

Data sheet

Flow controller with integrated control valve, AVQML

Description

AVQML is a self-acting flow controller with integrated control valve primarily for use in district heating systems or in secondary district heating systems as well. The controller closes when set max. flow is exceeded.

In combination with Danfoss electrical actuators AMV(E) can be controlled by ECL electronic controllers.

AVQML has a control valve with adjustable flow restrictor, connection neck for electrical actuator, and an actuator with one control diaphragm.

Controllers are used together with Danfoss electrical actuators or with self-acting thermostat:

- AMV 150
- AMV(E) 10
- AMV(E) 13 with spring return function
- QTL thermostat

Main data:

- DN 15-20
- Nominal Flow range: 0.8-1.9 m³/h
- PN 25
- Temperature:
 - Circulation water / glycolic water up to 30%: 2 ... 110 °C
- Connections:
 - Ext. thread

Ordering

Example:

Flow controller with integrated control valve AVQML, DN 15, PN 25, Q_{nom} 0.8 m³/h, T_{max} 110 °C, ext. thread

- 1x AVQML DN 15 controller
Code No.: **003L3615**

Option:

- 1x Weld-on tailpieces
Code No.: **003Z0226**

Electrical actuator AMV(E) and thermostat QTL must be ordered separately.

AVQML Controller

Picture	DN (mm)	Connection		Code No,
	15	Cylindr, ext, thread acc, to ISO 228/1	G ¾ A	003L3615
	15 HF			003L3616
	20		G 1 A	003L3617
	20 HF			003L3618

Accessories

Picture	Type designation	DN	Connection		Code No.
	Weld-on tailpieces	15	-	-	003Z0226
		20			003Z0227
	External thread tailpieces	15	Conical ext. thread acc. to EN 10226-1	R ½	003Z0232
		20		R ¾	003Z0233
	Flange tailpieces	15	Flange PN 25, acc. to EN 1092-2	-	003H6915
		20			003H6916

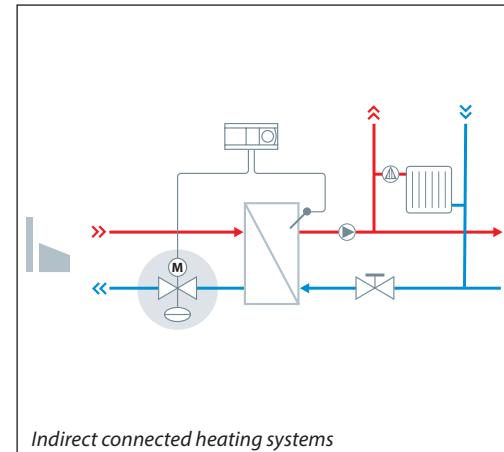
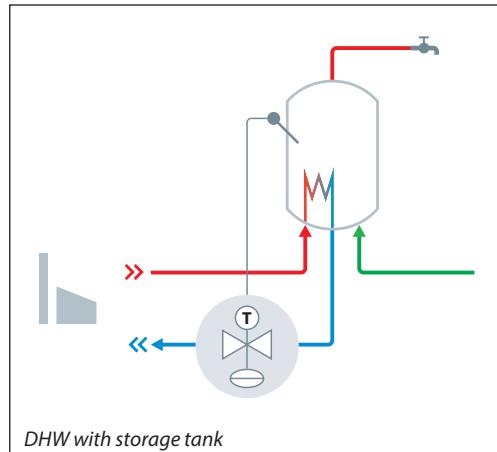
Technical data
Valve (thread version)

Nominal diameter	DN	15	15 HF	20	20 HF
k_{vs} value ¹⁾	m^3/h	2.7	4.1	4.7	8.5
Flow range Q_{nom}		0.8	1.3	1.25	1.9
Available Δp required for Q_{nom} ²⁾	bar	0.27	0.28	0.25	0.23
Δp CV				0.18	
Stroke	mm			4 for all DN's	
Control valve authority				1 (100 %) in the range of flow setting	
Rangeability for all DN's				>100:1	
Control characteristic				Linear	
Leakage acc. to standard IEC 534				IEC 60534-4:2007 class IV (0.01%) ³⁾	
Nominal pressure	PN			25	
Min. differential pressure	bar			see remark ²⁾	
Max. differential pressure				8	
Medium				Circulation water / glycolic water up to 30%	
Medium pH				Min, 7, max, 10	
Medium temperature	°C			2 ... 110	
Connections				External thread	
Materials					
Valve body	Valve bodies			DZR Brass	
Materials in the medium	Membranes and O-rings			EPDM	
	Shutter guide			PPSU	
	Shutter			DZR Brass	
	Springs			W.Nr.1.4310	
	Spring support			PPSU	
	Cone (Cv)			PPSU	
	Seat (Cv)			DZR Brass	
Materials out of medium	Plastic parts			ABS	

¹⁾ The k_{vs} values are intended to be used only in the formula number ²⁾.

$$\supseteq \text{For flows smaller than } Q_{nom} \rightarrow \Delta p_{min} = \left(\frac{Q}{k_{vs}} \right)^2 + \Delta p_{CV}$$

³⁾ the mentioned leakage accuracy is valid in combination with actuators AMV 150, AMV(E) 10 and AMV(E) 13.

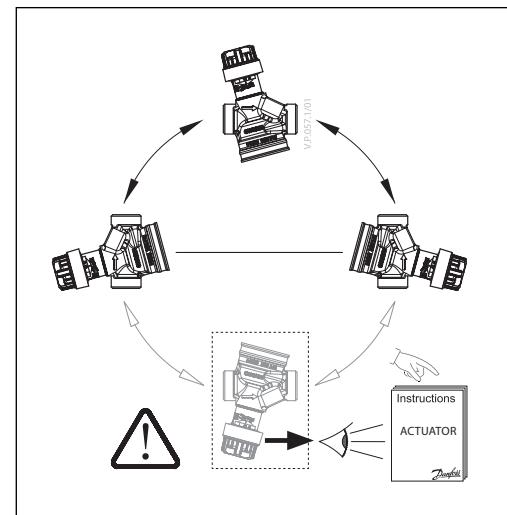
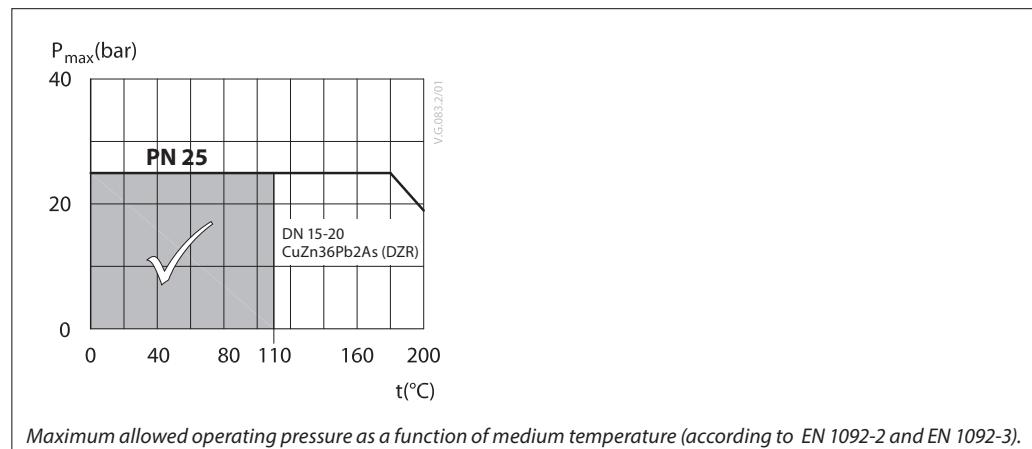


Note:

dp - differential pressure controller
Cv - Control valve part

Application principles

Direct connected heating systems
- with mixing loop

- DHW with storage tank
- Indirect connected heating systems



Examples of application drawings:

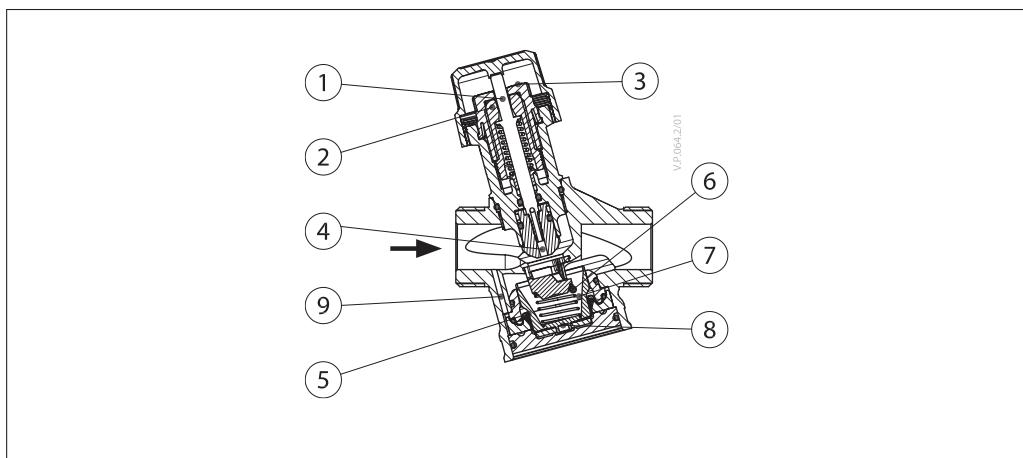
Installation positions

The controllers can be installed in all positions. In case of mounted with an actuator please refer to the actuator's instructions.

**Electrical actuator
Note!**

Installation positions for electrical actuators AMV(E) have to be observed as well. Please see relevant Data Sheet.

Pressure temperature diagram**Flow table 1, 2**


Setting	DN 15			DN 15 HF			DN 20			DN 20 HF		
	L/h	L/s	GPM	L/h	L/s	GPM	L/h	L/s	GPM	L/h	L/s	GPM
10%	80	0.022	0.35	130	0.036	0.57	125	0.035	0.55	190	0.053	0.84
15%	120	0.033	0.53	195	0.054	0.86	188	0.052	0.83	285	0.079	1.25
20%	160	0.044	0.70	260	0.072	1.14	250	0.069	1.10	380	0.106	1.67
25%	200	0.056	0.88	325	0.090	1.43	313	0.087	1.38	475	0.132	2.09
30%	240	0.067	1.06	390	0.108	1.72	375	0.104	1.65	570	0.158	2.51
35%	280	0.078	1.23	455	0.126	2.00	438	0.122	1.93	665	0.185	2.93
40%	320	0.089	1.41	520	0.144	2.29	500	0.139	2.20	760	0.211	3.35
45%	360	0.100	1.59	585	0.163	2.58	563	0.156	2.48	855	0.238	3.76
50%	400	0.111	1.76	650	0.181	2.86	625	0.174	2.75	950	0.264	4.18
55%	440	0.122	1.94	715	0.199	3.15	688	0.191	3.03	1045	0.290	4.60
60%	480	0.133	2.11	780	0.217	3.43	750	0.208	3.30	1140	0.317	5.02
65%	520	0.144	2.29	845	0.235	3.72	813	0.226	3.58	1235	0.343	5.44
70%	560	0.156	2.47	910	0.253	4.01	875	0.243	3.85	1330	0.369	5.86
75%	600	0.167	2.64	975	0.271	4.29	938	0.261	4.13	1425	0.396	6.27
80%	640	0.178	2.82	1040	0.289	4.58	1000	0.278	4.40	1520	0.422	6.69
85%	680	0.189	2.99	1105	0.307	4.87	1063	0.295	4.68	1615	0.449	7.11
90%	720	0.200	3.17	1170	0.325	5.15	1125	0.313	4.95	1710	0.475	7.53
95%	760	0.211	3.35	1235	0.343	5.44	1188	0.330	5.23	1805	0.501	7.95
100%	800	0.222	3.52	1300	0.361	5.72	1250	0.347	5.50	1900	0.528	8.37

1: the values are indicative. For accurate commissioning readouts from the flow meter should be utilized.

2: For accurate commissioning, it is recommended to perform it after the system is completely de-aired.

Design

1. Spindle
2. Stuffing box
3. Pointer
4. Control valve's cone
5. Membrane
6. Differential pressure controller spring
7. Shutter
8. Membrane plate
9. Internal impulse tube

Function:

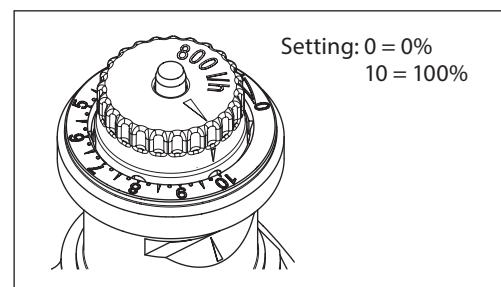
The AVQML valve consists of two parts:

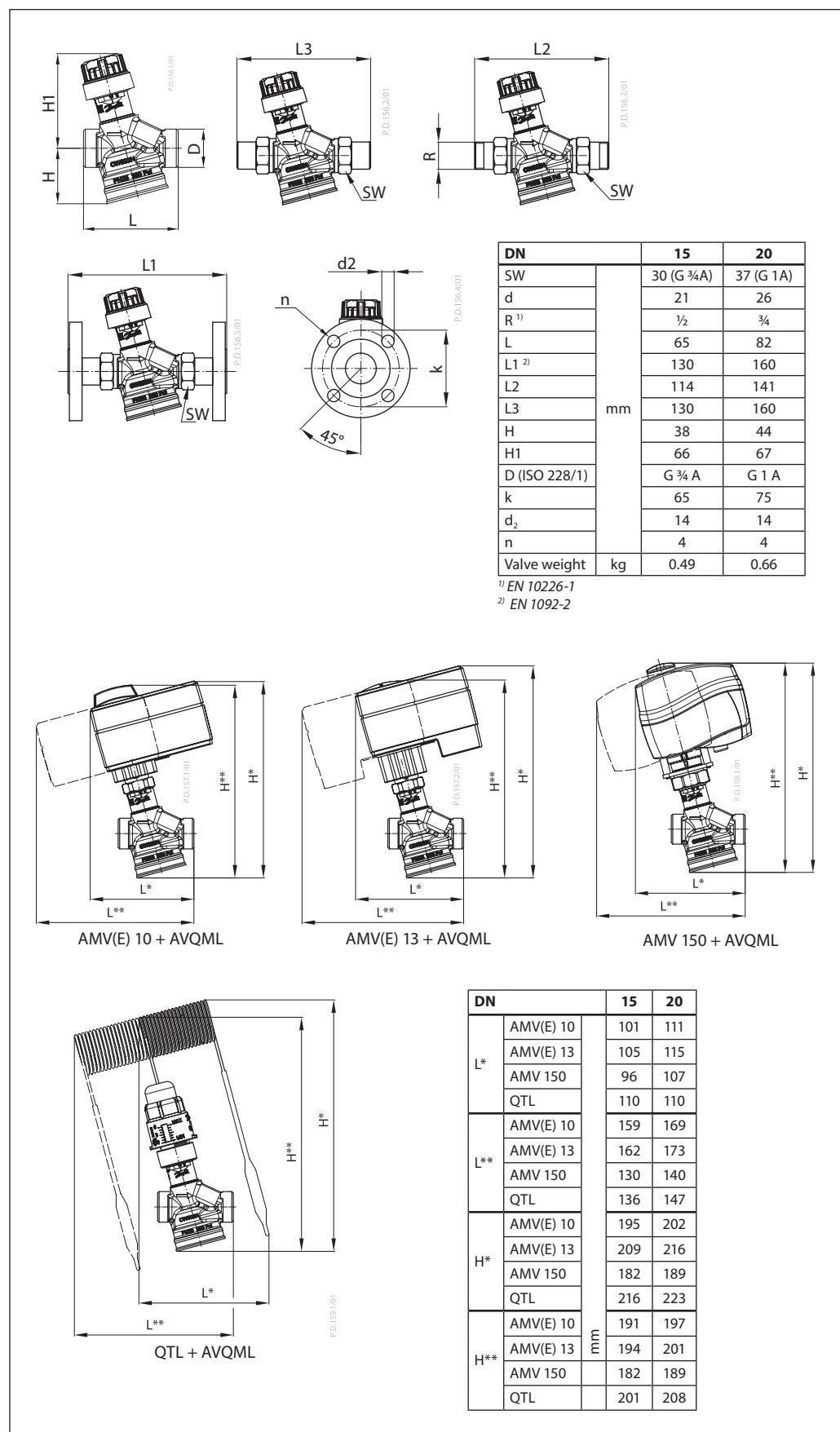
1. Differential pressure controller
2. Control valve

1. Differential pressure controller DPC

The differential pressure controller maintains a constant differential pressure across the control valve. The pressure difference Δp_{cv} (p_1-p_2) on the membrane is balanced with the force of the spring. Whenever the differential pressure across the control valve changes (due to a change in available pressure, or movement of the control valve) the differential pressure controller is displaced to a new position which brings a new equilibrium and therefore keeps the differential pressure at a constant level.

2. Control valve CV


The control valve has a linear characteristic. It features a stroke limitation function that allows adjustment of the K_v value. The percentage marked on the scale equals the percentage of 100 % flow marked on the pointer. Setting is done by turning the setting knob to the desired position.


Presetting

The calculated flow can be adjusted easily without using special tools.

The change of presetting (factory setting is 100% (10) follow steps below:

1. Remove the blue protective cap or the mounted actuator
2. Turn the pointer (clockwise to decrease) to the new setting
3. Clockwise turning would decrease the flow value while counter clock wise would increase it.

Dimensions

Danfoss A/S

Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc, and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product.

All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.