

Guia de Design

VLT® AutomationDrive FC 360

0,37-90 kW, Tamanhos de Gabinete J1-J7

1.1 Objetivo do Guia de Design

9

Conteúdo

1 Introdução

1.2 Recursos Adicionais	
1.3 Versão do Documento	
1.4 Aprovações e certificações	
1.4.1 Marcação CE	
1.4.2 Diretiva de baixa tensão	1
1.4.3 Diretiva EMC	1
2 Segurança	
2.1 Símbolos de Segurança	1
2.2 Pessoal qualificado	1
2.3 Precauções de Segurança	1
Visão Geral do Produto 3.1 Visão Geral do Tamanho do Gabinete	1
3.2 Instalação Elétrica	1
3.2.1 Diagrama de Ligação	
3.2.2 Conexão Elétrica Típica	1
3.2.3 Requisitos Gerais	1
3.2.4 Requisitos de Aterramento	1
3.2.5 Conexões do Terra, de Rede Elétrica e Motor	1
3.2.5.1 Considerações para Conexão	1
3.2.5.2 Exemplos	1
3.2.6 Fiação de Controle	2
3.2.6.1 Acesso à Fiação de Controle	2
3.2.6.2 Tipos de Terminal de Controle	2
3.2.6.3 Funções do Terminal de Controle	2
3.2.6.4 Cabos de Controle Blindados	2
3.2.6.5 Malhas de Aterramento de 50/60 Hz	2
3.2.6.6 Evitar Ruído EMC na Comunicação Serial	2
3.3 Estruturas de Controle	2
3.3.1 Princípio de controle	2
3.3.2 Modos de Controle	2

3.3.3 Princípio de Controle do FC 360	24
3.3.4 Estrutura de Controle em VVC+	25
3.3.5 Estrutura de Controle em Fluxo Básico com Feedback de Motor	26
3.3.6 Controle Local [Hand On] e Controle Remoto [Auto On]	26
3.4 Tratamento das Referências	27
3.4.1 Referências local e remota	27
3.4.2 Limites de Referência	28
3.4.3 Graduação das referências predefinidas e das referências de barramento	29
3.4.4 Escalonamento de referência de pulso e analógica e feedback	30
3.4.5 Banda morta em torno de zero	30
3.5 Controle da Posição	33
3.6 Controle do PID	34
3.6.1 Controle do PID de Velocidade	34
3.6.1.1 Configurações de Controle	34
3.6.1.2 Parâmetros de Controle de Velocidade	34
3.6.1.3 Exemplo de Programação de Controle da Velocidade	35
3.6.1.4 Ordem de Programação para Controle do PID de Velocidade	36
3.6.2 Controle do PID de Processo	37
3.6.2.1 Configuração de Controle	37
3.6.2.2 Parâmetros pertinentes ao controle de processo	38
3.6.2.3 Exemplo de Controle do PID de Processo	39
3.6.2.4 Otimização do controlador de processo	42
3.6.3 Método de Sintonização Ziegler Nichols	42
3.7 Emissão EMC e Imunidade	43
3.7.1 Aspectos Gerais da Emissão EMC	43
3.7.2 Requisitos de Emissão EMC	44
3.7.3 Requisitos de Imunidade EMC	45
3.8 Isolação Galvânica	46
3.9 Corrente de Fuga para o Terra	47
3.10 Utilizando um Dispositivo de Corrente Residual (RCD)	49
3.11 Funções de freio	50
3.11.1 Freio mecânico de retenção	50
3.11.2 Frenagem dinâmica	50
3.11.3 Seleção do resistor de frenagem	50
3.11.3.1 Introdução	50
3.11.3.2 Cálculo da Resistência de Frenagem	51

3.11.3.3 Cálculo da Resistência de Frenagem Recomendado pela Danfoss	5
3.11.4 Controle com função de frenagem	52
3.12 Smart Logic Control (SLC)	52
3.13 Condições de Funcionamento Extremas	54
3.14 Proteção Térmica do Motor	55
Código do Tipo e Seleção	
4.1 Solicitação de pedido	51
4.2 Códigos: Opções, Acessórios e Peças de Reposição	58
4.3 Códigos: Resistores de Frenagem	60
4.3.1 Introdução	60
4.3.2 Códigos: Resistores de Frenagem 10%	60
4.3.3 Códigos: Resistor de Frenagem 40%	6
Especificações	
5.1 Dados elétricos	62
5.2 Especificações gerais	6-
5.2.1 Alimentação de rede elétrica (L1, L2, L3)	64
5.2.2 Saída do Motor (U, V, W)	65
5.2.3 Características do torque	6.
5.2.4 Condições ambientais	65
5.2.5 Comprimentos de cabo e seções transversais	66
5.2.6 Entradas Digitais	66
5.2.7 Entradas analógicas	66
5.2.8 Entradas de Pulso	67
5.2.9 Saídas digitais	67
5.2.10 Saídas analógicas	68
5.2.11 Saídas do relé	68
5.2.12 Cartão de Controle, Comunicação Serial RS485	69
5.2.13 Cartão de controle, Saída 24 V CC	69
5.2.14 Cartão de controle, saída +10 V CC	69
5.2.15 Características de Controle	69
5.2.16 Desempenho do Cartão de Controle	69
5.2.17 Proteção e recursos	69
5.3 Fusíveis	70
5.3.1 Introdução	70

5.3.2 Recomendação de Fusíveis	70
5.4 Eficiência	71
5.4.1 Eficiência do Conversor	71
5.4.2 Eficiência do Motor	71
5.4.3 Eficiência do Sistema	72
5.5 Ruído Acústico	72
5.6 Condições dU/dt	72
5.7 Condições Especiais	75
5.7.1 Introdução	75
5.7.2 Derating Manual	75
5.7.3 Derating Automático	79
5.8 Tamanhos do Gabinete Metálico, Valor Nominal da Potência e Dimensões	79
5.9 Requisitos de Resfriamento e Fluxo de Ar	81
5.10 Recomendações de Manutenção Preventiva	82
6.1 Introdução	85
6.1.1 Visão Geral	85
6.1.2 Conexão de rede	86
6.1.3 Setup de hardware	86
6.1.4 Programação dos parâmetros da comunicação do Modbus	86
6.1.5 Precauções com EMC	87
6.2 Protocolo Danfoss FC	87
6.2.1 Visão Geral	87
6.2.2 FC com Modbus RTU	88
6.3 Configuração de rede do Protocolo Danfoss FC	88
6.4 Estrutura do Enquadramento de Mensagem do Protocolo Danfoss FC	88
6.4.1 Conteúdo de um caractere (byte)	88
6.4.2 Estrutura do telegrama	89
6.4.3 Comprimento do telegrama (LGE)	89
6.4.4 Endereço do conversor (ADR)	89
6.4.5 Byte de Controle dos Dados (BCC)	89
6.4.6 O Campo de dados	89
6.4.7 O Campo PKE	90
6.4.8 Número do parâmetro (PNU)	92
6.4.9 Índice (IND)	92

6.4.10 Valor do Parâmetro (PWE)	92
6.4.11 Tipos de Dados Suportados pelo Conversor	92
6.4.12 Conversão	93
6.4.13 Palavras do processo (PCD)	93
5.5 Exemplos	93
6.5.1 Gravação de um Valor de Parâmetro	93
6.5.2 Leitura de um valor de parâmetro	94
5.6 Modbus RTU	95
6.6.1 Pré-requisitos de conhecimento	95
6.6.2 Visão Geral	95
6.6.3 Conversor com Modbus RTU	95
5.7 Configuração da rede Modbus RTU	96
5.8 Estrutura do Enquadramento de Mensagem do Modbus RTU	96
6.8.1 Introdução	96
6.8.2 Estrutura do Telegrama do Modbus RTU	96
6.8.3 Campo de Início/Parada	97
6.8.4 Campo de endereço	97
6.8.5 Campo de função	97
6.8.6 Campo de dados	97
6.8.7 Campo de verificação CRC	98
6.8.8 Endereçamento do Registrador da Bobina	98
6.8.9 Como controlar o Conversor	100
6.8.10 Códigos de Função Suportados pelo Modbus RTU	100
6.8.11 Códigos de Exceção do Modbus	101
5.9 Como Acessar os Parâmetros	102
6.9.1 Tratamento de parâmetros	102
6.9.2 Armazenagem de dados	102
6.9.3 IND (Índice)	102
6.9.4 Blocos de texto	102
6.9.5 Fator de conversão	102
6.9.6 Valores de parâmetros	103
5.10 Exemplos	103
6.10.1 Visão geral dos exemplos	103
6.10.2 Ler o status da bobina (01 hex)	103
6.10.3 Forçar/gravar bobina única (05 hex)	104
6.10.4 Forçar/gravar múltiplas bobinas (0F hex)	105

6.10.5 Ler registradores de retenção (03 hex)	106
6.10.6 Registrador único predefinido (06 hex)	107
6.10.7 Vários registros predefinidos (10 hex)	107
6.11 Perfil de Controle do FC da Danfoss	108
6.11.1 Palavra de controle de acordo com o perfil do FC (8-10 Protocolo = Perfil do FC)	108
6.11.2 Status word de acordo com o perfil do FC (STW)	111
6.11.3 Valor de referência da velocidade do barramento	113
7 Exemplos de aplicações	
7.1 Introdução	115
7.2 AMA	115
7.3 Velocidade	116
7.4 Partida/Parada	118
7.5 Reset do Alarme Externo	119
7.6 Termistor do motor	119
7.7 Conexão do encoder	120
7.8 Sentido do encoder	121
7.9 Sistema de conversor de malha fechada	122
8 Apêndice	
8.1 Abreviações e símbolos	123
8.2 Definições	126
8.2.1 Conversor de frequência	126
8.2.2 Entrada	126
8.2.3 Motor	126
8.2.4 Referências	128
8.2.5 Diversos	128
8.3 Convenções	131

1 Introdução

1.1 Objetivo do Guia de Design

Este Guia de Design é destinado a pessoal qualificado, como:

- Engenheiros de sistemas e projetos.
- Consultores de design.
- Especialistas em aplicação e produto.

O Guia de Design fornece informações técnicas para entender as capacidades do conversor para integração nos sistemas de controle e monitoramento do motor. Sua finalidade é fornecer considerações de projeto e dados de planejamento para a integração do drive em um sistema. Ele serve para a seleção de drives e opcionais para uma diversidade de aplicações e instalações. A análise das informações detalhadas do produto durante a fase de projeto permite desenvolver um sistema bem concebido com funcionalidade e eficiência ideais.

Este manual foi concebido para um público mundial. Portanto, onde quer que ocorra, tanto as unidades SI quanto as imperiais são mostradas.

VLT® é uma marca registrada da Danfoss A/S.

1.2 Recursos Adicionais

Outros recursos estão disponíveis para entender as funções e programações avançadas do conversor.

- O guia de operação fornece informações detalhadas para a instalação e inicialização do conversor.
- O guia de programação fornece maiores detalhes sobre como trabalhar com parâmetros e muitos exemplos de aplicação.
- Instruções para operação com equipamento opcional.

Publicações e manuais complementares estão disponíveis no site da Danfoss www.danfoss.com.

1.3 Versão do Documento

O guia é revisado e atualizado regularmente. Todas as sugestões de melhoria são bem-vindas.

O idioma original deste manual é o inglês.

Tabela 1: Versão do Documento

Edição	Observações
AJ275647605270, versão 1501	Adicione informações de conversores de sobrecarga normal de 90 kW (125 hp).

1.4 Aprovações e certificações

1.4.1 Marcação CE

A marcação CE (Conformité Européenne) indica que o fabricante do produto está em conformidade com todas as diretivas da UE aplicáveis.

As diretivas da UE aplicáveis à concepção e fabricação de conversores são:

- A diretiva de baixa tensão
- A diretiva EMC
- A diretiva de maquinaria (para unidades com função de segurança integrada).

A marcação CE é destinada a eliminar as barreiras técnicas ao livre comércio entre os estados da CE e da EFTA dentro da ECU. A marcação CE não regula a qualidade do produto. Não se pode deduzir especificações técnicas da marcação CE.

1.4.2 Diretiva de baixa tensão

Os conversores são classificados como componentes eletrônicos e devem ter a certificação CE em conformidade com a diretiva de baixa tensão. A diretiva é aplicável a todos os equipamentos elétricos nas faixas de tensão de 50–1000 V CA e 75–1500 V CC.

A diretiva determina que o projeto do equipamento deve garantir a segurança e a saúde das pessoas e dos animais, e a preservação do material, garantindo a instalação, a manutenção e o uso adequados do equipamento. A certificação CE Danfoss está em conformidade com a diretiva de baixa tensão, e a Danfoss fornece uma declaração de conformidade mediante solicitação.

1.4.3 Diretiva EMC

Compatibilidade eletromagnética (EMC) significa que a interferência eletromagnética entre peças do equipamento não prejudica seu desempenho. O requisito de proteção básica da diretiva EMC 2014/30/EU determina que dispositivos que geram interferência eletromagnética (EMI) ou cuja operação possa ser afetada pela EMI devem ser projetados para limitar a geração de interferência eletromagnética, e devem ter um grau adequado de imunidade à EMI quando instalado, mantido e usado adequadamente.

Um conversor pode ser usado como dispositivo independente ou como parte de uma instalação mais complexa. Os dispositivos em qualquer um desses casos devem ter a marcação CE. Os sistemas não precisam ter a marcação CE, mas precisam cumprir os requisitos básicos de proteção da diretiva EMC.

2 Segurança

2.1 Símbolos de Segurança

Os símbolos a seguir são usados na documentação da Danfoss.

PERIGO

Indica uma situação perigosa que, se não for prevenida, resultará em morte ou ferimentos graves.

ADVERTÊNCIA

Indica uma situação perigosa que, se não for prevenida, poderá resultar em morte ou ferimentos graves.

CUIDADO

Indica uma situação perigosa que, se não for prevenida, poderá resultar em ferimentos leves ou moderados.

AVISO

Indica informações consideradas importantes, mas não relacionadas a riscos (por exemplo, mensagens relacionadas a danos materiais).

O guia também inclui símbolos de advertência ISO relacionados a superfícies quentes e risco de queimaduras, alta tensão e choque elétrico, e referências às instruções.

	Símbolo de advertência ISO para superfícies quentes e risco de queimaduras
4	Símbolo de advertência ISO para alta tensão e choque elétrico
(3)	Símbolo de ação ISO para referências às instruções

2.2 Pessoal qualificado

Para uma operação segura e sem problemas do drive, são necessários transporte, armazenagem, instalação, operação e manutenção corretos e confiáveis. Somente pessoal qualificado tem permissão para instalar e operar este equipamento.

Pessoal qualificado é definido como pessoal treinado, autorizado a instalar, comissionar e manter o equipamento, os sistemas e circuitos em conformidade com as leis e normas pertinentes. Além disso, o pessoal qualificado deve estar familiarizado com as instruções e medidas de segurança descritas neste manual.

2.3 Precauções de Segurança

ALTA TENSÃO

Os conversores contêm alta tensão quando conectados à rede elétrica CA de entrada, alimentação CC, Load Sharing ou motores permanentes. Não utilizar pessoal qualificado na instalação, inicialização ou manutenção do conversor pode resultar em morte ou ferimentos graves.

- Somente pessoal qualificado deve instalar, inicializar e manter o conversor.
- Antes de realizar qualquer serviço de manutenção ou reparo, use um dispositivo de medição de tensão adequado para se certificar de que não há tensão residual no conversor.

ADVERTÊNCIA

PARTIDA ACIDENTAL

Quando o conversor de frequência estiver conectado à rede elétrica CA, alimentação CC ou load sharing, o motor pode dar partida a qualquer momento. Partida acidental durante a programação, serviço ou serviço de manutenção pode resultar em morte, ferimentos graves ou danos à propriedade. Dê partida no motor usando interruptor externo, comando de fieldbus, sinal de referência de entrada do painel de controle local (LCP), via operação remota usando o software MCT 10 ou após uma condição de falha resolvida.

- Desconecte o conversor da rede elétrica.
- Pressione [Off/Reset] no LCP, antes de programar parâmetros.
- Garanta que o conversor esteja totalmente conectado e montado quando conectado à rede elétrica CA, à alimentação CC ou ao Load Sharing.

ADVERTÊNCIA

TEMPO DE DESCARGA

O conversor contém capacitores no barramento CC, que podem permanecer carregados até mesmo quando o conversor não estiver ligado. Pode haver alta tensão presente mesmo quando as luzes indicadoras de advertência estiverem apagadas.

Não esperar o tempo especificado após a remoção da energia, antes de executar serviços ou reparações, pode resultar em morte ou ferimentos graves.

- Pare o motor.
- Desconecte a rede elétrica CA, os motores de ímã permanente e as fontes de alimentação do barramento CC remoto, incluindo backups de bateria , UPS e conexões do barramento CC com outros conversores.
- Aguarde os capacitores se descarregarem por completo. O tempo mínimo de espera é especificado na tabela *Tempo de descarga* e também é visível na plaqueta de identificação na parte superior do drive.
- Antes de realizar qualquer serviço de manutenção, utilize um dispositivo de medição de tensão apropriado, para certificar-se de que os capacitores estejam completamente descarregados.

Tabela 2: Tempo de Descarga

Tensão [V]	Faixa de potência [kW (hp)]	Tempo de espera mínimo (minutos)
380-480	0,37-7,5 kW (0,5-10 hp)	4
380–480	11–90 kW (15–125 hp)	15

ADVERTÊNCIA

PERIGO DE CHOQUE ELÉTRICO - RISCO DE CORRENTE DE FUGA >3,5 MA

As correntes de fuga excedem 3,5 mA. A falha em conectar o drive corretamente ao ponto de aterramento de proteção (PE) pode resultar em morte ou lesões graves.

- Garanta o condutor de aterramento de proteção reforçado de acordo com a IEC 60364-5-54 cl. 543.7 ou de acordo com as normas de segurança locais para equipamento de corrente de toque elevada. O ponto de aterramento de proteção reforçado do conversor pode ser feito com:
- um condutor de PE com seção transversal de pelo menos 10 mm² (8 AWG) Cu ou 16 mm² (6 AWG) Al.
- um condutor de PE adicional com a mesma seção transversal do condutor de PE original, conforme especificado pela IEC 60364-5-54, com uma seção transversal mínima de 2,5 mm² (14 AWG) (com proteção mecânica) ou 4 mm² (12 AWG) (sem proteção mecânica).
- um condutor de PE completamente fechado em um invólucro ou protegido de outra forma em todo o seu comprimento contra danos mecânicos.
- um condutor de PE parte de um cabo de energia multicondutor com uma seção transversal mínima do condutor de PE de 2,5 mm² (14 AWG) (permanentemente conectado ou plugável por um conector industrial. O cabo de energia multicondutor deve ser instalado com um alívio de tensão adequado).
- NOTA: Na IEC/EN 60364-5-54 cl. 543.7 e em algumas normas de aplicação (por exemplo, IEC/EN 60204-1), o limite para exigir um condutor de aterramento de proteção reforçado é uma corrente de fuga de 10 mA.

ADVERTÊNCIA

EQUIPAMENTO PERIGOSO

O contato com eixos rotativos e equipamento elétrico pode resultar em morte ou ferimentos graves.

- Assegure que somente pessoal qualificado e treinado realize a instalação, partida inicial e manutenção.
- Assegure que os serviços elétricos sejam executados em conformidade com os regulamentos elétricos locais e nacionais.
- Siga os procedimentos deste guia.

⚠ CUIDADO

RISCO DE FALHA INTERNA

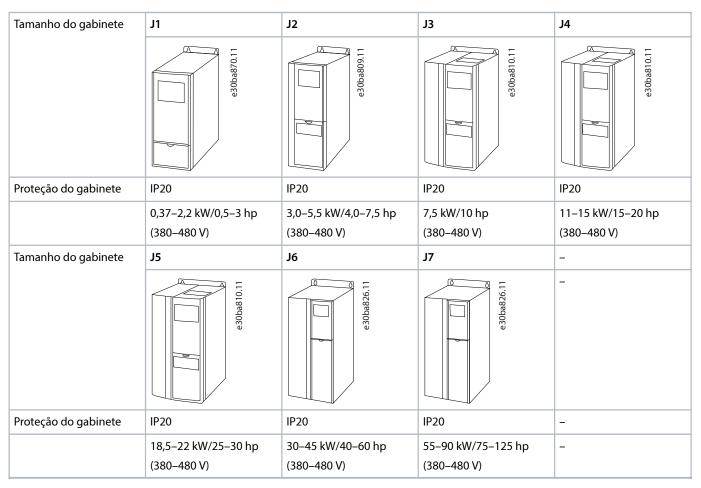
Uma falha interna no conversor pode resultar em lesões graves quando o conversor não estiver fechado corretamente.

• Assegure que todas as tampas de segurança estão no lugar e bem presas antes de aplicar energia.

AVISO

ALTITUDES ELEVADAS

• Para instalação em altitudes acima de 2.000 m (6.562 pés), entre em contato com a DANFOSS com relação à PELV.



3 Visão Geral do Produto

3.1 Visão Geral do Tamanho do Gabinete

O tamanho do gabinete depende da faixa de potência.

Tabela 3: Tamanhos de Gabinete

- Tipo de sobrecarga normal para tamanhos de gabinete de 0,37-90 kW (0,5-125 hp): Sobrecarga de 110% durante 1 minuto.
- Tipo de sobrecarga alta para tamanhos de gabinete de 0,37-7,5 kW (0,5-10 hp): Sobrecarga de 160% durante 1 minuto.
- Tipo de sobrecarga alta para tamanhos de gabinete de 11–75 kW (15–100 hp): Sobrecarga de 150% durante 1 minuto.

3.2 Instalação Elétrica

3.2.1 Diagrama de Ligação

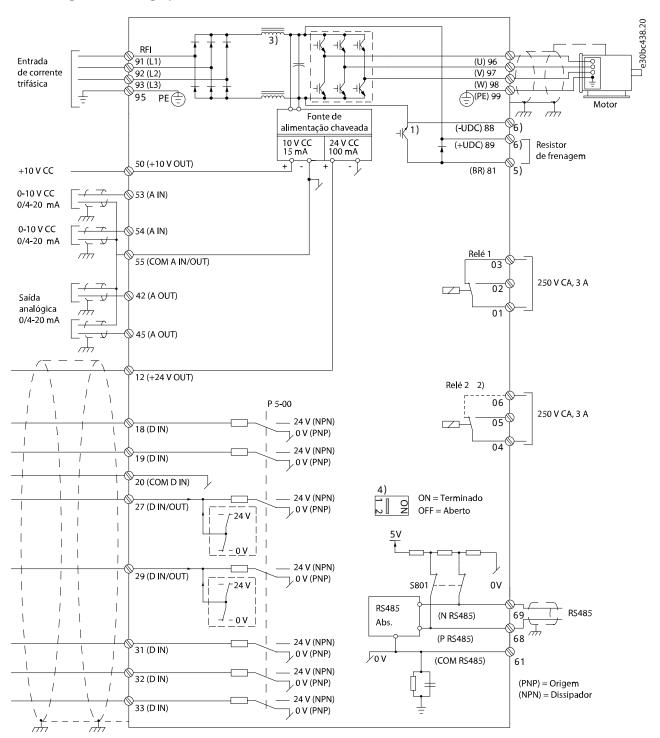


Figura 1: Diagrama de Fiação Básica

- A Analógico
- D Digital
- 1) Circuito de frenagem integrado disponível de J1 a J5.

- 2) O relé 2 tem 2 polos para J1 a J3 e 3 polos para J4 a J7. O relé 2 de J4–J7 com terminais 4, 5, e 6 tem a mesma lógica NA/NF que o relé 1. Os relés são plugáveis em J1 a J5 e fixos em J6 a J7.
- 3) Filtro CC simples em J1 a J5; Filtro CC duplo em J6 a J7.
- 4) O interruptor S800 (terminais de comunicação serial) pode ser utilizado para ativar a terminação na porta RS485 (terminais 68 e 69).
- 5) Sem BR para J6 a J7.
- 6) Terminais 81, 88 e 89 para J1-J7.

3.2.2 Conexão Elétrica Típica

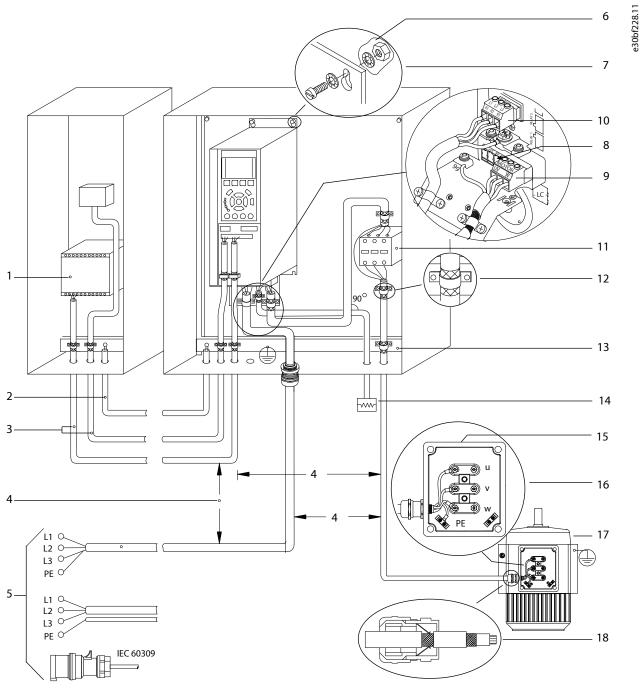


Figura 2: Conexão Elétrica Típica

PLC	2	Cabo de equalização mínimo de 16 mm² (6 AWG)
Cabos de controle	4	Mínimo de 200 mm (7,87 pol.) entre os cabos de controle, os cabos de motor e os cabos de rede elétrica.
Alimentação de rede elétrica	6	Superfície exposta (não pintada)
Arruelas tipo estrela	8	Cabo do freio (blindado)
Cabo de motor (blindado)	10	Cabo de rede elétrica (não blindado)
Contator de saída e mais.	12	Isolamento do cabo descascado
Barramento do ponto de aterramento comum. Siga as exigências locais e nacionais para o aterramento do painel elétrico.	14	Resistor de frenagem
Caixa metálica	16	Conexão para o motor
Motor	18	Bucha de cabo de EMC
	Cabos de controle Alimentação de rede elétrica Arruelas tipo estrela Cabo de motor (blindado) Contator de saída e mais. Barramento do ponto de aterramento comum. Siga as exigências locais e nacionais para o aterramento do painel elétrico. Caixa metálica	Cabos de controle Alimentação de rede elétrica 6 Arruelas tipo estrela 8 Cabo de motor (blindado) 10 Contator de saída e mais. 12 Barramento do ponto de aterramento comum. Siga as exigências locais e nacionais para o aterramento do painel elétrico. Caixa metálica 16

3.2.3 Requisitos Gerais

ADVERTÊNCIA

EOUIPAMENTO PERIGOSO

O contato com eixos rotativos e equipamento elétrico pode resultar em morte ou ferimentos graves.

- Assegure que somente pessoal qualificado e treinado realize a instalação, partida inicial e manutenção.
- Assegure que os serviços elétricos sejam executados em conformidade com os regulamentos elétricos locais e nacionais.
- Siga os procedimentos deste guia.

AVISO

ISOLAMENTO DE FIAÇÃO

Passe a potência de entrada, a fiação do motor e a fiação de controle por 3 conduítes metálicos separados, ou utilize cabos blindados separados para isolamento de ruído de alta frequência. A não observância em isolar a energia, a fiação do motor e a fiação de controle pode resultar em desempenho abaixo do ótimo do drive e do equipamento associado.

Aciona cabos do motor de vários drives por separado. A tensão induzida dos cabos de motor de saída que passam juntos pode carregar os capacitores do equipamento, mesmo com o equipamento desligado e bloqueado. Se os cabos de motor de saída não forem estendidos separadamente ou não forem utilizados cabos blindados, o resultado poderá ser morte ou lesões graves.

- Passe os cabos de motor de saída por separado.
- Utilize cabos blindados.
- Bloqueie todos os conversores em forma simultânea.

Tipos e características nominais dos fios

- Toda a fiação deverá estar em conformidade com as regulamentações locais e nacionais com relação à seção transversal e aos requisitos de temperatura ambiente.
- Danfoss recomenda que todas as conexões de energia sejam feitas com um fio de cobre com classificação mínima de 75 °C (167 °F).
- Consulte o capítulo "Especificações" para tamanhos de fio recomendados

3.2.4 Requisitos de Aterramento

ADVERTÊNCIA

PERIGO DE ATERRAMENTO

Para a segurança do operador, um eletricista certificado deve aterrar o conversor de acordo com os códigos elétricos nacionais e locais e as instruções contidas neste manual. As correntes de aterramento são superiores a 3,5 mA. Falha em aterrar o conversor corretamente pode resultar em morte ou em ferimentos graves.

- Estabeleça um aterramento de proteção adequado para equipamentos com correntes de aterramento superiores a 3,5 mA. Consulte o *capítulo "Corrente de Fuga para o Terra"* para obter mais detalhes.
- É necessário um fio de aterramento dedicado para a potência de entrada, a potência do motor e a fiação de controle.
- Utilize as braçadeiras fornecidas com o equipamento para obter conexões de aterramento adequadas.
- Não aterre um conversor em outro, como em uma ligação em cascata (consulte <u>Figura 3</u>).
- Mantenha as conexões do fio de aterramento tão curtas quanto possível.
- Utilize fio com filamentos grossos, para reduzir o ruído elétrico.
- Siga os requisitos de fiação do fabricante do motor.

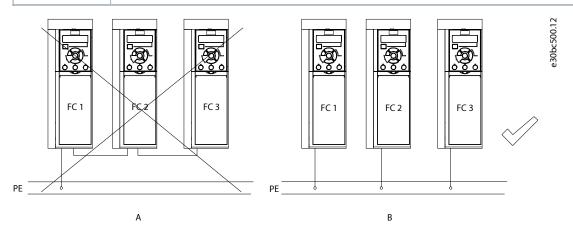


Figura 3: Princípio de Aterramento

3.2.5 Conexões do Terra, de Rede Elétrica e Motor

3.2.5.1 Considerações para Conexão

ADVERTÊNCIA

TENSÃO INDUZIDA

A tensão induzida dos cabos de motor de saída que correm juntos pode carregar os capacitores do equipamento, mesmo com o equipamento desligado e bloqueado/sinalizado. Não passar os cabos de motor de saída separadamente ou não usar cabos blindados pode resultar em morte ou ferimentos graves.

- Passe os cabos de motor de saída separadamente ou use cabos blindados.
- Bloqueie/sinalize simultaneamente todos os conversores.
- Não instale capacitores de correção do fator de potência entre o drive e o motor.
- Não conecte um dispositivo de partida ou de inversão de polo entre o drive e o motor.
- Siga os requisitos de fiação do fabricante do motor.
- Todos os conversores devem ser utilizados com uma fonte de entrada isolada e com linhas de energia de referência de aterramento. Quando alimentado a partir de uma fonte de rede elétrica isolada (rede elétrica IT ou delta flutuante) ou rede elétrica TT/TN-S

com uma perna aterrada (delta aterrada), programe o *parâmetro 14-50, filtro de RFI* para OFF (tamanhos de gabinete J6–J7) ou remova o parafuso RFI (tamanhos de gabinete J1–J5). Quando desligados, os capacitores internos do filtro de RFI entre o chassi e o barramento CC são isolados para evitar danos ao barramento CC e reduzir as correntes capacitivas do terra, de acordo com a IEC 61800-3.

• Não instale um interruptor entre o conversor e o motor na rede elétrica IT.

3.2.5.2 **Exemplos**

<u>Figura 4</u> e <u>Figura 5</u> mostram a entrada da rede elétrica, motor e aterramento para gabinetes tamanhos J1–J5 e gabinetes tamanhos J6–J7. As configurações reais variam com os tipos de unidade e equipamentos opcionais.

Para gabinetes tamanhos J1-J5, fornecem-se braçadeiras de aterramento para a fiação do motor.

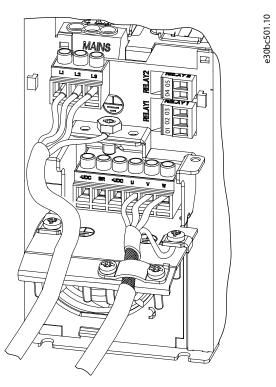


Figura 4: Conexões de Rede Elétrica, do Motor e do Terra para Tamanhos do Gabinete J1-J5 (Tomando o J2 como Exemplo)

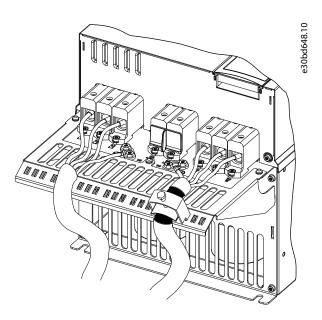


Figura 5: Conexões de Rede Elétrica, do Motor e do Terra para Tamanhos do Gabinete J6-J7 (Tomando o J7 como Exemplo)

3.2.6 Fiação de Controle

3.2.6.1 Acesso à Fiação de Controle

• Remova a chapa de tampa com uma chave de fenda. Consulte a Figura 6.

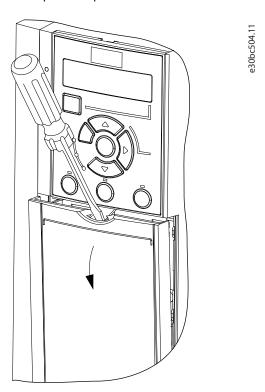


Figura 6: Acesso à Fiação de Controle para Tamanhos de Gabinetes J1-J7

3.2.6.2 Tipos de Terminal de Controle

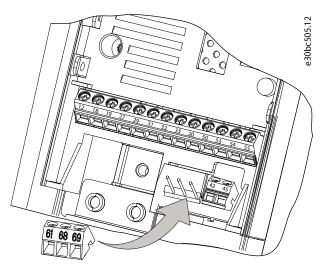


Figura 7: Locais do Terminal de Controle

Tabela 4: Descrições dos Terminais

Terminal	Parâmetro	Configuração padrão	Descrição	
E/S digital, E	E/S pulso, encoder		<u>'</u>	
12	-	+24 V CC	Tensão de alimentação de 24 V CC. A corrente de saída máxima é de 100 mA para todas as cargas de 24 V.	
18	Parâmetro 5-10, terminal 18, Entrada Digital	[8] Partida	Entradas digitais.	
19	Parâmetro 5-11, Terminal 19, Entrada Digital	[10] Reversão		
31	Parâmetro 5-16, Terminal 31, Entrada Digital	[0] Sem operação	Entrada digital.	
32	Parâmetro 5-14, Terminal 32, Entrada Digital	[0] Sem operação	Entrada digital, encoder de 24 V. O ter-	
33	Parâmetro 5-15, Terminal 33, Entrada Digital	[0] Sem operação	minal 33 pode ser utilizado para entrac de pulso.	
27	Parâmetro 5-12, Terminal 27, Entrada Digital Parâmetro 5-30, Terminal 27, Saída Digital	DI [2] Paradp/ inérc,reverso DO [0] Sem operação	Selecionável para entrada digital, saída digital ou saída de pulso. A configuração padrão é a entrada digital. O terminal 29	
29	Parâmetro 5-13, Terminal 29, Entrada Digital Parâmetro 5-31, Terminal 29, Saída Digital	DI [14] Jog DO [0] Sem operação	pode ser utilizado para entrada de pul	
20	-	-	Comum para entradas digitais e potencial de 0 V para alimentação de 24 V.	
Entradas/sai	ídas analógicas		·	
42	Parâmetro 6-91, Terminal 42, Saída Analógica	[0] Sem operação	Saída analógica programável. O sinal analógico é de 0-20 mA ou 4-20 mA a um máximo de 500 Ω. Também pode so configurado como saídas digitais.	
45	Parâmetro 6-71, Terminal 45, Saída Analógica	[0] Sem operação		
50	-	+10 V CC	Tensão de alimentação analógica de 10 V CC. Máximo de 15 mA, comumente utilizado para potenciômetro ou termistor.	

Tabela 4: Descrições dos Terminais - (continuação)

Terminal	Parâmetro	Configuração padrão	Descrição	
53	Grupo do parâmetro 6-1* Entrada Analógica 53	-	Entrada analógica. Selecionável para	
54	Grupo do parâmetro 6-2* Entrada Analógica 54	-	tensão ou corrente.	
55	-	_	Comum para entrada analógica.	
Comunicaçã	o serial			
61	-	-	Filtro RC integrado para blindagem do cabo. SOMENTE para conectar a blindagem quando houver problemas de EMC.	
68 (+)	Grupo do parâmetro 8-3* Configurações de Porta do FC	_	Interface RS485. Um interruptor do cartão de controle é fornecido para res	
69 (-)	Grupo do parâmetro 8-3* Configurações de Porta do FC	-	istência de terminação.	
Relés	'	1		
01, 02, 03	Parâmetro 5-40, Função do Relé [0]	[0] Sem operação	Saída do relé de formato C. Esses relés	
04, 05, 06	Parâmetro 5-40, Função do Relé [1]	[0] Sem operação	estão em diferentes lugares, dependendo do tamanho e da configuração do conversor. Utilizável para tensão CC ou CA e carga indutiva ou resistiva. O RO2 no gabinete metálico J1-J3 é de 2 polos, somente os terminais 04 e 05 estão disponíveis.	

3.2.6.3 Funções do Terminal de Controle

As funções do conversor são comandadas pelo recebimento de sinais de entrada de controle.

- Programe cada terminal para a função que ele suporta nos parâmetros associados a esse terminal.
- Confirme se o terminal de controle está programado para a função correta. Consulte o *capítulo "Programação"*, no guia de programação, para obter detalhes sobre como acessar parâmetros e programação.
- A programação do terminal padrão inicia o conversor, funcionando em um modo operacional típico.

3.2.6.4 Cabos de Controle Blindados

O método preferido é fixar cabos de controle e de comunicação serial com braçadeiras de proteção fornecidas em ambas as extremidades, para garantir o melhor contato de cabo de alta frequência possível.

Se o potencial do ponto de aterramento entre o drive e o PLC for diferente, o ruído elétrico poderá causar distúrbios no sistema inteiro. Resolva este problema instalando um cabo de equalização o mais próximo possível do cabo de controle. Seção transversal mínima do cabo: 16 mm² (6 AWG).

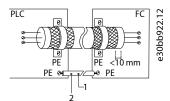


Figura 8: Braçadeiras de Blindagem em Ambas as Extremidades

1 Mínimo 16 mm² (6 AWG) 2	2 Cabo de equalização
---------------------------	------------------------------

3.2.6.5 Malhas de Aterramento de 50/60 Hz

Com cabos de controle muito longos, podem ocorrer loops de aterramento. Para eliminar loops de aterramento, conecte 1 extremidade da blindagem ao aterramento com um capacitor de 100 nF (mantendo os cabos curtos).

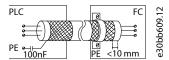


Figura 9: Conexão com um Capacitor de 100 nF

3.2.6.6 Evitar Ruído EMC na Comunicação Serial

Esse terminal está conectado ao aterramento por meio de um barramento RC interno. Utilize cabos de par trançado para reduzir a interferência entre os condutores. O método recomendado é mostrado na Figura 10.

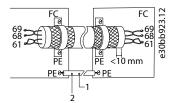


Figura 10: Cabos de Par Trançado

1 Mínimo 16 mm² (6 AWG) 2 Cabo de equalização

Em forma alternativa, a conexão ao terminal 61 pode ser omitida conforme mostrado em Figura 11.

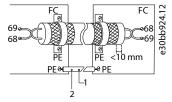


Figura 11: Cabos de par trançado sem terminal 61

1 Mínimo 16 mm² (6 AWG) 2 Cabo de equalização

3.3 Estruturas de Controle

3.3.1 Princípio de controle

Um conversor retifica a tensão CA da rede elétrica para tensão CC. Em seguida, a tensão CC é convertida em uma corrente CA com amplitude e frequência variáveis.

O motor é fornecido com tensão/corrente e frequência variáveis, permitindo o controle de velocidade variável de motores trifásicos padrão CA e motores síncronos de ímã permanente.

3.3.2 Modos de Controle

O conversor tem a capacidade de controlar a velocidade ou o torque no eixo do motor. A programação do *parâmetro 1-00, modo configuração*, determina o tipo de controle.

Controle da velocidade

Existem dois tipos de controle de velocidade:

• Controle de velocidade de malha aberta, que não requer nenhum feedback do motor (sem sensor).

 Controle do PID de malha fechada de velocidade, que requer um feedback de velocidade para uma entrada. Um controle em malha fechada de velocidade, corretamente otimizado, tem maior precisão do que um controle em malha aberta de velocidade.

Selecione qual entrada empregar como feedback do PID de velocidade no parâmetro 7-00, fonte do feedback do PID de velocidade.

Controle de torque

A função de controle de torque é utilizada em aplicações em que o torque no eixo de saída do motor está controlando a aplicação como controle de tensão. O melhor desempenho é com malha fechada básica de fluxo, especialmente perto de velocidade zero. O controle de torque pode ser selecionado no *parâmetro 1-00, modo configuração*. A configuração de torque é feita configurando-se uma referência de controle analógica, digital ou por barramento. Ao se executar o controle de torque, recomenda-se executar um procedimento AMA completo, já que os dados corretos do motor são importantes para alcançar-se o desempenho ideal.

- Malha fechada. Esta função é empregada em aplicações com variação dinâmica baixa a média do eixo, e oferece excelente desempenho em todos os 4 quadrantes e em todas as velocidades do motor. O sinal de feedback de velocidade é obrigatório.
 Garanta que a resolução do encoder seja de pelo menos 1024 PPR, e que o cabo de blindagem do encoder esteja bem-aterrado, já que a precisão do sinal de feedback de velocidade é importante. Ajuste o parâmetro 7-06, tempo do filtro passabaixa do PID de velocidade, para obter o melhor sinal de feedback de velocidade.
- Malha aberta. A função é utilizada em aplicações mecanicamente robustas; porém, a precisão é limitada. A função de torque de malha aberta funciona para duas direções. O torque é calculado com base na medição da corrente interna do conversor.

Referência de velocidade/torque

A referência a esses controles pode ser uma única referência ou a soma de várias referências, incluindo referências relativamente escalonadas. O tratamento das referências é explicado em detalhes no *capítulo "Tratamento das referências"*.

3.3.3 Princípio de Controle do FC 360

O VLT® AutomationDrive FC 360 é um conversor de uso geral para aplicações de velocidade variável. O princípio de controle se baseia no Controle Vetorial de Tensão+ (VVC+) e fluxo básico.

0,37-22 kW (0,5-30 hp)

FC 360 Os conversores 0,37–22 kW (0,5–30 hp) podem controlar motores de indução e motores síncronos de ímã permanente, até 22 kW (30 hp).

O princípio de detecção de corrente nos conversores FC 360 0,37–22 kW (0,5–30 hp) é baseado na medição de corrente por um resistor no barramento CC. A proteção contra falha de aterramento e o comportamento em curto-circuito são controlados pelo mesmo resistor.

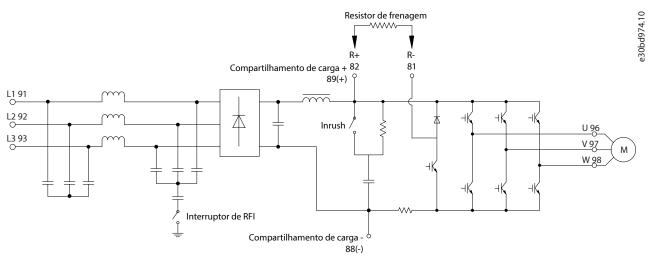


Figura 12: Diagrama de controle para FC 360 0,37-22 kW (0,5-30 hp)

30-90 kW (40-125 hp)

O princípio de detecção de corrente dos conversores FC 360 30–90 kW (40–125 hp) são baseados na medição de corrente nas fases do motor.

A proteção contra falha de aterramento e o comportamento de curto-circuito nos conversores FC 360 30–90 kW (40–125 hp) são controlados pelos 3 transdutores de corrente nas fases do motor.

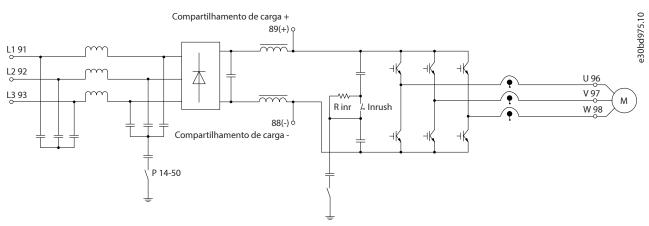


Figura 13: Diagrama de controle para FC 360 30-90 kW (40-125 hp)

3.3.4 Estrutura de Controle em VVC+

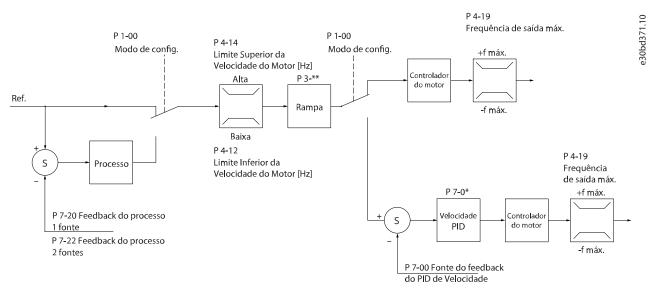


Figura 14: Estrutura de controle em configurações de malha fechada e configurações de malha aberta VVC+

Na configuração mostrada em Figura 14, o parâmetro 1-01, Princípio de Controle do Motor, está programado para [1] VVC+ e o parâmetro 1-00, Modo Configuração, está programado para [0] Malha aberta de velocidade. A referência resultante do sistema de tratamento de referências é recebida e alimentada por meio da limitação de rampa e da limitação de velocidade, antes de ser enviada para o controle do motor. A saída do controle do motor fica, então, restrita pelo limite de frequência máxima.

Se o *parâmetro 1-00, modo configuração*, estiver programado para [1] *Malha fechada de velocidade*, a referência resultante é passada desde a limitação de rampa e da limitação de velocidade para um controle do PID de velocidade. Os parâmetros de controle do PID de velocidade estão no *grupo do parâmetro 7-0* controle do PID de velocidade*. A referência resultante do controle de PID de velocidade é enviada ao controle do motor, limitada pelo limite de frequência.

Selecione [3] Processo no parâmetro 1-00, Modo Configuração, para utilizar o controle do PID de processo para o controle de malha fechada da velocidade ou da pressão na aplicação controlada. Os parâmetros do PID de processo estão nos grupos do parâmetro 7-2*, feedback do controle de processo e nos grupos do parâmetro 7-3*, Controle dos Processos PID.

3.3.5 Estrutura de Controle em Fluxo Básico com Feedback de Motor

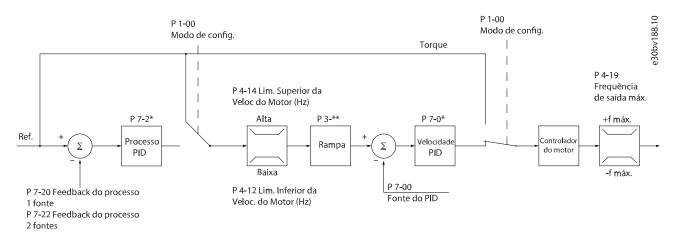


Figura 15: Estrutura de Controle em Fluxo Básico com Feedback de Motor

Na configuração mostrada, o *parâmetro 1-01, Princípio de Controle do Motor* está programado para [3] *Fluxo Básico com feedback do motor*, e o *parâmetro 1-00, Modo Configuração*, está programado para [1] *Malha fechada de velocidade*.

Selecione [1] Malha fechada de velocidade no parâmetro 1-00, modo configuração, para utilizar a referência resultante como entrada do controle do PID de velocidade. Os parâmetros de controle do PID de velocidade estão no grupo do parâmetro 7-0*, controle do PID de velocidade.

Selecione [2] Torque no parâmetro 1-00, modo configuração, para utilizar a referência resultante diretamente como referência de torque. O controle de torque só pode ser selecionado na configuração de fluxo básico com feedback de motor (parâmetro 1-01, Princípio de Controle do Motor). Quando este modo for selecionado, a referência emprega a unidade de medida Nm. Não exige nenhum feedback de torque, pois o torque real é calculado com base na medida atual do conversor.

Selecione [3] Processo no parâmetro 1-00, modo configuração, para utilizar o controle do PID de processo para o controle de malha fechada de uma variável de processo (por exemplo, velocidade) na aplicação controlada.

3.3.6 Controle Local [Hand On] e Controle Remoto [Auto On]

Opere o conversor de forma manual através do painel de controle local (LCP gráfico ou LCP numérico) ou em modo remoto via entradas analógicas/digitais ou fieldbus.

Inicie e pare o conversor, pressionando as teclas [Hand On] e [Off/Reset] no LCP. O setup é necessário através destes parâmetros:

- Parâmetro 0-40, Tecla [Hand on] do LCP.
- Parâmetro 0-44, Tecla [Off/Reset] (Desligar/Reset) do LCP.
- Parâmetro 0-42, Tecla [Auto on] do LCP.

Redefina os alarmes através da tecla [Off/Reset] ou através de uma entrada digital quando o terminal estiver programado para Reset.

Figura 16: Teclas de Controle do LCP

A referência local força o modo de configuração para malha aberta, independente da configuração no *parâmetro 1-00, modo configuração*.

A referência local é restaurada no desligamento do conversor.

3.4 Tratamento das Referências

3.4.1 Referências local e remota

Referência local

A referência local está ativa quando o conversor é operado com [Hand On] ativo. Ajuste a referência usando as teclas para cima, para baixo, para a direita e [Back].

Referência remota

O sistema de tratamento de referência para calcular a referência remota é mostrado na Figura 17.

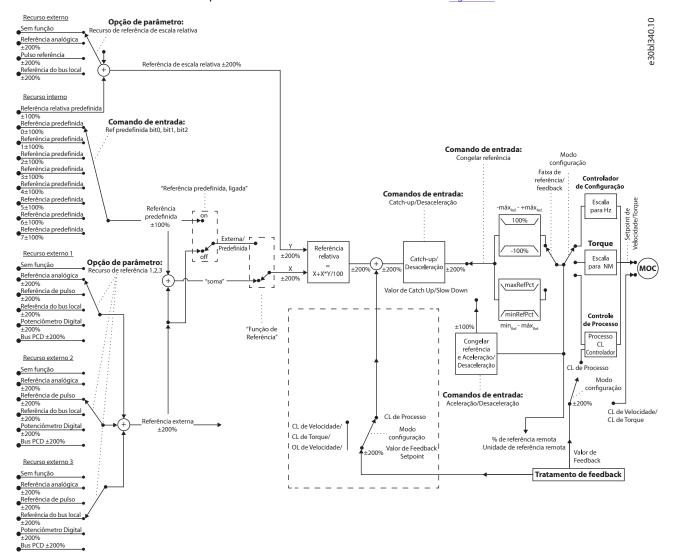


Figura 17: Referência remota

A referência remota é calculada uma vez em cada intervalo de varredura e inicialmente consiste em dois tipos de entradas de referência:

1. X (a referência externa): Uma soma (consulte o *parâmetro 3-04 Função de Referência*) de até quatro referências selecionadas externamente, composta de qualquer combinação (determinada pela programação do *parâmetro 3-15 Fonte da Referência 1*, do

parâmetro 3-16 Fonte da Referência 2 e do parâmetro 3-17 Fonte da Referência 3) de uma referência predefinida fixa (parâmetro 3-10 Referência Predefinida), referências analógicas variáveis, referências de pulso digital variáveis e várias referências de fieldbus em qualquer unidade que o conversor esteja monitorando ([Hz], [RPM], [Nm] etc.).

2. Y (a referência relativa): Uma soma de 1 referência predefinida fixa (*parâmetro 3-14 Referência Relativa Predefinida*) e 1 referência analógica variável (*parâmetro 3-18 Recurso de Referência de Escala Relativa*) em [%].

Os dois tipos de entradas de referência são combinados na seguinte fórmula:

Referência remota=X+X*Y/100%.

Se a referência relativa não for usada, programe o *parâmetro 3-18 Recurso de Referência de Escala Relativa* para [0] Sem função e o *parâmetro 3-14 Referência Relativa Predefinida* para 0%. As entradas digitais no conversor podem ativar a função catch-up/slow down e a função de referência de congelamento. As funções e os parâmetros estão descritos no guia de programação.

A escala das referências analógicas é descrita no grupo do parâmetro 6-1* Entrada Analógica 53 e no grupo do parâmetro 6-2* Entrada Analógica 54, e a escala das referências de pulso digital é descrita no grupo do parâmetro 5-5* Entrada de Pulso.

Os limites e intervalos de referência são programados no grupo do parâmetro 3-0* Limites de Referência.

3.4.2 Limites de Referência

O *parâmetro 3-00 Intervalo de Referência*, o *parâmetro 3-02 Referência Mínima* e o *parâmetro 3-03 Referência Máxima* definem o intervalo permitido da soma de todas as referências. A soma de todas as referências é fixada quando necessário. A relação entre a referência resultante (após a fixação) e a soma de todas as referências é mostrada nas figuras a seguir.

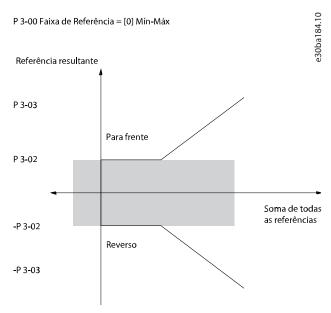


Figura 18: Soma de Todas as Referências Quando a Faixa de Referência é Programada como 0

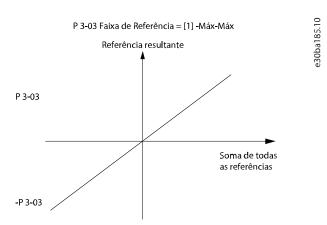


Figura 19: Soma de Rodas as Referências Quando a Faixa de Referência é Programada para 1

O valor do *parâmetro 3-02 Referência Mínima* não pode ser programado para um valor menor que zero, a menos que o *parâmetro 1-00 Modo Configuração* esteja programado para [3] *Malha Fechada de Processo*. Nesse caso, as seguintes relações entre a referência resultante (após a fixação) e a soma de todas as referências são mostradas em Figura 20.

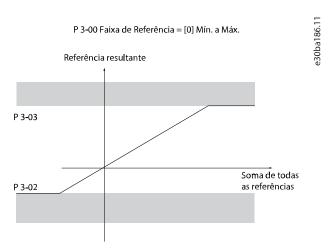


Figura 20: Soma de Todas as Referências Quando a Faixa Mínima é Definida como um Valor de Menos

3.4.3 Graduação das referências predefinidas e das referências de barramento

As referências predefinidas são graduadas de acordo com as regras seguintes:

- Quando o parâmetro 3-00 Faixa de Referência estiver programado para [0] Mín-Máx, uma referência de 0% é igual a 0 [unidade] onde a unidade pode ser qualquer unidade, por exemplo, RPM, m/s e bar. Uma referência de 100% é igual ao valor máximo (valor absoluto do parâmetro 3-03 Referência Máxima, valor absoluto do parâmetro 3-02 Referência Mínima).
- Quando o parâmetro 3-00 Faixa de Referência estiver programado para [1] -Máx-+Máx, uma referência de 0% é igual a 0 [unidade],
 e uma referência de 100% é igual à referência máxima.

As referências de barramento são graduadas de acordo com as regras seguintes:

- Quando o *parâmetro 3-00 Faixa de Referência* estiver programado para *[0] Mín–Máx*, uma referência de 0% é igual à referência mínima, e uma referência de 100% é igual à referência máxima.
- Quando o parâmetro Faixa de Referência estiver programado para [1] -Máx-+Máx, uma referência de -100% é igual à referência máxima, e uma referência de 100% é igual à referência máxima.

3.4.4 Escalonamento de referência de pulso e analógica e feedback

As referências e o feedback são graduados a partir das entradas analógica e de pulso, da mesma maneira. A única diferença é que uma referência acima ou abaixo dos pontos finais mínimo e máximo especificados (P1 e P2 no Figura 21) são fixadas, enquanto um feedback acima ou abaixo não é.

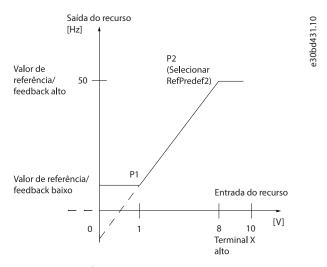


Figura 21: Pontos finais mínimo e máximo

Os pontos finais P1 e P2 são definidos na tabela a seguir dependendo da escolha de entrada.

Tabela 5: Pontos finais P1 e P2

Entrada	Analógico 53 modo de tensão	Analógico 53 modo de corrente	Analógico 54 modo de tensão	Analógico 54 modo de corrente	Entrada de pulso 29	Entrada de pulso 33
P1=(valor de entra	ada mínimo, valor de	referência mínima)				
Valor de referên- cia mínima	Parâmetro 6-14 Terminal 53 Valor Baixo de Feedback	Parâmetro 6-14 Terminal 53 Valor Baixo de Feedback	Parâmetro 6-24 Terminal 54 Valor Baixo de Feedback	Parâmetro 6-24 Terminal 54 Valor Baixo de Feedback	Parâmetro 5-52 Term. 29 Valor Baixo de Feedback	Parâmetro 5-57 Terminal 33 Valor Baixo de Feedback
Valor de entrada mínimo	Parâmetro 6-10 Terminal 53 Baixa Tensão [V]	Parâmetro 6-12 Terminal 53 Corrente Baixa [mA]	Parâmetro 6-20 Terminal 54 Baixa Tensão [V]	Parâmetro 6-22 Terminal 54 Corrente Baixa [mA]	Parâmetro 5-50 Terminal 29 Baixa Frequência [Hz]	Parâmetro 5-55 Terminal 33 Baixa Frequência [Hz]
P2=(valor de entrada máximo, valor de referência máxima)						
Valor de referên- cia máxima	Parâmetro 6-15 Terminal 53 Valor de Ref./Feedb. de Feedback	Parâmetro 6-15 Terminal 53 Valor de Ref./Feedb. de Feedback	Parâmetro 6-25 Terminal 54 Valor de Ref./Feedb. de Feedback	Parâmetro 6-25 Terminal 54 Valor de Ref./Feedb. de Feedback	Parâmetro 5-53 Term. 29 Valor Alto de Feedback	Parâmetro 5-58 Terminal 33 Valor Alto de Feedback
Valor de entrada máximo	Parâmetro 6-11 Terminal 53 Alta Tensão [V]	Parâmetro 6-13 Terminal 53 Corrente Alta [mA]	Parâmetro 6-21 Terminal 54 Alta Tensão [V]	Parâmetro 6-23 Terminal 54 Corrente Alta [mA]	Parâmetro 5-51 Terminal 29 Alta Frequência [Hz]	Parâmetro 5-56 Terminal 33 Alta Frequência [Hz]

3.4.5 Banda morta em torno de zero

Às vezes, a referência (em casos raros, também o feedback) deve ter uma banda morta em torno de 0 para garantir que a máquina seja parada quando a referência estiver próxima de 0.

Para tornar a banda morta ativa e definir a quantidade de banda morta, faça o seguinte:

- Defina o valor de referência mínima ou o valor de referência máxima em 0. Em outras palavras, P1 ou P2 devem estar no eixo X em Figura 22.
- Certifique-se de que os dois pontos que definem o gráfico em escala estejam no mesmo quadrante.

P1 ou P2 define o tamanho da banda morta como mostrado em Figura 22.

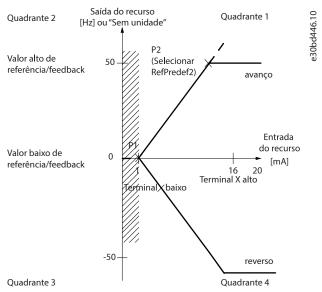


Figura 22: Tamanho da banda morta

Caso-exemplo 1: Referência positiva com banda morta, entrada digital para acionamento reverso, parte I

Figura 23 mostra como a entrada de referência com limites dentro dos mínimos aos máximos de fixação.

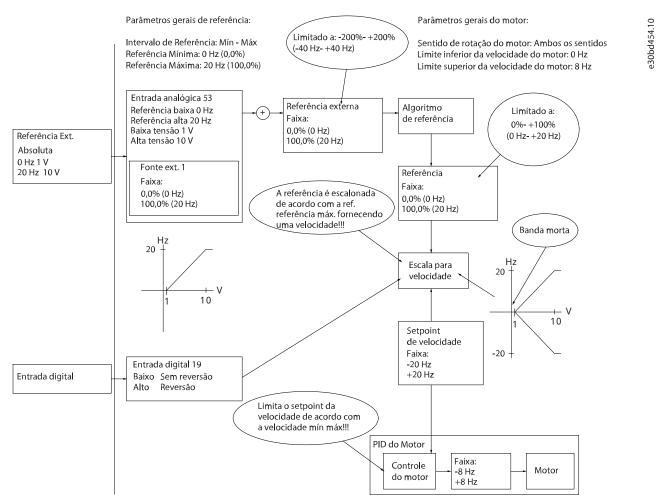


Figura 23: Fixação da entrada de referência com limites dentro do mínimo ao máximo

Caso-exemplo 2: Referência positiva com banda morta, entrada digital para acionamento reverso, parte II

<u>Figura 24</u> mostra como a entrada de referência com limites externos -máximo a +máximo se limita aos limites de entrada baixo e alto antes de adicionar à referência externa, e como a referência externa é fixada em -máximo a +máximo pelo algoritmo de referência.

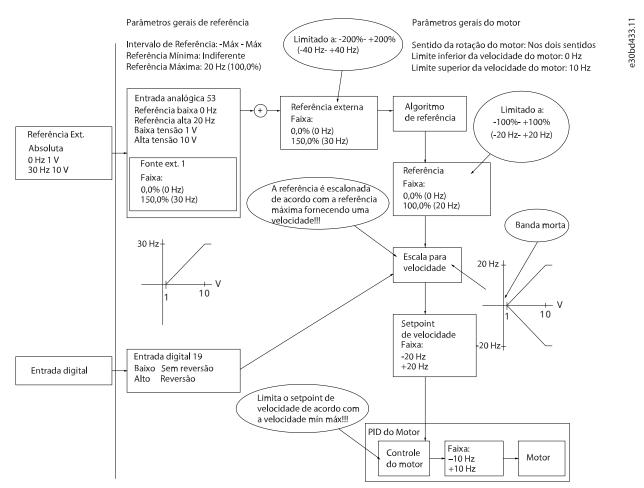


Figura 24: Fixação da entrada de referência com limites fora -Máximo a +Máximo

3.5 Controle da Posição

No modo de posicionamento e sincronização, o controlador PI de posição é adicionado como malha externa, fornecendo a referência de velocidade para o PID de velocidade.

A Figura 25 mostra a estrutura de controle e os parâmetros que afetam o comportamento de controle com o controle do motor de fluxo básico.

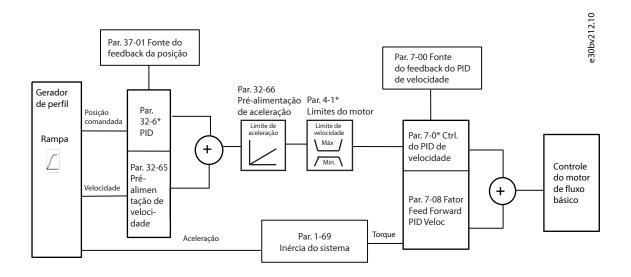


Figura 25: Controle da Posição

3.6 Controle do PID

3.6.1 Controle do PID de Velocidade

3.6.1.1 Configurações de Controle

Tabela 6: Configurações de Controle, Controle da Velocidade Ativo

Parâmetro 1-00, Modo Configuração	Parâmetro 1-01, Princípio de Controle do Motor			
	U/f	VVC+	Fluxo básico	
[0] Malha Aberta	Disponível somente para motor IM	Disponível	Disponível	
[1] Malha Fechada de Velocidade	Não está disponível	Disponível somente para motor IM	Disponível	
[2] Torque Malha Fechada	Não está disponível	Disponível somente para motor IM	Disponível	
[3] Malha Fechada de Processo	Disponível somente para motor IM	Disponível	Disponível	
[4] Torque, Malha Aberta	Não está disponível	Disponível	Disponível	

3.6.1.2 Parâmetros de Controle de Velocidade

Tabela 7: Parâmetros de Controle de Velocidade

Parâmetro	Descrição da função	
Parâmetro 7-00, Fonte do Feedback do PID de Velocidade	Selecione de qual entrada o PID de velocidade recebe seu feedback.	
Parâmetro 7-02, Ganho Proporcional do PID de Velocidade	Quanto maior o valor, mais rápido será o controle. No entanto, um valor muito alto pode levar a oscilações.	
Parâmetro 7-03, Tempo Integrado do PID de Velocidade	Elimina erros de velocidade de estado estável. Valores mais baixos significam uma reação mais rápida. No entanto, um valor muito baixo pode levar a oscilações.	

Tabela 7: Parâmetros de Controle de Velocidade - (continuação)

Parâmetro	Descrição da função		
Parâmetro 7-04, Tempo de Diferenciação do PID de Velocidade	Fornece um ganho proporcional à taxa de variação do feedback. Uma configuração de 0 desativa o diferenciador.		
Parâmetro 7-05, Diferencial do PID de Velocidade Limite de Ganho	Se houver mudanças rápidas na referência ou no feedback em uma determinada aplicação, o que significa que o erro muda rapidamente, o diferenciador pode em breve se tornar dominante em excesso. Isto ocorre porque ele reage às variações no erro. Quanto mais rápida a variação do erro, maior será o ganho diferencial. O ganho diferencial pode, portanto, ser limitado, para permitir a programação de um tempo de diferenciação razoável, para variações lentas, e um ganho adequadamente rápido, para variações rápidas.		
Parâmetro 7-06, Tempo do Filtro Passa- baixa do PID de Velocidade Um filtro passa-baixa que amortiza oscilações no sinal de feedbace penho em regime. No entanto, um tempo do filtro muito longo de dinâmico do controle do PID de velocidade. Configurações práticas do parâmetro 7-06, Tempo do Filtro Passa- Velocidade efetuadas a partir do número de pulsos por revolução		o filtro muito longo deteriora o desempenho Tempo do Filtro Passa-baixa do PID de	
	Encoder PPR	Parâmetro 7-06, Tempo do Filtro Passa- baixa do PID de Velocidade	
	512	10 ms	
	1024	5 ms	
	2048	2 ms	
	4096	1 ms	

3.6.1.3 Exemplo de Programação de Controle da Velocidade

Neste exemplo, o controle do PID de velocidade é utilizado para manter uma velocidade constante do motor, independentemente da carga variável no motor. A velocidade do motor requerida é programada por meio de um potenciômetro conectado no terminal 53. A faixa de velocidade é de 0–1500 RPM correspondente a 0–10 V sobre o potenciômetro. Um interruptor conectado ao terminal 18 controla a partida e a parada. O PID de velocidade monitora a RPM real do motor, empregando um encoder incremental de 24 V (HTL) como feedback. O sensor de feedback é um encoder (1024 pulsos por revolução) conectado aos terminais 32 e 33. A faixa de frequência de pulso para os terminais 32 e 33 é de 4 Hz–32 kHz.

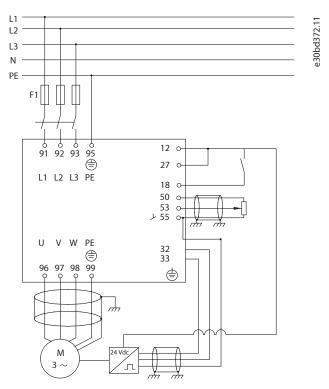


Figura 26: Programação de Controle da Velocidade

3.6.1.4 Ordem de Programação para Controle do PID de Velocidade

Siga os passos da tabela a seguir para programar o controle da velocidade (consulte a explicação das configurações no guia de programação).

Na tabela a seguir, presume-se que os demais parâmetros e chaves permaneçam em suas programações padrão.

Tabela 8: Ordem de Programação para Controle do PID de Velocidade

Função	Número do parâmetro	Carga			
1) Certifique-se de que o motor esteja funcionando corretamente. Proceda da seguinte maneira:					
Ajuste os parâmetros do motor utilizando os dados na plaqueta de identificação.	Grupo do parâmetro 1-2*, Dados do Motor	Conforme especificado pela plaqueta de identificação do motor.			
Execute uma AMA.	Parâmetro 1-29 Adaptação Automática do Motor (AMA)	[1] Ativar AMA completa			
2) Verifique se o motor está funcionando e se o encoder está conectado corretamente. Proceda da seguinte maneira:					
Pressione [Hand On]. Verifique se o motor está funcionando e observe o sentido de rotação (referido como sentido positivo).	-	Programe uma referência positiva.			
3) Certifique-se de que os limites do convers	or estejam definidos para valores seguros:				
Programe limites aceitáveis para as referên-	Parâmetro 3-02, Referência Mínima	0			
cias.	Parâmetro 3-03, Referência Máxima	50			
Verifique se as configurações de rampa es- tão dentro das capacidades do drive e das	Parâmetro 3-41, Tempo de Aceleração da Rampa 1	Configuração padrão			
especificações de operação permitidas para a aplicação.	Parâmetro 3-42, Tempo de Desaceleração da Rampa 1	Configuração padrão			

Tabela 8: Ordem de Programação para Controle do PID de Velocidade - (continuação)

Função	Número do parâmetro	Carga
Programe limites aceitáveis para a velocidade e frequência do motor.	Parâmetro 4-12, Limite Inferior da Velocidade do Motor [Hz]	0 Hz
	Parâmetro 4-14, Limite Superior da Velocidade do Motor [Hz]	50 Hz
	Parâmetro 4-19, Frequência Máxima de Saída	60 Hz
4) Configure o controle da velocidade e sele	cione o princípio de controle do motor:	
Ativação de controle da velocidade	Parâmetro 1-00, Modo Configuração	[1] Malha fechada de velocidade
Seleção do princípio de controle do motor	Parâmetro 1-01, Princípio de Controle do Motor	[1] VVC+
5) Configure e escale a referência para o con	trole da velocidade:	
Programe a entrada analógica 53 como fonte da referência.	Parâmetro 3-15 Fonte da Referência 1	Não necessário (padrão)
Escala de entrada analógica 53 0 Hz (0 V) a 50 Hz (10 V)	Grupo do parâmetro 6-1* Entrada analógica 1	Não necessário (padrão)
6) Configure o sinal do encoder HTL de 24 V	como feedback para controle do motor e con	trole da velocidade:
Configure as entradas digitais 32 e 33 como entradas do encoder.	Parâmetro 5-14, Terminal 32, Entrada Digital	[82] Entrada do encoder B
	Parâmetro 5-15, Terminal 33, Entrada Digital	[83] Entrada do encoder A
Selecione o terminal 32/33 como feedback do PID de velocidade.	Parâmetro 7-00, Fonte do Feedback do PID de Velocidade	[1] Encoder de 24 V
7) Ajuste os parâmetros do PID de controle d	la velocidade:	
Utilize as orientações de ajuste quando pertinente ou ajuste de forma manual.	Grupo do parâmetro 7-0* Ctrl. do PID de velocidade	-
8) Fim		
Salve a programação do parâmetro no LCP para proteção.	Parâmetro 0-50, Cópia do LCP	[1] Todos para o LCP

3.6.2 Controle do PID de Processo

3.6.2.1 Configuração de Controle

O controle do PID de processo pode ser empregado para controlar os parâmetros de aplicação que podem ser medidos por um sensor (por exemplo, pressão, temperatura, fluxo) e afetados pelo motor conectado através de uma bomba, ventilador ou outros dispositivos conectados.

A tabela a seguir mostra as configurações de controle em que o controle de processo é possível. Consulte o *capítulo Estruturas de controle* para ver onde o controle de velocidade está ativo.

Tabela 9: Configuração de Controle

Configuração de Controle	Parâmetro 1-01, Princípio de Controle do Motor	
	U/f	VVC+
[3] Processo	Não está disponível	Processo

AVISO

O controle do PID de processo funciona sob a programação do parâmetro padrão; porém, o ajuste dos parâmetros é recomendado para otimizar o desempenho do controle de aplicativos.

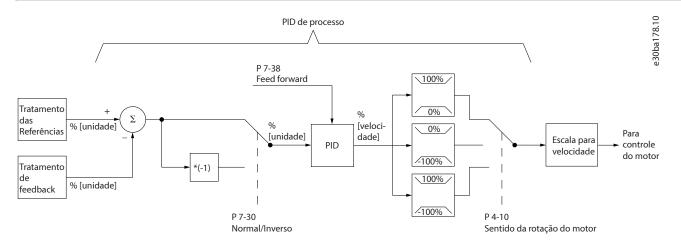


Figura 27: Diagrama de Controle do PID de Processo

3.6.2.2 Parâmetros pertinentes ao controle de processo

Tabela 10: Parâmetros de controle de processo

Parâmetro	Descrição da função
Parâmetro 7-20, Recurso do Feedback do CL de Processo 1	Selecione de qual fonte (entrada analógica ou de pulso) o PID de processo recebe seu feedback.
Parâmetro 7-22, Recurso do Feedback do CL de Processo 2	Opcional: Determine se (e de onde) o PID de processo recebe um sinal de feedback adicional. Se uma fonte do feedback adicional for selecionada, os 2 sinais de feedback serão adicionados antes de serem utilizados no controle do PID de processo.
Parâmetro 7-30, Controle Normal/Inverso do PID de Processo	Em [0] Operação normal, o controle de processo responde com um aumento da velocidade do motor, se o feedback for menor que a referência. Em [1] Operação inversa, o controle de processo responde com uma velocidade decrescente do motor.
Parâmetro 7-31, Anti Windup do PID do Processo	A função antitérmino garante que, quando um limite de frequência ou um limite de torque é atingido, o integrador é ajustado para um ganho que corresponde à frequência real. Isso evita a integração em um erro que não pode ser compensado por uma mudança de velocidade. Pressione [0] Off para desativar esta função.
Parâmetro 7-32, Velocidade Inicial do PID do Processo	Em algumas aplicações, alcançar a velocidade/setpoint exigida pode levar muito tempo. Em tais aplicações, pode ser uma vantagem definir uma velocidade fixa do motor a partir do conversor antes que o controle de processo seja ativado. Programe uma velocidade fixa do motor, definindo um valor inicial do PID de processo (velocidade) no <i>parâmetro 7-32, Velocidade Inicial do PID do Processo</i> .
Parâmetro 7-33, Ganho Proporcional do PID de Processo	Quanto maior o valor, mais rápido será o controle. No entanto, um valor muito grande pode levar a oscilações.
Parâmetro 7-34, Tempo Integrado do PID de Processo	Elimina erros de velocidade de estado estável. Um valor menor significa uma reação mais rápida. Contudo, um valor muito pequeno pode levar a oscilações.
Parâmetro 7-35, Tempo de Diferenciação do PID de Processo	Fornece um ganho proporcional à taxa de alteração de feedback. Uma configuração de 0 desativa o diferenciador.

Tabela 10: Parâmetros de controle de processo - (continuação)

Parâmetro	Descrição da função
Parâmetro 7-36, Diferencial do PID de Processo Limite de Ganho	Se houver mudanças rápidas na referência ou feedback em uma determinada aplicação (o que significa que o erro muda rapidamente), o diferenciador pode em breve se tornar altamente dominante. Isto ocorre porque ele reage às variações no erro. Quanto mais rápida a variação do erro, maior será o ganho diferencial. O ganho diferencial pode, desse modo, ser limitado para permitir a programação de um tempo de diferenciação razoável, para variações lentas.
Parâmetro 7-38, Fator de Feed Forward do PID de Processo	Em aplicações onde há uma boa (e aproximadamente linear) correlação entre a referência do processo e a velocidade do motor necessária para obter essa referência, utilize o fator de feed forward para obter um melhor desempenho dinâmico do controle do PID de processo.
 Parâmetro 6-16, terminal 53 - Constante de Tempo do Filtro (terminal analógico 53) Parâmetro 6-26, terminal 54 - Constante de Tempo do Filtro (terminal analógico 54) 	Se houver oscilações do sinal de feedback de corrente/tensão, utilize um filtro passabaixa para amortecer essas oscilações. Exemplo: Se o filtro passa-baixa tiver sido ajustado para 0,1 s, a velocidade limite será de 10 RAD/s (o inverso de 0,1 s), correspondendo a $(10/(2 \times \pi))=1,6$ Hz. Isso significa que o filtro amortece todas as correntes/tensões que variarem em mais de 1,6 oscilações por segundo. O controle é realizado somente em um sinal de feedback que varia por uma frequência (velocidade) menor que 1,6 Hz. O filtro passa-baixa melhora o desempenho do estado estável; porém, a seleção de um tempo do filtro muito longo deteriora o desempenho dinâmico do controle do PID de processo.

3.6.2.3 Exemplo de Controle do PID de Processo

Figura 28 é um exemplo de um controle do PID de processo empregado em um sistema de ventilação:

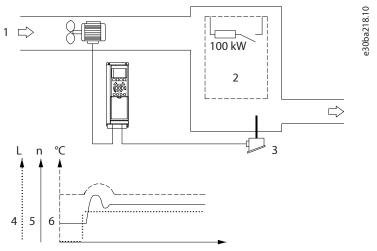


Figura 28: Controle do PID de Processo em um sistema de ventilação

1	Ar frio	2	Processo de geração de calor
3	Transmissor de temperatura	4	Calor
5	Velocidade do ventilador	6	Temperatura

Em um sistema de ventilação, a temperatura pode ser ajustada de -5 a +35 °C (23–95 °F) com um potenciômetro de 0–10 V. Para manter constante a temperatura ajustada, utilize o controle de processo.

O controle é inverso, o que significa que, quando a temperatura aumenta, a velocidade de ventilação também aumenta, gerando mais ar. Quando a temperatura cai, a velocidade diminui. O transmissor utilizado é um sensor de temperatura com uma faixa de -10 a +40 °C (14–104 °F), 4–20 mA.

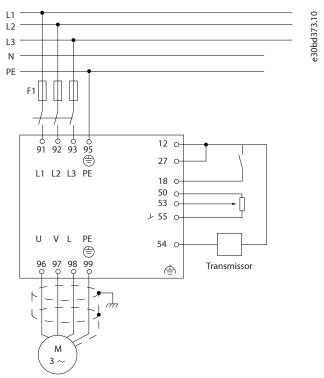


Figura 29: Transmissor de 2 fios

- 1. Partida/parada por meio do interruptor conectado ao terminal 18.
- 2. Referência de temperatura por meio do potenciômetro (-5 a +35 °C (23–95 °F), 0–10 V CC) conectado ao terminal 53.
- 3. Feedback de temperatura por meio do transmissor (-10 a +40 °C (14–104 °F), 4–20 mA) conectado ao terminal 54.

Tabela 11: Exemplo de Setup de Controle do PID de Processo

Função	Número do parâmetro	Carga
Inicialize o conversor.	Parâmetro 14-22, Modo Operação	[2] Inicialização - execute um ciclo de energização - aperte reset
1) Ajuste os parâmetros do motor:		
Ajuste os parâmetros do motor de acordo com os dados da plaqueta de identificação.	Grupo do parâmetro 1-2*, Dados do Motor	Conforme indicado na plaqueta de identificação do motor.
Execute uma AMA completa.	Parâmetro 1-29 Adaptação Automática do Motor (AMA)	[1] Ativar AMA completa.
2) Verifique se o motor está funcionando no sentido correto. Quando o motor está conectado ao conversor com uma ordem de avanço direta como U-U; V-V; W-W, o eixo do motor geralmente gira no sentido horário, visto desde a extremidade do eixo.		
Pressione [Hand On]. Verifique a direção do eixo, aplicando uma referência manual.	-	-

Tabela 11: Exemplo de Setup de Controle do PID de Processo - (continuação)

Função	Número do parâmetro	Carga
Se o motor girar no sentido oposto ao requerido: 1. Altere o sentido de giro do motor no parâmetro 4-10, sentido de rotação do motor.	Parâmetro 4-10, Sentido de Rotação do Motor	Selecione a direção correta do eixo do motor.
Desligue a rede elétrica e aguarde a descarga do barramento CC. Inverta 2 fases do motor.		
Defina o modo de configuração.	Parâmetro 1-00, Modo Configuração	[3] Processo
3) Defina a configuração de referência, que é grupo do parâmetro 6-**, entrada/saída ana	-	rerência. Ajuste a escala da entrada analógica no
Defina as unidades de referência/feedback.	Parâmetro 3-01, Unidade de	[60] °C Unidade mostrada no display.
Defina a referência mínima (10 °C (50 °F)).	Referência/Feedback	-5 °C (23 °F).
Defina a referência máxima (80 °C (176 °F)).	Parâmetro 3-02, Referência	35 °C (95 °F).
Se o valor definido for determinado a partir	Mínima	[0] 35%.
de um valor predefinido (parâmetro de	Parâmetro 3-03, Referência	Ref = $\frac{\text{Par.3} - 10_{(0)}}{100} \times ((\text{Par.3} - 03) - (\text{Par.3} - 02)) = 24.5^{\circ}C$
matriz), defina outras fontes de referência	Máxima	Parâmetro 3-14, Referência Predefinida Relativa
para [0] Sem função .	Parâmetro 3-10, Referência Predefinida	ao parâmetro 3-18, Recurso de Referência do
	Preaetiniaa	Escalonamento Relativo [0] = Sem Função.
4) Ajuste os limites para o conversor:		
Ajuste os tempos de rampa para um valor	Parâmetro 3-41, Tempo de	20 s
apropriado, como 20 s.	Aceleração da Rampa 1	20 s
	Parâmetro 3-42, Tempo de	
	Desaceleração da Rampa 1	
Defina limites de velocidade mínima.	Parâmetro 4-12, Limite Inferior da	10 Hz
Defina o limite de velocidade máxima do	Velocidade do Motor [Hz]	50 Hz
motor.	Parâmetro 4-14, Limite Superior	60 Hz
Defina a frequência de saída máxima.	da Velocidade do Motor [Hz]	
	Parâmetro 4-19, Frequência Máxima de Saída	
Programe o <i>parâmetro 6-19, modo do termir</i>	nal 53 e o parâmetro 6-29, modo do t	terminal 54 para modo de tensão ou corrente.
5) Entradas analógicas de escala empregada	s para referência e feedback:	
Ajuste a baixa tensão do terminal 53.	Parâmetro 6-10, Terminal 53,	0 V
Ajuste a alta tensão do terminal 53.	Baixa Tensão	10 V
Ajuste o valor de feedback baixo do ter-	Parâmetro 6-11, Terminal 53, Alta	-5 °C (23 °F)
minal 54.	Tensão	35 °C (95 °F)
Ajuste o valor de feedback alto do terminal 54.	Parâmetro 6-24, Terminal 54, Valor Baixo de Ref./Feed.	[2] Entrada analógica 54
Defina a fonte do feedback.	Parâmetro 6-25, Terminal 54,	
	Valor de Alto de Ref./Feed.	
	Parâmetro 7-20, Recurso do Feedback do CL de Processo 1	
	I CEUDUCK UD CL UE FIOCESSO I	

Tabela 11: Exemplo de Setup de Controle do PID de Processo - (continuação)

Função	Número do parâmetro	Carga
PID de processo normal/inverso.	Parâmetro 7-30 Controle Normal/ Inverso do PID de Processo	[0] Normal
PID de processo antitérmino.	Parâmetro 7-31, Anti Windup do PID do Processo	[1]Ligado
Velocidade inicial do PID do processo.	Parâmetro 7-32, Velocidade Inicial do PID do Processo	300 RPM
Salvar parâmetros para o LCP.	Parâmetro 0-50, Cópia do LCP	[1] Todos para o LCP

3.6.2.4 Otimização do controlador de processo

Depois de definir as configurações básicas, conforme descrito em <u>3.6.1.4 Ordem de Programação para Controle do PID de Velocidade</u>, otimize o ganho proporcional, o tempo de integração e o tempo de diferenciação (*parâmetro 7-33, Ganho Proporcional do PID de Processo*, *parâmetro 7-34, Tempo Integrado do PID de Processo*).

AVISO

Se necessário, a partida/parada pode ser ativada várias vezes, para provocar uma variação do sinal de feedback.

Na maioria dos processos, complete o seguinte procedimento:

- 1. Dê a partida no motor.
- 2. Programe o *parâmetro 7-33, Ganho Proporcional do PID de Processo* para 0,3 e aumente-o até o sinal de feedback começar a variar continuamente outra vez. Reduza o valor até que o sinal de feedback se haja estabilizado. Diminua o ganho proporcional em 40-60%.
- **3.** Programe o *parâmetro 7-34, Tempo Integrado do PID de Processo* para 20 s e reduza o valor até o sinal de feedback começar a variar continuamente outra vez. Aumente o tempo de integração até que o sinal de feedback se estabilize, seguido por um aumento de 15%-50%.
- 4. Utilize o *parâmetro 7-35, Tempo de Diferenciação do PID de Processo*, somente para sistemas de ação rápida (tempo de diferenciação). O valor típico é 4 vezes o tempo de integração definido. Utilize o diferenciador quando a configuração do ganho proporcional e do tempo de integração tiver sido totalmente otimizada. Certifique-se de que o filtro passa-baixa amorteça, de modo suficiente, as oscilações no sinal de feedback.

3.6.3 Método de Sintonização Ziegler Nichols

Para sintonizar os controles do PID do conversor, a Danfoss recomenda o método de sintonização Ziegler Nichols.

AVISO

Não utilize o método de sintonização Ziegler Nichols em aplicações que poderiam ser danificadas pelas oscilações criadas por configurações de controle marginalmente estáveis.

Os critérios para ajustar os parâmetros são baseados em uma avaliação do sistema, no limite de estabilidade, em vez de utilizar-se uma resposta a um degrau. Aumente o ganho proporcional até observar oscilações contínuas (conforme medido no feedback), isto é, até que o sistema se torne marginalmente estável. O ganho correspondente (K_u) é chamado de ganho final e é o ganho no qual a oscilação é obtida. O período da oscilação (P_u) (chamado o objetivo final) é determinado conforme o mostrado em <u>Figura 30</u>, e deve ser medido quando a amplitude de oscilação é pequena.

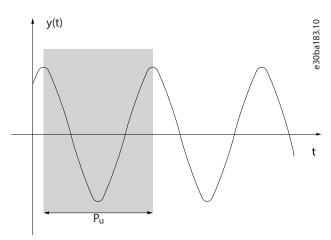


Figura 30: Sistema Marginalmente Estável

O operador do processo pode executar a afinação final do controle de modo iterativo, para prover um controle satisfatório.

- 1. Selecione somente controle proporcional, o que significa que o tempo integrado é definido para o valor máximo, ao mesmo tempo em que o tempo de diferenciação está configurado para 0.
- 2. Aumente o valor do ganho proporcional até que o ponto de instabilidade (oscilações sustentadas) e o valor crítico do ganho, K_u, sejam atingidos.
- 3. Meça o período de oscilação para obter a constante de tempo crítica, P_u.
- 4. Utilize a tabela a seguir para calcular os parâmetros de controle do PID necessários.

Tabela 12: Sintonização Ziegler Nichols para o Regulador

Tipo de controle	Ganho proporcional	Tempo integrado	Tempo de diferenciação
Controle de PI	0,45 x K _u	0,833 x P _u	-
Controle rigoroso do PID	0,6 x K _u	0,5 x P _u	0,125 x P _u
Alguma ultrapassagem do PID	0,33 x K _u	0,5 x P _u	0,33 x P _u

3.7 Emissão EMC e Imunidade

3.7.1 Aspectos Gerais da Emissão EMC

O transiente por faísca elétrica é conduzido em frequências na faixa de 150 kHz a 30 MHz. A interferência aérea proveniente do sistema do conversor, na faixa de 30 MHz a 1 GHz, é gerada pelo conversor, cabo do motor e motor. Correntes capacitivas no cabo de motor acoplado com um alto dU/dt da tensão do motor geram correntes de fuga. O emprego de um cabo de motor blindado aumenta a corrente de fuga (consulte <u>Figura 31</u>), porque os cabos blindados possuem maior capacitância em relação ao aterramento do que os cabos não blindados. Se a corrente de fuga não for filtrada, haverá uma maior interferência na rede elétrica na faixa de frequência de rádio, abaixo de aproximadamente 5 MHz. Uma vez que a corrente de fuga (I₁) seja levada de volta para a unidade através da blindagem (I₃), existe apenas um pequeno campo eletromagnético (I₄) desde o cabo de motor blindado.

A blindagem reduz a interferência irradiada, porém incrementa a interferência de baixa frequência na rede elétrica. Conecte a blindagem do cabo de motor ao gabinete metálico do conversor e ao gabinete metálico do motor. A melhor maneira de se fazê-lo é utilizando braçadeiras de blindagem integradas para evitar extremidades de blindagem torcidas (rabichos). As braçadeiras de blindagem aumentam a impedância da blindagem em altas frequências, o que reduz o efeito da blindagem e aumenta a corrente de fuga (I₄).

Monte a blindagem no gabinete metálico em ambas as extremidades, se um cabo blindado for utilizado para as seguintes finalidades:

- Fieldbus
- Rede

- Relé
- Cabos de controle
- Interface de sinal
- Freio

No entanto, em algumas situações, é necessário romper a blindagem para evitar malhas de corrente.

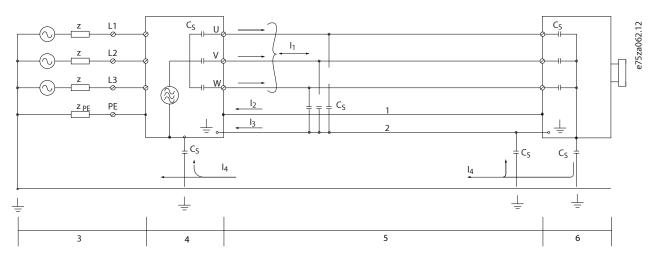


Figura 31: Emissão EMC

1	Cabo terra	2	Blindagem
3	Alimentação de rede elétrica de CA	4	Conversor
5	Cabo de motor blindado	6	Motor

Ao colocar a blindagem em uma placa de montagem para o conversor, utilize uma placa de montagem de metal para transportar as correntes de proteção de volta para a unidade. Garanta um bom contato elétrico da placa de montagem com os parafusos de montagem até o chassi do conversor.

Ao empregar cabos não blindados, alguns requisitos de emissão não são cumpridos, embora os requisitos de imunidade sejam observados.

Para reduzir o nível de interferência do sistema como um todo (unidade e instalação), faça com que os cabos do motor e do freio sejam os mais curtos possíveis. Evite colocar cabos com um nível de sinal sensível ao lado dos cabos da rede elétrica, do motor e do cabo do freio. A interferência nas frequências de rádio superior a 50 MHz (pelo ar) é produzida especialmente por sistemas eletrônicos de controle.

3.7.2 Requisitos de Emissão EMC

O resultado do teste em <u>Tabela 13</u> foram obtidos empregando-se um sistema com um conversor (com a placa de montagem), um motor e cabos de motor blindados.

Tabela 13: Emissão EMC (Tipo de Filtro: Interno)

Filtro	Tamanho do gabinete e potência nominal		Classe A Grupo 2/EN 55011 Ambiente industrial	
			Categoria C3/EN/IE Segundo ambiente	
			Conduzido	Irradiado
Filtro C3	J1	0,37–2,2 kW (0,5–3,0 hp), 380–480 V	5 m (16,4 pés)	Sim ⁽¹⁾
	J2	3,0-5,5 kW (4,0-7,5 hp), 380-480 V	5 m (16,4 pés)	
	J3 7,5 kW (10 hp), 380–480 V		5 m (16,4 pés)	
	J4	11–15 kW (15–20 hp), 380–480 V	5 m (16,4 pés)	
	J5	18,5-22 kW (25-30 hp), 380-480 V	5 m (16,4 pés)	
	J6 30–45 kW (40–60 hp), 380–480 V J7 55–90 kW (75–125 hp), 380–480 V		25 m (82 pés)	
			25 m (82 pés)	

¹⁾ A faixa de frequência de 150 kHz a 30 MHz não está harmonizada entre IEC/EN 61800-3 e EN 55011 e não está, obrigatoriamente, incluída.

3.7.3 Requisitos de Imunidade EMC

Os requisitos de imunidade para drives dependem do ambiente em que estão instalados. Os requisitos para ambiente industrial são mais rigorosos que os requisitos para ambientes residencial e de escritório. Todos os conversores Danfoss atendem aos requisitos do ambiente industrial. Portanto, também estão em conformidade com os requisitos mais baixos do ambiente doméstico e de escritório, com uma grande margem de segurança.

Para documentar a imunidade contra o transiente de ruptura de fenômenos elétricos, os seguintes testes de imunidade foram feitos em um sistema que consiste em:

- Um drive (com opcionais, se pertinente).
- Um cabo de controle blindado.
- Uma caixa de controle com potenciômetro, cabo de motor e motor.

Os testes foram executados de acordo com as seguintes normas básicas:

- EN 61000-4-2 (IEC 61000-4-2), Descargas eletrostáticas (ESD): Simulação de descargas eletrostáticas causadas por seres humanos.
- EN 61000-4-3 (IEC 61000-4-3), Imunidade irradiada: Simulação de amplitude modulada dos efeitos do radar, e equipamento de comunicação por rádio e equipamento de comunicações móveis.
- EN 61000-4-4 (IEC 61000-4-4), Transiente de ruptura: Simulação de interferência causada pelo chaveamento de um contator, relé ou dispositivos similares.
- EN 61000-4-5 (IEC 61000-4-5), Transientes de sobretensão: Simulação de transientes causados, por exemplo, por um raio próximo às instalações.
- EN 61000-4-6 (IEC 61000-4-6), Imunidade conduzida: Simulação do efeito de equipamento de radiotransmissão, ligado aos cabos de conexão.

Os requisitos de imunidade devem seguir o padrão do produto IEC 61800-3. Consulte Tabela 14 para obter mais detalhes.

Tabela 14: Requisitos de Imunidade EMC

- I ~ I .							
Padrão do produto	61800-3						
Teste	ESD	Imunidade irradiada	Ruptura	Surto	Imunidade conduzida		
Critério de aceitação	В	В	В	A	Α		
Cabo de alimentação	-	-	2 kV CN	2 kV/2 Ω DM 2 kV/12 Ω CM	10 V _{RMS}		
Cabo de motor	-	-	4 kV CCC	-	10 V _{RMS}		
Cabo do freio	-	-	4 kV CCC	_	10 V _{RMS}		
Cabo de divisão da carga	-	-	4 kV CCC	-	10 V _{RMS}		
Cabo de relé	-	-	4 kV CCC	_	10 V _{RMS}		
Cabos de controle	_	-	Comprimento > 2 m (6,6 pés) 1 kV CCC	Sem blindagem: 1 kV/42 Ω CM	10 V _{RMS}		
Cabo padrão/fieldbus	-	-	Comprimento > 2 m (6,6 pés) 1 kV CCC	Sem blindagem: 1 kV/42 Ω CM	10 V _{RMS}		
Cabo do LCP	-	-	Comprimento > 2 m (6,6 pés) 1 kV CCC	-	10 V _{RMS}		
Gabinete	4 kV CD 8 kV AD	10 V/m	-	-	-		
Definições							
CD: Descarga de contato		DM: Módulo d	iferencial	CN: Injeção direta através	de rede de ac		
AD: Descarga aérea		CM: Modo con	num	plamento CCC: Injeção através de braçadeira de acorplamento capacitivo			

3.8 Isolação Galvânica

A PELV oferece proteção através de tensão extra baixa. A proteção contra choque elétrico é garantida quando a alimentação elétrica é do tipo PELV, e a instalação é efetuada conforme descrito nas normas locais/nacionais sobre alimentações PELV.

Todos os terminais de controle e terminais de relé 01–03/04-06 estão em conformidade com a PELV (tensão extra baixa de proteção). Isso não se aplica à perna delta aterrada acima de 400 V.

A isolação galvânica (garantida) é obtida satisfazendo-se as exigências relativas à alta isolação e fornecendo o espaço de circulação relevante. Estes requisitos encontram-se descritos na norma EN 61800-5-1.

Os componentes que compõem o isolamento elétrico, conforme mostrado em <u>Figura 32</u>, também atendem aos requisitos para isolamento mais alto e ao teste pertinente, conforme descrito na EN 61800-5-1.

A isolação galvânica da PELV pode ser mostrada em 3 locais (consulte Figura 32):

Para manter a PELV, todas as conexões feitas nos terminais de controle devem ser PELV; por exemplo, o termistor deve ser reforçado/duplamente isolado.

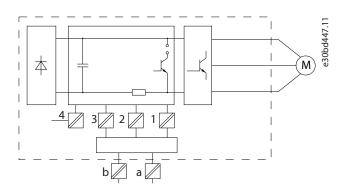


Figura 32: Isolação Galvânica

Fonte de alimentação (SMPS) para cassete de controle
 Comunicação entre cartão de potência e cassete de controle
 Isolamento entre as entradas de STO e o circuito do IGBT
 Relé do cliente

A interface entre o padrão RS485 e o circuito de E/S (PELV) é funcionalmente isolada.

ADVERTÊNCIA

Antes de tocar em qualquer parte elétrica, certifique-se de que as demais entradas de tensão tenham sido desconectadas, tais como a divisão da carga (conexão do barramento CC) e a conexão do motor para backup cinético. Consulte o tempo de descarga indicado no *capítulo "Segurança"*. Deixar de cumprir essas recomendações poderá resultar em morte ou ferimentos graves.

3.9 Corrente de Fuga para o Terra

Siga os códigos nacionais e locais relativos ao aterramento de proteção do equipamento com corrente de fuga >3,5 mA. A tecnologia do drive implica na mudança de alta frequência em alta potência. Esse chaveamento gera uma corrente de fuga na conexão do terra. Uma corrente de falha no conversor em terminais de potência de saída poderá conter um componente CC, que pode carregar os capacitores do filtro e causar uma corrente transiente do ponto de aterramento.

A corrente de fuga para o terra é composta por várias contribuições e depende de várias configurações do sistema, incluindo:

- Filtragem de RFI.
- Cabos de motor blindados.
- Comprimento de cabo do motor.
- Potência do conversor.

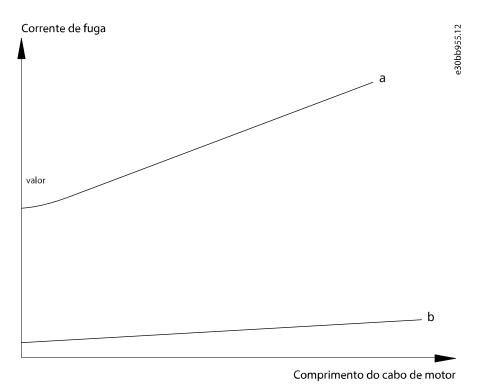


Figura 33: Influência do Comprimento do Cabo e do Tamanho de Potência na Corrente de Fuga, Pa > Pb

A corrente de fuga também depende da distorção da linha.

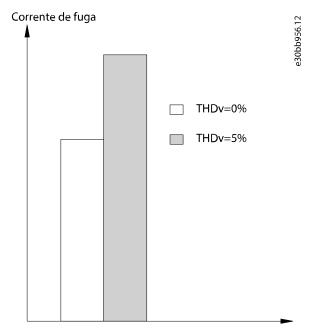


Figura 34: Influência da Distorção de linha na Corrente de Fuga

AVISO

Corrente de fuga alta pode causar o desligamento dos RCDs. Para evitar esse problema, remova o parafuso de RFI (tamanhos de gabinete J1–J5) ou programe o *parâmetro 14-50 Filtro de RFI* para *[0] Desligado* (tamanhos de gabinete J6–J7) quando um filtro estiver sendo carregado.

EN / IEC61800-5-1 (Padrão de Produto do Sistema de Acionamento de Potência) requer cuidados especiais se a corrente de fuga exceder 3,5 mA. Reforce o aterramento com um destes requisitos de proteção para a conexão do terra:

- Fio de Aterramento (terminal 95) com seção transversal de pelo menos 10 mm² (8 AWG).
- 2 fios de aterramento separados que cumprem as regras de dimensionamento.

Consulte EN/IEC61800-5-1 para obter mais informações.

3.10 Utilizando um Dispositivo de Corrente Residual (RCD)

Onde os dispositivos de corrente residual (RCDs), também conhecidos como disjuntores para a corrente de fuga à terra (ELCBs), são utilizados, respeitar o seguinte:

- Utilize apenas RCDs do tipo B, os quais são capazes de detectar correntes CA e CC.
- Utilize RCDs com um atraso de influxo para evitar falhas causadas por correntes de aterramento transientes.
- Dimensione RCDs de acordo com a configuração do sistema e as considerações ambientais.

A corrente de fuga inclui várias frequências provenientes da frequência da rede elétrica e da frequência de chaveamento. A frequência de chaveamento é detectada, dependendo do tipo de RCD utilizado.

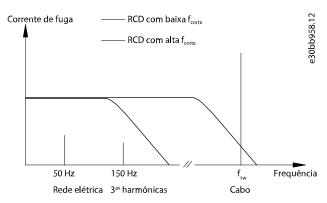


Figura 35: Principais Contribuições para a Corrente de Fuga

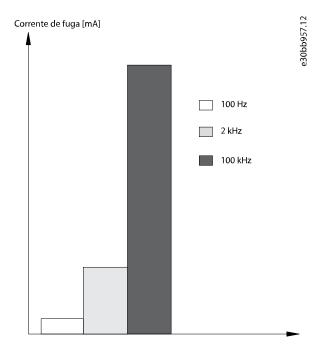


Figura 36: Influência da Frequência de Desativação do RCD no que é Respondido/Medido

3.11 Funções de freio

3.11.1 Freio mecânico de retenção

Um freio mecânico de retenção, montado diretamente no eixo do motor, normalmente executa frenagem estática.

AVISO

Quando o freio de retenção é incluído em uma corrente de segurança, o conversor não pode fornecer um controle seguro de um freio mecânico. Inclua um circuito de redundância para o controle de frenagem na instalação total.

3.11.2 Frenagem dinâmica

A frenagem dinâmica é estabelecida por:

- Resistor de freio: Um IGBT do freio mantém a sobretensão abaixo de um certo limite, direcionando a energia de frenagem do motor para o resistor de frenagem conectado (parâmetro 2-10 Função de Frenagem= [1] Freio do resistor). Ajuste o limite no parâmetro 2-14 Redução da tensão do freio, com uma faixa de 70 V para 3x380-480 V.
- Freio CA: A energia de frenagem é distribuída no motor ao serem alteradas as condições de perda no motor. A função de freio CA
 não pode ser utilizada em aplicações com ciclos de alta frequência, pois essa situação superaquece o motor (parâmetro 2-10 Função
 do Freio = [2] Freio CA).
- Freio CC: Uma corrente CC sobremodulada adicionada à corrente CA funciona como um freio de corrente parasita (parâmetro 2-02
 Tempo de Frenagem CC≠0 s).

3.11.3 Seleção do resistor de frenagem

3.11.3.1 Introdução

Para lidar com demandas mais altas por frenagem geradora, é necessário um resistor de frenagem. A utilização de um resistor de frenagem garante que o calor será absorvido no resistor de frenagem, e não no conversor. Para obter mais informações, consulte o *Guia de Design do VLT® Brake Resistor MCE 101*.

Se a quantidade de energia cinética transferida para o resistor em cada período de frenagem não for conhecida, calcule a potência média com base no tempo de ciclo e no tempo de frenagem. O ciclo útil intermitente do resistor é uma indicação do ciclo útil em que o resistor está ativo. A Figura 37 mostra um ciclo de frenagem típico.

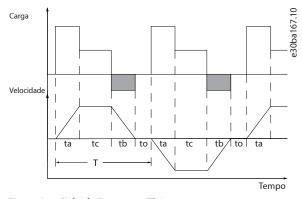


Figura 37: Ciclo de Frenagem Típico

O ciclo útil intermitente do resistor é calculado da seguinte maneira:

Ciclo útil = t_b/T

t_b é o tempo de frenagem em segundos.

T = tempo de ciclo em segundos.

Tabela 15: Frenagem em nível de torque de sobrecarga alto

Faixa de potência:	0,37-90 kW (0,5-125 hp)
3x380-480 V	
Tempo de ciclo (s)	120
Ciclo útil da frenagem com torque de 100%	Contínua
Ciclo útil de frenagem em sobretorque (150/160%)	40%

¹⁾ Para conversores de 30–90 kW (40–125 hp), é necessário um resistor de frenagem externo para atender à especificação nesta tabela.

A Danfoss oferece resistores de frenagem com ciclo útil de 10% e 40%. Se for aplicado um ciclo útil de 10%, os resistores de frenagem são capazes de absorver a potência de frenagem durante 10% do tempo de ciclo. Os 90% restantes do tempo de ciclo são empregados para dissipar o excesso de calor.

AVISO

Certifique-se de que o resistor tenha sido projetado para suportar o tempo de frenagem necessário.

3.11.3.2 Cálculo da Resistência de Frenagem

A carga máxima permitida no resistor de frenagem é declarada como uma potência de pico em um determinado ciclo útil intermitente, e pode ser calculada como:

$$R_{\rm br}[\Omega] = \frac{U_{\rm dc, \, br}^2 \times 0.83}{P_{\rm peak}}$$

Onde

$$P_{\text{peak}} = P_{\text{motor}} \times M_{\text{br}(\%)} \times \eta_{\text{motor}} \times \eta_{\text{VLT}}[W]$$

Conforme mostrado, o resistor de frenagem depende da tensão do barramento CC (U_{cc}).

Tabela 16: Limite da Resistência do Freio

Tamanho	Freio ativo U _{cc, br}	Advertência antes de desativar	Desativar (desarme)
FC 360 3x380-480 V	770 V	800 V	800 V

O limite pode ser ajustado no *parâmetro 2-14 Redução da tensão do freio*, com uma faixa de 70 V.

AVISO

Certifique-se de que o resistor de frenagem pode lidar com uma tensão de 410 ou 820 V.

3.11.3.3 Cálculo da Resistência de Frenagem Recomendado pela Danfoss

A Danfoss recomenda calcular a resistência de frenagem R_{rec} de acordo com a fórmula a seguir. A resistência de frenagem recomendada garante que o conversor seja capaz de frear com o maior torque de frenagem possível ($M_{br(\%)}$) de 160%.

$$R_{\text{rec}}[\Omega] = \frac{U_{\text{dc}}^2 \times 100 \times 0.83}{P_{\text{motor}} \times M_{\text{br}}(\%) \times \eta_{\text{VIT}} \times \eta_{\text{motor}}}$$

 η_{motor} típico é 0,80 (\leq 7,5 kW (10 hp)); 0,85 (11–22 kW (15–30 hp)).

O η_{VLT} é típico a 0,97.

Para FC 360, R_{rec}, em um torque de frenagem de 160%, é escrito como:

480 V: $R_{\text{rec}} = \frac{396349}{P_{\text{motor}}} [\Omega]$, para conversores com uma potência no eixo \leq 7,5 kW (10 hp).

480 V: $R_{\text{rec}} = \frac{397903}{P_{\text{motor}}} [\Omega]$, para conversores com uma potência no eixo de 11–75 kW (15–100 hp).

AVISO

A resistência do resistor de frenagem não deve ser superior ao valor recomendado pela Danfoss. Para resistores de frenagem com um valor ôhmico mais alto, o torque de frenagem de 160% pode não ser alcançado, já que, por razões de segurança, o conversor pode ser desativado. A resistência deve ser maior que R_{min}.

AVISO

Se ocorrer um curto-circuito no transistor do freio, evite a dissipação de energia no resistor de frenagem utilizando um interruptor de rede elétrica ou um contator que desconecte a rede elétrica do conversor. O conversor pode controlar o contator.

AVISO

Não toque no resistor de frenagem porque ele pode aquecer-se durante a frenagem. Para evitar risco de incêndio, coloque o resistor de frenagem em um ambiente seguro.

3.11.4 Controle com função de frenagem

O freio é protegido contra curtos-circuitos do resistor de frenagem, e o transistor do freio é monitorado para garantir que curtos-circuitos no transistor sejam detectados. Pode-se utilizar um relé/saída digital para proteger o resistor de frenagem da sobrecarga causada por uma falha no conversor.

Além disso, o freio permite a leitura da potência momentânea e da potência média para os últimos 120 s. O freio pode também monitorar a potência de energização e assegurar que esta não exceda um limite selecionado no *parâmetro 2-12 Limite da Potência de Frenagem (kW)*.

AVISO

Monitorar a potência de frenagem não é uma função de segurança. É necessário um interruptor térmico para evitar que a potência de frenagem exceda o limite. O circuito do resistor de frenagem não é protegido contra fuga para o terra.

O Controle de Sobretensão (OVC) (com exceção do resistor de freio) pode ser utilizado como uma função alternativa de frenagem, no *parâmetro 2-17, Controle de Sobretensão*. Esta função está ativa para todas as unidades. A função garante que um desarme possa ser evitado, se a tensão do barramento CC aumentar. Isto é feito aumentando-se a frequência de saída, para limitar a tensão do barramento CC. É uma função útil, por exemplo, se o tempo de desaceleração for muito curto para evitar o desarme do conversor. Nesta situação, o tempo de desaceleração é estendido.

AVISO

O OVC pode ser ativado ao operar-se um motor PM (quando *parâmetro 1-10 Construção do Motor* estiver programado para [1] *PM, SPM não saliente*).

3.12 Smart Logic Control (SLC)

O Smart Logic Control (SLC) é uma sequência de ações definidas pelo usuário (consulte *parâmetro 13-52, Ação do Controlador SL* [x]) executada pelo SLC, quando o evento associado definido pelo usuário (consulte *parâmetro 13-51, Evento do Controlador do SL* [x]) é avaliado como verdadeiro pelo SLC.

A condição para um evento pode ser um status em particular ou que a saída de uma regra lógica ou um comparador operante se torne TRUE (VERDADEIRO). Essa condição leva a uma ação associada conforme mostrado em Figura 38.

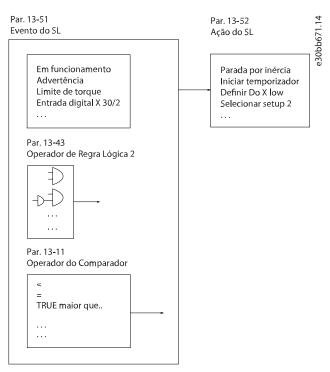


Figura 38: Evento e Ação do SLC

Os eventos e as ações são numerados e vinculados em pares (estados), o que significa que quando o evento [0] é atendiido (atinge o valor TRUE), a ação [0] é executada. Após a primeira ação ser executada, as condições do próximo evento são avaliadas. Se esse evento for avaliado como verdadeiro, a ação correspondente será executada. Somente 1 evento é avaliado por vez. Se um evento for avaliado como FALSE (FALSO), nada acontece no SLC durante o intervalo de varredura atual e nenhum outro evento é avaliado. Quando o SLC é iniciado, ele apenas avalia o evento [0] durante cada intervalo de varredura. Somente quando o evento [0] é avaliado como verdadeiro, o SLC executa a ação [0] e começa a avaliar o próximo evento. É possível programar de 1 a 20 eventos e ações. Quando o último evento/ação tiver sido executado, a sequência começa novamente a partir do evento [0]/ação [0]. A Figura 39 mostra um exemplo com 4 eventos/ações:

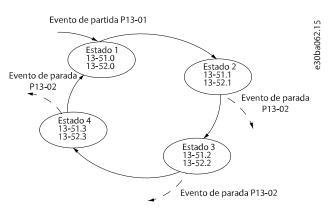


Figura 39: Ordem de Execução quando 4 Eventos/Ações são Programados

Comparadores

Os comparadores são empregados para comparar variáveis contínuas (frequência de saída, corrente de saída, entrada analógica e assim por diante) para valores fixos predefinidos.

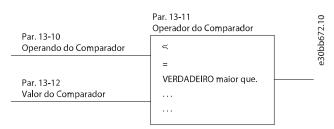


Figura 40: Comparadores

Regras lógicas

Combine até 3 entradas booleanas (entradas TRUE/FALSE (Verdadeiro/Falso)) de temporizadores, comparadores, entradas digitais, bits de status e eventos, utilizando os operadores lógicos AND, OR e NOT (E, OU e NÃO).

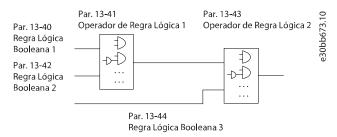


Figura 41: Regras lógicas

3.13 Condições de Funcionamento Extremas

Curto-circuito (entre duas fases do motor)

O conversor é protegido contra curtos-circuitos por medição de corrente, em cada uma das 3 fases do motor ou no barramento CC. Um curto-circuito entre 2 fases de saída causa uma sobrecorrente no conversor. O conversor será desligado individualmente quando a corrente de curto-circuito ultrapassar o valor permitido (*alarme 16, bloqueio por desarme*).

Chaveamento na saída

O chaveamento na saída entre o motor e o conversor é totalmente permitido e não danifica o conversor. No entanto, é possível que apareçam mensagens de falha.

Sobretensão gerada pelo motor

A tensão no barramento CC aumenta quando o motor funciona como um gerador. Isso ocorre nos seguintes casos:

- A carga aciona o motor (a uma frequência de saída constante do conversor).
- Se o momento de inércia for alto durante a desaceleração (desaceleração da rampa), o atrito é baixo e o tempo de desaceleração da rampa é muito curto para que a energia seja dissipada como uma perda no conversor, o motor e a instalação.
- O ajuste incorreto da compensação de escorregamento pode causar uma tensão do barramento CC mais alta.

A unidade de controle tentará corrigir a aceleração, se possível ((*parâmetro 2-17, controle de sobretensão*). O conversor é desligado para proteger os transistores e os capacitores do barramento CC quando um determinado nível de tensão é alcançado.

Para selecionar o método empregado para o controle do nível de tensão do barramento CC, consulte o *parâmetro 2-10, Função do Freio* e o *parâmetro 2-17, Controle de Sobretensão*.

Queda da rede elétrica

Durante uma queda da rede elétrica, o conversor continua funcionando até que a tensão do barramento CC caia abaixo do nível mínimo de parada, que é de 320 V. A tensão de rede, antes da queda, e a carga do motor determinam quanto tempo o inversor levará para parar por inércia.

Sobrecarga estática no modo VVC+

Quando o conversor estiver sobrecarregado (o limite de torque no *parâmetro 4-16, Limite de Torque do Modo Motor/parâmetro 4-17, Limite de Torque do Modo Gerador* é alcançado), a unidade de controle reduzirá a frequência de saída para diminuir a carga.

Se a sobrecarga for excessiva, pode ocorrer uma corrente que desative o conversor após aproximadamente 5-10 s.

A operação dentro do limite de torque é limitada em tempo (0-60 s), no parâmetro 14-25, Atraso do Desarme no Limite de Torque.

3.14 Proteção Térmica do Motor

Para proteger a aplicação contra danos graves, o conversor oferece vários recursos dedicados.

Limite de torque

O limite de torque protege o motor contra sobrecarga, independentemente da velocidade. O limite de torque é controlado no parâmetro 4-16, Limite de Torque do Modo Motor e no parâmetro 4-17, Limite de Torque do Modo Gerador. O parâmetro 14-25, Atraso do Desarme no Limite de Torque, controla o tempo antes dos desarmes de advertência de limite de torque.

Limite de corrente

O *parâmetro 4-18, Limite de Corrente*, controla o limite de corrente e o *parâmetro 14-24, Atraso do Desarme no Limite de Corrente* controla o tempo antes que a advertência do limite de corrente desarme.

Limite de velocidade mínima

O parâmetro 4-12, Limite Inferior da Velocidade do Motor [Hz] define a velocidade de saída mínima que o conversor pode fornecer.

Limite de velocidade máxima

O parâmetro 4-14, Limite Superior da Velocidade do Motor [Hz] ou o parâmetro 4-19, Frequência Máxima de Saída, define a velocidade máxima de saída que o conversor pode fornecer.

ETR (relé térmico eletrônico)

A função do ETR do conversor mede a corrente real, a velocidade e o tempo para calcular a temperatura do motor. A função também protege o motor contra superaquecimento (advertência ou desarme). Uma entrada de termistor externo também está disponível. O ETR é um recurso eletrônico que simula um relé bimetálico com base em medições internas. A característica é mostrada na Figura 42.

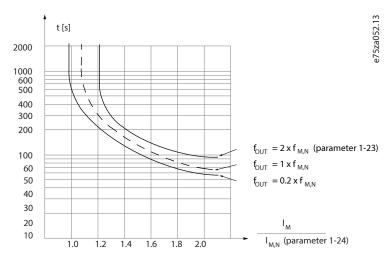


Figura 42: ETR

O eixo X mostra a relação entre I_{motor} e $I_{nominal\ do\ motor}$. O eixo Y mostra o tempo em segundos antes de o ETR desativar e desarmar o conversor. As curvas mostram a velocidade nominal característica ao dobro da velocidade nominal e a $0.2\ x$ a velocidade nominal.

Visão Geral do Produto

A uma velocidade mais baixa, o ETR se desativa com menos calor, devido ao menor resfriamento do motor. Desse modo, o motor é protegido contra superaquecimento, mesmo em velocidades baixas. O recurso do ETR calcula a temperatura do motor baseado na corrente e velocidade reais. A temperatura calculada fica visível como um parâmetro de leitura em *parâmetro 16-18, motor térmico*.

A função ETR do motor é baseada na função de relé térmico NEMA Classe 10.

AVISO

O conversor contém uma função de software ETR, o que significa que o conversor não tem informações sobre o que acontece com o motor em diferentes temperaturas ambiente e/ou o que acontece a 1.000 m (3.300 pés) acima do nível do mar. A função de software ETR não pode substituir totalmente um relé do termistor, porque o relé do termistor inclui um sensor PTC montado no motor, que está controlando o relé. No entanto, a função de software ETR é flexível e leva em consideração diferentes parâmetros para obter os resultados necessários. Além da função de software ETR, o conversor possui outros recursos de proteção; por exemplo, limite de corrente e térmico do inversor. Em muitas situações, esses recursos protegem o conversor e o motor contra sobrecargas.

4 Código do Tipo e Seleção

4.1 Solicitação de pedido

Confirme se o equipamento corresponde aos requisitos e às informações sobre pedidos, verificando a potência, os dados de tensão e os dados de sobrecarga na plaqueta de identificação do conversor.

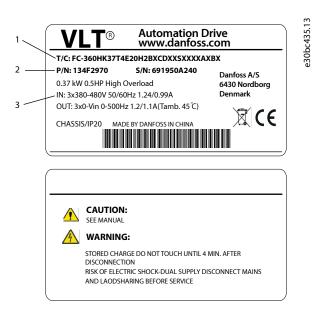


Figura 43: Plaquetas de identificação 1 e 2

1		Cć	ódig	go d	o tip	00												:	2		Cóc	ligo											
3		Es	pec	ifica	açõe	es																											
	.	_	_		_			_	_																								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	12
	F	С	-	3	6	0	Н				Т	4	Е	2	0	Н	2	Х	Х	C	D	Χ	Х	S	Х	Х	Х	Х	Α	Χ	В	Х	437.
							Q											В											Α	0			e30bc
																													Α	1			e3

Figura 44: String do Código do Tipo

Tabela 17: Código do Tipo: Seleção de Diferentes Recursos e Opções

1–6: Nome do Produto	
7. Sobrecarga	H: Serviço pesado Q: Ciclo normal ⁽¹⁾
8–10: Potência	0,37–90 kW (0,5–125 hp). Por exemplo: • K37: 0,37 kW (0,5 hp) ⁽²⁾ • 1K1: 1,1 kW (1,5 hp) • 11 K: 11 kW (15 hp)
11–12: Classe de tensão	T4: 380–480 V 3 fases
13–15: Grau de proteção	E20: IP20
16–17: RFI	H2: Classe C3

Tabela 17: Código do Tipo: Seleção de Diferentes Recursos e Opções - (continuação)

18: Circuito de frenagem	X: Não B: Integrado ⁽³⁾
19: LCP	X: Não
20: Revestimento do PCB	C: 3C3
21: Terminais de rede elétrica	D: Divisão de carga
29–30: Fieldbus embutido	AX: Não A0: PROFIBUS AL: PROFINET
31–32: Opção B	BX: Sem opcional

^{1) 0,37-90} kW (0,5-125 hp) para variantes de ciclo normal. O PROFIBUS não está disponível para ciclo normal. O PROFINET está disponível para ciclo normal.

4.2 Códigos: Opções, Acessórios e Peças de Reposição

Tabela 18: Códigos de Opcionais e Acessórios

Descrição	Códigos
VLT® Control Panel LCP 21	132B0254 ⁽¹⁾
Kit para montagem remota do LCP com cabo de 3 m	132B0102 ⁽²⁾
Tampa cega, FC 360	132B0262 ⁽¹⁾
Adaptador LCP gráfico	132B0281
VLT® Graphical Control Panel LCP 23	132B0801
VLT® Encoder Input MCB 102, FC 360	132B0282
VLT® Resolver Input MCB 103, FC 360	132B0283
VLT® 24 V DC supply MCB 106	132B0368
VLT® Sensor Input MCB 114	130B1272
Tampa de terminal para MCB, J1, FC 360	132B0263
Tampa de terminal para MCB, J2, FC 360	132B0265
Tampa de terminal para MCB, J3, FC 360	132B0266
Tampa de terminal para MCB, J4, FC 360	132B0267
Tampa de terminal para MCB, J5, FC 360	132B0268
Kit de montagem de placa de desacoplamento, J1	132B0258
Kit de montagem de placa de desacoplamento, J2, J3	132B0259
Kit de montagem de placa de desacoplamento, J4, J5	132B0260
Kit de montagem de placa de desacoplamento, J6	132B0284
Kit de montagem de placa de desacoplamento, J7	132B0285
Cabo de montagem remota LCP, 3 m (10 pés)	132B0132
VLT® Control Panel LCP 21 - Kit do conversor RJ45	132B0254

^{1) 2} tipos de pacotes, 6 peças ou 72 peças.

²⁾ Para todos os tamanhos de potência, consulte o capítulo "Alimentação de Rede Elétrica 3x380–480 V CA".

^{3) 0,37–22} kW (0,5–30 hp) com circuito de frenagem embutido. 30–90 kW (40–125 hp) somente com circuito de frenagem externo.

^{2) 2} peças em 1 pacote.

Tabela 19: Códigos para Peças de Reposição

Descrição	Códigos
Cassete de controle padrão	132B0255
Cassete de controle (com PROFIBUS)	132B0256
Cassete de controle (com PROFINET)	132B0257
Cassete de controle (com PROFINET) (suporta VLT® 24 V DC Supply MCB 106)	132B2183
Ventilador 50x15 IP21 para J1 0,37–1,5 kW (0,5–2 hp)	132B0275
Ventilador 50x20 IP21 para J1 2,2 kW (3 hp)	132B0276
Ventilador 60x20 IP21 para J2	132B0277
Ventilador 70x20 IP21 para J3	132B0278
Ventilador 92x38 IP21 para J4	132B0279
Ventilador 120x38 IP21 para J5	132B0280
Ventilador 92x38 IP21 para J6	132B0295
Ventilador 120x38 IP21 para J7	132B0313
Relé e placa RS485 para J1 – J5	132B0264
Cartão de controle de potência, 30 kW (40 hp)	132B0287
Cartão de controle de potência, 37 kW (50 hp)	132B0290
Cartão de controle de potência, 45 kW (60 hp)	132B0291
Cartão auxiliar RFI, J6	132B0292
Módulo retificador, 30–37 kW (40–50 hp)	132B0293
Módulo retificador, 45 kW (60 hp)	132B0294
Tampa frontal para gabinete tamanho J6 (versão de metal)	132B0296
Tampa frontal para gabinete tamanho J6 (versão de plástico)	132B2184
Terminal de rede elétrica, J6	132B0297
Terminal do motor, J6	132B0298
Terminais de comunicação serial CC, J6	132B0299
Cabo de alimentação do cartão de controle de potência, J6	132B0300
Cabo de extensão do ventilador, J6	132B0301
Lâmina de isolamento RFI, J6	132B0302
Suporte para cartão de potência e barra do barramento, J6	132B0303
Cartão de controle de potência, 55 kW (75 hp)	132B0305
Cartão de controle de potência, 75 kW (100 hp)	132B0306
Cartão de controle de potência, 90 kW (125 hp)	132B1460
Cartão de potência, J7	132B0307
Cartão auxiliar RFI, J7	132B0308
Módulo retificador, J7	132B0309
Módulo IGBT com cabo do conversor do gate, J7	132B0310
Capacitor CC, 55 kW (75 hp)	132B0311
Capacitor CC, 75 kW (100 hp)	132B0312

Tabela 19: Códigos para Peças de Reposição - (continuação)

Descrição	Códigos
Tampa frontal, J7	132B0314
Rede elétrica, terminal do motor, 55 kW (75 hp)	132B0315
Terminais de comunicação serial CC, 55 kW (75 hp)	132B0316
Rede elétrica, terminais de comunicação serial CC, 75 kW (100 hp)	132B0317
Cabo sensor de temperatura, J7	132B0318
Cabo de alimentação do cartão de controle de potência, J7	132B0319
Cabo de extensão do ventilador, J7	132B0320
Lâmina de isolamento RFI, J7	132B0321
Lâmina de influxo de isolamento, J7	132B0322

4.3 Códigos: Resistores de Frenagem

4.3.1 Introdução

A Danfoss oferece uma ampla variedade de diferentes resistores especialmente projetados para nossos conversores. Consulte o *capítulo "Controle com função de frenagem"* para o dimensionamento dos resistores de frenagem. Esta seção apresenta uma lista de códigos para os resistores de frenagem.

4.3.2 Códigos: Resistores de Frenagem 10%

Tabela 20: FC 360 - Rede elétrica: 380-480 V (T4), Ciclo Útil de 10%

FC 360	P _{m (SA)}	R _{mín}	R _{br. nom}	R _{rec}	P _{br méd}	Código	Período	Seção transvers al do cabo ⁽¹⁾	Relé térmico	Torque máximo de freio com R _{rec}
T4	[kW]	[Ω]	[Ω]	[Ω]	[kW]	175Uxxxx	[s]	[mm ²]	[A]	[%]
HK37	0,37	890	1041,98	989	0,030	3000	120	1,5	0,3	139
HK55	0,55	593	693,79	659	0,045	3001	120	1,5	0,4	131
HK75	0,75	434	508,78	483	0,061	3002	120	1,5	0,4	129
H1K1	1,1	288	338,05	321	0,092	3004	120	1,5	0,5	132
H1K5	1,5	208	244,41	232	0,128	3007	120	1,5	0,8	145
H2K2	2,2	139	163,95	155	0,190	3008	120	1,5	0,9	131
Н3К0	3	100	118,86	112	0,262	3300	120	1,5	1,3	131
H4K0	4	74	87,93	83	0,354	3335	120	1,5	1,9	128
H5K5	5,5	54	63,33	60	0,492	3336	120	1,5	2,5	127
H7K5	7,5	38	46,05	43	0,677	3337	120	1,5	3,3	132
H11K	11	27	32,99	31	0,945	3338	120	1,5	5,2	130
H15K	15	19	24,02	22	1,297	3339	120	1,5	6,7	129
H18K	18,5	16	19,36	18	1,610	3340	120	1,5	8,3	132
H22K	22	16	18,00	17	1,923	3357	120	1,5	10,1	128
H30K	30	11	14,6	13	2,6	3341	120	2,5	13,3	150

Tabela 20: FC 360 - Rede elétrica: 380–480 V (T4), Ciclo Útil de 10% - (continuação)

FC 360	P _{m (SA)}	R _{mín}	R _{br. nom}	R _{rec}	P _{br méd}	Código	Período	Seção transvers al do cabo ⁽¹⁾	Relé térmico	Torque máximo de freio com R _{rec}
T4	[kW]	[Ω]	[Ω]	[Ω]	[kW]	175Uxxxx	[s]	[mm ²]	[A]	[%]
H37K	37	9	11,7	11	3,2	3359	120	2,5	15,3	150
H45K	45	8	9,6	9	3,9	3065	120	10	20	150
H55K	55	6	7,8	7	4,8	3070	120	10	26	150
H75K	75	4	5,7	5	6,6	3231	120	10	36	150

¹⁾ Todo cabeamento precisa estar sempre em conformidade com as normas nacionais e locais sobre seções transversais do cabo e temperatura ambiente.

4.3.3 Códigos: Resistor de Frenagem 40%

Tabela 21: FC 360 - Rede elétrica: 380-480 V (T4), Ciclo Útil de 40%

FC 360	P _{m (SA)}	R _{mín}	R _{br. nom}	R _{rec}	P _{br méd}	Código	Período	Seção transvers al do cabo ⁽¹⁾	Relé térmico	Torque máximo de freio com R _{rec}
T4	[kW]	[Ω]	[Ω]	[Ω]	[kW]	175Uxxxx	[s]	[mm²]	[A]	[%]
HK37	0,37	890	1041,98	989	0,127	3101	120	1,5	0,4	139
HK55	0,55	593	693,79	659	0,191	3308	120	1,5	0,5	131
HK75	0,75	434	508,78	483	0,260	3309	120	1,5	0,7	129
H1K1	1,1	288	338,05	321	0,391	3310	120	1,5	1	132
H1K5	1,5	208	244,41	232	0,541	3311	120	1,5	1,4	145
H2K2	2,2	139	163,95	155	0,807	3312	120	1,5	2,1	131
Н3К0	3	100	118,86	112	1,113	3313	120	1,5	2,7	131
H4K0	4	74	87,93	83	1,504	3314	120	1,5	3,7	128
H5K5	5,5	54	63,33	60	2,088	3315	120	1,5	5	127
H7K5	7,5	38	46,05	43	2,872	3316	120	1,5	7,1	132
H11K	11	27	32,99	31	4,226	3236	120	2,5	11,5	130
H15K	15	19	24,02	22	5,804	3237	120	2,5	14,7	129
H18K	18,5	16	19,36	18	7,201	3238	120	4	19	132
H22K	22	16	18,00	17	8,604	3203	120	4	23	128
H30K	30	11	14,6	13	11,5	3206	120	10	32	150
H37K	37	9	11,7	11	14,3	3210	120	10	38	150
H45K	45	8	9,6	9	17,5	3213	120	16	47	150
H55K	55	6	7,8	7	21,5	3216	120	25	61	150
H75K	75	4	5,7	5	29,6	3219	120	35	81	150

 $^{1) \} Todo\ cabe amento\ precisa\ estar\ sempre\ em\ conformidade\ com\ as\ normas\ nacionais\ e\ locais\ sobre\ seções\ transversais\ do\ cabo\ e\ temperatura\ ambiente.$

5 Especificações

5.1 Dados elétricos

Tabela 22: Dados Elétricos para Sobrecarga Alta, Alimentação de Rede Elétrica 3x380-480 V CA, Tamanho do Gabinete J1-J3

Conversor	HK37	HK55	HK75	H1K1	H1K5	H2K2	Н3К0	H4K0	H5K5	H7K5
Tamanho do gabinete	J1	J1	J1	J1	J1	J1	J2	J2	J2	J3
Sobrecarga alta = 160% da corrente	durante 6	0 s								
Potência no eixo típica [kW]	0,37	0,55	0,75	1,1	1,5	2,2	3	4	5,5	7,5
Potência no eixo típica [hp]	0,5	0,75	1	1,5	2	3	4	5,5	7,5	10
Corrente de saída (trifásica)										
Constante (3x380–440 V) [A]	1,2	1,7	2,2	3	3,7	5,3	7,2	9	12	15,5
Contínua (3x441-480 V) [A]	1,1	1,6	2,1	2,8	3,4	4,8	6,3	8,2	11	14
Intermitente (sobrecarga 60 s) [A]	1,9	2,7	3,5	4,8	5,9	8,5	11,5	14,4	19,2	24,8
Contínua kVA (400 V CA) [kVA]	0,84	1,18	1,53	2,08	2,57	3,68	4,99	6,24	8,32	10,74
Contínua kVA (480 V CA) [kVA]	0,9	1,3	1,7	2,5	2,8	4,0	5,2	6,8	9,1	11,6
Corrente de entrada máxima										
Constante (3x380–440 V) [A]	1,2	1,6	2,1	2,6	3,5	4,7	6,3	8,3	11,2	15,1
Contínua (3x441-480 V) [A]	1,0	1,2	1,8	2,0	2,9	3,9	4,3	6,8	9,4	12,6
Intermitente (sobrecarga 60 s) [A]	1,9	2,6	3,4	4,2	5,6	7,5	10,1	13,3	17,9	24,2
Máxima seção transversal do cabo (rede elétrica, motor, freio e divisão da carga) [mm² (AWG)]	4 (12)									
Perda de energia estimada em carga nominal máxima [W]	20,88	25,16	30,01	40,01	52,91	73,97	94,81	115,5	157,54	192,83
Peso [kg (lb)], características nom- inais de proteção IP20 do gabinete metálico	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,5 (5,5)	3,6 (7,9)	3,6 (7,9)	3,6 (7,9)	4,1 (9,0)
Eficiência [%]	96,2	97,0	97,2	97,4	97,4	97,6	97,5	97,6	97,7	98,0

Tabela 23: Dados Elétricos para Sobrecarga Normal, Alimentação de Rede Elétrica 3x380-480 V CA, Tamanho do Gabinete J1-J3

Conversor	QK37	QK55	QK75	Q1K1	Q1K5	Q2K2	Q3K0	Q4K0	Q5K5	Q7K5
Tamanho do gabinete	J1	J1	J1	J1	J1	J1	J2	J2	J2	J3
Sobrecarga normal = 110% da corre	Sobrecarga normal = 110% da corrente durante 60 s									
Potência no eixo típica [kW]	0,37	0,55	0,75	1,1	1,5	2,2	3	4	5,5	7,5
Potência no eixo típica [hp]	0,5	0,75	1	1,5	2	3	4	5,5	7,5	10
Corrente de saída (trifásica)										
Constante (3x380-440 V) [A]	1,2	1,7	2,2	3	3,7	5,3	7,2	9	12	15,5
Contínua (3x441-480 V) [A]	1,1	1,6	2,1	2,8	3,4	4,8	6,3	8,2	11	14
Intermitente (sobrecarga 60 s) [A]	1,3	1,9	2,4	3,3	4,1	5,8	7,9	9,9	13,2	17,1
Contínua kVA (400 V CA) [kVA]	0,84	1,18	1,53	2,08	2,57	3,68	4,99	6,24	8,32	10,74
Contínua kVA (480 V CA) [kVA]	0,9	1,3	1,7	2,5	2,8	4,0	5,2	6,8	9,1	11,6

Tabela 23: Dados Elétricos para Sobrecarga Normal, Alimentação de Rede Elétrica 3x380-480 V CA, Tamanho do Gabinete J1–J3 - (continuação)

Conversor	QK37	QK55	QK75	Q1K1	Q1K5	Q2K2	Q3K0	Q4K0	Q5K5	Q7K5
Corrente de entrada máxima										
Constante (3x380-440 V) [A]	1,2	1,6	2,1	2,6	3,5	4,7	6,3	8,3	11,2	15,1
Contínua (3x441-480 V) [A]	1,0	1,2	1,8	2,0	2,9	3,9	4,3	6,8	9,4	12,6
Intermitente (sobrecarga 60 s) [A]	1,3	1,8	2,3	2,9	3,9	5,2	6,9	9,1	12,3	16,6
Máxima seção transversal do cabo (rede elétrica, motor, freio e divisão da carga) [mm² (AWG)]	4 (12)									
Perda de energia estimada em carga nominal máxima [W]	20,88	25,16	30,01	40,01	52,91	73,97	94,81	115,5	157,54	192,83
Peso [kg (lb)], características nom- inais de proteção IP20 do gabinete metálico	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,5 (5,5)	3,6 (7,9)	3,6 (7,9)	3,6 (7,9)	4,1 (9,0)
Eficiência [%]	96,2	97,0	97,2	97,4	97,4	97,6	97,5	97,6	97,7	98,0

Tabela 24: Dados Elétricos para Sobrecarga Alta, Alimentação de Rede Elétrica 3x380-480 V CA, Tamanho do Gabinete J4-J7

Conversor	H11K	H15K	H18K	H22K	H30K	H37K	H45K	H55K	H75K
Tamanho do gabinete	J4	J4	J5	J5	J6	J6	J6	J7	J7
Sobrecarga alta = 150% da corrente	durante 60	s						'	
Potência no eixo típica [kW]	11	15	18,2	22	30	37	45	55	75
Potência no eixo típica [hp]	15	20	25	30	40	50	60	75	100
Corrente de saída (trifásica)									
Constante (3x380-440 V) [A]	23	31	37	42,5	61	73	90	106	147
Contínua (3x441-480 V) [A]	21	27	34	40	52	65	77	96	124
Intermitente (sobrecarga 60 s) [A]	34,5	46,5	55,5	63,8	91,5	109,5	135	159	220,5
Contínua kVA (400 V CA) [kVA]	15,94	21,48	25,64	29,45	42,3	50,6	62,4	73,4	101,8
Contínua kVA (480 V CA) [kVA]	17,5	22,4	28,3	33,3	43,2	54,0	64,0	79,8	103,1
Corrente de entrada máxima				·				'	
Constante (3x380–440 V) [A]	22,1	29,9	35,2	41,5	57	70,3	84,2	102,9	140,3
Contínua (3x441-480 V) [A]	18,4	24,7	29,3	34,6	49,3	60,8	72,7	88,8	121,1
Intermitente (sobrecarga 60 s) [A]	33,2	44,9	52,8	62,3	85,5	105,5	126,3	154,4	210,5
Tamanho máximo do cabo (rede elétrica, motor, freio) [mm² (AWG)]	16 (6) 50 (1/0)						95 (3/0)		
Perda de energia estimada em carga nominal máxima [W]	289,53	393,36	402,83	467,52	630	848	1175	1250	1507
Peso [kg (lb)], características nom- inais de proteção IP20 do gabinete metálico	9,4 (20,7)	9,5 (20,9)	12,3 (27,1)	12,5 (27,6)	22,4 (49,4)	22,5 (49,6)	22,6 (49,8)	37,3 (82,2)	38,7 (85,3)
Eficiência [%]	97,8	97,8	98,1	97,9	98,1	98,0	97,7	98,0	98,2

Tabela 25: Dados Elétricos para Sobrecarga Normal, Alimentação de Rede Elétrica 3x380-480 V CA, Tamanho do Gabinete J4-J7

Conversor	Q11K	Q15K	Q18K	Q22K	Q30K	Q37K	Q45K	Q55K	Q75K	Q90K
Tamanho do gabinete	J4	J4	J5	J5	J6	J6	J6	J7	J7	J7
Sobrecarga normal = 110% da correi	nte duran	te 60 s								
Potência no eixo típica [kW]	11	15	18,5	22	30	37	45	55	75	90
Potência no eixo típica [hp]	15	20	25	30	40	50	60	75	100	125
Corrente de saída (trifásica)										
Constante (3x380–440 V) [A]	23	31	37	42,5	61	73	90	106	147	177
Contínua (3x441-480 V) [A]	21	27	34	40	52	65	77	96	124	160
Intermitente (sobrecarga 60 s) [A]	25,3	34,1	40,7	46,8	67,1	80,3	99	116,6	161,7	194,7
Contínua kVA (400 V CA) [kVA]	15,94	21,48	25,64	29,45	42,3	50,6	62,4	73,4	101,8	122,6
Contínua kVA (480 V CA) [kVA]	17,5	22,4	28,3	33,3	43,2	54,0	64,0	79,8	103,1	133
Corrente de entrada máxima						1				
Constante (3x380–440 V) [A]	22,1	29,9	35,2	41,5	57	70,3	84,2	102,9	140,3	165,6
Contínua (3x441-480 V) [A]	18,4	24,7	29,3	34,6	49,3	60,8	72,7	88,8	121,1	142,7
Intermitente (sobrecarga 60 s) [A]	24,3	32,9	38,7	45,7	62,7	77,3	92,6	113,2	154,3	182,2
Tamanho máximo do cabo (rede elétrica, motor, freio) [mm² (AWG)]	16 (6)				50 (1/0)				95 (3/0)	120 (4/0)
Perda de energia estimada em carga nominal máxima [W]	289,53	393,36	402,83	467,52	630	848	1175	1250	1507	1781
Peso [kg (lb)], características nom- inais de proteção IP20 do gabinete metálico	9,4 (20,7)	9,5 (20,9)	12,3 (27,1)	12,5 (27,6)	22,4 (49,4)	22,5 (49,6)	22,6 (49,8)	37,3 (82,2)	38,7 (85,3)	40,7 (89,7)
Eficiência [%]	97,8	97,8	98,1	97,9	98,1	98,0	97,7	98,0	98,2	98,3

5.2 Especificações gerais

5.2.1 Alimentação de rede elétrica (L1, L2, L3)

Terminais de alimentação	L1, L2, L3
Tensão de alimentação	380–480 V: -15% (-25%) ⁽¹⁾ a +10%
Frequência de alimentação	50/60 Hz ±5%
Desbalanceamento máximo temporário entre as fases da rede elétrica	3,0% da tensão de alimentação nominal
Fator de potência real (λ)	≥0,9 nominal com carga nominal
Fator de potência de deslocamento (cos φ)	Unidade próxima (>0,98)
Chaveamento na alimentação de entrada L1, L2, L3 (energizações) ≤7,5 kW (10 hp)	Máximo 2 vezes/minuto
Ligando o fornecimento de entrada L1, L2, L3 (energização) 11–90 kW (125 hp)	Máximo de 1 vez/minuto

¹⁾ O conversor pode funcionar a -25% da tensão de entrada com desempenho reduzido. A potência máxima de saída do conversor é de 75% se a tensão de entrada for de -25%, e de 85% se a tensão de entrada for de -15%. O torque total não pode ser esperado em tensão de rede menor que 10% abaixo da tensão de alimentação nominal mais baixa do conversor

A unidade é adequada para uso em um circuito capaz de fornecer menos do que 5000 Ampères RMS simétricos, 480 V no máximo.

5.2.2 Saída do Motor (U, V, W)

Tensão de saída	0–100% da tensão de alimentação
Frequência de saída em modo U/f (para motor IM)	0–500 Hz
Frequência de saída em modo básico VVC+/Flux (para motor IM)	0–200 Hz
Frequência de saída em modo básico VVC+/Flux (para motor PM)	0–400Hz/0–300Hz
Chaveamento na saída	Ilimitado
Tempos de rampa	0,01–3600 s

5.2.3 Características do torque

Torque de partida (sobrecarga alta)	Máximo 160% por 60 s ⁽¹⁾ (2)
Torque de sobrecarga (sobrecarga alta)	Máximo de 160% durante 60 s ⁽¹⁾ (2)
Torque de partida (sobrecarga normal)	Máximo de 100% durante 60 s ^{(1) (2)}
Torque de sobrecarga (sobrecarga normal)	Máximo de 100% durante 60 s ⁽¹⁾ (2)
Corrente de partida	Máximo 200% durante 1 s
Tempo de subida de torque em VVC+ (independente de f _{sw})	Máximo 50 ms

¹⁾ Porcentagem em relação ao torque nominal. É de 150% para conversores de 11–90 kW (15–125 hp).

5.2.4 Condições ambientais

Tamanhos de gabinete J1-J7	IP20
Teste de vibração, tamanhos de gabinete J1–J7	1,0 g
Umidade relativa	5–95% (IEC 721-3-3); Classe 3K3 (não condensante) durante a operação
Teste H ₂ S de ambiente agressivo (IEC 60068-2-43)	Classe Kd
O método de teste está em conformidade com a IEC 60068-2-43 $\rm H_2S$ (10 dias)	
Temperatura ambiente (no modo de chaveamento 60 AVM)	
- com derating	Máximo de 55 °C (131 °F) ^{(1) , (2)}
- em corrente de saída contínua plena com alguma potência	Máxima de 50 ℃ (122 °F)
- em corrente de saída contínua plena	Máximo de 45 °C (113 °F) ⁽³⁾
Temperatura ambiente mínima, durante operação plena	0 °C (32 °F)
Temperatura ambiente mínima em desempenho reduzido	-10 °C (14 °F)
Temperatura durante a armazenagem/transporte	-25 a +65/70 °C (-13 a +149/158 °F)
Altitude máxima acima do nível do mar, sem derating	1.000 m (3.281 pés)
Altitude máxima acima do nível do mar, sem derating	3.000 m (9.843 pés)
Normas de EMC, emissão	EN 61800-3, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12, EN 61000-6-3/4, EN 55011, IEC 61800-3
Normas de EMC, imunidade	EN 61800-3, EN 61000-6-1/2, EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6

²⁾ Uma vez a cada 10 minutos.

Classe de eficiência energética ⁽⁴⁾	IE2
--	-----

- 1) Consulte o capítulo Condições especiais para:
 - Derating para temperatura ambiente elevada.
 - . Derating para alta altitude.
- 2) Para evitar a superaquecimento do cartão de controle nas variantes PROFIBUS e PROFINET de VLT® AutomationDrive FC 360, evite carga de E/S digital/analógica completa em temperatura ambiente superior a 45 °C (113 °F).
- 3) O conversor de 90 kW (125 hp) sobrecarga normal opera a 40 °C (104 °F).
- 4) Determinada de acordo com EN 50598-2 em:
 - . Carga nominal.
 - . 90% de frequência nominal.
 - Configuração de fábrica da frequência de chaveamento.
 - Configuração de fábrica do padrão de chaveamento.

5.2.5 Comprimentos de cabo e seções transversais

Comprimento de cabo de motor máximo, blindado	50 m (164 pés)
Comprimento máximo de cabo de motor, não blindado	0,37–22 kW (0,5–30 hp): 75 m (246 pés); 30–90 kW (40–125 hp): 100 m (328 pés)
Seção transversal máxima para motor e rede elétrica	Consulte o capítulo Dados elétricos.
Seção transversal máxima para terminais de controle, fio flexível/ rígido	2,5 mm ² /14 AWG
Seção transversal máxima para terminais de controle	0,55 mm ² /30 AWG

5.2.6 Entradas Digitais

Entradas digitais programáveis	7
Número do terminal	18, 19, 27, 29, 31, 32, 33 ⁽¹⁾
Lógica	PNP ou NPN
Nível de tensão	0–24 V CC
Nível de tensão, lógica 0 PNP	< 5 VCC
Nível de tensão, lógica 1 PNP	> 10 VCC
Nível de tensão, lógica 0 NPN	> 19 VCC
Nível de tensão, lógica 1 NPN	< 14 VCC
Tensão máxima na entrada	28 V CC
Faixa de frequência de pulso	4 Hz-32 kHz
Largura de pulso mínima (ciclo útil)	4,5 ms
Resistência de entrada, Ri	Aproximadamente 4 kΩ

¹⁾ Os terminais 27 e 29 também podem ser programados como saídas.

Todas as entradas digitais são isoladas galvanicamente da tensão de alimentação (PELV) e de outros terminais de alta tensão.

5.2.7 Entradas analógicas

Número de entradas analógicas	2
Número do terminal	53, 54
Modos	Tensão ou corrente
Seleção do modo	Software

	0–10 V
Nível de tensão	
Resistência de entrada, Ri	Aproximadamente 10 kΩ
Tensão máxima	-15 a +20 V
Nível de corrente	0/4 a 20 mA (escalonável)
Resistência de entrada, Ri	Aproximadamente 200 Ω
Corrente máxima	30 mA
Resolução das entradas analógicas	11 bit
Precisão das entradas analógicas	Erro máximo de 0,5% do fundo de escala
Largura de banda	100 Hz

As entradas analógicas são isoladas galvanicamente da tensão de alimentação (PELV) e de outros terminais de alta tensão.

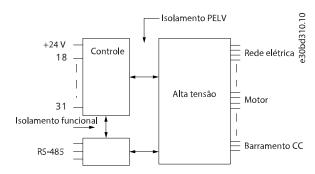


Figura 45: Entradas analógicas

AVISO

ALTITUDES ELEVADAS

• Para instalação em altitudes acima de 2.000 m (6.562 pés), entre em contato com a DANFOSS com relação à PELV.

5.2.8 Entradas de Pulso

Entradas de pulso programáveis	2
Número do terminal do pulso	29, 33
Frequência máxima nos terminais 29 e 33 (acionado por push- pull)	32 kHz
Frequência máxima nos terminais 29 e 33 (coletor aberto)	5 kHz
Frequência mínima nos terminais 29, 33	4 Hz
Nível de tensão	Consulte a seção sobre entrada digital
Tensão máxima na entrada	28 V CC
Resistência de entrada, Ri	Aproximadamente 4 kΩ
Precisão da entrada de pulso	Erro máximo: 0,1% do fundo de escala

5.2.9 Saídas digitais

Saídas digitais/de pulso programáveis	2
Número do terminal	27, 29
Nível de tensão nas saídas de frequência/digitais	0-24 V

Corrente de saída máxima (dissipador ou fonte)	40 mA
Carga máxima nas saídas de frequência	1 kΩ
Carga capacitiva máxima nas saídas de frequência	10 nF
Frequência de saída mínima nas saídas de frequência	4 Hz
Frequência de saída máxima nas saídas de frequência	32 kHz
Precisão das saídas de frequência	Erro máximo: 0,1% do fundo de escala
Resolução das saídas de frequência	10 bits

¹⁾ Os terminais 27 e 29 também podem ser programados como entradas.

A saída digital está isolada galvanicamente da tensão de alimentação (PELV) e de outros terminais de alta tensão.

5.2.10 Saídas analógicas

Número de saídas analógicas programáveis	2
Número do terminal	45, 42
Faixa de corrente nas saídas analógicas	0/4–20 mA
Carga máxima do resistor em relação ao comum nas saídas analó- gicas	500 Ω
Precisão nas saídas analógicas	Erro máximo: 0,8% do fundo de escala
Resolução nas saídas analógicas	10 bits

A saída analógica está isolada galvanicamente da tensão de alimentação (PELV) e de outros terminais de alta tensão.

5.2.11 Saídas do relé

aídas de relé programáveis	
Relé 01 e 02	01–03 (NF), 01–02 (NA), 04–06 (NF), 04–05 (NA)
Carga do terminal máxima (CA-1) em 01–02/04–05 (NA) (carga resistiva) ⁽¹⁾	250 V CA, 3 A
Carga máxima do terminal (CA-15) ⁽¹⁾ em 01–02/04–05 (NA) (carga indutiva a cosφ 0,4)	250 V CA, 0,2 A
Carga máxima do terminal (CC-1) ⁽¹⁾ em 01–02/04–05 (NA) (carga resistiva)	30 V CC, 2 A
Carga máxima do terminal (CC-13) ⁽¹⁾ em 01–02/04–05 (NA) (carga indutiva)	24 V CC, 0,1 A
Carga máxima do terminal (CA-1) ⁽¹⁾ em 01–03/04–06 (NF) (carga resistiva)	250 V CA, 3 A
Carga máxima do terminal (CA-15) ⁽¹⁾ em 01–03/04–06 (NF) (carga indutiva a cosφ 0,4)	250 V CA, 0,2 A
Carga máxima do terminal (CA-1) ⁽¹⁾ em 01–03/04–06 (NF) (carga resistiva)	30 V CC, 2 A
Carga do terminal mínima em 01-03 (NF), 01-02 (NA)	24 V CC 10 mA, 24 V CA 20 mA

1) IEC 60947 t 4 e 5.

Os contatos do relé são isolados galvanicamente do resto do circuito por isolamento reforçado.

Os relés podem ser utilizados em diferentes cargas (carga resistiva ou carga indutiva) com diferentes ciclos de vida útil. O ciclo de vida útil depende da configuração da carga específica.

5.2.12 Cartão de Controle, Comunicação Serial RS485

Número do terminal	68 (P, TX+, RX+), 69 (N, TX-, RX-)
Número do terminal 61	Ponto comum dos terminais 68 e 69

O circuito de comunicação serial RS485 é isolado galvanicamente da tensão de alimentação (PELV).

5.2.13 Cartão de controle, Saída 24 V CC

Número do terminal	12
Carga máxima	100 mA

A fonte de alimentação de 24 V CC está isolada galvanicamente da tensão de alimentação (PELV), mas está no mesmo potencial das entradas e saídas digital e analógica.

5.2.14 Cartão de controle, saída +10 V CC

Número do terminal	50
Tensão de saída	10,5 V ±0,5 V
Carga máxima	15 mA

A alimentação de 10 V CC está isolada galvanicamente da tensão de alimentação (PELV) e de outros terminais de alta tensão.

5.2.15 Características de Controle

Resolução de frequência de saída em 0–500 Hz	±0,003 Hz
Tempo de resposta do sistema (terminais 18, 19, 27, 29, 31, 32 e 33)	≤2 ms
Faixa de controle da velocidade (malha aberta)	1:100 da velocidade síncrona
Precisão da velocidade (malha aberta)	±0,5% da velocidade nominal
Precisão da velocidade (malha fechada)	±0,1% da velocidade nominal

Todas as características de controle são baseadas em um motor assíncrono de 4 polos.

5.2.16 **Desempenho do Cartão de Controle**

Intervalo de varredura 1 ms

5.2.17 Proteção e recursos

- Proteção térmica do motor eletrônico contra sobrecarga.
- O monitoramento de temperatura do dissipador de calor garante que o conversor se desarme quando a temperatura alcançar um nível predefinido. Uma temperatura de sobrecarga não pode ser redefinida até que a temperatura do dissipador de calor esteja abaixo do limite de temperatura.
- O conversor é protegido contra curto-circuitos nos terminais U, V e W do motor.
- Se estiver faltando uma fase da rede elétrica, o conversor se desarma ou emite uma advertência (dependendo da carga e da programação do parâmetro).
- Monitorar a tensão do barramento CC garante que o conversor se desarme quando a tensão do barramento CC for muito baixa ou muito alta.

O conversor é protegido contra falhas de aterramento nos terminais do motor U, V e W.

5.3 Fusíveis

5.3.1 Introdução

Utilize fusíveis e/ou disjuntores no lado da alimentação para proteger a equipe de manutenção de ferimentos e de danos o equipamento, caso haja falha do componente dentro do conversor (primeira falha).

Proteção do circuito de derivação

Proteja todos os circuitos de derivação em uma instalação, disjuntor e máquinas contra curto-circuito e sobrecorrente, de acordo com as regulamentações nacionais/internacionais.

AVISO

As recomendações não cobrem a proteção do circuito de derivação para UL.

ADVERTÊNCIA

RISCO DE FERIMENTOS PESSOAIS E DANOS AO EQUIPAMENTO

Mau funcionamento ou falha em seguir as recomendações pode resultar em risco pessoal e danos ao conversor e a outros equipamentos.

• Selecione os fusíveis de acordo com as recomendações. Possíveis danos podem ser limitados a estar dentro do conversor.

5.3.2 Recomendação de Fusíveis

AVISO

O uso de fusíveis ou disjuntores é obrigatório para garantir a conformidade com a IEC 60364 para CE.

A Danfoss recomenda utilizar os fusíveis em <u>Tabela 26</u> um circuito capaz de fornecer 100.000 A_{rms} (simétrico), 380–480 V, dependendo das características nominais de tensão do conversor. Com o fusível adequado, as características nominais da corrente de curto-circuito do conversor (SCCR) são de 100.000 A_{rms}.

Tabela 26 enumera os fusíveis recomendados que foram testados.

Tabela 26: Fusível CE, 380-480 V, Tamanhos do Gabinete J1-J7

Tamanho do gabinete	Potência [kW (hp)]	Fusível em conformidade com a CE
J1	0,37–1,1 (0,5–1,5)	gG-10
	1,5 (2)	
	2,2 (3)	
J2	3,0 (4)	gG-25
	4,0 (5,5)	
	5,5 (7,5)	
Ј3	7,5 (10)	gG-32
J4	11–15 (15–20)	gG-50
J5	18,5 (25)	gG-80
	22 (30)	

Tamanho do gabinete	Potência [kW (hp)]	Fusível em conformidade com a CE
J6	30 (40)	gG-125
	37 (50)	
	45 (60)	
J7	55 (75)	aR-250
	75 (100)	
	90 (125)	

5.4 Eficiência

5.4.1 Eficiência do Conversor

A carga no conversor tem pouco efeito sobre sua eficiência. Em geral, a eficiência é a mesma na frequência nominal do motor $f_{M, N}$. Essa regra também se aplica mesmo que o motor forneça 100% do torque nominal do eixo ou apenas 75%, por exemplo, no caso de cargas parciais.

Isso também significa que a eficiência do drive não muda mesmo se outras características U/f forem selecionadas.

Entretanto, as características U/f influem na eficiência do motor.

A eficiência é algo reduzida quando a frequência de chaveamento é definida para um valor acima do valor padrão. Se a tensão de rede for de 480 V ou se o comprimento do cabo do motor for maior que 30 m (98,4 pés), a eficiência também é ligeiramente reduzida.

Calcule a eficiência do conversor (η_{VLT}) em diferentes cargas com base em <u>Figura 46</u>. Multiplique o fator em <u>Figura 46</u> pelo fator de eficiência específico listado nas tabelas de específicações.

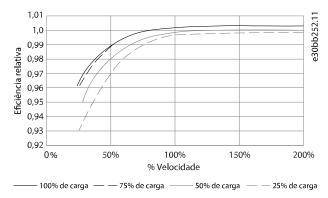


Figura 46: Curvas de Eficiência Típica

5.4.2 Eficiência do Motor

A eficiência de um motor (η_{MOTOR}) conectado ao conversor depende do nível de magnetização. Em geral, a eficiência é tão boa quanto com a operação na rede elétrica. A eficiência do motor depende do tipo do motor.

Na faixa de 75-100% do torque nominal, a eficiência do motor é praticamente constante, tanto quando é controlada pelo conversor quanto quando é executada diretamente na rede elétrica.

Nos motores pequenos, a influência da característica U/f sobre a eficiência é marginal. No entanto, em motores a partir de 11 kW (15 hp), as vantagens são significativas.

De modo geral, a frequência de chaveamento não afeta a eficiência de motores pequenos. Os motores de 11 kW (15 hp) e acima têm a eficiência melhorada de 1 a 2%, pois a forma da onda senoidal da corrente do motor é quase perfeita em altas frequências de chaveamento.

5.4.3 Eficiência do Sistema

Para calcular a eficiência do sistema (η_{SYSTEM}), multiplica-se a eficiência do drive (η_{VLT}) pela eficiência do motor (η_{MOTOR}):

 $\eta_{\text{SYSTEM}} = \eta_{\text{VLT}} x \eta_{\text{MOTOR}}$

5.5 Ruído Acústico

O ruído acústico do conversor tem 3 origens:

- Bobinas de barramento CC.
- Ventilador interno.
- Bloqueador do filtro de RFI.

Os valores típicos medidos a uma distância de 1 m (3,3 pés) da unidade são:

Tabela 27: Valores medidos típicos

Tamanho do gabinete [kW (hp)]	50% velocidade do ventilador [dBA]	Velocidade máxima de ventilador [dBA]
J1 0,37-2,2 (0,5-3,0)	N.A. ⁽¹⁾	51
J2 3,0-5,5 (4,0-7,5)		55
J3 7,5 (10)		54
J4 11–15 (15–20)	52	66
J5 18,5–22 (25–30)	57,5	63
J6 30–45 (40–60)	56	71
J7 55–90 (75–125)	63	72

¹⁾ Para J1-J3, a velocidade do ventilador é fixa.

5.6 Condições dU/dt

No chaveamento de um transistor na ponte do conversor, a tensão no motor aumenta a uma razão dU/dt, dependendo dos seguintes fatores:

- O tipo de cabo de motor.
- A seção transversal do cabo de motor.
- O comprimento do cabo de motor.
- Se o cabo de motor é blindado ou não.
- Indutância.

A indução natural provoca um U_{PEAK} de overshoot na tensão do motor antes de ela se estabilizar em um nível, dependendo da tensão no barramento CC. O tempo de subida e a tensão de pico U_{PEAK} afetam a vida útil do motor.

Se a tensão de pico for muito alta, os motores sem isolamento da bobina de fase serão afetados. Quanto mais longo o cabo de motor, maiores o tempo de subida e a tensão de pico.

O chaveamento dos IGBTs causa tensão de pico nos terminais do motor. O conversor está em conformidade com a norma IEC 60034-25 relativa a motores projetados para serem controlados por conversores. O conversor também está em conformidade com a norma IEC 60034-17 relativa aos controles do motor Norm por conversores.

Os seguintes dados dU/dt são medidos no lado do terminal do motor:

Tabela 28: Dados de dU/dt para FC 360, 2,2 kW (3,0 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	$dU/dt [kV/\mu_s]$
5 (16,4)	400	0,164	0,98	5,4
50 (164)	400	0,292	1,04	2,81
5 (16,4)	480	0,168	1,09	5.27
50 (164)	480	0,32	1,23	3,08

Tabela 29: Dados de dU/dt para FC 360, 5,5 kW (7,5 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,18	0,86	3,84
50 (164)	400	0,376	0,96	2,08
5 (16,4)	480	0,196	0,97	3,98
50 (164)	480	0,38	1,19	2,5

Tabela 30: Dados de dU/dt para FC 360, 7,5 kW (10 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,166	0,992	4,85
50 (164)	400	0,372	1,08	2,33
5 (16,4)	480	0,168	1,1	5,2
50 (164)	480	0,352	1,25	2,85

Tabela 31: Dados de dU/dt para FC 360, 15 kW (20 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	$dU/dt [kV/\mu_s]$
5 (16,4)	400	0,224	0,99	3,54
50 (164)	400	0,392	1,07	2,19
5 (16,4)	480	0,236	1,14	3,87
50 (164)	480	0,408	1,33	2,61

Tabela 32: Dados de dU/dt para FC 360, 22 kW (30 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [µs]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,272	0,947	2,79
50 (164)	400	0,344	1,03	2,4
5 (16,4)	480	0,316	1,01	2,56
50 (164)	480	0,368	1,2	2,61

Tabela 33: Dados de dU/dt para FC 360, 37 kW (50 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,212	0,81	3,08
53 (174)	400	0,294	0,94	2,56
5 (16,4)	480	0,228	0,95	3,37
53 (174)	480	0,274	1,11	3,24

Tabela 34: Dados de dU/dt para FC 360, 45 kW (60 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	$dU/dt [kV/\mu_s]$
5 (16,4)	400	0,14	0,64	3,60
50 (164)	400	0,548	0,95	1,37
5 (16,4)	480	0,146	0,70	3,86
50 (164)	480	0,54	1,13	1,68

Tabela 35: Dados de dU/dt para FC 360, 55 kW (75 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,206	0,91	3,52
54 (177)	400	0,616	1,03	1,34
5 (16,4)	480	0,212	1,06	3,99
54 (177)	480	0,62	1,23	1,59

Tabela 36: Dados de dU/dt para FC 360, 75 kW (100 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [μ _s]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,232	0,81	2,82
50 (164)	400	0,484	1,03	1,70
5 (16,4)	480	0,176	1,06	4,77
50 (164)	480	0,392	1,19	2,45

Tabela 37: Dados de dU/dt para FC 360, 90 kW (125 hp)

Comprimento de cabo [m (pés)]	Tensão de rede [V]	Tempo de subida [µs]	U _{PEAK} [kV]	dU/dt [kV/μ _s]
5 (16,4)	400	0,176	0,91	4,11
50 (164)	400	0,610	0,96	1,26
5 (16,4)	480	0,184	1,06	4,60
50 (164)	480	0,576	1,12	1,56

5.7 Condições Especiais

5.7.1 Introdução

Em algumas condições especiais, em que a operação do conversor é contestada, considere a possibilidade de derating. Em algumas condições, o derating deve ser feito manualmente. Em outras condições, o conversor executa automaticamente um grau de derating quando necessário. O derating é feito para garantir o desempenho em estágios críticos em que a alternativa poderia ser um desarme.

5.7.2 **Derating Manual**

O derating manual deve ser considerado para:

- Pressão do ar para instalação em altitudes acima de 1.000 m (3.281 pés).
- Velocidade do motor em operação contínua em baixas RPM, em aplicações de torque constante.
- Temperatura ambiente acima 45 °C (113 °F); para alguns tipos, acima de 50 °C (122 °F). Para obter detalhes, consulte as figuras e tabelas a seguir.

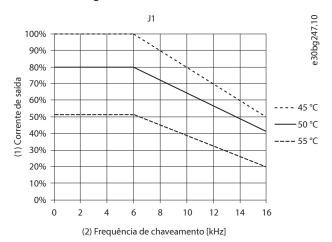


Figura 47: Curva de Derating J1

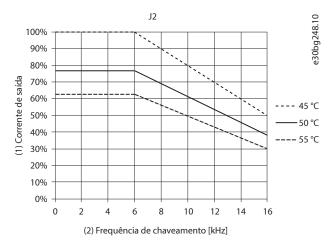


Figura 48: Curva de Derating J2

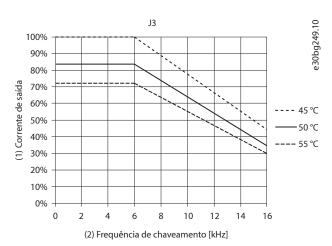


Figura 49: Curva de Derating J3

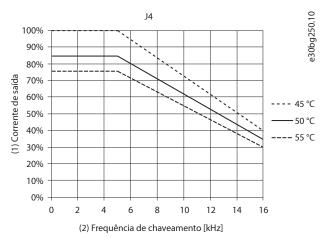


Figura 50: Curva de Derating J4

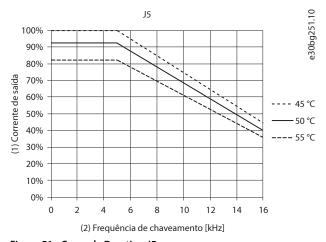


Figura 51: Curva de Derating J5

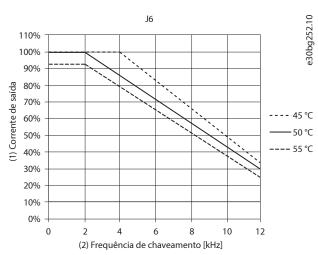


Figura 52: Curva de Derating J6

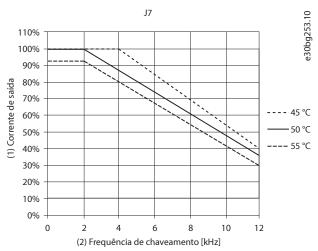


Figura 53: Curva de Derating J7 (55-75 kW/75-100 hp)

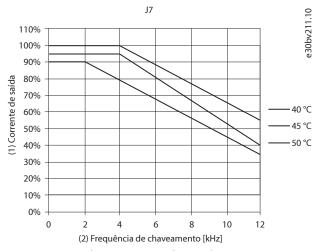


Figura 54: Curva de Derating J7 (90 kW/125 hp)

Tabela 38: Derating a 380 V

Tamanho do gabinete	Tamanho da potência [kW (hp)]	Corrente de saída máxima a 45 °C (113 °F)	Corrente de saída máxima a 50 °C (122 °F)
J1	0,37 (0,5)	1,2	1,2
	0,55 (0,75)	1,7	1,7
	0,75 (1,0)	2,2	2,2
	1,1 (1,5)	3,0	3,0
	1,5 (2,0)	3,7	3,0
	2,2 (3,0)	5,3	4,1
J2	3 (4)	7,2	7,2
	4 (5,5)	9,0	9,0
	5,5 (7,5)	12,0	10,2
J3	7,5 (10)	15,5	13,1
J4	11 (15)	23,0	23,0
	15 (20)	31,0	26,0
J5	18,5 (25)	37,0	37,0
	22 (30)	42,5	40,0
J6	30 (40)	61	61
	37 (50)	73	73
	45 (60)	90	77
J7	55 (75)	106	106
	75 (100)	147	125
	90 (125)	177 (medido a 40 °C (104 °F))	168

Tabela 39: Derating a 480 V

Tamanho do gabinete	Tamanho da potência [kW (hp)]	Corrente de saída máxima a 45 °C (113 °F)	Corrente de saída máxima a 50 °C (122 °F)
J1	0,37 (0,5)	1,1	1,1
	0,55 (0,75)	1,6	1,6
	0,75 (1,0)	2,1	2,1
	1,1 (1,5)	3,0	2,8
	1,5 (2,0)	3,4	2,8
	2,2 (3,0)	4,8	3,8
J2	3 (4)	6,3	6,3
	4 (5,5)	8,2	8,2
	5,5 (7,5)	11,0	9,4
J3	7,5 (10)	14,0	11,9
J4	11 (15)	21,0	21,0
	15 (20)	27,0	22,6

Tabela 39: Derating a 480 V - (continuação)

Tamanho do gabinete	Tamanho da potência [kW (hp)]	Corrente de saída máxima a 45 °C (113 °F)	Corrente de saída máxima a 50 °C (122 °F)
J5	18,5 (25)	34,0	34,0
	22 (30)	40,0	37,7
J6	30 (40)	52	52
	37 (50)	65	65
	45 (60)	77	76
J7	55 (75)	96	96
	75 (100)	124	117

5.7.3 **Derating Automático**

O drive verifica constantemente para níveis críticos:

- Alta temperatura crítica no cartão de controle ou no dissipador de calor.
- Alta carga do motor.
- Baixa velocidade do motor.
- Sinais de proteção (sobretensão/subtensão, sobrecarga de corrente, falha de aterramento e curto-circuito) são acionados.

Como resposta a um nível crítico, o conversor ajusta a frequência de chaveamento.

5.8 Tamanhos do Gabinete Metálico, Valor Nominal da Potência e Dimensões

Tabela 40: Tamanhos do Gabinete Metálico, Valor Nominal da Potência e Dimensões

Tamanho do	gabinete	J1	J2	J3	J4	J5	J6	J7
Tamanho da potência [kW (hp)]	Trifásico de 380-480 V	0,37–2,2 (0,5–3,0)	3,0–5,5 (4,0– 7,5)	7,5 (10)	11–15 (15– 20)	18,5–22 (25– 30)	30–45 (40– 60)	55–90 (75– 125)
Dimensões	Altura A	210 (8,3)	272,5 (10,7)	272,5 (10,7)	317,5 (12,5)	410 (16,1)	515 (20,28)	550 (21,7)
[mm (pol)]	Largura B	75 (3,0)	90 (3,5)	115 (4,5)	133 (5,2)	150 (5,9)	231 (9,1)	308 (12,1)
	Profundid- ade C	168 (6,6)	168 (6,6)	168 (6,6)	245 (9,6)	245 (9,6)	241 (9,49)	323 (12,72)
	Profundid- ade C com opção B	181 (7,1)	181 (7,1)	181 (7,1)	258 (10,2)	258 (10,2)	241 (9,49)	323 (12,72)
Peso [kg (lb)]	IP20	0,37–1,5 kW/ 0,5–2,0 hp:	3,6 (7,9)	4,1 (9,0)	11 kW/15 hp: 9,4 (20,7)	18,5 kW/25 hp: 12,3	30 kW/40 hp: 22,4 (49,4)	55 kW/75 hp: 37,3 (82,2)
		2,3 (5,1)				(27,1)	37 kW/50 hp: 22,5 (49,6)	
		2,2 kW/3,0 hp: 2,5 (5,5)			15 kW/20 hp: 9,5 (20,9)	22 kW/30 hp: 12,5 (27,6)	45 kW/60 hp: 22,6 (49,8)	75 kW/100 hp: 38,7 (85,3)

Tabela 40: Tamanhos do Gabinete Metálico, Valor Nominal da Potência e Dimensões - (continuação)

Tamanho do	gabinete	J1	J2	J3	J4	J5	J6	J7
Orifícios	a	198 (7,8)	260 (10,2)	260 (10,2)	297,5 (11,7)	390 (15,4)	495 (19,49)	521 (20,5)
para mont- agem [mm	b	60 (2,4)	70 (2,8)	90 (3,5)	105 (4,1)	120 (4,7)	200 (7,87)	270 (10,63)
(pol.)]	С	5 (0,2)	6,4 (0,25)	6,5 (0,26)	8 (0,32)	7,8 (0,31)	140 (5,5)	204 (8,0)
	d	9 (0,35)	11 (0,43)	11 (0,43)	12,4 (0,49)	12,6 (0,5)	8,5 (0,33)	8,5 (0,33)
	е	4,5 (0,18)	5,5 (0,22)	5,5 (0,22)	6,8 (0,27)	7 (0,28)	8,5 (0,33)	8,5 (0,33)
	f	7,3 (0,29)	8,1 (0,32)	9,2 (0,36)	11 (0,43)	11,2 (0,44)	8,5 (0,33)	8,5 (0,33)

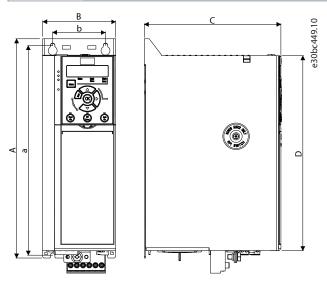


Figura 55: Dimensões

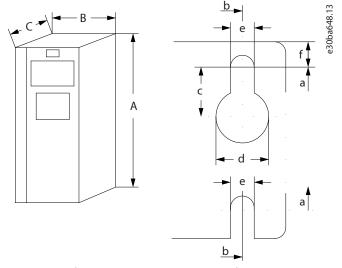


Figura 56: Orifícios para Montagem Superior e Inferior J1-J5

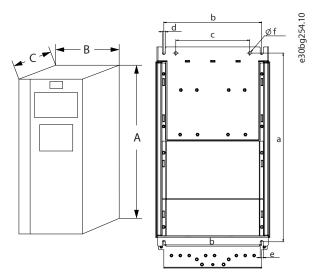


Figura 57: Orifícios para Montagem Superior e Inferior J6-J7

5.9 Requisitos de Resfriamento e Fluxo de Ar

- Considere derating para temperaturas começando entre 40 °C (104 °F) e 55 °C (131 °F) e elevação de 1.000 m (3.300 pés) acima do nível do mar. Consulte o *capítulo "Condições especiais"*, para obter informações detalhadas.
- O valor de aquecimento máximo do conversor pode ser estimado por meio da seguinte fórmula. Consulte <u>5.1 Dados elétricos</u> para obter a eficiência do conversor em carga nominal.

 $Maximumheatingvalue \approx Power \times (1 - Efficiency)$

- Se vários conversores forem instalados em um único painel elétrico ao mesmo tempo, o valor de aquecimento e o volume de ventilação devem ser acumulados.
- Se houver outros dispositivos de aquecimento, aumente a ventilação de acordo com as instruções.
- Se a tela de poeira precisar ser instalada, o volume de ar precisará ser aumentado de modo adequado, de acordo com o coeficiente
 de resistência ao vento da tela de poeira. Para obter o coeficiente de resistência ao vento de uma tela de poeira, entre em contato
 com o fornecedor da tela de poeira.

Tabela 41: Valor de Referência do Volume de Ventilação do Painel Elétrico

Potência [kW (hp)]	Valor de referência do volume de ventilação do painel elétrico				
	CFM	m³/h			
0,37 (0,5)	6	11			
0,55 (0,75)	8	13			
0,75 (1,0)	9	15			
1,1 (1,5)	16	27			
1,5 (2,0)	16	27			
2,2 (3,0)	20	34			
3 (4,0)	25	43			
4 (5,0)	28	48			
5,5 (7,5)	34	58			
7,5 (10)	43	73			
11 (15)	89	151			
15 (20)	121	206			

Tabela 41: Valor de Referência do Volume de Ventilação do Painel Elétrico - (continuação)

Potência [kW (hp)]	Valor de referência do volume de ventilação do painel elétrico			
	CFM	m ³ /h		
18,5 (25)	140	237		
22 (30)	162	275		
30 (40)	178	303		
37 (50)	220	374		
45 (60)	240	408		
55 (70)	257	436		
75 (100)	350	595		
90 (125)	370	629		

5.10 Recomendações de Manutenção Preventiva

Em geral, todos os equipamentos técnicos, incluindo conversores de frequência Danfoss, precisam de um nível mínimo de manutenção preventiva. Para garantir uma operação sem problemas e uma longa vida útil para o conversor, recomenda-se realizar manutenção regular. Também é recomendável, como uma boa prática de manutenção, registrar um registro de manutenção com os valores dos contadores, data e hora, descrevendo as ações de manutenção e serviço.

A Danfoss recomenda as seguintes inspeções e intervalos de serviço para conversores/sistemas refrigerados a ar.

AVISO

O programa de manutenção para substituições de peças pode variar dependendo das condições de operação. Em condições específicas, a combinação de operação estressante e condições ambientais operam em conjunto para reduzir significativamente a vida útil dos componentes. Essas condições podem incluir, por exemplo, temperatura extrema, poeira, alta umidade, horas de uso, ambiente corrosivo e carga.

Para operação em condições estressantes, a Danfoss oferece o serviço DrivePro® Preventive Maintenance. Os serviços DrivePro® estendem a vida útil e aumentam o desempenho do produto por meio de uma manutenção programada, incluindo substituições personalizadas de peças. Os serviços DrivePro® são feitos sob medida para aplicações e condições de operação específicas.

Tabela 42: Programa de Manutenção para Conversores Refrigerados a Ar

Componente	Intervalo de inspeção ⁽¹⁾	Cronogram a de serviço ⁽²⁾	Ações de manutenção preventiva
Instalação			
Inspeção visual	1 ano	_	Verifique se há algo incomum como, por exemplo, sinais de superaquecimento, envelhecimento, corrosão e componentes empoeirados e danificados.
Equipamento aux- iliar	1 ano	De acordo com as rec omendaçõ es do fabric- ante	Inspecione equipamento, comutador, relés, seccionadores ou fusíveis/disjuntores. Examine a operação e a condição em busca de possíveis causas de falhas operacionais ou defeitos. A verificação de continuidade nos fusíveis deve ser realizada por pessoal de serviço treinado.
Considerações de EMC	1 ano	-	Inspecione a fiação em relação à capacidade eletromagnética e à distância de separação entre a fiação de controle e os cabos de energia.

Especificações

Tabela 42: Programa de Manutenção para Conversores Refrigerados a Ar - (continuação)

Componente	Intervalo de inspeção ⁽¹⁾	Cronogram a de serviço ⁽²⁾	Ações de manutenção preventiva
Disposição dos cabos	1 ano	_	Verifique a disposição paralela de cabos de motor, fiação da rede elétrica e fiação de sinais. Evite deixá-los em paralelo. Evite rotear cabos em espaço aberto sem o emprego de suportes. Verifique o envelhecimento e o desgaste do isolamento do cabo.
Fiação de controle	1 ano	-	Verifique se há fios ou fios de fita esticados, danificados ou crimpados. Termine as conexões corretamente com extremidades crimpadas sólidas. Recomenda-se a utilização de cabos blindados e placa EMC aterrada ou par trançado.
Espaços livres	1 ano	-	Verifique se as folgas externas para o fluxo de ar adequado para refrigeração seguem os requisitos do chassi e do tipo de produto. Para conhecer as folgas, consulte as regulamentações de projeto locais.
Vedação	1 ano	-	Verifique se a vedação do gabinete metálico, das tampas e das portas do painel estão em boas condições.
Ambientes corros- ivos	1 ano	-	Poeira condutiva e gases agressivos, como sulfeto, cloreto e névoa salina, podem danificar os componentes elétricos e mecânicos. Os filtros de ar não removem produtos químicos corrosivos em suspensão no ar. Atue com base nos resultados.
Conversor			
Programação	1 ano	_	Verifique se as programações de parâmetro do conversor de frequência estão corretas, de acordo com o motor, a aplicação do conversor e a configuração de E/S. Somente pessoal de serviço treinado tem permissão para realizar essa ação.
Painel de controle	1 ano	-	Verifique se os pixels do display estão intactos. Verifique o registro de eventos quanto a advertências e falhas. Eventos repetitivos são sinal de problemas potenciais. Se necessário, entre em contato com um centro de serviço local.
Capacidade de res- friamento do con- versor	1 ano	-	Verifique se há bloqueios ou constrições nas passagens de ar do canal de resfriamento. Os dissipadores de calor precisam estar sem poeira e condensação.
Capacitores, barra- mento CC	1 ano	8–15+ anos	A vida útil esperada dos capacitores depende do perfil de carga da aplicação e da temperatura ambiente. Para aplicações com cargas pesadas em ambientes exigentes ou com alto ripple de corrente, substitua os capacitores eletrolíticos a cada 8 anos e os capacitores de película plástica a cada 12 anos. Se estiverem dentro das especificações do tipo de drive, substitua-os a cada 10–15+ anos. Somente pessoal de serviço treinado tem permissão para realizar essa ação.
Limpeza e filtros	1 ano	-	Limpe o interior do gabinete metálico anualmente, e com mais frequência, se necessário. A quantidade de poeira no filtro ou dentro do gabinete metálico é um indicador de quando será necessária a próxima limpeza ou substituição do filtro.
Ventiladores	1 ano	3–10 anos	Inspecione a condição e o status operacional de todos os ventiladores de arrefecimento. Com a energia desligada, o eixo do ventilador deve ficar firme e, ao girarse o ventilador com o dedo, a rotação deve ser quase silenciosa e não apresentar resistência anormal à rotação. Quando no modo RUN (FUNCIONAR), a vibração do ventilador, o ruído excessivo ou estranho são sinais de desgaste dos rolamentos, e o ventilador deve ser substituído.

Tabela 42: Programa de Manutenção para Conversores Refrigerados a Ar - (continuação)

Componente	Intervalo de inspeção ⁽¹⁾	Cronogram a de serviço ⁽²⁾	Ações de manutenção preventiva
Aterramento	1 ano	_	O sistema de drive exige um fio de aterramento dedicado conectando o drive, o fil- tro de saída e o motor ao terra do edifício. Verifique se as conexões de aterramento estão firmes e sem tinta ou oxidação. Conexões em série não são permitidas. Se ap- licável, recomenda-se o uso de cintas trançadas.
РСВ	1 ano	10–12 anos	Inspecione visualmente as placas de circuito impresso quanto a sinais de danos ou degradação devido ao envelhecimento, ambientes corrosivos, poeira ou ambientes com altas temperaturas. Somente pessoal de serviço treinado tem permissão para realizar a inspeção e a ação de serviço.
Cabos de energia e fiação	1 ano	-	Verifique se há conexões soltas, envelhecimento, condição do isolamento e torque adequado nas conexões do drive. Verifique a classificação adequada dos fusíveis e verifique a continuidade. Observe se há sinais de operação em ambiente exigente. Por exemplo, a descoloração do compartimento do fusível pode ser sinal de condensação ou de temperaturas elevadas.
Vibração	1 ano	-	Verifique se há vibração ou ruído anormal vindo do drive, para garantir que o ambiente seja estável para os componentes eletrônicos.
Gaxetas do isolador	1 ano	10–15 anos	Inspecione os isoladores quanto a sinais de degradação devido a alta temperatura e envelhecimento. A substituição é baseada em descobertas ou feita ao mesmo tempo que a substituição do capacitor CC. Somente pessoal de serviço treinado tem permissão para realizar essa ação.
Baterias	1 ano	7–10 anos	Substitua as baterias de acordo com as recomendações do fabricante. Substitua a bateria do relógio de tempo real na unidade de controle a cada 7–10 anos.
Peças de reposição			
Peças de reposição	1 ano	2 anos	Armazene as peças de reposição em suas caixas originais, em ambiente seco e limpo. Evite áreas de armazenamento quentes. Os capacitores eletrolíticos exigem reforma conforme indicado no cronograma de serviço. A reforma deve ser realizada por pessoal de serviço treinado.
Unidades para troca e unidades armazenadas por longos períodos antes da colocação em funcionamento	1 ano	2 anos	Inspecione visualmente se há sinais de danos, água, umidade elevada, corrosão e poeira no campo de visão sem desmontagem. As unidades de troca com capacitores eletrolíticos montados exigem reforma conforme indicado no cronograma de serviço. A reforma deve ser realizada por pessoal de serviço treinado.

¹⁾ Definido como o tempo após a colocação em funcionamento/inicialização ou o tempo desde a inspeção anterior.

²⁾ Definido como o tempo após a colocação em funcionamento/inicialização ou o tempo das ações anteriores do cronograma de serviço.

6 Instalação e Setup do RS485

6.1 Introdução

6.1.1 Visão Geral

RS485 é uma interface do barramento de 2 fios compatível com a topologia de rede de multidistribuição. Os nós podem ser conectados como um barramento ou através de cabos suspensos de uma linha tronco comum. 32 nós no total podem ser conectados a um segmento de rede.

Repetidores dividem segmentos de rede; consulte Figura 58.

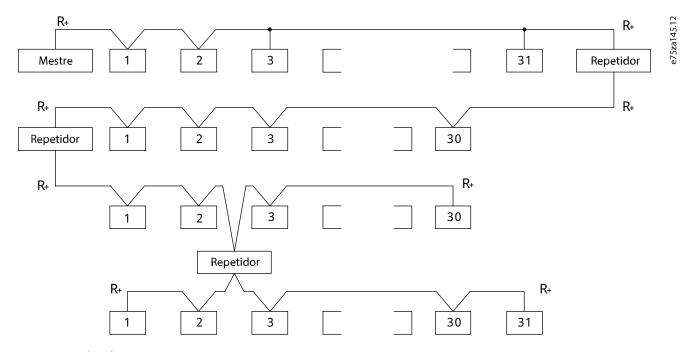


Figura 58: Interface de Barramento RS485

AVISO

Cada repetidor funciona como um nó dentro do segmento em que está instalado. Cada nó conectado em uma rede específica deve ter um único endereço do nó entre todos os segmentos.

Cada segmento deve estar com terminação em ambas as extremidades; para isso, utilize a chave de terminação (S801) dos conversores de frequência ou um banco de resistores de terminação polarizado . Sempre utilize cabos de par trançado blindados (STP) para cabeamento de barramento e siga as boas práticas de instalação.

A conexão do terra de baixa impedância da blindagem em cada nó é importante, inclusive em altas frequências. Portanto, conecte uma grande superfície da blindagem ao ponto de aterramento; por exemplo, com uma braçadeira de cabo ou uma bucha de cabo condutora. Às vezes, é necessário aplicar cabos de equalização de potencial para manter o mesmo potencial de aterramento em toda a rede, especialmente em instalações com cabos longos.

Para evitar descasamento de impedância, utilize o mesmo tipo de cabo em toda a rede. Ao conectar um motor a um conversor, utilize sempre um cabo de motor blindado.

Tabela 43: Especificações de Cabo

Cabo	Par trançado blindado (STP)
Impedância [Ω]	120
Comprimento de cabo [m (pés)]	Máximo 1.200 m (3.937 pés), incluindo linhas de dispositivo.
	Máximo 500 m (1.640 pés) entre estações.

6.1.2 Conexão de rede

Conecte o conversor à rede RS485 da seguinte forma (consulte também Figura 59):

- 1. Conecte os fios de sinal aos terminais 68 (P+) e 69 (N-), na placa de controle principal do conversor.
- 2. Conecte a blindagem do cabo às braçadeiras de cabo.

AVISO Para reduzir o ruído entre os condutores, use cabos de par trançado blindados.

e30bb795.10

Figura 59: Conexão de rede

6.1.3 **Setup de hardware**

Para fazer a terminação do barramento RS485, use a chave terminadora na placa de controle principal do conversor.

A configuração de fábrica para o interruptor é OFF.

6.1.4 Programação dos parâmetros da comunicação do Modbus

Tabela 44: Programação dos parâmetros da comunicação do Modbus

Parâmetro	Função
Parâmetro 8-30 Protocolo	Selecione o protocolo da aplicação a ser executado para a interface RS485.
Parâmetro 8-31 Endereço	Programe o endereço do nó.
	AVISO
	O intervalo de endereços depende do protocolo selecionado no <i>parâmetro 8-30 Protocolo</i> .
Parâmetro 8-32 Baud Rate	Programe a baud rate.
	AVISO
	A baud rate padrão depende do protocolo selecionado no parâmetro 8-30 Protocolo.

Tabela 44: Programação dos parâmetros da comunicação do Modbus - (continuação)

Parâmetro	Função
Parâmetro 8-33 Bits de Paridade/Parada	Programe os bits de paridade e do número de paradas.
	AVISO
	A seleção padrão depende do protocolo selecionado no parâmetro 8-30 Protocolo.
Parâmetro 8-35 Atraso Mínimo de Resposta	Especifique o tempo de atraso mínimo, entre o recebimento de uma solicitação e a transmissão de uma resposta. Esta função é para contornar atrasos de retorno do modem.
Parâmetro 8-36 Atraso Máximo de Resposta	Especifique um tempo de atraso máximo entre a transmissão de uma solicitação e o recebimento de uma resposta.
Parâmetro 8-37 Atraso Máximo Entre Caracteres	Se a transmissão for interrompida, especifique um tempo de atraso máximo entre 2 bytes recebidos para garantir o tempo limite.
	AVISO
	A seleção padrão depende do protocolo selecionado no parâmetro 8-30 Protocolo.

6.1.5 Precauções com EMC

Para obter uma operação livre de interferências da rede RS485, a Danfoss recomenda as seguintes precauções de EMC.

AVISO

Observe as normas locais e nacionais pertinentes; por exemplo, em relação à conexão do terra de proteção. Para evitar o acoplamento de ruído de alta frequência entre os cabos, mantenha o cabo de comunicação RS485 longe dos cabos do motor e do resistor de frenagem. Normalmente, uma distância de 200 mm (8 pol.) é suficiente. Mantenha a maior distância possível entre os cabos, especialmente onde os cabos correm paralelamente por longas distâncias. Quando o cruzamento for inevitável, o cabo RS485 deve cruzar os cabos de motor e do resistor de frenagem em um ângulo de 90°.

6.2 Protocolo Danfoss FC

6.2.1 Visão Geral

O Protocolo Danfoss FC, também conhecido como barramento FC ou barramento padrão, é o fieldbus Danfoss padrão. Ele define uma técnica de acesso de acordo com o princípio mestre/seguidor para comunicações através de um fieldbus.

Um mestre e até 126 seguidores podem ser conectados ao barramento. O mestre seleciona os seguidores individuais por meio de um caractere de endereço no telegrama. Um seguidor em si nunca pode transmitir sem primeiro ser solicitado a fazê-lo, e a transferência direta de telegramas entre os seguidores individuais não é possível. A comunicação ocorre no modo meio duplex.

A função do mestre não pode ser transferida para um outro nó (sistema de mestre único).

A camada física é o RS485; portanto, utiliza a porta RS485 embutida no conversor. O Protocolo Danfoss FC suporta diferentes formatos de telegrama:

- Um formato curto de 8 bytes para dados de processo.
- Um formato longo de 16 bytes que também inclui um canal de parâmetro.
- Um formato usado para textos.

6.2.2 FC com Modbus RTU

O Protocolo Danfoss FC fornece acesso à palavra de controle e à referência de barramento do conversor.

A palavra de controle permite ao Modbus mestre controlar diversas funções importantes do conversor:

- Partida.
- Parada do conversor por diversos meios:
 - o Parada por inércia.
 - o Parada rápida.
 - o Parada por freio CC.
 - Parada normal (rampa).
- Reinicializar após um desarme por falha.
- Funcionar em várias velocidades predefinidas.
- Funcionar em reverso.
- Alteração da configuração ativa.
- Controle dos 2 relés embutidos no conversor.

A referência de barramento é comumente usada para controle de velocidade. Também é possível acessar os parâmetros, ler seus valores e, onde for possível, inserir valores neles. O acesso aos parâmetros oferece uma gama de opções de controle, incluindo o controle do setpoint do conversor quando o controlador PI interno é usado.

6.3 Configuração de rede do Protocolo Danfoss FC

Para ativar o protocolo FC do conversor, programe os parâmetros a seguir.

Tabela 45: Parâmetros para ativar o protocolo

Parâmetro	Configuração
Parâmetro 8-30 Protocolo	FC
Parâmetro 8-31 Endereço	1–126
Parâmetro 8-32 Baud Rate	2400–115200
Parâmetro 8-33 Bits de Paridade/Parada	Paridade par, 1 bit de parada (padrão)

6.4 Estrutura do Enquadramento de Mensagem do Protocolo Danfoss FC

6.4.1 Conteúdo de um caractere (byte)

Cada caractere transferido começa com um bit de início. Em seguida, são transmitidos 8 bits de dados, que correspondem a um byte. Cada caractere é garantido por meio de um bit de paridade. Este bit é definido como 1 quando atinge a paridade. Paridade é quando há um número igual de 1s nos 8 bits de dados e o bit de paridade no total. Um stop bit completa um caractere, consistindo em 11 bits ao todo.

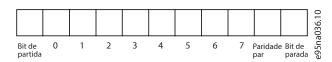


Figura 60: Conteúdo de um caractere

6.4.2 Estrutura do telegrama

Cada telegrama tem a seguinte estrutura:

- Caractere de partida (STX) = 02 hex.
- Um byte representando o comprimento do telegrama (LGE).
- Um byte representando o endereço do conversor (ADR).

Seguem vários bytes de dados (variável, dependendo do tipo de telegrama).

Um byte de controle dos dados (BCC) completa o telegrama.

Figura 61: Estrutura do telegrama

6.4.3 Comprimento do telegrama (LGE)

O comprimento do telegrama é o número de bytes de dados mais o ADR do byte de endereço e o BCC do byte de controle dos dados.

Tabela 46: Comprimento dos telegramas

4 bytes de dados	LGE=4+1+1=6 bytes
12 bytes de dados	LGE=12+1+1=14 bytes
Telegramas contendo textos	10+n bytes

^{1) 10} representa os caracteres fixos, enquanto n é variável (dependendo do comprimento do texto).

6.4.4 Endereço do conversor (ADR)

Formato de endereço 1-126

- Bit 7 = 1 (formato do endereço 1–126 ativo).
- Bit 0-6 = endereço do conversor 1-126.
- Bit 0-6 = 0 broadcast.

O seguidor retorna o byte de endereço inalterado ao mestre no telegrama de resposta.

6.4.5 Byte de Controle dos Dados (BCC)

A soma de verificação é calculada como uma função XOR. Antes de receber o primeiro byte no telegrama, a soma de verificação calculada é 0.

6.4.6 **O Campo de dados**

A estrutura dos blocos de dados depende do tipo de telegrama. Existem três tipos de telegrama, e o tipo se aplica para os telegramas de controle (mestre⇒seguidor) e os telegramas de resposta (seguidor⇒mestre).

Os 3 tipos de telegrama são:

Bloco de processo (PCD)

O PCD é constituído por um bloco de dados de 4 bytes (2 palavras) e contém:

- Palavra de controle e valor de referência (de mestre para seguidor).
- Status word e frequência de saída atual (de seguidor para mestre).

Figura 62: Bloco de processo

Bloco de parâmetros

O bloco de parâmetros é usado para transferir parâmetros entre mestre e seguidor. O bloco de dados é composto de 12 bytes (6 words) e também contém o bloco de processo.

Figura 63: Bloco de parâmetros

Bloco de texto

O bloco de texto é usado para ler ou gravar textos, via bloco de dados.

Figura 64: Bloco de texto

6.4.7 **O Campo PKE**

O campo PKE contém 2 subcampos:

- Comando de parâmetro e resposta (AK).
- Número do parâmetro (PNU).

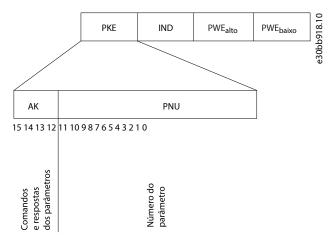


Figura 65: Campo PKE

Os bits 12-15 transferem os comandos de parâmetro do mestre para o seguidor, e retornam as respostas dos seguidores processados ao mestre.

Tabela 47: Comandos de Parâmetro

Comandos de parâmetro mestre para seguidor				
Número do bit				Comando de parâmetro
15	14 13 12		12	
0	0	0	0	Sem comando.
0	0	0	1	Ler o valor do parâmetro.
0	0	1	0	Gravação do valor do parâmetro na RAM (palavra).
0	0	1	1	Gravação do valor do parâmetro na RAM (palavra dupla).
1	1	0	1	Gravação do valor do parâmetro na RAM e EEPROM (palavra dupla).
1	1	1	0	Gravação do valor do parâmetro na RAM e EEPROM (palavra).
1	1	1	1	Leia o texto.

Tabela 48: Resposta

Resposta do seguidor para o mestre					
Número do bit				Resposta	
15	14	13	12		
0	0	0	0	Sem comando.	
0	0	0 1		Valor do parâmetro transferido (palavra).	
0	0	1	0	Valor do parâmetro transferido (palavra dupla).	
0	1	1	1	O comando não pode ser executado.	
1	1	1	1	Texto transferido.	

Se o comando não puder ser executado, o escravo envia a resposta "O comando 0111 não pode ser executado" e emite os seguintes relatórios de falha em Tabela 49.

Tabela 49: Relatório do Seguidor

Código de falha	Especificação do FC
0	Número de parâmetro ilegal.
1	O parâmetro não pode ser alterado.
2	Limite superior ou inferior excedido.
3	O sub-índice está corrompido.
4	Sem matriz.
5	Tipo de dados errado.
6	Não utilizado.
7	Não utilizado.
9	O elemento da descrição não está disponível.
11	Sem acesso a gravação de parâmetro.
15	Sem texto disponível.
17	Não aplicável durante o funcionamento.
18	Outros erros.

Tabela 49: Relatório do Seguidor - (continuação)

Código de falha	Especificação do FC
100	-
>100	_
130	Sem acesso ao barramento para este parâmetro.
131	Não é possível gravar no setup de fábrica.
132	Sem acesso ao LCP.
252	Visualizador desconhecido.
253	Solicitação não suportada.
254	Atributo desconhecido.
255	Sem erro.

6.4.8 Número do parâmetro (PNU)

Bits de 0-11 números de parâmetros de transferência. A função do parâmetro relevante é definida na descrição do parâmetro no guia de programação do conversor.

6.4.9 **Índice (IND)**

O índice é usado com o número do parâmetro para parâmetros com acesso de leitura/gravação com um índice, por exemplo, o *parâmetro 15-30 Registro de Alarme: Código de Erro*. O índice consiste em 2 bytes: um byte baixo e um byte alto.

Somente o byte baixo é utilizado como índice.

6.4.10 Valor do Parâmetro (PWE)

O bloco de valor de parâmetro consiste em 2 palavras (4 bytes) e o seu valor depende do comando definido (AK). Se o mestre solicita um valor de parâmetro quando o bloco PWE não contiver nenhum valor. Para alterar um valor de parâmetro (gravar), grave o novo valor no bloco PWE e envie-o do mestre para o seguidor.

Se um seguidor responder a uma solicitação de parâmetro (comando de leitura), o valor do parâmetro atual no bloco PWE é transferido e devolvido ao mestre. Se um parâmetro contém várias opções de dados, por exemplo, o *parâmetro 0-01 Idioma*, selecione o valor de dados inserindo o valor no bloco PWE. Através da comunicação serial somente é possível ler parâmetros com tipo de dados 9 (sequência de texto).

O parâmetro 15-40 Tipo do FC ao parâmetro 15-53 Nº. Série Cartão de Potência contêm o tipo de dados 9. Por exemplo, pode-se ler a potência da unidade e a faixa de tensão de rede elétrica no parâmetro 15-40 Tipo de FC. Quando uma sequência de texto é transferida (lida), o comprimento do telegrama é variável, porque os textos têm comprimentos diferentes. O comprimento do telegrama é definido no 2º byte do telegrama (LGE). Ao usar a transferência de texto, o caractere de índice indica se é um comando de leitura ou gravação.

Para ler um texto por meio do bloco PWE, configure o comando de parâmetro (AK) para F hex. O caractere de índice de byte alto deve ser 4.

6.4.11 Tipos de Dados Suportados pelo Conversor

Sem sinal algébrico significa que não há sinal operacional no telegrama.

Tabela 50: Tipos de Dados

Tipos de dados	Descrição
3	Inteiro 16
4	Inteiro 32

Tabela 50: Tipos de Dados - (continuação)

Tipos de dados	Descrição
5	Sem designação 8
6	Sem designação 16
7	Sem designação 32
9	String de texto

6.4.12 Conversão

O guia de programação contém as descrições dos atributos de cada parâmetro. Os valores de parâmetro são transferidos somente como números inteiros. Os fatores de conversão são usados para transferir decimais.

O *parâmetro 4-12 Lim. Inferior da Veloc. do Motor [Hz]* tem um fator de conversão de 0,1. Para predefinir a frequência mínima em 10 Hz, deve-se transferir o valor 100. Um fator de conversão 0,1 significa que o valor transferido é multiplicado por 0,1. O valor 100, portanto, será recebido como 10,0.

Tabela 51: Conversão

Índice de conversão	Fator de conversão
74	3600
2	100
1	10
0	1
-1	0,1
-2	0,01
-3	0,001
-4	0,0001
-5	0,00001

6.4.13 Palavras do processo (PCD)

O bloco de palavras do processo é dividido em 2 blocos de 16 bits, que sempre ocorrem na sequência definida.

Tabela 52: Palavras do processo (PCD)

PCD 1	PCD 2
Telegrama de controle (palavra de controle mestre para seguidor)	Valor de referência
Status word do telegrama de controle (seguidor para mestre)	Frequência de saída atual

6.5 Exemplos

6.5.1 Gravação de um Valor de Parâmetro

Altere o parâmetro 4-14, Lim. Superior da Veloc do Motor [Hz] para 100 Hz.

Grave os dados na EEPROM.

PKE = E19E hex - Gravar palavra única no parâmetro 4-14, Lim. Superior da Veloc do Motor [Hz]:

- IND = 0000 hex.
- PWEHIGH = 0000 hex.

PWELOW = 03E8 hex.

Valor dos dados 1000, correspondente a 100 Hz; consulte o capítulo 6.4.12 Conversão.

O telegrama parece com Figura 66.



Figura 66: Telegrama

AVISO

O *parâmetro 4-12 Lim. Superior da Veloc do Motor [Hz]* é uma palavra única, e o comando do parâmetro para gravar na EEPROM é E. O *parâmetro 4-14 Lim. Superior da Veloc do Motor [Hz]* é 19E em hexadecimal.

A resposta do seguidor para o mestre é mostrada na Figura 67.

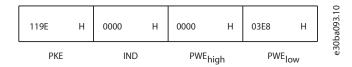


Figura 67: Resposta do mestre

6.5.2 Leitura de um valor de parâmetro

Leia o valor no parâmetro 3-41 Tempo de Aceleração da Rampa 1.

PKE = 1155 Hex - Leitura do valor do parâmetro 3-41 Tempo de Aceleração da Rampa 1.

- IND = 0000 hex.
- $PWE_{ALTO} = 0000 \text{ hex.}$
- $PWE_{BAIXO} = 0000 \text{ hex.}$

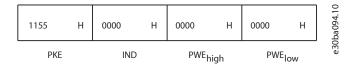


Figura 68: Telegrama

Se o valor no *parâmetro 3-41 Tempo de Aceleração da Rampa 1* for 10 s, a resposta do seguidor para o mestre será mostrada em <u>Figura 69</u>.

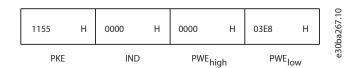


Figura 69: Resposta

3E8 hex corresponde ao 1.000 decimal. O índice de conversão para o parâmetro 3-41 Tempo de Aceleração da Rampa 1 é -2, ou seja, 0,01.

O parâmetro Tempo de Aceleração da Rampa 1 é do tipo Sem designação 32.

6.6 Modbus RTU

6.6.1 Pré-requisitos de conhecimento

A Danfoss presume que o controlador instalado suporta as interfaces contidas neste manual e observa rigorosamente todos os requisitos e limitações estipulados no controlador e no conversor.

O Modbus RTU embutido (unidade terminal remota) é projetado para se comunicar com qualquer controlador que suporte as interfaces definidas neste manual. Supõe-se que o usuário tenha pleno conhecimento das capacidades e limitações do controlador.

6.6.2 Visão Geral

Independentemente do tipo de redes de comunicação física, esta seção descreve o processo que um controlador usa para solicitar o acesso a outro dispositivo. Este processo inclui como o Modbus RTU responde a solicitações de outro dispositivo e como erros são detectados e reportados. Também estabelece um formato comum para o layout e conteúdo dos campos de telegramas.

Durante as comunicações através de uma rede Modbus RTU, o protocolo:

- Determina como cada controlador toma conhecimento do seu endereço de dispositivo.
- Reconhece um telegrama endereçado a ele.
- Determina quais as ações a serem tomadas.
- Extrai todos os dados ou outras informações contidas no telegrama.

Se for necessária uma resposta, o controlador monta o telegrama de resposta e o envia.

Os controladores se comunicam utilizando uma técnica mestre/seguidor em que apenas o mestre pode iniciar transações (chamadas de consultas). Os seguidores respondem fornecendo os dados solicitados ao mestre ou atuando conforme solicitado na consulta. O mestre pode abordar seguidores individuais ou iniciar um telegrama de broadcast para todos os seguidores. Os seguidores retornam uma resposta a consultas endereçadas a eles individualmente. Nenhuma resposta é devolvida às solicitações de broadcast do mestre.

O protocolo Modbus RTU estabelece o formato da consulta do mestre fornecendo as seguintes informações:

- O endereço do dispositivo (ou broadcast).
- Um código de função definindo a ação solicitada.
- Todos os dados a serem enviados.
- Um campo de verificação de erro.

O telegrama de resposta do dispositivo seguidor é elaborado também usando o protocolo Modbus. Ela contém campos que confirmam a ação tomada, quaisquer tipos de dados a serem devolvidos e um campo de verificação de erro. Se ocorrer um erro no recebimento do telegrama, ou se o seguidor for incapaz de executar a ação solicitada, o seguidor monta e envia uma mensagem de erro. Como alternativa, ocorre um timeout.

6.6.3 Conversor com Modbus RTU

O conversor se comunica em formato Modbus RTU através da interface RS485 integrada. O Modbus RTU fornece acesso à palavra de controle e à referência de barramento do conversor.

A palavra de controle permite ao Modbus mestre controlar diversas funções importantes do conversor:

- Partida.
- Várias paradas:
 - Parada por inércia.
 - Parada rápida.
 - Parada por freio CC.
 - Parada normal (rampa).

- Reinicializar após um desarme por falha.
- Funcionar em várias velocidades predefinidas.
- Funcionar em reverso.
- Alterar o setup ativo.
- Controlar o relé embutido do conversor.

A referência de barramento é comumente usada para controle de velocidade. Também é possível acessar os parâmetros, ler seus valores e quando possível, inserir valores. O acesso aos parâmetros oferece uma gama de opções de controle, incluindo o controle do setpoint do conversor quando o controlador PI interno é usado.

6.7 Configuração da rede Modbus RTU

Para ativar o Modbus RTU no conversor, programe os seguintes parâmetros:

Tabela 53: Parâmetros para ativar o Modbus RTU

Parâmetro	Configuração
Parâmetro 8-30 Protocolo	Modbus RTU
Parâmetro 8-31 Endereço	1–247
Parâmetro 8-32 Baud Rate	2400–115200
Parâmetro 8-33 Bits de Paridade/Parada	Paridade par, 1 bit de parada (padrão)

6.8 Estrutura do Enquadramento de Mensagem do Modbus RTU

6.8.1 Introdução

Os controladores são configurados para se comunicarem na rede Modbus usando o modo RTU (unidade terminal remota), com cada byte em um telegrama contendo 2 caracteres hexadecimais de 4 bits. O formato para cada byte é mostrado na tabela a seguir.

Tabela 54: Formato para cada byte

Bit de partida	Byte de da	dos				Parada/ paridade	Parada

Tabela 55: Detalhes do byte

Sistema de codificação	binário de 8 bits, hexadecimal 0-9, A-F.		
	2 caracteres hexadecimais contidos em cada campo de 8 bits do		
	telegrama.		
Bits por byte	1 bit de partida.		
	8 bits de dados, bit menos significativo enviado primeiro.		
	1 bit para paridade par/ímpar; nenhum bit para sem paridade.		
	1 bit de parada se paridade for usada; 2 bits se for sem		
	paridade.		
Campo de verificação de erro	Verificação de redundância cíclica (CRC).		

6.8.2 Estrutura do Telegrama do Modbus RTU

O dispositivo transmissor coloca um telegrama Modbus RTU em um quadro, com um ponto de início e um ponto de término conhecidos. Isso permite que os dispositivos de recepção comecem a leitura no início do telegrama, leiam a parte que contém o endereço, determinem a qual dispositivo está endereçado (ou a todos os dispositivos se o telegrama for de broadcast) e reconheçam o término

do telegrama. Telegramas parciais são detectados e os erros são definidos como resultado. Os caracteres para transmissão devem estar em formato hexadecimal 00-FF em cada campo. O conversor monitora continuamente o barramento de rede, inclusive durante intervalos silenciosos. Quando o 1º campo (o campo de endereço) é recebido, cada conversor ou dispositivo decodifica esse campo, para determinar a qual dispositivo está sendo endereçado. Os telegramas do Modbus RTU endereçados para 0 são telegramas de broadcast. Nenhuma resposta é permitida para telegramas de broadcast. A tabela a seguir mostra um quadro de telegrama típico.

Tabela 56: Estrutura do Telegrama do Modbus RTU

Partida	Endereço	Função	Dados	Verificação de CRC	Fim
T1-T2-T3-T4	8 bits	8 bits	N x 8 bits	16 bits	T1-T2-T3-T4

6.8.3 Campo de Início/Parada

Os telegramas começam com um período de silêncio de pelo menos 3,5 intervalos de caracteres. O período de silêncio é implementado como um múltiplo de intervalos de caracteres na baud rate da rede selecionada (mostrado como Início T1-T2-T3-T4). O 1º campo a ser transmitido é o endereço do dispositivo. Após a transmissão do último caractere, um período similar de pelo menos 3,5 caracteres marca o término do telegrama. Um novo telegrama pode começar depois desse período.

Transmite todo o quadro do telegrama como um fluxo contínuo. Se ocorrer um período de silêncio de mais de 1,5 caractere antes da conclusão do quadro, o dispositivo de recepção descarta o telegrama incompleto e assume que o próximo byte é o campo de endereço de um novo telegrama. Da mesma forma, se um novo telegrama começar antes do intervalo de 3,5 caracteres após um telegrama anterior, o dispositivo de recepção o considera uma continuação do telegrama anterior. Esse comportamento causa um timeout (sem resposta do seguidor), uma vez que o valor no campo final de CRC não é válido para os telegramas combinados.

6.8.4 Campo de endereço

O campo de endereço de um quadro de telegrama contém 8 bits. Os endereços de dispositivos seguidores válidos estão na faixa de 0 a 247 decimais. Os dispositivos seguidores individuais recebem endereços no intervalo de 1 a 247. 0 é reservado para o modo de broadcast, que todos os escravos reconhecem. Um mestre endereça um seguidor colocando o endereço do seguidor no campo de endereço do telegrama. Quando o seguidor envia sua resposta, ele coloca seu próprio endereço neste campo de endereço para permitir ao mestre saber qual o seguidor está respondendo.

6.8.5 Campo de função

O campo de função de um quadro de telegrama contém 8 bits. Os códigos válidos estão na faixa de 1–FF. Os campos de função são usados para enviar telegramas entre mestre e seguidor. Quando um telegrama é enviado de um dispositivo mestre para um seguidor, o campo de código de função informa ao seguidor que tipo de ação executar. Quando o seguidor responde ao mestre, ele usa o campo de código de função para indicar que se trata de uma resposta normal (sem erros) ou que ocorreu algum tipo de erro (chamado de resposta de exceção).

Para uma resposta normal, o seguidor simplesmente retorna o código de função original. Para uma resposta de exceção, o seguidor retorna um código que é equivalente ao código de função original com o bit mais significativo configurado para 1 lógico. Além disso, o seguidor coloca um código único no campo de dados do telegrama de resposta. Este código informa ao mestre qual o tipo do erro ocorrido ou o motivo da exceção. Consulte também o *capítulo Códigos de função suportados pelo Modbus RTU* e o *capítulo Códigos de exceção do Modbus*.

6.8.6 Campo de dados

O campo de dados é construído usando conjuntos de 2 dígitos hexadecimais, na faixa de 00-FF hexadecimal. Esses dígitos são compostos por 1 caractere de RTU. O campo de dados dos telegramas enviados de um dispositivo mestre para um seguidor contém informações complementares que o seguidor deve usar para executar adequadamente.

As informações podem incluir itens, tais como:

- Endereços de bobinas ou registradores.
- A quantidade de itens a serem tratados.

A contagem de bytes de dados reais no campo.

6.8.7 Campo de verificação CRC

Os telegramas incluem um campo de verificação de erros, operando com base em um método de verificação de redundância cíclica (CRC). O campo CRC verifica o conteúdo de todo o telegrama. É aplicado independentemente de qualquer método de verificação de paridade usado para os caracteres individuais do telegrama. O dispositivo de transmissão calcula o valor do CRC e acrescenta o CRC como o último campo no telegrama. O dispositivo de recepção recalcula um CRC durante o recebimento do telegrama e compara o valor calculado com o valor real recebido no campo CRC. 2 valores diferentes resultam em um timeout do bus. O campo de verificação de erros contém um valor binário de 16 bits implementado como 2 bytes de 8 bits. Após a implementação, o byte inferior do campo é acrescido primeiro, seguido pelo byte superior. O byte superior do CRC é o último byte enviado no telegrama.

6.8.8 Endereçamento do Registrador da Bobina

No Modbus, todos os dados são organizados em bobinas e registradores de retenção. As bobinas retêm um único bit, enquanto os registradores de retenção mantêm uma palavra de 2 bytes (isto é, 16 bits). Todos os endereços de dados nos telegramas Modbus são referenciados como 0. A primeira ocorrência de um item de dados é endereçada como item número 0. Por exemplo: A bobina conhecida como bobina 1, em um controlador programável, é endereçada como bobina 0000, no campo de endereço de dados de um telegrama do Modbus. A bobina 127 decimal é endereçada como bobina 007Ehex (126 decimal).

O registrador de retenção 40001 é endereçado como registro 0000 no campo de endereço de dados do telegrama. O campo de código de função já especifica uma operação de registrador de retenção. Portanto, a referência 4XXXX é implícita. O registrador de retenção 40108 é endereçado como registro 006Bhex (107 decimal).

Tabela 57: Registrador de Bobinas

Número da bobina	Descrição	Direção do sinal
1–16	Palavra de controle do conversor.	Mestre para seguidor
17–32	Velocidade do conversor ou faixa de referência do setpoint 0x0–0xFFFF (-200% ~200%).	Mestre para seguidor
33–48	Status word do conversor.	Seguidor para mestre
49–64	Modo de malha aberta: Frequência de saída do conversor. Modo de malha fechada: Sinal de feedback do conversor.	Seguidor para mestre
65	Controle de gravação do parâmetro (mestre para escravo).	Mestre para seguidor
	0 = Alterações do parâmetro são gravadas na RAM do conversor.	
	1 = Alterações de parâmetros são gravadas em RAM e EEPROM do conversor.	
66-65536	Reservado.	-

Tabela 58: Palavra de Controle do Conversor (Perfil do FC)

Bobina	0	1	
01	Referência predefinida Isb		
02	Referência predefinida msb		
03	Freio CC Sem freio CC		
04	Parada por inércia Sem parada por inércia		
05	Parada rápida Sem parada rápida		
06	Congelar frequência Sem congelar frequência		
07	Parada de rampa Partida		

Tabela 58: Palavra de Controle do Conversor (Perfil do FC) - (continuação)

Bobina	0 1		
08	Sem reset	Reinicializar	
09	Sem jog	Jog	
10	Rampa 1	Rampa 2	
11	Dados inválidos	Dados válidos	
12	Relé 1 desligado	Relé 1 ligado	
13	Relé 2 desligado	Relé 2 ligado	
14	Setup do Isb		
15	-		
16	Sem reversão	Reversão	

Tabela 59: Palavra de Status do Conversor (Perfil do FC)

Bobina	0	1
33	Controle não preparado	Controle pronto
34	Conversor não preparado	Conversor pronto
35	Parada por inércia	Segurança fechada
36	Sem alarme	Alarme
37	Não utilizado	Não utilizado
38	Não utilizado	Não utilizado
39	Não utilizado	Não utilizado
40	Sem advertência	Advertência
41	Não na referência	Na referência
42	Modo manual ligado	Modo automático
43	Fora da faixa de frequência	Na faixa de frequência
44	Parado	Em funcionamento
45	Não utilizado	Não utilizado
46	Sem advertência de tensão	Advertência de tensão
47	Fora do limite de corrente	Limite de corrente
48	Sem advertência térmica	Advertência térmica

Tabela 60: Endereço/Registradores

Endereço do barramento	Registro do barramento ⁽¹⁾	Registrador PLC	Conteúdo	Acesso	Descrição
0	1	40001	Reservado	-	Reservado para conversores de frequência legados VLT® 5000 e VLT® 2800.
1	2	40002	Reservado	-	Reservado para conversores de frequência legados VLT® 5000 e VLT® 2800.

Tabela 60: Endereço/Registradores - (continuação)

Endereço do barramento	Registro do barramento ⁽¹⁾	Registrador PLC	Conteúdo	Acesso	Descrição
2	3	40003	Reservado	-	Reservado para conversores de frequência legados VLT® 5000 e VLT® 2800.
3	4	40004	Gratuito	-	-
4	5	40005	Gratuito	_	-
5	6	40006	Configuração do Modbus	Leitura/Gravação	Somente TCP. Reservado para Modbus TCP (parâmetro 12-28, Armazenar Valores de Dados e parâmetro 12-29, Armazenar Sempre - armazenado em, por exem- plo, EEPROM).
6	7	40007	Último código de falha	Somente leitura	Código de falha recebido do banco de dados de parâmetros; consulte o documento WHAT 38295 para obter detalhes.
7	8	40008	Último registro de erro	Somente leitura	Endereço do registrador com o qual o último erro ocorreu; consulte WHAT 38296 para obter detalhes.
8	9	40009	Ponteiro do índice	Leitura/Gravação	Sub-índice do parâmetro a ser acessado. Consulte WHAT 38297 para obter detalhes.
9	10	40010	Parâmetro 0-01 Idioma	Dependente do acesso ao parâ- metro	Parâmetro 0-01, Idioma (registro Modbus = 10 número do parâmetro) 20 bytes de espaço reservado para o parâmetro no mapa Modbus.
19	20	40020	Parâmetros 0-02, Unidade da Velocidade do Motor	Dependente do acesso ao parâ- metro	Parâmetro 0-02, Unidade da Velocidade do Motor 20 bytes de espaço reservado para o parâmetro no mapa Modbus.
29	30	40030	Parâmetro 0-03, Definições Regionais	Dependente do acesso ao parâ- metro	Parâmetro 0-03, Configurações Regionais 20 bytes de espaço re- servado para o parâmetro no mapa Modbus.

¹⁾ O valor escrito no telegrama Modbus RTU deve ser 1 ou menor que o número do registrador. Por exemplo, leia o registrador do Modbus 1 escrevendo o valor 0 no telegrama.

6.8.9 Como controlar o Conversor

Esta seção descreve os códigos que podem ser usados nos campos de função e de dados de um telegrama do Modbus RTU.

6.8.10 Códigos de Função Suportados pelo Modbus RTU

O Modbus RTU suporta o uso dos seguintes códigos de função no campo de função de um telegrama:

Tabela 61: Códigos de função

Função	Código da função (hex)
Ler bobinas	1
Ler registradores de retenção	3
Gravar bobina única	5
Gravar registrador único	6
Diagnóstico	8
Ler o contador de evento de comunicação	В
Gravar bobinas múltiplas	F
Gravar registradores múltiplos	10
Reportar ID do seguidor	11
Ler/gravar registradores múltiplos	17
Transporte de interface encapsulada	2b

Tabela 62: Código de subfunção do código de função 8

Função	Código de função	Código da subfunção	Subfunção
Diagnóstico	8	1	Reiniciar a comunicação.
		2	Retornar o registrador de diagnóstico.
		10	Limpar os contadores e o registrador de diagnóstico.
		11	Retornar o contador de mensagem do barramento.
		12	Retornar o contador de erros de comunicação do barramento.
		13	Retornar contador de erros do seguidor.
		14	Retornar contador de mensagens do seguidor.

6.8.11 Códigos de Exceção do Modbus

Para obter uma explicação completa da estrutura de uma resposta de código de exceção, consulte <u>6.8.5 Campo de função</u>.

Tabela 63: Códigos de Exceção do Modbus

Código	Nome	Significado
1	Função inválida	O código de função recebido na consulta não é uma ação permitida para o servidor (ou seguidor). Isso pode ser porque o código de função só é aplicável a dispositivos mais recentes e não foi implementado na unidade selecionada. Também pode indicar que o servidor (ou seguidor) está no estado errado para processar uma solicitação deste tipo; por exemplo, porque não está configurado e está sendo solicitado a retornar os valores do registro.
2	Endereço de dados inválido	O endereço dos dados recebido na consulta não é um endereço permitido para o servidor (ou seguidor). De modo mais específico, a combinação do número de referência e o comprimento de transferência não é válido. Para um controlador com 100 registros, uma solicitação com deslocamento 96 e comprimento 4 é bem-sucedida, enquanto uma solicitação com deslocamento 96 e comprimento 5 gera uma exceção 02.

Tabela 63: Códigos de Exceção do Modbus - (continuação)

Código	Nome	Significado
3	Valor inválido de dados	Um valor contido no campo de dados da consulta não é um valor permitido para o servidor (ou seguidor). Isto indica uma falha na estrutura do restante de um pedido complexo, como o do comprimento implícito estar incorreto. Isso NÃO significa que um item de dados enviado para armazenamento em um registrador tenha um valor fora da expectativa do programa de aplicação, uma vez que o protocolo Modbus não está ciente da significância de qualquer valor de qualquer registro.
4	Falha do dispositivo seguidor	Ocorreu um erro irrecuperável enquanto o servidor (ou seguidor) tentava executar a ação requisitada.

6.9 Como Acessar os Parâmetros

6.9.1 Tratamento de parâmetros

O PNU (número do parâmetro) é traduzido a partir do endereço do registro contido na mensagem de leitura ou gravação Modbus. O número do parâmetro é traduzido para Modbus como (10 x número do parâmetro) decimal. Exemplo: Leitura do *parâmetro 3-12 Valor de Catch Up/Slow Down* (16 bits): O registrador de retenção 3120 contém os valores dos parâmetros. Um valor de 1352 (decimal) significa que o parâmetro está definido como 12,52%.

Leitura do *parâmetro Referência Relativa Predefinida* (32 bits): Os registradores de retenção 3410 e 3411 mantêm os valores dos parâmetros. Um valor de 11300 (decimal) significa que o parâmetro está definido como 1113,00.

Para obter informações sobre os parâmetros, tamanho e índice de conversão, consulte o Guia de Programação.

6.9.2 Armazenagem de dados

A bobina 65 decimal determina se os dados gravados no conversor são armazenados em EEPROM e RAM (bobina 65 = 1) ou somente na RAM (bobina 65=0).

6.9.3 **IND (Índice)**

Alguns parâmetros no conversor são parâmetros de matriz; por exemplo, o *parâmetro Referência Predefinida*. Como o Modbus não suporta matrizes nos registradores de retenção, o conversor reservou o registrador de retenção 9 como ponteiro para a matriz. Antes de ler ou gravar um parâmetro de matriz, programe o registrador de retenção 9. Definir o registrador de retenção com o valor 2 faz com que todos os seguintes parâmetros de matriz de leitura/gravação sejam de índice 2.

6.9.4 Blocos de texto

Os parâmetros armazenados como strings de texto são acessados da mesma forma que os outros parâmetros. O tamanho máximo do bloco de texto é de 20 caracteres. Se uma solicitação de leitura de um parâmetro for para mais caracteres do que o parâmetro armazena, a resposta será truncada. Se a solicitação de leitura de um parâmetro for para menos caracteres do que o parâmetro armazena, a resposta é preenchida.

6.9.5 Fator de conversão

Um valor de parâmetro pode ser transferido somente como um número inteiro. Para transferir decimais, use um fator de conversão.

6.9.6 Valores de parâmetros

Tipo de dados padrão

Os tipos de dados padrão são int 16, int 32, uint 8, uint 16 e uint 32. Eles são armazenados como registradores 4x (40001–4FFFF). Os parâmetros são lidos usando a função 03 hex ler registradores de retenção. Os parâmetros são gravados usando a função 6 hexadecimal de registro único predefinido para 1 registro (16 bits), e a função 10 hexadecimal de vários registros predefinidos para 2 registros (32 bits). Os tamanhos legíveis variam desde 1 registrador (16 bits) a 10 registradores (20 caracteres).

Tipos de dados não padronizados

Os tipos de dados não padronizados são strings de texto, e são armazenados como registradores 4x (40001–4FFFF). Os parâmetros são lidos usando a função 03 hex de leitura de registradores de retenção e gravados usando a função 10 hex de vários registradores predefinidos. Os tamanhos legíveis variam de 1 registro (2 caracteres) até 10 registros (20 caracteres).

6.10 Exemplos

6.10.1 Visão geral dos exemplos

Os exemplos nos capítulos a seguir mostram diversos comandos do Modbus RTU.

6.10.2 Ler o status da bobina (01 hex)

Descrição

Esta função lê o status ON/OFF (Ligado/Desligado) das saídas discretas (bobinas) no conversor. Broadcast nunca é suportado para leituras.

Consulta

O telegrama de consulta especifica a bobina de início e a quantidade de bobinas a serem lidas. Os endereços das bobinas começam em 0, ou seja, a bobina 33 é endereçada como 32.

Exemplo de um pedido para ler as bobinas 33-48 (status word) do dispositivo seguidor 01.

Tabela 64: Consulta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01 (endereço do conversor)
Função	01 (ler bobinas)
Endereço inicial HI	00
Endereço inicial LO	20 (decimal 32) bobina 33
Número de pontos HI	00
Número de pontos LO	10 (decimal 16)
Verificação de erro (CRC)	-

Resposta

O status da bobina no telegrama de resposta é empacotado como 1 bobina por bit do campo de dados. O status é indicado como: 1 = ON (ligado); 0 = OFF (Desligado). O lsb do primeiro byte de dados contém a bobina endereçada na consulta. As outras bobinas seguem para o final de ordem alta deste byte, e da ordem baixa para a ordem alta nos bytes subsequentes.

Se a quantidade de bobina retornada não for um múltiplo de 8, os bits restantes no byte de dados final serão preenchidos com valores 0 (em direção ao final de maior ordem do byte). O campo de contagem de bytes especifica o número de bytes completos de dados.

Tabela 65: Resposta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01 (endereço do conversor)
Função	01 (ler bobinas)
Contagem de bytes	02 (2 bytes de dados)
Dados (bobinas 40–33)	07
Dados (bobinas 48–41)	06 (STW = 0607hex)
Verificação de erro (CRC)	-

AVISO

Bobinas e registradores são endereçados explicitamente com um deslocamento de -1 no Modbus. Por exemplo, a bobina 33 é endereçada como bobina 32.

6.10.3 Forçar/gravar bobina única (05 hex)

Descrição

Esta função força a bobina para ON (ligado) ou OFF (desligado). Quando for broadcast, a função força as mesmas referências de bobina em todos os seguidores anexados.

Consulta

O telegrama de consulta especifica a bobina 65 (controle de gravação do parâmetro) a ser forçada. Os endereços das bobinas começam em 0, ou seja, a bobina 65 é endereçada como 64. Forçar dados = 00 00 hex (OFF) ou FF 00 hex (ON).

Tabela 66: Consulta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01 (endereço do conversor)
Função	05 (gravar bobina única)
Endereço de bobina HI	00
Endereço de bobina LO	40 (64 decimal) Bobina 65
Forçar dados HI	FF
Forçar dados LO	00 (FF 00 = ON)
Verificação de erro (CRC)	-

Resposta

A resposta normal é um eco da consulta, devolvida depois que o estado da bobina foi forçado.

Tabela 67: Resposta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	05
Forçar dados HI	FF
Forçar dados LO	00
Quantidade de bobinas HI	00

Tabela 67: Resposta - (continuação)

Nome do campo	Exemplo (hex)
Quantidade de bobinas LO	01
Verificação de erro (CRC)	-

6.10.4 Forçar/gravar múltiplas bobinas (0F hex)

Descrição

Esta função força cada bobina em uma sequência de bobinas para ligado ou desligado. Quando for broadcast, a função força as mesmas referências de bobina em todos os seguidores anexados.

Consulta

O telegrama de consulta especifica as bobinas 17-32 (setpoint de velocidade) a serem forçadas.

AVISO

Os endereços das bobinas começam em 0, ou seja, a bobina 17 é endereçada como 16.

Tabela 68: Consulta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01 (endereço do conversor)
Função	0F (gravar bobinas múltiplas)
Endereço de bobina HI	00
Endereço de bobina LO	10 (endereço de bobina 17)
Quantidade de bobinas HI	00
Quantidade de bobinas LO	10 (16 bobinas)
Contagem de bytes	02
Forçar dados HI (Bobinas 8–1)	20
Forçar dados LO (Bobinas 16–9)	00 (referência = 2000 hex)
Verificação de erro (CRC)	-

Resposta

A resposta normal retorna o endereço do seguidor, o código da função, o endereço inicial e a quantidade de bobinas forçadas.

Tabela 69: Resposta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01 (endereço do conversor)
Função	0F (gravar bobinas múltiplas)
Endereço de bobina HI	00
Endereço de bobina LO	10 (endereço de bobina 17)
Quantidade de bobinas HI	00

Tabela 69: Resposta - (continuação)

Nome do campo	Exemplo (hex)
Quantidade de bobinas LO	10 (16 bobinas)
Verificação de erro (CRC)	-

6.10.5 Ler registradores de retenção (03 hex)

Descrição

Esta função lê o conteúdo dos registradores de retenção no seguidor.

Consulta

O telegrama de consulta especifica o registrador de início e a quantidade de registradores a serem lidos. Os endereços de registro começam em 0, isto é, os registros 1 a 4 são endereçados como 0 a 3.

Exemplo: Leia o *parâmetro 3-03 Referência Máxima*, registro 03030.

Tabela 70: Consulta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	03 (Ler registradores de retenção)
Endereço inicial HI	0B (Endereço do registrador 3029)
Endereço inicial LO	D5 (Endereço do registrador 3029)
Número de pontos HI	00
Número de pontos LO	02 – (o <i>parâmetro 3-03 Referência Máxima</i> tem 32 bits de comprimento, isto é, 2 registradores)
Verificação de erro (CRC)	-

Resposta

Os dados do registrador no telegrama de resposta são empacotados como 2 bytes por registrador, com o conteúdo binário justificado à direita dentro de cada byte. Para cada registro, o primeiro byte contém os bits de ordem alta e o segundo contém os bits de ordem baixa.

Exemplo: hex 000088B8 = 35.000 = 35 Hz.

Tabela 71: Resposta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	03
Contagem de bytes	04
Dados HI (registrador 3030)	00
Dados LO (registrador 3030)	16
Dados HI (registrador 3031)	E3
Dados LO (registrador 3031)	60
Verificação de erro (CRC)	-

6.10.6 Registrador único predefinido (06 hex)

Descrição

Esta função predefine um valor em um registrador de retenção único.

Consulta

O telegrama de consulta especifica a referência do registrador a ser predefinida. Os endereços de registro começam em 0, isto é, o registro 1 é endereçado como 0.

Exemplo: Gravar no parâmetro 1-00 Modo Configuração, registro 1000.

Tabela 72: Consulta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	06
Endereço do registrador HI	03 (endereço do registrador 999)
Endereço do registrador LO	E7 (endereço do registrador 999)
Dados HI predefinidos	00
Dados LO predefinidos	01
Verificação de erro (CRC)	-

Resposta

A resposta normal é um eco da consulta, devolvida depois que o conteúdo do registrador foi passado.

Tabela 73: Resposta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	06
Endereço do registrador HI	03
Endereço do registrador LO	E7
Dados HI predefinidos	00
Dados LO predefinidos	01
Verificação de erro (CRC)	-

6.10.7 Vários registros predefinidos (10 hex)

Descrição

Esta função predefine valores em uma sequência de registradores de retenção.

Consulta

O telegrama de consulta especifica as referências do registrador a serem predefinidas. Os endereços de registro começam em 0, isto é, o registro 1 é endereçado como 0. Exemplo de uma solicitação para predefinir 2 registradores (programar o *parâmetro 1-24 Corrente do Motor* para 738 (7,38 A)):

Tabela 74: Consulta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	10
Endereço inicial HI	04
Endereço inicial LO	07
Número de registradores HI	00
Número de registradores LO	02
Contagem de bytes	04
Gravar dados HI (registrador 4: 1049)	00
Gravar dados LO (registrador 4: 1049)	00
Gravar dados HI (registrador 4: 1050)	02
Gravar dados LO (registrador 4: 1050)	E2
Verificação de erro (CRC)	-

Resposta

A resposta normal retorna o endereço do seguidor, o código da função, endereço inicial e a quantidade de registradores predefinidos.

Tabela 75: Resposta

Nome do campo	Exemplo (hex)
Endereço do seguidor	01
Função	10
Endereço inicial HI	04
Endereço inicial LO	19
Número de registradores HI	00
Número de registradores LO	02
Verificação de erro (CRC)	-

6.11 Perfil de Controle do FC da Danfoss

6.11.1 Palavra de controle de acordo com o perfil do FC (8-10 Protocolo = Perfil do FC)

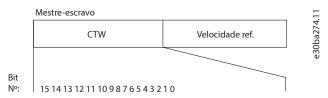


Figura 70: Palavra de controle de acordo com o perfil do FC

Tabela 76: Palavra de controle de acordo com o perfil do FC

Bit	Valor do bit = 0	Valor do bit = 1
00	Valor de referência	Seleção externa Isb
01	Valor de referência	Seleção externa msb

Tabela 76: Palavra de controle de acordo com o perfil do FC - (continuação)

Bit	Valor do bit = 0	Valor do bit = 1
02	Freio CC	Rampa
03	Parada por inércia	Sem parada por inércia
04	Parada rápida	Rampa
05	Manter a frequência de saída	Utilizar a rampa de velocidade
06	Parada de rampa	Partida
07	Sem função	Reinicializar
08	Sem função	Jog
09	Rampa 1	Rampa 2
10	Dados inválidos	Dados válidos
11	Relé 01 aberto	Relé 01 ativo
12	Relé 02 aberto	Relé 02 ativo
13	Programação dos parâmetros	Seleção do Isb
15	Sem função	Reverso

Explicação dos bits de controle

Bits 00/01

Os bits 00 e 01 são usados para selecionar entre os 4 valores de referência, os quais são pré-programados no *parâmetro 3-10 Referência Predefinida* de acordo com a tabela a seguir.

Tabela 77: Bits de controle

Valor de referência programado	Parâmetro	Bit 01	Bit 00
1	Parâmetro 3-10 Referência Predefinida [0]	0	0
2	Parâmetro 3-10 Referência Predefinida [1]	0	1
3	Parâmetro 3-10 Referência Predefinida [2]	1	0
4	Parâmetro 3-10 Referência Predefinida [3]	1	1

AVISO

No *parâmetro 8-56 Seleção da Referência Predefinida*, defina como os bits 00/01 se comportam com a função correspondente nas entradas digitais.

Bit 02, Freio CC

Bit 02 = 0: Leva à frenagem CC e parada. Programe a corrente e a duração da frenagem no *parâmetro 2-01 Corrente de Freio CC* e no *parâmetro 2-02 Tempo de Frenagem CC*.

Bit 02 = 1: Leva a rampa.

Bit 03, Parada por inércia

Bit 03 = 0: O conversor libera imediatamente o motor (os transistores de saída são desligados) e ele para por inércia.

Bit 03 = 1: Se as outras condições de partida forem atendidas, o conversor acionará o motor.

No *parâmetro 8-50 Seleção de Parada por Inércia*, defina como o bit 03 se comporta com a função correspondente em uma entrada digital.

Bit 04, Parada rápida

Bit 04 = 0: Desacelera a velocidade do motor até a parada (programado no parâmetro 3-81 Tempo de Rampa da Parada Rápida).

Bit 05, Frequência de saída em espera

Bit 05 = 0: A frequência de saída atual (em Hz) congela. Altere a frequência de saída congelada apenas com as entradas digitais programadas para [21] Acelerar e [22] Desacelerar (parâmetro 5-10 Terminal 18 Entrada Digital ao parâmetro Terminal 29 Entrada Digital).

AVISO

Se congelar frequência de saída estiver ativo, o conversor só pode ser parado de uma das seguintes maneiras:

- Bit 03 parada por inércia.
- Bit 02 freio CC
- Entrada digital programada para [5] FrenagemCC, reverso, [2] Paradp/inérc, reverso ou [3] Parada por inércia e reinício, inverso (parâmetro 5-10 Terminal 18 Entrada Digital ao parâmetro Terminal 29 Entrada Digital).

Bit 06, Parada/partida de rampa

Bit 06 = 0: Causa uma parada e desacelera o motor até parar por meio do parâmetro de desaceleração selecionado.

Bit 06 = 1: Se as outras condições de partida forem atendidas, o bit 06 permite que o conversor inicie o motor.

No *parâmetro 8-53 Seleção da Partida*, defina como o bit 06 parada/partida de rampa se comporta com a função correspondente em uma entrada digital.

Bit 07, Reset

Bit 07 = 0: Sem reset.

Bit 07 = 1: Reinicializa uma falha. O reset é ativado na borda de subida do sinal, ou seja, na transição do 0 lógico para o 1 lógico.

Bit 08, Jog

Bit 08 = 1: Parâmetro 3-11 Velocidade de Jog [Hz] determina a frequência de saída.

Bit 09, Seleção de rampa 1/2

Bit 09 = 0: A rampa 1 está ativa (parâmetro 3-41 Tempo de Aceleração da Rampa 1 ao parâmetro 3-42 Tempo de Desaceleração da Rampa 1).

Bit 09 = 1: A rampa 2 está ativa (parâmetro 3-51 Tempo de Aceleração da Rampa 2 ao parâmetro 3-52 Tempo de Desaceleração da Rampa 2).

Bit 10, Dados inválidos/Dados válidos

Informa o conversor se deseja usar ou ignorar a palavra de controle.

Bit 10 = 0: A palavra de controle é ignorada.

Bit 10 = 1: A palavra de controle é utilizada. Esta função é importante porque o telegrama sempre contém a palavra de controle, qualquer que seja o tipo de telegrama. Se a palavra de controle não for necessária ao atualizar ou ler o parâmetro, desligue-a.

Bit 11, Relé 01

Bit 11 = 0: O relé não está ativo.

Bit 11 = 1: Relé 01 ativado se [36] Control word bit 11 for selecionado no parâmetro 5-40 Relé de Função.

Bit 12, relé 02

Bit 12 = 0: Relé 02 não está ativado.

Bit 12 = 1: Relé 02 ativado se [37] Control word bit 12 for selecionado no parâmetro 5-40 Relé de Função.

Bit 13, Seleção de setup

Use o bit 13 para selecionar entre os 2 setups de menu de acordo com a tabela a seguir.

Tabela 78: Setups de menu

Configuração	Bit 13
1	0
2	1

A função só é possível quando [9] Setups múltiplos for selecionado no parâmetro 0-10 Setup Ativo.

Para definir como o bit 13 se comporta com a função correspondente nas entradas digitais, use o parâmetro 8-55 Seleção do Set-up.

Bit 15 Reversão

Bit 15 = 0: Sem reversão.

Bit 15 = 1: Reversão. Na programação padrão, a reversão é programada como digital no *parâmetro 8-54 Seleção da Reversão*. O bit 15 causa a reversão somente quando a comunicação serial *[2] Lógica OU* ou *[3] Lógica E* for selecionada.

6.11.2 Status word de acordo com o perfil do FC (STW)

Programe o parâmetro 8-30 Protocolo para [0] FC.

Figura 71: Status Word

Tabela 79: Status word de acordo com o perfil do FC

Bit	Valor do bit = 0	Valor do bit = 1
00	Controle não preparado	Controle pronto
01	Conversor não preparado	Drive pronto
02	Parada por inércia	Ativar
03	Sem erro	Bloqueio por
04	Sem erro	Erro (sem desarme)
05	Reservado	_
06	Sem erro	Bloqueio por desarme
07	Sem advertência	Advertência
08	Velocidade≠referência	Velocidade=referência
09	Operação local	Controle do barramento
10	Fora do limite de frequência	Limite de frequência OK
11	Sem operação	Em funcionamento

Tabela 79: Status word de acordo com o perfil do FC - (continuação)

Bit	Valor do bit = 0	Valor do bit = 1
12	Conversor OK	Parado, partida automática
13	Tensão OK	Tensão excedida
14	Torque OK	Torque excedido
15	Temporizador OK	Temporizador expirado

Explicação dos bits de status

Bit 00, Controle não pronto/pronto

Bit 00=0: O conversor desarma.

Bit 00=1: Os controles do conversor estão prontos, mas o circuito de potência não recebe necessariamente nenhuma alimentação (se houver uma alimentação de 24 V externa para os controles).

Bit 01, Conversor pronto

Bit 01=0: O conversor não está pronto.

Bit 01=1: O conversor está pronto para funcionar, mas o comando de parada por inércia está ativado através das entradas digitais ou por meio da comunicação serial.

Bit 02, Parada por inércia

Bit 02=0: O conversor libera o motor.

Bit 02=1: O conversor dá partida no motor com um comando de partida.

Bit 03, Sem erro/desarme

Bit 03=0: O conversor não está em modo de falha.

Bit 03=1: O conversor desarma. Para restabelecer a operação, pressione [Reset].

Bit 04, Sem erro/com erro (sem desarme)

Bit 04=0: O conversor não está em modo de falha.

Bit 04=1: O conversor exibe um erro, mas não desarma.

Bit 05, Não usado

O bit 05 não é usado na palavra de status.

Bit 06, Sem erro/bloqueio por desarme

Bit 06=0: O conversor não está em modo de falha.

Bit 06=1: O conversor está desarmado e bloqueado.

Bit 07, Sem advertência/com advertência

Bit 07=0: Não há advertências.

Bit 07=1: Significa que ocorreu uma advertência.

Bit 08, Referência de velocidade/velocidade=referência

Bit 08=0: O motor funciona, mas a velocidade atual é diferente da referência de velocidade predefinida. Pode acontecer quando a velocidade aumenta/diminui durante a partida/parada.

Bit 08=1: A velocidade do motor corresponde à referência de velocidade predefinida.

Bit 09, Operação local/controle do barramento

Bit 09=0: [Off/Reset] é ativado na unidade de controle ou [2] Local no parâmetro 3-13 Fonte da Referência é selecionado. Não é possível controlar o conversor via comunicação serial.

Bit 09=1: É possível controlar o conversor por meio do fieldbus/comunicação serial.

Bit 10, Fora do limite de frequência

Bit 10=0: A frequência de saída atingiu o valor no *parâmetro 4-12 Lim. Inferior da Veloc. do Motor [Hz]* ou no *parâmetro 4-14 Lim. Superior da Veloc do Motor [Hz]*.

Bit 10=1: A frequência de saída está dentro dos limites definidos.

Bit 11, Fora de funcionamento/em funcionamento

Bit 11=0: O motor não está funcionando.

Bit 11=1: O conversor tem um sinal de partida sem parada por inércia.

Bit 12, Conversor OK/parado, partida automática

Bit 12=0: Não há superaquecimento temporário no conversor.

Bit 12=1: O conversor para devido ao superaquecimento, mas a unidade não desarma e retoma a operação assim que o superaquecimento se normalizar.

Bit 13, Tensão OK/limite excedido

Bit 13=0: Não há advertências de tensão.

Bit 13=1: A tensão CC no barramento CC do conversor está muito baixa ou muito alta.

Bit 14, Torque OK/limite excedido

Bit 14=0: A corrente do motor está abaixo do limite de corrente selecionado no parâmetro 4-18 Limite de Corrente.

Bit 14=1: O limite de corrente no parâmetro 4-18 Limite de Corrente foi excedido.

Bit 15, Temporizador OK/limite excedido

Bit 15=0: Os temporizadores para a proteção térmica do motor e a proteção de térmica do conversor de frequência não ultrapassaram os 100%.

Bit 15=1: 1 dos temporizadores excede 100%.

6.11.3 Valor de referência da velocidade do barramento

O valor de referência da velocidade é transmitido para o conversor em um valor relativo, em %. O valor é transmitido no formato de uma palavra de 16 bits. O valor inteiro 16384 (4000 hex) corresponde a 100%. Os números negativos são formatados usando o complemento de 2. A frequência de saída real (MAV) é escalonada da mesma maneira que a referência do barramento.

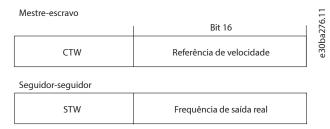
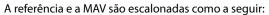



Figura 72: Frequência de saída real (MAV)

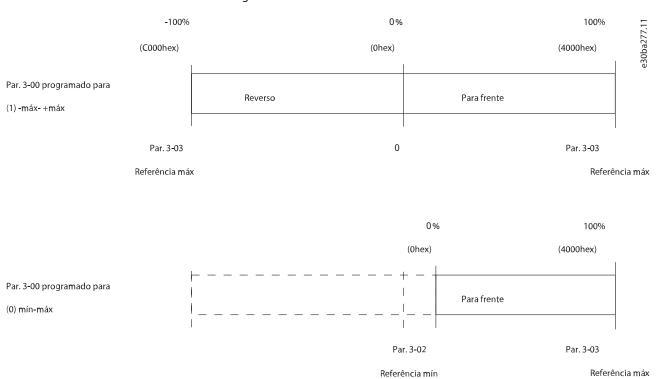


Figura 73: Referência e MAV

7 Exemplos de aplicações

7.1 Introdução

Os exemplos nesta seção têm a finalidade de referência rápida para aplicações comuns.

- As programações de parâmetro são os valores padrão regionais, a menos que indicado de outra forma (selecionado no parâmetro 0-03 Definições Regionais).
- Os parâmetros associados aos terminais e suas configurações estão mostrados ao lado dos desenhos.
- As configurações de chaveamento necessárias para os terminais analógicos 53 ou 54 também são mostrados.

7.2 **AMA**

Tabela 80: AMA com T27 conectado

			Função dos parâmetros	Programação de parâmetros
FC +24 V	120-	e30bf817.10	Parâmetro 1-29 Adaptação Automática do Motor (AMA)	[1] Ativar AMA completa
D IN D IN	18 ¢ 19 ¢	e30b1	Parâmetro 5-12 Terminal 27, Entrada Digital	*[2] Paradp/inérc,inverso
D IN D IN	270	_	*=Valor padrão	
D IN D IN D IN	31 ¢ 32 ¢ 33 ¢		Notas/comentários: Programe o <i>grupo do po</i> com as especificações do motor	arâmetro 1-2* Dados do Motor de acordo
			AV	/ISO
+10 V A IN A IN COM A OUT	500 530 540 550 420		Se os terminais 12 e 27 não estiverem cor Terminal 27 Entrada Digital para [0] Sem o	· -

7.3 **Velocidade**

Tabela 81: Referência de Velocidade Analógica (Tensão)

		Função dos parâmetros	Programação de parâmetros
	. 0	Parâmetro 6-10 Terminal 53 Tensão Baixa	*0,07 V
+24 V	120 180 180	Parâmetro 6-11 Terminal 53 Tensão Alta	*10 V
D IN	180 190	Parâmetro 6-14 Terminal 53 Valor Baixo Ref./Feedback	*0
D IN D IN D IN	27 0 29 0 31 0	Parâmetro 6-15 Terminal 53 Valor de Ref./ Feedb. Alto	50 Hz
D IN D IN	32 o 33 o	Parâmetro 6-19 Modo do terminal 53	*[1] Tensão
		*=Valor padrão	
+10 V A IN A IN COM A OUT	500 530 + 540 550 - 420 0~10 V	Notas/comentários:	

Tabela 82: Referência de Velocidade Analógica (Corrente)

			Função dos parâmetros	Programação de parâmetros
		10	Parâmetro 6-22 Terminal 54 Corrente Baixa	*4 mA
+24 V	120	e30bf819.10	Parâmetro 6-23 Terminal 54 Corrente Alta	*20 mA
D IN D IN	180 190 270	e30	Parâmetro 6-24 Terminal 54 Valor Baixo Ref./Feedback	*0
D IN	29 31 0		Parâmetro 6-25 Terminal 54 Valor de Ref./ Feedb. Ref./Feedback	50 Hz
D IN D IN	32 ¢ 33 ¢		Parâmetro 6-29 Modo do terminal 54	[0] Corrente
			*=Valor padrão	
+10 V A IN A IN COM A OUT	500 530 540 550 420	4 - 20mA	Notas/comentários:	

Tabela 83: Referência de Velocidade (utilizando um Potenciômetro Manual)

	Função dos parâmetros	Programação de parâmetros
FC 0	Parâmetro 6-10 Terminal 53 Tensão Baixa	*0,07 V
FC	Parâmetro 6-11 Terminal 53 Tensão Alta	*10 V
D IN 180 8	Parâmetro 6-14 Terminal 53 Valor Baixo Ref./Feedback	*0
D IN 29 ¢ D IN 31 ¢ D IN 32 ¢	Parâmetro 6-15 Terminal 53 Valor de Ref./ Feedb. Alto	50 Hz
D IN 330	Parâmetro 6-19 Modo do terminal 53	*[1] Tensão
	*=Valor padrão	
+10 V 50 A IN 53 A IN 54 COM 55 A OUT 420	Notas/comentários:	

Tabela 84: Aceleração/desaceleração

		Função dos parâmetros	Programação de parâmetros
FC		Parâmetro 5-10 Terminal 18 Entrada Digital	*[8] Partida
+24 V D IN	180 830bf821.10	Parâmetro 5-12 Terminal 27, Entrada Digital	[19] Congelar referência
D IN D IN D IN	19 o 27 o 29 o	Parâmetro 5-13 Terminal 29, Entrada Digital	[21] Aceleração
D IN D IN D IN	31 0 32 0 33 0	Parâmetro 5-14 Terminal 32, Entrada Digital	[21] Desaceleração
		*=Valor padrão	
+10 V A IN A IN COM A OUT	50 ¢ 53 ¢ 54 ¢ 55 ¢ 42 ¢	Notas/comentários:	

e30bb840.12

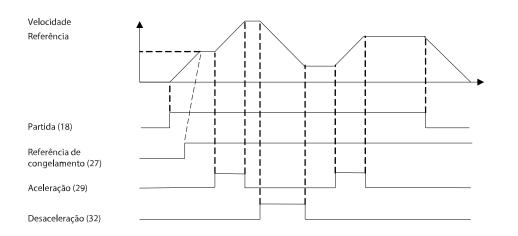
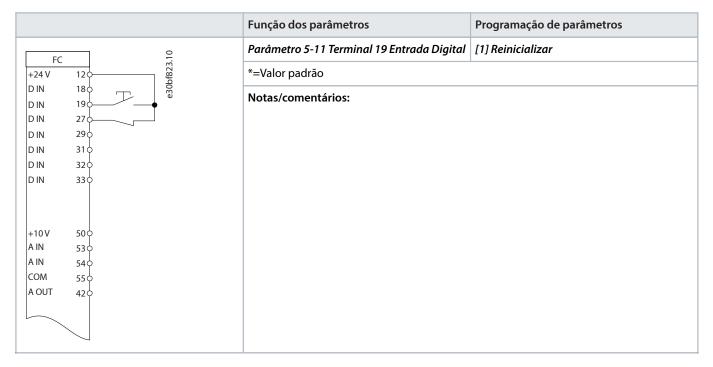


Figura 74: Aceleração/desaceleração

7.4 Partida/Parada


Tabela 85: Partida/parada com reversão e 4 velocidades predefinidas

	Função dos parâmetros	Programação de parâmetros
	Parâmetro 5-10 Terminal 18 Entrada Digital	*[8] Partida
120 180 180 180 180	Parâmetro 5-11 Terminal 19 Entrada Digital	*[10] Reversão
180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Parâmetro 5-12 Terminal 27, Entrada Digital	[0] Sem operação
90	Parâmetro 5-14 Terminal 32, Entrada Digital	[16] Ref predefinida bit 0
	Parâmetro 5-15 Terminal 33, Entrada Digital	[17] Ref predefinida bit 1
)	Parâmetro 3-10 Referência Predefinida	
	Referência predefinida 0	25%
	Referência predefinida 1	50%
	Referência predefinida 2	75%
	Referência predefinida 3	100%
	*=Valor padrão	1
	Notas/comentários:	

7.5 Reset do Alarme Externo

Tabela 86: Reset do Alarme Externo

7.6 Termistor do motor

AVISO

Para atender os requisitos de isolamento PELV, utilize isolamento reforçado ou duplo nos termistores.

Tabela 87: Termistor do motor

		Função dos parâmetros	Programação de parâmetros
FC	0	Parâmetro 1-90 Proteção Térmica do Motor	[2] Desarme do termistor
+24 V	120 187 187 187	Parâmetro 1-93, fonte térmica do motor	[1] Entrada analógica 53
DIN		Parâmetro 6-19, modo do terminal 53	*[1] Tensão
D IN	19¢ 27¢	*=Valor padrão	
D IN	290 310	Observações/comentários: Se somente uma	a advertência for necessária, programe o
DIN	320	parâmetro 1-90 Proteção Térmica do Motor	oara [1] Advertência do Termistor .
DIN	330		
+10 V A IN A IN COM SAÍDA A	500 530 540 550 420		

Tabela 88: Usando SLC para programar um relé

	Função dos parâmetros	Programação de parâmetros	
FC 71:05 Pp 00:00 Pp	Parâmetro 4-30, função Perda de Feedback do Motor	[1] Advertência	
D IN 180 E	Parâmetro 4-31, erro de feedback de velocidade do motor	100	
D IN 290 D IN 310	Parâmetro 4-32, timeout perda de feedback do motor	5 s	
D IN 32¢ D IN 33¢	Parâmetro 7-00, Fonte do Feedback do PID de Velocidade	[2] MCB 102	
	Parâmetro 17-11, resolução (PPR)	*1024	
+10 V 50¢	Parâmetro 13-00, modo do SLC	[1] Ligado	
A IN 530 A IN 540	Parâmetro 13-01, iniciar evento	[19] Advertência	
COM 550 A OUT 420	Parâmetro 13-02, parar evento	[44] Tecla Reset	
A OUT 420	Parâmetro 13-10, operando o comparador	[21] Número de advertência	
010	Parâmetro 13-11, operador do comparador	*[1]≈	
€ 020	Parâmetro 13-13, valor do comparador	90	
030	Parâmetro 13-51, evento do SLC	[22] Comparador 0	
040	Parâmetro 13-52, ação do SLC	[32] Definir saída digital A baixa	
2	Parâmetro 5-40, função do relé	[80] Saída digital A do SLC	
	*=Valor padrão		
	Observações/comentários: Se o limite no monitor de feedback for excedido, a advertência 90, monitor de feedback, será emitida. O SLC monitora a advertência 90, monitor de feedback. Se a advertência 90, monitor de feedback, for verdadeira, o relé 1 será acionado. O equipamento externo pode indicar que é necessária manutenção. Se o erro de feedback estiver abaixo do limite novamente dentro de 5 s, o conversor continua e a advertência desaparece. Porém, o relé 1 persiste até que [Off/Reset] seja pressionado.		

7.7 Conexão do encoder

O objetivo desta orientação é facilitar o setup da conexão do encoder do conversor. Antes de configurar o encoder, são mostradas as configurações básicas de um sistema de controle de velocidade de malha fechada.

- Para obter mais informações sobre a entrada do encoder, consulte o Guia de Instalação do VLT® encoder input MCB 102.
- Para obter mais informações sobre a entrada do resolver, consulte o Guia de Instalação do VLT® resolver input MCB 103.

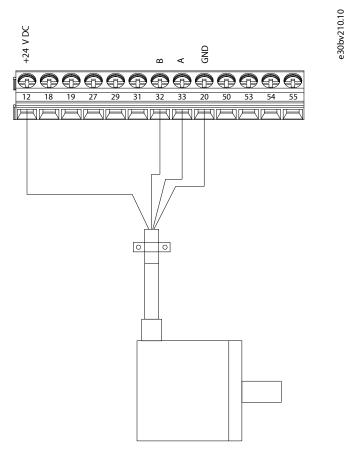


Figura 75: Encoder de 24 V ou 10-30 V

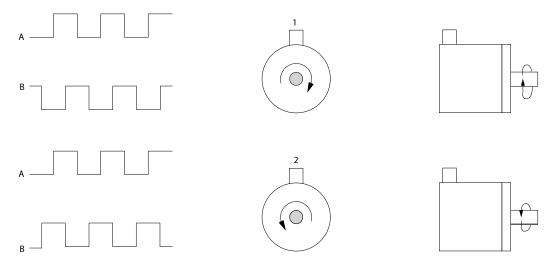


Figura 76: Encoder incremental de 24 V, comprimento máximo do cabo de 5 m (16,4 pés)

7.8 Sentido do encoder

A ordem na qual os pulsos entram no conversor determina a direção do encoder.

- Sentido horário significa que o canal A está 90 graus elétricos antes do canal B.
- Sentido anti-horário significa que o canal B está 90 graus elétricos antes de A.

O sentido é determinado olhando para a extremidade do eixo.

7.9 Sistema de conversor de malha fechada

Um sistema de conversor geralmente consiste em mais elementos, como:

- Motor.
- Freio (caixa de engrenagem, freio mecânico).
- Conversor
- Encoder como sistema de feedback.
- Resistor de frenagem para freio dinâmico.
- Transmissão.
- Carga.

Aplicações que exigem controle de freio mecânico geralmente precisam de um resistor de frenagem.

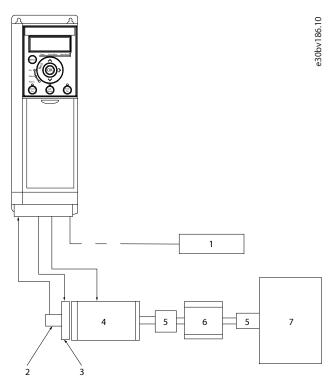


Figura 77: Programação básica para controle da velocidade da malha fechada

1	Resistor de frenagem	2	Encoder
3	Freio mecânico	4	Motor
5	Transmissão	6	Caixa de engrenagem
7	Carga		

8 Apêndice

8.1 Abreviações e símbolos

Tabela 89: Abreviações e símbolos

AVM a 60°	Modulação vetorial assíncrona a 60°		
Α	Ampère/AMP		
CA	Corrente alternada		
ACP	Processador de controle de aplicação		
AD	Descarga aérea		
AEO	Otimização automática de energia		
Al	Entrada analógica		
AIC	Corrente de interrupção de Ampere		
AMA	Adaptação automática do motor		
AWG	American Wire Gauge		
°C	Graus Celsius		
СВ	Disjuntor		
CD	Descarga constante		
CDM	Módulo de drive completo: O conversor, a seção de alimentação e os auxiliares.		
CE	Conformidade europeia (normas de segurança europeias)		
MC	Modo comum		
TC	Torque constante		
СС	Corrente contínua		
DI	Entrada digital		
MD	Módulo diferencial		
D-TYPE	Depende do conversor		
EEPROM	Memória somente de leitura programável e apagável eletricamente		
EMC	Compatibilidade eletromagnética		
EMF	FEM Força Eletro Motriz		
EMI	Interferência eletromagnética		
ESD	Descarga eletrostática		
ETR	Relé térmico eletrônico		
°F	Graus Fahrenheit		
f_{JOG}	Frequência do motor quando a função jog está ativada.		
f _M	Frequência do motor		
f _{MAX}	Frequência de saída máxima que o conversor aplica em sua saída.		
f _{MIN}	Frequência mínima do motor a partir do conversor.		
f _{M, N}	Frequência do motor nominal		
FC	Conversor de frequência (drive)		
FSP	Bomba de velocidade fixa		

Tabela 89: Abreviações e símbolos - (continuação)

Hp Cav Hz Her I _{INV} Cor I _{LIM} Lim I _{M, N} Cor I _{VLT, MAX} Cor I _{VLT, N} Cor IGBT Trans IP Prov kHz kilo	orrente de saída nominal do inversor mite de corrente orrente nominal do motor orrente de saída máxima orrente de saída nominal fornecida pelo conversor ansistor bipolar de porta isolada oteção de entrada	
Hz Her I _{INV} Cor I _{LIM} Lim I _{M, N} Cor I _{VLT, MAX} Cor I _{VLT, N} Tran IP Prot kHz kilo	ertz orrente de saída nominal do inversor mite de corrente orrente nominal do motor orrente de saída máxima orrente de saída nominal fornecida pelo conversor ansistor bipolar de porta isolada oteção de entrada	
I INV Cor I LIM Lim I M, N Cor I VLT, MAX Cor I GBT Train IP Prot KHz kilo	orrente de saída nominal do inversor mite de corrente orrente nominal do motor orrente de saída máxima orrente de saída nominal fornecida pelo conversor ansistor bipolar de porta isolada oteção de entrada	
I _{LIM} Lim I _{M, N} Cor I _{VLT, MAX} Cor I _{VLT, N} Cor IGBT Trai IP Prof kHz kilo	mite de corrente prente nominal do motor prente de saída máxima prente de saída nominal fornecida pelo conversor pansistor bipolar de porta isolada poteção de entrada	
I _{M, N} Cor I _{VLT, MAX} Cor I _{VLT, N} Cor IGBT Tran IP Prof kHz kilo	orrente nominal do motor orrente de saída máxima orrente de saída nominal fornecida pelo conversor ansistor bipolar de porta isolada oteção de entrada	
I _{VLT, MAX} Cor I _{VLT, N} Cor IGBT Trai IP Pro kHz kilo	orrente de saída máxima orrente de saída nominal fornecida pelo conversor ansistor bipolar de porta isolada oteção de entrada	
I _{VLT, N} Cor IGBT Trai IP Pro kHz kilo	orrente de saída nominal fornecida pelo conversor ansistor bipolar de porta isolada oteção de entrada	
IGBT Train IP Provided Research Researc	ansistor bipolar de porta isolada oteção de entrada	
IP Prot kHz kilo	oteção de entrada	
kHz kilo		
	-11	
LCP Pair	oHertz	
	Painel de controle local	
LED Dio	Diodo emissor de luz	
L _d Ind	Indutância do eixo d do motor	
L _q Ind	Indutância do eixo-q do motor	
Lsb Bit i	Bit menos significativo	
m Met	Metro	
mA Mili	Miliampere	
MCM Mill	Mille mil circular	
MCP Pro	Processador de controle do motor	
MCT Fern	Ferramenta Motion Control	
mH Ind	Indutância em milihenry	
min Min	Minuto	
mm Milí	Milímetro	
ms Mili	Milissegundo	
Msb Bit i	Bit mais significativo	
η _{VLT} Efic	ciência do conversor definida como relação entre saída e entrada de potência.	
NEMA Nat	National Electrical Manufacturers Association	
nF Cap	Capacitância em nano Farad	
NLCP Pair	Painel de controle local numérico	
Nm Nev	Newton metro	
SN Sob	Sobrecarga normal	
n _s Velo	Velocidade de sincronização do motor	
	As alterações nos parâmetros on-line são ativadas imediatamente após o valor dos dados ser alterado	
P _{br, cont.} Pot	Potência nominal do resistor de frenagem (potência média durante frenagem contínua)	
PCB Place	aca de circuito impresso	

Tabela 89: Abreviações e símbolos - (continuação)

PCD	Dados de processo		
PDS	Sistema de potência do conversor: CDM e um motor		
PE	Ponto de aterramento de proteção		
PELV	Tensão extra baixa de proteção		
P _m	Potência nominal de saída do conversor como sobrecarga alta		
P _{M, N}	Potência do motor nominal		
Motor PM	Motor de ímã permanente		
PID de processo	Regulador diferencial integrado proporcional que mantém a velocidade, a pressão, a temperatura e assim por diante.		
PWM	Modulação por largura de pulso		
R _{br, nom}	Valor nominal do resistor que garante um potência de frenagem no eixo do motor de 150/160% durante 1 minuto.		
RCD	Dispositivo de corrente residual		
Regen	Terminais regenerativos		
RFI	Interferência de radiofrequência		
R _{mín}	Valor mínimo do resistor de frenagem permitido pelo conversor		
RMS	Raiz quadrada média		
RPM	Rotações por minuto		
R _{rec}	Resistência recomendada para resistores de frenagem Danfoss		
R _s	Resistência do estator		
S	Segundo		
SCR	Retificador controlado de silício		
SCCR	Características nominais da corrente de curto-circuito		
SFAVM	Modulação vetorial assíncrona orientada pelo fluxo do estator		
STW	Status word		
SMPS	Fonte de alimentação chaveada		
THD	Distorção harmônica total		
T _{LIM}	Limite de torque		
TTL	Pulsos do encoder TTL (5 V) - lógica do transistor		
U _{M, N}	Tensão do motor nominal		
UL	Underwriters Laboratories (organização dos EUA para a certificação de segurança)		
V	Volts		
VSP	Bomba de velocidade variável		
VT	Torque variável		
VVC+	Controle vetorial de tensão plus		
X _h	Reatância principal do motor		

8.2 **Definições**

8.2.1 Conversor de frequência

Parada por inércia

O eixo do motor está em modo livre. Nenhum torque no motor.

I_{VLT, MAX}

Corrente de saída máxima.

 I_{VIT} N

Corrente de saída nominal fornecida pelo drive.

 $U_{\text{VLT, MAX}}$

Tensão de saída máxima.

8.2.2 Entrada

Comandos de controle

Inicie e pare o motor conectado com o LCP e as entradas digitais.

As funções estão divididas em 2 grupos. As funções do grupo 1 têm prioridade mais alta que as do grupo 2.

Tabela 90: Grupos de função

Grupo 1	Parada por inércia, reset e parada por inércia, parada rápida, frenagem CC, parada e [OFF].
Grupo 2	Partida, partida por pulso, partida reversa, jog, congelar frequência de saída e [Hand On].

8.2.3 **Motor**

Motor em funcionamento

Torque gerado no eixo de saída e velocidade de 0 RPM à velocidade máxima no motor.

 f_{JOG}

Frequência do motor quando a função jog estiver ativada (por meio dos terminais digitais ou barramento).

 f_M

Frequência do motor.

fMAX

Frequência do motor máxima.

fMIN

Frequência do motor mínima.

 $f_{M, N}$

Frequência nominal do motor (dados da plaqueta de identificação).

I_M

Corrente do motor (real).

 $I_{M, N}$

Corrente nominal do motor (dados da plaqueta de identificação).

пм м

Velocidade nominal do motor (dados da plaqueta de identificação).

n,

Velocidade do motor síncrono. $n_S = \frac{2 \times Parameter 1 - 23 \times 60s}{Parameter 1 - 39}$

n_{slip}

Deslizamento do motor.

 $P_{M, N}$

Potência do motor nominal (dados da plaqueta de identificação em kW ou hp).

T_{M, N}

Torque nominal (motor).

 U_{M}

Tensão do motor instantânea.

 $U_{M,N}$

Tensão nominal do motor (dados da plaqueta de identificação).

Torque de segurança

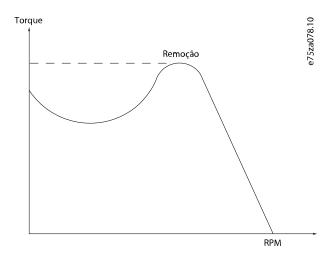


Figura 78: Torque de segurança

ηνιτ

A eficiência do drive é definida como a relação entre a saída e a de entrada de potência.

Comando inibidor de partida

Um comando inibidor de partida pertencente aos comandos de controle no grupo 1. Consulte a tabela no *capítulo Entrada* para obter mais detalhes.

Comando de parada

Um comando de parada pertencente aos comandos de controle no grupo 1. Consulte a tabela no *capítulo Entrada* para obter mais detalhes.

8.2.4 Referências

Referência analógica

Um sinal transmitido para as entradas analógicas 53 ou 54 pode ser tensão ou corrente.

Referência binária

Um sinal transmitido através da porta de comunicação serial.

Referência predefinida

Uma referência predefinida a ser programada de -100% a +100% da faixa de referência. Seleção de 8 referências predefinidas via terminais digitais. Seleção de 4 referências predefinidas por meio do barramento.

Referência de pulso

É um sinal de pulso transmitido às entradas digitais (terminal 29 ou 33).

Ref_{MÁX}

Determina a relação entre a entrada de referência com valor de escala total de 100% (tipicamente 10 V, 20 mA) e a referência resultante. O valor de referência máxima está programado em *parâmetro 3-03 Referência máxima*.

Ref_{MÍN}

Determina a relação entre a entrada de referência com valor de escala total de 0% (tipicamente 0 V, 0 mA, 4 mA) e a referência resultante. O valor de referência mínima está programado no *parâmetro 3-02 Referência mínima*.

8.2.5 Diversos

Entradas analógicas

As entradas analógicas são utilizadas para controlar várias funções do drive.

Há 2 tipos de entradas analógicas:

- Entrada de corrente: 0-20 mA e 4-20 mA.
- Entrada de tensão: 0–10 V CC.

Saídas analógicas

As saídas analógicas podem fornecer um sinal de 0-20 mA ou de 4-20 mA.

Adaptação automática do motor, AMA

O algoritmo AMA determina os parâmetros elétricos para o motor conectado quando parado.

Resistor de frenagem

O resistor de frenagem é um módulo capaz de absorver a potência de frenagem gerada na frenagem regenerativa. Essa potência de frenagem regenerativa aumenta a tensão do barramento CC, e um circuito de frenagem garante que a potência seja transmitida ao resistor de frenagem.

Características de TC

Características do torque constante empregadas por todas as aplicações, tais como correia transportadora, bombas de deslocamento e quindastes.

Entradas digitais

As entradas digitais podem ser utilizadas para controlar várias funções do drive.

Saídas digitais

O drive apresenta 2 saídas de estado sólido que podem fornecer um sinal de 24 V CC (máximo de 40 mA).

ETR

O relé térmico eletrônico é um cálculo da carga térmica, baseado na carga atual e no tempo. Sua finalidade é fazer uma estimativa da temperatura do motor.

Barramento padrão do FC

Inclui o barramento RS485 com o Protocolo Danfoss FC ou o protocolo MC. Consulte o Protocolo do parâmetro 8-30.

Inicialização

Se a inicialização for executada (parâmetro 14-22, modo operação), o drive retornará à configuração padrão.

Ciclo útil intermitente

Características nominais úteis intermitentes referem-se a uma sequência de ciclos úteis. Cada ciclo consiste em um período com carga e outro sem carga. A operação pode ser de funcionamento periódico ou de funcionamento aperiódico.

LCP

O painel de controle local compõe uma interface completa para controle e programação do drive. O LCP é destacável. Com o kit de instalação opcional, o LCP pode ser instalado a até 3 m (9,8 pés) do conversor em um painel frontal.

GLCP

O painel de controle local gráfico faz a interface para o controle e programação do drive. O display é gráfico e o painel é utilizado para mostrar os valores do processo. O GLCP possui funções de armazenamento e cópia.

NLCP

O painel de controle local numérico faz a interface para o controle e programação do drive. O display é numérico e o painel é utilizado para mostrar os valores de processo. O NLCP possui funções de armazenamento e cópia.

Isb

É o bit menos significativo.

msb

É o bit mais significativo.

MCM

Sigla para Mille Circular em Milésimo, uma unidade de medição americana para seção transversal do cabo. 1 MCM = 0,5067 mm².

Parâmetros on-line/off-line

As alterações nos parâmetros on-line são ativadas imediatamente após a mudança no valor de dados. Para ativar as alterações nos parâmetros off-line, pressione [OK].

PID de processo

O controle do PID mantém velocidade, pressão e temperatura ajustando a frequência de saída para corresponder à carga variável.

PCD

Dados de controle de processo.

Ciclo de energização

Desligue a rede elétrica até o display (LCP) ficar escuro, depois ligue novamente.

Fator de potência

O fator de potência é a relação entre I_1 e I_{RMS} .

Powerfactor =
$$\frac{\sqrt{3} \times U \times I_1 \cos \varphi 1}{\sqrt{3} \times U \times I_{PMS}}$$

Para este conversor, $\cos \varphi 1 = 1$, portanto: Powerfactor $= \frac{I_1 \times \cos \varphi 1}{I_{RMS}} = \frac{I_1}{I_{RMS}}$

O fator de potência indica em que medida o conversor impõe uma carga na rede elétrica.

Quanto menor o fator de potência, maior será a I_{RMS} para o mesmo desempenho em kW.

$$I_{\text{RMS}} = \sqrt{I_1^2 + I_5^2 + I_7^2 + \dots + I_n^2}$$

Além disso, um fator de potência alto indica que as diferentes correntes harmônicas são baixas.

As bobinas CC incorporadas produzem um alto fator de potência, minimizando a carga imposta na alimentação de rede elétrica.

Entrada de pulso/encoder incremental

É um transmissor digital de pulso, externo, utilizado para retornar informações sobre a velocidade do motor. O encoder é utilizado em aplicações onde há necessidade de extrema precisão no controle da velocidade.

RCD

Dispositivo de corrente residual.

Configuração

Salve as programações do parâmetro em 2 setups. Alterne entre os dois setups de parâmetros e edite um setup enquanto o outro estiver ativo.

SFAVM

Acrônimo que descreve a modulação vetorial assíncrona orientada pelo flux do estator para padrão de chaveamento.

Compensação de escorregamento

O conversor compensa o deslizamento do motor, dando à frequência um complemento que segue a carga do motor medida, mantendo a velocidade do motor quase constante.

Smart logic control (SLC)

O SLC é uma sequência de ações definidas pelo usuário, executadas quando os eventos definidos pelo usuário associado são avaliados como verdadeiros pelo SLC. (*Grupo do parâmetro 13-** Smart Logic*).

STW

Status word.

THD

A distorção de harmônicas total indica a contribuição total da distorção de harmônicas.

Termistor

Um resistor cuja resistência varia em função da temperatura colocado onde a temperatura deve ser monitorada (conversor ou motor).

Desarme

Um estado inserido em situações de falha; por exemplo, se o conversor estiver sujeito a sobretensão ou quando estiver protegendo o motor, processo ou mecanismo. Uma nova partida é impedida até que a causa da falha desapareça e o estado de desarme seja cancelado, ativando o reset ou, às vezes, sendo programado para reset de modo automático. Não utilize o desarme para segurança pessoal.

Bloqueio por desarme

O Bloqueio por desarme é um estado inserido em situações de falha, quando o conversor está se protegendo e requer intervenção física. Um exemplo de bloqueio por desarme é quando o conversor está sujeito a um curto-circuito na saída. Um desarme bloqueado só pode ser cancelado desconectando-se a rede, removendo a causa da falha e reconectando o conversor. A nova partida é impedida até que o estado de desarme seja cancelado, ativando a reinicialização ou, às vezes, sendo programado para reinicializar de modo automático. Não utilize o bloqueio por desarme para segurança pessoal.

Características de VT

Características de torque variável para bombas e ventiladores.

VVC+

Se comparado com o controle padrão de relação tensão/frequência, o controle vetorial de tensão (VVC+) melhora a dinâmica e a estabilidade, tanto quando a referência de velocidade é alterada quanto em relação ao torque de carga.

AVM a 60°

Refere-se à modulação vetorial assíncrona do padrão de chaveamento de 60°.

8.3 Convenções

- Listas numeradas indicam os procedimentos e a descrição das figuras.
- As listas de itens indicam outras informações.
- O texto em itálico indica:
 - o Referência cruzada.
 - Link.
 - Nome do parâmetro.
 - Nome do grupo do parâmetro.
 - o Opcional de parâmetro.
 - Nota de rodapé.
- Todas as dimensões nos desenhos estão em [mm] (pol.).
- Um asterisco (*) indica a configuração padrão de um parâmetro.

Apêndice

ENGINEERING TOMORROW

Danfoss A/S Ulsnaes 1 DK-6300 Graasten drives.danfoss.com

Quaisquer informações, incluindo mas não limitado a, informações sobre a seleção do produto, sua aplicação ou uso, design do produto, peso, dimensões, capacidade ou quaisquer outros dados técnicos em manuais do produto, descrições de catálogos, anúncios etc., sejam elas disponibilizadas por via escrita, oral, eletrônica, on-line ou download, devem ser consideradas informativas e serão vinculativas apenas quando houver referência explícita em uma cotação ou confirmação de pedido. A Danfoss não se responsabiliza por possíveis erros em catálogos, folhetos, vídeos e outros materiais. A Danfoss reserva o direito de alterar seus produtos sem aviso prévio. Isso também é aplicável aos produtos pedidos, mas não entregues, desde que essas alterações possam ser feitas sem alterações de forma, finalidade ou função do produto. Todas as marcas registradas contidas neste material são de propriedade da Danfoss A/S ou de empresas do grupo Danfoss. Danfoss e o logotipo da Danfoss são marcas registradas da Danfoss A/S. Todos os direitos reservados.

M00139

