

# DEVICENET OPTION BOARD OPTE7 USER MANUAL

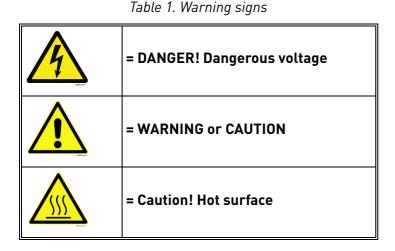


# TABLE OF CONTENTS

Document: DPD01171C Release date : 26.01.2024

| 1.             | Safety                                                                           | .6       |
|----------------|----------------------------------------------------------------------------------|----------|
| 1.1            | Danger                                                                           | 6        |
| 1.2            | Warnings                                                                         |          |
| 1.3            | Grounding and earth fault protection                                             |          |
| 2.             | DeviceNet option board OPTE7 - General                                           | .9       |
| 2.1            | Overview                                                                         |          |
| 2.1.1          | DeviceNet physical layer and media                                               |          |
| 2.2            | DeviceNet protocol description                                                   |          |
| 2.2.1          | EDS (Electronic Data Sheet) file                                                 |          |
| 3.             | DeviceNet option board OPTE7 - technical data                                    |          |
| 3.1            | General                                                                          |          |
| 3.2            | CAN cable                                                                        |          |
| 3.2.1          | Recommended cable                                                                |          |
| 4.             | OPTE7 layout and connections                                                     |          |
| 4.1            | Layout and connections                                                           |          |
| 4.2            | LED Indications                                                                  |          |
| 4.3            | Jumpers                                                                          |          |
| 5.             | Installation                                                                     |          |
| 5.1            | Installation in VACON <sup>®</sup> 100 industrial                                |          |
| 5.2            | Prepare for use through fieldbus                                                 |          |
| 5.3            | Installation in VACON® 20                                                        |          |
| 5.3.1          | Enclosures MI1, MI2, MI3                                                         |          |
| 5.3.2<br>5.4   | Enclosures MI4, MI5<br>Installation in VACON $^{\textcircled{B}}$ 20 X and 20 CP |          |
| 5.4<br>5.5     | Installation in VACON <sup>®</sup> 100 X (enclosures MM4-MM6)                    | 37<br>27 |
| 5.6            | Installation in VACON® NX                                                        | 38       |
| 6.             | Commissioning                                                                    |          |
| 6.1            | Parameter view                                                                   |          |
| 6.1.1          | Mode                                                                             |          |
| 6.2            | Monitor view                                                                     |          |
| 6.3            | Software info view                                                               | 41       |
| 6.4            | Control and status word monitoring values                                        |          |
| 6.5            | Fieldbus parametrization                                                         |          |
| 6.6            | PC tools                                                                         |          |
| 6.6.1          | PC tool support<br>Updating the OPTE7 option board firmware with VACON® Loader   | 42       |
| 6.6.2<br>6.6.3 | Parametrizing OPTE7 with VACON <sup>®</sup> Live                                 | 4Z       |
|                | Parametrizing OPTE7 with VACON® NCDrive                                          |          |
| 6.7            | OPTCx Emulation Mode                                                             |          |
| <b>7.</b>      | DeviceNet interface                                                              |          |
| 7.1            | I/O messaging                                                                    |          |
| 7.1.1          | Connection behaviour                                                             |          |
| 7.1.2          | Input and Output Assemblies                                                      |          |
|                | Control Supervisor Behaviour                                                     |          |
| 7.2            | Explicit messaging                                                               | 61       |
| 7.2.1          | Connection behaviour                                                             |          |
| 8.             | DeviceNet fault handling                                                         | 62       |
| 8.1            | General and additional error codes                                               |          |
| 9.             | Appendix A - Object dictionary                                                   | 64       |

| 9.1        | Implemented CIP objects                                                                 | 64  |
|------------|-----------------------------------------------------------------------------------------|-----|
| 9.1.1      | List of Object Classes                                                                  | 64  |
|            | List of Services                                                                        |     |
|            | Class Code 0x01 - Identity Object                                                       |     |
| 9.1.4      | Class Code 0x02 - Message Router Object                                                 | 68  |
|            | Class Code 0x03 - DeviceNet Object                                                      |     |
| 9.1.6      | Class Code 0x04 - Assembly Object                                                       | 70  |
|            | Class Code 0x05 - DeviceNet Connection Object                                           |     |
|            | Class Code 0x28 - Motor Data Object                                                     |     |
|            | Class Code 0x29 - Control Supervisor Object                                             |     |
|            | Class Code 0x2A - AC/DC Drive Object                                                    |     |
|            | Class code 0xA0 - Vendor Parameter Object                                               |     |
| 9.0.1      | Class code 0xAA - Monitoring Data Object                                                |     |
| 10.        | Appendix B - Fault and warning codes                                                    | .87 |
| 11.        | Appendix C - DeviceNet communication examples                                           | .88 |
| 11.1       | DeviceNet's use of the CAN identifier field                                             |     |
| 11.2       | Fragmentation protocol                                                                  |     |
| 11.3       | Example messages                                                                        |     |
|            | Opening explicit messaging connection                                                   |     |
| 11 3 2     | Setting explicit connection timeout                                                     | 91  |
|            | Closing explicit messaging connection                                                   |     |
|            | Reading ID 102 value using vendor parameter object                                      |     |
| 11.3.5     | Writing ID 102 value using vendor parameter object                                      | 92  |
|            | Opening poll I/O connection                                                             |     |
|            | Setting poll connection timeout                                                         |     |
|            | Closing poll connection                                                                 |     |
| 11.3.9     | Sending I/O data                                                                        | 94  |
| 11.3.1     | 0Sending fragmented I/O data                                                            | 94  |
| 12.        | Appendix D - Example with RsLogix5000                                                   |     |
| 13.        | Appendix E - VACON <sup>®</sup> IO data description                                     |     |
| 13.1       | VACON <sup>®</sup> Control Word - FBFixedControlWord                                    |     |
| 13.2       | Control Word bit support in VACON® AC drives                                            | 110 |
| 13.3       | VACON <sup>®</sup> Status Word - FBFixedStatusWord                                      |     |
| 13.4       | Status Word bit support in VACON <sup>®</sup> AC drives                                 |     |
| 13.5       | Monitoring of control and status words in VACON <sup>®</sup> AC drives                  | 112 |
| 13.6       | VACON <sup>®</sup> speed reference and actual speed - FBSpeedReference and FBActualSpee |     |
| 13.7       | Process data                                                                            |     |
| 13.8       | Fieldbus process data mapping and scaling                                               |     |
| 14.        | Appendix F - Fieldbus parametrization                                                   |     |
| 14.1       | Fieldbus control and reference selection                                                |     |
| 14.1       | Controlling fieldbus parameter                                                          |     |
| 14.2       | Torque control parametrization                                                          |     |
| <b>15.</b> | Appendix G - Fault tracing                                                              |     |
|            |                                                                                         |     |
| 15.1       | Typical fault conditions                                                                |     |
| 15.2       | Other fault conditions                                                                  |     |
| 15.3       | Fieldbus fault codes                                                                    |     |
| 16.        | Appendix H - Fieldbus option board communication                                        |     |
| 16.1       | Requirements for communication modes                                                    |     |
| 16.2       | Fieldbus communication mode features and limitations                                    |     |
| 16.3       | Normal fieldbus communication                                                           |     |
| 16.4       | Fast fieldbus communication                                                             |     |
| 16.5       | Normal Extended Mode                                                                    |     |
| 16.6       | Fast safety fieldbus communication                                                      | 127 |


| 16.7 | Fast PROFIBUS fieldbus communication1              | 27 |
|------|----------------------------------------------------|----|
| 17.  | Appendix I - Parameters for application developers | 28 |

## **1.** SAFETY

This manual contains clearly marked cautions and warnings that are intended for your personal safety and to avoid any unintentional damage to the product or connected appliances.

#### Read the information included in cautions and warnings carefully.

The cautions and warnings are marked as follows:



#### 1.1 DANGER



The **components of the power unit are live** when the drive is connected to mains potential. Coming into contact with this voltage is **extremely dangerous** and may cause death or severe injury.



The **motor terminals U, V, W and the brake resistor terminals are live** when the AC drive is connected to mains, even if the motor is not running.



After disconnecting the AC drive from the mains, wait until the indicators on the keypad go out (if no keypad is attached, see the indicators on the cover). Wait 5 more minutes before doing any work on the connections of the drive. Do not open the cover before this time has expired. After expiration of this time, use a measuring equipment to absolutely ensure that no voltage is present. Always ensure absence of voltage before starting any electrical work!



The control I/O-terminals are isolated from the mains potential. However, the **relay outputs and other I/O-terminals may have a dangerous control voltage** present even when the AC drive is disconnected from mains.



**Before connecting** the AC drive to mains make sure that the front and cable covers of the drive are closed.



During a ramp stop (see the Application Manual), the motor is still generating voltage to the drive. Therefore, do not touch the components of the AC drive before the motor has completely stopped. Wait until the indicators on the keypad go out (if no keypad is attached, see the indicators on the cover). Wait additional 5 minutes before starting any work on the drive.

#### 1.2 WARNINGS

| The AC drive is meant for <b>fixed installations only</b> .                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Do not perform any measurements</b> when the AC drive is connected to the mains.                                                                                                                                                                                                                                                                                                                 |
| The <b>earth leakage current</b> of the AC drives exceeds 3.5mA AC. According to standard EN61800-5-1, <b>a reinforced protective ground connection</b> must be ensured. See Chapter 1.3.                                                                                                                                                                                                           |
| If the AC drive is used as a part of a machine, the <b>machine manufacturer is responsible</b> for providing the machine with a <b>supply disconnecting device</b> (EN 60204-1).                                                                                                                                                                                                                    |
| Only <b>spare parts</b> delivered by Vacon can be used.                                                                                                                                                                                                                                                                                                                                             |
| At power-up, power brake or fault reset <b>the motor will start immediately</b> if the<br>start signal is active, unless the pulse control for Start/Stop logic has been selected.<br>Furthermore, the I/O functionalities (including start inputs) may change if<br>parameters, applications or software are changed. Disconnect, therefore, the<br>motor if an unexpected start can cause danger. |
| The <b>motor starts automatically</b> after automatic fault reset if the auto restart function is activated. See the Application Manual for more detailed information.                                                                                                                                                                                                                              |
| <b>Prior to measurements on the motor or the motor cable</b> , disconnect the motor cable from the AC drive.                                                                                                                                                                                                                                                                                        |
| <b>Do not touch the components on the circuit boards</b> . Static voltage discharge may damage the components.                                                                                                                                                                                                                                                                                      |
| Check that the <b>EMC level</b> of the AC drive corresponds to the requirements of your supply network.                                                                                                                                                                                                                                                                                             |

#### 1.3 GROUNDING AND EARTH FAULT PROTECTION

# CAUTION!

The AC drive must always be earthed with an grounding conductor connected to the grounding terminal marked with  $(\bot)$ .

The earth leakage current of the drive exceeds 3.5mA AC. According to EN61800-5-1, one or more of the following conditions for the associated protective circuit must be satisfied:

- a) The protective conductor must have a cross-sectional area of at least 10 mm<sup>2</sup> Cu or 16 mm<sup>2</sup> Al, through its total run.
- b) Where the protective conductor has a cross-sectional area of less than 10 mm<sup>2</sup> Cu or 16 mm<sup>2</sup> Al, a second protective conductor of at least the same cross-sectional area must be provided up to a point where the protective conductor has a cross-sectional area not less than 10 mm<sup>2</sup> Cu or 16 mm<sup>2</sup> Al.
- c) Automatic disconnection of the supply in case of loss of continuity of the protective conductor.

The cross-sectional area of every protective grounding conductor which does not form part of the supply cable or cable enclosure must, in any case, be not less than:

- 2.5mm<sup>2</sup> if mechanical protection is provided or
- 4mm<sup>2</sup> if mechanical protection is not provided.

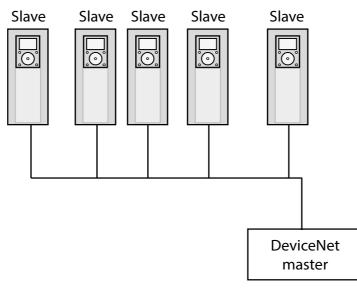
The earth fault protection inside the AC drive protects only the drive itself against earth faults in the motor or the motor cable. It is not intended for personal safety.

Due to the high capacitive currents present in the AC drive, fault current protective switches may not function properly.



**Do not perform any voltage withstand tests** on any part of the AC drive. There is a certain procedure according to which the tests must be performed. Ignoring this procedure can cause damage to the product.

NOTE! You can download the English and French product manuals with applicable safety, warning and caution information from https://www.danfoss.com/en/service-and-support/.


REMARQUE Vous pouvez télécharger les versions anglaise et française des manuels produit contenant l'ensemble des informations de sécurité, avertissements et mises en garde applicables sur le site https://www.danfoss.com/en/service-and-support/.

## 2. DEVICENET OPTION BOARD OPTE7 - GENERAL

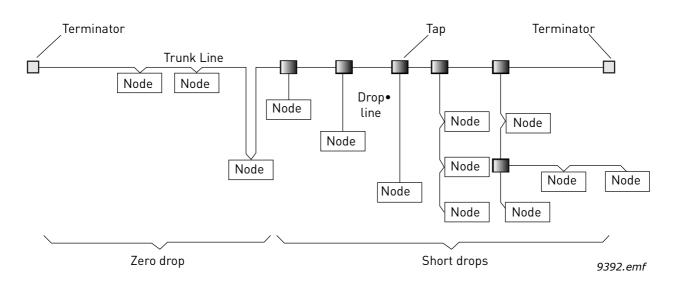
#### 2.1 OVERVIEW

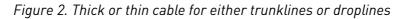
OPTE7 is a DeviceNet option board for VACON<sup>®</sup> AC drives. It allows the AC drive to be controlled using the DeviceNet protocol. The option board implements the AC Drive device profile as defined by CIP.

DeviceNet<sup>TM</sup> is a trademark of ODVA, Inc. The OPTE7 option board connects a drive into the DeviceNet network. There can be 64 nodes in one network. The baud rate is up to 500 kbit/s. The DeviceNet master can control and monitor the drives.



9391.emf


Figure 1. Typical DeviceNet network structure


#### 2.1.1 DEVICENET PHYSICAL LAYER AND MEDIA

The basic trunkline-dropline topology provides separate twisted pair busses for both signal and power distribution. Thick or thin cable can be used for either trunklines or droplines. End-to-end network distance varies with data rate and cable size.

Devices can be powered directly from the bus and communicate with each other using the same cable. Nodes can be removed from or inserted to the network without powering down the network.

Power taps can be added at any point in the network which makes redundant power supplies possible. The trunkline current rating is 8 amperes. An opto-isolated design option allows externally powered devices (e.g. AC drive's starters and solenoid valves) to share the same bus cable. Other CAN-based networks allow only a single power supply (if at all) for the entire network.





#### 2.2 DEVICENET PROTOCOL DESCRIPTION

DeviceNet is a communication protocol that is managed by the ODVA (Open DeviceNet Vendors Association). It uses CAN (Controller Area Network) as the backbone technology and at the higher level it implements CIP (Common Industrial Protocol). CIP is used by the following protocols:

- DeviceNet
- EtherNet/IP
- ControlNet
- CompoNet

CIP ensures high integrity/interoperability between all of these, especially from the end user perspective. CIP is object-oriented. It defines objects with its attributes and supported services. The objects can have multiple instances. Instance zero indicates object's class itself. Depending on the implemented profile, some objects are mandatory and have to be implemented. Additionally, each vendor can implement vendor-specific objects.

The following objects are implemented by the OPTE7 option board:

|                              | Class | Object               |
|------------------------------|-------|----------------------|
|                              | 0x01  | ldentity             |
| De muine d'hu                | 0x02  | Message Router       |
| Required by<br>DeviceNet     | 0x03  | DeviceNet            |
| Benterier                    | 0x04  | Assembly             |
|                              | 0x05  | DeviceNet Connection |
|                              | 0x28  | Motor Data           |
| Required by Drive<br>Profile | 0x29  | Control Supervisor   |
|                              | 0x2A  | AC/DC Drive          |
| Vendor-Specific              | 0xA0  | Vendor Parameter     |

Table 2.

| Physical / Data link<br>layer | CAN - Controller Area Network                                                                  |
|-------------------------------|------------------------------------------------------------------------------------------------|
| Application layer             | CIP - Common Industrial Protocol                                                               |
| Profiles                      | AC/DC Drives                                                                                   |
| Configuration file            | EDS - Electronic Data Sheet                                                                    |
| Baud rates                    | 125 kbit/s, 250 kbit/s, and 500 kbit/s                                                         |
| Bus length                    | Trunk length is inversely proportional to the speed, i.e. 500, 250 and 100 meters respectively |
| Max nodes                     | 64                                                                                             |

Table 3.

#### 2.2.1 EDS (ELECTRONIC DATA SHEET) FILE

EDS is a configuration file that describes the capabilities of the DeviceNet node. It can be used by the configuration tool to simplify the process of commissioning. EDS is actually a simple text file that follows the rules specified by the ODVA in the DeviceNet specification. Therefore, it could be opened and viewed with a simple text editor e.g. Notepad.

The EDS file for the OPTE7 option board can be downloaded from http://drives.danfoss.com website.

## **3.** DEVICENET OPTION BOARD OPTE7 - TECHNICAL DATA

#### 3.1 GENERAL

| CAN bus electrical<br>isolation | 500 VDC                                                        |                                                                                                             |  |
|---------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Ambient temperature             | As specified in drive spe                                      | ecification (-10°C40°C)                                                                                     |  |
| Storing temperature             | As specified in drive specification (-40°C70°C)                |                                                                                                             |  |
| Humidity                        | 0-95%, non-condensing, corrosive                               |                                                                                                             |  |
| Vibration and electrical safety | EN 61800-5-1 (2007)<br>5-15.8 Hz 1mm (peak)<br>15.8-150 Hz 1 G |                                                                                                             |  |
| Emission                        | C2 level, EN 61800-3 (2004)                                    |                                                                                                             |  |
| Immunity                        | C2 level, EN 61800-3 (2004)                                    |                                                                                                             |  |
|                                 | Isolation                                                      | 2500 V rms isolation with a less than 10-ns propagation delay                                               |  |
| CAN Interface                   | Protection                                                     | ±8kV ESD IEC 61000-4-2 Contact<br>Discharge<br>±80V Fault Protection<br>greater than ±12V common Mode Range |  |

#### Table 4. Technical data of OPTE7 option board

#### 3.2 CAN CABLE

The recommended cables for installation are 4-wire twisted and shielded cables with an impedance of 120 Ohm. The network topology is a 2-wire bus line that is terminated at both ends by resistors representing the characteristic impedance of the bus line. The typical CAN cable impedance is 120 Ohm, so you must use termination resistors of ~120 Ohm. For long networks, use a higher resistor value (150-300 Ohm).

| Cable length | Max bit rate [kbit/s] |
|--------------|-----------------------|
| 100 m        | 500                   |
| 250 m        | 250                   |
| 500 m        | 120                   |

| Table 5. Bus parameter relation to cable le | ngth |
|---------------------------------------------|------|
|---------------------------------------------|------|

#### 3.2.1 RECOMMENDED CABLE

For all DeviceNet installations the use of 4-wire cable is recommended.

The manufacturer recommends the following cable:

- UNITRONIC® BUS CAN FD P, colour-coded in accordance with DIN 47100.





| Bit rate         | Min cable thickness [mm <sup>2</sup> ] |     |     |
|------------------|----------------------------------------|-----|-----|
| 500 kbit/s       | 0.34                                   |     |     |
| 250 kbit/s       | 0.34                                   | 0.6 |     |
| 125 kbit/s       | 0.34                                   | 0.6 | 0.6 |
| Cable length [m] | 100                                    | 250 | 500 |

Table 6. Cable thickness, length and baud rate relation

### 4. **OPTE7** LAYOUT AND CONNECTIONS

#### 4.1 LAYOUT AND CONNECTIONS

OPTE7 has two different hardware revisions with slightly different layouts. The layout is different in the LED arrangement and the termination resistor orientation.

The two hardware revisions are marked with different product codes, and this product code can be seen in the sticker on the top side of the option board (see the location in Figure 6).

The two hardware revisions are 70CVB01817 and 70CVB01555.

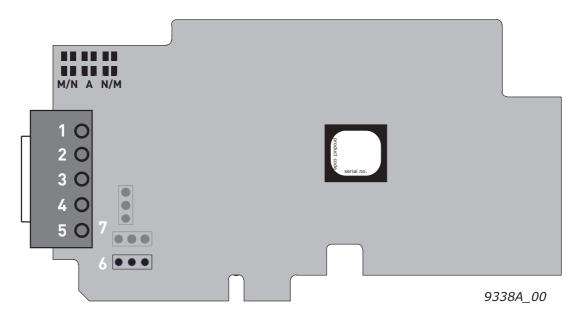



Figure 4. OPTE7 board layout

- 1 = V- (GND)
- 2 = CAN L
- 3 = SHIELD (shield connector)
- 4 = CAN H
- 5 = V + (24V)
- 6 = Cable shield grounding option
- 7 = CAN bus termination jumper

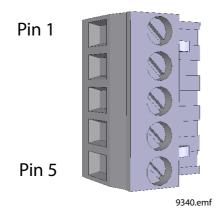



Figure 5. CAN connector

Local contacts: https://www.danfoss.com/en/contact-us/contacts-list/

| Pin | Description                          |
|-----|--------------------------------------|
| 1   | V-, isolated digital ground          |
| 2   | CAN LO                               |
| 3   | Shield connector                     |
| 4   | CAN HI                               |
| 5   | V+ (24V), communication power supply |

| Table 7  | CAN | connector | ninout  |
|----------|-----|-----------|---------|
| Tuble 7. | 0AN | connector | philout |

#### 4.2 LED INDICATIONS

The DeviceNet option board includes two LED status indicators next to the connector: network status (N), and module status (M).

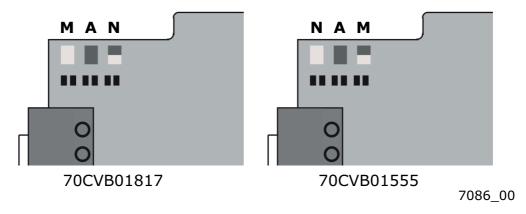



Figure 6. OPTE7 LED indicators

The network status provides information on the network connection status, and the module status provides information on the DeviceNet module.

| LED status     | Description                                                                                                                  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| OFF            | No power is supplied to the drive.                                                                                           |
| Green          | OPTE7 is operating normally.                                                                                                 |
| Flashing green | OPTE7 is in the Standby state, or the device needs commission-<br>ing due to missing, incomplete or incorrect configuration. |
| Flashing red   | The OPTE7 has detected a Recoverable Fault.                                                                                  |
| Red            | The OPTE7 has detected an Unrecoverable Fault.                                                                               |

#### Table 8. Module status led

#### Table 9. Network status led

| LED status     | Description                                                                                                                                                                  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF            | <ul> <li>OPTE7 is not online.</li> <li>The device has not completed the Dup_MAC_ID test yet.</li> <li>If the Module Status LED is off, the device is not powered.</li> </ul> |
| Flashing green | The OPTE7 has passed the Dup_MAC_ID test, is online, but is not allocated to a master.                                                                                       |
| Green          | The OPTE7 is online and allocated to a master.                                                                                                                               |
| Flashing red   | One or more I/O connections are in the Timed–Out state.                                                                                                                      |
| Red            | The OPTE7 cannot communicate on the network (Duplicate MAC ID, or Bus–off).                                                                                                  |

#### 4.3 JUMPERS

The termination resistor jumper location differs on used hardware version. The jumper locations can be seen from figure below.

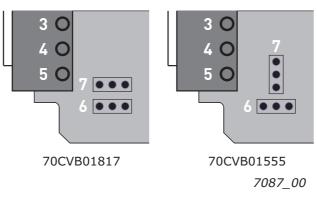



Figure 7. Jumper locations

The jumper settings for the CAN bus termination resistor are shown in the figure below.

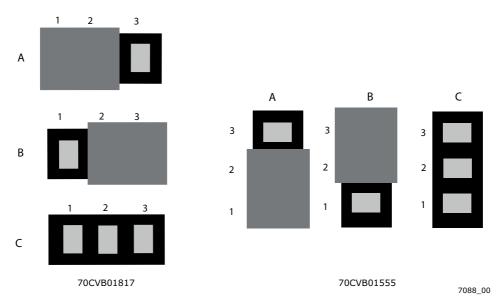



Figure 8. Termination resistor settings

- A = Termination resistor 120 Ohm connected
- B = Termination resistor is not connected to the CAN bus. (Factory default setting)
- C = Termination resistor is not connected to the CAN bus

The jumper settings for the CAN cable shield grounding are shown in the following figure.

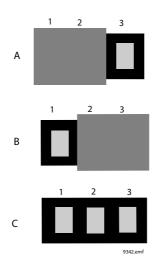
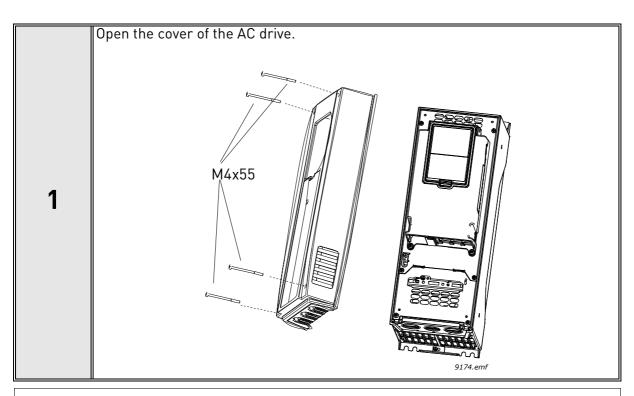


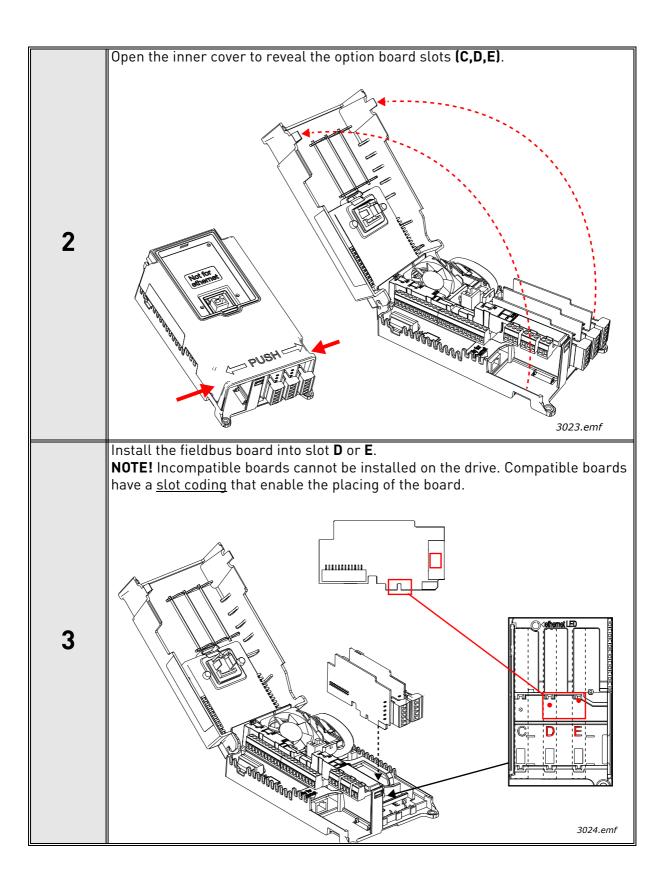

Figure 9. Cable shield grounding option

A = CAN connector pin 3 (shield) connected to the drive chassis with a high-impedance RC circuit. Recommended option when equipotential bonding is poor.

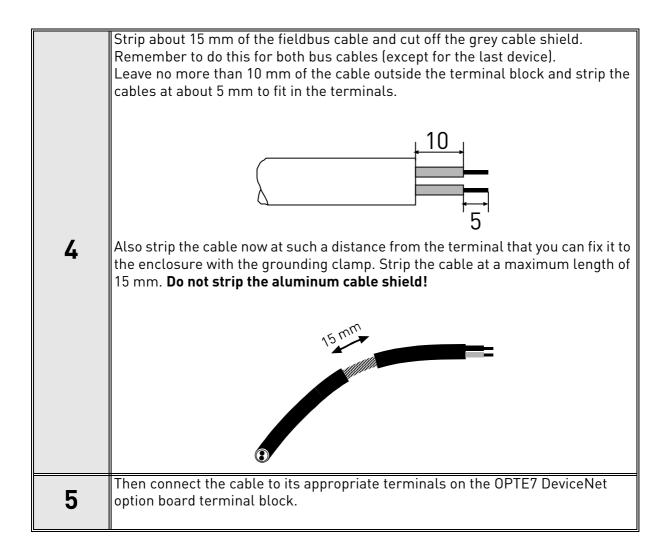

B = CAN connector pin 3 (shield) connected directly into the drive chassis. Recommended option when equipotential bonding is good. (Factory default setting).

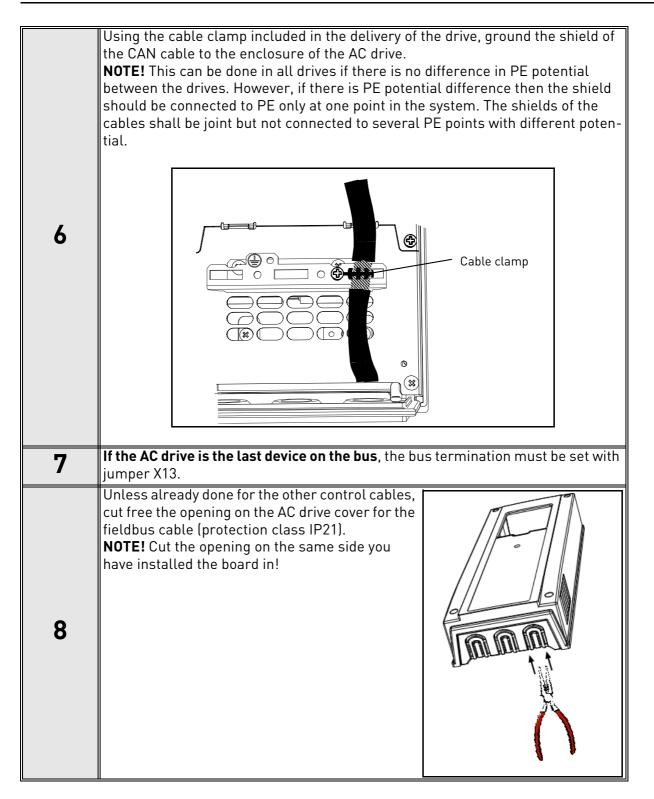
C = CAN connector pin 3 is unconnected.

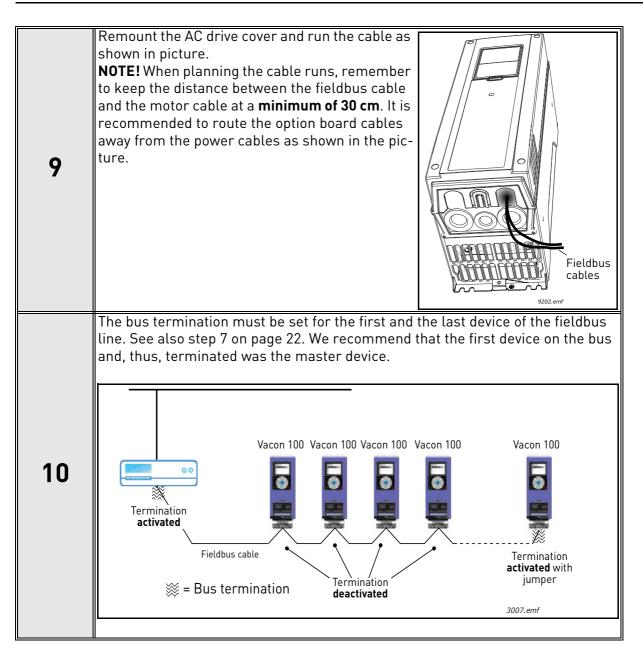
## 5. INSTALLATION


The VACON<sup>®</sup> OPTE7 DeviceNet option board can be used with VACON<sup>®</sup> 100 family, VACON<sup>®</sup> 20, VACON<sup>®</sup> 20 X and VACON<sup>®</sup> 20 CP AC drives. OPTE7 support was added to VACON<sup>®</sup> NXP firmware version V197 and to VACON<sup>®</sup> NXS firmware version V184. NXP/NXS support requires OPTE7 firmware version V006.

### 5.1 INSTALLATION IN VACON<sup>®</sup> 100 INDUSTRIAL

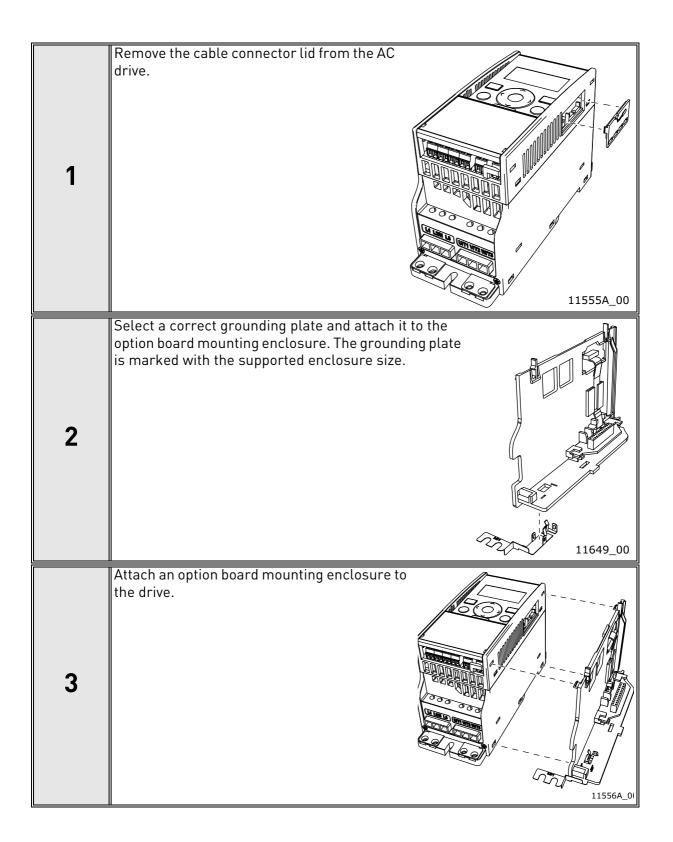


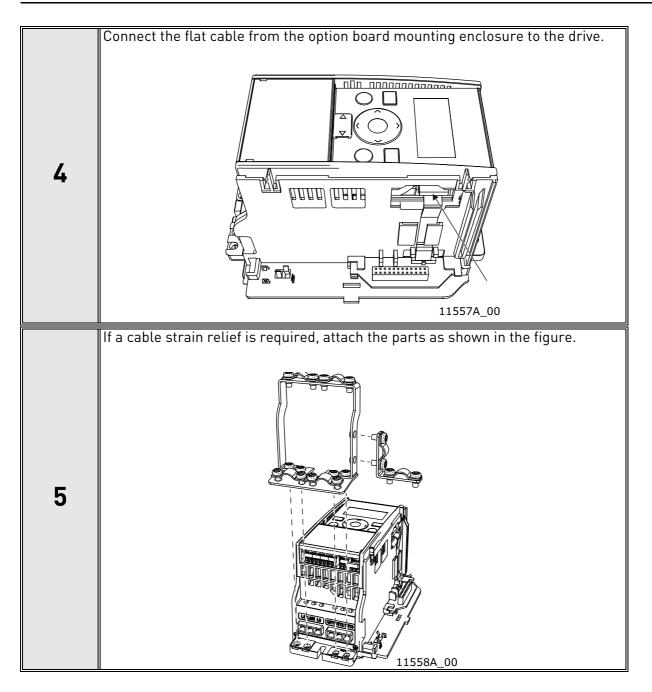



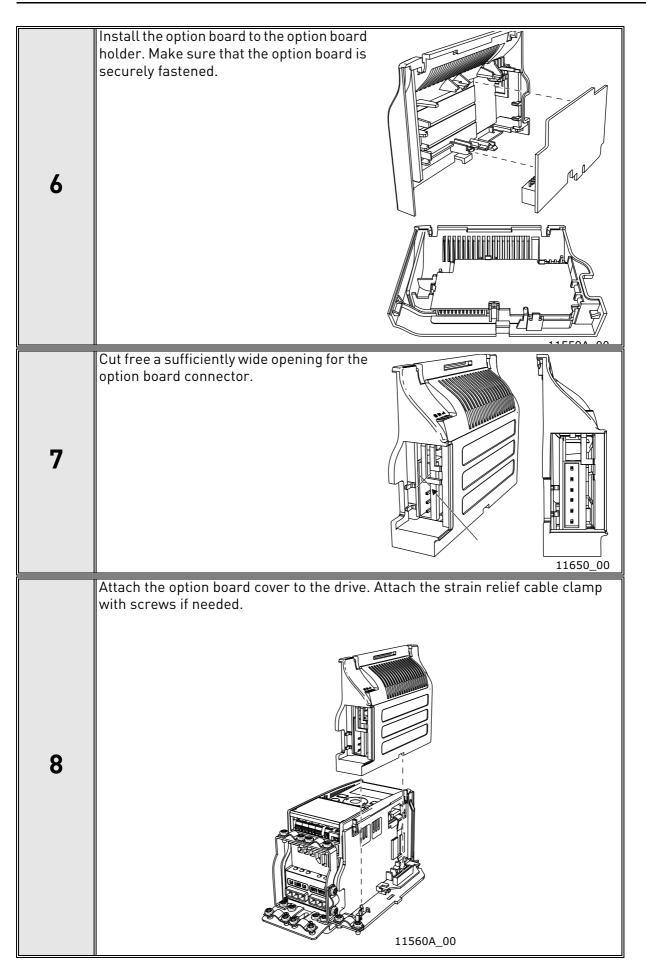


The relay outputs and other I/O terminals may have a dangerous control voltage present even when the AC drive is disconnected from mains.



#### 5.2 PREPARE FOR USE THROUGH FIELDBUS

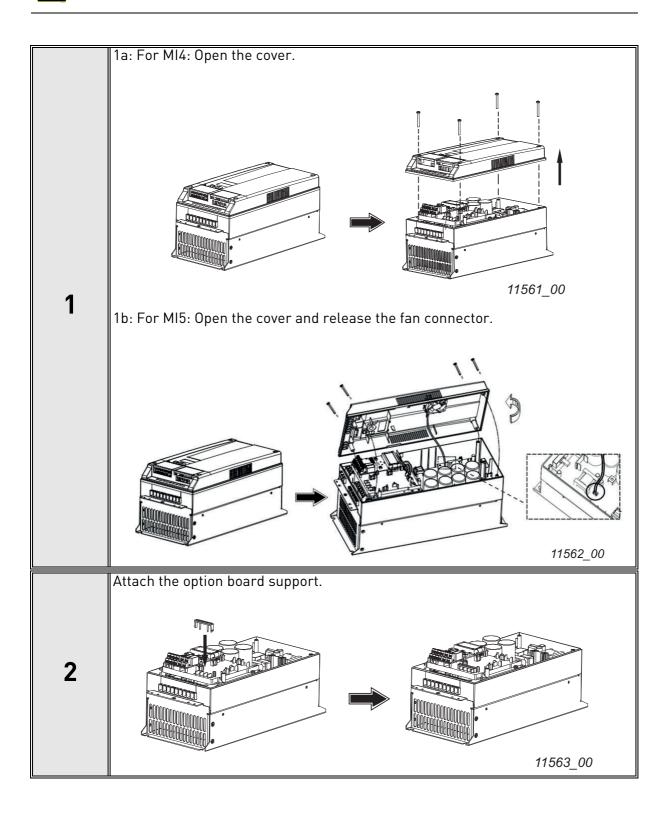


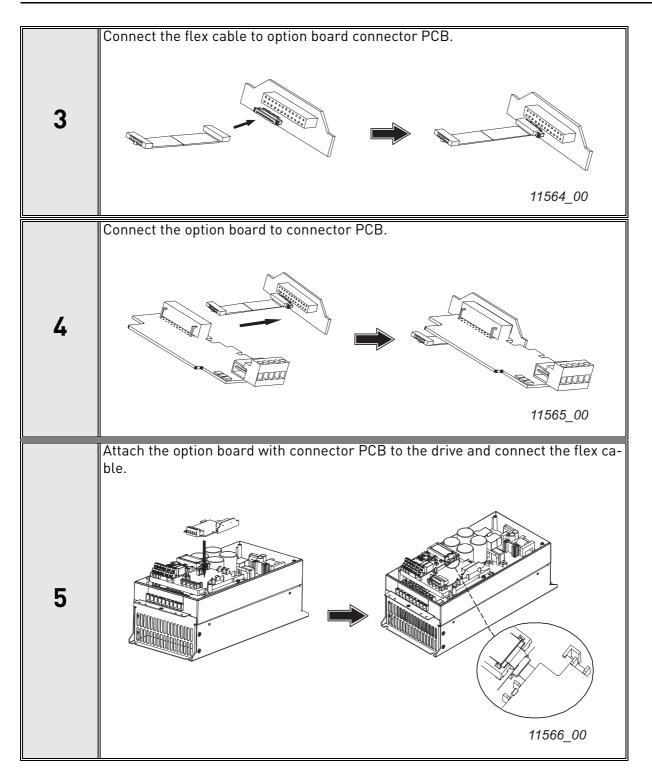



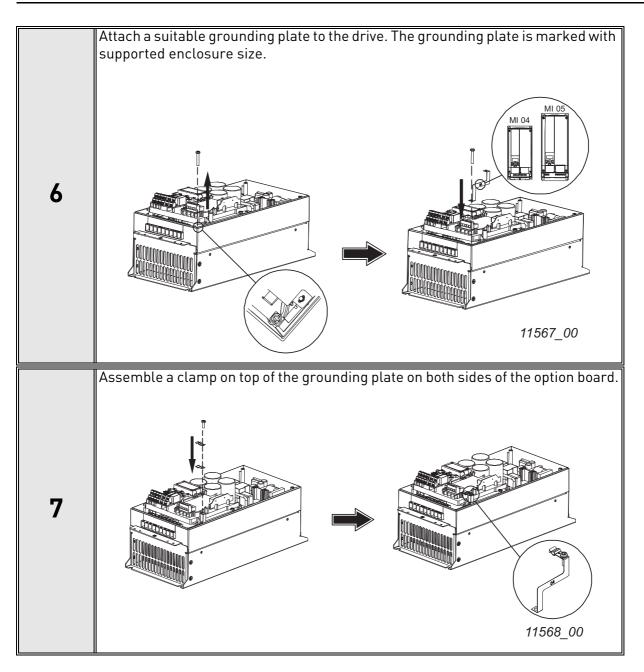



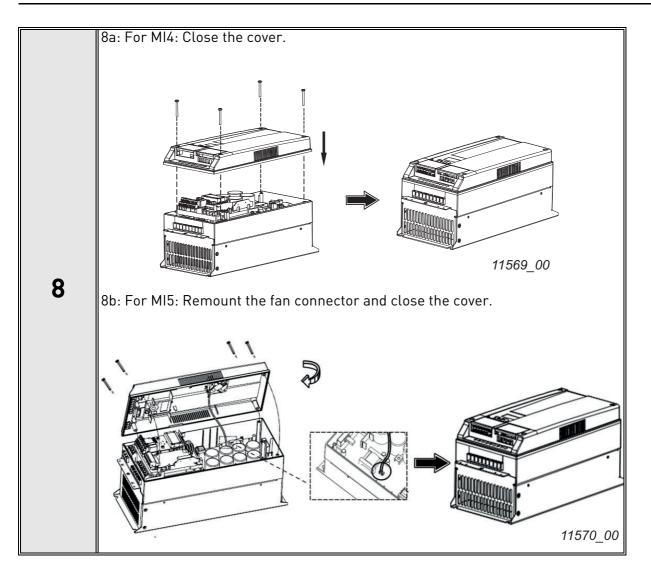

### 5.3 INSTALLATION IN VACON<sup>®</sup> 20

#### 5.3.1 ENCLOSURES MI1, MI2, MI3



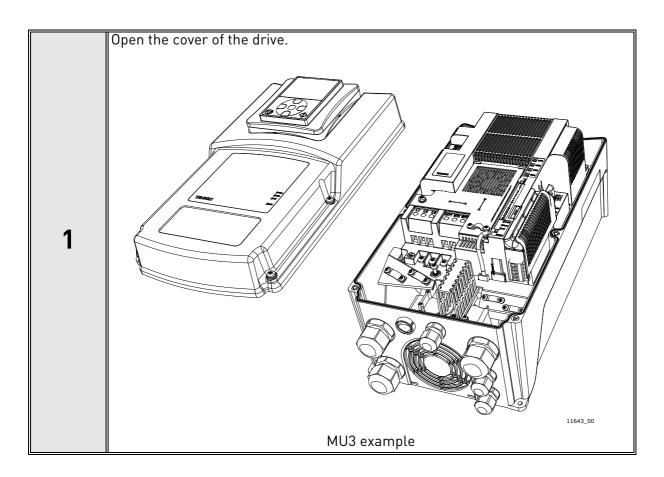





#### 5.3.2 ENCLOSURES MI4, MI5

Make sure power is disconnected before opening the cover of the drive.

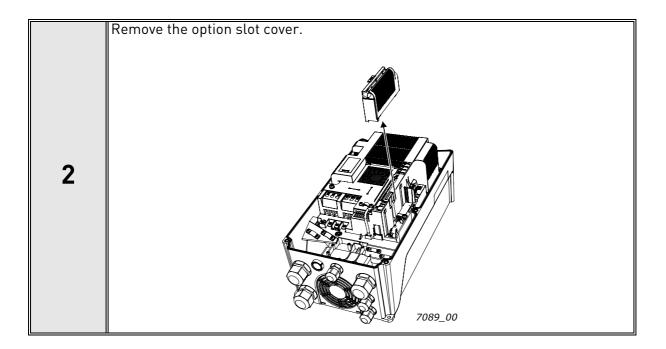


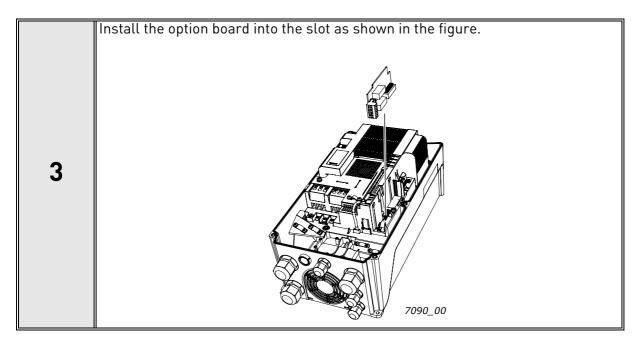


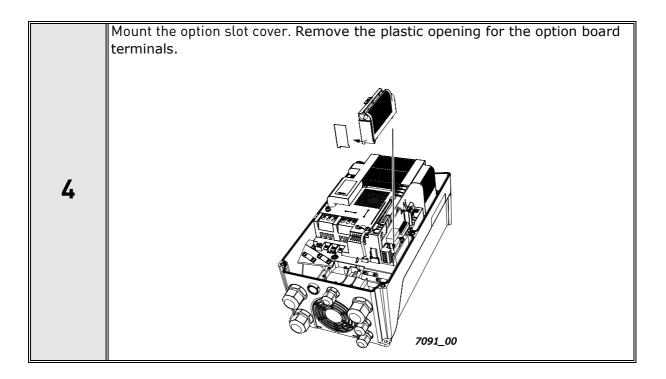




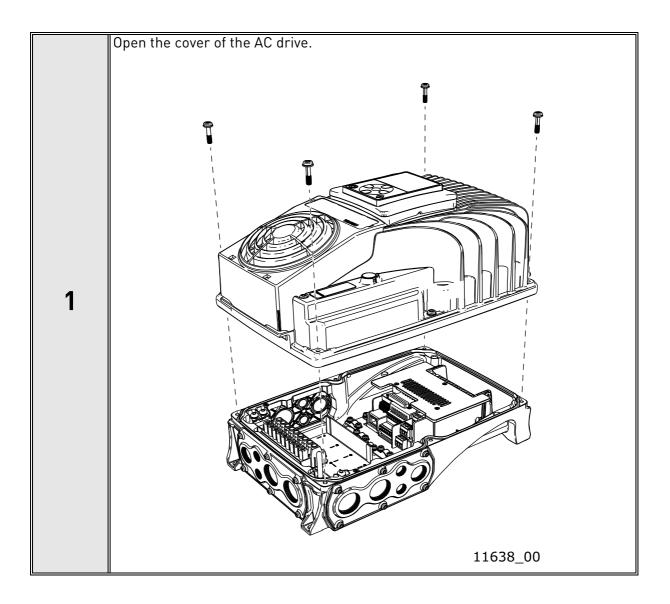

### 5.4 INSTALLATION IN $VACON^{(R)}$ 20 X and 20 CP

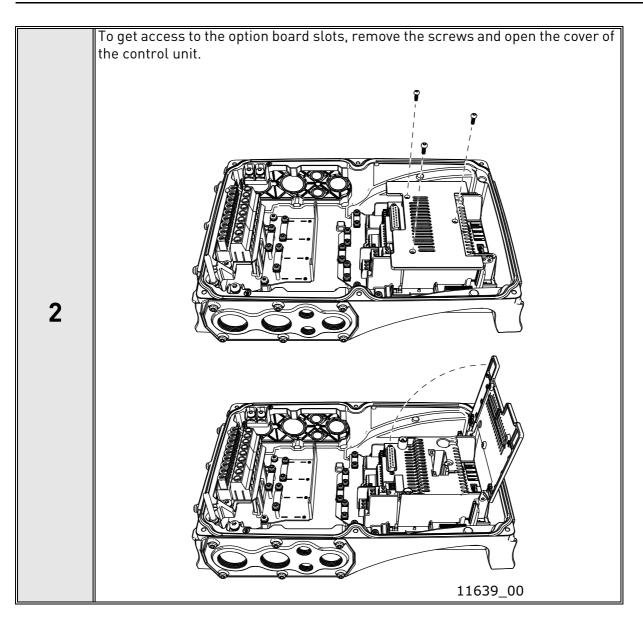


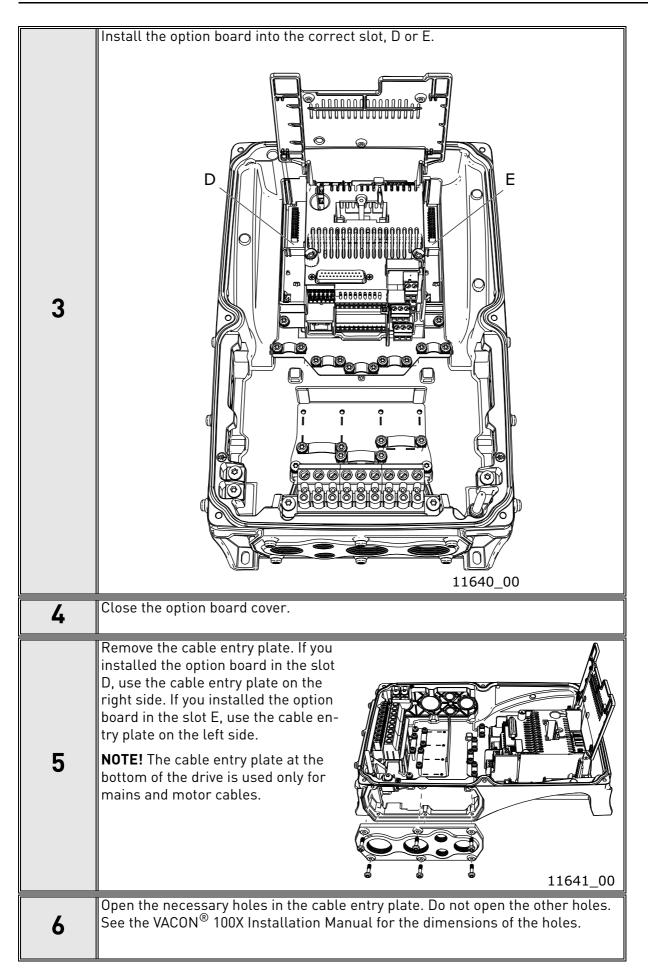


Do not add or replace option boards or fieldbus boards on an AC drive with the power switched on. This may damage the boards.

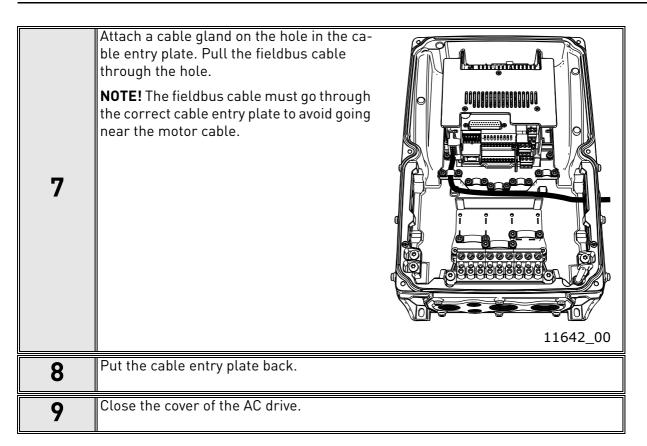






The relay outputs and other I/O-terminals may have a dangerous control voltage present even when the drive is disconnected from mains.



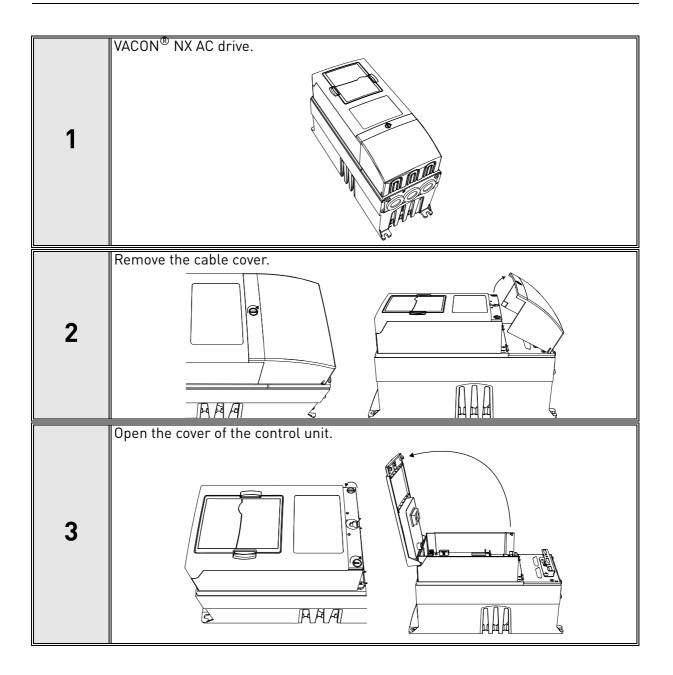



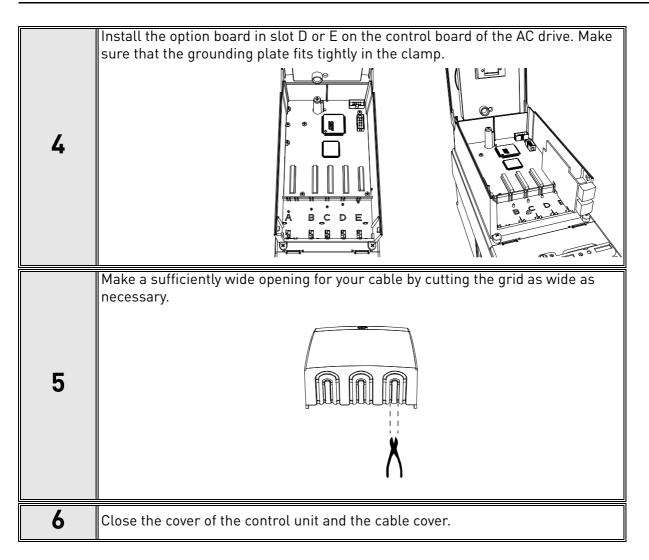




# 5.5 INSTALLATION IN VACON<sup>®</sup> 100 X (ENCLOSURES MM4-MM6)








## 5.6 INSTALLATION IN VACON<sup>®</sup> NX



Make sure that the AC drive **is switched off** before an option or fieldbus board is changed or added!





## 6. COMMISSIONING

### 6.1 PARAMETER VIEW

| Name               | Default    | Range                                            | Description                                                                                                                                                                                                     |
|--------------------|------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAC ID             | 63         | 063                                              | Slave address. Valid device addresses are in the range of 0 to 63 decimal.                                                                                                                                      |
| Baud rate          | 125 kbit/s | 125 kbit/s<br>250 kbit/s<br>500 kbit/s           | Communication speed                                                                                                                                                                                             |
| Output<br>instance | 21         | 20<br>21<br>23<br>25<br>101<br>111<br>151<br>161 | Output assembly used by the polled connection.<br>Setting of this value via panel is not allowed when<br>the I/O connection is established. If setting of this<br>value fails, the value is not updated.        |
| Input<br>instance  | 71         | 70<br>71<br>73<br>75<br>107<br>117<br>157<br>167 | Input assembly used by the polled connection. Set-<br>ting of this value via panel is not allowed when the<br>I/O connection is established. If setting of this value<br>fails, the value is not updated.       |
| Mode               | Normal     | Normal (1)<br>OPTCx (2)                          | Only in VACON <sup>®</sup> NXP family. After this setting is changed, drive must be restarted.                                                                                                                  |
| Comm.<br>Timeout   | 0          | 065535                                           | Additional communication timeout in seconds.<br>When normal watchdog timeout notices that con-<br>nection has been lost, fieldbus communication<br>fault is activated after this additional time has<br>passed. |

Table 10. Parameter view

#### 6.1.1 MODE

The emulation mode parameter is available only when the OPTE7 option board has been installed to the VACON<sup>®</sup> NXP family AC drive. When the mode is changed to "OPTCx", OPTE7 emulates the functionality of old OPTC7 option board. For more information, see Chapter 6.7 "OPTCx Emulation Mode".

| Table 11. Emulation | mode values |
|---------------------|-------------|
|---------------------|-------------|

| Value | Emulation mode | Description                                     |
|-------|----------------|-------------------------------------------------|
| 1     | Normal         | Normal operation                                |
| 2     | OPTCx          | OPTE7 emulates OPTC7 functionality and behavior |

Restart the AC drive after you have changed this value.

### 6.2 MONITOR VIEW

| Table 12. Monitor view | Table | 12. | Monitor | view |
|------------------------|-------|-----|---------|------|
|------------------------|-------|-----|---------|------|

| Name               | Range                                                                            | Description                                                                                                                                                                                                                                                                                                                        |
|--------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DeviceNet Status   | Y.X                                                                              | Y = Message counter<br>X = DeviceNet status                                                                                                                                                                                                                                                                                        |
| FB Protocol Status | Initializing (1)<br>Stopped (2)<br>Operational (3)<br>Faulted (4)<br>Failing (5) | When the device has started, it stays in "initializing"<br>status until the connection to the device is opened.<br>Then the status changes to "operational".<br>If the connection is closed or lost, the status<br>changes to "failing" until communication time out<br>time has elapsed. Then the status changes to<br>"faulted". |
| Drive Control Word | 065535                                                                           | Control word in drive format                                                                                                                                                                                                                                                                                                       |
| Drive Status Word  | 065535                                                                           | Status word in drive format                                                                                                                                                                                                                                                                                                        |
| Protocol CW        | 065535                                                                           | Control word in protocol format                                                                                                                                                                                                                                                                                                    |
| Protocol SW        | 065535                                                                           | Status word in protocol format                                                                                                                                                                                                                                                                                                     |

#### Table 13. DeviceNet status

| DeviceNet Status | Description  |
|------------------|--------------|
| 0                | Non-existent |
| 1                | Configuring  |
| 3                | Established  |
| 4                | Timeout      |

#### 6.3 SOFTWARE INFO VIEW

| Table 14. | Software | info view |
|-----------|----------|-----------|
|           |          |           |

| Number | Name              | Range | Description                                        |
|--------|-------------------|-------|----------------------------------------------------|
| 1      | Version<br>number |       | Version number of the software in the option board |
| 2      | Board status      |       | Shows the status of the option board               |

### 6.4 CONTROL AND STATUS WORD MONITORING VALUES

Drive Control Word always shows the internal control word (FBFixedControlWord) which is written to the drive by the option board. If the control word written by the PLC does not use FBFixedControlWord (CIP CW), the control word along with profile specific state machine is used to generate the FBFixedControlWord. If the used telegram already uses FBFixedControlWord, it is shown directly in this monitoring value. The only exception to this is that the bit 15 is set/removed to indicate "Master Connection state" in the VACON<sup>®</sup> NX AC drives. The Drive Status word always shows the FBFixedStatusWord received from the drive. The Protocol Control Word shows the value which was sent by the PLC to the option board. It always shows the protocol specific control word (CIP CW) if it is in the used telegram. Otherwise the FBGeneralControlWord is shown. However, if the telegram contains only the FBFixedControlWord, then it is shown in both control word monitoring values.

The Protocol Status word shows the value which was sent by the option board to the PLC. It always shows the protocol specific status word (CIP SW) if it is in the used telegram. Otherwise the FBGeneralStatusWord is shown. However, if the telegram contains only FBFixedStatusWord, then it is shown in both status word monitoring values.

For telegram specific configuration, see dedicated chapters in this manual. For example, Chapter 7.1.2.2 "21/71 Extended Speed Control (default)".

### 6.5 FIELDBUS PARAMETRIZATION

Fieldbus parametrization is explained in detail in Chapter 14 "Appendix F - Fieldbus parametrization". This chapter contains DeviceNet specific information about fieldbus parametrization.

In DeviceNet, the bits NetCtrl, NetRef and NetProc must be set in order for the option board to send commands / reference setpoint values to the AC drive. The bits CtrlFromNet and RefFromNet can be read to determine the actual control/reference place. Note that these bits are valid only if the NetCtrl/NetRef bits are also set.

The AC drive can be parametrized by using the drive panel, PC tools or fieldbus protocol. For more information on how to read and write ID's over DeviceNet fieldbus, see Chapter 9.1.11 "Class code 0xA0 - Vendor Parameter Object".

## 6.6 PC TOOLS

Usually before connecting the option board to network some parameters must be changed. This can be done directly from the panel or with VACON<sup>®</sup> PC tools. Some times also the option board firmware must be updated. The following chapters describe how to do this and what tools to use.

#### 6.6.1 PC TOOL SUPPORT

The following table describes what PC tools each AC drive type supports. Connect to the AC drive via panel connector using the serial cable.

| Tool                      | VACON <sup>®</sup> 100<br>family | VACON <sup>®</sup> NXS/NXP<br>family | VACON <sup>®</sup> 20<br>family |
|---------------------------|----------------------------------|--------------------------------------|---------------------------------|
| VACON <sup>®</sup> Loader | х                                | х                                    | х                               |
| VACON <sup>®</sup> Live   | х                                |                                      | х                               |
| NCDrive                   |                                  | Х                                    |                                 |
| NCLoad                    |                                  | Not supported                        |                                 |

## 6.6.2 Updating the OPTE7 option board firmware with VACON $^{(R)}$ Loader

The VACON<sup>®</sup> Loader can be downloaded from http://drives.danfoss.com website. It has been bundled with the VACON<sup>®</sup> Live software package. VACON<sup>®</sup> Loader is also used when the option board has been installed to VACON<sup>®</sup> NXP drive.

To update the option board firmware, follow the steps below.

**Step 1.** Connect your PC to the controller by using the USB/RS485 cable.

Then select the firmware file that you want to load to the option board and double-click it. This starts the VACON $^{\textcircled{R}}$  Loader software. You can also start the program from the Windows Start menu.

In this case, select the firmware file using the Browse button.

Figure 10. VACON $^{\textcircled{R}}$  Loader: File selection

| VACON Loader 1.1.15.0              | _ O _ X           |
|------------------------------------|-------------------|
| File Tools Help                    | toursense Danfott |
| Select file.                       |                   |
|                                    |                   |
| File:                              |                   |
| C:\Temp\OPTE7_FW0082V005.vcx       |                   |
|                                    | Browse            |
|                                    |                   |
| File: C:\Temp\OPTE7_FW0082V005.vcx |                   |
|                                    | < Back Next >     |
|                                    | 😆 o 🥼 o 🕕 o       |
|                                    | 11966_0           |

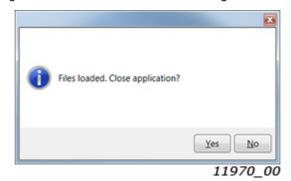
Step 2. Press "Next" and wait until the loader finds the network drives.

Then select a drive from the list and press "Connect to Selected".

Figure 11. VACON<sup>®</sup> Loader: Connecting to drive

| Drive Name | Drive Type | Brand | Media | Port | Device                                           |
|------------|------------|-------|-------|------|--------------------------------------------------|
|            |            |       |       |      | COM3: Silicon Labs CP210x US8 to UART Bridge (CO |
|            |            |       |       |      |                                                  |
| <          |            |       |       | ,    | •                                                |

**Step 3.** Select the modules to be updated, press "Next" and wait until the operation is finished.


Figure 12. VACON<sup>®</sup> Loader: Select modules

| VACON Loader 1.1.15.0                                                                                                                                                                              | - <b>C</b> X  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| File Tools Help                                                                                                                                                                                    | Danfett       |
| Select modules.                                                                                                                                                                                    |               |
| V Name                                                                                                                                                                                             |               |
| Firmware for DeviceNet option board                                                                                                                                                                |               |
| File: C:\Temp\OPTE7_FW0082V005.vcx<br>Connected to drive.<br>Type: Vacon 100, Name: Drive, Brand: Vacon, Media: Serial, Port: COM3,<br>Device: COM3: Silicon Labs CP210x USB to UART Bridge (COM3) | < Back Next > |
|                                                                                                                                                                                                    | 😢 o 🥼 o 🕕 o   |
|                                                                                                                                                                                                    | 11968_0       |

Figure 13. VACON<sup>®</sup> Loader: Firmware loading

| File Tools Help                                                                                                                       | . 🗆 🗙          |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Transfered.<br>Towolation                                                                                                             | <u>Danfoti</u> |
| Loading "OPTE7_FW0082V005.vcx" 18% done                                                                                               |                |
| Loading module 2/9.                                                                                                                   |                |
|                                                                                                                                       |                |
|                                                                                                                                       |                |
| File: C:\Temp\OPTE7_FW0082V005.vcx<br>Connected to drive.                                                                             | Next >         |
| Type: Vacon 100, Name: Drive, Brand: Vacon, Media: Serial, Port: COM3,<br>Device: COM3: Silicon Labs CP210x USB to UART Bridge (COM3) |                |

Figure 14. VACON $^{\textcircled{8}}$  Loader: Loading is finished



## 6.6.3 PARAMETRIZING OPTE7 WITH VACON<sup>®</sup> Live

VACON<sup>®</sup> Live can be used to configure the communication settings of the OPTE7 option board. VACON<sup>®</sup> Live can be downloaded from http://drive.danfoss.com website.

**Step 1.** Connect your PC to the controller by using the USB/RS485 cable.

Then start the VACON<sup>®</sup> Live PC tool. It shows a pop-up window with a button "Online" that starts the scan dialog. If the pop-up window is not shown, select from the VACON<sup>®</sup> Live menu "Drive" and then "New Drive...". When you see the drive you want to connect to, select it and press "Connect to Selected".

| Drive Name | Drive Type | Brand | Media  | Port / IP | Device / MAC                                     |
|------------|------------|-------|--------|-----------|--------------------------------------------------|
| Drive      | Vacon 100  | Vacon | Serial | COM3      | COM3: Silicon Labs CP210x USB to UART Bridge (CC |
|            |            |       |        |           |                                                  |
|            |            |       |        |           |                                                  |
|            |            |       |        |           |                                                  |
|            |            |       |        |           |                                                  |
|            |            |       |        |           | 1                                                |
|            |            |       |        | m         | 1]                                               |

Figure 15. VACON<sup>®</sup> Live: Select devices

**Step 2.** VACON<sup>®</sup> Live now connects to the drive and loads all parameters.

The the parameters are loaded, navigate to the "5. I/O Hardware" menu and select the slot that the OPTE7 is connected to.

| Figure 16. VACON <sup>®</sup> Live: Param | eter view |
|-------------------------------------------|-----------|
|-------------------------------------------|-----------|

| Menu                                                                                                        | Index      | VariableText    | Value     | Min       | Max       | Un | Default   | ID    |                                                                                        |
|-------------------------------------------------------------------------------------------------------------|------------|-----------------|-----------|-----------|-----------|----|-----------|-------|----------------------------------------------------------------------------------------|
| 1. Quick Setup                                                                                              | 5.4.3. Par | ameters (5)     |           |           |           |    |           |       |                                                                                        |
| 3. Parameters                                                                                               | P 5.4.3.1  | MAC ID          | 63        | 0         | 63        |    | 63        | 14160 | Use this parameter to set the slave addre                                              |
| <ul> <li>4. Diagnostics</li> <li>5. I/O and Hardware</li> <li>5.1. Basic IO</li> <li>5.2. Slot C</li> </ul> | P 5.4.3.2  | Baud Rate       | 125 kBaud | 125 kBaud | 500 kBaud |    | 125 kBaud | 14161 | Select active data signalling rate.<br>1 = 125 kBaud<br>2 = 250 kBaud<br>3 = 500 kBaud |
| 4 🍠 5.3. Slot D                                                                                             | P 5.4.3.3  | Output Instance | 21        | 1         | 255       |    | 21        | 14162 | Output assembly used by DeviceNet.                                                     |
| 4 9 5.4. OPTE7                                                                                              | P 5.4.3.4  | Input Instance  | 71        | 1         | 255       |    | 71        | 14163 | Input assembly used by DeviceNet.                                                      |
| 5.4.2. Monitor<br>5.4.3. Parameters                                                                         | P 5.4.3.5  | Comm. Timeout   | 0         | 0         | 65535     | \$ | 0         | 14200 | Comm. Timeout                                                                          |

## 6.6.4 PARAMETRIZING OPTE7 WITH VACON<sup>®</sup> NCDRIVE

NCDrive PC tool can be used to configure the OPTE7 and AC drive. NCDrive PC tool can be downloaded from <a href="http://drives.danfoss.com">http://drives.danfoss.com</a> website. After starting the installation program, follow the on-screen instructions. Once the program is installed successfully, launch it by selecting it in the "Windows Start" menu. For more information on the software features, select "Help" and then "Contents".

**Step 1.** Connect your PC to the controller by using the USB/RS232 cable.

Check from your computer settings that the USB/RS232 cable is connected to the COM port. If you do not know how to do this, ask help from your IT department.

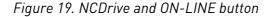
Before opening connection to the drive, set the communication parameters. From the "Tools" menu select "Options".

| VACON NCDrive        |                                                                                                                                              |   |                                                         |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------|
| File Edit View Drive | Tools Window Help                                                                                                                            |   |                                                         |
|                      | Operate Menu Editor<br>Options<br>Step Response<br>Generate Application VCN<br>Trend Recorder<br>Datalogger<br>Start Datalogger Trigger Poll | E | <u>•8 •1 (10 (20 (20 (20 (20 (20 (20 (20 (20 (20 (2</u> |
|                      | Create User Set<br>Launch Safe                                                                                                               |   |                                                         |

Figure 17. NCDrive menu structure

12007\_00

**Step 2.** Setup NCDrive communication parameters.


In the "Options" window, select the "Communication" tab. Make sure that RS232 is selected. Then select the used COM port and set baudrate to 57600.

|                                   | Parameter     | Monitor         | Fau      | lt . |
|-----------------------------------|---------------|-----------------|----------|------|
| Operating<br>nnect using<br>\$232 | Communication | Real Time Clock | Datalogg | jer  |
| Comport                           | Baudrate:     | ]               |          |      |
|                                   |               |                 |          |      |
|                                   |               |                 |          |      |
|                                   |               |                 |          |      |

Figure 18. NCDrive communication parameters

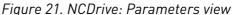
#### Step 3. Go online.

Press the "ON-LINE" radio button. NCDrive will then try to connect to the AC drive. Once the connection is made, NCDrive loads parameters and other information from the AC drive. This takes a few minutes the first time the connection is opened. From then on, opening the connection takes only a few seconds.



| VACON NCDr            | ive - C:\NCEngir | ne\Applications\Generat | ed\APFIFF06_2_4 | 3_gen.vcn (Multi- | Purpos) |
|-----------------------|------------------|-------------------------|-----------------|-------------------|---------|
| <u>File Edit View</u> | Drive Tools      | Window Help             |                 |                   |         |
| D 🖻 🖬 🍯               |                  | ( ON-LINE               | O OFF-LINE      | 모문 🖁              | +8 +8   |
|                       |                  |                         |                 | 1                 | 1974_00 |

Figure 20. Generating application / loading parameters


| Generating Applicat             | tion VCN |  |  |  |  |
|---------------------------------|----------|--|--|--|--|
| Could not find Applicatio       | n file.  |  |  |  |  |
| Loading information from drive. |          |  |  |  |  |
| This may take several minutes.  |          |  |  |  |  |
| Progress: /                     |          |  |  |  |  |
| 49                              | %        |  |  |  |  |
| Cancel                          | Search   |  |  |  |  |
|                                 |          |  |  |  |  |

11975\_00

Step 4. Change parameters.

Once the parameters have been loaded, navigate to "Expander boards" and select the slot where the OPTE7 option board is installed to. Now you can see it and change its settings.

| e <u>E</u> dit <u>V</u> iew <u>D</u> rive <u>T</u> ools <u>W</u>                                                                                                                                                         | indow <u>H</u> elp |                 |                  |      |        |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|------------------|------|--------|-------|
| <b>2</b>                                                                                                                                                                                                                 | ON-LINE            | C OFF-LINE      | <u>-8-8 -8-8</u> |      | ! :: [ | 1     |
| Parameter Window                                                                                                                                                                                                         |                    |                 |                  |      |        |       |
| Compare                                                                                                                                                                                                                  | LOADED             |                 |                  |      |        |       |
| Multi-Purpos                                                                                                                                                                                                             | Index              | Variable Text   | Value            | Unit | Min    | Max   |
| 🖻 🔤 Main Menu                                                                                                                                                                                                            | P 7.5.1.1          | MACID           | 63               |      | 0      | 63    |
| M 1 Monitor                                                                                                                                                                                                              | P 7.5.1.2          | Baud Rate       | 1 / 125 kBaud    |      | 1      | 3     |
| M 2 Parameters                                                                                                                                                                                                           | P 7.5.1.3          | Output instance | 21               |      | 1      | 255   |
| M 3 Keypad Control                                                                                                                                                                                                       | P 7.5.1.4          | Input instance  | 71               |      | 1      | 255   |
| - M 4 Active Faults                                                                                                                                                                                                      | P 7.5.1.5          | Mode            | 1 / Normal       |      | 1      | 2     |
| - C M 5 Fault History                                                                                                                                                                                                    | P 7.5.1.6          | Comm. Time-out  | 0                |      | 0      | 65535 |
| G 7.1<br>G 7.2<br>G 7.3<br>G 7.4<br>G 7.5 E:OPTE7<br>G 7.5 E:OPTE7<br>G 7.5.1 Parameters<br>P 7.5.1.1 MAC ID<br>P 7.5.1.2 Baud Ra<br>P 7.5.1.3 Output in<br>P 7.5.1.4 Input ins<br>P 7.5.1.4 Input ins<br>P 7.5.1.5 Mode | stance             |                 |                  |      |        |       |





## 6.7 OPTCX EMULATION MODE

When the OPTE7 option board is installed to VACON<sup>®</sup> NXP AC drive, it has a parameter called "Mode". When this parameter is set to "OPTCx", the OPTE7 option board emulates the behaviour of the OPTC7 option board. The option board also identifies itself to the bus as OPTC7, and the EDS file for OPTC7 must be used.

The OPTCx mode can be used when new drives are added to an installation that consists of OPTC7 option boards and it is not desired or possible to do major changes to the PLC program. Using this mode a new device can simply be added to the configuration. Later if the installation is upgraded to use only OPTE7, the mode can be changed back to "Normal".

The following list contains the functionality changes when OPTCx mode is activated:

- Product name on bus is "Vacon NX" instead of "OPTE7"
- Major/minor version info is always 1.3
- When the NetRef bit is set, the option board automatically writes the previously given speed reference to the AC drive
- When the FaultReset bit is set (even when the NetControl bit is not set), the option board activates fieldbus communication fault (F53)
- Control Supervisor object's DNFaultMode attribute is supported only in the OPTCx mode
- Monitor data object is supported only in the OPTCx mode

# **7. DEVICENET INTERFACE**

 $\mathsf{VACON}^{\textcircled{B}}$  supports two types of DeviceNet messaging. They are I/O Messaging and Explicit Messaging.

## 7.1 I/O MESSAGING

I/O polling messages are for time-critical, control-oriented data. The messages are transferred between the devices all the time and they are used for continuous control of the AC drive. They provide a dedicated, special-purpose communication path between a producing application (master) and one or more consuming applications (slaves). They are exchanged across single or multi-cast connections, typically using high priority identifiers. I/O polling messages contain no protocol in the 8-byte data field. The meaning of the message is implied by the connection ID (CAN identifier). Before messages are sent using these IDs, both the device sending and receiving them must be configured. The configuration contains the source and destination object attribute addresses for the master and the slave.

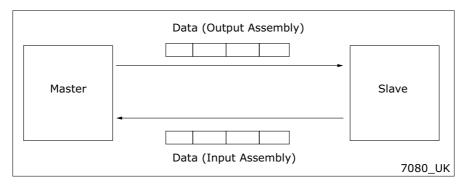



Figure 22. DeviceNet I/O messaging

The contents of the data message are chosen by input and output assemblies. These assemblies can be selected via panel or by setting Produced Connection Path (14) and Consumed Connection Path (16) attributes in DeviceNet connection object. Note that setting of instances is not allowed via panel, if I/O connection is open. Chapter 7.1.2 describes all supported input and output assemblies.

#### 7.1.1 CONNECTION BEHAVIOUR

The following figure provides a general overview of the behaviour associated with an I/O connection object (instance type attribute = I/O).

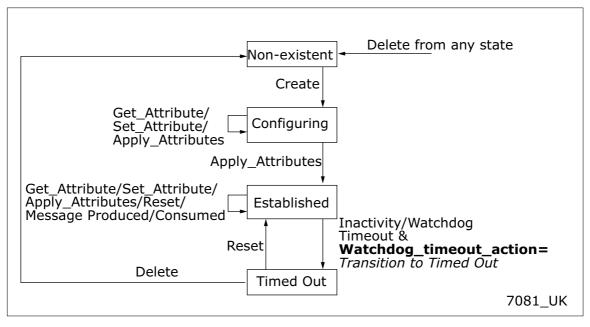



Figure 23. I/O Connection Object State Transition Diagram

By default, Expected Packet Rate (EPR) of I/O connection is set to zero, meaning that no transition to Timed Out state will occur. If EPR Timeout is set to other than zero, timeout will occur after four times Expected Packet Rate (4 \* EPR). For example value 1000 (ms) will result in timeout after four seconds.

### 7.1.2 INPUT AND OUTPUT ASSEMBLIES

The following table contains a simple list of the supported assembly instances. Each assembly instance is described in more detail in the following chapters. As the detailed descriptions can contain exceptions based on the drive type, application version and so on, read them before taking any assembly instance into use.

| Name                | Instance id | Size | Control /<br>status word<br>type | Speed<br>reference /<br>actual type | Process data<br>items |
|---------------------|-------------|------|----------------------------------|-------------------------------------|-----------------------|
| Pacie Speed Control | 20          | 4    | CIP                              | CIP                                 | 0                     |
| Basic Speed Control | 70          | 4    | CIP                              | CIP                                 | 0                     |
| Extended Speed      | 21          | 4    | CIP                              | CIP                                 | 0                     |
| Control (default)   | 71          | 4    | CIP                              | CIP                                 | 0                     |
| Extended Speed and  | 23          | 6    | CIP                              | CIP                                 | 0                     |
| Torque Control      | 73          | 6    | CIP                              | CIP                                 | 0                     |
| Process Control     | 25          | 6    | CIP                              | CIP                                 | 1                     |
|                     | 75          | 6    | CIP                              | CIP                                 | 1                     |

#### Table 15. Quick reference table for assembly instances

| Name                         | Instance id | Size | Control /<br>status word<br>type | Speed<br>reference /<br>actual type | Process data<br>items |
|------------------------------|-------------|------|----------------------------------|-------------------------------------|-----------------------|
| Dynamic Process              | 101         | 8    | CIP                              | Vacon                               | 2                     |
| Control                      | 107         | 8    | CIP                              | Vacon                               | 2                     |
| Bypass Control Out-          | 111         | 20   | Vacon                            | Vacon                               | 8                     |
| put                          | 117         | 34   | Vacon                            | Vacon                               | 8                     |
| Vendor Extended              | 151         | 38   | Vacon                            | Vacon                               | 16                    |
| Speed Control Vari-<br>ant 3 | 157         | 38   | Vacon                            | Vacon                               | 16                    |
| Vendor Extended              | 161         |      |                                  | Vacon                               | 16                    |
| Speed Control Vari-<br>ant 4 | 167         |      |                                  | Vacon                               | 16                    |

Table 15. Quick reference table for assembly instances

## Assembly data mapping

The control word bits are mapped to the object data according to the following table.

| Bit | Bit name | Object                    | Attribute name | Attribute ID |
|-----|----------|---------------------------|----------------|--------------|
| 0   | RunFwd   | Control Supervisor Object | Run1           | 3d           |
| 1   | RunRev   | Control Supervisor Object | Run2           | 4d           |
| 2   | FaultRst | Control Supervisor Object | FaultRst       | 12d          |
| 3   | -        | -                         | -              | -            |
| 4   | -        | -                         | -              | -            |
| 5   | NetCtrl  | Control Supervisor Object | NetCtrl        | 5d           |
| 6   | NetRef   | AC/DC Drive Object        | NetRef         | 4d           |
| 7   | NetProc  | AC/DC Drive ObjectFaulted | NetProc        | 5d           |

Table 16. CIP control word mapping to object data

The process data IN is mapped according to the following table.

Table 17. Process data IN mapping to object data

| Parameter name    | Object             | Attribute name                                                              | Attribute ID |
|-------------------|--------------------|-----------------------------------------------------------------------------|--------------|
| Speed Reference   | AC/DC Drive Object | SpeedRef                                                                    | 8d           |
| Torque Reference  | AC/DC Drive Object | TorqueRef<br>(ProcessDataIn1)                                               | 12d          |
| Process Reference | AC/DC Drive Object | ProcessRef<br>If drive mode is:<br>0 = ProcessDataIn1<br>4 = ProcessDataIn2 | 14d          |
| Drive Mode        | AC/DC Drive Object | DriveMode                                                                   | 6d           |

The process data OUT is mapped according to the following table.

| Parameter name | Object                    | Attribute name                     | Attribute ID |
|----------------|---------------------------|------------------------------------|--------------|
| Speed Actual   | AC/DC Drive Object        | SpeeActual                         | 7d           |
| Torque Actual  | AC/DC Drive Object        | TorqueActual                       | 11d          |
| Process Actual | AC/DC Drive Object        | ProcessActual<br>(ProcessDataOut1) | 13d          |
| Drive State    | Control Supervisor Object | State                              | 6d           |

Table 18. Process data OUT mapping to object data

The Speed Reference is updated to the drive only when the NetRef bit is set to 1. The torque reference is updated to the drive only when the motor control mode is "Torque Control".

Assemblies consist of different types of attributes. Others follow CIP specification and others are vendor specific. The following table lists these attributes.

**NOTE!** When using assemblies with RMP speed reference or actual speed, it is recommended to set the values of the AC drive's "Fieldbus min scale" and "Fieldbus max scale" parameters to zero. Otherwise the RPM scaling does not work properly.

Some NXP applications contain "Fieldbus min scale" and "Fieldbus max scale" settings. For example, in APFIFF06 Multipurpose application these parameters can be found from the menus P2.9.1 and P2.9.2.

| Attribute              | Unit | Range       | Note                                                                     |
|------------------------|------|-------------|--------------------------------------------------------------------------|
| Speed Reference        | rpm  | 032767      |                                                                          |
| Speed Actual           | rpm  | 032767      |                                                                          |
| Drive Mode             |      |             | See Table 20, "Drive mode selection in process control".                 |
| Drive State            | -    | 07          | See Chapter 7.1.3 "Control<br>Supervisor Behaviour"                      |
| Torque Reference       |      | -3276832767 |                                                                          |
| Torque Actual          |      | -3276832767 |                                                                          |
| Process Reference      | -    | -           | See Table 20, "Drive mode selection in process control".                 |
| Process Actual         | -    | -           | ProcessDataOut1                                                          |
| FBSpeedReference       | %    | -1000010000 | See Chapter 13 "Appendix E -<br>VACON <sup>®</sup> IO data description". |
| FBSpeedActual          | %    | -1000010000 | See Chapter 13 "Appendix E -<br>VACON <sup>®</sup> IO data description". |
| ProcessDataIn          | -    | -           | See Chapter 13 "Appendix E -<br>VACON <sup>®</sup> IO data description". |
| ProcessDataOut         | -    | -           | See Chapter 13 "Appendix E -<br>VACON <sup>®</sup> IO data description". |
| RPM Speed Actual       | rpm  | -3276832767 | Ramp output frequency con-<br>verted to rpm.                             |
| Speed actual with slip | rpm  | 032767      | Slip compensated RPM value.                                              |

Table 19. Assembly attributes reference list

| Drive Mode | Process Reference Mapping |
|------------|---------------------------|
| 0          | ProcessDataIn1            |
| 4          | ProcessDataIn2            |
| Other      | Not valid                 |

### 7.1.2.1 20/70 Basic Speed Control

Basic speed control is the most basic control type, where the run direction is limited to only forward, and only Run and Fault reset commands are supported. Speed reference is given in revolutions per minute. The run/stop commands work as described in Table 29, with Run Rev always interpreted as zero. In this mode, the control supervisor attributes NetCtrl and NetRef bits are always set to one.

| Table 21. Basic Spee | d Control Instance | descriptions |
|----------------------|--------------------|--------------|
| Tuble 21. Duble opee |                    | acocriptions |

| Instance | Byte                       | Bit7Bit6Bit5Bit4Bit3Bit2Bit1 |  |       |       |        |                   | Bit0 |         |  |  |  |  |
|----------|----------------------------|------------------------------|--|-------|-------|--------|-------------------|------|---------|--|--|--|--|
|          | Basic Speed Control Output |                              |  |       |       |        |                   |      |         |  |  |  |  |
|          | 0 Fault Reset Run Fw       |                              |  |       |       |        |                   |      |         |  |  |  |  |
| 20       | 1                          |                              |  |       |       |        |                   |      |         |  |  |  |  |
| 20       | 2                          |                              |  |       | Sp    | eed R  | eference (Low By  | te)  |         |  |  |  |  |
|          | 3                          |                              |  |       | Sp    | eed R  | eference (High By | rte) |         |  |  |  |  |
|          |                            |                              |  | Basic | Speed | l Cont | rol Input         |      |         |  |  |  |  |
|          | 0                          |                              |  |       |       |        | Running1          |      | Faulted |  |  |  |  |
| 70       | 1                          |                              |  |       |       |        |                   |      |         |  |  |  |  |
| ,0       | 2 Speed Actual (Low Byte)  |                              |  |       |       |        |                   |      |         |  |  |  |  |
|          | 3                          |                              |  |       | 0     | Speed  | Actual (High Byte | ]    |         |  |  |  |  |

## 7.1.2.2 21/71 Extended Speed Control (default)

Extended speed control provides more functionality over the basic speed control. NetRef and NetCtrl bits must be set to one, in order for the commands and reference values to be sent to the AC drive. When these bits are set, the actual control/reference place can be read from "Ctrl From Net" and "Ref From Net" bits. Run Forward and Run Reverse bits are used to control the direction of the motor. See Table 29 for complete description of the run commands.

| Instance                  | Byte                          | Bit7              | Bit6               | Bit5                | Bit4      | Bit3                   | Bit2           | Bit1    | Bit0    |  |  |  |
|---------------------------|-------------------------------|-------------------|--------------------|---------------------|-----------|------------------------|----------------|---------|---------|--|--|--|
|                           | Extended Speed Control Output |                   |                    |                     |           |                        |                |         |         |  |  |  |
|                           | 0                             |                   | NetRef             | NetCtrl             |           |                        | Fault<br>Reset | Run Rev | Run Fwd |  |  |  |
| 21                        | 1                             |                   |                    |                     |           |                        | •              |         |         |  |  |  |
|                           | 2                             |                   |                    | Sp                  | eed R     | eference               | e (Low Byte)   |         |         |  |  |  |
|                           | 3                             |                   |                    | Sp                  | eed R     | eference               | (High Byte)    |         |         |  |  |  |
|                           |                               |                   | Exter              | nded Spe            | ed Co     | ntrol Inp              | ut             |         |         |  |  |  |
|                           | 0                             | At Ref-<br>erence | Ref<br>from<br>Net | Ctrl<br>from<br>Net | Rea<br>dy | Run-<br>ning2<br>(Rev) | Running1       | Warning | Faulted |  |  |  |
| 71                        | 1                             |                   |                    |                     |           | Drive Sta              | ate            |         |         |  |  |  |
| 2 Speed Actual (Low Byte) |                               |                   |                    |                     |           |                        |                |         |         |  |  |  |
|                           | 3                             |                   |                    | ç                   | Speed     | Actual (H              | High Byte)     |         |         |  |  |  |

#### *Table 22. Basic Speed Control Instance descriptions*

#### 7.1.2.3 23/73 Extended Speed and Torque Control

Extended speed and torque assemblies can be used when torque reference is needed.

Torque Reference is converted from  $\tau^{(Nm)}/2^n$ , where *n* is the torque scale value (AC/DC Drive object, instance 2, attribute 24), to a %-value for the AC drive. This value is sent in ProcessDataIn1 for the control unit when NetRef bit is set. Therefore, ProcessDataIn1 should be selected as torque reference selection. See the application manual or Chapter for more details.

| Instance | Byte                                     | Bit7 | Bit6                        | Bit5     | Bit4   | Bit3     | Bit2           | Bit1    | Bit0    |  |  |  |  |
|----------|------------------------------------------|------|-----------------------------|----------|--------|----------|----------------|---------|---------|--|--|--|--|
|          | Extended Speed and Torque Control Output |      |                             |          |        |          |                |         |         |  |  |  |  |
|          | 0                                        |      | NetRef                      | NetCtrl  |        |          | Fault<br>Reset | Run Rev | Run Fwd |  |  |  |  |
|          | 1                                        |      |                             |          |        |          |                |         |         |  |  |  |  |
| 23       | 2                                        |      |                             | Sp       | eed R  | eference | (Low Byte)     |         |         |  |  |  |  |
|          | 3                                        |      | Speed Reference (High Byte) |          |        |          |                |         |         |  |  |  |  |
|          | 4                                        |      |                             | Toi      | rque F | eference | e (Low Byte)   |         |         |  |  |  |  |
|          | 5 Torque Reference (High Byte)           |      |                             |          |        |          |                |         |         |  |  |  |  |
|          |                                          | Ex   | tended S                    | peed and | d Torq | ue Contr | ol Input       |         |         |  |  |  |  |

### Table 23. Extended Speed and Torque Control Instance descriptions

| Instance | Byte | Bit7                     | Bit6                     | Bit5                | Bit4      | Bit3                   | Bit2       | Bit1    | Bit0    |  |
|----------|------|--------------------------|--------------------------|---------------------|-----------|------------------------|------------|---------|---------|--|
|          | 0    | At Ref-<br>erence        | Ref<br>from<br>Net       | Ctrl<br>from<br>Net | Rea<br>dy | Run-<br>ning2<br>(Rev) | Running1   | Warning | Faulted |  |
|          | 1    |                          | Drive State              |                     |           |                        |            |         |         |  |
| 73       | 2    |                          | Speed Actual (Low Byte)  |                     |           |                        |            |         |         |  |
|          | 3    |                          | Speed Actual (High Byte) |                     |           |                        |            |         |         |  |
|          | 4    | Torque Actual (Low Byte) |                          |                     |           |                        |            |         |         |  |
|          | 5    |                          |                          | Т                   | orque     | Actual (I              | High Byte) |         |         |  |

Table 23. Extended Speed and Torque Control Instance descriptions

## 7.1.2.4 25/75 Extended Process Control

Extended process control assemblies can be used to send process reference value directly to the application. The Process Reference value destination can be selected with Drive Mode byte according to Table 20. This should be configured in application as the receiving input. Process Actual value is always mapped to ProcessDataOut1. Note that process reference value is sent to drive only when NetProc bit is set.

| Instance | Byte | Bit7              | Bit6                                                     | Bit5                | Bit4      | Bit3                   | Bit2         | Bit1    | Bit0    |  |
|----------|------|-------------------|----------------------------------------------------------|---------------------|-----------|------------------------|--------------|---------|---------|--|
|          |      |                   | Extend                                                   | led Proce           | ess Co    | ntrol Out              | put          |         |         |  |
|          | 0    | Net-<br>Proc      | I NetRet I NetCtri I I I I I I I I I I I I I I I I I I I |                     |           |                        |              | Run Rev | Run Fwd |  |
|          | 1    |                   |                                                          |                     |           | Drive Mo               | de           |         |         |  |
| 25       | 2    |                   |                                                          | Sp                  | eed R     | eference               | (Low Byte)   |         |         |  |
|          | 3    |                   |                                                          | Sp                  | eed R     | eference               | (High Byte)  |         |         |  |
|          | 4    |                   |                                                          | Pro                 | cess l    | Referenc               | e (Low Byte) |         |         |  |
|          | 5    |                   |                                                          | Pro                 | cess F    | Reference              | e (High Byte | )       |         |  |
|          |      |                   | Exten                                                    | ded Proc            | ess Co    | ontrol Inj             | put          |         |         |  |
|          | 0    | At Ref-<br>erence | Ref<br>from<br>Net                                       | Ctrl<br>from<br>Net | Rea<br>dy | Run-<br>ning2<br>(Rev) | Running1     | Warning | Faulted |  |
|          | 1    |                   |                                                          |                     |           | Drive Sta              | ate          |         |         |  |
| 75       | 2    |                   |                                                          | 0                   | Speed     | Actual (L              | _ow Byte)    |         |         |  |
|          | 3    |                   |                                                          | ç                   | Speed     | Actual (F              | ligh Byte)   |         |         |  |
|          | 4    |                   | Process Actual (Low Byte)                                |                     |           |                        |              |         |         |  |
|          | 5    |                   |                                                          | Р                   | roces     | s Actual (             | High Byte)   |         |         |  |

Table 24. Extended Process Control Instance descriptions

#### 7.1.2.5 101/107 Vendor Dynamic Process Control

These assemblies can be used to send/receive process data directly to and from the application. The FB Speed Reference and the FB Speed Actual values are given as percentage of the minimum and maximum frequency. The control and status words are still given as CIP standard specific values.

| Instance | Byte | Bit7              | Bit6                      | Bit5                | Bit4      | Bit3                   | Bit2           | Bit1         | Bit0    |  |  |  |
|----------|------|-------------------|---------------------------|---------------------|-----------|------------------------|----------------|--------------|---------|--|--|--|
|          |      |                   | Dynam                     | nic Proce           | ss Coi    | ntrol Out              | put            |              |         |  |  |  |
|          | 0    |                   | NetRef                    | NetCtrl             |           |                        | Fault<br>Reset | Run Rev      | Run Fwd |  |  |  |
|          | 1    | Proces            | s Data 1<br>4-7           | Selector<br>)       | (bits     | Pro                    | cess Data 2    | Selector (bi | ts 0-3) |  |  |  |
| 101      | 2    |                   |                           | FB S                | Speed     | Reference              | ce (Low Byte   | 5)           |         |  |  |  |
| 101      | 3    |                   |                           | FB S                | speed     | Referenc               | e (High Byte   | e)           |         |  |  |  |
|          | 4    |                   |                           | P                   | rocess    | Dataln1                | (Low Byte)     |              |         |  |  |  |
|          | 5    |                   |                           | Pr                  | ocess     | DataIn1                | (High Byte)    |              |         |  |  |  |
|          | 6    |                   | ProcessDataIn2 (Low Byte) |                     |           |                        |                |              |         |  |  |  |
|          | 7    |                   |                           | Pr                  | ocess     | Dataln2                | (High Byte)    |              |         |  |  |  |
|          |      |                   | Dynai                     | mic Proc            | ess Co    | ontrol Inp             | out            |              |         |  |  |  |
|          | 0    | At Ref-<br>erence | Ref<br>from<br>Net        | Ctrl<br>from<br>Net | Rea<br>dy | Run-<br>ning2<br>(Rev) | Running1       | Warning      | Faulted |  |  |  |
|          | 1    |                   |                           |                     | •         | Drive Sta              | ate            |              |         |  |  |  |
|          | 2    |                   |                           | FE                  | 3 Spee    | d Actual               | (Low Byte)     |              |         |  |  |  |
| 107      | 3    |                   |                           | FE                  | 3 Spee    | d Actual               | (High Byte)    |              |         |  |  |  |
|          | 4    |                   |                           | Pr                  | ocess     | DataOut1               | (Low Byte)     |              |         |  |  |  |
|          | 5    |                   |                           | Pro                 | ocessI    | DataOut1               | (High Byte)    |              |         |  |  |  |
|          | 6    |                   |                           | Pr                  | ocess     | DataOut2               | (Low Byte)     |              |         |  |  |  |
|          | 7    |                   |                           | Pro                 | ocess[    | DataOut2               | (High Byte)    |              |         |  |  |  |

Table 25. Vendor Dynamic Process Control Instance descriptions

Process data selector bits can be used to select what content is mapped to ProcessDataOut 1 & 2 (bytes 4-7). The following table describes what values in these fields correspond to which process data items

| Value | Bytes 4-5 of instance 107 | Bytes 6-7 of instance 107 |
|-------|---------------------------|---------------------------|
| 0*    | Speed Actual [%]          | Speed Actual [%]          |
| 1     | ProcessDataOut1           | ProcessDataOut1           |
| 2     | ProcessDataOut2           | ProcessDataOut2           |
| 3     | ProcessDataOut3           | ProcessDataOut3           |
| 4     | ProcessDataOut4           | ProcessDataOut4           |
| 5     | ProcessDataOut5           | ProcessDataOut5           |
| 6     | ProcessDataOut6           | ProcessDataOut6           |

Table 26. Process Data Selector 1 & 2 description

| Value | Bytes 4-5 of instance 107 | Bytes 6-7 of instance 107 |
|-------|---------------------------|---------------------------|
| 7     | ProcessDataOut7           | ProcessDataOut7           |
| 8     | ProcessDataOut8           | ProcessDataOut8           |
| Other | ProcessDataOut1           | ProcessDataOut2           |

| Tahla 26  | Process | Nata | Salactor | 1 8. | 2 dc | escription |
|-----------|---------|------|----------|------|------|------------|
| Table 20. | FIULESS | Dala | Selector | Iα   | z ue | SCHPUUH    |

\*If both Process Data selectors are 0, bytes 4-5 are ProcessDataOut1 and bytes 6-7 are ProcessDataOut2.

### 7.1.2.6 <u>111/117 Vendor Bypass Control</u>

These assemblies can be used to bypass the CIP standard assemblies, and control the AC drive application directly. The FB Speed Reference and the FB Speed Actual values are given as percentage of the minimum and maximum frequency. The control and status words are application-specific values.

| Instance | Byte                  | Bit7 | Bit6                   | Bit5 | Bit4 | Bit3     | Bit2  | Bit1 | Bit0 |  |  |
|----------|-----------------------|------|------------------------|------|------|----------|-------|------|------|--|--|
|          | Bypass Control Output |      |                        |      |      |          |       |      |      |  |  |
|          | 0-1                   |      | FBFixedControlWord     |      |      |          |       |      |      |  |  |
|          | 2-3                   |      | RPM Speed Reference    |      |      |          |       |      |      |  |  |
|          | 4-5                   |      | ProcessDataIn1         |      |      |          |       |      |      |  |  |
|          | 6-7                   |      | ProcessDataIn2         |      |      |          |       |      |      |  |  |
| 111      | 8-9                   |      |                        |      | Pr   | ocessDa  | taln3 |      |      |  |  |
|          | 10-11                 |      |                        |      | Pr   | ocessDa  | taln4 |      |      |  |  |
|          | 12-13                 |      |                        |      | Pr   | ocessDa  | taln5 |      |      |  |  |
|          | 14-15                 |      |                        |      | Pr   | ocessDa  | taln6 |      |      |  |  |
|          | 16-17                 |      |                        |      | Pr   | ocessDa  | taln7 |      |      |  |  |
|          | 18-19                 |      |                        |      | Pr   | ocessDa  | taln8 |      |      |  |  |
|          | Bypass Control Input  |      |                        |      |      |          |       |      |      |  |  |
|          | 0-1                   |      | FBFixedStatusWord      |      |      |          |       |      |      |  |  |
|          | 2-3                   |      | FB Speed Actual [%]    |      |      |          |       |      |      |  |  |
|          | 4-5                   |      | FB Speed Actual [rpm]  |      |      |          |       |      |      |  |  |
|          | 6-7                   |      | Speed Actual With Slip |      |      |          |       |      |      |  |  |
|          | 8-17                  |      |                        |      |      | Reserve  | ed    |      |      |  |  |
|          | 18-19                 |      |                        |      | Pro  | ocessDat | aOut1 |      |      |  |  |
| 117      | 20-21                 |      |                        |      | Pro  | ocessDat | aOut2 |      |      |  |  |
|          | 22-23                 |      |                        |      | Pro  | ocessDat | aOut3 |      |      |  |  |
|          | 24-25                 |      | ProcessDataOut4        |      |      |          |       |      |      |  |  |
|          | 26-27                 |      | ProcessDataOut5        |      |      |          |       |      |      |  |  |
|          | 28-29                 |      | ProcessDataOut6        |      |      |          |       |      |      |  |  |
|          | 30-31                 |      |                        |      | Pro  | ocessDat | aOut7 |      |      |  |  |
|          | 32-33                 |      |                        |      | Pro  | ocessDat | aOut8 |      |      |  |  |

Table 27. Vendor Bypass Control Instance descriptions

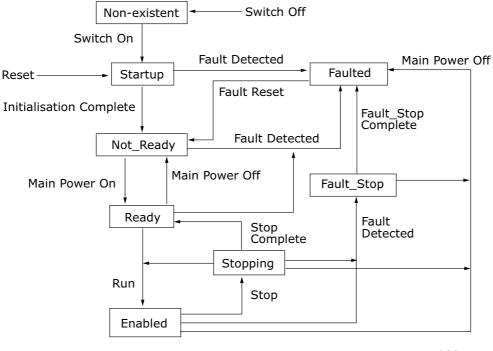
### 7.1.2.7 Vendor Extended Speed Control Variant 3

These assemblies can be used to bypass the CIP standard assemblies and to control the AC drive application directly. The FB Speed Reference and the FB Speed Actual values are given as percentage of the minimum and maximum frequencies. The control and status words are application specific values. For more information, see Chapter 13 "Appendix E - VACON<sup>®</sup> IO data description".

This assembly pair brings support for 16 process data items (for limitations, see Chapter 16 "Appendix H - Fieldbus option board communication").

| Instance | Byte                                           | Bit7 | Bit6                | Bit5 | Bit4  | Bit3     | Bit2     | Bit1 | Bit0 |
|----------|------------------------------------------------|------|---------------------|------|-------|----------|----------|------|------|
|          | Vendor Extended Speed Control Output Variant 3 |      |                     |      |       |          |          |      |      |
|          | 0-1                                            |      |                     |      | FBFi  | xedConti | rolWord  |      |      |
|          | 2-3                                            |      |                     |      | FBGer | neralCon | trolWord |      |      |
|          | 4-5                                            |      |                     |      | FBSpe | eedRefer | ence [%] |      |      |
|          | 6-7                                            |      |                     |      | FBF   | ProcessD | )ataln1  |      |      |
| 151      |                                                |      |                     |      |       |          |          |      |      |
|          | 20-21                                          |      |                     |      | FBF   | ProcessD | )ataln8  |      |      |
|          | 22-23                                          |      | FBProcessDataIn9    |      |       |          |          |      |      |
|          |                                                |      |                     |      |       |          |          |      |      |
|          | 36-37                                          |      |                     |      | FBP   | rocessD  | ataln16  |      |      |
|          | Vendor Extended Speed Control Input Variant 3  |      |                     |      |       |          |          |      |      |
|          | 0-1                                            |      | FBFixedStatusWord   |      |       |          |          |      |      |
|          | 2-3                                            |      | FBGeneralStatusWord |      |       |          |          |      |      |
|          | 4-5                                            |      | FBSpeedActual [%]   |      |       |          |          |      |      |
|          | 6-7                                            |      | FBProcessDataOut1   |      |       |          |          |      |      |
| 157      |                                                |      |                     |      |       |          |          |      |      |
|          | 20-21                                          |      | FBProcessDataOut8   |      |       |          |          |      |      |
|          | 22-23                                          |      | FBProcessDataOut9   |      |       |          |          |      |      |
|          |                                                |      |                     |      |       |          |          |      |      |
|          | 36-37                                          |      |                     |      | FBPr  | ocessDa  | itaOut16 |      |      |

#### 7.1.2.8 Vendor Extended Speed Control Variant 4


These assemblies combine CIP control/status word with VACON<sup>®</sup> speed control. The FB Speed Reference and the FB Speed Actual values are given as percentage of the minimum and maximum frequencies. For more information, see Chapter 13 "Appendix E - VACON<sup>®</sup> IO data description".

This assembly pair brings support for 16 process data items (for limitations, see Chapter 16 "Appendix H - Fieldbus option board communication".

| Instance                | Byte                                           | Bit7              | Bit6               | Bit5                | Bit4    | Bit3               | Bit2           | Bit1       | Bit0       |
|-------------------------|------------------------------------------------|-------------------|--------------------|---------------------|---------|--------------------|----------------|------------|------------|
|                         | Vendor Extended Speed Control Output Variant 4 |                   |                    |                     |         |                    |                |            |            |
|                         | 0                                              |                   | NetRef             | NetCtrl             |         |                    | Fault<br>Reset | Run<br>Rev | Run<br>Fwd |
|                         | 1                                              |                   |                    |                     |         |                    |                |            |            |
|                         | 2-3                                            |                   |                    |                     | FBSpe   | edReferenc         | :e [%]         |            |            |
| 161                     | 4-5                                            |                   |                    |                     | FBP     | rocessData         | In1            |            |            |
| 101                     |                                                |                   |                    |                     |         |                    |                |            |            |
|                         | 18-19                                          |                   |                    |                     | FBP     | rocessData         | In8            |            |            |
|                         | 20-21                                          |                   |                    |                     | FBP     | rocessData         | In9            |            |            |
|                         |                                                |                   |                    |                     |         |                    |                |            |            |
|                         | 34-35                                          |                   |                    |                     | FBPr    | rocessDatal        | n16            |            |            |
|                         |                                                | Ven               | dor Exte           | nded Spe            | eed Con | trol Input V       | ariant 4       |            |            |
|                         | 0                                              | At ref.           | Ref<br>from<br>Net | Ctrl<br>from<br>Net | Ready   | Running 2<br>(rev) | Running 1      | Warning    | Faulted    |
|                         | 1                                              |                   |                    |                     |         | Drive state        |                |            |            |
|                         | 2-3                                            |                   | FBSpeedActual [%]  |                     |         |                    |                |            |            |
| 167                     | 4-5                                            | FBProcessDataOut1 |                    |                     |         |                    |                |            |            |
|                         |                                                |                   |                    |                     |         |                    |                |            |            |
| 18-19 FBProcessDataOut8 |                                                |                   |                    |                     |         |                    |                |            |            |
|                         | 20-21                                          | FBProcessDataOut9 |                    |                     |         |                    |                |            |            |
|                         |                                                |                   |                    |                     |         |                    |                |            |            |
|                         | 34-35                                          |                   |                    |                     | FBPro   | ocessDataO         | ut16           |            |            |

#### 7.1.3 CONTROL SUPERVISOR BEHAVIOUR

The State Transition Diagram provides a graphical description of the states and the corresponding state transitions for the control supervisor.



<sup>7082</sup>\_UK

*Figure 24. Control Supervisor State Transition Diagram* 

The current state of the Control Supervisor State can be read from Control Supervisor Object (Class 0x29), Instance 1, Attribute 6. The values correspond to the states according to the following table.

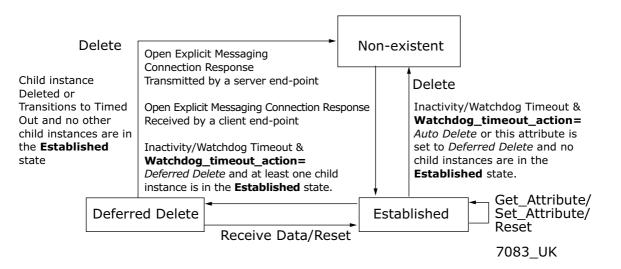
| Value | State        |
|-------|--------------|
| 0     | Non-existent |
| 1     | Startup      |
| 2     | Not_Ready    |
| 3     | Ready        |
| 4     | Enabled      |
| 5     | Stopping     |
| 6     | Fault_Stop   |
| 7     | Faulted      |

Table 28. Control Supervisor State

The "Main Power On" and "Main Power Off" refer to the motor control status (READY / NOT READY). Stop command will result in stop by "Stop Function". The stop mode is selectable in application.

Run1 and Run2 bits trigger Stop and Run commands according to Table 29. Fault Reset will occur on a rising edge of the Reset command.

| Run1   | Run2   | Trigger Event | Run Type |
|--------|--------|---------------|----------|
| 0      | 0      | Stop          | N/A      |
| 0 -> 1 | 0      | Run           | Run1     |
| 0      | 0 -> 1 | Run           | Run2     |
| 0 -> 1 | 0 -> 1 | No Action     | N/A      |
| 1      | 1      | No Action     | N/A      |
| 1 -> 0 | 1      | Run           | Run2     |
| 1      | 1 -> 0 | Run           | Run1     |


| Table 29. | Run/Stop   | <b>Event</b> | Matrix |
|-----------|------------|--------------|--------|
| 10010 27. | rian, otop | LICIN        | natin  |

## 7.2 EXPLICIT MESSAGING

Explicit Messaging is used in commissioning and parametrizing of the DeviceNet option board. Explicit messages provide multipurpose, point-to-point communication paths between two devices. They provide the typical request/response-oriented network communication used to perform node configuration and problem diagnosis. Explicit messages typically use low priority identifiers and contain the specific meaning of the message right in the data field. This includes the service to be performed and the specific object attribute address.

#### 7.2.1 CONNECTION BEHAVIOUR

Here you can see a general overview of the behaviour associated with an Explicit Messaging Connection Object (Instance type attribute = Explicit Messaging).



## Figure 25. Explicit Messaging Connection Object State Transition Diagram

Explicit Connection Expected Packet Rate (EPR) is set by default to 2500, meaning that watchdog timeout action will occur after 10s.

# 8. DEVICENET FAULT HANDLING

The following chapter describes different fault activation situations in OPTE7. For more information on fault tracing, see Chapter 15 "Appendix G - Fault tracing".

| Name       | Description                                                 | N LED        |
|------------|-------------------------------------------------------------|--------------|
| BUS-0FF    | CAN driver in bus-off state                                 | Red          |
| DUP_MAC-ID | Duplicate MAC ID is found during startup/ MAC ID change     | Red          |
| PASSIVE    | CAN driver is in passive state                              | -            |
| EXT_PWR    | External +24V is not detected                               | Off          |
| PI0_T0     | Polled I/O connection Expected Packet Rate watchdog timeout | Flashing red |

| Table 30. Fault Activation Sources |
|------------------------------------|
|------------------------------------|

• Bus-off and passive states are cleared when CAN driver goes to active state.

- External power fault is cleared when +24V is connected to option board connector.
- Duplicate MAC check is made every time the MAC-ID is changed or the option board is powered up. The fault is cleared, when the duplicate MAC-ID check passes.
- Polled I/O connection timeout is cleared when the I/O connection is released or allocated

How the AC drive will react to these fault situations can be defined in application:

| Table 31. Fieldbus Fault Reaction in VACON® | 100 and VACON® 20 (standard application) |
|---------------------------------------------|------------------------------------------|
|---------------------------------------------|------------------------------------------|

| Co                        | de                       | Parameter                     | Min | Max | Default | ID  | Description                                                                                           |
|---------------------------|--------------------------|-------------------------------|-----|-----|---------|-----|-------------------------------------------------------------------------------------------------------|
| VACON <sup>®</sup><br>100 | VACON <sup>®</sup><br>20 |                               |     |     |         |     |                                                                                                       |
| P3.9.1.6                  | P13.19                   | Response to fieldbus<br>fault | 0   | 4   | 3       | 733 | 0 = No response<br>1 = Alarm<br>2 = Fault, stop<br>by stop function<br>3 = Fault, stop<br>by coasting |

Table 32. Fieldbus Fault Reaction in VACON<sup>®</sup> 20X (standard application)

| Code  | Parameter                     | Min | Max | Default | ID  | Description                               |
|-------|-------------------------------|-----|-----|---------|-----|-------------------------------------------|
| P9.15 | Response to fieldbus<br>fault | 0   | 2   | 2       | 733 | 0 = No action<br>1 = Warning<br>2 = Fault |

#### 8.1 GENERAL AND ADDITIONAL ERROR CODES

The following table contains a list of CIP error codes that you may receive when there are problems with requests done by your PLC.

| Code | General Error              | Description                                                                                    |
|------|----------------------------|------------------------------------------------------------------------------------------------|
| 0x00 | Success                    | Service was successfully performed by the object specified.                                    |
| 0x02 | Resource Unavailable       | Resources needed for the object to perform the requested service were unavailable.             |
| 0x08 | Service Not Supported      | The requested service was not implemented or was not defined.                                  |
| 0x09 | Invalid Attribute Value    | Invalid attribute data detected.                                                               |
| 0x0B | Already In Requested State | Requested release connection does not exist.                                                   |
| 0x0C | Object State Conflict      | The object cannot perform the requested service in its current mode/state.                     |
|      |                            | Already allocated to another master.                                                           |
| 0x0E | Attribute Not Settable     | A request to modify a non-modifiable attribute was received.                                   |
| 0x10 | Device State Conflict      | The current mode/state of the device prohibits the execution of the requested service.         |
| 0x13 | Not Enough Data            | Explicit request was too short.                                                                |
| 0x14 | Attribute Not Supported    | The attribute specified in the request is not supported.                                       |
| 0x15 | Too Much Data              | The service supplied more data than was expected.                                              |
| 0x16 | Object Does Not Exist      | The object specified does not exist in the device.                                             |
| 0x20 | Invalid Parameter          | Message received on Group 2 unconnected requested port was not an allocate or release message. |
|      |                            | A parameter associated with the request was invalid.                                           |
| 0x28 | Invalid Member ID          | The Member ID specified in the request does not exist.                                         |

| Table 33. General Error Codes |
|-------------------------------|
|-------------------------------|

## Table 34. Additional Error Codes

| Code | Description                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------|
| 0x01 | Predefined Master/Slave Connection Set allocation conflict                                                             |
| 0x02 | Invalid Allocation/Release Choice parameter                                                                            |
| 0x03 | Message received on Group 2 Only Unconnected Explicit Request message port that was not an Allocate or Release message |
| 0x04 | Resource required for use with the Predefined Master/Slave Connec-<br>tion Set is not available                        |

## **9.** APPENDIX A - OBJECT DICTIONARY

## 9.1 IMPLEMENTED CIP OBJECTS

#### 9.1.1 LIST OF OBJECT CLASSES

The Communication Interface supports the following object classes.

|                              | Class | Object               |
|------------------------------|-------|----------------------|
|                              | 0x01  | Identity             |
|                              | 0x02  | Message Router       |
| Required by DeviceNet        | 0x03  | DeviceNet            |
|                              | 0x04  | Assembly             |
|                              | 0x05  | DeviceNet Connection |
| De quine d'hy Drive          | 0x28  | Motor Data           |
| Required by Drive<br>Profile | 0x29  | Control Supervisor   |
|                              | 0x2A  | AC/DC Drive          |
| Vendor-Specific              | 0xA0  | Vendor Parameter     |

Table 35. Implemented Object Classes

## 9.1.2 LIST OF SERVICES

The following table shows the services supported by these object classes.

|                             | Service Name                             | lden  | tity | Mess<br>Rou | -    | Devic | eNet | Asse  | mbly  | Co       | nnecti                  | on | Mo <sup>:</sup><br>Da |       | Con<br>Super |       | AC/<br>Dri |       | Ven<br>Paran |       |
|-----------------------------|------------------------------------------|-------|------|-------------|------|-------|------|-------|-------|----------|-------------------------|----|-----------------------|-------|--------------|-------|------------|-------|--------------|-------|
| Service<br>Code (in<br>hex) |                                          | Class | Inst | Class       | Inst | Class | Inst | Class | Inst. | Class    | Inst.<br>(Expli<br>cit) |    |                       | Inst. | Class        | Inst. | Class      | Inst. | Class        | Inst. |
| 0x05                        | Reset                                    |       | Y*   |             |      |       |      |       |       |          | Y                       | Y  |                       |       |              |       |            |       |              |       |
| 0x09                        | Delete                                   |       |      |             |      |       |      |       |       |          | Y                       | Y  |                       |       |              |       |            |       |              |       |
| 0x0E                        | Get_Attribute_Single                     | Y     | Y    | Y           | Y    | Y     | Y    | Y     | Y     | Y        | Y                       | Y  | Y                     | Y     | Y            | Y     | Y          | Y     | Y            | Y     |
| 0x10                        | Set_Attribute_Single                     |       | Y    |             | Y    |       | Y    |       | Y     |          | Y                       | Y  |                       | Y     |              | Y     |            | Y     |              | Y     |
| 0x4B                        | Allocate_Master/<br>Slave_Connection_Set |       |      |             |      |       | Y    |       |       | <u>.</u> |                         |    |                       |       |              |       |            |       |              |       |
| 0x4C                        | Release_Master/<br>Slave_Connection_Set  |       |      |             |      |       | Y    |       |       |          |                         |    |                       |       |              |       |            |       |              |       |

\*Supports reset type 0 and 1

#### 9.1.3 CLASS CODE 0X01 - IDENTITY OBJECT

| #   | Attribute Name               | Services | Default<br>Minimum<br>Maximum    | Data Type     | Description                                                                          |
|-----|------------------------------|----------|----------------------------------|---------------|--------------------------------------------------------------------------------------|
|     |                              |          | Instanc                          | e 0           |                                                                                      |
| 1   | Revision                     | Get      | 1                                | UINT          | Revision of this object                                                              |
| 2   | Max Instance                 | Get      | 1                                | UINT          | Maximum instance number                                                              |
| 3   | Number of Instances          | Get      | 1                                | UINT          | Number of object instances                                                           |
|     |                              |          |                                  | STRUCT of:    | List of optional instance<br>attributes                                              |
| 4   | Optional Attribute List      | Get      | 8                                | UINT          | Number of attributes                                                                 |
|     |                              |          | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of UINT | List of optional attribute<br>numbers                                                |
|     |                              |          |                                  | STRUCT of:    | List of optional services                                                            |
| 5   | Optional Service List        | Get      | 2                                | UINT          | Number of services                                                                   |
|     |                              | 000      | {5, 14}                          | ARRAY of UINT | List of optional service codes                                                       |
| 6   | Max Class Attribute<br>ID    | Get      | 176                              | UINT          | The attribute ID number of the last class attribute                                  |
| 7   | Max Instance<br>Attribute ID | Get      | 10                               | UINT          | The attribute ID number of the last instance attribute                               |
| 176 | Object Name                  | Get      | "Identity"                       | SHORT_STRING  | ASCII Name for the Object<br>Class                                                   |
|     |                              |          | Instanc                          | e 1           |                                                                                      |
| 1   | Vendor ID                    | Get      | 443                              | UINT          | Identification of each ven-<br>dor by number.<br>443 = Vacon Plc                     |
| 2   | Device Type                  | Get      | 2                                | UINT          | Indication of the general<br>type of product.<br>2 = AC Drive                        |
| 3   | Product Code                 | Get      | 2                                | UINT          | Identification of a particu-<br>lar product of an individual<br>vendor.<br>2 = OPTE7 |
| 4   | Revision                     | Get      | N/A                              | STRUCT of:    | Revision of the item the<br>Identity Object represents                               |
| 4   | 1/64151011                   | Uel      | N/A                              | USINT         | Major revision                                                                       |
|     |                              |          |                                  | USINT         | Minor revision                                                                       |

Table 36.

| #  | Attribute Name                     | Services   | Default<br>Minimum<br>Maximum | Data Type    | Description                                                                                                                                                                                                                                                                                              |
|----|------------------------------------|------------|-------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Status                             | Get        | N/A<br>0<br>65535             | WORD         | Summary status of the<br>device. Defined in ODVA<br>DeviceNet specification.<br>Supported bits:<br>Bit 0 = Owned<br>Bit 7 = System fault<br>Bit 8 = Minor Recoverable<br>Fault<br>Bit 9 = Minor Unrecoverable<br>Fault<br>Bit 10 = Major Recoverable<br>Fault<br>Bit 11 = Major Unrecover-<br>able Fault |
| 6  | Serial Number                      | Get        | N/A                           | UDINT        | Serial number of the device.<br>YYMMDDxxxx, where<br>YY = year of manufacture<br>MM = month of manufac-<br>ture<br>DD = day of manufacture<br>xxxx = running number                                                                                                                                      |
| 7  | Product Name                       | Get        | "OPTE7"                       | SHORT_STRING | Human readable identifica-<br>tion                                                                                                                                                                                                                                                                       |
| 8  | State                              | Get        | N/A<br>0<br>5                 | USINT        | Present state of the device<br>as represented by the state<br>transition diagram.<br>0 = Nonexistent<br>1 = Device Self-Testing<br>2 = Standby<br>3 = Operational<br>4 = Major Recoverable Fault<br>5 = Major Unrecoverable<br>Fault                                                                     |
| 9  | Configuration<br>Consistency Value | Get        | N/A<br>0<br>65535             | UINT         | Contents identify configura-<br>tion of the device                                                                                                                                                                                                                                                       |
| 10 | Heartbeat Interval                 | Get<br>Set | 0<br>0<br>255                 | USINT        | Heartbeat message send<br>interval in seconds. By<br>default disabled. Zero dis-<br>ables the transmission.                                                                                                                                                                                              |

Table 36.

#### 9.1.4 CLASS CODE 0X02 - MESSAGE ROUTER OBJECT

| #   | Attribute Name               | Services | Default<br>Minimum<br>Maximum    | Data Type     | Description                                                                   |  |  |  |  |  |  |
|-----|------------------------------|----------|----------------------------------|---------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | Instance 0                   |          |                                  |               |                                                                               |  |  |  |  |  |  |
| 1   | Revision                     | Get      | 1                                | UINT          | Revision of this object                                                       |  |  |  |  |  |  |
| 2   | Max Instance                 | Get      | 1                                | UINT          | Maximum instance number                                                       |  |  |  |  |  |  |
| 3   | Number of Instances          | Get      | 1                                | UINT          | Number of object instances                                                    |  |  |  |  |  |  |
|     |                              |          |                                  | STRUCT of:    | List of optional instance<br>attributes                                       |  |  |  |  |  |  |
| 4   | Optional Attribute List      | Get      | 8                                | UINT          | Number of attributes                                                          |  |  |  |  |  |  |
| 4   | 4 Optional Attribute List    | Get      | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of UINT | List of optional attribute<br>numbers                                         |  |  |  |  |  |  |
|     |                              |          |                                  | STRUCT of:    | List of optional services                                                     |  |  |  |  |  |  |
| 5   | Optional Service List        | Get      | 1                                | UINT          | Number of services                                                            |  |  |  |  |  |  |
| 0   |                              | 000      | {14}                             | ARRAY of UINT | List of optional service codes                                                |  |  |  |  |  |  |
| 6   | Max Class Attribute<br>ID    | Get      | 176                              | UINT          | The attribute ID number of the last class attribute                           |  |  |  |  |  |  |
| 7   | Max Instance<br>Attribute ID | Get      | 1                                | UINT          | The attribute ID number of the last instance attribute                        |  |  |  |  |  |  |
| 176 | Object Name                  | Get      | "Message<br>Router"              | SHORT_STRING  | ASCII Name for the Object<br>Class                                            |  |  |  |  |  |  |
|     |                              |          | Instanc                          | e 1           |                                                                               |  |  |  |  |  |  |
| 1   | Object List                  | Get      | N/A                              | STRUCT of:    | Structure with an array of<br>object class codes sup-<br>ported by the device |  |  |  |  |  |  |
|     | -                            |          |                                  | UINT          | Number of classes                                                             |  |  |  |  |  |  |
|     |                              |          |                                  | ARRAY of UINT | Classes                                                                       |  |  |  |  |  |  |

Table 37.

#### 9.1.5 CLASS CODE 0X03 - DEVICENET OBJECT

| #   | Attribute Name               | Services   | Default<br>Minimum<br>Maximum    | Data Type     | Description                                                                                                                                                                                                                                                         |
|-----|------------------------------|------------|----------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                              |            | Instanc                          | e 0           |                                                                                                                                                                                                                                                                     |
| 1   | Revision                     | Get        | 2                                | UINT          | Revision of this object                                                                                                                                                                                                                                             |
| 2   | Max Instance                 | Get        | 1                                | UINT          | Maximum instance number                                                                                                                                                                                                                                             |
| 3   | Number of Instances          | Get        | 1                                | UINT          | Number of object instances                                                                                                                                                                                                                                          |
|     |                              |            |                                  | STRUCT of:    | List of optional instance<br>attributes                                                                                                                                                                                                                             |
| 4   | Optional Attribute List      | Get        | 8                                | UINT          | Number of attributes                                                                                                                                                                                                                                                |
|     |                              | oet        | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of UINT | List of optional attribute<br>numbers                                                                                                                                                                                                                               |
|     |                              |            |                                  | STRUCT of:    | List of optional services                                                                                                                                                                                                                                           |
| 5   | Optional Service List        | Get        | 1                                | UINT          | Number of services                                                                                                                                                                                                                                                  |
|     |                              | 001        | {14}                             | ARRAY of UINT | List of optional service codes                                                                                                                                                                                                                                      |
| 6   | Max Class Attribute<br>ID    | Get        | 176                              | UINT          | The attribute ID number of the last class attribute                                                                                                                                                                                                                 |
| 7   | Max Instance<br>Attribute ID | Get        | 10                               | UINT          | The attribute ID number of the last instance attribute                                                                                                                                                                                                              |
| 176 | Object Name                  | Get        | "Device-<br>Net"                 | SHORT_STRING  | ASCII Name for the Object<br>Class                                                                                                                                                                                                                                  |
|     |                              |            | Instanc                          | e 1           |                                                                                                                                                                                                                                                                     |
| 1   | MAC ID                       | Get<br>Set | 63<br>0<br>63                    | USINT         | Node address                                                                                                                                                                                                                                                        |
| 2   | Baud Rate                    | Get<br>Set | 0<br>0<br>2                      | USINT         | The baud rate of the device<br>0 = 125 kBaud<br>1 = 250 kBaud<br>2 = 500 kBaud<br>If value is changed via net-<br>work, it will be taken into<br>use only after a reset /<br>power cycle. If changed via<br>panel, baud rate will be<br>taken into use immediately. |
| 3   | BOI (Bus-off<br>Interrupt)   | Get<br>Set | 1<br>0<br>1                      | BOOL          | 0 = Hold the CAN chip in<br>bus-off state upon detection<br>of a bus-off indication<br>1 = If possible, fully reset<br>the CAN chip and continue<br>communication upon detec-<br>tion of a bus-off indication                                                       |

Table 38.

| #   | Attribute Name     | Services   | Default<br>Minimum<br>Maximum | Data Type  | Description                                                                                                                    |
|-----|--------------------|------------|-------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|
| 4   | Bus-off counter    | Get<br>Set | 0<br>0<br>255                 | USINT      | Number of times CAN went<br>to bus-off state. Received<br>data is not used. Counter<br>always reset to 0.                      |
|     |                    |            |                               | STRUCT of: | Allocation Choice Master's<br>Mac ID                                                                                           |
| 5   | 5 Allocation Get   | Get        | N/A                           | BYTE       | Allocation Choice Byte<br>Bit 0 = Explicit messaging<br>Bit 1 = Polled I/O                                                     |
|     |                    |            |                               | USINT      | Master's MAC ID<br>0-63 = valid<br>255 = unallocated                                                                           |
| 100 | Bus-off Separation | Get        | 128                           | USINT      | Messages that have to be<br>received by the device to<br>leave bus-off state. This<br>value is set by the CAN con-<br>troller. |

## Table 38.

### 9.1.6 CLASS CODE 0X04 - ASSEMBLY OBJECT

| #          | Attribute Name            | Services | Default<br>Minimum<br>Maximum    | Data Type     | Description                                         |  |  |  |
|------------|---------------------------|----------|----------------------------------|---------------|-----------------------------------------------------|--|--|--|
| Instance 0 |                           |          |                                  |               |                                                     |  |  |  |
| 1          | Revision                  | Get      | 2                                | UINT          | Revision of this object                             |  |  |  |
| 2          | Max Instance              | Get      | 117                              | UINT          | Maximum instance number                             |  |  |  |
| 3          | Number of Instances       | Get      | 12                               | UINT          | Number of object instances                          |  |  |  |
| 4          | Optional Attribute List   | Get      |                                  | STRUCT of:    | List of optional instance<br>attributes             |  |  |  |
|            |                           |          | 8                                | UINT          | Number of attributes                                |  |  |  |
|            |                           |          | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of UINT | List of optional attribute<br>numbers               |  |  |  |
| 5          | Optional Service List     | Get      |                                  | STRUCT of:    | List of optional services                           |  |  |  |
|            |                           |          | 1                                | UINT          | Number of services                                  |  |  |  |
|            |                           |          | {14}                             | ARRAY of UINT | List of optional service codes                      |  |  |  |
| 6          | Max Class Attribute<br>ID | Get      | 176                              | UINT          | The attribute ID number of the last class attribute |  |  |  |

### Table 39.

| #            | Attribute Name               | Services | Default<br>Minimum<br>Maximum | Data Type    | Description                                            |  |  |  |
|--------------|------------------------------|----------|-------------------------------|--------------|--------------------------------------------------------|--|--|--|
| 7            | Max Instance<br>Attribute ID | Get      | 3                             | UINT         | The attribute ID number of the last instance attribute |  |  |  |
| 176          | Object Name                  | Get      | "Assem-<br>bly"               | SHORT_STRING | ASCII Name for the Object<br>Class                     |  |  |  |
|              | Instance 20                  |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.1.                                   |  |  |  |
| Instance 21  |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.2.                                   |  |  |  |
|              | Instance 23                  |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.3.                                   |  |  |  |
| Instance 25  |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.4.                                   |  |  |  |
| Instance 70  |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.1.                                   |  |  |  |
| Instance 71  |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.2.                                   |  |  |  |
| Instance 73  |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.3.                                   |  |  |  |
| Instance 75  |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.4.                                   |  |  |  |
|              | Instance 101                 |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.5.                                   |  |  |  |
| Instance 111 |                              |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.6.                                   |  |  |  |
|              | Instance 107                 |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.5.                                   |  |  |  |
|              | Instance 117                 |          |                               |              |                                                        |  |  |  |
| 3            | Data                         | Get      | N/A                           | ARRAY        | See Chapter 7.1.2.6.                                   |  |  |  |

### Table 39.

#### 9.1.7 CLASS CODE 0X05 - DEVICENET CONNECTION OBJECT

| #          | Attribute Name               | Services | Default<br>Minimum<br>Maximum    | Data Type        | Description                                                                                                                         |  |  |  |  |
|------------|------------------------------|----------|----------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Instance 0 |                              |          |                                  |                  |                                                                                                                                     |  |  |  |  |
| 1          | Revision                     | Get      | 1                                | UINT             | Revision of this object                                                                                                             |  |  |  |  |
| 2          | Max Instance                 | Get      | 2                                | UINT             | Maximum instance number                                                                                                             |  |  |  |  |
| 3          | Number of Instances          | Get      | 2                                | UINT             | Number of object instances                                                                                                          |  |  |  |  |
| 4          | Optional Attribute List      | Get      |                                  | STRUCT of:       | List of optional instance<br>attributes                                                                                             |  |  |  |  |
|            |                              |          | 8                                | UINT             | Number of attributes                                                                                                                |  |  |  |  |
|            |                              |          | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of<br>UINT | List of optional attribute<br>numbers                                                                                               |  |  |  |  |
|            | Optional Service List        | Get      |                                  | STRUCT of:       | List of optional services                                                                                                           |  |  |  |  |
| 5          |                              |          | 1                                | UINT             | Number of services                                                                                                                  |  |  |  |  |
|            |                              |          | {14}                             | ARRAY of<br>UINT | List of optional service codes                                                                                                      |  |  |  |  |
| 6          | Max Class Attribute<br>ID    | Get      | 176                              | UINT             | The attribute ID number of the last class attribute                                                                                 |  |  |  |  |
| 7          | Max Instance<br>Attribute ID | Get      | 17                               | UINT             | The attribute ID number of the last instance attribute                                                                              |  |  |  |  |
| 176        | Object Name                  | Get      | "Device-<br>Net Con-<br>nection" | SHORT_STRI<br>NG | ASCII Name for the Object<br>Class                                                                                                  |  |  |  |  |
|            |                              | Instan   | ce 1 - Explic                    | it Connection    |                                                                                                                                     |  |  |  |  |
| 1          | State                        | Get      | 0<br>0<br>5                      | USINT            | State of the object<br>0 = Non-existent<br>1 = Configuring<br>2 = Waiting<br>3 = Established<br>4 = Timeout<br>5 = Deferred Delete  |  |  |  |  |
| 2          | Instance Type                | Get      | 0                                | USINT            | Indicates either I/O or<br>Messaging Connection.<br>0 = Explicit Messaging<br>1 = I/O                                               |  |  |  |  |
| 3          | Transport Class<br>Trigger   | Get      | 0x83                             | BYTE             | Defines behavior of the<br>connection. Defines behavior<br>of the Connection. See CIP<br>Vol.1 chapter 3.4.4.3 for more<br>details. |  |  |  |  |

| #  | Attribute Name                        | Services   | Default<br>Minimum<br>Maximum | Data Type         | Description                                                                                                                                                                |
|----|---------------------------------------|------------|-------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | Produced Connection<br>ID             | Get        | 0x5FA<br>0x403<br>0x5FA       | UINT              | Placed in CAN Identifier Field<br>when the Connection<br>transmits on a DeviceNet<br>subnet.                                                                               |
| 5  | Consumed<br>Connection ID             | Get        | N/A                           | UINT              | CAN Identifier Field value that<br>denotes message to be<br>received on a DeviceNet<br>subnet.                                                                             |
| 6  | Initial Comm.<br>Characteristics      | Get        | 0x21                          | BYTE              | Defines the Message Group(s)<br>across which productions and<br>consumptions associated with<br>this connection occur. See CIP<br>Vol.3 chapter 3-2.4 for more<br>details. |
| 7  | Produced Connection<br>Size           | Get        | 99                            | UINT              | Maximum number of bytes<br>transmitted across this<br>Connection                                                                                                           |
| 8  | Consumed<br>Connection Size           | Get        | 99                            | UINT              | Maximum number of bytes<br>received across this<br>Connection                                                                                                              |
| 9  | Expected Packet Rate                  | Get<br>Set | 2500<br>0<br>65535            | UINT              | Defines timing associated with this connection                                                                                                                             |
| 12 | Watchdog Timeout<br>Action            | Get<br>Set | 1<br>1<br>3                   | USINT             | Defines how to handle<br>Inactivity/Watchdog timeouts.<br>1 = Auto Delete<br>2 = Invalid for Explicit<br>Connection<br>3 = Deferred Delete                                 |
| 13 | Produced Connection<br>Length         | Get        | 0                             | UINT              | Not used in Explicit<br>Connection                                                                                                                                         |
| 14 | Produced Connection<br>Path           | Get        | {0}                           | ARRAY of<br>USINT | Not used in Explicit<br>Connection                                                                                                                                         |
| 15 | Consumed<br>Connection Path<br>Length | Get        | 0                             | UINT              | Not used in Explicit<br>Connection                                                                                                                                         |
| 16 | Consumed<br>Connection Path           | Get        | {0}                           | ARRAY of<br>USINT | Not used in Explicit<br>Connection                                                                                                                                         |
| 17 | Production Inhibit<br>Time            | Get        | 0                             | UINT              | Not used in Explicit<br>Connection                                                                                                                                         |
|    |                                       | Instance   | e 2 - Polled                  | I/O Connectior    | 1                                                                                                                                                                          |

## Table 40.

| #  | Attribute Name                   | Services   | Default<br>Minimum<br>Maximum | Data Type         | Description                                                                                                                                                                |  |  |  |
|----|----------------------------------|------------|-------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1  | State                            | Get        | 0<br>0<br>4                   | USINT             | State of the object<br>0 = Non-existent<br>1 = Configuring<br>2 = Waiting<br>3 = Established<br>4 = Timeout                                                                |  |  |  |
| 2  | Instance Type                    | Get        | 1                             | USINT             | Indicates either I/O or<br>Messaging Connection.<br>0 = Explicit Messaging<br>1 = I/O                                                                                      |  |  |  |
| 3  | Transport Class<br>Trigger       | Get        | 131                           | BYTE              | Defines behavior of the<br>connection. See CIP Vol.1<br>chapter 3.4.4.3 for more<br>details.                                                                               |  |  |  |
| 4  | Produced Connection<br>ID        | Get        | 0x3FF<br>0x3C1<br>0x3FF       | UINT              | Placed in CAN Identifier Field<br>when the Connection<br>transmits on a DeviceNet<br>subnet.                                                                               |  |  |  |
| 5  | Consumed<br>Connection ID        | Get        | N/A                           | UINT              | CAN Identifier Field value that<br>denotes message to be<br>received on a DeviceNet<br>subnet.                                                                             |  |  |  |
| 6  | Initial Comm.<br>Characteristics | Get        | 1                             | BYTE              | Defines the Message Group(s)<br>across which productions and<br>consumptions associated with<br>this connection occur. See CIP<br>Vol.3 chapter 3-2.4 for more<br>details. |  |  |  |
| 7  | Produced Connection<br>Size      | Get        | 99                            | UINT              | Maximum number of bytes<br>transmitted across this<br>Connection                                                                                                           |  |  |  |
| 8  | Consumed<br>Connection Size      | Get        | 99                            | UINT              | Maximum number of bytes<br>received across this<br>Connection                                                                                                              |  |  |  |
| 9  | Expected Packet rate             | Get<br>Set | 0<br>0<br>65535               | UINT              | Defines timing associated with this connection                                                                                                                             |  |  |  |
| 12 | Watchdog Timeout<br>Action       | Get<br>Set | 0<br>0<br>0                   | USINT             | Defines how to handle<br>Inactivity/Watchdog timeouts.<br>0 = Transition to Timed Out<br>1 = Invalid for I/O Connection                                                    |  |  |  |
| 13 | Produced Connection<br>Length    | Get        | 6                             | UINT              | Number of bytes in the<br>Produced Connection Path<br>attribute                                                                                                            |  |  |  |
| 14 | Produced Connection<br>Path      | Get<br>Set | N/A                           | ARRAY of<br>USINT | Application obj. producing data on this connection.                                                                                                                        |  |  |  |

## Table 40.

| Table 40. |  |
|-----------|--|
|-----------|--|

| #  | Attribute Name                        | Services   | Default<br>Minimum<br>Maximum | Data Type         | Description                                                                                            |
|----|---------------------------------------|------------|-------------------------------|-------------------|--------------------------------------------------------------------------------------------------------|
| 15 | Consumed<br>Connection Path<br>Length | Get        | 6                             | UINT              | Number of bytes in the<br>Consumed Connection Path<br>attribute                                        |
| 16 | Consumed<br>Connection Path           | Get<br>Set | N/A                           | ARRAY of<br>USINT | Specifies the application<br>object(s) that are to receive the<br>data consumed by this<br>connection. |
| 17 | Production Inhibit<br>Time            | Get        | 0                             | UINT              | Not used in Polled I/O<br>Connection                                                                   |

#### 9.1.8 CLASS CODE 0X28 - MOTOR DATA OBJECT

| #   | Attribute Name               | Services   | Default<br>Minimum<br>Maximum    | Data Type     | Description                                                                                |  |  |  |  |  |
|-----|------------------------------|------------|----------------------------------|---------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | Instance 0                   |            |                                  |               |                                                                                            |  |  |  |  |  |
| 1   | Revision                     | Get        | 1                                | UINT          | Revision of this object                                                                    |  |  |  |  |  |
| 2   | Max Instance                 | Get        | 1                                | UINT          | Maximum instance number                                                                    |  |  |  |  |  |
| 3   | Number of Instances          | Get        | 1                                | UINT          | Number of object instances                                                                 |  |  |  |  |  |
|     |                              |            |                                  | STRUCT of:    | List of optional instance<br>attributes                                                    |  |  |  |  |  |
| 4   | Optional Attribute List      | Get        | 8                                | UINT          | Number of attributes                                                                       |  |  |  |  |  |
|     |                              |            | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of UINT | List of optional attribute<br>numbers                                                      |  |  |  |  |  |
|     |                              |            |                                  | STRUCT of:    | List of optional services                                                                  |  |  |  |  |  |
| 5   | Optional Service List        | Get        | 1                                | UINT          | Number of services                                                                         |  |  |  |  |  |
|     |                              | 001        | {14}                             | ARRAY of UINT | List of optional service codes                                                             |  |  |  |  |  |
| 6   | Max Class Attribute<br>ID    | Get        | 176                              | UINT          | The attribute ID number of the last class attribute                                        |  |  |  |  |  |
| 7   | Max Instance<br>Attribute ID | Get        | 15                               | UINT          | The attribute ID number of the last instance attribute                                     |  |  |  |  |  |
| 176 | Object Name                  | Get        | "Motor<br>Data"                  | SHORT_STRING  | ASCII Name for the Object<br>Class                                                         |  |  |  |  |  |
|     |                              |            | Instanc                          | e 1           |                                                                                            |  |  |  |  |  |
| 3   | Motor Type                   | Get<br>Set | 7<br>3<br>7                      | USINT         | Motor types supported:<br>3 = PM Synchronous Motor<br>7 = Squirrel Cage Induction<br>Motor |  |  |  |  |  |
| 6   | Rated Current                | Get<br>Set | N/A                              | UINT          | Motor nominal current<br>Unit: 100 mA                                                      |  |  |  |  |  |
| 7   | Rated Voltage                | Get<br>Set | N/A                              | UINT          | Motor nominal voltage<br>Unit: Volts                                                       |  |  |  |  |  |
| 9   | Rated Frequency              | Get<br>Set | N/A                              | UINT          | Motor nominal frequency<br>Unit: Hz                                                        |  |  |  |  |  |
| 12  | Pole Count                   | Get        | N/A                              | UINT          | Number of poles in the motor                                                               |  |  |  |  |  |
| 15  | Base Speed                   | Get<br>Set | N/A                              | UINT          | Nominal speed at rated fre-<br>quency. Unit: RPM                                           |  |  |  |  |  |

Table 41.

#### 9.1.9 CLASS CODE 0X29 - CONTROL SUPERVISOR OBJECT

| #   | Attribute Name               | Services   | Default<br>Minimum<br>Maximum    | Data Type        | Description                                            |
|-----|------------------------------|------------|----------------------------------|------------------|--------------------------------------------------------|
|     |                              |            | Instanc                          | e 0              |                                                        |
| 1   | Revision                     | Get        | 1                                | UINT             | Revision of this object                                |
| 2   | Max Instance                 | Get        | 1                                | UINT             | Maximum instance number                                |
| 3   | Number of Instances          | Get        | 1                                | UINT             | Number of object instances                             |
|     |                              |            |                                  | STRUCT of:       | List of optional instance attri-<br>butes              |
| 4   | Optional Attribute List      | Get        | 8                                | UINT             | Number of attributes                                   |
|     |                              | Det        | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of<br>UINT | List of optional attribute num-<br>bers                |
|     |                              | Get        |                                  | STRUCT of:       | List of optional services                              |
| 5   | Optional Service List        |            | 1                                | UINT             | Number of services                                     |
|     |                              |            | {14}                             | ARRAY of<br>UINT | List of optional service codes                         |
| 6   | Max Class Attribute<br>ID    | Get        | 176                              | UINT             | The attribute ID number of the last class attribute    |
| 7   | Max Instance<br>Attribute ID | Get        | 15                               | UINT             | The attribute ID number of the last instance attribute |
| 176 | Object Name                  | Get        | "Control<br>Supervi-<br>sor"     | SHORT_STRI<br>NG | ASCII Name for the Object<br>Class                     |
|     |                              |            | Instanc                          | e 1              |                                                        |
| 3   | Run1                         | Get<br>Set | 0<br>0<br>1                      | BOOL             | See Table 29.                                          |
| 4   | Run2                         | Get<br>Set | N/A                              | BOOL             | See Table 29.                                          |

#### Table 42.

| #  | Attribute Name | Services   | Default<br>Minimum<br>Maximum | Data Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|----------------|------------|-------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | NetCtrl        | Get<br>Set | 0<br>0<br>1                   | BOOL      | Requests Run/Stop control to<br>be local or from network.<br>0 = Local Control<br>1 = Network Control<br>Note that this selection does<br>not force control place to net-<br>work if set. This bit only<br>enables commands to be sent<br>to the drive. Depending on how<br>it is parametrized, this com-<br>mand might be ignored or<br>used. See Chapter 6.4 for more<br>details.<br>Actual status of control is<br>reflected in attribute 15. |
| 6  | State          | Get        | 0<br>0<br>7                   | USINT     | State of Control Supervisor<br>Instance. See Chapter 7.1.3.<br>0 = Vendor-Specific<br>1 = Startup<br>2 = Not_Ready<br>3 = Ready<br>4 = Enabled<br>5 = Stopping<br>6 = Fault_Stop<br>7 = Faulted                                                                                                                                                                                                                                                  |
| 7  | Running1       | Get        | N/A<br>0<br>1                 | BOOL      | Running forward status<br>0 = Other state<br>1 = Running forward                                                                                                                                                                                                                                                                                                                                                                                 |
| 8  | Running2       | Get        | N/A<br>0<br>1                 | BOOL      | Running reverse status<br>0 = Other state<br>1 = Running reverse                                                                                                                                                                                                                                                                                                                                                                                 |
| 9  | Ready          | Get        | N/A<br>0<br>1                 | BOOL      | Ready to accept a run event<br>0 = Other state<br>1 = Ready to accept a run event                                                                                                                                                                                                                                                                                                                                                                |
| 10 | Faulted        | Get        | N/A<br>0<br>1                 | BOOL      | Fault occurred<br>0 = No faults present<br>1 = Fault occurred (latched)                                                                                                                                                                                                                                                                                                                                                                          |
| 11 | Warning        | Get        | N/A<br>0                      | BOOL      | Warning present<br>0 = No warnings present<br>1 = Warning present (not<br>latched)                                                                                                                                                                                                                                                                                                                                                               |
| 12 | FaultRst       | Get<br>Set | 0<br>0<br>1                   | BOOL      | Fault reset request<br>0 = No action<br>0 -> 1 = Fault reset request<br>1 = No action                                                                                                                                                                                                                                                                                                                                                            |

Table 42.

| #  | Attribute Name | Services | Default<br>Minimum<br>Maximum | Data Type | Description                                                                                                                                                                                                                                                                                        |
|----|----------------|----------|-------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | FaultCode      | Get      | N/A                           | UINT      | If in Faulted state, the Fault-<br>Code indicates the fault that<br>caused the transition to<br>Faulted state. If not in Faulted<br>state, the FaultCode indicates<br>the fault that caused the last<br>transition to the Faulted state.<br>The supported fault codes are<br>listed in Chapter 10. |
| 14 | WarnCode       | Get      | N/A                           | UINT      | Indicates the lowest valued<br>warning that caused the Warn-<br>ing bit to be TRUE.                                                                                                                                                                                                                |
| 15 | CtrlFromNet    | Get      | N/A<br>0<br>1                 | BOOL      | Status of the Run/Stop control<br>source<br>0 = Control is local (as<br>parametrized)<br>1 = Control is from network                                                                                                                                                                               |

## Table 42.

### 9.1.10 CLASS CODE 0X2A - AC/DC DRIVE OBJECT

| # | Attribute Name            | Services | Default<br>Minimum<br>Maximum    | Data Type        | Description                                         |
|---|---------------------------|----------|----------------------------------|------------------|-----------------------------------------------------|
|   |                           |          | Instanc                          | e 0              |                                                     |
| 1 | Revision                  | Get      | 1                                | UINT             | Revision of this object                             |
| 2 | Max Instance              | Get      | 1                                | UINT             | Maximum instance number                             |
| 3 | Number of Instances       | Get      | 1                                | UINT             | Number of object instances                          |
|   |                           | Get      |                                  | STRUCT of:       | List of optional instance attri-<br>butes           |
| 4 | Optional Attribute List   |          | 8                                | UINT             | Number of attributes                                |
| 4 |                           |          | {1, 2, 3, 4,<br>5, 6, 7,<br>176} | ARRAY of<br>UINT | List of optional attribute num-<br>bers             |
|   |                           |          |                                  | STRUCT of:       | List of optional services                           |
| 5 | Optional Service List     | Get      | 1                                | UINT             | Number of services                                  |
| 0 | optional Service List     | Get      | {14}                             | ARRAY of<br>UINT | List of optional service codes                      |
| 6 | Max Class Attribute<br>ID | Get      | 176                              | UINT             | The attribute ID number of the last class attribute |

#### Table 43.

| #   | Attribute Name               | Services   | Default<br>Minimum<br>Maximum | Data Type        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|------------------------------|------------|-------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Max Instance<br>Attribute ID | Get        | 29                            | UINT             | The attribute ID number of the last instance attribute                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 176 | Object Name                  | Get        | "AC/DC<br>Drive"              | SHORT_STRI<br>NG | ASCII Name for the Object<br>Class                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                              |            | Instanc                       | e 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3   | At Reference                 | Get        | N/A<br>0<br>1                 | BOOL             | 1 = Drive actual at reference<br>(speed or torque reference)<br>based on mode                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4   | Net Ref                      | Get<br>Set | 0<br>0<br>1                   | BOOL             | Requests torque or speed<br>reference to be local or from<br>the network.<br>0 = Set Reference not DN<br>Control<br>1 = Set Reference at DN<br>Control<br>This selection does not force<br>the drive to use network<br>reference. When set, the<br>reference values are sent to<br>the drive, but depending on<br>how it is parametrized, it might<br>ignore this reference value.<br>See Chapter 6.4 for more<br>details.<br>Actual status of reference is<br>reflected in attribute 29. |
| 5   | Net Proc                     | Get<br>Set | 0<br>0<br>1                   | BOOL             | Requests process control ref-<br>erence to be active. See<br>Chapter 7.1.2.4 for more<br>details.                                                                                                                                                                                                                                                                                                                                                                                         |
| 6   | Drive Mode                   | Get<br>Set | N/A<br>0<br>3                 | USINT            | 0 = Open loop frequency<br>1 = Open loop speed<br>2 = Closed loop speed<br>3 = Torque control                                                                                                                                                                                                                                                                                                                                                                                             |
| 7   | Speed Actual                 | Get        | N/A<br>0<br>32767             | INT              | Actual drive speed<br>Unit: RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8   | Speed Ref                    | Get<br>Set | N/A<br>0<br>32767             | INT              | Speed reference<br>Unit: RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9   | Current Actual               | Get        | N/A<br>0<br>32767             | INT              | Actual motor phase current<br>Unit: 100 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10  | Current Limit                | Get<br>Set | N/A<br>0<br>32767             | INT              | Motor phase current limit<br>Unit: 100 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table 43.

| #  | Attribute Name | Services   | Default<br>Minimum<br>Maximum | Data Type | Description                                                                                                                |
|----|----------------|------------|-------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------|
| 11 | Torque Actual  | Get        | N/A<br>-32768<br>32767        | INT       | Actual torque<br>Unit: Nm / 2 <sup>TorqueScale</sup> ,<br>where TorqueScale is attribute<br>24                             |
| 12 | Torque Ref     | Get<br>Set | N/A<br>-32768<br>32767        | INT       | Torque reference<br>Unit: Nm / 2 <sup>TorqueScale</sup> ,<br>where TorqueScale is attribute<br>24                          |
| 13 | Process Actual | Get        | N/A                           | INT       | Actual process control value.<br>Mapped to FB Process-<br>DataOut1.                                                        |
| 14 | Process Ref    | Get<br>Set | N/A                           | INT       | Process control reference. See<br>Chapter 7.1.2.4 for detailed<br>information.                                             |
| 15 | Power Actual   | Get        | N/A                           | INT       | Actual output power<br>Unit: Watts                                                                                         |
| 16 | Input Voltage  | Get        | N/A                           | INT       | Input Voltage<br>Unit: Volts                                                                                               |
| 17 | Output Voltage | Get        | N/A                           | INT       | Output Voltage<br>Unit: Volts                                                                                              |
| 18 | Accel Time     | Get<br>Set | N/A                           | UINT      | Acceleration time<br>Unit: ms                                                                                              |
| 19 | Decel Time     | Get<br>Set | N/A                           | UINT      | Deceleration time<br>Unit: ms                                                                                              |
| 20 | Low Spd Limit  | Get<br>Set | N/A                           | UINT      | Minimum speed limit<br>Unit: RPM                                                                                           |
| 21 | High Spd Limit | Get<br>Set | N/A                           | UINT      | Maximum speed limit<br>Unit: RPM                                                                                           |
| 24 | Torque Scale   | Get<br>Set | 0<br>-8<br>7                  | SINT      | Torque scaling factor. Scaling<br>is accomplished as follows:<br>ScaledTorque = Nm / 2 <sup>TorqueS-</sup><br>cale         |
| 29 | Ref From Net   | Get        | N/A<br>0<br>1                 | BOOL      | Status of torque/speed refer-<br>ence.<br>0 = Local torque/speed refer-<br>ence<br>1 = Network torque/speed ref-<br>erence |

## Table 43.

#### 9.1.11 CLASS CODE OXAO - VENDOR PARAMETER OBJECT

| # | Attribute Name                | Services | Default<br>Minimum<br>Maximum | Data Type | Description |  |
|---|-------------------------------|----------|-------------------------------|-----------|-------------|--|
|   |                               |          |                               |           |             |  |
|   | NOT SINGLE ATTRIBUTE PROVIDED |          |                               |           |             |  |

The Vendor Parameter Object is used to read and write parameters with an ID number directly from control unit. The desired Instance number and attribute number is constructed in the following way:

- Instance = Parameter ID (High Byte) + 1
- Attribute = Parameter ID (Low Byte)

Examples:

- 1) Energy Counter, ID = 2291 = 0x**08**<u>F3</u>
- a) Instance ID = **0x08** + 1 = 0x09
- b) Attribute ID = 0xF3
- 2) Maximum Frequency, ID = 102 = 0x0066
- a) Instance ID = **0x00** + 1 = 0x01
- b) Attribute ID = 0x66

**NOTE!** All the values (when applicable) are truncated to 16-bit values and the scale varies between different types of values.

#### 9.0.1 CLASS CODE OXAA - MONITORING DATA OBJECT

This object can be used only in the OPTCx mode.

| # | Attribute Name            | Services | Default<br>Minimum<br>Maximum | Data Type        | Description                               |
|---|---------------------------|----------|-------------------------------|------------------|-------------------------------------------|
|   |                           |          | Instanc                       | e 0              |                                           |
| 1 | Revision                  | Get      | 1                             | UINT             | Revision of this object                   |
| 2 | Max Instance              | Get      | 1                             | UINT             | Maximum instance number                   |
| 3 | Number of Instances       | Get      | 1                             | UINT             | Number of object instances                |
|   |                           |          |                               | STRUCT of:       | List of optional instance attri-<br>butes |
| 4 | 4 Optional Attribute List | Get      | 7                             | UINT             | Number of attributes                      |
|   |                           |          | {2, 3, 4, 5,<br>6, 7, 176}    | ARRAY of<br>UINT | List of optional attribute num-<br>bers   |

| #           | Attribute Name               | ne Services D<br>Mi<br>Ma |                          | Data Type        | Description                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------|------------------------------|---------------------------|--------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             |                              |                           |                          | STRUCT of:       | List of optional services                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5           | Optional Service List        | Get                       | 3                        | UINT             | Number of services                                                                                                                                                                                                                                                                                                                                                                            |  |
|             |                              | 000                       | {14, 20,<br>24}          | ARRAY of<br>UINT | List of optional service codes                                                                                                                                                                                                                                                                                                                                                                |  |
| 6           | Max Class Attribute<br>ID    | Get                       | 176                      | UINT             | The attribute ID number of the last class attribute                                                                                                                                                                                                                                                                                                                                           |  |
| 7           | Max Instance<br>Attribute ID | Get                       | 1                        | UINT             | The attribute ID number of the last instance attribute                                                                                                                                                                                                                                                                                                                                        |  |
| 176         | Object Name                  | Get                       | "Moni-<br>torin<br>Data" | SHORT_STRI<br>NG | ASCII Name for the Object<br>Class                                                                                                                                                                                                                                                                                                                                                            |  |
|             |                              |                           | Instanc                  | e 1              |                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1-99        |                              | Get                       | N/A<br>N/A<br>N/A        | UINT             | Actual values. Attributes are<br>defined in EDS file (depend on<br>drive application).                                                                                                                                                                                                                                                                                                        |  |
| 101-<br>108 | E1-E8                        | Get<br>Set                | N/A<br>0<br>65535        | UINT             | Event code for event 1–8.<br>See table Table 45.                                                                                                                                                                                                                                                                                                                                              |  |
| 109         | EC                           | Get<br>Set                | N/A<br>0<br>65535        | UINT             | Total number of events                                                                                                                                                                                                                                                                                                                                                                        |  |
| 110         | SafeStateType                | Get<br>Set                | 0<br>0<br>2              | UINT             | Selects Safe State response to<br>errors which specify safe state<br>operation. Currently only a<br>loss of connection other than<br>by de-allocation is a safe state<br>error.<br>Alarm: Review the application<br>for safe operation before spec-<br>ifying a value for this attribute.<br>0 = DriveFault (fault and stop)<br>1 = No Action (hold last speed)<br>2 = Preset Speed/Direction |  |
| 111         | PresetDir                    | Get<br>Set                | N/A<br>0<br>1            | UINT             | Sets safe state direction of<br>rotation if the Safe State<br>Behavior attribute specifies<br>"Preset Speed/Direction".<br>Alarm: Review the application<br>for safe operation before spec-<br>ifying a value for this attribute.<br>Inverter requires external<br>stop.<br>0 = Forward<br>1 = Reverse                                                                                        |  |

| #   | Attribute Name                 | Services   | Default<br>Minimum<br>Maximum | Data Type | Description                                                                                                                                                                                                                                                                   |
|-----|--------------------------------|------------|-------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112 | PresetRPM                      | Get<br>Set | N/A<br>0<br>30000             | UINT      | Sets safe state speed refer-<br>ence (RPM) if the Safe State<br>Behavior attribute specifies<br>"Preset Speed/Direction".<br>Alarm: Review the application<br>for safe operation before spec-<br>ifying a value for this attribute.<br>Inverter requires external<br>stop.    |
| 113 | PresetTq                       | Get<br>Set | N/A<br>0<br>10000             | UINT      | Sets safe state torque refer-<br>ence (0.00%) if the Safe State<br>Behavior attribute specifies<br>"Preset Speed/Direction".<br>Alarm: Review the application<br>for safe operation before spec-<br>ifying a value for this attribute.<br>Inverter requires external<br>stop. |
| 120 | Polled Input<br>Assembly Type  | Get<br>Set | 71<br>70<br>167               | UINT      | Input assembly used by the polled connection.                                                                                                                                                                                                                                 |
| 121 | Polled Output<br>Assembly Type | Get<br>Set | 21<br>20<br>161               | UINT      | Output assembly used by the polled connection.                                                                                                                                                                                                                                |

List of monitoring data object event codes in OPTC7.

| Event code<br>(hex) | Event name                                                  | Event description                                                                  |  |  |
|---------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| 0x00                | No event                                                    | Default value in EventList entries.                                                |  |  |
| 0x01                | Drive Communication Error                                   | Inverter interface communication<br>error with the drive                           |  |  |
| 0x02                | I/O Connection Timeout -<br>Fault_Stop                      | Control Supervisor transitions to Fault_Stop.                                      |  |  |
| 0x03                | I/O Connection Timeout - No<br>Action                       | Control Supervisor remains in Enabled State.<br>Hold last speed.                   |  |  |
| 0x04                | I/O Connection Timeout - Pre-<br>set<br>Direction and Speed | Control Supervisor remains in Enabled State.<br>Run at preset direction and speed. |  |  |
| 0x05                | Explicit Connection Timeout -<br>Fault_Stop                 | Control Supervisor transitions to Fault_Stop.                                      |  |  |
| 0x06                | Explicit Connection Timeout -<br>No Action                  | Control Supervisor remains in Enabled State.<br>Hold last speed.                   |  |  |

## Table 45. List of OPTC7 event codes

| Event code<br>(hex) | Event name                                                    | Event description                                                                                                                     |  |  |
|---------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0x07                | Explicit Connection Timeout -<br>Preset<br>Direction and Spee | Control Supervisor remains in Enabled State.<br>Run at preset direction and speed.                                                    |  |  |
| 0x08                | Low DeviceNet Voltage                                         | Connection timeout may occur next.                                                                                                    |  |  |
| 0x09                | Bus Off                                                       | Connection timeout may occur next.                                                                                                    |  |  |
| 0x0C                | CAN Overrun                                                   | Connection timeout may occur next.                                                                                                    |  |  |
| 0x0E                | Configuration Consistency<br>Value (CRC) mismatch             | The configuration of the device is incorrect or incomplete. Major Recoverable Fault. An Identity Reset type 1 is needed for recovery. |  |  |
| 0x0F                | Microprocessor watchdog tim-<br>eout                          | The device detected a serious problem with itself. Major Unrecoverable Fault.                                                         |  |  |
| 0x10                | Received explicit message is too big                          | Message is ignored.                                                                                                                   |  |  |
| 0x11                | Received IO message is too big                                | Message is ignored.                                                                                                                   |  |  |
| 0x12                | Parameter Range Error                                         | An out-of-range parameter value exists in the drive.                                                                                  |  |  |
| 0x14                | I/O Connection Released -<br>Fault_Stop                       | Control Supervisor transitions to Fault_Stop.                                                                                         |  |  |
| 0x15                | I/O Connection Released - No<br>Action                        | Control Supervisor remains in Enabled State.<br>Hold last speed.                                                                      |  |  |
| 0x16                | I/O Connection Released - Pre-<br>set Direction and Speed     | Control Supervisor remains in Enabled State.<br>Run at preset direction and speed.                                                    |  |  |
| 0x17                | Receive_Idle - Fault_Stop                                     | Control Supervisor transitions to Fault_Stop.                                                                                         |  |  |
| 0x18                | Receive_Idle - No Action                                      | Control Supervisor remains in Enabled State.<br>Hold last speed.                                                                      |  |  |
| 0x19                | Receive_Idle - Preset Direction<br>and Speed                  | Control Supervisor remains in Enabled State.<br>Run at preset direction and speed.                                                    |  |  |
| 0x1A                | Explicit Connection Released -<br>Fault_Stop                  | Control Supervisor transitions to Fault_Stop.                                                                                         |  |  |
| 0x1B                | Explicit Connection Released -<br>No Action                   | Control Supervisor remains in Enabled State.<br>Hold last speed.                                                                      |  |  |
| 0x1C                | Explicit Connection Released -<br>Preset Direction and Speed  | Control Supervisor remains in Enabled State.<br>Run at preset direction and speed.                                                    |  |  |
| 0x21                | Connection unable to read message                             | Error detected by connection object code                                                                                              |  |  |
| 0x22                | Connection unable to send message                             | Error detected by connection object code                                                                                              |  |  |
| 0x23                | Consumer unable to read mes-<br>sage                          | Error detected by connection object code                                                                                              |  |  |
| 0x24                | Consumer unable to send message                               | Error detected by connection object code                                                                                              |  |  |
| 0x25                | Producer unable to send buffer                                | Error detected by connection object code                                                                                              |  |  |
| 0x26                | Producer unable to send acknowledgement                       | Error detected by connection object code                                                                                              |  |  |

| Event code<br>(hex) | Event name                                      | Event description                        |
|---------------------|-------------------------------------------------|------------------------------------------|
| 0x27                | Unexpected notification that message was sent   | Error detected by connection object code |
| 0x31                | Explicit reply is too big                       | Error detected by connection object code |
| 0x34                | First fragment of an IO mes-<br>sage is too big | Error detected by connection object code |
| 0x35                | Reassembled IO message is too big               | Error detected by connection object code |
| 0x36                | IO message is too big for pro-<br>ducer         | Error detected by connection object code |
| 0x37                | IO/Explicit message is too big<br>for producer  | Error detected by connection object code |

## **10.** APPENDIX B - FAULT AND WARNING CODES

OPTE7 uses the implied fault/warning codes for the device profile. For AC drives, the implied fault/ warning codes used are DRIVECOM Nutzergruppe e.V 16-bit codes. The supported fault codes are listed in the table below. The full list of error codes can be found in Vol. 1 of CIP, section 5-29.6.

| Code Value<br>[Hex] | Meaning                        |
|---------------------|--------------------------------|
| 0000                | No fault                       |
| 1000                | General Fault                  |
| 2300                | Current, Device Output Side    |
| 2330                | Short to Earth                 |
| 3130                | Phase Failure                  |
| 3210                | Overvoltage inside the device  |
| 3220                | Undervoltage inside the device |
| 4210                | Excess Device Temperature      |
| 4220                | Inadequate Device Temperature  |
| 5120                | DC Link Power Supply           |
| 5200                | Control                        |
| 5420                | Chopper                        |
| 6010                | Software Reset (Watchdog)      |
| 6100                | Internal Software              |
| 7111                | Brake Chopper Failure          |
| 7120                | Motor                          |
| 7500                | Communication                  |
| 7600                | Data Memory                    |
| 9000                | External Malfunction           |

#### Table 46.

# **11.** APPENDIX C - DEVICENET COMMUNICATION EXAMPLES

This chapter contains examples on how some DeviceNet actions are done. Examples explain how these commands are seen on CAN bus.

## 11.1 DEVICENET'S USE OF THE CAN IDENTIFIER FIELD

When sending DeviceNet messages, make sure to use the proper message ID value.

|    | Identifier Bits |                    |     |         |        |     |       |        |                                         |             |                                               | ldentity<br>hex |
|----|-----------------|--------------------|-----|---------|--------|-----|-------|--------|-----------------------------------------|-------------|-----------------------------------------------|-----------------|
| 10 | 9               | 8                  | 7   | 6       | 5      | 4   | 3     | 2      | 1                                       | 0           |                                               |                 |
| 0  |                 | Gro<br>Messa       |     |         | Source |     |       | MAC ID |                                         |             |                                               |                 |
| 0  | 1               | 1                  | 0   | 1       |        | S   | ource | MAC    | D                                       |             | Slave's I/O Change o<br>Cyclic Messa          |                 |
| 0  | 1               | 1                  | 1   | 0       |        | S   | ource | MAC    | D                                       |             | Slave's I/O Bit-Strobe<br>Message             | Response        |
| 0  | 1               | 1                  | 1   | 1       |        | S   | ource | MAC    | D                                       |             | Slave's I/O Poll Re<br>Message                | esponse         |
| 1  | 0               | MAC ID             |     |         |        |     |       |        | Group<br>Ssage                          |             |                                               |                 |
| 1  | 0               | Source MAC ID      |     |         |        |     |       | 0      | 0                                       | 0           | Master's I/O Bit-Strobe<br>Command Message    |                 |
| 1  | 0               | Source MAC ID      |     |         |        | 0   | 0     | 1      | Reserved of Master's<br>ID TBD          | s use - Use |                                               |                 |
| 1  | 0               | Source MAC ID      |     |         |        |     |       | 0      | 1                                       | 0           | Master's Change of S<br>Acknowledge Me        |                 |
| 1  | 0               | Source MAC ID      |     |         |        |     |       | 0      | 1                                       | 1           | Slave's Explicit Re<br>Messages               |                 |
| 1  | 0               | Destination MAC ID |     |         |        |     |       | 1      | 0                                       | 0           | Master's Connecte<br>Request Mess             |                 |
| 1  | 0               | Destination MAC ID |     |         |        |     |       | 1      | 0                                       | 1           | Master's I/O Poll co<br>change of state/Cycli | -               |
| 1  | 0               | Destination MAC ID |     |         |        | 1   | 1     | 0      | Group 2 Only Unco<br>Explicit Request M |             |                                               |                 |
| 1  | 0               |                    | Des | tinatio | on MA  | CID |       | 1      | 1                                       | 1           | Duplicate MAC ID<br>Messages                  |                 |

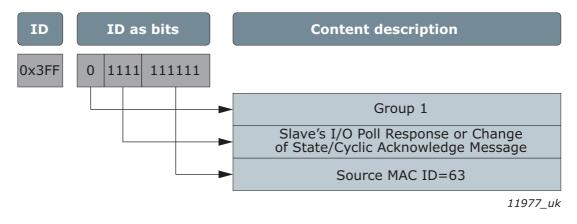



Figure 26. Group 1 message example

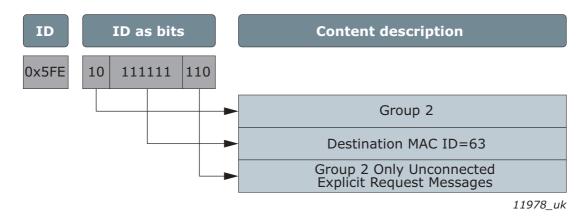



Figure 27. Group 2 message example: Explicit request

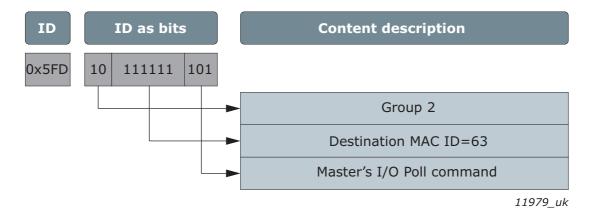



Figure 28. Group 2 message example: I/O Poll Command

## 11.2 FRAGMENTATION PROTOCOL

Messages that exceed 8 bytes must be fragmented to multiple frames. This is done by adding the fragmentation protocol to the frames. The first byte of the frame is used for the fragmentation protocol. It contains the fragment type and count.

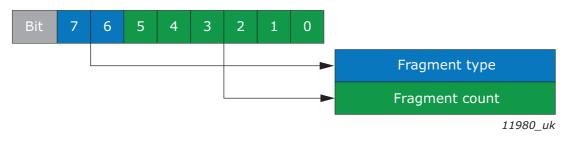



Figure 29. Fragmentation protocol

The following table contains the fragmentation types. In the first fragment the fragment count must be either zero or 0x3F. If the value 0x3F is used, it means that the first fragment is also the last fragment. Otherwise the fragment count is increased by one in each transmission.

| Value | Meaning                                                                    |
|-------|----------------------------------------------------------------------------|
| 0     | First fragment. The Fragment Count Field must contain the value 0 or 0x3F. |
| 1     | Middle fragment                                                            |
| 2     | Last fragment                                                              |
| 3     | Fragment Acknowledge                                                       |

## 11.3 EXAMPLE MESSAGES

#### 11.3.1 OPENING EXPLICIT MESSAGING CONNECTION

This message is used to open an explicit messaging connection. This must be done before sending any other explicit messages.

| # | Data (hex) | Description                            |
|---|------------|----------------------------------------|
| 1 | 01         | Message header                         |
| 2 | 4B         | Allocate Master / Slave Connection set |
| 3 | 03         | Class ID: DeviceNet Object             |
| 4 | 01         | Instance ID                            |
| 5 | 01         | Explicit message                       |
| 6 | 01         | Allocators MAC ID                      |

The OK answer is [5FB: 01 CB 00].

#### 11.3.2 Setting explicit connection timeout

After the explicit connection is opened, you must set the connection timeout. If the value is set to zero, the connection does not timeout. The value is in milliseconds. The expected packet rate attribute value also affects when the connection timeouts.

| # | Data (hex) | Description                                                                                             |
|---|------------|---------------------------------------------------------------------------------------------------------|
| 1 | 01         | Message header                                                                                          |
| 2 | 10         | Set attribute single                                                                                    |
| 3 | 05         | Class ID: DeviceNet Connection object                                                                   |
| 4 | 01         | Instance ID (explicit connection)                                                                       |
| 5 | 09         | Attribute ID: Expected Packet Rate                                                                      |
| 6 | 00         | Data byte 1                                                                                             |
| 7 | 00         | Data byte 2; in this example. Expected packet rate is set to zero so connection does not timeover ever. |

| Table 48. Message I | ID: 0x5FC |
|---------------------|-----------|
|---------------------|-----------|

The OK answer is [5FB: 01 90 00 00].

#### 11.3.3 CLOSING EXPLICIT MESSAGING CONNECTION

The explicit messaging connection is closed with the following message.

## Table 49. Message ID: 0x5FE

| # | Data (hex) | Description                              |
|---|------------|------------------------------------------|
| 1 | 01         | Message header                           |
| 2 | 4C         | Deallocate Master / Slave Connection set |
| 3 | 03         | Class ID: DeviceNet Object               |
| 4 | 01         | Instance ID                              |
| 5 | 01         | Explicit message                         |

The OK answer is [5FB: 01 CC].

## 11.3.4 READING ID 102 VALUE USING VENDOR PARAMETER OBJECT

When reading the ID value using Vendor Parameter Object, read ID is set to Instance ID and Attribute ID fields. The instance ID field is always at least 1.

The lower byte of the parameter ID will be set to the Attribute ID field and the higher byte with +1 to the Instance ID field.

When the ID value is less than the size of one byte (255), for example 102 (0x00 66), the Instance ID is 0x01 and the attribute ID is 0x66.

If the ID is greater than 255, for example 601 (0x02 59), the instance ID is 0x02 + 0x01 = 0x03 and the attribute ID is 0x59.

| # | Data (hex) | Description                          |
|---|------------|--------------------------------------|
| 1 | 01         | Message header                       |
| 2 | 0E         | Get attribute single                 |
| 3 | A0         | Class ID: Vendor Parameter Object    |
| 4 | 01         | Instance ID:                         |
| 5 | 66         | Attribute ID: Max Frequency (ID 102) |

Table 50. Message ID: 0x5FC

If the operation was successful, the answer is:

Table 51. Message ID: 0x5FB

| # | Data (hex) | Description                                       |
|---|------------|---------------------------------------------------|
| 1 | 01         | Message header                                    |
| 2 | 8E         | OK, get attribute single                          |
| 3 | 88         | Data byte 1                                       |
| 4 | 13         | Data byte 2; => 0x1388 => 5000 DEC => 50.00<br>Hz |

#### 11.3.5 WRITING ID 102 VALUE USING VENDOR PARAMETER OBJECT

Writing ID value is a similar process as reading the ID value. In request you change service to "Set Attribute Single" and add value for the ID in the end of the message.

| ta (hav) | Description           |
|----------|-----------------------|
|          |                       |
| Table    | 52. Message ID: 0x5FC |

| # | Data (hex) | Description                                      |
|---|------------|--------------------------------------------------|
| 1 | 01         | Message header                                   |
| 2 | 10         | Set Attribute Single                             |
| 3 | A0         | Class ID Vendor Parameter Object                 |
| 4 | 01         | Instance ID                                      |
| 5 | 66         | Attribute ID: Max Frequency (ID 102)             |
| 6 | A0         | Data byte 1                                      |
| 7 | 0F         | Data byte 2; => 0x0FA0 => 4000 DEC =><br>40.00Hz |

If operation was successful, answer is [5FB: 01 90].

## 11.3.6 Opening poll I/O connection

Before opening the poll connection, you must open the explicit messaging connection. This is needed to set timeout and so on. This command is identical compared to the opening explicit messaging connection part from byte number 5.

| # | Data (hex) | Description                            |
|---|------------|----------------------------------------|
| 1 | 01         | Message header                         |
| 2 | 4B         | Allocate Master / Slave Connection set |
| 3 | 03         | Class ID: DeviceNet Object             |
| 4 | 01         | Instance ID                            |
| 5 | 02         | Poll                                   |
| 6 | 01         | Allocators MAC ID                      |

Table 53. Message ID: 0x5FE

If the operation was successful, the answer is [5FB: 01 CB 00].

#### 11.3.7 Setting poll connection timeout

After poll connection is opened, you must set connection timeout. If the value zero is set, then the connection does not timeout. It is not recommended to use zero timeout with I/O connection. The value is in milliseconds. The attribute value of expected packet rate also affects when the connection timeouts.

| # | Data (hex) | Description                                                                                                                                                        |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | 01         | Message header                                                                                                                                                     |
| 2 | 10         | Set attribute single                                                                                                                                               |
| 3 | 05         | Class ID: DeviceNet Connection Object                                                                                                                              |
| 4 | 02         | Instance ID (poll connection)                                                                                                                                      |
| 5 | 09         | Attribute ID: Expected Packet Rate                                                                                                                                 |
| 6 | 03         | Data byte 1                                                                                                                                                        |
| 7 | E8         | Data byte 2; in this example. Expected<br>packet rate is set to 1,000 milliseconds. If<br>Expected Packet Rate is four, then timeout<br>occurs after four seconds. |

### 11.3.8 CLOSING POLL CONNECTION

Poll I/O connection is closed with the following message.

Table 55. Message ID: 0x5FE

| # | Data (hex) | Description                            |
|---|------------|----------------------------------------|
| 1 | 01         | Message header                         |
| 2 | 4C         | Deallocate Master/Slave Connection set |
| 3 | 03         | Class ID: DeviceNet Object             |
| 4 | 01         | Instance ID                            |
| 5 | 02         | Poll connection                        |

OK answer is [5FB: 01 CC].

## 11.3.9 SENDING I/O DATA

Before you can send I/O data, you must open poll connection. The simplest I/O data frames contain only IO data. In the following example, output instance 21 and input instance 71 data is been transferred.

| # | Data (hex) | Description                                  |
|---|------------|----------------------------------------------|
| 1 | 61         | Data 1: Output instance 21: CIP control word |
| 2 | 0          | Data 2: Output instance 21: Reserved         |
| 3 | 0          | Data 3: Output instance 21: Speed ref byte 1 |
| 4 | 0          | Data 4: Output instance 21: Speed ref byte 2 |

If connection is open and the slave is accepting the data, it will respond with I/O frame.

Table 57. Message ID: 0x3FF

| # | Data (hex) | Description                                       |
|---|------------|---------------------------------------------------|
| 1 | F4         | Data 1: Input instance 71: CIP status word        |
| 2 | 04         | Data 2: Input instance 71: Drive mode             |
| 3 | 00         | Data 3: Input instance 71: Actual speed byte<br>1 |
| 4 | 00         | Data 4: Input instance 71: Actual speed byte<br>2 |

## 11.3.10 Sending fragmented $\rm I/0$ data

Sending fragmented data is more complex. When doing it, you must add fragmentation protocol into the frames. In this example the output/input instance pair is 151/157. In the example the assembly data is: CW= 1, Gen. CW = 0, Speed ref = 5000 and PDI values are from 1 to 16. Because this assembly is 38 bytes long, it must be divided into six different frames.

| # | Data (hex) | Description                                                                      |
|---|------------|----------------------------------------------------------------------------------|
| 1 | 00         | Fragmentation protocol: First frame (frag-<br>ment type = 0, fragment count = 0) |
| 2 | 01         | Data 1: Output data byte 1                                                       |
| 3 | 00         | Data 2: Output data byte 2                                                       |
| 4 | 00         | Data 3: Output data byte 3                                                       |
| 2 | 00         | Data 4: Output data byte 4                                                       |
| 3 | 88         | Data 5: Output data byte 5                                                       |
| 4 | 13         | Data 6: Output data byte 6                                                       |
| 5 | 01         | Data 7: Output data byte 7                                                       |

Table 58. Message ID: 0x5FD, fragmented frame 1

| # | Data (hex) | Description                                                                       |
|---|------------|-----------------------------------------------------------------------------------|
| 1 | 41         | Fragmentation protocol: Middle frame (frag-<br>ment type = 1, fragment count = 1) |
| 2 | 00         | Data 1: Output data byte 8                                                        |
| 3 | 02         | Data 2: Output data byte 9                                                        |
| 4 | 00         | Data 3: Output data byte 10                                                       |
| 2 | 03         | Data 4: Output data byte 11                                                       |
| 3 | 00         | Data 5: Output data byte 12                                                       |
| 4 | 04         | Data 6: Output data byte 13                                                       |
| 5 | 00         | Data 7: Output data byte 14                                                       |

Table 59. Message ID: 0x5FD, fragmented frame 2

*Table 60. Message ID: 0x5FD, fragmented frame 3* 

| # | Data (hex) | Description                                                                       |
|---|------------|-----------------------------------------------------------------------------------|
| 1 | 42         | Fragmentation protocol: Middle frame (frag-<br>ment type = 1, fragment count = 2) |
| 2 | 05         | Data 1: Output data byte 15                                                       |
| 3 | 00         | Data 2: Output data byte 16                                                       |
| 4 | 06         | Data 3: Output data byte 17                                                       |
| 2 | 00         | Data 4: Output data byte 18                                                       |
| 3 | 07         | Data 5: Output data byte 19                                                       |
| 4 | 00         | Data 6: Output data byte 20                                                       |
| 5 | 08         | Data 7: Output data byte 21                                                       |

Table 61. Message ID: 0x5FD, fragmented frame 4

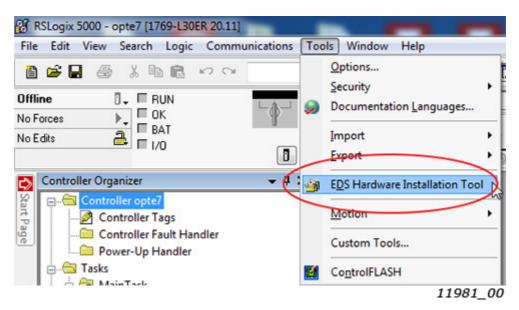
| # | Data (hex) | Description                                                                       |
|---|------------|-----------------------------------------------------------------------------------|
| 1 | 43         | Fragmentation protocol: Middle frame (frag-<br>ment type = 1, fragment count = 3) |
| 2 | 00         | Data 1: Output data byte 22                                                       |
| 3 | 09         | Data 2: Output data byte 23                                                       |
| 4 | 00         | Data 3: Output data byte 24                                                       |
| 2 | 0A         | Data 4: Output data byte 25                                                       |
| 3 | 00         | Data 5: Output data byte 26                                                       |
| 4 | 0B         | Data 6: Output data byte 27                                                       |
| 5 | 00         | Data 7: Output data byte 28                                                       |

| # | Data (hex) | Description                                                                       |
|---|------------|-----------------------------------------------------------------------------------|
| 1 | 44         | Fragmentation protocol: Middle frame (frag-<br>ment type = 1, fragment count = 4) |
| 2 | 0C         | Data 1: Output data byte 29                                                       |
| 3 | 00         | Data 2: Output data byte 30                                                       |
| 4 | 0D         | Data 3: Output data byte 31                                                       |
| 2 | 00         | Data 4: Output data byte 32                                                       |
| 3 | 0E         | Data 5: Output data byte 33                                                       |
| 4 | 00         | Data 6: Output data byte 34                                                       |
| 5 | 0F         | Data 7: Output data byte 35                                                       |

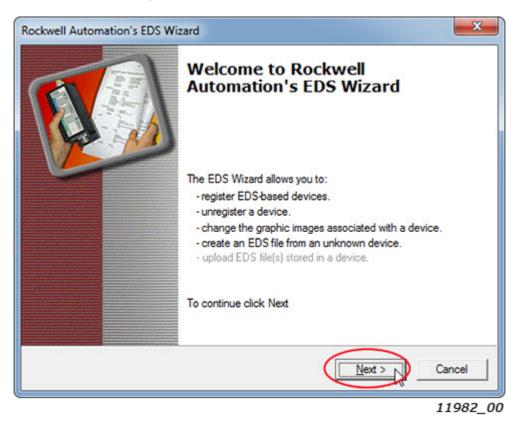
*Table 62. Message ID: 0x5FD, fragmented frame 5* 

Table 63. Message ID: 0x5FD, fragmented frame 6

| # | Data (hex) | Description                                                                     |
|---|------------|---------------------------------------------------------------------------------|
| 1 | 85         | Fragmentation protocol: Last frame (frag-<br>ment type = 2, fragment count = 5) |
| 2 | 00         | Data 1: Output data byte 36                                                     |
| 3 | 10         | Data 2: Output data byte 37                                                     |
| 4 | 00         | Data 3: Output data byte 38                                                     |


Once the slave has received the last frame, it responds with a fragmented response. In this response, the status word is 0x40 and the rest of the data is zeros.

| Frame # | Frag. protocol | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Data 6 | Data 7 |
|---------|----------------|--------|--------|--------|--------|--------|--------|--------|
| 1       | 00             | 40     | 00     | 00     | 00     | 00     | 00     | 00     |
| 2       | 41             | 00     | 00     | 00     | 00     | 00     | 00     | 00     |
| 3       | 42             | 00     | 00     | 00     | 00     | 00     | 00     | 00     |
| 4       | 43             | 00     | 00     | 00     | 00     | 00     | 00     | 00     |
| 5       | 44             | 00     | 00     | 00     | 00     | 00     | 00     | 00     |
| 6       | 85             | 00     | 00     | 00     | 00     | 00     | 00     | 00     |


## **12.** APPENDIX D - EXAMPLE WITH RSLOGIX5000

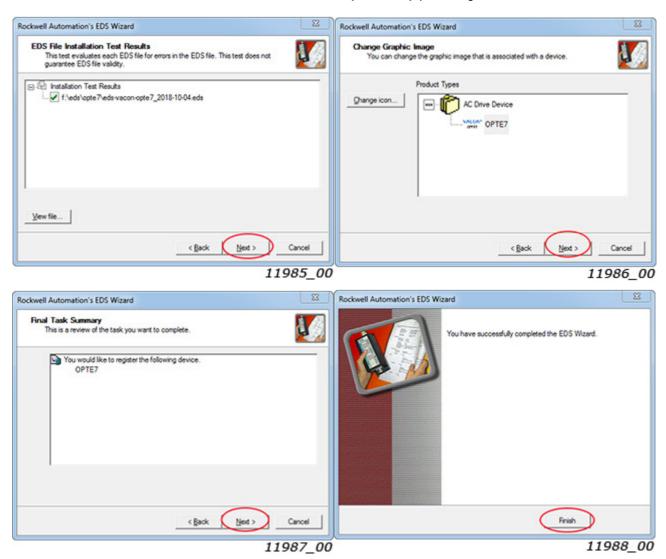
This example is with the OPTE7 option board and Allen-Bradley PLC. The example shows how to add the OPTE7 option board to a simple DeviceNet project.

1. Start the RSLogix5000 software. First add OPTE7 EDS to the system: Click menu item "Tools", then "EDS Hardware Installation Tool".



2. When EDS wizard is started, press "Next".




3. Select "Register an EDS file(s)" and press "Next".

| Rockwell Automation's EDS Wizard                                                                                       |    |
|------------------------------------------------------------------------------------------------------------------------|----|
| Options<br>What task do you want to complete?                                                                          |    |
| <ul> <li>Register an EDS file(s).</li> <li>This option will add a device(s) to our database</li> </ul>                 |    |
| Unregister a device.<br>This option will remove a device that has been registered by an EDS file from<br>our database. |    |
| C Create an EDS file.<br>This option creates a new EDS file that allows our software to recognize your device.         |    |
| Upload EDS file(s) from the device.<br>This option uploads and registers the EDS file(s) stored in the device.         |    |
|                                                                                                                        |    |
| < Back Next > Cancel                                                                                                   | 1  |
| 11983_                                                                                                                 | 00 |

4. Browse for the folder where you have stored the OPTE7 EDS file (EDS file for the OPTE7 option board can be downloaded from <a href="http://drives.danfoss.com">http://drives.danfoss.com</a>). Once you have selected the correct file, press "Next".

| Registration                                                       |                                                                             |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Electronic Data Sheet file(s) will b<br>Automation applications.   | e added to your system for use in Rockwell                                  |
| Register a single file                                             |                                                                             |
| C Register a girectory of EDS files                                | 🔽 Look in subfolders                                                        |
| Named:                                                             |                                                                             |
| F:\EDS\OPTE7\EDS-VACON-OPTE                                        | 7_2018-10-04.EDS <u>B</u> rowse                                             |
|                                                                    |                                                                             |
| • If there is an icon file (.ico) v then this image will be associ | with the same name as the file(s) you are registering ated with the device. |
|                                                                    |                                                                             |

Now EDS has been checked and installed.
 Press "Next" in the next three windows and finally finish by pressing the "Finish" button.



6. To create a new project, select "File" and "New".

| File | Edit View Search Lo                       | gic Communications Tool |
|------|-------------------------------------------|-------------------------|
|      | <u>N</u> ew                               | Ctrl+N                  |
| 2    | Open 43<br>Close                          | Ctrl+O                  |
|      | <u>S</u> ave<br>Save <u>A</u> s           | Ctrl+S                  |
|      | Ne <u>w</u> Component<br>Import Component | *                       |
|      | Co <u>m</u> pact                          |                         |
|      |                                           | 11989_0                 |

7. Select your PLC and give the project a name. Then press "OK".

| /endor:             | Allen-Bradley                                                                    |   |        |
|---------------------|----------------------------------------------------------------------------------|---|--------|
| Гуре:               | 1769-L30ER CompactLogix5330ER Controller                                         | - | ОК     |
| Revision:           | 20 👻                                                                             |   | Cancel |
|                     | Redundancy Enabled                                                               |   | Help   |
| Name:               | opte7                                                                            |   |        |
| Description:        |                                                                                  | ^ |        |
|                     |                                                                                  | - |        |
| Chassis Type:       | <none></none>                                                                    | - |        |
| Slot                | 0 🚖 Safety Partner Slot: <none></none>                                           |   |        |
| Create In:          | C:\RSLogix 5000\Projects                                                         |   | Browse |
| Security Authority: | No Protection                                                                    | • |        |
|                     | Use only the selected Security Authority for Authentication and<br>Authorization |   |        |

11990\_00

8. Next add a new module from the tree with a right-click.

|                   | New Module       | R      |
|-------------------|------------------|--------|
| Ether             | Discover Modules | 45     |
| 🖪 <sup>17</sup> 🖻 | Paste            | Ctrl+V |
|                   | Print            |        |

9. Search for "devicenet" module. Add scanner to the project and press "Create".

|                                                          | Clear Filters                                                |                    | Hide Filters 🌣 |
|----------------------------------------------------------|--------------------------------------------------------------|--------------------|----------------|
| Module Type Category Filters                             |                                                              | Module Type Vendor | Fiters         |
| Analog<br>Communication<br>Digital<br>Other<br>Specialty | Alen-Bradey     Hardy Instru     Prosoft Tech     Spectrum C | nology             |                |
|                                                          |                                                              | Vendor             | Category       |
| etalog Number Description                                |                                                              | VOINDUR            | coregory       |
| etslog Number Description<br>1769-SDN 1769 Scanner De    | wiceNet                                                      | Alen-Bradley       | Communication  |
|                                                          | wiceNet                                                      |                    |                |

11992\_00

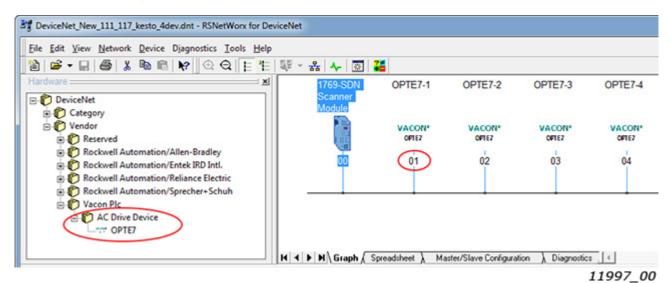
10.Choose the major revision of the module and press "OK".

| Select major revis<br>being created. | ion for new 1 | 1769-SDN mod | lule |
|--------------------------------------|---------------|--------------|------|
| early a concor                       |               |              |      |
| Major Revision:                      | 3             |              | •    |
| $\frown$                             |               |              |      |
|                                      | Cancel        | Held         |      |

11. Give name for the device and press "OK".

| Vendor:           | Allen-Bradley | anner DeviceNet             |                 |    |   |          |  |
|-------------------|---------------|-----------------------------|-----------------|----|---|----------|--|
| Name:             | scanner       |                             | Sl <u>o</u> t   | 1  | * |          |  |
| Description:      |               | *                           | Input Size:     | 90 | * | (32-bit) |  |
|                   |               | -                           | Output Size:    | 90 |   | (32-bit) |  |
|                   | 3 1 📥 EI      | ectronic <u>K</u> eying: Co | mpatible Keying | 1  | • |          |  |
| <u>R</u> evision: |               |                             |                 |    |   |          |  |

11995\_00


12.Set RPI for the communication and go to the "RSNetWorx" tab.

| Module Properties Report:            | Local:1 (1769-SDN/B 3.1   | .)               |         | ×    |
|--------------------------------------|---------------------------|------------------|---------|------|
| General Connection RSNet             | Worx                      |                  |         |      |
| <u>R</u> equested Packet Interval (R | PI): 20.0 ms              | (2.0 - 750.0 ms) |         |      |
| Major Fault On Controller If         | Connection Fails While in | Run Mode         |         |      |
| Module Fault                         |                           |                  |         |      |
|                                      |                           |                  |         |      |
| Status: Offline                      | ОК                        | Cancel           | Apply ( | Help |

13. Give a name for the DeviceNet network and press "Apply". After that you can press the "Launch RSNetWorx" button.

| Module Properties Report: L    | ocal:1 (1769-SDN/B 3.1)             |           | ×        |
|--------------------------------|-------------------------------------|-----------|----------|
| General Connection RSNet       | √orx                                |           |          |
| DeviceNet File (.dkt): opte7.d | nt<br><file found="" not=""></file> |           | Browse   |
| Launch RSNetWorx for Devic     |                                     |           |          |
| View an                        | d edit the DeviceNet network        |           |          |
|                                |                                     |           |          |
|                                |                                     |           |          |
| Status: Offline                | ОК                                  | Cancel Ap | Help     |
|                                |                                     |           | 11996_00 |

14.RSNetWorks was launched. Find your scanner module from the tree and add it to the project. Then find VACON<sup>®</sup> OPTE7 and add it. In the figure below, we have added four OPTE7 option boards. You can set MAC ID for the device by clicking the number below the device. Use the same numbers you have set to the actual devices.



15.Next right-click on the scanner module and select "Properties".

| <sup>[문</sup> · 옮 사        | ō 🚜                  |         |                    |         |
|----------------------------|----------------------|---------|--------------------|---------|
| 1769-S<br>Scanne<br>Module | DN OPTE7-1           | OPTE7-2 | OPTE7-3            | OPTE7-4 |
|                            | 🐰 Cuş                | Ctrl+X  | VACON*<br>OFTE7    | VACON*  |
|                            | Сору                 | Ctrl+C  | 02                 |         |
| -                          | 🚯 <u>P</u> aste      | Ctrl+V  | 03                 | 04      |
|                            | Delete               | Del     |                    |         |
| ·+                         | Upload from Device   | -       | +                  |         |
|                            | Download to Device   |         |                    |         |
|                            | Class Instance Edito | r       |                    |         |
| H I P H Gra                | Re-register Device   | -       | . 1                | -1.1    |
| H   H   H   bra            | Export I/O Details   | 20      | tion ), Diagnostic | * 11    |
| cription                   | Properties           |         |                    |         |

16.In this view, select the first row and press "Advanced".

| eneral Module                                                                                                                       | Scanlist | nput      | Output AD                                                                                                                           | R   S  | ummary                                |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|
| Node                                                                                                                                | Type     | Size      | Мар                                                                                                                                 |        | AutoMap                               |
| 01, OPT                                                                                                                             | Polled   | 34        | 1:I.Data[0].0                                                                                                                       | $\geq$ | Haromop                               |
| @ **** 02. OPT                                                                                                                      |          | 34        | 1:I.Data[8].16                                                                                                                      |        |                                       |
| 03, OPT.                                                                                                                            | Polled   | 34        | 1:I.Data[17].0                                                                                                                      |        | Unmap                                 |
| 04. OPT                                                                                                                             |          | 34        | 1:1.Data[25].10                                                                                                                     | 5      |                                       |
| -                                                                                                                                   |          |           |                                                                                                                                     | (      | Advanced                              |
|                                                                                                                                     |          |           |                                                                                                                                     |        |                                       |
|                                                                                                                                     |          |           |                                                                                                                                     |        | Options                               |
| ۲ II                                                                                                                                |          |           |                                                                                                                                     | +      |                                       |
|                                                                                                                                     |          | _         |                                                                                                                                     | -      | 1                                     |
|                                                                                                                                     | crete    |           | Start DWord                                                                                                                         | 0      | 3                                     |
| Bits 31 - 0                                                                                                                         |          | •<br>     |                                                                                                                                     | 0      |                                       |
| Bits 31 - 0<br>1:I.Data[0]                                                                                                          |          | •<br>•••• | 01. OPTE7-1                                                                                                                         | 0      | :<br>                                 |
| Bits 31 - 0<br>1:I.Data[0]<br>1:I.Data[1]                                                                                           |          | •<br>•••• | 01, OPTE7-1<br>01, OPTE7-1                                                                                                          | 0      | :<br>                                 |
| Bits 31 - 0<br>1:1.Data[0]<br>1:1.Data[1]<br>1:1.Data[2]                                                                            |          | •<br>•    | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1                                                                            |        |                                       |
| Bits 31 - 0<br>1:I.Data[0]<br>1:I.Data[1]                                                                                           |          |           | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1                                                             |        |                                       |
| Bits 31 - 0<br>1:1.Data[0]<br>1:1.Data[1]<br>1:1.Data[2]<br>1:1.Data[3]                                                             |          |           | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1                                                             |        |                                       |
| Bits 31 - 0<br>1:1.Data[0]<br>1:1.Data[1]<br>1:1.Data[2]<br>1:1.Data[3]<br>1:1.Data[4]                                              |          |           | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1                                              |        |                                       |
| Bits 31 - 0<br>1:1.Data[0]<br>1:1.Data[1]<br>1:1.Data[2]<br>1:1.Data[3]<br>1:1.Data[4]<br>1:1.Data[5]<br>1:1.Data[6]<br>1:1.Data[7] |          |           | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1 |        |                                       |
| Bits 31 - 0<br>1:1.Data[0]<br>1:1.Data[1]<br>1:1.Data[2]<br>1:1.Data[3]<br>1:1.Data[4]<br>1:1.Data[5]<br>1:1.Data[6]                |          | •PTF7     | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1 |        | · · · · · · · · · · · · · · · · · · · |
| Bits 31 - 0<br>1:1.Data[0]<br>1:1.Data[1]<br>1:1.Data[2]<br>1:1.Data[3]<br>1:1.Data[4]<br>1:1.Data[5]<br>1:1.Data[6]<br>1:1.Data[7] |          |           | 01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1<br>01. OPTE7-1 |        | ÷                                     |

17.In this example we have used assembly instances 111 and 117. For the first device, set "DWord" and "Bit" to zero. The messaging type is "Polled". The field "Bit Length" is set to 272. Next press "Close" and select the next row (device) from the previous view. For the second device, the values are the same except for "DWord" and "Bit". Those are set to 8 and 16. For the third device, the values are set to 17 and 0, and for the fourth 25 and 16. Now the assembly data is set and you can save changes and close RSNetWorks.

| dvanced Mapping : 01, OPTE7-1                                                                                                                                                                                                                                                    | Advanced Mapping : 02, OPTE7-2                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Map     Message     Offset     Memory     Offset     Bit Length       1     Polled     0.0     Discrete     0.0     272       2 <not mapped="">     3     <not mapped="">       3     <not mapped="">     4     <not mapped="">       4     III     &gt;</not></not></not></not> | Map     Message     Offset     Memory     Offset     Bit Length       1     Polled     0:0     Discrete     8:16     272       2 <not mapped="">     3     <not mapped="">       3     <not mapped="">     4     <not mapped="">       4     <not mapped="">     H     &gt;</not></not></not></not></not> |
| Map From:     Map To:       Message:     Polled     Memory:       Byte:     0     .       Bit:     0     .                                                                                                                                                                       | Map From:     Map To:       Message:     Polled       Byte:     0       Bit:     0                                                                                                                                                                                                                        |
| Apply Mapping Bit Length: 272 .<br>Delete Mapping Close Help                                                                                                                                                                                                                     | Apply Mapping Bit Length: 272 ÷ Delete Mapping Close Help                                                                                                                                                                                                                                                 |
| <b>12000_00</b><br>vanced Mapping : 03, OPTE7-3                                                                                                                                                                                                                                  | 12001_0           Advanced Mapping : 04, OPTE7-4         ۲                                                                                                                                                                                                                                                |
| Map     Message     Offset     Memory     Offset     Bit Lengti       1     Polled     0:0     Discrete     17:0     272       2 <not mapped="">     4     <not mapped="">     4       4     III     ►</not></not>                                                               | Map     Message     Offset     Memory     Offset     Bit Length       1     Polled     0.0     Discrete     25:16     272       2 <not mapped="">     3     <not mapped="">       3     <not mapped="">         4     <not mapped="">      +</not></not></not></not>                                      |
| Map From:     Map To:       Message:     Polled     Memory:       Byte:     0     17       Bit:     0     Big:                                                                                                                                                                   | Map From:     Map To:       Message:     Polled ▼       Bgte:     0 ★       Bit:     0 ★       Bit:     0 ★                                                                                                                                                                                               |
| Apply Mapping Bit Length: 272 -                                                                                                                                                                                                                                                  | Apply Mapping Bit Length: 272 :<br>Delete Mapping Close Help                                                                                                                                                                                                                                              |
| 12002_00                                                                                                                                                                                                                                                                         | 12003_0                                                                                                                                                                                                                                                                                                   |

18.In RSLogix5000, first select "Communications" and then "Who Active".



19. Browse the tree for your PLC, select it and press "Download".

| f Who Active                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <ul> <li>✓ Autobrowse Refresh</li> <li>→ S Linx Gateways, Ethernet</li> <li>→ AB_VBP-1, 1789-A17/A Virtual Chassis</li> <li>→ USB</li> <li>→ I 16, 1769-L30ER LOGIX5330ER, e9test</li> <li>→ S A, Ethernet</li> <li>→ CompactBus, CompactLogix System</li> <li>→ 00, 1769-L30ER LOGIX5330ER, opte7</li> <li>→ 01, 1769-SDN Scanner Module, 1769-SDN</li> </ul> | <u>G</u> o Online<br><u>U</u> pload<br><u>D</u> ownload<br>Update <u>F</u> irmware<br><u>C</u> lose<br>Help |
| Path: USB\16\CompactBus\0<br>Path in Project: <none></none>                                                                                                                                                                                                                                                                                                    | Set Project Path                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                | 12005_                                                                                                      |

20.Before download begins, you might get this warning. Just press "Download". Then the PLC starts to communicate with the devices.

| Download    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Download    | Download offline project 'opte7' to the controller.     Connected Controller:         Name: opte7         Type: 1769-L30ER/A CompactLogix5330ER Controller         Path: USB\16\CompactBus\0         Serial Number: 0083EC1D         Security: No Protection     DANGER: This controller is the system time master. Servo axes in         synchronized controllers, in this chassis or other chassis, may be         turned off.     DANGER: Unexpected hazardous motion of machinery may occur.     Some devices maintain independent configuration settings that are     not loaded to the device during the download of the controller.     Verify these devices (drives, network devices, 3rd party products)     have been properly loaded before placing the controller into run mode. |
|             | Failure to load proper configuration could result in misaligned data and unexpected equipment operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| · · · · · · | 12006 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## **13.** APPENDIX E - VACON<sup>®</sup> IO DATA DESCRIPTION

## 13.1 VACON<sup>®</sup> Control Word - FBFixedControlWord

The VACON<sup>®</sup> Control Word is composed of 32 bits. This control data is split into two words: FBFixedControlWord consist of the first 16 bits and FBGeneralControlWord consist of the remaining 16 bits.

While the functionality of FBFixedControlWord is fixed in VACON<sup>®</sup> standard applications, the functionality of FBGeneralControlWord is completely application specific and can vary even in VACON<sup>®</sup> standard applications.

The FBFixedControlWord bit definitions are described in the following table. Note that there are some control word bit modifications in the VACON<sup>®</sup> NXP AC drive. These modifications are described in Table 65 FBFixedControlWord modifications in VACON<sup>®</sup> NXP. Unused bits must be set to zero.

| Bit | Function                        |   | Description                                                                                                    |
|-----|---------------------------------|---|----------------------------------------------------------------------------------------------------------------|
| 0   | Start/Stop                      | 0 | Stop request from fieldbus.                                                                                    |
|     |                                 | 1 | Run request from fieldbus.                                                                                     |
| 1   | Direction                       | 0 | Requested direction is "FORWARD".                                                                              |
|     |                                 | 1 | Requested direction is "REVERSE".                                                                              |
| 2   | Fault reset                     | 0 | No action.                                                                                                     |
|     |                                 | 1 | No action when 1 -> 1. Rising edge (0 -> 1) = Active faults, alarms and infos are reset.                       |
| 3   | Stop mode 1                     | 0 | Stop mode is unmodified.                                                                                       |
|     |                                 | 1 | Stop mode is overridden to "Coasting".                                                                         |
| 4   | Stop mode 2                     | 0 | Stop mode is unmodified.                                                                                       |
|     |                                 | 1 | Stop mode is overridden to "Ramping".                                                                          |
| 5   | Quick ramp time                 | 0 | Normal deceleration ramp time.                                                                                 |
|     |                                 | 1 | Deceleration ramp time is switched to shorter than nor-<br>mal.                                                |
| 6   | Freeze setpoint                 | 0 | Changes in the setpoint value from fieldbus (FBSpe-<br>edReference) are taken into use by the application.     |
|     |                                 | 1 | Changes in the setpoint value from fieldbus (FBSpe-<br>edReference) are not taken into use by the application. |
| 7   | Setpoint to zero                | 0 | The setpoint value from fieldbus is taken from FB<br>Speed Reference.                                          |
|     |                                 | 1 | The setpoint value from fieldbus is changed to 0.                                                              |
| 8   | Request Fieldbus<br>Control     | 0 | Control Place is as parametrized in the drive (unchanged).                                                     |
|     |                                 | 1 | Control Place is overridden to Fieldbus Control.                                                               |
| 9   | Request Fieldbus Ref-<br>erence | 0 | Source of the setpoint value is as parametrized in the drive (unchanged).                                      |
|     |                                 | 1 | Source of the setpoint value is overridden to Fieldbus.                                                        |
| 10  | Jogging 1                       | 0 | No action.                                                                                                     |
|     |                                 | 1 | Jogging request with jogging reference 1.                                                                      |

## Table 64. FBFixedControlWord bits

| Bit | Function                         |   | Description                                                                                                               |
|-----|----------------------------------|---|---------------------------------------------------------------------------------------------------------------------------|
| 11  | Jogging 2                        | 0 | No action.                                                                                                                |
|     |                                  | 1 | Jogging request with jogging reference 2.                                                                                 |
| 12  | Quick stop                       | 0 | No action.                                                                                                                |
| 12  |                                  |   | Drive executes quick stop / emergency stop.                                                                               |
| 13  | 13 Reserved                      |   | -                                                                                                                         |
| 15  |                                  |   | -                                                                                                                         |
| 14  | Reserved                         | 0 | -                                                                                                                         |
| 14  | Reserved                         | 1 | -                                                                                                                         |
| 15  | 15 Master connected <sup>*</sup> |   | Only in VACON <sup>®</sup> NXP. Fieldbus sets this bit to zero when it detects that there is no connection to the master. |
| 15  |                                  |   | Only in VACON $^{\textcircled{R}}$ NXP. Fieldbus sets this bit to zero when it detects valid connection from the master.  |

\*This functionality can be enabled/disabled by application from drive parameters.

## Table 65. FBFixedControlWord modifications in $VACON^{\textcircled{B}}$ NXP

| Bit | Function      |   | Description       |
|-----|---------------|---|-------------------|
| 3   | Fieldbus DIN1 | 0 | Fieldbus DIN1 off |
| 5   |               | 1 | Fieldbus DIN1 on  |
| 4   | Fieldbus DIN2 | 0 | Fieldbus DIN2 off |
| 4   |               | 1 | Fieldbus DIN2 on  |
| 5   | Fieldbus DIN3 | 0 | Fieldbus DIN3 off |
| 5   |               | 1 | Fieldbus DIN3 on  |
| 6   | Fieldbus DIN4 | 0 | Fieldbus DIN4 off |
| 0   |               |   | Fieldbus DIN4on   |
| 7   | Fieldbus DIN5 | 0 | Fieldbus DIN5 off |
| /   |               | 1 | Fieldbus DIN5 on  |

### 13.2 CONTROL WORD BIT SUPPORT IN VACON<sup>®</sup> AC DRIVES

The following table describes the control word bit support in different AC drives. Notice that the table is valid only for VACON<sup>®</sup> standard applications. Always check the application specific manual.

| Bit   | Function                        | VACON <sup>®</sup> 100<br>family | VACON <sup>®</sup> NXP | VACON <sup>®</sup> 20 | VACON <sup>®</sup> 20<br>X/CP |
|-------|---------------------------------|----------------------------------|------------------------|-----------------------|-------------------------------|
| 0     | Start/Stop                      | х                                | x                      | х                     | х                             |
| 1     | Direction                       | х                                | x                      | х                     | х                             |
| 2     | Fault reset                     | х                                | x                      | х                     | х                             |
| 3     | Stop mode 1                     | х                                | 0                      |                       | х                             |
| 4     | Stop mode 2                     | х                                | 0                      |                       | х                             |
| 5     | Quick ramp time                 | х                                | 0                      |                       | х                             |
| 6     | Freeze setpoint                 | х                                | 0                      |                       | х                             |
| 7     | Setpoint to zero                | х                                | 0                      |                       | х                             |
| 8     | Request Fieldbus Control        | х                                | x                      |                       | х                             |
| 9     | Request Fieldbus Refer-<br>ence | х                                | x                      |                       | х                             |
| 10    | Jogging 1                       | х                                |                        |                       |                               |
| 11    | Jogging 2                       | х                                |                        |                       |                               |
| 12    | Quick stop                      | х                                |                        |                       | х                             |
| 13–14 | Reserved                        |                                  |                        |                       |                               |
| 15    | Master connected                |                                  | Х                      |                       |                               |

Table 66. FBFixedControlWord bit support in different VACON<sup>®</sup> AC drives

x) Supports standard function

o) FBDIN function instead of standard function

## 13.3 VACON<sup>®</sup> Status Word - FBFixedStatusWord

The VACON<sup>®</sup> Status Word is composed of 32 bits. This status data is split into two words: FBFixedStatusWord consist of the first 16 bits and FBGeneralStatusWord consist of the remaining 16 bits.

While the functionality of FBFixedStatusWord is fixed in VACON<sup>®</sup> standard applications, the functionality of the FBGeneralStatusWord is totally application specific and can vary even in VACON<sup>®</sup> standard applications.

The FBFixedStatusWord bit definitions are described in the following table. Unused bits are set to zero. In VACON<sup>®</sup> NX series AC drives FBFixedStatusWord comes from firmware variable "MCStatus".

| Bit  | Function           |   | Description                              |
|------|--------------------|---|------------------------------------------|
| 0    | Ready              | 0 | Drive is not ready.                      |
| U    | 0 Ready            |   | Drive is ready to run.                   |
| 1    | Run                | 0 | Motor is not running.                    |
|      | Kun                | 1 | Motor is running.                        |
| 2    | Direction          | 0 | Motor is running clockwise.              |
| 2    | Direction          | 1 | Motor is running counterclockwise.       |
| 3    | Fault <sup>*</sup> | 0 | No fault active.                         |
| 5    | Fault              | 1 | Drive has an active fault.               |
| 4    | Alarm*             | 0 | No alarm active.                         |
| 4    |                    | 1 | Drive has an active alarm.               |
| 5    | At reference       | 0 | Motor is not running at reference speed. |
| 5    | Arrenerence        | 1 | Motor is running at reference speed.     |
| 6    | Zero speed         | 0 | Motor is not at zero speed.              |
| 0    |                    | 1 | Motor is running at zero speed.          |
| 7    | Flux ready         | 0 | Motor is not magnetized.                 |
| ,    |                    | 1 | Motor is magnetized.                     |
| 8    | Info <sup>*</sup>  | 0 | No info active.                          |
| 0    |                    | 1 | Drive has an active info.                |
| 9–15 | Reserved           | 0 | -                                        |
| / 15 |                    | 1 | -                                        |

#### Table 67. FBFixedStatusWord bits

\*Drive faults have three levels: Fault, Alarm and info. Bits 3, 4 and 8 are set to 1 if the given fault type is activated.

| Bit  | Function     | VACON <sup>®</sup> 100 family | VACON <sup>®</sup> NXP | VACON <sup>®</sup> 20 | VACON <sup>®</sup> 20 X/<br>CP |
|------|--------------|-------------------------------|------------------------|-----------------------|--------------------------------|
| 0    | Ready        | х                             | x                      | х                     | х                              |
| 1    | Run          | х                             | x                      | х                     | х                              |
| 2    | Direction    | х                             | x                      | х                     | Х                              |
| 3    | Fault        | х                             | x                      | х                     | х                              |
| 4    | Alarm        | x                             | x                      | х                     | Х                              |
| 5    | At reference | X                             | х                      | х                     | Х                              |
| 6    | Zero speed   | х                             | x                      |                       | х                              |
| 7    | Flux ready   | х                             | x                      |                       |                                |
| 8    | Info         | x                             |                        |                       |                                |
| 9–15 | Reserved     |                               |                        |                       |                                |

#### 13.4 STATUS WORD BIT SUPPORT IN VACON<sup>®</sup> AC DRIVES

## 13.5 MONITORING OF CONTROL AND STATUS WORDS IN VACON<sup>®</sup> AC DRIVES

The following table describes from where the control / status words can be read in different AC drives via panel or PC tool.

| Signal               | VACON <sup>®</sup> 100 family | VACON <sup>®</sup> NXP | VACON <sup>®</sup> 20 | VACON <sup>®</sup> 20 X/CP |
|----------------------|-------------------------------|------------------------|-----------------------|----------------------------|
| FBFixedControlWord   | V2.12.1 (Low Word)            | V1.24.1*               | -                     | -                          |
| FBGeneralControlWord | V2.12.1 (High Word)           | -                      | -                     | -                          |
| FBFixedStatusWord    | V2.12.11 (Low Word)           | V1.24.16*              | V3.1                  | -                          |
| FBGeneralStatusWord  | V2.12.11 (Low Word)           | V1.24.3*               | V3.2                  | -                          |

\* Advanced application only

For VACON<sup>®</sup> 100 family, VACON<sup>®</sup> 20 and VACON<sup>®</sup> 20 X/CP, VACON<sup>®</sup> Live PC tool is used for accessing the drive parameters. VACON<sup>®</sup> NCDrive PC tool is used with VACON<sup>®</sup> NXP drive. NCDrive:

• View -> Monitoring

• Type: Firmware

|                           | VACON <sup>®</sup><br>NCDrive | VACON <sup>®</sup> Live           |                            |                               |  |
|---------------------------|-------------------------------|-----------------------------------|----------------------------|-------------------------------|--|
| Signal                    | VACON <sup>®</sup> NXP        | VACON <sup>®</sup> 100<br>family  | VACON <sup>®</sup> 20      | VACON <sup>®</sup> 20<br>X/CP |  |
| FBFixedControlWord        | FBFixedControl-<br>Word       | FB Control<br>Word (Low<br>Word)  | -                          | -                             |  |
| FBGeneralControl-<br>Word | FBGeneralCon-<br>trolWord     | FB Control<br>Word (High<br>Word) | -                          | -                             |  |
| FBFixedStatusWord         | MCStatus                      | FB Status Word<br>(Low Word)      | Drive status<br>word       | -                             |  |
| FBGeneralStatusWord       | FBGeneralSta-<br>tusWord      | FB Status Word<br>(High Word)     | Application<br>status word | -                             |  |

Table 69. Signal name in PC tools

# 13.6 VACON<sup>®</sup> speed reference and actual speed - FBSpeedReference and FBActualSpeed

The FBSpeedReference value is signed in the range of -10000...10000d (d8f0...2710h). The given reference is scaled in percentage between the minimum and maximum frequency parameters by application. The value 0 corresponds to minimum frequency and the value 10000d corresponds to maximum frequency. The scale of the value is 0.01%. Negative value indicates direction. If the direction bit in control word is set (means direction should be counterclockwise) and the reference is negative, motor runs clockwise despite the direction bit.

The FBActualSpeed value is signed in the range -10000...10000d (d8f0...2710h). Actual speed is scaled in percentage between the minimum and maximum frequency parameters by application. The value 0 corresponds to minimum frequency and the value 10000d corresponds to maximum frequency. The scale of the value is 0.01%.

#### 13.7 PROCESS DATA

The process data variables are vendor specific variables that can be communicated to and from the AC drive. Eight process data items can be communicated between PLC and the drive. Some drives and firmware versions can support up to sixteen process data items in a single telegram. If the drive does not support 9–16 PD items, then PDI 9–16 are ignored and PDO9–16 are zeros. For more information, see chapter "16. Appendix H - Fieldbus option board communication" and chapter "17. Appendix I - Parameters for application developers".

Values sent from the drive to the PLC are called ProcessDataOut variables, whereas the values sent from the PLC to the drive are called ProcessDataIn variables. The contents of the ProcessDataOut variables can be parametrized in the AC drive using a feature known as fieldbus process data mapping. For more information, see the following chapter.

#### 13.8 FIELDBUS PROCESS DATA MAPPING AND SCALING

This chapter describes how standard applications map process data out items by default. For more information, especially when not using a standard application, see the application manual for the AC drive in use.

| PD out | Mapped application data | ID | Unit | Scale   |
|--------|-------------------------|----|------|---------|
| 1      | Output frequency        | 1  | Hz   | 0.01 Hz |
| 2      | Motor speed             | 2  | rpm  | 1 rpm   |
| 3      | Motor current           | 3  | А    | Varies* |
| 4      | Motor torque            | 4  | %    | 0.1%    |
| 5      | Motor power             | 5  | %    | 0.1%    |
| 6      | Motor voltage           | 6  | V    | 0.1 V   |
| 7      | DC link voltage         | 7  | V    | 1 V     |
| 8      | Last active fault code  | 37 | -    | -       |

*Table 70. Process data output mapping defaults for* VACON<sup>®</sup> 100 family

\*Scaling is based on drive nominal power. Scaling can be seen from Table 74.

*Table 71. Process data output mapping defaults for VACON<sup>®</sup> NXP (standard application)* 

| PD out | Mapped application data | ID | Unit | Scale   |
|--------|-------------------------|----|------|---------|
| 1      | Output frequency        | 1  | Hz   | 0.01 Hz |
| 2      | Motor speed             | 2  | rpm  | 1 rpm   |
| 3      | Motor current           | 45 | А    | Varies* |
| 4      | Motor torque            | 4  | %    | 0.1%    |
| 5      | Motor power             | 5  | %    | 0.1%    |
| 6      | Motor voltage           | 6  | V    | 0.1 V   |
| 7      | DC link voltage         | 7  | V    | 1 V     |
| 8      | Last active fault code  | 37 | -    | -       |

Table 72. Process data output mapping defaults for VACON<sup>®</sup> 20 X/CP (standard applications)

| PD out | Mapped application data | ID | Unit | Scale   |
|--------|-------------------------|----|------|---------|
| 1      | Output frequency        | 1  | Hz   | 0.01 Hz |
| 2      | Motor speed             | 2  | rpm  | 1 rpm   |
| 3      | Motor current           | 3  | А    | Varies* |
| 4      | Motor torque            | 4  | %    | 0.1%    |
| 5      | Motor power             | 5  | %    | 0.1%    |
| 6      | Motor voltage           | 6  | V    | 0.1 V   |
| 7      | DC link voltage         | 7  | V    | 1 V     |
| 8      | Last active fault code  | 37 | -    | -       |

\*Scaling is based on drive nominal power. Sccaling can be seen from Table 74.

| PD out | Mapped application data | ID | Unit | Scale   |
|--------|-------------------------|----|------|---------|
| 1      | Frequency reference     | 25 | Hz   | 0.01 Hz |
| 2      | Output reference        | 1  | Hz   | 0.01 Hz |
| 3      | Motor speed             | 2  | rpm  | 1 rpm   |
| 4      | Motor voltage           | 6  | V    | 0.1 V   |
| 5      | Motor torque            | 4  | %    | 0.1%    |
| 6      | Motor current           | 3  | А    | Varies* |
| 7      | Motor power             | 5  | %    | 0.1%    |
| 8      | DC link voltage         | 7  | V    | 1 V     |

*Table 73. Process data output mapping defaults for VACON<sup>®</sup> 20 (standard application)* 

\*Scaling is based on drive nominal power. Scaling can be seen from Table 74.

| Nominal power | Current scale |
|---------------|---------------|
| < 5 kW        | 0.01 A        |
| 5–100 kW      | 0.1 A         |
| > 100 kW      | 1 A           |

Default process data out mapping can be changed in standard applications.

Table 75. FB process data out mapping

| Parameter name                            | VACON <sup>®</sup> 100<br>family |     | VACON <sup>®</sup> NXP** |     | VACON <sup>®</sup> 20 |     | VACON <sup>®</sup> 20 X/<br>CP |     |
|-------------------------------------------|----------------------------------|-----|--------------------------|-----|-----------------------|-----|--------------------------------|-----|
|                                           | Path                             | ID  | Path                     | ID  | Path                  | ID  | Path                           | ID  |
| FB DataOut 1 Selection                    | P3.6.1                           | 852 | P2.9.3                   | 852 | P10.1                 | 852 | P11.1                          | 852 |
| FB DataOut 2 Selection                    | P3.6.2                           | 853 | P2.9.4                   | 853 | P10.2                 | 853 | P11.2                          | 853 |
|                                           |                                  |     |                          |     |                       |     |                                |     |
| FB DataOut 8 Selection                    | P3.6.8                           | 859 | P2.9.10                  | 859 | P10.8                 | 859 | P11.8                          | 859 |
| FB DataOut 9 Selection <sup>*, ***</sup>  | P3.6.9                           | 890 | P2.9.12                  | 558 | -                     | -   | -                              | -   |
| FB DataOut 10 Selection <sup>*, ***</sup> | P3.6.10                          | 891 | P2.9.13                  | 559 | -                     | -   | -                              | -   |
|                                           |                                  |     |                          |     |                       |     |                                |     |
| FB DataOut 16 Selection <sup>*, ***</sup> | P3.6.16                          | 897 | P2.9.18                  | 565 | -                     | -   | -                              | -   |

\*Only in applications and option boards that support fast or extended communication modes with VACON<sup>®</sup> NXP. See chapter "16. Appendix H - Fieldbus option board communication".

\*\*Multipurpose application.

\*\*\*Currently only in VACON<sup>®</sup> 100 family internal protocols.

Process data in can also be mapped in VACON<sup>®</sup> NXP AC drives.

Table 76. FB process data in mapping

| Parameter name                      | VACON   | ® NXP <sup>**</sup> |
|-------------------------------------|---------|---------------------|
|                                     | Path    | ID                  |
| FB DataIn 1 Selection               | P2.9.19 | 876                 |
| FB DataIn 2 Selection               | P2.9.20 | 878                 |
|                                     |         |                     |
| FB DataIn 8 Selection               | P2.9.26 | 883                 |
| FB DataIn 9 Selection <sup>*</sup>  | P2.9.27 | 550                 |
| FB DataIn 10 Selection <sup>*</sup> | P2.9.28 | 551                 |
|                                     |         |                     |
| FB DataIn 16 Selection <sup>*</sup> | P2.9.34 | 557                 |

\*Only in applications and option boards that support fast or extended communication modes with VACON<sup>®</sup> NXP. See chapter "16. Appendix H - Fieldbus option board communication".

\*\*Multipurpose application.

# **14.** APPENDIX F - FIELDBUS PARAMETRIZATION

The following chapter describes briefly how to parametrize the AC drive in order for the motor to be controllable via fieldbus. These instructions are written for some basic applications. For more information, see the application specific manual.

In order for the AC drive to accept commands from the fieldbus network, the control place of the AC drive has to be set to fieldbus. The default value of the parameter "Control Place" is usually I/O. Note that if the control unit firmware is updated, the default settings are restored. In addition, some applications may have the remote speed reference selection set by default to other than fieldbus. In these cases, the speed reference selection must be set to fieldbus, in order for the speed reference to be controlled via fieldbus.

**NOTE!** The motor control mode should be selected to support the used process and profile.

#### 14.1 FIELDBUS CONTROL AND REFERENCE SELECTION

The following tables list some of the parameters related to fieldbus control in case of standard applications for the VACON<sup>®</sup> 100 family, VACON<sup>®</sup> NXP, VACON<sup>®</sup> 20 and VACON<sup>®</sup> 20 X AC drives. See the application specific manuals for more detailed information and latest updates.

The parameters can be read and written by using the drive panel, PC tools or fieldbus protocol. The following table contains links to chapters where the ID value reading is described.

For information on how to read and write ID's with DeviceNet, see chapter "9.1.11 Class code 0xA0 - Vendor Parameter Object".

| Parameter name       | ID   | Value                                    | Default | Panel Tree |
|----------------------|------|------------------------------------------|---------|------------|
| Control mode         | 600  | 0 = Frequency<br>1 = Speed<br>2 = Torque | 0       | P3.1.2.1   |
| Remote control place | 172  | 1 = Fieldbus CTRL                        | 0       | P3.2.1     |
| Local / remote       | 211  | 0 = Remote                               | 0       | P3.2.2     |
| Fieldbus ref. sel.   | 122  | 3 = Fieldbus                             | 3       | P3.3.1.10  |
| Controlling fieldbus | 2539 | -                                        | 1       | P5.13.1    |

Table 77. Fieldbus parametrization for VACON<sup>®</sup> 100 family (standard application)

Table 78. Fieldbus parametrization for VACON<sup>®</sup> 20 (standard application)

| Parameter name                       | ID  | Value                      | Default | Panel Tree |
|--------------------------------------|-----|----------------------------|---------|------------|
| Motor control mode                   | 600 | 0 = Frequency<br>1 = Speed | 0       | P1.8       |
| Rem. Control place 1 sel.            | 172 | 1 = Fieldbus CTRL          | 0       | P2.1       |
| Local / remote                       | 211 | 0 = Remote                 | 0       | P2.5       |
| Rem. Control place 1 freq. ref. sel. | 117 | 3 = Fieldbus               | 7       | P3.3       |

| Parameter name          | ID   | Value                      | Default | Panel Tree |
|-------------------------|------|----------------------------|---------|------------|
| Motor control mode      | 600  | 0 = Frequency<br>1 = Speed | 0       | P8.1       |
| Control place selection | 125  | 2 = Fieldbus               | 0       | P1.11      |
| Local / remote          | 211  | 0 = Remote                 | 0       | P3.2.2     |
| Frequency ref. sel.     | 1819 | 5 = Fieldbus               | 5–7     | P1.12      |

Table 79. Fieldbus parametrization for VACON<sup>®</sup> 20X (multipurpose application)

Fieldbus parametrization for VACON<sup>®</sup> NXP (multipurpose application)

| Parameter name          | ID  | Value                                    | Default | Panel Tree |
|-------------------------|-----|------------------------------------------|---------|------------|
| Motor control mode      | 600 | 0 = Frequency<br>1 = Speed<br>2 = Torque | 0       | P2.6.1     |
| Control place selection | 125 | 3 = Fieldbus                             | 1       | P3.1       |
| Frequency Ctrl ref.     | 122 | 9 = Fieldbus                             | 3       | P2.1.13    |

#### 14.2 CONTROLLING FIELDBUS PARAMETER

VACON<sup>®</sup> 100 family AC drives have parameter called "Controlling Fieldbus". It is used to select the instance from which the process data is sent to the drive application. By default, the setting is in "Automatic" and the functionality (when receiving process data from multiple sources) is application dependent.

For example, if the option board has been installed to slot E and it is used with PROFINET to control the drive, the user can select "Slot E" as value for this parameter. Now only the process data from the option board in slot E is forwarded to the application. All other fieldbuses still receive process data out. With this setting it is possible to prevent that the monitoring fieldbuses accidentally write process data in.

| Value name  | Value | Description                                                                                                               |
|-------------|-------|---------------------------------------------------------------------------------------------------------------------------|
| Automatic   | 1     | Process data from all sources is forwarded to application                                                                 |
| Slot D      | 2     | Only process data from slot D is forwarded to application. Value is visible only, if option board is installed to slot D. |
| Slot E      | 3     | Only process data from slot E is forwarded to application. Value is visible only, if option board is installed to slot E. |
| RS485       | 4     | Only process data from VACON $^{\textcircled{R}}$ 100 family internal RS 485 protocol is forwarded to application         |
| PROFINET IO | 5     | Only process data from VACON $^{\textcircled{R}}$ 100 family internal PROFINET IO protocol is forwarded to application    |
| EtherNet/IP | 6     | Only process data from VACON $^{\textcircled{R}}$ 100 family internal EtherNet/IP protocol is forwarded to application    |

| Value name         | Value | Description                                                                                                               |
|--------------------|-------|---------------------------------------------------------------------------------------------------------------------------|
| Modbus TCP/<br>UDP | 7     | Only process data from VACON $^{\textcircled{R}}$ 100 family internal Modbus TCP/UDP protocol is forwarded to application |
| Bacnet IP          | 8     | Only process data from VACON $^{\textcircled{R}}$ 100 family internal Bacnet IP protocol is forwarded to application      |

#### 14.3 TORQUE CONTROL PARAMETRIZATION

Some extra parametrization must be made in order to control the frequency control with torque control. The following instructions are for the VACON<sup>®</sup> 100 family and VACON<sup>®</sup> NXP application. For more information, see the application specific manual.

• Motor control mode (ID 600) must be configured to "Torque control" (2).

To configure the AC drive to use correct torque reference, select the parameter "Torque Reference Selection" to ProcessDataIn1 (9). This can be done with:

- PC tool or panel (VACON<sup>®</sup> 100 family: P3.3.2.1, VACON<sup>®</sup> NXP: P2.10.4) / ID 641
- Vendor Parameter Object

# **15.** APPENDIX G - FAULT TRACING

When the option board or the AC drive control diagnostics detect an unusual operating condition, the drive opens a notification, for example, on the keypad. The keypad shows the ordinal number of the fault, the fault code and a short fault description. You can reset the fault with the Reset button on the control keypad, via the I/O terminal or via the used fieldbus protocol. The faults are stored in the Fault history menu, which can be browsed. The fault table presents only the fault conditions related to the fieldbus in use.

**NOTE!** When you contact a distributor or a factory because of a fault condition, always write down all the texts and codes on the keypad display. Then send the problem description together with the Drive Info File to the local distributor. See local contacts: <a href="http://drives.danfoss.com/danfossdrives/local-contacts/">http://drives.danfoss.com/danfossdrives/local-contacts/</a>. If possible, also send a fieldbus communication log from the situation if applicable.

| Recommended tool | For                       | Boards       |
|------------------|---------------------------|--------------|
| Wireshard        | EtherNet based fieldbuses | OPTEA, OPTE9 |
| ProfiTrace       | Profibus                  | OPTE3-E5     |
| CANalyzer        | CAN based boards          | OPTE6, OPTE7 |

Table 80. Fieldbus communication log tools

#### 15.1 TYPICAL FAULT CONDITIONS

| Fault conditions | Possible cause                                                                                                                                                                                                | Remedy                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Cabling          | <ul> <li>Supply or motor cables are<br/>located too close to the fieldbus<br/>cable</li> <li>Wrong type of fieldbus cable</li> <li>Too long cabling</li> </ul>                                                |                                                |
| Grounding        | Inadequate grounding                                                                                                                                                                                          | Ensure grounding in all the points on the net. |
| Connections      | <ul> <li>Faulty connections: excessive<br/>stripping of cables</li> <li>Faulty connections: conductors in<br/>wrong terminals</li> <li>Faulty connections: too loose<br/>connections of conductors</li> </ul> |                                                |
| Parameter        | <ul><li>Faulty address</li><li>Overlapping slave addresses</li><li>Wrong control place selected</li></ul>                                                                                                     |                                                |

#### 15.2 OTHER FAULT CONDITIONS

The following fault tracing diagram helps to locate and fix some of the most common problems. If the problem persists, contact your local distributor.

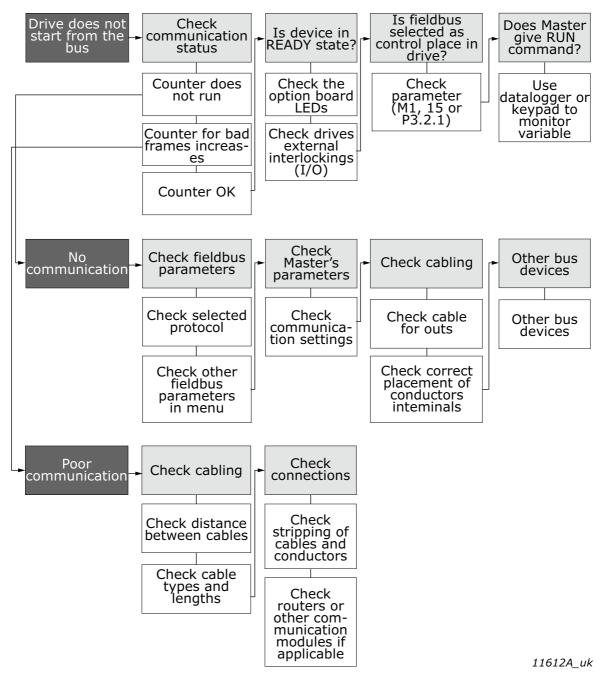



Figure 30. Fault tracing diagram

#### 15.3 FIELDBUS FAULT CODES

The option board can report only Fieldbus communications fault (F53). This does not identify what went wrong and why the option board activated this fault. To that end, more information is now added to fault activation. Currently this works only with VACON<sup>®</sup> 100 family AC drives.

When fieldbus fault (F53 specifically) is activated in VACON<sup>®</sup> 100 family AC drive with default applications, new information is added to the source fields of the faults if the source fields are empty.

| Fault field | Description                                                    |
|-------------|----------------------------------------------------------------|
| Source 1    | Activation source. Always "Control".                           |
| Source 2    | Slot where the option board is installed to (slot D or slot E) |
| Source 3    | Additional fault code                                          |

The following table contains "source 3" additional fault codes. Note that not all subcodes listed here are applicable for all fieldbuses / option boards.

| Fault field | Fault name                       | Description                                                                                     |
|-------------|----------------------------------|-------------------------------------------------------------------------------------------------|
| 1           | IO watchdog                      | IO connection timeout noticed by watchdog                                                       |
| 2           | IO master closed connec-<br>tion | IO connection was closed (gracefully) by master                                                 |
| 3           | EM watchdog                      | Explicit messaging connection timeout noticed by watchdog                                       |
| 4           | EM master closed connec-<br>tion | Explicit messaging connection was closed (gracefully) by master                                 |
| 5           | Cable disconnected               | Fieldbus cable was disconnected after communication had been started                            |
| 6           | Cable not disconnected           | Fieldbus cable was not connected after device start-up                                          |
| 7           | IOPS changed to BAD              | PROFINET IO master data status changed<br>from GOOD to BAD                                      |
| 8           | Idle state activated             | EtherNet/IP IO connection status changed to IDLE when motor is been controlled                  |
| 9           | Internal system fault            | General fieldbus failure. For example, when converting speed reference to drive format.         |
| 10          | Too many bad messages            | Fieldbus protocol has received too many<br>bad messages in row and has closed the<br>connection |
| 11          | CAN bus-off                      | CAN driver is in BUS-off state                                                                  |
| 12          | CAN passive                      | CAN driver is in passive state                                                                  |
| 13          | No external power                | No external power (+24 V) detected                                                              |
| 14          | Heartbeat timeout                | Heartbeat consumer timeout                                                                      |
| 15          | Nodeguard timeout                | Nodeguard timeout                                                                               |
| 16          | PD0 timeout                      | PD0 timer event timeout                                                                         |
| 17          | SNTP timeout                     | SNTP failed to get time update from time server                                                 |
| 18          | Ethercat state change fault      | Ethercat state change fault                                                                     |
| 19          | RHD timeout                      | PROFINET Redundant Data Hold Time elapsed                                                       |

| Table 83. Additional fault | codes |
|----------------------------|-------|
|----------------------------|-------|

# **16.** Appendix H - Fieldbus option board communication

The different communication modes can be enabled for fieldbus option board for different features. There are different modes available for different setups:

- Normal mode, for most commonly used setups. 8 process data items.
- Normal extended mode, for setups that requires 16 process data items.
- Fast mode, with low latency process data. 16 process data items.
- Fast safety mode, with safety "black channel". 16 process data items.
- Fast PROFIBUS mode, for backward compatibility. 8 process data items.

The fast communication modes can be enabled to get minimum communication delay between fieldbus and application.

**NOTE!** Not all option boards support all modes. For details, see "Table 85. Required option board firmware for different fieldbus communication modes".

#### 16.1 REQUIREMENTS FOR COMMUNICATION MODES

The following table describes the required components for different communication modes. The mentioned version or later is required.

|                   | Fast / Normal Extended since version (or later) | Fast safe<br>since version (or later)      | Fast PROFIBUS since version (or later)     |
|-------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Control<br>board  | VACON <sup>®</sup> NXP<br>(serial no. 761)      | VACON <sup>®</sup> NXP<br>(serial no. 761) | VACON <sup>®</sup> NXP<br>(serial no. 561) |
| A                 | Multinum er V(22                                |                                            | System Interface V11                       |
| Applica-<br>tions | Multipurpose V23<br>(Normal Extended Mode)      | Any*                                       | Advanced V085                              |
|                   |                                                 |                                            | Marine V107                                |

Table 84. Requirements for different fieldbus communication modes

\*If safety option is configured to use a safety fieldbus, the fast safe mode is automatically enabled regardless of the used application. However, the availability of 16 process items is limited by the application in use. Also the process data application cycle is normally set to 10 ms, instead of 1 ms for fast application.

Table 85. Required option board firmware for different fieldbus communication modes

|                                       | Fast / Normal Extended<br>since firmware version<br>(or later) | Fast safe<br>since firmware version (or<br>later) | Fast PROFIBUS<br>since firmware version (or<br>later) |
|---------------------------------------|----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| OPTE3-E5                              | V006                                                           | V006                                              | -                                                     |
| Advanced<br>safety<br>option<br>OPTBL | -                                                              | V001                                              | -                                                     |
| OPTC3-C5<br>(VB00279)                 | -                                                              | -                                                 | 0PTC3_10502V014.vcn                                   |

|                       | Fast / Normal Extended<br>since firmware version<br>(or later) | Fast safe<br>since firmware version (or<br>later) | Fast PROFIBUS<br>since firmware version (or<br>later) |
|-----------------------|----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| OPTC3-C5<br>(VB01987) | -                                                              | -                                                 | OPTC3-5_FW0232V001.vcx                                |
| OPTE9                 | V007                                                           | -                                                 | -                                                     |
| OPTEA                 | V001                                                           | V001                                              | -                                                     |
| OPTEC                 | V003                                                           | -                                                 | V001                                                  |
| OPTE6                 | V010                                                           | -                                                 | -                                                     |
| OPTE7                 | V006                                                           | -                                                 | -                                                     |

Refer to application specific manuals for the latest information on application support for fieldbus communication modes.

Supported system software version depends on VACON<sup>®</sup> NXP hardware version. The hardware version can be determined reading the serial number.

| Control                            | Support        | Fast / Normal<br>Extended | Fast safe | Fast PROFIBUS |
|------------------------------------|----------------|---------------------------|-----------|---------------|
| VACON <sup>®</sup> NXP<br>(SN 761) | Since firmware | V96                       | V196      | V179          |
|                                    | Supported slot | D and E                   | D         | E             |
| VACON <sup>®</sup> NXP<br>(SN 561) | Since firmware | -                         | -         | V171          |
|                                    | Supported slot | -                         | -         | D or E        |

#### 16.2 FIELDBUS COMMUNICATION MODE FEATURES AND LIMITATIONS

#### Fast mode:

- 1 ms process data interval
- Available in VACON<sup>®</sup> NXP slots D and E
- Possible to run both slots simultaneously
- Have similar process data latency in both slots
- Service data latency is also reduced
- Running multiple service data queries at high interval can cause high CPU load in VACON<sup>®</sup> NXP AC drive

-

#### Fast safe mode:

- 1 ms process data interval
- Includes safety "black channel"
- Activated/deactivated automatically, cannot be set by user or application
- Fast safe mode is available only in slot E
- Advanced safety option board must be installed into slot D
- Safety fieldbus must be activated in safety configuration

#### 16 process data items:

- 16 process data items always require support from application
- Available in both Fast mode and Normal extended mode
- If no support is available in the application, the process data out is always '0', while incoming process data items 9-16 are discarded

#### 16.3 NORMAL FIELDBUS COMMUNICATION

The normal fieldbus communication between option board and the AC drive application is visible in Figure 31. In normal communication both process data and service data are transferred in succession at 5 ms interval.

Communication delay for process data can be calculated by summing all delays together:

 $t = t_{IOdatacycle} + t_{updateinterval} + 2 \cdot t_{communicationdelay} + t_{applicationcycle}$ 

Example: With fieldbus cycle time of 4 ms and application cycle of 10 ms, the delay is:

 $t = 4ms + 10ms + (2 \cdot 5)ms + 10ms = 34ms$ 

**NOTE:** This value does not include delays of the fieldbus master, jitter in the process data cycle of the communication protocol or resending due to electronic interference.

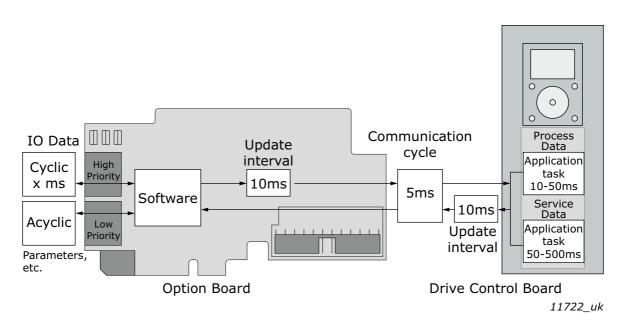



Figure 31. Normal fieldbus communication

#### 16.4 FAST FIELDBUS COMMUNICATION

The fast mode decreases the communication delay between the PLC and the AC drive application significantly by using two communication channels separately for process and service data. The process data interval is set to 1 ms, while other data is sent acyclically. When the fast mode is activated, the application can be synchronized to run with the communication cycle. The Fast communication mode is visible in Figure 32. This mode also includes the ability to transfer 16 process data items.

The communication delay for process data in fast communication mode is (when application task is synchronized with communication):

 $t = t_{IOdata \ cycle} + t_{update \ interval} + t_{application \ cycle}$ 

Example: With fieldbus cycle time of 1 ms and application cycle of 1 ms, the delay is:

t = 1 ms + 1 + 1 ms = 3 ms

**NOTE:** This value does not include delays of the fieldbus master, jitter in the process data cycle of the communication protocol or resending due to electronic interference.

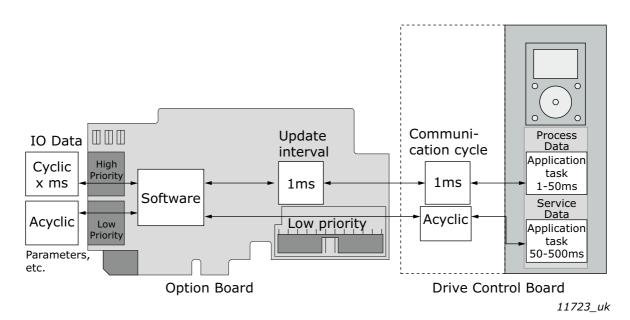



Figure 32. Fast fieldbus communication

#### 16.5 NORMAL EXTENDED MODE

The normal extended mode uses the same communication method as in "Fast mode" but reduces the communication cycle to 10ms.

This can be used in applications where 16 process data items are required but the lowest possible communication delay is not needed or the increased CPU load of Fast mode to VACON<sup>®</sup> NXP drives is undesirable.

**NOTE!** This mode can be automatically enabled in VACON<sup>®</sup> applications supporting 16 process data items.

#### 16.6 FAST SAFETY FIELDBUS COMMUNICATION

The fast safety mode uses the same communication methods as in "Fast mode" (Figure 32), but also transfers safety "black channel" data used by the safety fieldbus.

**NOTE!** This mode is automatically enabled if an extended safety option board is connected to slot D and the safety fieldbus is activated and cannot be set by the user. This mode is also automatically turned off when the safety option board is removed.

#### 16.7 FAST PROFIBUS FIELDBUS COMMUNICATION

**NOTE!** This mode is not recommended for new installations.

There is also a second type of fast communication mode, the Fast PROFIBUS mode, originally designed for the OPTC3/C5 PROFIBUS option board. This mode can be seen in Figure 33. This mode can achieve the same latencies for process data as the fast mode introduced in "16.4 Fast fieldbus communication". However, this mode imposes the following limitations:

- No service data is available
- Option board can be run only in Bypass mode

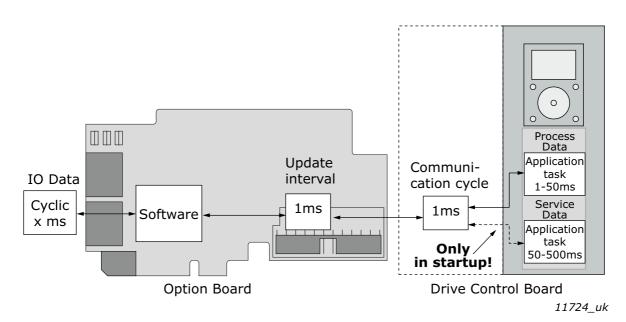



Figure 33. Fast PROFIBUS communication

# **17.** APPENDIX I - PARAMETERS FOR APPLICATION DEVELOPERS

This appendix gives information for the application developers and system integrators on the VACON<sup>®</sup> NXP system software variables used to activate and control different fieldbus communication modes and features.

For more information on supported modes and required firmware version on given option board and control unit, see Appendix H - Fieldbus option board communication.

**NOTE!** Changing the mode while the motor is running is not supported because of security reasons.

| Parameter        | Value                                                                                        | Default |
|------------------|----------------------------------------------------------------------------------------------|---------|
| FBModeSlotD_fwu8 | 0 = Normal mode                                                                              | 0       |
| FBModeSlotE_fwu8 | 1 = Fast safety mode*<br>2 = Fast mode<br>3 = Fast PROFIBUS mode<br>4 = Normal extended mode | 0       |

Table 87. System software variables for selecting communication modes

\* Fast safety mode is automatically enabled/disabled by system software. Cannot be set by user.

**FBModeSlotX\_fwu8** variables are used to select the active fieldbus option board communication mode. If no fieldbus option board is connected to the related slot, the selection of the FBModeSlot parameter is set to 0 = Normal mode.

| Table 88. System software | variables for  | monitoring s | unnorted  | communication m | nndac |
|---------------------------|----------------|--------------|-----------|-----------------|-------|
| Table 00. System Sullware | variables i ur | monitoring S | upporteut | communication n | loues |

| Parameter                 | Value                                                                                                                                                                                                                          | Default |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| FBModeSlotDSupModes_fwu16 | 0x00 = Not yet updated. Read again later.                                                                                                                                                                                      | 0       |
| FBModeSlotESupModes_fwu16 | 0x01 = Fieldbus communication not supported<br>0x02 = Normal mode supported<br>0x04 = Fast safety mode supported<br>0x08 = Fast mode supported<br>0x10 = Fast PROFIBUS mode supported<br>0x20 = Normal extended mode supported | 0       |

**FBModeSlotXSupModes\_fwu16** variables can be used to determine the different supported modes of the fieldbus option boards. All features are set as bit fields as multiple modes can be supported.

Value '0' is returned while the feature set of the option board is not yet retrieved. The value should be asked again. Any option board not supporting fieldbus communication returns value '1'.

Example 1: OPTE3-E5\_FW0083V006 PROFIBUS board returns value: 0x0E indicating support for Normal, Fast and Fast safety modes.

Example 2: OPTE9\_FW0196V007 Dual Port Ethernet board returns value: 0x0A indicating support for Normal and Fast modes.

| Parameter                  | Value                                                                                                       | Default |
|----------------------------|-------------------------------------------------------------------------------------------------------------|---------|
| FBControlSlotSelector_fwu8 | 0 = All slots<br>4 = Slot D only<br>5 = Slot E only<br>6 = Fast PROFIBUS D slot<br>7 = Fast PROFIBUS E slot | 0       |

Table 89. System software variables for selecting the input process data slot

**FBControlSlotSelector\_fwu8** variable is used to select the controlling fieldbus option board slot. When selected (other than '0'), process data is accepted only from the selected slot and all other process data is discarded. Process data out is still updated normally to all slots.

This selector can be used to support redundant fieldbus connection. In fieldbus redundancy mode two fieldbus option boards are installed to VACON<sup>®</sup> NXP option board slots D and E. Application selects with FBControlSlotSelector\_fwu8 variable which fieldbus option board can deliver process data from fieldbus master to the application.

Default value for FBControlSlotSelector\_fwu8 is '0' which means that process data is accepted from both fieldbus option boards.

# VACON®

www.danfoss.com



DPD01171C

Rev. C

Danfoss Drives Oy

Runsorintie 7 65380 Vaasa Finland

Sales code: DOC-OPTE7+DLUK