

Data sheet

Pressure independent control valve with integrated flow limiter AFQM 6 DN 40, 50 - return and flow mounting

Description

AFQM 6 is a self-acting flow controller with integrated control valve with full authority, primarily for use in district heating systems. The controller closes when set max. flow is exceeded. In combination with Danfoss electrical actuators AMV(E) can be controlled by ECL electronic controllers.

The AFQM 6 is pressure independent which means that the control characteristic is independent from the available pressure and is not influenced by a low authority.

The controller has a control valve with adjustable flow restrictor, connection neck for electrical actuator and an actuator with one control diaphragm. Control valve AFQM 6 DN40-50 is not pressure relieved.

Controllers are used together with Danfoss electrical actuators:

- AFQM 6 PN 16/25 DN 40-50¹⁾
 - AMV(E) 65x¹
without spring return function and with manual operation:
 - AMV(E) 655
spring return function and manual operation:
 - AMV(E) 658 SD²⁾

Spring return function, without mechanical operation:

- AMV(E) 659 SD³⁾
- AMV(E) 55, 56

¹⁾ For AFQM 6 PN 16/25 controllers, produced before March 2015, adapter code 065B3527 need to be separately ordered

²⁾ not DIN approved

³⁾ DIN approved, according to EN 14597

Main data:

- DN 40-50
- k_{vs} 20-32 m³/h
- Flow range 2.2-16 m³/h
- PN 16, 25, 40*
 - * PN 40 on special request
- Flow restrictor Δp_{MCV} : 0.2 bar
- Temperature:
 - Circulation water / glycolic water up to 30 %: 2 ... 150 °C
- Connections:
 - Flange
- AFQM 6 combined with AMV(E) 659 SD have been DIN approved according to EN 14597.

Ordering

Example:
Flow controller with integrated control valve, DN 50, k_{vs} 32, PN 16, flow restrictor Δp_{MCV} 0.2 bar, T_{max} 150 °C, flange

- 1x AFQM 6 DN 50 controller
Code No.: **003G1083**

The controller will be delivered completely assembled, inclusive impulse tubes between valve and actuator. Electrical actuator AMV(E) must be ordered separately.

AFQM 6 Controller

Picture	DN	k_{vs} m ³ /h	PN	Connection	Code No.	
					Δp_{MCV} =0.2 bar	
	40	20	16	Flange EN 1092-1	003G1082	
	50	32			003G1083	
	40	20	25		003G1084	
	50	32			003G1085	

Service kits

Type designation	For controller	Δp_{MCV} (bar)	Code No.
	Actuator	AFQM 6	0.2

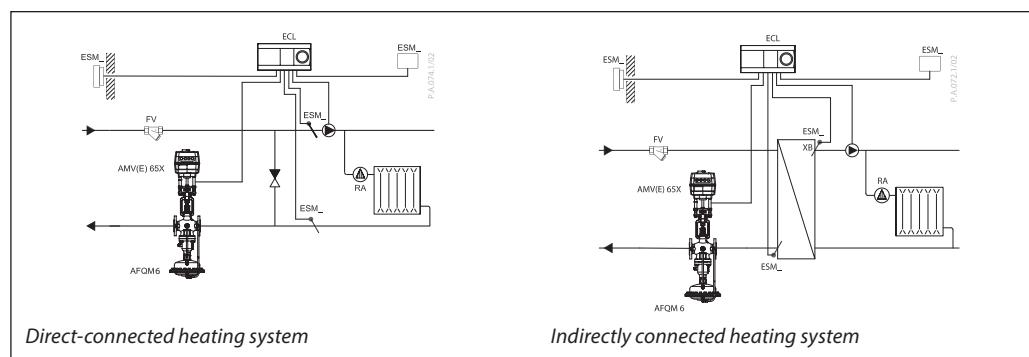
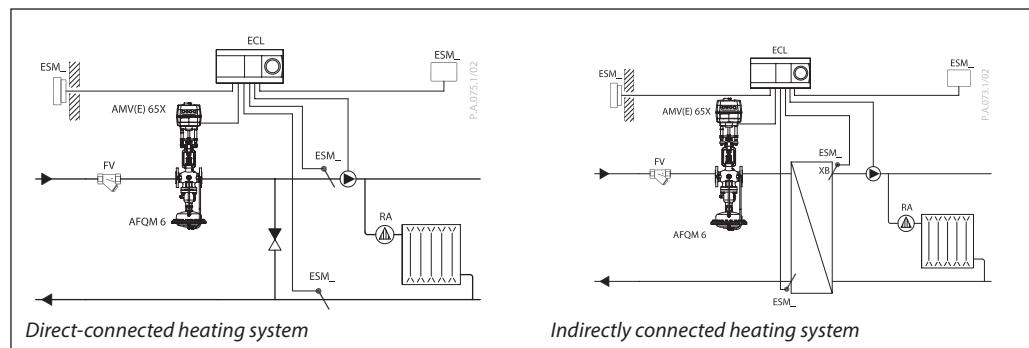
Technical data
AFQM 6 valve

Nominal diameter		DN	40	50
k_{vs} value			20	32
Max. flow setting (Q_{max})	Δp_{MCV} ¹⁾ = 0.2 bar	m ³ /h	11	16
Stroke		mm	8	12
Control valve authority	%		100	
Control characteristic			Linear ³⁾	
Cavitation factor z			0.55	0.5
Leakage acc. to standard IEC 534	% of k_{vs}		≤ 0.01	
Nominal pressure	PN		16, 25	
Min. differential pressure			see remark ²⁾	
Max. differential pressure PN 16	bar		16	
Max. differential pressure PN 25			20	
Medium			Circulation water / glycolic water up to 30%	
Medium pH			Min.7, max.10	
Medium temperature	°C		2 ... 150	
Connections			Flange	
Materials				
Valve body	PN 16		Grey cast iron EN-GJL-250 (GG-25)	
	PN 25		Ductile cast iron EN-GJS-400-18-LT (GGG-40.3)	
Valve seat DP, CV			Stainless steel mat. No. 1.4021	
Valve cone DP, CV			Stainless steel mat. No. 1.4404	
Sealing DP			EPDM	
Sealing CV			Metal	
Pressure relieve system	Control valve insert		-	
	Valve insert		Bellows (Stainless steel mat. No. 1.4571)	

Note:

DP - differential pressure controller, CV - control valve

¹⁾ Δp_{MCV} - differential pressure over flow restrictor

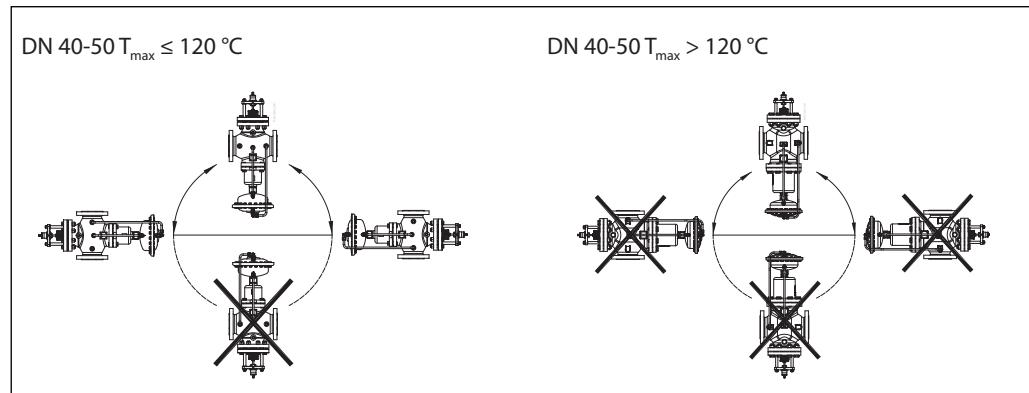


²⁾ Depends on the flow rate and valve k_{vs} ; For $Q_{set} = Q_{max} \rightarrow \Delta p_{min} \geq 0.5$ bar; For $Q_{set} < Q_{max} \rightarrow \Delta p_{min} = \left(\frac{Q}{k_{vs}} \right)^2 + \Delta p_{MCV}$

³⁾ Could be converted by actuator AME 65x to logarithmic

AFQM 6 Actuator

For valve	DN	40	50
Actuator size	cm ²	250	
Max. operational pressure	bar	25	
Flow restrictor diff. pressure Δp_{MCV}		0.2	
Materials			
Housing		Stainless steel M. No. 1.0338	
Diaphragm		EPDM (Rolling; fibre enforced)	
Impulse tube		Stainless steel tube Ø10 x 0.8 mm	

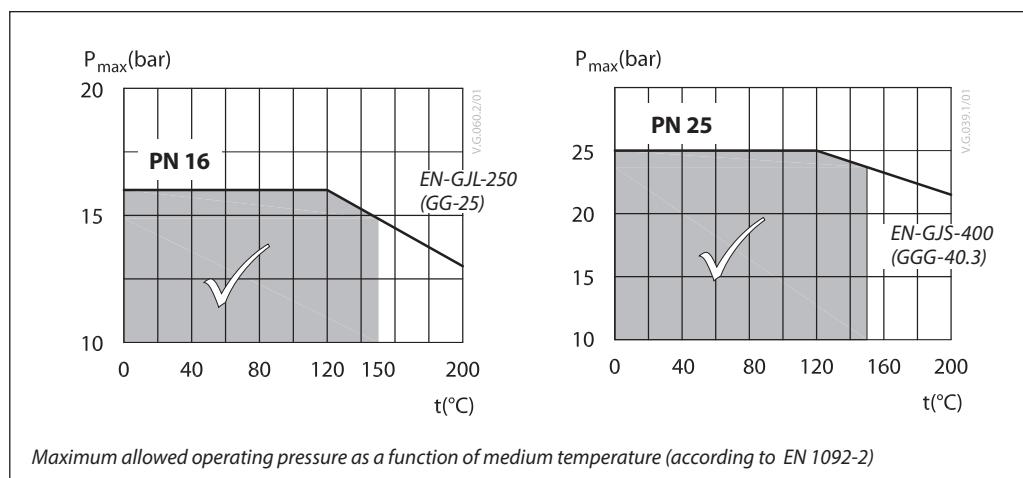
Application principles


- *Return mounting*

- *Flow mounting*

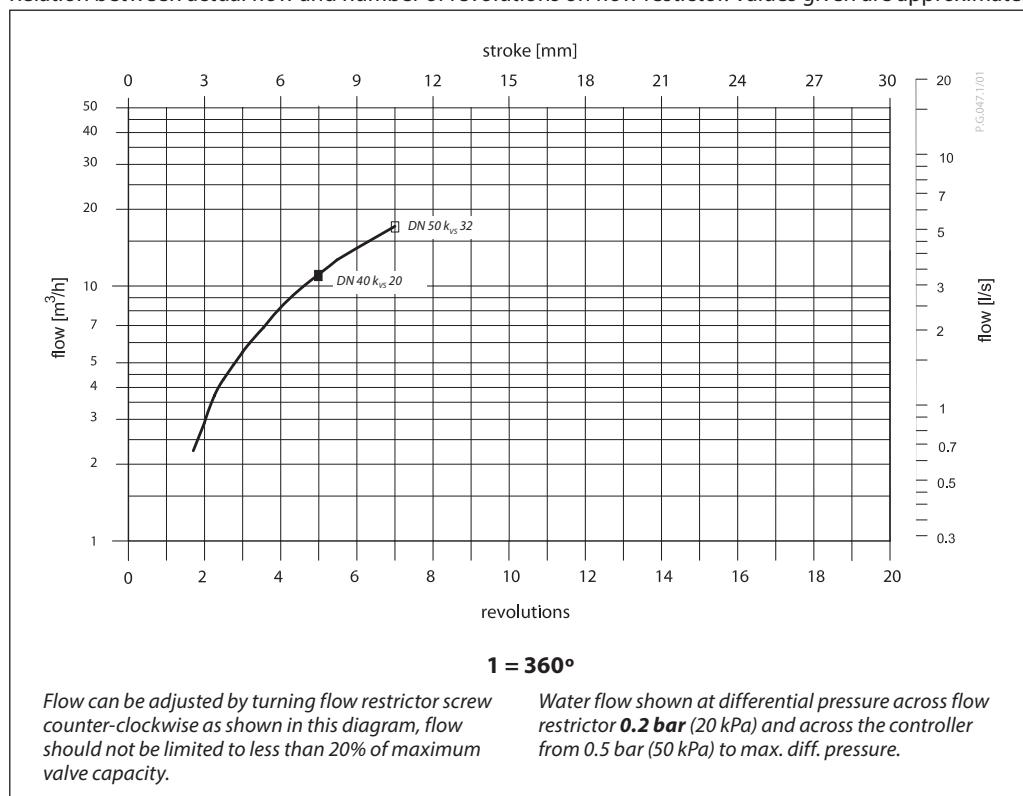
Installation positions

DN 40-50 $T_{max} \leq 120^\circ C$


The controllers can be installed, with connection neck pointing in horizontal direction or upwards.

DN 40-50 $T_{max} > 120^\circ C$

The controllers can be installed, with connection neck pointing upwards.


Pressure temperature diagram

Flow diagram

Sizing and setting diagram

Relation between actual flow and number of revolutions on flow restrictor. Values given are approximate.

Sizing

- Directly connected heating system

Example 1

Motorised control valve (MCV) for mixing circuit in direct-connected heating systems requires differential pressure of 0.2 bar (20 kPa) and flow less than 8000 l/h.

Given data:

$$Q_{\max} = 8.0 \text{ m}^3/\text{h} (8000 \text{ l/h})$$

$$\Delta p_{\min} = 0.8 \text{ bar (80 kPa)}$$

$$\Delta p_{\text{circuit}}^{\text{1)}} = 0.1 \text{ bar (10 kPa)}$$

$$\Delta p_{\text{MCV}} = 0.2 \text{ bar (20 kPa)} \text{ selected}$$

Remark:

¹⁾ $\Delta p_{\text{circuit}}$ corresponds to the required pump pressure in the heating circuit and is not to be considered when sizing the AFQM.

The total (available) pressure loss across the controller is:

$$\Delta p_{\text{AFQM,A}} = \Delta p_{\min}$$

$$\Delta p_{\text{AFQM,A}} = 0.8 \text{ bar (80 kPa)}$$

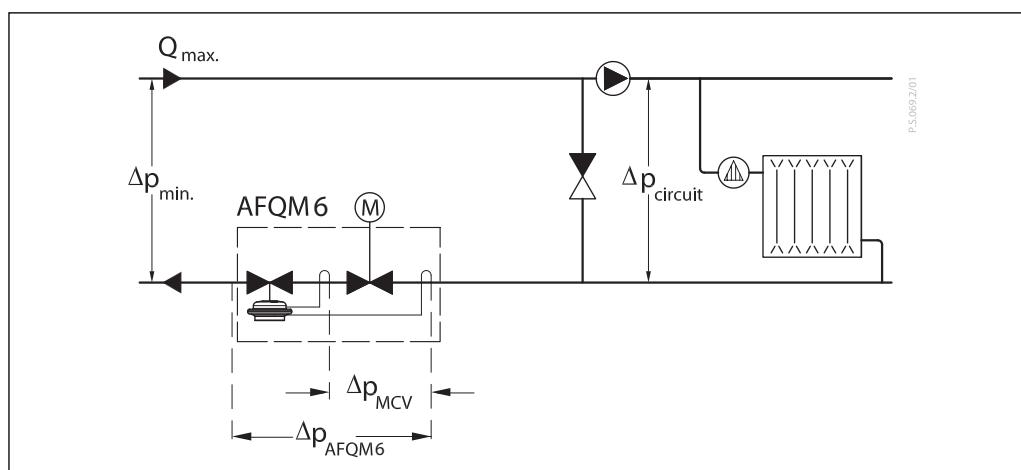
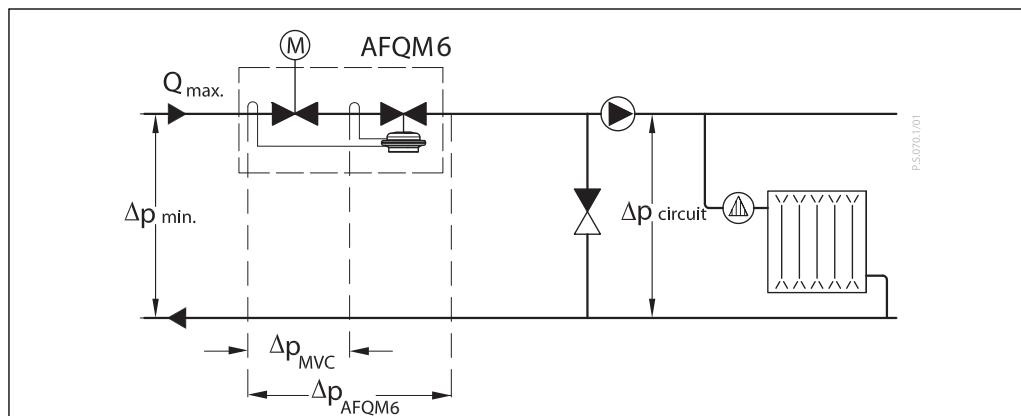
Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

Select controller from flow diagram, page 4, with the smallest possible k_{vs} value considering available flow ranges.

$$k_{vs} = 20 \text{ m}^3/\text{h}$$

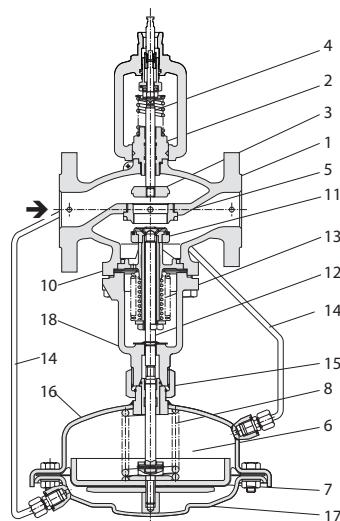
The min. required differential pressure across the selected controller is calculated from the formula:

$$\Delta p_{\text{AFQM,MIN}} = \left(\frac{Q_{\max}}{k_{vs}} \right)^2 + \Delta p_{\text{MCV}} = \left(\frac{8.0}{20} \right)^2 + 0.2$$



$$\Delta p_{\text{AFQM,MIN}} = 0.36 \text{ bar (36 kPa)}$$

$$\Delta p_{\text{AFQM,A}} > \Delta p_{\text{AFQM,MIN}}$$

$$0.8 \text{ bar} > 0.36 \text{ bar}$$

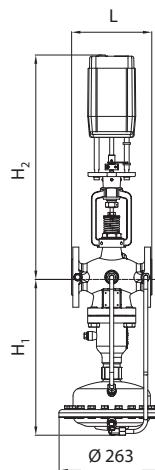
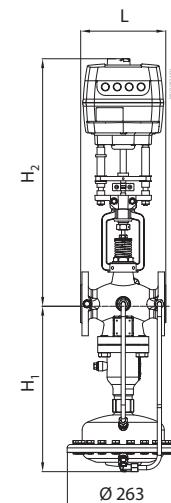

Solution:

The example selects AFQM 6 DN 40, k_{vs} value 20, flow setting range 2.2-11 m³/h.

Design

1. Valve body
2. Control valve insert
3. Adjustable flow restrictor
4. Control valve stem
5. Valve seat
6. Actuator
7. Control diaphragm for flow control
8. Built-in spring for flow rate control
9. Excess pressure safety valve
10. Valve insert
11. Pressure relieved valve cone
12. Valve stem
13. Bellows for pressure relief of valve cone
14. Impulse tube
15. Union nut
16. Upper casing of diaphragm
17. Lower casing of diaphragm
18. Cover

AFQM 6 DN 40, 50



Function

Flow volume causes pressure drop across the adjustable flow restrictor. Resulting pressures are being transferred through the impulse tubes to the actuator chambers and act on control diaphragm for flow control. The flow restrictor diff. pressure is controlled and limited by means of built-in spring for flow control. Control valve closes on rising differential pressure and opens on falling differential pressure to control max flow.

Additionally the electrical actuator will operate from zero to set max. flow according to the load.

Settings*Flow setting*

Flow setting is being done by the adjustment of the flow restrictor position. The adjustment can be performed on the basis of flow adjustment diagram (see relevant instructions) and/or by the means of heat meter.

Dimensions

AMV(E) 55, 56/AFQM 6

AMV(E) 65X/AFQM 6¹⁾

DN	L	H ₁	H ₂	Valve weight
				(kg)
40	200	390	645	17
50	230	390	645	22

DN	L	H ₁	H ₂	Valve weight
				(kg)
40	200	390	590	17
50	230	390	590	22

¹⁾ For AFQM 6 PN 16/25 and AFQM PN 25/40 controllers, produced before March 2015, adapter code 065B3527 need to be separately ordered

Danfoss A/S

Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc, and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product.

All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.