

Technical Information

THORX Motors CLM T

www.danfoss.com

Revision history

Table of revisions

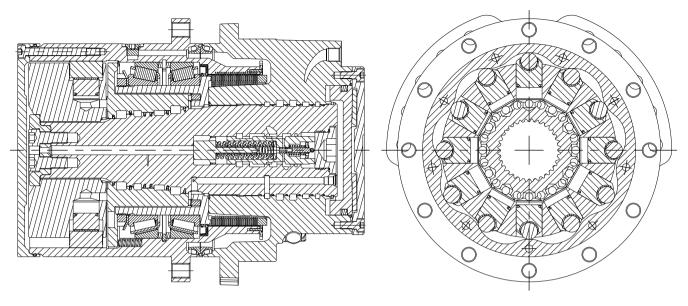
Date	Changed	Rev	
October 2024	First edition	0101	

Contents

Introduction		
	Customer Benefits	4
Functional Description		
	The Cam Lobe principle	. 5
	Bidirectional design	
	Dirt ingress sealing	
	Flushing valve	6
	Integrated parking brake	
	Motor case sealing	7
	Speed Sensor	
	Two-speed operation	9
CLM T motor		
	Technical Data	11
	Housings	14
	Shafts.	16
	Port thread options	18
	Manifold layout	21
	Efficiency curves	23
Ordering Information		
-	Model Code (A-B-C-D-E)	24
	Model Code (F-G-H-I)	
	Model Code (J-K-L)	26
	Model Code (M-N-O-P)	27

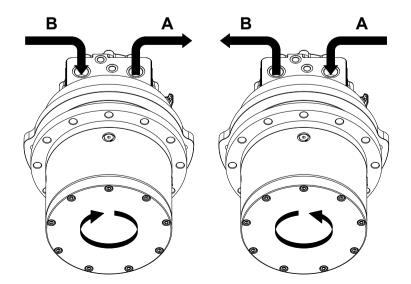
Introduction

Our THORX Cam Lobe Motor product line delivers improved performance and higher efficiency to match the evolving customer demands in mobile transmissions. The CLM T has been developed in close collaboration with our customers and are based on a well-proven radial piston motor design, also known as a Cam Lobe motor, which is commonly used in closed-circuit medium power propel applications. THORX motors are designed to be combined with other products in systems to transfer and control hydraulic power.


Danfoss has designed the CLM T to fit perfectly for construction machines with track drives, such as Compact Track Loaders. It is optimized for these applications with focus on physical size, longer lifetime, performance, and total installed cost.

Customer Benefits

Designed for the toughest jobs, our CLM T motors are engineered with our customers in mind. The novel shape with central flange fully utilizes the space within even the smallest tracks, making installation easier. THORX Motors features a market leading high efficiency, smooth speed changeover, longer lifetime and integrated parking brake.

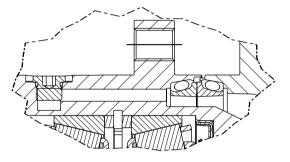

Sectional drawing of CLM 12 T

The Cam Lobe principle

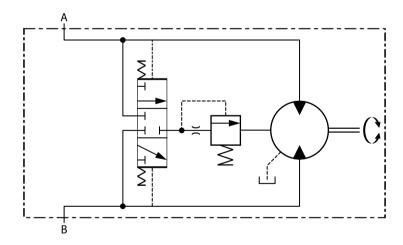
A Cam Lobe Motor is a type of radial piston motor which is a Low Speed High Torque hydraulic motor. It differs from other radial piston motor designs by utilizing a cam ring with multiple lobes and pistons. The pistons move against the cam profile and thereby rotate the motor, either clockwise or counterclockwise. The design of the motors can have either stationary housing and rotating shaft, or a stationary shaft and rotating house. The Cam Lobe motor are in particular known for its high starting efficiency and high efficiency in general. It is commonly available with a two-speed valve, to make the machine go faster. This simply works by disengaging a number of pistons. As a consequence of the reduced displacement, the torque delivered by the motor is reduced.

The Cam Lobe technology is not a new technology, it has been around for more than 60 years, however Danfoss have now refined the technology to design a whole new line of hydraulic motors for mobile offhighway machinery, known as THORX Motors. Cam Lobe motors are typically applied in direct drive solutions because of its ability to provide full torque without the need for a gearbox, opposed to high-speed motors such as axial piston type.

Bidirectional design


The THORX motors are based on a bidirectional design which provides the same performance in clockwise rotation as counterclockwise rotation. This provides a clear benefit in drivetrain solutions where the motor needs to reverse and don't go down in performance.

Rotation direction	Inlet port
Clockwise	B port
Counter-clockwise	A port


Dirt ingress sealing

The CLM T is fitted with a robust mechanical face seal to prevent dirt ingress from the track environment. High specification materials are used in the seal to provide wear and corrosion resistance with high-temperature HNBR energizers to maintain constant seal compression.

The mechanical face seal is lubricated by assembly fill of oil hydraulic oil. 3 fill and drain plugs, accessible from the front of the motor are provided for replacement at service intervals.

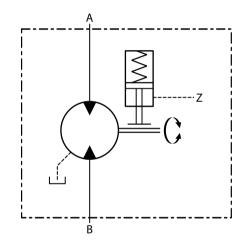
Flushing valve

Schematic diagram of flushing valve

When operating in a closed-circuit system overheating is a well-known issue to many because of the characteristics of the system design, where the same oil is circulating from the pump to the motors and back again to the pump in a continuous flow. Closed-circuit systems are the preferred system when it comes to precise regulation of propulsion of vehicles, such as Loaders, etc.

To accommodate the heat generated by the system and avoid overheating of vital system components, which can lead to damage, the THORX motors feature an integrated flushing valve option, which replaces some of the hydraulic fluid in the closed-circuit system with cooler fluid from the systems reservoir.

When operating the motor under pressure, the flushing spool opens and allow for a given flow of fluid to run through an orifice from the low-pressure side of the motor, into the motor case and from where it is directed back to the system reservoir via the motor case drain.


Closed-circuit options

Order code	Orifice size [mm]	Flow at 24 bar [l/min]
CA	Ø0.8	2.7
СВ	Ø1.4	5.6
СС	2 x Ø1.2	7.6
CD	2 x Ø1.4	9.5

Integral flushing valve set at 10.34bar [149 psi] cracking pressure to protect charge pressure.

Integrated parking brake

The integrated parking brake is a 6,000 Nm [53,100 lbf·in] multi-disc static friction brake. The brake discs are compressed by the disc spring and released by the application of brake pressure. To release the brake is required a release pressure of 15 bar [217 psi] via the Z port. This type of brake is commonly referred to as SAHR, or Spring Applied Hydraulic Release.

Motor with parking brake

🛕 Warning

Never apply more than max. 40 bar pressure to the Z-port.

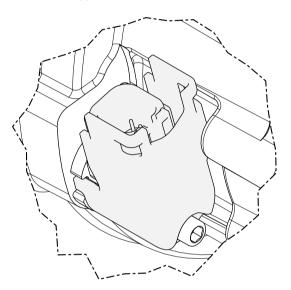
A Warning

While the parking brake is designed for 100 emergency dynamic stops during its lifetime, it is intended solely for static use and should not be applied while the motor is in use. Applying the brake while driving can damage the brake.

Motor case sealing

The CLM T features a robust shaft seal suitable for high case pressure and temperature.

Shaft Seal			CLM T
Max. pressure, case drain	ax. pressure, case drain bar [psi]		1 [15]
		Intermittent ¹	3 [44]
		Peak ²	10 [145]


¹ Intermittent operation: the permissible value may occur for less than 1 min per incident and not exceeding 2 % of duty cycle

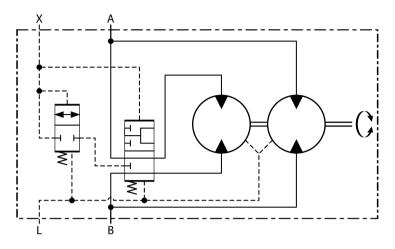
² Peak load: the permissible value may occur for max. 1 % of every minute

Speed Sensor

The THORX Motors are designed to be equipped with a Hall type speed sensor, which Danfoss can supply as an option. The motors are available as sensor ready or with the sensor pre-installed from the factory. The sensor is located in its own port in the rear case of the motor. It works by measuring a toothed disc that is fitted onto the cylinder block. It is possible to connect the sensor to any of the Danfoss PLUS+1 controllers. If you wish to use your own solution, please check with your local Danfoss sales team to ensure it is supported.

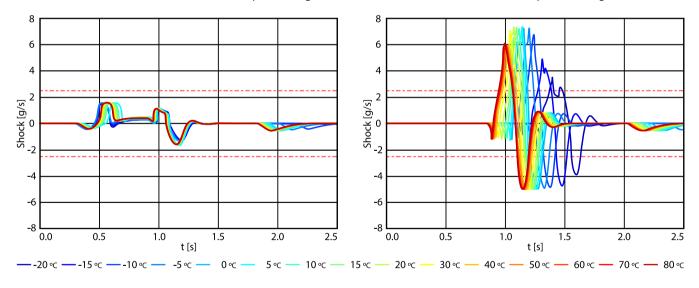
Visualization of Danfoss speed sensor, incl. protective cover

For further details on Danfoss Speed Sensor please refer to document ID BC152886482203en


Target ring

Speed (target) rings may vary according to THORX motor family and frame size, please refer to the below table for the number of teeth on your motor:

The number of speed (target) ring teeth


Motor	CLM 9 T	CLM 12 T
Teeth	100	100

Two-speed operation

Schematic diagram of two-speed function

For mobile applications it can be beneficial for the vehicles to operate at higher speeds with low motor loads. For this purpose, the motor can shift from low speed high torque mode to high speed low torque mode. This is done by an integrated spool valve which distributes hydraulic fluid to only two-thirds of the pistons, while re-circulating the fluid from the remaining one-third. For many years shifting has been a pain point for machine operators, but thanks to the new design from Danfoss we have now introduced a much smoother speed changeover with reduced shock, across the full temperature range.

Danfoss solution on the left, compared to competitive solution on the right

Reach out to your local sales contact or go to danfoss.com to learn more about our two-speed smoothing system to reduce shock during displacement changeover whilst on the move.

To engage the two-speed shift functionality pressure must be applied to the X-port. When the pilot pressure is less than 4 bar above motor case drain pressure, the spool valve is in deenergized position, and the flow is distributed to the motor's full displacement.

Applying more than 15 bar pressure above motor case drain pressure will make the spool move and redirect the flow to the reduced displacement, typically two-thirds of the pistons.

A Warning

Never apply more than max. 40 bar pressure to the X-port.

On the following pages you will find technical specifications of the CLM 9 T and CLM 12 T.

Technical Data

Туре			CLM 9 T					
Nominal size			680	750	820	920		
Geometric displacement	cm ³ [in ³]	Full displacement	680 [41.5]	750 [45.8]	820 [50.0]	920 [56.1]		
		Reduced displacement ¹⁾	453 [27.6]	500 [30.5]	547 [33.4]	613 [37.4]		
Maximum speed	min ⁻¹	Single speed motor	277	251	230	205		
[rpm]		Two-speed motor	338	307	280	250		
Maximum torque Nm [lbf・in]		Continuous	2,705 [23,940]	2,980 [26,375]	3,260 [28,850]	3,660 [32,390]		
		Peak ²⁾		5,015 [44,375]	5,480 [48,500]	6,150 [54,425]		
	kW Full displacement, continuous [hp]		35 [48]					
		Reduced displacement ¹⁾ , continuous		35 [48]				
Maximum working pressure	bar [psi]	Nominal pressure ³⁾		250 [3,625]				
[bsi]		Max differential pressure (peak ²⁾)		450 [6,525]				
Minimum starting torque Nm [lbf·in]		at max. press. drop cont.	1,890 [16,725]	2,085 [18,450]	2,280 [20,180]	2,560 22,655[]		
		at max. press. drop peak ²⁾	3,405 [30,135]	3,760 [33,275]	4,110 [36,375]	4,610 [40,800]		
Weight ⁴⁾	kg [lbs]	Single speed motor		1	80 [176]	1		
		Two-speed motor		80 [176]				

CLM 9 T specifications

¹⁾ Standard two-speed ratio is 2:3

²⁾ Peak operation: the permissible values may occur for max. 1% of every minute

³⁾ Nominal values are guide values for max. continuous operation

⁴⁾ Depending on product configuration

Caution

Do not exceed Δ pressure rating.

A Warning

The motor should not be run unloaded at above 100 rpm during the running in period.

For operation in series with return pressure higher than 40 bar please consult your local sales contact.

For long term operation with speeds under 5 rpm please consult your local sales contact.

Danfoss

CLM 12 T specifications

Туре	Туре		CLM 12 T							
Nominal size			1070	1120	1180	1210	1270	1340		
Geometric displacement	cm ³ [in ³]	Full displacement	1,070 [65.3]	1,120 [68.3]	1,180 [72.0]	1,210 [73.8]	1,270 [77.5]	1,340 [81.8]		
		Reduced displacement ¹⁾	713 [43.5]	747 [45.6]	787 [48.0]	807 [49.2]	847 [51.7]	893 [54.5]		
Maximum speed	min ⁻¹	Single speed motor	185	180	170	165	160	155		
	[rpm]	Two-speed motor	255	245	230	225	215	205		
Maximum torque	Nm Continuous [lbf·in]		4,255 [37,660]	4,455 [39,430]	4,695 [41,555]	4,810 [42,570]	5,050 [44,695]	5,330 [47,175]		
		Peak ²⁾	7,150 [63,280]	7,485 [66,245]	7,885 [69,790]	8,085 [71,560]	8,490 [75,140]	8,955 [79,260]		
Maximum power kW [hp]	Full displacement, continuous		50 [67]							
		Reduced displacement ¹⁾ , continuous		50 [67]						
Maximum working pressure	bar [psi]	Nominal pressure ³⁾		250 [3,625]						
pressure [psi]		Max differential pressure (peak ²⁾)		450 [6,525]						
torque [lbf·in] at m		at max. press. drop cont.	2,980 [26,375]	3,120 [27,615]	3,285 [29,075]	3,370 [29,825]	3,535 [31,285]	3,730 [33,015]		
		at max. press. drop peak ²⁾	5,365 [47,485]	5,615 [49,695]	5,915 [52,350]	6,065 [53,680]	6,365 [56,335]	6,715 [59,430]		
Weight ⁴⁾	kg [lbs]	Single speed motor				90 198]				
		Two-speed motor		90 [198]						

¹⁾ Standard two-speed ratio is 2:3

²⁾ Peak operation: the permissible values may occur for max. 1% of every minute

³⁾ Nominal values are guide values for max. continuous operation

⁴⁾ Depending on product configuration

Caution

Do not exceed Δ pressure rating.

A Warning

The motor should not be run unloaded at above 100 rpm during the running in period.

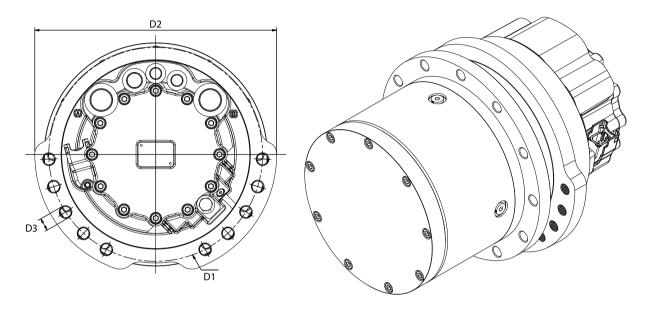
For operation in series with return pressure higher than 40 bar please consult your local sales contact.

For long term operation with speeds under 5 rpm please consult your local sales contact.

Hydraulic fluid specifications

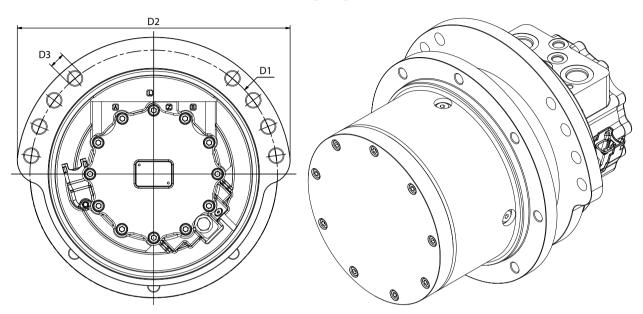
Features		Units	CLM T
Viscosity	Intermittent ¹⁾	mm2/sec [SUS]	5 [42]
	Minimum		7 [49]
	Recommended range		12 - 80 [66 - 370]
	Maximum (cold start) ²⁾		2,000 [9,375]
Temperature range ³⁾	Minimum (cold start)	°C [°F]	-40 [-40]
	Maximum continuous		85 [185]
	Maximum intermittent		115 [240]
Cleanliness per ISO 4406			22/18/13
Hydraulic fluid class			ISO VG 46

¹⁾ The permissible value may occur for less than 1 min per incident and not exceeding 2 % of duty cycle


²⁾ Cold start is defined as less than 3 minutes and with pressure not exceeding 50 bar [725 psi]

³⁾ At the hottest temperature point (normally case drain port)

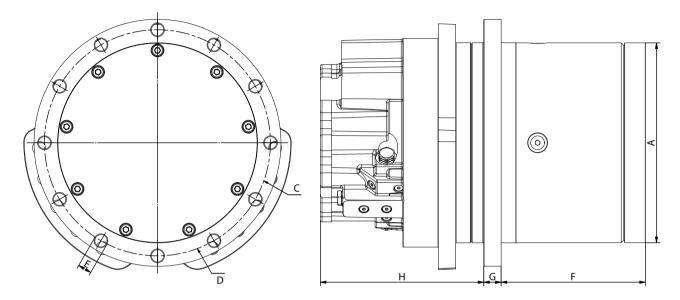
Housings


Tx2: 10-hole (M16) loose ear mounting flange Ø272

Visualization of CLM12 T with TA2 mounting flange (axial port configuration)

Motor		D1	D2	D3	
CLM 9 T	mm	Ø272	Ø308	10 x M16x2.0	
CLM 12 T	mm	Ø272	Ø308	10 x M16x2.0	

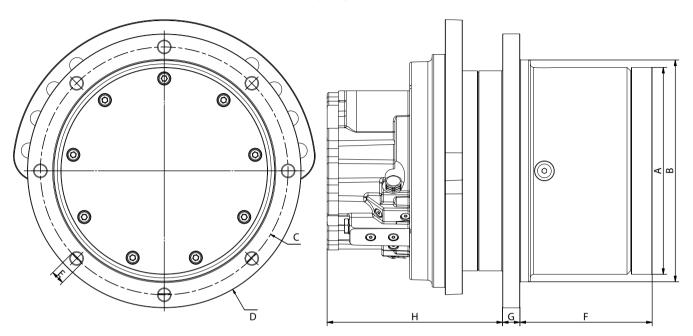
Tx5: 8-hole (Ø17.5) loose ear mounting flange Ø315


Visualization of CLM12 T with TV5 mounting flange (vertical port configuration)

Motor		D1	D1 D2	
CLM 9 T	mm	Ø315	Ø350	8 x Ø17.5
CLM 12 T	mm	Ø315	Ø350	8 x Ø17.5

Shafts

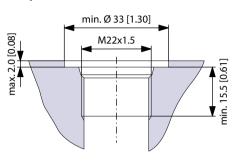
T01: Ø260 Wheel Drive 12 bolt (M16)

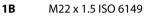


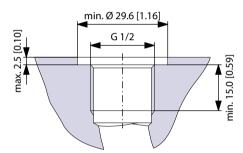
Visualization of CLM 12 T with TA2 flange (axial port configuration)

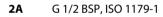
Shaft		Α	c	D	E	F	G	н
CLM 9 T	mm	Ø230	Ø260	Ø284	M16x2.0	166	20	148
CLM 12 T	mm	Ø230	Ø260	Ø284	M16x2.0	166	20	188

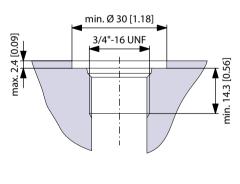
T06: Ø285 Wheel Drive 8 bolt (M16)

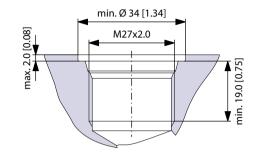

Visualization of CLM 12 T with TV5 flange (vertical port configuration)

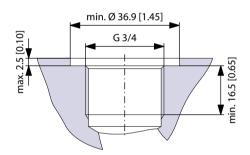

Shaft		Α	В	с	D	E	F	G	н
CLM 9 T	mm	Ø238	Ø255	Ø285	Ø315	M16x2.0	152	20	162
CLM 12 T	mm	Ø238	Ø255	Ø285	Ø315	M16x2.0	152	20	202

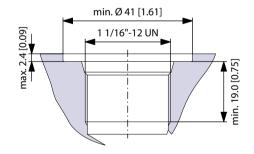



Port thread options


Inlet ports

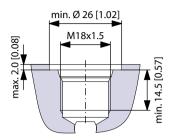


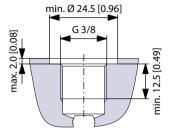

3A UNF 3/4" - 16 (SAE J514)


1C

M27 x 2.0 ISO 6149

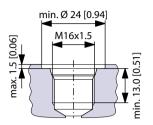
2B


G 3/4 BSP, ISO 1179-1

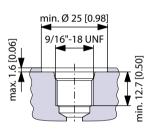


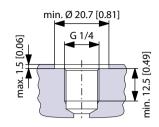
3C UN 1 1/16" - 12 (SAE J514)

Case drain port


F

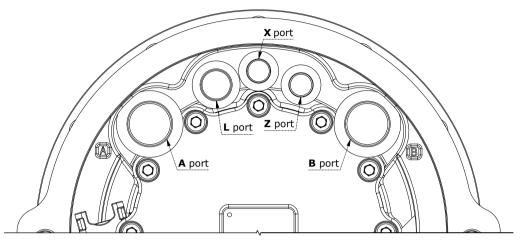
G 3/8 BSP, ISO 1179-1


- **C** M18 x 1.5 ISO 6149
 - min. Ø 30 [1.18] 3/4"-16 UNF 14.3 [0.56]
- I UNF 3/4" 16 (SAE J514)


Brake release & 2-speed ports

B M16 x 1.5 ISO 6149

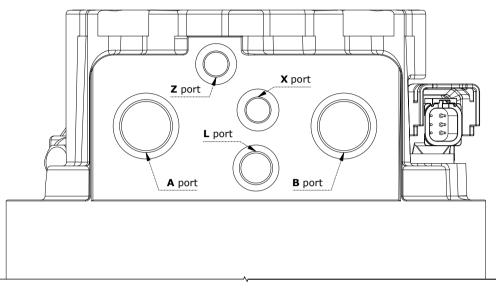
I UNF 9/16" – 18 (SAE J514)



E G 1/4 BSP, ISO 1179-1

Manifold layout

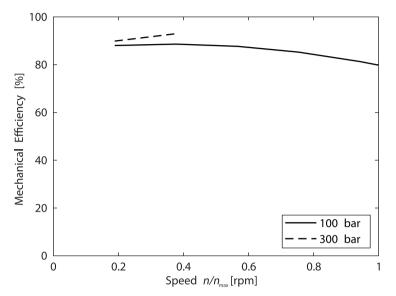
Axial port configuration



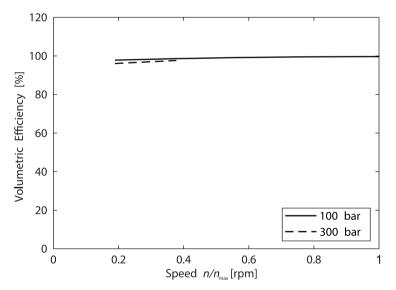
Thread type	Inlet ports (A+B)	Case drain port (L)	Brake release port (Z)	2-speed port (X)	
Metric (ISO 6149-1)	M22 x 1.5	M18 x 1.5	M16 x 1.5	M16 x 1.5	
Metric (150 0149-1)	M27 x 2.0	1010 1.5	MIOX 1.5	WITO X 1.5	
BSP (ISO 1179-1)	G 1/2	G 3/8	G 1/4	G 1/4	
BSF (ISO 1179-1)	G 3/4	G 5/6	G 1/4	G 1/4	
UNF (SAE J514)	3/4 " - 16 UNF	3/4 " - 16 UNF	9/16 " - 18 UNF	9/16 " - 18 UNF	
UNF (SAE JS14)	1 1/16 " - 12 UN	- 3/4 - 10 UNF	9/10 - 18 UNF	9/10 - 18 UNF	

Dimensions for port positions see: See Dimensions.

Vertical port configuration


Thread type	Inlet ports (A+B)	Case drain port (L)	Brake release port (Z)	2-speed port (X)	
Metric (ISO 6149-1)	M22 x 1.5	M18 x 1.5	M16 x 1.5	M16 x 1.5	
Metric (150 0149-1)	M27 x 2.0	WI0X1.5	WITO X 1.5	WITO X 1.5	
BSP (ISO 1179-1)	G 1/2	G 3/8	G 1/4	G 1/4	
	G 3/4				
UNF (SAE J514)	3/4 " - 16 UNF	- 3/4 " - 16 UNF	9/16 " - 18 UNF	9/16 " - 18 UNF	
ONF (SAE JS 14)	1 1/16 " - 12 UN				
Split flange (SAE J518)	3/4 " - SAE J518	3/4 " - 16 UNF	9/16 " - 18 UNF	9/16 " - 18 UNF	

Dimensions for port positions see: See Dimensions.



Efficiency curves

Model Code (A-B-C-D-E)

A – Product type

Code	Description
CLM	THORX motor

B – Frame size

Code	Description
09	Frame size
12	Frame size

C – Housing type

Code	Description
Т	Track drive motor

D – Nominal size

Code	Туре	Description
0680	Frame size 09	680 cc/rev (453 cc/rev reduced displacement)
0750	-	750 cc/rev (500 cc/rev reduced displacement)
0820	-	820 cc/rev (547 cc/rev reduced displacement)
0920	-	920 cc/rev (613 cc/rev reduced displacement)
1070	Frame size 12	1,070 cc/rev (713 cc/rev reduced displacement)
1120	-	1,120 cc/rev (747 cc/rev reduced displacement)
1180	-	1,180 cc/rev (787 cc/rev reduced displacement)
1210	-	1,210 cc/rev (807 cc/rev reduced displacement)
1270		1,270 cc/rev (847 cc/rev reduced displacement)
1340		1,340 cc/rev (893 cc/rev reduced displacement)

E – Single/Two-speed operation

Code	Туре	Description
1AN	Single Speed	Clockwise rotation (pressure to port B)
1BN		Counter-clockwise rotation (pressure to port B)
2AX	Two-Speed	Clockwise rotation (pressure to port B)
2BX		Counter-clockwise rotation (pressure to port B)

Model Code (F-G-H-I)

В С A D Е G M1 M2 F Н J₂ J₃ K L Ν 0 P1 P₂ Р₃ J1 Г s P [C]L[M F [ทไทไทไทไทไทไ

F – Mounting flange

Code	Туре	Description	
TA1	Axial Port configuration	10-hole (Ø16.5) loose ear mounting flange Ø264	
TA2		10-hole (Ø16.5) loose ear mounting flange Ø272	
TA3		10-hole (Ø17.5) loose ear mounting flange Ø323	
TA4		8-hole (Ø17.5) loose ear mounting flange Ø342	
TA5		8-hole (Ø17.5) loose ear mounting flange Ø315	
TV1	Vertical Port configuration	10-hole (Ø16.5) loose ear mounting flange Ø264	
TV2		10-hole (Ø16.5) loose ear mounting flange Ø272	
TV3		10-hole (Ø17.5) loose ear mounting flange Ø323	
TV4		8-hole (Ø17.5) loose ear mounting flange Ø342	
TV5		8-hole (Ø17.5) loose ear mounting flange Ø315	

G – Drive shaft

Code	Туре	Description
T22	Metric	Ø260 Wheel Drive 12 bolt (M14x2)
T01		Ø260 Wheel Drive 12 bolt (M16x2)
Т03		Ø285 Wheel Drive 12 bolt (M16x2)
T06		Ø285 Wheel Drive 8 bolt (M16x2)
T04	UNC	Ø260 Wheel Drive 12 bolt (1/2-13 UNC 2B)
T05]	Ø285 Wheel Drive 12 bolt (5/8-11 UNC 2)

H – Brake options

Code	Description
NN	Without brake
ТА	6,000 Nm spring applied hydraulic release multi-disc holding brake (ISO10265)

I – Sealing options

Code	Description
F	High temperature sealing

Model Code (J-K-L)

В С D J₁ J₂ J₃ K M1 M2 Δ Е G L Ν 0 **P**1 P₂ Рз т SP F DD เกิดโดโดโดโด [C]L м

 J_1 – Porting options – Inlet ports

Code	Туре	Description	
1B	Metric threads	ISO Metric 6149-1, M22 x 1.5	
1C		ISO Metric 6149-1, M27 x 2.0	
2A	BSP threads	ISO 1179-1, G 1/2 BSP	
2B		ISO 1179-1, G 3/4 BSP	
3A	UNF threads	UNF (SAE J514), 3/4 " - 16 UNF	
3C		UN (SAE J514), 1 1/16 " - 12 UN	
SA	Split flange	3/4 " (SAE J518)	

J_2 – Porting options – Case drain port

Code	Туре	Description
С	Metric threads	ISO Metric 6149-1, M18 x 1.5
F	BSP threads	ISO 1179-1, G 3/8 BSP
I	UNF threads	UNF (SAE J514), 3/4 " - 16 UNF

J₃ - Porting options - Brake release & 2-speed ports

Code	Туре	Description
В	Metric threads	ISO Metric 6149-1, M16 x 1.5
E	BSP threads	ISO 1179-1, G 1/4 BSP
1	UNF threads	UNF (SAE J514), 9/16 " - 18 UNF

K – Speed sensor

Code	Description
Ν	Without speed sensor
R	Speed sensor Ready
А	Danfoss Speed sensor w. DEUTSCH 6-Pin DTM 04 connector

L – Valve options

Code	Туре	Description
CA	Closed circuit systems ¹⁾	Ø0.8mm orifice, 2.7 l/min flow at 24 bar
СВ		Ø1.4mm orifice, 5.6 l/min flow at 24 bar
СС		Ø1.2mm orifice x 2, 7.6 l/min flow at 24 bar
CD		Ø1.4mm orifice x 2, 9.5 l/min flow at 24 bar

¹⁾ Cracking pressure = 10.34 bar

Model Code (M-N-O-P)

M₁ – Paint options – Color

Code	Description
NN	No paint
SB	Standard black primer

M₂ – Paint options – Masking

	Code	Туре	Description
	NN	No paint	No masking
Ī	10	Painted	Shaft and Mounting flange

N – Packaging

Code	Description
SP	Single pack

O – Name tag

Code	Description
DD	Danfoss name tag - with data matrix

P₁ – Special features – Internal

Code	Description
NN	None

P₂ – Special features – External

Code	Description
NN	None

P₃ – Special features – Other

Code	Description
NN	None

Products we offer:

- Cylinders
- Electric converters, machines, and systems
- Electronic controls, HMI, and IoT
- Hoses and fittings
- Hydraulic power units and packaged systems
- Hydraulic valves
- Industrial cluctches and brakes
- Motors
- PLUS+1[®] software
- Pumps
- Steering
- Transmissions

Hydro-Gear www.hydro-gear.com

Daikin-Sauer-Danfoss www.daikin-sauer-danfoss.com **Danfoss Power Solutions** designs and manufactures a complete range of engineered components and systems. From hydraulics and electrification to fluid conveyance, electronic controls, and software, our solutions are engineered with an uncompromising focus on quality, reliability, and safety.

ENGINEERING TOMORROW

Our innovative products makes increased productivity and reduced emissions a possibility, but it's our people who turn those possibilities into reality. Leveraging our unsurpassed application know-how, we partner with customers around the world to solve their greatest machine challenges. Our aspiration is to help our customers achieve their vision — and to earn our place as their preferred and trusted partner.

Go to www.danfoss.com or scan the QR code for further product information.

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 2080 6201

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.