

User Guide

Stepper valve driver Type **EKF 1A, EKF 2A**

Driver for stepper motor valves SW V1.25

Introduction

Stepper valve driver EKF series is used where stepper valves must be accurately controlled typically in commercial air conditioning, heat pumps, commercial refrigeration and food retail applications.

Features

- Support both Bipolar and Unipolar stepper motor valves
- Driven by analog input signal
- Fast installation and setup
- Lost step prevention
- Open circuit detection
- LED indication for valve movement and alarm/warnings
- On board DIP switch for quick selection
- Plug and play
- 4 pole terminal block and JST-XHP 5 pin connections
- Phoenix connector terminals
- Digital output for alarm signal
- 1 and 2 valve driver version available

Portfolio overview

Table 1: Portfolio overview

Features	EKF 1A	EKF 2A
Code number	080G5030	080G5035
Power supply	24 V AC/DC	24 V AC/DC
Number of valves	1 stepper motor valve	2 stepper motor valves
Valve type	Unipolar/Bipolar	Unipolar/Bipolar
Analog inputs	1	2
Digital outputs	1	1
Dip switch	1	2
Battery backup support	Yes	Yes
Mounting	35 mm, 4 DIN	35 mm, 4 DIN
Dimension (H x W)(mm)	110 x 70	110 x 70

Applications

EKF series stepper valve drivers can be used in application where accurate control of stepper motor valves are needed using analog input signals (0-10V, 0-5V, 4-20 mA, 0-20 mA) from unit programmable controllers. The product can be used for both Bipolar and Unipolar type valves. General applications include use in commercial air conditioning, heat pumps, commercial refrigeration and food retail application

Figure 1: EKF 1A

- Al1 Analog input signal 1
- Al2 Analog input signal 2

Installation

Wiring terminals

Figure 3: EKF 1A

Figure 4: EKF 2A

O NOTE:

There are both 4 pin terminal and JST 5 pin terminal available on the board per stepper drive output. Only one of the terminals should be used per valve.

Do not connect valves to both 4 pin terminal and JST terminal of the same stepper driver output.

Power sharing

EKF can share power from the same source with a battery backup or unit controller only if battery backup/unit controller ports are galvanically isolated.

Danfoss recommends to use EKE 2U as the preferred battery backup device.

O NOTE:

EKE 2U can only support 2 valves for emergency closing, thus EKE 2U should not be shared with more than one EKF 2A or more than two EKF 1A.

Configuration

- EKF can be configured using
- 1. DIP switch
- 2. Koolkey & KoolProg PC tool

DIP Switch configuration

The basic product configuration can be done through DIP switch present on the hardware.

EKF 1A supports 1 stepper drive output and 1 Dip switch for settings. EKF 2A supports 2 stepper drive output and 2 Dip switch for settings. Figure 5: DIP switch

The image above shows a schematic of a dip switch Each DIP switch consists of 8 switches. The below table shows what each Dip switch section represents.

Table 2: Dip switch section

Switch numbers	Selection
Switch 1-5	Valve selection
Switch 6	Analog sharing selection
Switch 7 & 8	Analog signal selection

Steps to follow to configure EKF using Dip switch:

- 1. Disconnect the EKF from power supply.
- 2. Connect the valves and Al inputs to EKF.
- 3. Make the needed settings on the EKF dip switch.
- 4. Turn the power back on to EKF.
- 5. EKF is ready to use with the new settings

O NOTE:

Any changes made to EKF dip switch while EKF is powered ON will result in warning and the new settings are not active. In case of the above error switch the power OFF and then ON the EKF. The newly made settings will now be active.

The tables below can be used to help select dip switch positions.

Valve selection (Switch 1-5) Green denotes ON position of DIP switch

Figure 6: DIP valve section

O NOTE:

Only applicable for EKF 2A When using Manifold valves.

Dip switch 1 for stepper driver 1 should be selected to base valve type.

Eg: ETS C should be selected in Dip switch 1 if ETS Colibri is used in manifold operation.

ETS 250/400 should be selected if using ETS 500P/ETS 800P.

Dip switch 2 for stepper driver 2 should be selected as manifold valve (Group H).

While setting Dip switch 2 as manifold valve EKF automatically recognize that it is using only 1 Analog input to control both valves and by default Al1 is used as the analog input. Analog sharing function is automatically activated.

Analog input selection (Switch 7 & 8) Green denotes ON position of DIP switch

Figure 7: DIP analog input selection

Analog Input				DIP	Switch			
	1	2	3	4	5	6	7	8
0 - 10 V (Default)								
0 - 5 V								
4 - 20 mA								

Analog sharing selection (Switch 6) Green denotes ON position of DIP switch

Figure 8: DIP analog sharing selection

Channes deiters 1				DIP	Switch			
Stepper driver 1	1	2	3	4	5	6	7	8
Analog Input Al1								
Analog input Al2								
	DIP Switch							
ttoppor drivor 1				3 4 5				
Stepper driver 2	1	2	3	4	5	6	7	8
Analog Input Al1	1	2	3	4	5	6	7	8

O NOTE:

Analog sharing is used only in EKF 2A.

Analog sharing can be done to run 2 valves using the same analog input.

If stepper driver 1 should use analog input from AI2 (AI2 is meant for stepper driver 2 analog input). Then Dip switch 1 should have switch 6 at position ON.

EKF 2A will then use AI2 signal to control stepper valve 1.

If stepper driver 2 should use analog input from AI1 (AI1 is meant for stepper driver 1 analog input).

Then Dip switch 2 should have switch 6 at position ON.

EKF 2A will then use AI1 signal to control stepper valve 2.

Figure 9: DIP switch setting

Connecting to PC

EKF Series stepper drivers can be connected to PC for

- 1. Accessing and changing advanced settings
- 2. Accessing alarm/warning and diagnostic readouts
- 3. Performing service

If the advanced parameter settings are not needed, the product can be set using Dip switch only. While using the Dip switch option a connection to PC is not required.

- To connect EKF to pc the below tools are needed
- 1. KoolProg PC software (Check KoolProg website if the version supports EKF)
- 2. Koolkey
- 3. Cables to connect Koolkey to PC and EKF(available as Koolkey accessory)

The schematic below shows how to connect EKF with Koolkey and PC

Figure 10: EKF with Koolkey and PC

Steps to follow while connecting EKF to KoolProg:

- 1. Connect EKF to power, make sure power is ON
- 2. Connect Valve and input signals to EKF.
- 3. Connect Koolkey to EKF and PC

- 4. Select **On-line service** option in Koolprog.
- 5. Select SW Main switch to OFF
- 6. Make necessary changes to parameters from drop down lists.
- 7. After completing all changes set **SW Main switch** to **ON**.
- 8. EKF is ready to use with the new settings.

Figure 11: On-line service

•	☆	Label	Description	Min	Default	Value	Мах				
•	Basic Setting-Generic										
	- 12	MAIN	Main switch		On	Off 🗸					
	\$	B000	Battery alarms enable		Off	Off -					
	\$	B001	Factory reset		No	No -					
	\$	B002	Relay position		Auto	Auto 👻					

O NOTE:

To make changes to the settings of EKF using Koolkey/KooProg software, the SW main switch should be OFF.

By default EKF looks at DIP switch for the settings. If settings are altered to use values for Koolprog then EKF will look at Koolprog settings only and not follow changes in DIP switch. To use DIP switch again, EKF should be changed back to use DIP switch settings using Koolprog

EKF can be configured using PC with the use of Koolkey and Koolprog PC tool. The KoolProg tool should be used for making advanced selection and setting of EKF. There are 2 main sections in Koolprog for EKF configuration:

- 1. Basic setting
- 2. Valve driver setting

Basic setting

Figure 12: Basic setting

7 ☆	Label	Description	Min	Default	Value	Max		
Basic S	etting-Generic							
- 17	MAIN	Main switch		On	Off 🗸			
\$	B000	Battery alarms enable		Off	Off -			
\$	B001	Factory reset		No	No 👻			
\$	B002	Relay position		Auto	Auto -			
Basic Setting-Driver 1								
1	B100	Driver enabling		On	On -			
\$	B101	Valve selection		DIP Switch	DIP Switch 👻			
\$	B102	Valve positioning mode		From AI	From Al 👻			
Basic S	etting-Analog inp	iut 1						
\$	B104	Al selection		DIP switch	DIP switch ~			
\$	B105	Al calibration offset V	-1.00	0.00 V	0.00 V	1.00		
\$	B106	Al calibration offset mA	-2.00	0.00 mA	0.00 mA	2.00		

Basic setting – Generic

Main Switch - Main

Main switch should be OFF while making changes to parameters and must be turned back ON to have the settings made active.

Battery alarm enable – B000 This parameter should be used to set battery alarm ON/OFF. Turning it on will enable alarm through DO(Digital output) when battery voltage is low.

Factory reset – B001 This parameter should be used to factory reset EKF, When full reset of all parameters are required

Relay position – B002 This parameter should be kept at position Auto. There is an option to force open and close the alarm. This parameter should be used as service test to see if alarm activates and communicates through DO (Digital output).

Basic setting – Driver

Driver enabling – B100

This parameter should be used to turn ON/OFF driver output.

When OFF is selected EKF will not drive valve connected to corresponding stepper output.

Valve selection – B101

This parameter is used to select which valve the stepper output is connected to and which setting (DIP switch or KoolProg) that EKF has to follow.

When set to Dip switch EKF reads the setting made on DIP switch.

When set to User defined, Additional parameters will be visible in valve driver setting.

This should be used when configuring valves that are not preset into EKF.

When set to groups, EKF will recognize the valves according to the group naming

Valve position mode – B102

This parameter is used to select which input EKF should use to position the valve. When selecting from AI, EKF will read the AI input and move valve accordingly. When selecting from register, an additional parameter valve position will be visible. According to the valve position % (OD%) EKF will move the valve.

Figure 13: Basic setting - Driver1

•	☆	Label	Description	Min	Default	Value	Max
- B	asic Set	ting-Driver 1					
	☆	B102	Valve positioning mode		From AI	From register 👻	
	\$	B103	Valve position	0.00	0.00 %	0.00 %	100.00

O NOTE:

Valve position mode: From register is only used for service and check purpose.

Basic setting – Valve analog input

Al selection -B104

This parameter is used to set if EKF has to use Dip switch for AI selection or from Koolprog.

When selected to Dip switch EKF will read the dip switch setting.

When selected to other inputs from drop down list EKF will not read from Dip switch instead will use setting selected here.

Al calibration offset V - B105 This parameter is used to offset 0 - 10 V, 0 - 5 V Al input signal

Al calibration offset mA - B106

This parameter is used to offset 4 - 20 mA, 0 - 20 mA AI input signal Figure 14: Valve driver setting

☆	Label	Description	Min	Default	Value	Max
Valve o	driver settings-Val	ve 1				
☆	V116	Overdrive enable OD	0	0 %	0 %	100
☆	V117	Overdrive block time	0	10 min	10 min	1440
	V118	Neutral zone	0.0	1.0 %	1.0 %	10.0
\$	V119	Valve OD on power failure	0	0 %	0 %	100
\$	V120	Analog input selection		DIP switch	DIP switch ~	
\$	V121	Input % scale to 0 position	0	0 %	0 %	100
☆	V122	Input % scale to 100 position	0	100 %	100 %	100
\$	V123	Force Overdrive		No	No 👻	
\$	V124	Forced Overdrive time	0	0 hours	0 hours	9000
\$	V125	Valve size reduction	0	0 %	0 %	80
\$	V126	Open wire detection		Yes	Yes 👻	
☆	V129	Cable length compensation	100	100 %	100 %	150
☆	V130	MOPD current	100	100 %	100 %	150
☆	V131	MOPD OD stop	0	10 %	10 %	100

Figure 15: Valve driver setting - valve 1

Valve dr	iver settings-Valv	e 1				
☆	V116	Overdrive enable OD	0	0 %	0 %	100
☆	V117	Overdrive block time	0	10 min [10 min	1440
\$	V118	Neutral zone	0.0	1.0 %	1.0 %	10.0
☆	V119	Valve OD on power failure	0	0 % [0 %	100
\$	V120	Analog input selection		DIP switch	DIP switch ~	
\$	V121	Input % scale to 0 position	0	0 %	0 %	100
☆	V122	Input % scale to 100 position	0	100 %	100 %	100
☆	V123	Force Overdrive		No	No -	
\$	V124	Forced Overdrive time	0	0 hours	0 hours	9000
☆	V125	Valve size reduction	0	0 %	0 %	80
☆	V126	Open wire detection		Yes	Yes 👻	

Overdrive

Overdrive features are necessary to help driver calibrate the valve position and prevents accumulation of loss of step.

Overdrive will close the valve with extra number of steps towards closing direction.

The number of additional steps for overdrive is valve depended. While using Danfoss valves from

valve selection list number of steps for overdrive is automatically set.

For third party products this should be set as a parameter inside user defined valve.

Excess overdrive will increase valve wear rate.

Figure 16: EKF overdrive

Overdrive enable OD - V116

This parameter defines the opening degree that triggers an overdrive. If the actual opening degree of the valve crosses the overdrive enable OD then the driver will be ready for an overdrive the next time the valve actual opening degree reaches below 1% opening degree

Overdrive block time - V117

This parameter defines the time block between 2 consecutive overdrives

Neutral zone – V118

Valve neutral zone limits the driver from moving the valve from its position if the differential between the current valve position to the new position of the valve is within this percentage. This limits the valve from changing position for small variations in incoming analog signals

By defualt Neutral zone is 1% that is any change in valve opening degree from reference of +0.5% will not move the valve. Any change above this band will move the valve to the new position.

Figure 17: Forced overdrive

Forced Overdrive – V123

Forced overdrive is use to trigger an overdrive purely based on time. The driver will move the valve to 0 position with overdrive and immediately come back to the requested position from analog signal

```
Forced overdrive time – V124
Forced overdrive time is a timer for forced overdrive.
Forced overdrive has highest priority and will overrule overdrive block time V117.
Overdrive block time V117 will be reset after forced overdrive is made.
After forced overdrive valve will return back to last position.
```

Valve OD on power failure – V119

This parameter sets the opening degree to which the driver should position the valve during an emergency closing has been done due to power failure

Analog input selection - V120

This parameter is used to select which analog input signal EKF should use to position the valve. If Dip switch is selected then EKF will read the settings made at dip switch else it will use as per the selection made in software.

Valve scaling EKF has parameter that can scale valve opening degree to the input analog signal.

Input % scale to 0 position - V121

In normal operation EKF will linearly control valve from 0 – 100 % opening degree corresponding to 0 – 10 V analog signal.

When input scaling is done from 0 position the Analog input is scaled towards this range.

Eg: If V121 is 0 then valve will move 0 – 100% opening degree with 0 – 10 V.

If V121 is 10 then valve will move 10 - 100% opening degree with 0 - 10 V

Input % scale to 100 position – V122

In a normal operation EKF will linearly control valve from 0 – 100 % opening degree corresponding to 0 – 10 V analog signal. When input scaling is done from 100 position the Analog input is scaled towards this range. Eq: If V122 is 100 then valve will move 0 – 100% opening degree with 0 – 10 V.

If V121 is 90 then valve will move 0 - 90% opening degree with 0 - 10 V

Valve size reduction - V125

This parameter can help reduce oversized valves in application. If V125 is 0 then valve size is 0 - 100% of opening degree If V125 is 10 then valve size is 0 - 90% of opening degree

Figure 18: EKF valve

Open wire detection – V126

This parameter is used to switch on and off the open wire detection. This helps detect if there is any open wire or discontinuity in stepper coil connection

Parameters

Table 3: BASIC SETTING

Label	Description	Min	Max	Value (Defualt)	Unit	Enumeration	Notes
DRIVER 1							
B100	Driver enabling			1 = On		0=Off;1=On	0:Parameter configuration al- lowed for update; 1:Normal op- eration
B101	Valve selection			0 = DIP Switch		DIP switch, User defined, Group B, Group C, Group D, Group E, Group F, Group G, Group H, Group I, Group J, Group K, Group L, Group M, Group N, Group O, Group P, Group Q, Group R, Group S, Group T, Group V, Group X, Group Y, Group Z	0:Valve selection by DIP switch; 1 – 19:DIP switch set by parame- ter
B102	Valve positioning mode			0 = From Al		0=From Al;1=From register	0:Analog input; 1:parameter B103
B103	Valve position	0	100	0	%		Manual opening degree set by parameter (B102 = AI)
ANALOG IN	NPUT 1						
B104	Al selection			0 = DIP switch		0=DIP switch;1=0 - 10 V; 2=0 - 5 V; 3=4 - 20 mA; 4=0 - 20 mA	0:Type selection by DIP switch; 1 – 4: Type selection by parameter
B105	AI calibration offset V	-1	1	0	v		Offset added to measured sig- nal
B106	AI calibration offset mA	-2	2	0	mA		Offset added to measured sig- nal
DRIVER 2							
B200	Driver enabling			1 = On		0=Off;1=On	0:Parameter configuration al- lowed for update; 1:Normal op- eration
B201	Valve selection			0 = DIP Switch		DIP switch, User defined, Group B, Group C, Group D, Group F, Group F, Group G, Group H, Group I, Group J, Group K, Group L, Group M, Group N, Group O, Group P, Group Q, Group R, Group S	0:Valve selection by DIP switch; 1 – 31:DIP switch set by parame- ter
B202	Valve positioning mode			0 = From Al		0=From Al;1=From register	0:Analog input; 1:parameter B203
B203	Valve position	0	100	0	%		Manual opening degree set by parameter (B202 = AI)
ANALOG IN	NPUT 2						
B204	Al selection			0 = DIP switch		0=DIP switch; 1=0 – 10 V; 2=0 – 5 V; 3=4 – 20 mA; 4=0 – 20 mA	0:Type selection by DIP switch; 1 – 4: Type selection by parameter
B205	AI calibration offset V	-1	1	0	v		Offset added to measured sig- nal
B206	AI calibration offset mA	-2	2	0	mA		Offset added to measured sig- nal
GENERIC							
B000	Battery alarms enable			0 = Off		0=Off;1=On	0:No Alarm; 1:Alarm based on battery voltage
B001	Factory reset			0 = No		0=No;1=Yes	0:No; 1:Yes,Reset all parameters to factory settings
B002	Relay position			0 = Auto		0=Auto;1=Open;2=Close	

Table 4: VALVE DRIVER SETTINGS

Label	Description	Min	Мах	Value (Defualt)	Unit	Enumeration	Notes
VALVE 1							
V100	User defined Motor type			0 = Unipolar		0=Unipolar; 1=Bipolar	Type of motor used in the step- per valve (Unipolar/Bipolar).
V101	User defined Decay mode			0 = Fast		0=Fast; 1=Slow; 2=Mixed	Fast decay mode causes a rapid reduction in inductive current and allows the motor to coast toward zero velocity. Slow de- cay mode leads to a slower re- duction in inductive current but produces rapid deceleration.
V102	User defined Step mode			0 = Full		0=Full; 1=Half; 2=1/4; 3=1/8; 4=1/16	Danfoss recommends using 1/8 stepping mode as this provides a good balance between torque and speed and ensures smooth operation.
V103	User defined Step posi- tioning			2 = Auto		0=Fullstep;1=Halfstep;2=Au- to	
V104	User defined Total steps	0	10000	0	stp		The total no of steps will vary according to the selected valve motor type, always referring to full steps.
V105	User defined Speed	10	300	10	pps		Desired valve speed drive rate in steps per second.
V106	User defined Start speed	100	100	100	%		Valve Start Speed (1 – 100% of Valve speed)
V107	User defined Emengency speed	50	200	100	%		Emergency close is in use when the main power is lost, and the valve is closed using the battery backup
V108	User defined Drive cur- rent	10	1000	10	mA		Current applied to each phase of the stepper motor during ac- tual valve movement.
V109	User defined Acceleration current	100	100	100	%		Current supplied to the coils un- der acceleration of the stepper motor
V110	User defined Acceleration time	10	10	10	ms		Time used to get from min speed to normal speed
V111	User defined Holding cur- rent	0	100	0	%		Percent of Max Phase Current that should be applied to each phase of the stepper output when the valve is stationary.
V112	User defined Valve excita- tion time after stop	0	1000	10	ms		Time that the drive current is continued after the motor has stopped movement. Next state is holding current.
V113	User defined Compensa- tion backlash	0	10	0	%		Number of steps needed to cor- rect for mechanical hysteresis when a reduction gear is part of the valve design
V114	User defined Valve ther- mal protection	0	100	100	%		For Danfoss valves don't changemaximum - allowed du- tycycle
V115	User defined Overdrive	0	20	5	%		Extra steps for zerocalibrating valve possition, scaled as a per- centage of the full opening.
V116	Overdrive enable OD	0	100	0	%		Defines how much the valve must have been open before overdrive is allowed at next close position
V117	Overdrive block time	0	1440	10	min		Defines the minimum time be- tween two overdrive actions. Overdrive calibrations within this time frame will be ignored.
V118	Neutral zone	0	10	1	%		Define how much the requested OD must change before a new OD is set.
V119	Valve OD on power fail- ure	0	100	0	%		Move the valve to a predefined position during power failure
V120	Analog input selection			0 = DIP switch		0=DIP switch; 1=AI 1; 2=AI 2	0:DIP switch; 1:AI 1; 2: AI 2
V121	Input % scale to 0 posi- tion	0	100	0	%		Signal type is defined by "B104" "Al selection"

Stepper valve driver, type EKF 1A, EKF 2A

Lahel	Description	Min	Max	Value (Defualt)	Unit	Enumeration	Notes
V122	Input % scale to 100 posi- tion	0	100	100	%		Signal type is defined by "B104" "Al selection"
V123	Force Overdrive			0 = No		0=No;1=Yes	Manually initiate an overdrive. NOTE this will close the valve for some tome
V124	Forced Overdrive time	0	9000	0	hours		Timer based overdrive. If no overdrive has been performed within this period, then a valve close is done (forced overdrive)
V125	Valve size reduction	0	80	0	%		
V126	Open wire detection			1 = Yes		0=No; 1=Yes	
VALVE 2							
V200	User defined Motor type			0 = Unipolar		0=Unipolar; 1=Bipolar	Type of motor used in the step- per valve (Unipolar/Bipolar).
V201	User defined Decay mode			0 = Fast		0=Fast; 1=Slow; 2=Mixed	Fast decay mode causes a rapid reduction in inductive current and allows the motor to coast toward zero velocity. Slow de- cay mode leads to a slower re- duction in inductive current but produces rapid deceleration.
V202	User defined Step mode			0 = Full		0=Full; 1=Half; 2=1/4; 3=1/8; 4=1/16	Danfoss recommends using 1/8 stepping mode as this provides a good balance between torque and speed and ensures smooth operation.
V203	User defined Step posi- tioning			2 = Auto		0=Fullstep; 1=Halfstep; 2=Auto	
V204	User defined Total steps	0	10000	0	stp		The total no of steps will vary according to the selected valve motor type, always referring to full steps.
V205	User defined Speed	10	300	10	pps		Desired valve speed drive rate in steps per second.
V206	User defined Start speed	100	100	100	%		Valve Start Speed (1 – 100% of Valve speed)
V207	User defined Emengency speed	50	200	100	%		Emergency close is in use when the main power is lost, and the valve is closed using the battery backup
V208	User defined Drive cur- rent	10	1000	10	mA		Current applied to each phase of the stepper motor during ac- tual valve movement.
V209	User defined Acceleration current	100	100	100	%		Current supplied to the coils un- der acceleration of the stepper motor
V210	User defined Acceleration time	10	10	10	ms		Time used to get from min speed to normal speed
V211	User defined Holding cur- rent	0	100	0	%		Percent of Max Phase Current that should be applied to each phase of the stepper output when the valve is stationary.
V212	User defined Valve excita- tion time after stop	0	1000	10	ms		Time that the drive current is continued after the motor has stopped movement. Next state is holding current.
V213	User defined Compensa- tion backlash	0	10	0	%		Number of steps needed to cor- rect for mechanical hysteresis when a reduction gear is part of the valve design
V214	User defined Valve ther- mal protection	0	100	100	%		For Danfoss valves don't changemaximum - allowed du- tycycle
V215	User defined Overdrive	0	20	5	%		Extra steps for zerocalibrating valve possition, scaled as a per- centage of the full opening.
V216	Overdrive enable OD	0	100	0	%		Defines how much the valve must have been open before overdrive is allowed at next close position

Stepper valve driver, type EKF 1A, EKF 2A

Label	Description	Min	Max	Value (Defualt)	Unit	Enumeration	Notes
V217	Overdrive block time	0	1440	10	min		Defines the minimum time be- tween two overdrive actions. Overdrive calibrations within this time frame will be ignored.
V218	Neutral zone	0	10	1	%		Define how much the requested OD must change before a new OD is set.
V219	Valve OD on power fail- ure	0	100	0	%		Move the valve to a predefined position during power failure
V220	Analog input selection			0 = DIP switch		0=DIP switch; 1=AI 2; 2=AI 1	0:DIP switch; 1:AI 2; 2: AI 1
V221	Input % scale to 0 posi- tion	0	100	0	%		Signal type is defined by "B204" "Al selection"
V222	Input % scale to 100 posi- tion	0	100	100	%		Signal type is defined by "B204" "Al selection"
V223	Force Overdrive			0 = No		0=No; 1=Yes	Manually initiate an overdrive. NOTE this will close the valve for some tome
V224	Forced Overdrive time	0	9000	0	hours		Timer based overdrive. If no overdrive has been performed within this period, then a valve close is done (forced overdrive)
V225	Valve size reduction	0	80	0	%		
V226	Open wire detection			1 = Yes		0=No; 1=Yes	

Table 5: READOUTS

Label	Description	Min	Мах	Value (Defualt)	Unit	Enumeration	Notes
DRIVER 1							·
R100	Valve position	0	100	0	%		Actual valve possition
R101	Analog input signal	0	20000	0	uA/mV		Actual analog input signal
DRIVER 2							
R200	Valve position	0	100	0	%		Actual valve possition
R201	Analog input signal	0	20000	0	uA/mV		Actual analog input signal
GENERIC							
R000	Battery voltage	0	30000	0	mV		Measured battery voltage
R001	Software version high	0	65535	0			Software version high.low (the integer part)
R002	Software version low	0	65535	0			Software version high.low (the decimal part)

Product specification

Technical data

Table 6: Valve settings

Function Data	Value				
Supply Voltage	EKF 1A: 24 V AC / DC 50 / 60 Hz EKF 2A: 24 V AC / DC, 50 / 60 Hz				
Power consumption	Idle operating: < 1 W (without valve) Power consumption for using 1 valve. CCMT 16 – CCMT 42: 25 VA / 15 W ETS 5M, ETS 6: 20 VA / 10 W ETS 12C – ETS 100C, KVS C: 30 VA /15 W ETS 12.5 – 400: 10 VA / 5 W ETS 500P, 800P: 28 VA / 20 W CCMT 2- CCMT 8: 10 VA / 5 W CTR 20: 14 VA / 10 W CCMT L: 20 VA / 10 W When using two valves sum the power consumption of each valve				
Number of analog inputs	EKF 1A: 1input (Al1) EKF 2A: 2 inputs (Al1, Al2)				
Analog signal supported	0-5 V, 0-10 V, 4-20 mA, 0-20 mA				
Digital outputs	1 output for EKF1A / EKF 2A: D01 (open collector), max sink current 10 mA				
Valve support	EKF 1A: 1 stepper motor valve output EKF 2A: 2 stepper motor valve output STEPPER 1: A1, A2, B1, B2 STEPPER 2: A1, A2, B1, B2 Bipolar and unipolar stepper motor output: - Danfoss ETS/ ETS L/ KVS/ ETS C/ KVS C/ CCMT 2 – CCMT 42/ CTR/ CCM/ CCMT L Valves - ETS 6 / ETS 5M (unipolar) / ETS 8M (Bipolar) / ETS 8M (Unipolar) Valves Open circuit HW diagnostics is present. This func- tion is not available when using Unipolar valves				
Battery backup	1 input for EKF 1A / EKF2A: Vbat Nominal 18 – 24 V DC, Min 16 V DC - Max 28 V DC (Danfoss EKE 2U recommended)				
Storage temperature	-30 – 80 °C / -22 – 176 °F				
Operating temperature	-20 – 60 °C / -4 – 140 °F				
Humidity	<90% RH, non-condensing				

Identification

Product label and barcode label is positioned in the back of product

Figure 19: Product label

The product label above is an example (data might change from actual product label)

Stepper valve driver	Product description	
EKF 2A	Product type designation	
080G5035	Product code number	
24V AC/DC 50/60 Hz	Input power rating	
PV01	Product version	
SW1v00	Software version	
QR code	Danfoss product information website	
Made in Denmark	Country of origin	
Danfoss A/S, 6430 Nordborg, Denmark	Company address	

Troubleshooting

Table 7: Driver settings

Label	Alarm/Warning	Description	Troubleshoot
A00	Overcurrent alarm driver 1	Analog signal has received higher current than allowed in Al1 (detected while using current signal selection)	Check Current signal source Al1 input. Check DIP switch/ Software selection of Al1 setting (If wrong selection has been made)
A01	Battery fault	Battery voltage alarm, Activated when Bat- tery voltage <=12 V	Check battery connection Change battery backup unit immediately.
W01	Battery warning	Battery voltage warning, Activated when Battery voltage >12 V or <=16 V	Battery backup needs to be replaced soon Check battery connection
A02	Stepper fault driver 1	Short circuit on the valve output (Stepper driver 1) or over temperature of EKF driver hardware	Check the valve connection in stepper driver 1 Check ambient temp conditions of hardware.
A03	Open circuit fault driver 1	Open circuit detection for valve connec- tion (Stepper driver 1)	Check the valve connection (Stepper driver 1). Broken wires (Stepper driver 1).
A04	Persistent memory fault	Memory error	Replace EKF driver.
W02	DIP Switch position changed after boot driver 1	DIP switch position for stepper driver 1 has been changed while EKF is powered on.	Only change DIP switch with EKF powered off. Reboot EKF
W06	Invalid configuration driv- er 1	Mistake in software or Dip switch configu- ration of stepper driver 1.	Review configuration of stepper driver 1.
W03	Configured valve current exceeds the maximum supplied current driver 1	Alarm triggered when max current output is above the limitation of 1A per driver. Alarm detected on stepper driver 1	Max current output per driver is 1 A. Adjust EKF valve parameters to limit current to 1A (if possible)
A06	Overcurrent alarm driver 2	Analog signal has received higher current than allowed in Al2 (detected while using current signal selection)	Check Current signal source Al2 input. Check DIP switch/ Software selection of Al2 setting (If wrong selection has been made)
A07	Stepper fault driver 2	Short circuit on the valve output (Stepper driver 2) or over temperature of EKF driver hardware	Check the valve connection in stepper driver 2 Check ambient temp conditions of hardware.
A08	Open circuit fault driver 2	Open circuit detection for valve connec- tion (Stepper driver 2)	Check the valve connection (Stepper driver 2). Broken wires (Stepper driver 2).
W04	DIP Switch position changed after boot driver 2	DIP switch position for stepper driver 2 has been changed while EKF is powered on.	Only change DIP switch with EKF powered off. Reboot EKF
W07	Invalid configuration driv- er 2	Mistake in software or Dip switch configu- ration of stepper driver 2.	Review configuration of stepper driver 2.
W05	Configured valve current exceeds the maximum supplied current driver 2	Alarm triggered when max current output is above the limitation of 1 A per driver. Alarm detected on stepper driver 2.	Max current output per driver is 1 A. Adjust EKF valve parameters to limit current to 1 A (if possible)

Certificates, declarations, and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Table 8: Approvals

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Danfoss A/S

Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product. All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.

Danfoss

ENGINEERING TOMORROW