

ENGINEERING TOMORROW

Operating Guide

Encoder/Resolver Option OC7M0

iC7 Series

Contents

Contents

1	Int	roduction	4
	1.1	Version History	4
	1.2	Purpose of the Operating Guide	4
	1.3	Additional Resources	4
2	Saf	fety	5
	2.1	Safety Symbols	5
	2.2	Safety and Installation Awareness	5
3	Со	nfiguration	6
	3.1	Configuration Overview	6
4	End	coder/Resolver Installation and Configuration	7
	4.1	Encoder/Resolver Option OC7M0	7
	4.2	Tools Needed	7
	4.3	Checking the Shipment	7
	4.4	Items Supplied	8
	4.5	Installing Functional Extensions in Frequency Converters	8
	4.6	Pin Assignment for Encoder/Resolver OC7M0	11
	4.7	Encoder/Resolver Option OC7M0 Specifications	11
	4.8	Setup and Connection Examples for Encoder/Resolver OC7M0	13
	4.9	Parameter Descriptions for Encoder/Resolver	20

1 Introduction

1.1 Version History

This guide is regularly reviewed and updated. All suggestions for improvement are welcome. The original language of this guide is English.

Table 1: Version History

Version	Remarks
AQ390830267692, version 01	First version. The information in this version is valid for Encoder/Resolver Option OC7M0 installed in iC7-Auto- mation frequency converters.

1.2 Purpose of the Operating Guide

This operating guide provides information for safe installation, commissioning, and operation of functional extensions used with iC7 drives.

This document is intended for use by qualified personnel only. Read and follow the operating instructions to use the drive safely and professionally, and pay particular attention to the safety instructions and general warnings. Keep these operating instructions available with the drive at all times.

1.3 Additional Resources

Additional resources are available to help understand the features, and safely install and operate the iC7 products:

- Safety Guides, which provide important safety information related to installing iC7 drives.
- Installation Guides, which cover the mechanical and electrical installation of drives, or functional extension options.
- Design Guides, which provide technical information to understand the capabilities of the iC7 drives for integration into motor control and monitoring systems.
- Operating Guides, which include instructions for the entire lifecycle of the drive, control options, and other components for the drive, from installation to dismantling.
- Application Guides, which provide instructions on setting up the drive for a specific end-use.
- Supplemental publications, drawings, and manuals are available at <u>www.danfoss.com</u>.

Latest versions of Danfoss product manuals are available for download at http://drives.danfoss.com/downloads/portal/.

2 Safety

2.1 Safety Symbols

The following symbols are used in this guide:

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

🛦 W A R N I N G 🛦

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

🛦 C A U T I O N 🛦

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

ΝΟΤΙΟΕ

Indicates information considered important, but not hazard-related (for example, messages relating to property damage).

2.2 Safety and Installation Awareness

Before starting installation, familiarize yourself with the safety guidelines and precautions related to installing functional extensions. For more information on functional extension selection and functional extension slots in the drives, see the product-specific design guides. Supplemental information and other iC7 guides can be downloaded from www.danfoss.com/service-and-support.

Danfoss

Danfoss

3 Configuration

3.1 Configuration Overview

The parameters related to functional extensions are in parameter group 9, called I/O. Parameters are dependent on the mounting, and will appear in the parameter menu after the functional extension has been mounted and wired.

4 Encoder/Resolver Installation and Configuration

4.1 Encoder/Resolver Option OC7M0

The Encoder/Resolver option supports connecting various devices as speed/position feedback or reference. It also has a TTL encoder simulation output, which can be used to mirror the resolver input signal.

There are 4 channels (A, B, Z, and D) which can be configured in different combinations according to Table 2.

Table 2: Encoder/Resolver Option Configurations

Device	Tracks
Incremental TTL/HTL	A and B
Incremental TTL/HTL with zero pulse	A, B, and Z
Resolver	A and B
Resolver with encoder mirror out	A and B + Z and D
SSI	Z and D
EnDat	Z and D
BiSS	Z and D
HIPERFACE DSL ^Æ	D

Adjustable encoder voltage supply is available 5–24 V with the possibility of feedback enabling monitoring and compensation for cable voltage drop. The voltage level is set with parameter 9.4.4 Encoder supply voltage.

Setting the voltage too high can damage the connected encoder.

Resolver supply/excitation is available with adjustable voltage and frequency by parameters 9.7.1 Excitation Voltage and 9.7.2 Excitation Frequency.

4.2 Tools Needed

- Torx 20 screwdriver for mounting EMC plate Slot C-E.
- Slotted screwdriver (max. 3 mm) for releasing the spring-loaded terminals of the plug connector.
- Wire crimpers may be needed for certain encoder cable types.

4.3 Checking the Shipment

Make sure that the items supplied and the information on the product label correspond to the order confirmation. The product label is placed on the front and left side of the option casing.

Illustration 1: Example of a Product Label

The labels contain the following information:

- Product name, code number, and serial number
- Company name
- A 2D code which can be used to access detailed product information via MyDrive® tools.

- Compliance and approval markings
- Identification of I/O connections on the option

4.4 Items Supplied

The Encoder/Resolver OC7M0 option can be ordered as a preinstalled option by using the dedicated model code, or as a separate option for field mounting by using the ordering number .

When the option is not mounted at the factory, the following items are included in the shipment:

- Encoder/Resolver OC7M0.
- Option connector.
- Cable clamps.
- Screws.
- Operating guide.

4.5 Installing Functional Extensions in Frequency Converters

The instructions in this chapter apply to frequency converters with an integrated control board.

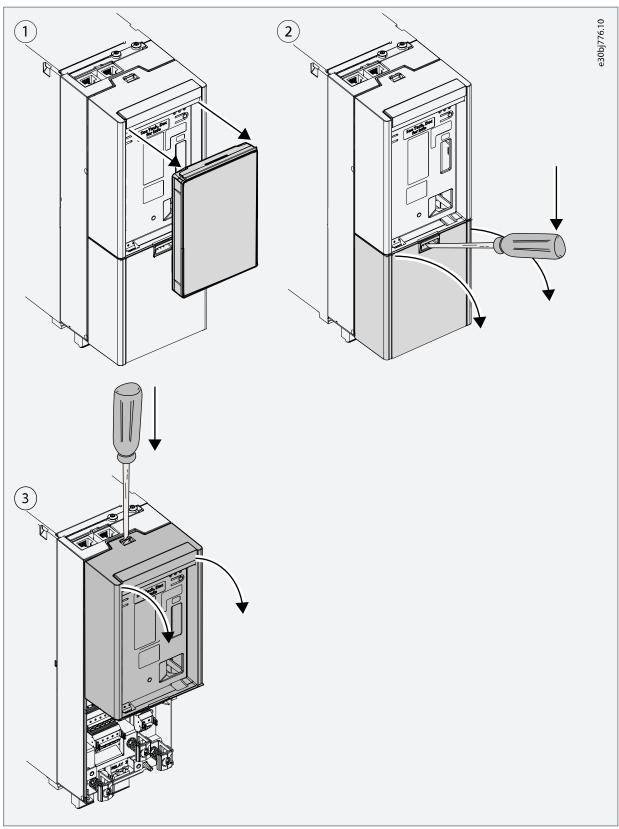
🛦 D A N G E R 🛦

SHOCK HAZARD FROM THE AC DRIVE

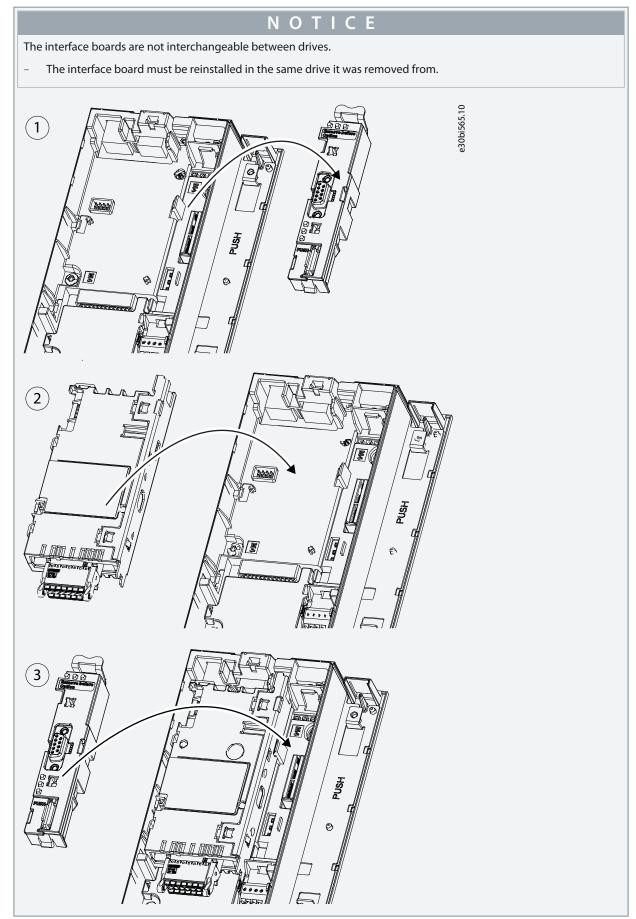
Touching electrical parts of the drive can cause death or serious injury even after the equipment has been disconnected from AC power.

- Perform the following steps before touching any internal components:
 - Disconnect the mains power.
 - Disconnect the motor.
 - Disconnect external connections to the DC terminals of the drive.

Wait for the capacitors to discharge fully. Refer to the label on the drive for the correct discharge time.


Ensure that the DC-link capacitors have discharged fully by measuring the DC link with a voltage meter.

ΝΟΤΙΟΕ


The Encoder/Resolver Option OC7M0 must be installed in option slot A.

- For more information on option slot locations in frequency converters, refer to the design guide.
- For information on slot identification in software, refer to the application guide.

1. Remove the control panel, terminal cover, and control panel cradle.

2. Remove the interface board, place the option board in the slot, and reinstall the interface board.

Configuration

Operating Guide

4.6 Pin Assignment for Encoder/Resolver OC7M0

Detection of unintentional disconnection of the plug connector is ensured by the **Plug detect** feature, which monitors that pins 11 and 13 are connected.

ΝΟΤΙΟΕ

If the Plug detect connection is missing while the interface is activated (parameter 9.4.1 \neq "Disabled"), the drive will generate a fault.

- The fault is generated only when switching to closed loop operation, not when selecting an encoder.
- The plug connector is delivered without a connection between pin 11 and 13.

Numbering	Functions	Numbering	Functions
1	Resolver Excitation -	2	Resolver Excitation +
3	GND	4	Ch. D- (TTL, RS-485, HIPERFACE DSL)
5	GND	6	Ch. D+ (TTL, RS-485, HIPERFACE DSL)
7	Encoder Supply Sensor -	8	Ch. Z- (TTL, HTL, RS-485, R-)
9	Encoder Supply Sensor +	10	Ch. Z+ (TTL, HTL, RS-485, R+)
11	Plug Detect - (GND)	12	Ch. B- (TTL, HTL, RS-485, Analog B-)
13	Plug Detect +	14	Ch. B+ (TTL, HTL, RS-485, Analog B+)
15	Encoder Supply - (GND)	16	Ch. A- (TTL, HTL, RS-485, Analog A-)
17	Encoder Supply +	18	Ch. A+ (TTL, HTL, RS-485, Analog A+)

Table 3: Pin Assignment and Function for Encoder/Resolver Option OC7M0

4.7 Encoder/Resolver Option OC7M0 Specifications

ΝΟΤΙΟΕ

Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.

The voltage is configured in parameter 9.4.4 Encoder Supply Voltage. For details, refer to 4.9.1 Configuration (Menu Index 9.4).

Table 4: Electrical Specifications for Encoder/Resolver Option OC7M0

Encoder supply voltage	Maximum current
24 V DC	125 mA
15 V DC	150 mA
12 V DC	150 mA
8 V DC	225 mA
5 V DC	300 mA

If the available power is insufficient, it is possible to use an external power supply for the encoder.

Table 5: Device Type Specifications

Device type Specifications			Additional information ⁽¹⁾	
	Data	Value		
TTL (A, B, Z)	Signal level	0–5 V	Differential signals are preferred, but single signals are also sup- ported. The trigger threshold is 0.33–0.4 times the Encoder sup- ply voltage.	
	Max resolution	65535		
	Max frequency	10 MHz		
	Max cable length	Depends on sig- nal frequency		
HTL (A, B, Z)	Signal level:	0–24 V		
	Max resolution:	65535		
	Max frequency	500 kHz		
SSI	Max Resolution	31 bit	Clock frequency is fixed.	
	Max data length	63 bit	Only Gray code is supported as the data format.	
	Clock frequency	6.25 MHz		
EnDat	Max Resolution	31 bit	Both EnDat 2.1 and EnDat 2.2 are supported, but only with pure absolute channel, not with incremental channel.	
	Max Data length	63 bit		
	Max clock frequency	16 MHz		
Hiperface DSL	Max Resolution:	31 bit	Baud rate is fixed.	
	Max Data length	63 bit		
	Baud rate	10 Mbps		
BiSS	Max Resolution	31 bit	Clock frequency is fixed.	
	Max Data length	63 bit		
	Clock frequency	10 MHz		
Resolver	Excitation voltage	2–8 V _{rms}	-	
	Excitation frequency	2–20 kHz		
	Max number of poles	254		
	Max input voltage	8 V _{rms}	-	
	Max load:	100 mA _{rms}		
Encoder simula- ion (TTL Output)	Voltage level	Min. 1.5 V, Typ. 2 V differential	-	
	Max resolution:	65535		
	Max frequency	10 MHz		
	Max load	60 mA		

¹ The limitations described in this guide apply to the current software version.

Table 6: Cable Specifications for Encoder/Resolver Option OC7M0

Cable type	Cross section [mm ² (AWG)]	Minimum stripping length [mm (in)]
Flexible/rigid wire without cable end sleeves	0.2–1.5 (26–16)	10 (0.4)
Flexible wire with cable end sleeves with collar	0.2–0.75 (26–18)	

A standard RS485 interface supports cable lengths up to 1200 m depending on signal frequency and cable type. Consult the documentation for the respective encoder or resolver for details on allowed cable length.

4.8 Setup and Connection Examples for Encoder/Resolver OC7M0

4.8.1 Incremental Encoder

With TTL and HTL incremental encoder, the actual position is 0 after power-up, and encoder pulses are counted to increment or decrement the actual position. For improved resolution with TTL and HTL encoders, both the positive and negative edge of A and B pulses are detected giving 4 quad counts per encoder pulse.

Table 7: Parameters for Incremental Encoder

Parameter	Setting
9.4.1 Interface configuration	Set according to the type of connected encoder.
	TTL/HTL with 2 tracks: Select [1] 2 track Incremental A, B.
	TTL/HTL with 3 tracks: Select [3] 3 track Incremental A, B, Z.
9.4.4 Encoder Supply Voltage	Set the appropriate supply voltage for the connected encoder.
	ΝΟΤΙΟΕ
	Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.
9.5.1 Resolution Device 1	Set the resolution of the encoder in pulses per revolution.

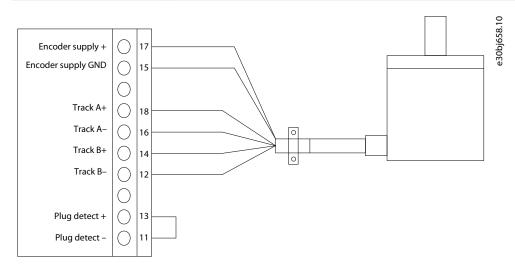
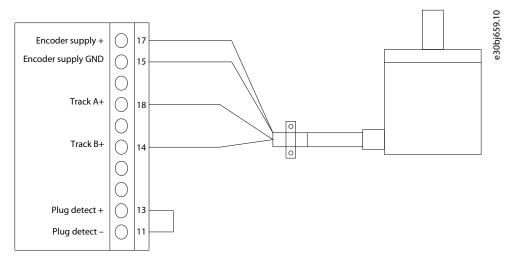
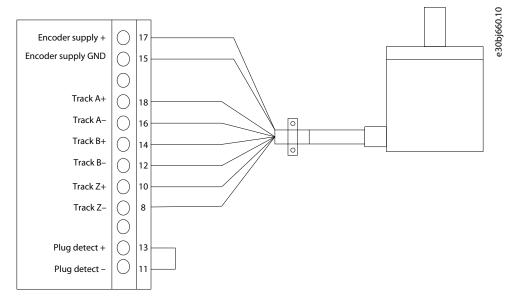
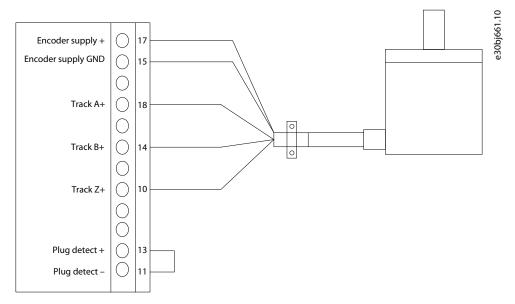
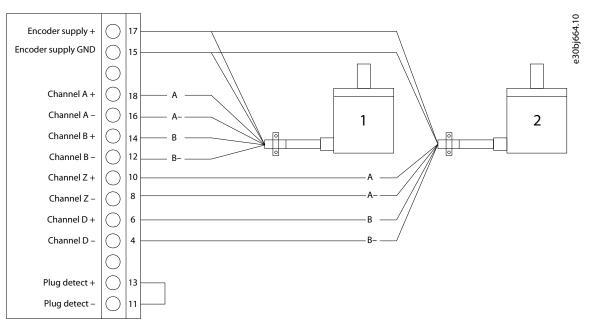




Illustration 2: Wiring Configuration for Incremental Encoder, 2 Differential Tracks (TTL, HTL)

Illustration 3: Wiring Configuration for Incremental Encoder, 2 Single Tracks (TTL, HTL)

Illustration 4: Wiring Configuration for Incremental Encoder, 3 Differential Tracks (TTL, HTL)




Illustration 5: Wiring Configuration for Incremental Encoder, 3 Single Tracks (TTL, HTL)

ntoss **Encoder/Resolver Installation and** Configuration

4.8.2 Two Incremental Encoders

It is possible to connect two 2-track incremental encoders where channel 1 (A, B) supports TTL and HTL, while channel 2 (Z, D) only supports TTL.

Parameter	Setting
9.4.1 Interface configura- tion	Select [5] 2 track Incremental A,B + 2 track incremental Z,D.
9.4.4 Encoder Supply Voltage	Set the appropriate supply voltage for the connected encoders. If the power requirement exceeds the maximum power of the internal supply, the second encoder may require external supply.
	ΝΟΤΙΟΕ
	Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.
9.5.1 Resolution Device 1	Set the resolution of the encoder connected to A and B in pulses per revolution.
9.5.2 Resolution Device 2	Set the resolution of the encoder connected to Z and D in pulses per revolution.

Illustration 6: Wiring Configuration for 2 Incremental Encoders

1	Incremental encoder, 2 differential tracks (TTL, HTL)	
2	² Incremental encoder, 2 differential tracks (only TTL on Z and D).	
	ΝΟΤΙΟΕ	
	The incremental encoder connected to channels Z and D may require separate supply.	

4.8.3 Resolver

With a resolver, the actual position is set to the absolute value within one resolver pole pair based on the analog value of the sine and cosine signals.

With a 2-pole resolver, this corresponds to the absolute position within one resolver revolution.

Table 9: Parameters for Resolver

Parameter	Setting
9.4.1 Interface configuration	Set to [7] Resolver A,B.
9.7.1 Excitation Voltage	Set the excitation voltage according to the specification of the connected resolver.
9.7.2 Excitation Frequency	Set the excitation frequency according to the specification of the connected resolver.
9.7.3 Number of Poles	Set the number of poles of the connected resolver.

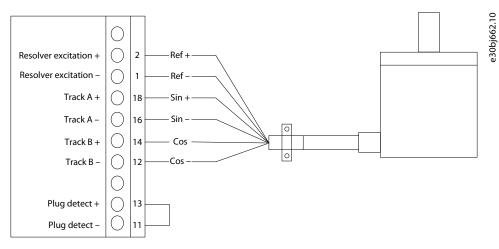


Illustration 7: Wiring Configuration for Resolver

4.8.4 Resolver with Mirror Out

When using a resolver, a TTL encoder signal can be generated to mirror the resolver signal. The mirroring enables transferring the shaft position to other devices for monitoring, or further control. The encoder output signal can be scaled by defining the number of pulses representing one rotation of the resolver.

Parameter Setting 9.4.1 Interface Configuration Set to [8] Resolver A, B + Mirror out Z, D.

Table 10: Parameters for Resolver with Mirror Out

9.5.2 Resolution Channel 2	Set the required number of pulses for the encoder output representing one rotation of the resolver.
9.7.1 Excitation Voltage	Set the excitation voltage according to the specification of the connected resolver.
9.7.2 Excitation Frequency	Set the excitation frequency according to the specification of the connected resolver.
9.7.3 Number of Poles	Set the number of poles of the connected resolver.

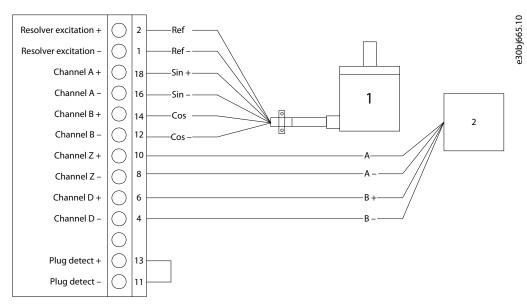


Illustration 8: Wiring Configuration for Resolver with Mirror Out

1	Resolver	
2	Controller, or other device	

4.8.5 SSI Encoder

Absolute position is read from the encoder and used to set the actual position after power-up.

Table 11: Parameters for SSI Encoder

Parameter	Description	
9.4.1 Interface configuration	Select [17] SSI Z,D.	
9.4.4 Encoder Supply Voltage	Set the appropriate supply voltage for the connected encoder.	
	ΝΟΤΙΟΕ	
	Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.	
9.6.1 Resolution	Set the number of bits used for 1 revolution.	
9.6.2 Data Length	Set total number of bits used for position/angle + revolution count.	

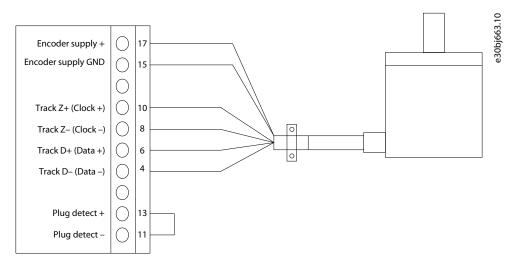


Illustration 9: Wiring Configuration for 2-Track SSI Encoder

4.8.6 EnDat Encoder

Absolute position is read from the encoder and used to set the actual position after power-up.

Description		
Select [22] EnDat Z,D.		
Set the appropriate supply voltage for the connected encoder.		
ΝΟΤΙΟΕ		
Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.		
Set the number of bits used for 1 revolution.		
Set total number of bits used for position/angle + revolution count.		
Set the rate for the clock signal according to the encoder specifications.		

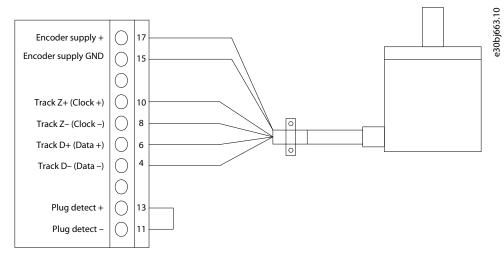


Illustration 10: Wiring Configuration for 2-Track EnDat Encoder

4.8.7 BiSS Encoder

Absolute position is read from the encoder and used to set the actual position after power-up.

Table 13: Parameters for BiSS Encoder

Parameter	Description	
9.4.1 Interface configuration	Select [29] BiSS Z,D.	
9.4.4 Encoder Supply Voltage	Set the appropriate supply voltage for the connected encoder.	
	ΝΟΤΙΟΕ	
	Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.	
9.6.1 Resolution Set the number of bits used for 1 revolution.		
9.6.2 Data Length	Set total number of bits used for position/angle + revolution count.	

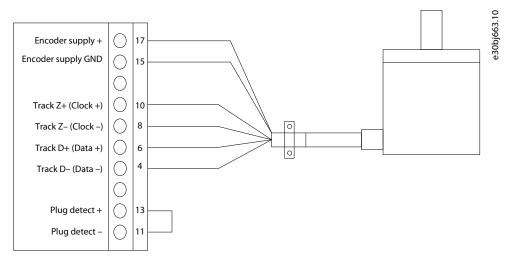


Illustration 11: Wiring Configuration for 2-Track BiSS Encoder

4.8.8 HIPERFACE DSL

Absolute position is read from the encoder and used to set the actual position after power-up.

Table 14: Parameters for HIPERFACE DSL^Æ

Parameter	Description	
9.4.1 Interface configuration	Select [26] Hiperface DSL D.	
9.4.4 Encoder Supply Voltage	Set the appropriate supply voltage for the connected encoder.	
	ΝΟΤΙΟΕ	
	Voltage can be up to 24 V. Setting the voltage too high can damage the connected encoder.	
9.6.1 Resolution	Set the number of bits used for 1 revolution.	
9.6.2 Data Length	Set total number of bits used for position/angle + revolution count.	

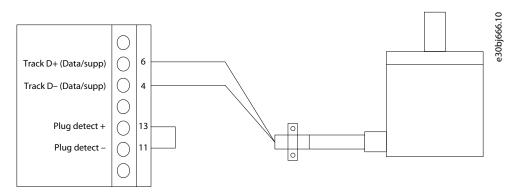


Illustration 12: Wiring Configuration for HIPERFACE DSL^ÆEncoder

4.9 Parameter Descriptions for Encoder/Resolver

4.9.1 Configuration (Menu Index 9.4)

P 9.4.1 Interface Configuration

Description: Select the required configuration of the interface consisting of 4 tracks A, B, Z, and D offering various combinations of 1 or 2 devices.

Default Value: 0 [Disabled]	Parameter Type: Selection	Parameter Number: 4000
Unit: –	Data Type: UINT	Access Type: Read/Write

The following are the selections for the parameter:

Selection number	Selection name
0	Disabled
1	2 track incremental A,B
3	3 track incremental A,B,Z
5	2 track incremental A,B + 2 track incremental Z,D
7	Resolver A,B
8	Resolver A,B + mirror out Z,D
9	Resolver A,B + 2 track incremental Z,D
17	SSI Z,D
19	SSI Z,D + 2 track incremental A,B
22	EnDat Z,D
23	EnDat Z,D + 2 track incremental A,B
26	Hiperface DSL D
27	Hiperface DSL D + 2 track incremental A,B
29	BiSS Z,D
30	BiSS Z,D + 2 track incremental A,B

P 9.4.4 Encoder Supply Voltage

Description: Set the supply voltage level according to the specification of the connected encoder.

Default Value: 5	Parameter Type: Range (3–24)	Parameter Number: 4002
Unit: V	Data Type: UINT	Access Type: Read/Write

P 9.4.5 Supply Sense

Description: Activate power supply cable drop compensation.

Default Value: 0	Parameter Type: Range (0–1)	Parameter Number: 4035
Unit: –	Data Type: BOOL	Access Type: Read/Write

4.9.2 Incremental Settings (Menu Index 9.5)

P 9.5.1 Resolution Channel 1

Description: Set the resolution of the incremental encoder connected to channel 1.

Default Value: 1024	Parameter Type: Range (1–65535)	Parameter Number: 4008
Unit: –	Data Type: UINT	Access Type: Read/Write

P 9.5.2 Resolution Channel 2

Description: Set the resolution of the incremental encoder connected to channel 2.

Default Value: 1024	Parameter Type: Range (1–65535)	Parameter Number: 4009
Unit: –	Data Type: UINT	Access Type: Read/Write

4.9.3 SSI/EnDat/BiSS/HIPERFACE Settings (Menu Index 9.6)

P 9.6.1 Resolution

Description: Number of bits used for one revolution.

Default Value: 13	Parameter Type: Range (1–31)	Parameter Number: 4010
Unit: –	Data Type: UINT	Access Type: Read/Write

P 9.6.2 Data Length

Description: Total number of bits used for position/angle + revolution count.

Default Value: 25	Parameter Type: Range (1–63)	Parameter Number: 4011
Unit: –	Data Type: UINT	Access Type: Read/Write

P 9.6.3 EnDat Clock Rate

Description: Set the Clock rate used for EnDat.

Default Value: 0 [8.33 MHz]	Parameter Type: Selection	Parameter Number: 4036
Unit: MHz	Data Type: UINT	Access Type: Read/Write

The following are the selections for the parameter:

Selection number	Selection name
0	8.33 MHz
6	4.16 MHz
12	2.08 MHz
13	1 MHz
14	0.2 MHz
15	0.1 MHz

P 9.6.5 SSI Data Format

Description: Select the SSI data coding according to the specifications of the connected SSI encoder.

Default Value: 1 [Gray] ⁽¹⁾	Parameter Type: Selection	Parameter Number: 4034
Unit: –	Data Type: BOOL	Access Type: Read/Write

¹ In this release, the value *Gray* is preselected and cannot be changed.

4.9.4 Resolver (Menu Index 9.7)

P 9.7.1 Excitation Voltage

Description: Set the Excitation voltage according to the specifications of the connected resolver (RMS).

Default Value: 5	Parameter Type: Range (2–8)	Parameter Number: 4005
Unit: V	Data Type: UINT	Access Type: Read/Write

P 9.7.2 Excitation Frequency

Description: Set the Resolver excitation frequency according to the specifications of the connected resolver.

Default Value: 5000	Parameter Type: Range (2000–20000)	Parameter Number: 4004
Unit: Hz	Data Type: UINT	Access Type: Read/Write

P 9.7.3 Number of Poles

Description: Set the number of poles of the connected resolver.

Default Value: 2	Parameter Type: Range (2–254)	Parameter Number: 4003
Unit: –	Data Type: USINT	Access Type: Read/Write

Danfoss Encoder/Resolver Installation and Configuration

ENGINEERING TOMORROW

Danfoss A/S Ulsnaes 1 DK-6300 Graasten danfossdrives.com

Danfoss can accept no responsibility for possible errors in catalogs, brochures, and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

Danfoss A/S © 2022.02