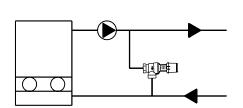
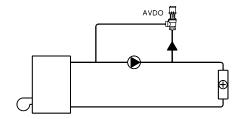


Automatic Bypass Control AVDO

Application



AVDO is a self-acting constant flow control primarily used either to maintain minimum flow rates through e.g. a low-capacity gas boiler or to control the differential pressure in a central heating system.


AVDO:

- · Opens on rising differential pressure
- Has a setting range of 0.05 0.5 bar
- Is dimensioned for pressure stage PN 10, max. 120 °C
- DN 15 and DN 20
- · Operates without impulse tubes

On delivery valve housing is fit onto AVDO with one of the following fittings: internal socket thread, internal socket thread/nipple or external thread for compression fittings.

Low-capacity gas boiler where maintenance of a min. flow is required

Differential pressure control

Ordering

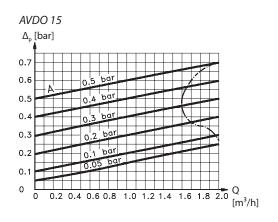
Toma	Setting Range	Code no.			
Туре	(bar)	Inlet		Outlet	Code no.
AVDO 15		R _P ½ 1)	□	R _P ½ 1)	003L6002
AVDO 20	0.05 - 0.5	R _P 3/4 1)		R _P 3/4 1)	003L6007
AVDO 25		R _P 1 ¹⁾	৳	R _P 1 ¹⁾	003L6012
AVDO 15	<u> </u>	R _P ½ 1)	₽ 0	R ½ 1)	003L6003
AVDO 20		R _P 3/4 1)		R ¾ 1)	003L6008
AVDO 25		R _P 1 ¹⁾	仓	R 1 1)	003L6013
AVDO 15		G 3/4 A 2)		G 3/4 A 2)	003L6020
AVDO 20	0.05 - 0.5	G 1 A ²⁾		G 1 A ²⁾	003L6025
AVDO 25		G 1¼ A ²⁾		G 1¼ A ²⁾	003L6030
AVDO 15	0.05 - 0.5	R _P 1/2 1)	\$ P	R ½ 1)	003L6018
AVDO 20		R _P 3/4 1)		R ¾ 1)	003L6023
AVDO 25		R _P 1 ¹⁾		R 1 1)	003L6028

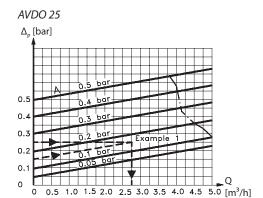
¹⁾ According to ISO 7/1

²⁾ According to ISO 228/1

Automatic Bypass Control AVDO

Accessories


Supplied in boxes of 10


Copper tube fittings		Code no.
AVDO 20	Ø 18 x 1	013U0134
AVDO 20	Ø 22 x 1	013U0135
AVDO 25	Ø 28 x 1	013U0140

Technical data

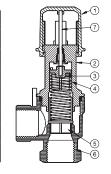

Setting range	0.05 - 0.5 bar
Max. differential pressure	0.5 bar
Operation pressure	PN 10
Max. flow temperature	120 °C
Max. leakage at closed valve	50 l/h

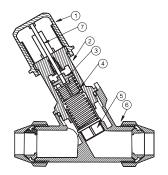
Capacity

AVDO 20

A = set opening pressure

 $\Delta_P = \Delta p \text{ for valve}$


- · - = Upper limit graph for recommended application area with almost noiseless installation.


Measurement conditions according to ISO 3743.

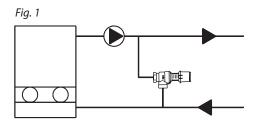
Design

Materials

1. Setting handle	Pom-plast
2. Base	Ms 58
3. Spring guide	PPS plastic
4. Spring	Stainless steel
5. Valve cone	PPS plastic
6. Valve body	Ms 58, hot-pressed
7. Setting pin	Stainless steel
O-rings	EPDM

Automatic Bypass Control AVDO

Installation


The valve body must be mounted with flow in direction of the cast-in arrow.

Setting

The control is set by turning the setting dial. AVDO has a setting scale on which the opening pressure in bar or mwg can be directly read. The differential pressures stated for a given setting are indicative.

The scale gives the differential pressure across the AVDO when it just begins to open.

Sizing

Example 1: Bypass control across heating system

Given:

- System, see fig. 1.
- Insignificant pressure loss in pipe from boiler to bypass.
- Pump characteristic, see fig. 2.
- 0.15 bar system differential pressure at max. system load.

Required:

- Bypass circulation beginning at 0.15 bar pump pressure.
- Min. 2.0 m³/h boiler circulation.

Seek:

- A constant flow control that opens concurrently with falling load across the system (closing radiator thermostats).
- A constant flow control that ensures min.
 2.0 m³/h boiler circulation at min. system load.

Solution:

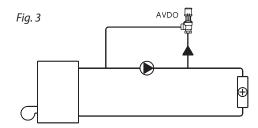
 A 2.0 m³/h flow corresponds to a 0.25 bar pump pressure. On closing radiator thermostats AVDO is to ensure min. 2.0 m³/h circulation at 0.25 bar differential pressure across AVDO. Choose AVDO 25 that provides 2.75 m³/h at 0.25 bar differential pressure across valve. Set AVDO on 0.15 bar required opening pressure.

Fig. 2

0.5

0.4

0.7


Pump characteristic

0.3

0.2

0.1

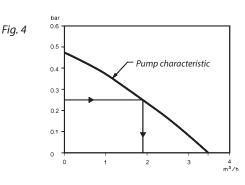
0 1 2 3 4 4 m³

Example 2: Bypass control across circulation pump

Given:

- System, see fig. 3.
- Pump characteristic, see fig. 4.

Reauired:


- Bypass circulation beginning at 0.1 bar pump pressure.
- Max. system differential pressure at closed radiator thermostats must be limited to 0.25 bar.

Seek:

- A constant flow control that opens concurrently with falling load across the system (closing radiator thermostats).
- A constant flow control that ensures max. system differential pressure not exceeding 0.25 bar at min. system load.

Solution:

The max. permissible differential pressure 0.25 bar across system corresponds to a 1.8 m³/h water volume (fig. 4). At min. load AVDO must ensure 1.8 m³/h pump bypass circulation. In this example AVDO 20 must be used - see "Capacity" - as circulation is not to begin before differential pressure across system has exceeded 0.1 bar, AVDO is set on 0.1 bar - see "Setting.

Automatic Bypass Control AVDO

Dimensions

Fig. 1

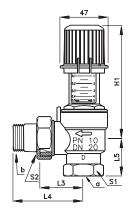


Fig. 2

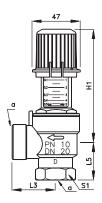


Fig. 3

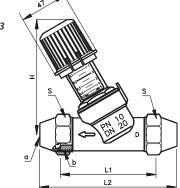


Fig. 4

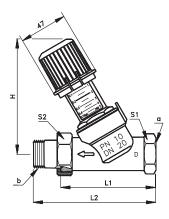


Fig. 1

DN	Toma	- 1)	L 1)	h 1) 1.3	1.4	1.5	H1		C1	63
DN	Туре	a 1)	b 1)	L3	L4	L5	Min.	Max.	S 1	S2
15	AVDO 15	RP 1/2	RP 1/2	40	69	33	83	112	28	30
20	AVDO 20	RP 3/4	RP 3/4	42	74	37	83	112	34	37
25	AVDO 22	RP 1	RP 1	46	81	46	85	114	43	40

Fig. 2

DN	Туре	a 1)	L3	1.5	Н	1	S1	
				L5	Min.	Max.		
15	AVDO 15	RP 1/2	40	33	83	112	28	
20	AVDO 20	RP 3/4	42	37	83	112	34	
25	AVDO 22	RP 1	46	46	85	114	43	

Fig. 3

DN Tune		a	a b ¹⁾ L1	12	H1			
DN Ty	Туре	(mm)	D "	L1	L2	Min.	Max.	3
15	AVDO 15	15/16/18	G 34 A	87	111	89	113	30
20	AVDO 20	18/22	G1A	93	120	90	114	37
25	AVDO 22	28	G 1¼ A	106	136	95	119	45

Fig. 4

DN	Туре	a 1)	b 1)	L1	12	H1		S1	S2
					L2	Min.	Max.	31	32
15	AVDO 15	RP 1/2	RP 1/2	87	116	89	113	28	30
20	AVDO 20	RP 3/4	RP ¾	93	125	90	114	34	37
25	AVDO 22	RP 1	RP 1	106	141	95	119	43	40

¹⁾ According to ISO 7/1 ²⁾ According to ISO 228/1

Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product.

All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.