

Ficha informativa

VLT® Low Harmonic Drive

El variador de frecuencia de bajos armónicos VLT® de Danfoss es la primera solución que combina un filtro activo y un variador de frecuencia en un solo equipo

El convertidor de frecuencia de bajos armónicos VLT® regula de forma continua la mitigación de armónicos de acuerdo con las condiciones de carga y red, sin afectar al motor conectado.

La distorsión de corriente armónica total se reduce a menos del 3 % en redes compensadas y con predistorsión mínima y a menos del 5 % en redes

El más alto rendimiento armónico

con bajos costes de funcionamiento en su rango de potencias de elevada distorsión armónica y con un desequilibrio de tensión de alimentación del 2 %. Dado que los armónicos individuales también cumplen con las exigencias más estrictas en la materia, el convertidor de frecuencia de bajos armónicos VLT° cumple con todas las normas y recomendaciones actuales en materia de armónicos.

Funciones exclusivas, como el modo de reposo y la refrigeración de canal posterior, ofrecen una eficiencia energética sin igual para los convertidores de bajos armónicos.

El convertidor de frecuencia de bajos armónicos VLT® necesita el mismo ajuste e instalación que un convertidor de frecuencia estándar VLT® y adicionalmente garantiza un rendimiento armónico óptimo.

El convertidor de frecuencia de bajos armónicos VLT® presenta la misma estructura modular que nuestros convertidores estándar de alta potencia y comparte similares características: filtros RFI incorporados, PCB barnizada y programación sencilla.

Series del producto

- VLT® HVAC Drive FC 102
- VLT® Refrigeration Drive FC 103
- VLT® AQUA Drive FC 202
- VLT® AutomationDrive FC 302

Protección

- IP 21/NEMA 1
- IP 54/NEMA 12

Intervalo de tensión

■ 380-480 Vca, 50-60 Hz

Rango de potencias

- Sobrecarga alta: 132-630 kW 200-900 HP
- Sobrecarga normal: 160-710 kW 250-1000 HP

Caracteristicas	Ventajas			
Fiable	Máximo tiempo de actividad			
Sin aumento de la fatiga del devanado en el motor	Aumento de la vida útil del motor Menor coste inicial (no se necesita filtro de salida)			
Probados en fábrica al 100 %PCB barnizadas	Baja tasa de averías			
Innovador concepto de refrigeración	Prolongación de la vida útil de la electrónica			
Fácil de usar	Ahorro en tiempo de puesta en servicio y coste de funcionamiento			
No hay necesidad de cableado ni configuración adicional	Puesta en marcha sencilla y bajos costes iniciales			
Diseño modular	Mantenimiento fácil			
Lectura de datos completa de las condiciones de red	Reduce la necesidad de medición de armónicos			
Ahorro de energía	Menores costes de operación			
 Alto rendimiento Modo de reposo y frecuencia de conmutación progresiva 	Menores gastos de funcionamiento			
Independiente de la red y de cambios de carga	Reducción de las pérdidas del transformador de armónicos Reducción de las pérdidas en cables			

Opciones

Están disponibles las opciones siguientes:

- Filtros RFI
- Seccionador
- Fusibles
- Guardas de cableado de alimentación
- Opciones de E/S y realimentación
- Opciones de bus de campo
- Filtros dU/dt
- Filtros senoidales

Software para PC

El software VLT® Motion Control Tool MCT-10 ofrece una funcionalidad de programación avanzada para todos los productos de convertidores de frecuencia VLT® Danfoss, lo que reduce enormemente la programación y el tiempo de configuración.

MCT-10 Básico (disponible gratuitamente en www.danfoss. com) permite el acceso a un número determinado de convertidores de frecuencia con funcionalidad limitada. La edición avanzada, que le ofrece un mayor nivel de funciones, está disponible a través de su distribuidor Danfoss.

Software de cálculo

Con el software VLT® Motion Control Tool MCT-31, puede averiguar si los armónicos supondrán algún problema en su instalación al añadir los convertidores de frecuencia.

MCT-31 estima las ventajas de añadir diversas soluciones de reducción de armónicos de la cartera de productos de Danfoss y calcula la distorsión de armónicos del sistema. Además, el software ofrece una indicación rápida de si la instalación cumple con las normas y recomendaciones más importantes en materia de armónicos.


En www.danfoss.com, podrá descargar la herramienta gratuita MCT-31 (la versión más actualizada del software de cálculo).

Especificaciones

THiD* al: -40 % de la carga -70 % de la carga -100 % de la carga	<5,5 % <3,5 % <3 %
Rendimiento* al: -40 % de la carga -70 % de la carga -100 % de la carga	> 93 % > 95 % > 96 %
Factor de potencia real* al: – 40 % de la carga – 70 % de la carga – 100 % de la carga	> 98 % > 98 % > 98 %
Temperatura ambiente	50 °C sin reducción de potencia (bastidor D, 45 °C)
Refrigeración	Refrigeración de aire de canal posterior

* Medido en red compensada sin predistorsión

Medido errica compensada sin predistorsion				
Cumplimiento de normas	y recomendaciones			
IEEE519	Siempre			
CEI 61000-3-2 (hasta 16 A)	Fuera de alcance			
CEI 61000-3-12 (entre 16 y 75 A)	Fuera de alcance			
CEI 61000-3-4 (más de 75 A)	Siempre			

400 V CA (380-460 V CA)										
Sobrecarga normal		Sobrecarga alta				Dimensiones	Dana			
Pote	ncia	Intensidad	Potencia		Intensidad	Bastidor	$Al. \times an. \times pr.$	Peso		
kW	HP	[A]	kW	HP	[A]		IP 21/54	kg	libras	
160	250	315	132	200	260	D1n	$1780 \times 915 \times 380 \text{ mm}$ $79 \times 36 \times 15 \text{ pulgadas}$	353	777	
200	300	395	160	250	315	D2n	1780 × 1020 × 380 mm	413	910	
250	350	480	200	300	395		$70 \times 40 \times 15$ pulgadas	413	910	
315	450	600	250	350	480	E9	E9	2000 × 1200 × 500 mm 79 × 47 × 19 pulgadas	676	1491
355	500	658	315	450	600				676	1491
400	625	745	355	500	658				676	1491
450	700	800	400	625	695			676	1491	
500	780	880	450	700	800	F18		1899	4187	
560	875	990	500	780	880		2277 × 2800 × 600 mm	1899	4187	
630	985	1120	560	875	990		$90 \times 110 \times 24$ pulgadas	1899	4187	
710	1100	1260	630	985	1120				1899	4187

Danfoss Industries, S. A. de C.V. · Carretera Miguel Alemán 162, El Milagro. 66634 Apodaca, Nuevo León - México • www.danfoss.com Correo electrónico: sac.mexico@danfoss.com • Tel: 01 800 953 0088

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso, reservándose el derecho de alterar sus productos sin previo aviso, incluyéndose los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.