>8130</td>
<td></td>
</tr>
<tr>
<td>V23</td>
<td>PP1</td>
<td>放空点阀门 1 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8132</td>
<td></td>
</tr>
<tr>
<td>V24</td>
<td>PP2</td>
<td>放空点阀门 2 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8134</td>
<td></td>
</tr>
<tr>
<td>V25</td>
<td>PP3</td>
<td>放空点阀门 3 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8136</td>
<td></td>
</tr>
<tr>
<td>V26</td>
<td>PP4</td>
<td>放空点阀门 4 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8138</td>
<td></td>
</tr>
<tr>
<td>V27</td>
<td>PP5</td>
<td>放空点阀门 5 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8140</td>
<td></td>
</tr>
<tr>
<td>V28</td>
<td>PP6</td>
<td>放空点阀门 6 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8142</td>
<td></td>
</tr>
<tr>
<td>V29</td>
<td>PP7</td>
<td>放空点阀门 7 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8144</td>
<td></td>
</tr>
<tr>
<td>V30</td>
<td>PP8</td>
<td>放空点阀门 8 的时间百分比</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8146</td>
<td></td>
</tr>
<tr>
<td>V31</td>
<td>Val1</td>
<td>放空点阀门 1 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8148</td>
<td></td>
</tr>
<tr>
<td>V32</td>
<td>Val2</td>
<td>放空点阀门 2 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8149</td>
<td></td>
</tr>
<tr>
<td>V33</td>
<td>Val3</td>
<td>放空点阀门 3 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8150</td>
<td></td>
</tr>
<tr>
<td>V34</td>
<td>Val4</td>
<td>放空点阀门 4 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8151</td>
<td></td>
</tr>
<tr>
<td>V35</td>
<td>Val5</td>
<td>放空点阀门 5 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8152</td>
<td></td>
</tr>
<tr>
<td>V36</td>
<td>Val6</td>
<td>放空点阀门 6 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8153</td>
<td></td>
</tr>
<tr>
<td>V37</td>
<td>Val7</td>
<td>放空点阀门 7 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8154</td>
<td></td>
</tr>
<tr>
<td>V38</td>
<td>Val8</td>
<td>放空点阀门 8 的状态</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>V40</td>
<td>TempStatus</td>
<td>不凝性气体温度传感器的测量值</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8156</td>
<td></td>
</tr>
<tr>
<td>V41</td>
<td>BPLStatus</td>
<td>低压变送器 R452A 的测量值</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8157</td>
<td></td>
</tr>
<tr>
<td>V42</td>
<td>BPHStatus</td>
<td>高压变送器 R717 的测量值</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8158</td>
<td></td>
</tr>
<tr>
<td>V43</td>
<td>DisTemp</td>
<td>排气温度</td>
<td>-32768</td>
<td>32767</td>
<td>0</td>
<td>读取</td>
<td>8159</td>
<td></td>
</tr>
</tbody>
</table>
用户指南 | 智能空分系统 (IPS 8)

标签 ID	参数名称	说明和选项	最小值	最大值	值/类型	单位	RW	MODBUS 寄存器
V44 | SuctionTemp | 吸气温度 | -2147483648 | 2147483647 | 0 | 读取 | 8160
V45 | TshValveStatus | 低充注量操作 | -32768 | 32767 | 0 | 读取 | 8161
V46 | TshCalculate | 过热度计算 | -2147483648 | 2147483647 | 0 | 读取 | 8162
V47 | ALARActive | 警报激活 | 0 | 1 | 0 | 读取 | 8164
V48 | Setpoint_Out | 设定值的读数 | -2147483648 | 2147483647 | 0 | 读取 | 8165
V49 | Point_Status | 已激活放空点的编号读数 | -32768 | 32767 | 0 | 读取 | 8167
V50 | SysOFF | 智能空分系统是否在运行 | -32768 | 32767 | 0 | 读取 | 8168
V51 | PP9 | 放空点阀门 9 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8169
V52 | PP10 | 放空点阀门 10 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8170
V53 | PP11 | 放空点阀门 11 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8171
V54 | PP12 | 放空点阀门 12 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8172
V55 | PP13 | 放空点阀门 13 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8173
V56 | PP14 | 放空点阀门 14 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8174
V57 | PP15 | 放空点阀门 15 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8175
V58 | Val9 | 放空点阀门 9 的状态 | -32768 | 32767 | 0 | 读取 | 8176
V59 | Val10 | 放空点阀门 10 的状态 | -32768 | 32767 | 0 | 读取 | 8177
V60 | Val11 | 放空点阀门 11 的状态 | -32768 | 32767 | 0 | 读取 | 8178
V61 | Val12 | 放空点阀门 12 的状态 | -32768 | 32767 | 0 | 读取 | 8179
V62 | Val13 | 放空点阀门 13 的状态 | -32768 | 32767 | 0 | 读取 | 8180
V63 | Val14 | 放空点阀门 14 的状态 | -32768 | 32767 | 0 | 读取 | 8181
V64 | Val15 | 放空点阀门 15 的状态 | -32768 | 32767 | 0 | 读取 | 8182
V65 | Val6 | 放空点阀门 16 的状态 | -32768 | 32767 | 0 | 读取 | 8183
V66 | ResetMem | 复位内存 | 0 | 1 | 0 | 读取 | 9902
V67 | PLT_Out_Timer | 保持时器超时 | -2147483648 | 2147483647 | 0 | 读取 | 8184
V68 | ICFD_Status | ICFD 状态 | -32768 | 32767 | 0 | 读取 | 8185
V69 | Val17 | 放空点阀门 18 的状态 | -32768 | 32767 | 0 | 读取 | 8186
V70 | Liter | 已去除的不凝性气体的容积 | -2147483648 | 2147483647 | 0 | 读取 | 8187
V71 | PP17 | 放空点阀门 17 的时间百分比分割 | -2147483648 | 2147483647 | 0 | 读取 | 8188
警报

E 型:
- **系统相关**
- **A** 型:

一般过程警报
- 所有自动复位，**E13** 除外

<table>
<thead>
<tr>
<th>参数名称</th>
<th>说明</th>
<th>最小值</th>
<th>最大值</th>
<th>值/类型</th>
<th>单位</th>
<th>RW</th>
<th>ADU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01 General alarm</td>
<td>如果 DI3 上的 General Alarms 设置为 OFF，则会导致 IPS 8 关闭</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.08</td>
</tr>
<tr>
<td>E01 Temp Sensor Fault</td>
<td>AI5, 不凝性气体温度传感器故障</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.09</td>
</tr>
<tr>
<td>E02 BPL Sensor Fault</td>
<td>AI5, 低压变送器 R452A 出现故障</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.10</td>
</tr>
<tr>
<td>E03 BPH Sensor Fault</td>
<td>AI5, 高压变送器 R717 出现故障</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.11</td>
</tr>
<tr>
<td>E04 Dis.Temp.Sens Low temperature</td>
<td>AI5, 排气温度传感器 R452A 低温警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.12</td>
</tr>
<tr>
<td>E05 Dis.Temp.Sens Hi temperature</td>
<td>AI5, 排气温度传感器 R452A 高温警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.13</td>
</tr>
<tr>
<td>E06 Low pressure BPL</td>
<td>AI5, 低压变送器 R452A 低压警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.14</td>
</tr>
<tr>
<td>E07 Hi pressure BPL</td>
<td>AI5, 高压变送器 R717 高压警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.15</td>
</tr>
<tr>
<td>E08 Low pressure BPH</td>
<td>AI5, 高压变送器 R717 低压警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.00</td>
</tr>
<tr>
<td>E09 Hi pressure BPH</td>
<td>AI5, 高压变送器 R717 高压警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.01</td>
</tr>
<tr>
<td>E10 System is OFF</td>
<td>如果 DI2 (外部) 上的主开关关闭，则会导致 IPS 关闭</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.02</td>
</tr>
<tr>
<td>E11 Memory is full</td>
<td>需要复位存储器</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.03</td>
</tr>
<tr>
<td>E12 Totla purge time error</td>
<td>PLT 激活时会发生这种情况。当 CST 过期时系统将自动重启</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.04</td>
</tr>
<tr>
<td>E13 Compressor EROR</td>
<td>IPS 电气面板中压缩机继电器 KL1 的反馈如果 DI 上的 KL1 的状态 “压缩机正在运行” 设置为关，而 DO 上的压缩机已打开，则会导致 IPS 关闭</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.05</td>
</tr>
<tr>
<td>E14 Liquid alarm</td>
<td>如果 DI 上的 LL94000 为 OFF（蒸发器中的液体），则会导致 IPS 关闭</td>
<td>0</td>
<td>1</td>
<td>Manual Mode</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.06</td>
</tr>
<tr>
<td>E15 Memory wrong!</td>
<td>执行：恢复出厂设置</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1901.07</td>
</tr>
<tr>
<td>E16 Discharge sensor error</td>
<td>AI5, 排气温度传感器 R452A 出现故障</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.08</td>
</tr>
<tr>
<td>E17 Suction sensor error</td>
<td>AI5, 吸气温度传感器 R452A 出现故障</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.09</td>
</tr>
<tr>
<td>E18 Tsh Alarm</td>
<td>过热度警报。如果 V46 的对应参数 TshCalculate 大于报警设置默认值 Delta 15 K LI7 — Tsh (仅限丹佛斯) 时, 则会触发此警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.10</td>
</tr>
<tr>
<td>E19 NC.TempSensor Hi temperature</td>
<td>AI5, 不凝性气体温度传感器高温警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.11</td>
</tr>
<tr>
<td>E20 NC.TempSens Low temperature</td>
<td>AI5, 不凝性气体温度传感器低温警报 (-10 C)</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.12</td>
</tr>
<tr>
<td>E21 TempSuction Sens Hi temperature</td>
<td>AI5, 吸气温度传感器 R452A 高温警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.13</td>
</tr>
<tr>
<td>E22 TempSuction Sens Low temperature</td>
<td>AI5, 吸气温度传感器 R452A 低温警报</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.14</td>
</tr>
<tr>
<td>E23 Configuration error</td>
<td>未找到扩展面板</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.15</td>
</tr>
<tr>
<td>E24 Connection error</td>
<td>扩展面板丢失，检查 CAN 连接</td>
<td>0</td>
<td>1</td>
<td>AUTO</td>
<td>ACTIVE</td>
<td>读取</td>
<td>1902.00</td>
</tr>
</tbody>
</table>

I/O CONFIGURATION

<table>
<thead>
<tr>
<th>参数名称</th>
<th>说明</th>
<th>最小值</th>
<th>最大值</th>
<th>值/类型</th>
<th>单位</th>
<th>RW</th>
<th>ADU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI ANALOG INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 BPL-1/34</td>
<td>低压变送器 R452A</td>
<td>-1.0</td>
<td>34.0</td>
<td>0-5V</td>
<td>读取</td>
<td>18503</td>
<td></td>
</tr>
<tr>
<td>2 BPH-1/59</td>
<td>高压变送器 R717</td>
<td>-1.0</td>
<td>59.0</td>
<td>0-5V</td>
<td>读取</td>
<td>18504</td>
<td></td>
</tr>
<tr>
<td>3 Dis Temp</td>
<td>排气温度传感器 R452A</td>
<td>-30.0</td>
<td>170.0</td>
<td>PT100</td>
<td>读取</td>
<td>18502</td>
<td></td>
</tr>
<tr>
<td>4 Suction Temp</td>
<td>吸气温度传感器 R452A</td>
<td>-50.0</td>
<td>170.0</td>
<td>PT1000</td>
<td>读取</td>
<td>18506</td>
<td></td>
</tr>
<tr>
<td>5 NC Temp</td>
<td>不凝性气体温度传感器</td>
<td>-50.0</td>
<td>170.0</td>
<td>PT1000</td>
<td>读取</td>
<td>18505</td>
<td></td>
</tr>
</tbody>
</table>

© Danfoss | Climate Solutions | 2023.05
DI

<table>
<thead>
<tr>
<th>参数名称</th>
<th>说明</th>
<th>最小值</th>
<th>最大值</th>
<th>值/类型</th>
<th>单位</th>
<th>RW</th>
<th>ADU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Status KL1</td>
<td>KL1的状态 — 压缩机正在运行</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>17504</td>
</tr>
<tr>
<td>2</td>
<td>On/Off</td>
<td>开/关 — 外部主开关</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>17502</td>
</tr>
<tr>
<td>3</td>
<td>General Alarm</td>
<td>一般警报 — 开关就绪</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>17504</td>
</tr>
<tr>
<td>4</td>
<td>LiquidAlarm</td>
<td>液位警报 — 来自 LLS 4000/4000U</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>17505</td>
</tr>
<tr>
<td>5</td>
<td>Switch</td>
<td>开关 — 切换到下一个放空点（脉冲），开关就绪</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>17506</td>
</tr>
<tr>
<td>6</td>
<td>Bubbler On</td>
<td>水浴鼓泡器开启 — 强制鼓泡器电磁阀开启, 开关就绪</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>17507</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AO

<table>
<thead>
<tr>
<th>参数名称</th>
<th>说明</th>
<th>最小值</th>
<th>最大值</th>
<th>值/类型</th>
<th>单位</th>
<th>RW</th>
<th>ADU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compressor</td>
<td>压缩机</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18007</td>
</tr>
<tr>
<td>2</td>
<td>Valve</td>
<td>阀门 — 主放空阀 AKVA</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18008</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>绿色 — 前面板上的指示灯 — 待机</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18004</td>
</tr>
<tr>
<td>4</td>
<td>Yellow</td>
<td>黄色 — 前面板上的指示灯 — 运行</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18005</td>
</tr>
<tr>
<td>5</td>
<td>DO_Red</td>
<td>红色 — 前面板上的指示灯 — 错误</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18006</td>
</tr>
<tr>
<td>6</td>
<td>ICFD_Valve</td>
<td>ICFD_Valve</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18017</td>
</tr>
<tr>
<td>7</td>
<td>Valve1</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18009</td>
</tr>
<tr>
<td>8</td>
<td>Valve2</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18010</td>
</tr>
<tr>
<td>9</td>
<td>Valve3</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18011</td>
</tr>
<tr>
<td>10</td>
<td>Valve4</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18012</td>
</tr>
<tr>
<td>11</td>
<td>Valve5</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18013</td>
</tr>
<tr>
<td>12</td>
<td>Valve6</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18014</td>
</tr>
<tr>
<td>13</td>
<td>Valve7</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18015</td>
</tr>
<tr>
<td>14</td>
<td>Valve8</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18016</td>
</tr>
<tr>
<td>15</td>
<td>Valve9</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18017</td>
</tr>
<tr>
<td>16</td>
<td>Valve10</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18019</td>
</tr>
<tr>
<td>17</td>
<td>Valve11</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18020</td>
</tr>
<tr>
<td>18</td>
<td>Valve12</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18021</td>
</tr>
<tr>
<td>19</td>
<td>Valve13</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18022</td>
</tr>
<tr>
<td>20</td>
<td>Valve14</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18023</td>
</tr>
<tr>
<td>21</td>
<td>Valve15</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18024</td>
</tr>
<tr>
<td>22</td>
<td>Valve16</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18025</td>
</tr>
<tr>
<td>23</td>
<td>Valve17</td>
<td>放空阀</td>
<td>0</td>
<td>1</td>
<td>N.O.</td>
<td>读取</td>
<td>18026</td>
</tr>
</tbody>
</table>
表 02 发生报警、可能原因及建议措施

<table>
<thead>
<tr>
<th>标签</th>
<th>参数名称</th>
<th>说明</th>
<th>可能原因</th>
<th>建议措施</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>General alarm</td>
<td>A03 的输入导致 IPS 8 关闭</td>
<td>与 DI04 连接的系统存在故障</td>
<td>A03 的输入导致 IPS 关闭</td>
</tr>
<tr>
<td>E01</td>
<td>Temp Sensor Fault</td>
<td>表示没有来自温度传感器 (R452a) 的信号</td>
<td>R452a 温度传感器接线出现故障</td>
<td>维修温度传感器接线或更换温度传感器</td>
</tr>
<tr>
<td>E01</td>
<td>Temp Sensor Fault</td>
<td>表示没有来自温度传感器 (R452a) 的信号</td>
<td>R452a 温度传感器的电源出现故障</td>
<td>维修或更换电源</td>
</tr>
<tr>
<td>E01</td>
<td>Temp Sensor Fault</td>
<td>表示没有来自温度传感器 (R452a) 的信号</td>
<td>R452a 管路的温度测量值超出范围</td>
<td>与其他温度传感器读数进行对比，如有需要，请更换温度传感器</td>
</tr>
<tr>
<td>E02</td>
<td>BPL Sensor Fault</td>
<td>表示没有来自压力变送器 (R452a) 的信号</td>
<td>R452a 压力变送器接线出现故障</td>
<td>维修压力变送器接线或更换压力变送器</td>
</tr>
<tr>
<td>E02</td>
<td>BPL Sensor Fault</td>
<td>表示没有来自压力变送器 (R452a) 的信号</td>
<td>R452a 压力变送器电源出现故障</td>
<td>维修或更换电源</td>
</tr>
<tr>
<td>E02</td>
<td>BPL Sensor Fault</td>
<td>表示没有来自压力变送器 (R452a) 的信号</td>
<td>R452a 管路的压力测量值超出范围</td>
<td>与其他压力读数进行对比，如有需要，请更换压力变送器</td>
</tr>
<tr>
<td>E03</td>
<td>BPH Sensor Fault</td>
<td>表示没有来自压力变送器 (R717) 的信号</td>
<td>R717 压力变送器接线出现故障</td>
<td>维修压力变送器接线或更换压力变送器</td>
</tr>
<tr>
<td>E03</td>
<td>BPH Sensor Fault</td>
<td>表示没有来自压力变送器 (R717) 的信号</td>
<td>R717 管路的压力测量值超出范围</td>
<td>与其他压力读数进行对比，如有需要，请更换压力变送器</td>
</tr>
<tr>
<td>E04</td>
<td>Low temperature</td>
<td>表示环境温度过低 (<10 °C)</td>
<td>环境温度过低</td>
<td>将 IPS 移至环境温度高一点的地方</td>
</tr>
<tr>
<td>E05</td>
<td>High temperature</td>
<td>表示环境温度过高 (>120 °C)</td>
<td>环境温度过高</td>
<td>将 IPS 移至环境温度较低的地方</td>
</tr>
<tr>
<td>E05</td>
<td>High temperature</td>
<td>表示环境温度过高 (>120 °C)</td>
<td>环境温度过高</td>
<td>将 IPS 移至环境温度较低的地方</td>
</tr>
<tr>
<td>E06</td>
<td>Low pressure BPL</td>
<td>表示 R452a 压力过低</td>
<td>限流器堵塞 / 管路连接错误</td>
<td>a) 限流器不工作 b) 环境温度过低 (24 bar / 54 ºC)</td>
</tr>
<tr>
<td>E07</td>
<td>High pressure BPL</td>
<td>表示 R452a 压力过高</td>
<td>R452a 系统压力过高</td>
<td>a) 蒸发器不工作 b) 环境温度过低 (24 bar / 54 ºC)</td>
</tr>
<tr>
<td>E08</td>
<td>High pressure BPH</td>
<td>表示 R717 压力过低</td>
<td>R717 压力变送器接线出现故障</td>
<td>压力为 24 bar</td>
</tr>
<tr>
<td>E10</td>
<td>System is OFF</td>
<td>表示主开关的状态</td>
<td>主开关关闭</td>
<td>打开主开关</td>
</tr>
<tr>
<td>E11</td>
<td>Memory is full</td>
<td>表示主开关的状态</td>
<td>主开关关闭</td>
<td>打开主开关</td>
</tr>
<tr>
<td>E12</td>
<td>Total purge time error</td>
<td>表示没有来自温度传感器的信号</td>
<td>取消报警</td>
<td>清理 MCX 内存</td>
</tr>
<tr>
<td>E13</td>
<td>Compressor ERROR</td>
<td>表示来自 LLS, 检查器接收到一个状态信号</td>
<td>MCX 接线可能故障</td>
<td>更换限流器</td>
</tr>
<tr>
<td>E14</td>
<td>Liquid alarm</td>
<td>表示来自 LLS, 检查器接收到一个状态信号</td>
<td>检查管路</td>
<td>检查管路</td>
</tr>
<tr>
<td>E15</td>
<td>Memory wrong!</td>
<td>表示来自 LLS, 检查器接收到一个状态信号</td>
<td>检查管路</td>
<td>检查管路</td>
</tr>
<tr>
<td>E16</td>
<td>Discharge sensor error</td>
<td>表示没有来自温度传感器的信号</td>
<td>检查传感器</td>
<td>检查传感器</td>
</tr>
<tr>
<td>E17</td>
<td>Suction sensor error</td>
<td>表示没有来自温度传感器的信号</td>
<td>检查传感器</td>
<td>检查传感器</td>
</tr>
</tbody>
</table>

所有警报（带有 (*) 的除外）都会激活控制箱外的红灯
对于无法复位和/或无法确定原因的警报，请联系丹佛斯
级别图例：0 = 读取视图, 2 = 安装人员视图 (代码 200), 3 = 丹佛斯维修视图 (联系丹佛斯)
Modbus RTU
良好实践
跨建筑物的分段应采用隔离器。
同一网络上的所有设备（包括路由器、网关等）应使用共同的接地点。
电缆中的所有总线连接均使用双绞线。
对此推荐的电缆类型是 AWG 22/0.32 mm²。如果距离较长，请使用 AWG 20/0.5mm² 或 AWG 18/0.75mm² 电缆。
电缆特性阻抗应在 100 – 130Ω 之间。
注意：电缆长度会影响所用的通信速度。电缆越长，所使用的波特率应越低。允许的最大电缆长度为 1200 米。
110V/230V/400V 电源线电缆和总线电缆至少间隔 20 厘米。

表 03
维护检查清单 — 至少每年执行一次

<table>
<thead>
<tr>
<th>多点</th>
<th>隔离器单点放空</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 关闭氨制冷系统放空点的所有进气管路。</td>
<td>重新启动控制器，强制控温</td>
</tr>
<tr>
<td>2.</td>
<td>重新启动控制器，强制控温</td>
</tr>
<tr>
<td>3.</td>
<td>等待 20 分钟</td>
</tr>
<tr>
<td>4.</td>
<td>将压缩机开关 QM1 转至关闭位置，让压缩机停止</td>
</tr>
<tr>
<td>5.</td>
<td>将压缩机开关 QM1 转至关闭位置，让压缩机停止</td>
</tr>
<tr>
<td>6.</td>
<td>打开 SNV 排放阀，将剩余的压力释放到大气中。这也可以通过在 AKVA 10 阀门上附加一个永磁铁强制开启来实现</td>
</tr>
</tbody>
</table>

IPS 8 的处置
如果 IPS 8 装置已经磨损，必须更换，则必须按照国家/地区立法进行处置，而且只能由有资质的人员操作。