ENGINEERING TOMORROW

Folleto técnico

EvoFlat 4.0 M

Agua caliente sanitaria y calefacción directa con bucle de mezcla

Descripción

Producto

La estación EvoFlat 4,0 de Danfoss es especialmente adecuada para edificios con calefacción central de múltiples viviendas.

La innovadora unidad establece un nuevo estándar. Su "cuerpo" está fabricado con un compuesto de PPS reforzado. Esto hace que la estación sea ligera y limita la emisión de calor interna. La superficie lisa reduce el riesgo de incrustaciones y obstrucciones.

Todos los componentes se ensamblan con conexiones de conexión rápida de nuevo diseño. En comparación con las estaciones convencionales con tuberías y conexiones roscadas, esta nueva tecnología de conexión no requiere ningún reapriete durante la instalación y la puesta en servicio.

Lado primario (DH)

La subestación está equipada con dos controladores de presión diferencial y un filtro central. Un bypass de verano mantiene caliente la línea de alimentación durante la parada. Esto garantiza un tiempo de respuesta rápido para el ACS. El bypass puede funcionar de forma termostática o manual.

Calefacción (HE)

La subestación suministra a la calefacción mediante suelo radiante una temperatura de alimentación regulada, ajustable de 30 °C a 50 °C. El controlador de temperatura integrado y el controlador de presión diferencial crean condiciones de funcionamiento óptimas. Un termostato de seguridad cierra el caudal a 55 °C. Se instala una bomba de circulación de alta

eficiencia. El radiador de baño o la secadora de toallas se pueden conectar mediante un juego de conexión de alta temperatura opcional.

Agua caliente sanitaria (ACS)

Hay cuatro tamaños de intercambiadores de calor disponibles para cubrir todos los requisitos, desde 37 kW hasta 80 kW.

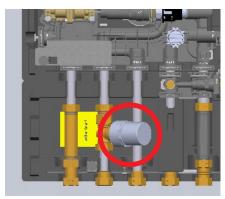
El Evoflat 4.0 M está equipado con un controlador inteligente que regula el caudal en el lado de alimentación en función de la temperatura del agua caliente y de la cantidad de agua extraída. La estación tiene un controlador de presión diferencial integrado en el lado de alimentación de la calefacción del agua potable. Esto significa que no es necesario realizar un equilibrado hidráulico de la estación.

Si es necesario, la estación se puede ampliar con un conjunto de circulación de agua caliente.

Funciones y ventajas

- · Poco peso
- Fácil de instalar, mantener y utilizar
- · Material compuesto duradero
- Mínimo espacio necesario para la instalación
- Cubierta de EPP de alto aislamiento
- Preparado para contador de energía integrado
- Preparado para contador de agua integrado
- Compatible con varias fuentes de calor, como calefacción urbana o bombas de calor

Pedidos


Números de código de producto de las estaciones estándar

Subestación	Soldadura de cobre (HEX)	Soldadura (HEX) Acero inoxidable
EvoFlat 4.0 M Tipo 1	183B2000	183B2500
EvoFlat 4.0 M Tipo 2	183B2001	183B2501
EvoFlat 4.0 M Tipo 3	183B2002	183B2502
EvoFlat 4.0 M Tipo 4	183B2003	183B2503

Números de código de producto de las estaciones con bloqueador de golpes de ariete

Subestación	Soldadura de cobre (HEX)	Soldadura (HEX) Acero inoxidable
EvoFlat 4.0 M Tipo 1 WHA	183B2012	183B2512
EvoFlat 4.0 M Tipo 2 WHA	183B2013	183B2513
EvoFlat 4.0 M Tipo 3 WHA	183B2014	183B2514
EvoFlat 4.0 M Tipo 4 WHA	183B2015	183B2515

Danfoss ofrece subestaciones en las que se incorpora de fábrica un bloqueador de golpes de ariete.

El bloqueador de golpe de ariete se coloca en la alimentación de agua caliente sanitaria.

Accesorios

Circulación de agua caliente sanitaria Si es necesario, se puede instalar un conjunto con bomba y válvula para facilitar la conexión a la subestación.

Circulación de agua caliente sanitaria		
Código		
183B0500	Conjunto de circulación EvoFlat 4.0	
183B0547	Conjunto de circulación EvoFlat 4.0 con cubierta aislante para bomba de circulación	

Juego de conexión de alta temperatura Se puede utilizar un juego de conexión de alta temperatura para conectar una secadora de toallas de baño.

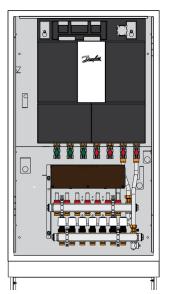
Juego de conexión de alta temperatura

Código	
183B0501	Juego HTC para EvoFlat 4.0, con válvulas de bola de 3/4" y consola
183B0539	Juego de tuberías flexibles HTC para EvoFlat 4.0, conexión de 3/4"

Caja empotrada

Se compone de chapa de acero galvanizado en un diseño estable, con bastidor y puerta con revestimiento de polvo por ambos lados en RAL 9016. Para una instalación fácil y rápida de la estación y la unidad de distribución, hay pernos de montaje correspondientes en la pared trasera.

La caja está cerrada en todo su perímetro, abierta en la parte inferior, con patas de montaje ajustables con una altura máxima de 120 mm. Se incluye una guía de montaje con siete válvulas de bola (alimentación suelta).


La caja se puede montar en una pared.

Cajas empotradas donde se instalan la estación y la unidad de distribución en el mismo armario.

Cuadros Reces				
Código		Ancho	Altura	Profundidad
183U6030	Caja empotrada con guía de montaje	610	1350	150
183U6031	Caja empotrada con guía de montaje	690	1350	150
183U6032	Caja empotrada con guía de montaje	850	1350	150
183U6033* Juego de patas para caja empotrada				
183L5142*	Juego de válvulas de bola de 3/4" con 7			
	conexiones			

^{*}Repuestos

En paneles de pared para cajas empotradas				
Código		Ancho	Alto	Profundidad
183U6013	En paneles de pared	610	1350	150
183U6015	En paneles de pared	690	1350	150
183U6020	En paneles de pared	850	1350	150

Las unidades de distribución se ajustan a la placa posterior de las cajas empotradas, pero también se pueden montar en la pared.

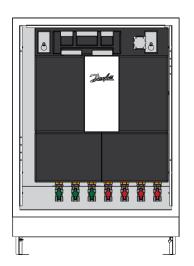
Las cajas empotradas para variantes empotradas están disponibles en tres tamaños:

2-9 circuitos se adapta a: Caja empotrada An 610 / Al 1350 / Prof 150 mm

2-9 circuitos con conjuntos de circulación HTC y/o ACS adecuados para: Caja empotrada An. 690 / Al. 1350 / Prof. 150 mm

10 circuitos se adapta a: Caja empotrada An. 690 / Al. 1350 / Prof. 150 mm

11-12 circuitos se adapta a: Caja empotrada An. 850 / Al. 1350 / Prof. 150 mm


Cajas empotradas donde se instala la estación en el armario y el colector en otro lugar.

Cuadros Rece	Cuadros Reces			
Código		Ancho	Altura	Profundidad
183U6028	Caja empotrada con guía de montaje	610	910	150
183U6029	Caja empotrada con guía de montaje	690	910	150
183U6033*	Juego de patas para caja empotrada			
183L5142*	Juego de válvulas de bola de 3/4" con 7 conexiones			

^{*}Repuestos

En paneles de pared para cajas empotradas

Código		Ancho	Alto	Profundidad
183U6012	En paneles de pared	610	910	150
183U6014	En paneles de pared	690	910	150

Las unidades de distribución se ajustan a la placa posterior de las cajas empotradas, pero también se pueden montar en la pared.

Las cajas empotradas para variantes empotradas están disponibles en dos tamaños:

Estación estándar: Caja empotrada An 610 / Al 910 / Prof 150 mm

Estación con circulación de HTC y/o ACS: Caja empotrada An 690 / Al 910 / Prof 150 mm

Para la instalación en pared, las cajas Danfoss Recess pueden montarse directamente en la pared y cubrirse con los paneles adecuados. Los paneles se fijan magnéticamente."

Unidades de distribución SG

Instalación rápida y sencilla gracias al conector "plug and play". Colector finalizado de acero inoxidable con conexiones especialmente adecuadas para estaciones de compresores Danfoss. La placa posterior se monta directamente en la caja empotrada gracias a los orificios para tornillos que vienen ya hechos.

La variante SG se puede utilizar con o sin controladores y actuadores de calefacción mediante suelo radiante. Incluye respiraderos manuales, válvulas de drenaje y caudalímetros.

Se puede pedir con la conexión de 2 a 12 circuitos de calefacción mediante suelo radiante.

Unidad de distribución SG		
Código		
145H0902	Unidad de distribución SG con 2 circuitos de calefacción	
145H0903	Unidad de distribución SG con 3 circuitos de calefacción	
145H0904	Unidad de distribución SG con 4 circuitos de calefacción	
145H0905	Unidad de distribución SG con 5 circuitos de calefacción	
145H0906	Unidad de distribución SG con 6 circuitos de calefacción	
145H0907	Unidad de distribución SG con 7 circuitos de calefacción	
145H0908	Unidad de distribución SG con 8 circuitos de calefacción	
145H0909	Unidad de distribución SG con 9 circuitos de calefacción	
145H0910	Unidad de distribución SG con 10 circuitos de calefacción	
145H0911	Unidad de distribución SG con 11 circuitos de calefacción	
145H0912	Unidad de distribución SG con 12 circuitos de calefacción	

Unidades de distribución SGC

Como el compresor SG, pero instalado con el controlador Danfoss ICON Wiring Center.
Actuadores térmicos de 230 V TWA NC para el control de la calefacción mediante suelo radiante.
Los termostatos de ambiente deben conectarse al centro de cableado ICON in situ.

Unidad de distribución SGC

Código	
145H0922	Unidad de distribución SGC con 2 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0923	Unidad de distribución SGC con 3 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0924	Unidad de distribución SGC con 4 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0925	Unidad de distribución SGC con 5 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0926	Unidad de distribución SGC con 6 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0927	Unidad de distribución SGC con 7 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0928	Unidad de distribución SGC con 8 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0929	Unidad de distribución SGC con 9 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0930	Unidad de distribución SGC con 10 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0931	Unidad de distribución SGC con 11 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V
145H0932	Unidad de distribución SGC con 12 circuitos de calefacción, ICON Wiring Center y TWA NC 230 V

Unidades de distribución SGCI

Como el compresor SG, pero con el controlador maestro avanzado Danfoss ICON2.

Actuadores térmicos de 230 V TWA NC para el control de la calefacción mediante suelo radiante, con equilibrado automático.

Conectado con termostatos de ambiente inalámbricos o con cable y puede conectarse a Danfoss AllyTM a través de Ally Gateway para el control del usuario final

Puesta en servicio sencilla a través de la aplicación Danfoss ICON2, donde el instalador puede generar un informe de puesta en servicio del compresor.

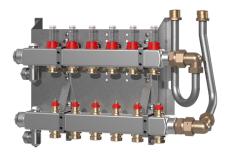
Unidad de distribución SGCI		
Código		
145H1942	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1943	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1944	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1945	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1946	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1947	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1948	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1949	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1950	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1951	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	
145H1952	Unidad de distribución SGCI con 2 circuitos de calefacción, ICON2 y TWA NC 230 V	

Módulo de refrigeración CDM

El módulo de refrigeración se instala entre la estación y la unidad de distribución y se conecta a un suministro externo de alimentación de refrigeración. Permite calentar y enfriar la casa a través del sistema de calefacción por suelo radiante.

En el caudal hay montado un controlador de presión diferencial con limitación de caudal y válvula de control integrada con actuador.

Válvulas de control (TWA 230 V) en el flujo de refrigeración para cambiar entre el funcionamiento de calefacción y refrigeración, así como separación hidráulica. Racor para medidor de frío (G 3/4" x 110 mm) en el retorno de refrigeración.


Filtro en el flujo de refrigeración en el lado de alimentación.

Módulo de refrigeración CDM

Código	
145B9506	Módulo de refrigeración CDM - DN20 AB+PM + DN15 RA-C, 230 V
145B9507	Módulo de refrigeración CDM - DN25 AB-PM + DN20 RA-C, 230 V

Capacidad de refrigeración [kW]	Caudal a 4 K [l/h]	Caudal a 5 K [I/h]	Caudal a 6 K [l/h]	Caudal a 7 K [l/h]	Caudal a 8 K [I/h]
Caudal estándar (CDM DN20 HP AB-PM)					
0.5	107				
1.0	215	172	143	123	107
1.5	322	258	215	184	161
2.0	430	344	287	246	215
2.5	537	430	358	307	269
3.0		516	430	369	322
3.5		602	502	430	376
4.0			573	491	430
4.5				553	484
5.0				614	537
5.5					591
		Caudal alto (CDM [DN25 AB-PM)		
1.5	322	258			
2.0	430	344	287		
2.5	537	430	358	307	
3.0	645	516	430	369	322
3.5	752	602	502	430	376
4.0	860	688	573	491	430
4.5	967	774	645	553	484
5.0	1075	860	717	614	537
5.5	1182	946	788	676	591
6.0		1032	860	737	645
6.5		1118	931	798	699
7.0		1204	1003	860	752
7.5			1075	921	806
8.0	·		1146	983	860
8.5				1044	914
9.0				1106	967
9.5				1167	1021
10.0					1075
10.5					1129
11.0					1182

Unidades de distribución SG - CDM

Se entrega con caudalímetro, sin controlador ni actuadores térmicos, pero preparado para montar un controlador y actuadores de su elección.

Unidad de distribución SG - CDM		
Código		
145H0862	SG - CDM con 2 circuitos de calefacción	
145H0863	SG - CDM con 3 circuitos de calefacción	
145H0864	SG - CDM con 4 circuitos de calefacción	
145H0865	SG - CDM con 5 circuitos de calefacción	
145H0866	SG - CDM con 6 circuitos de calefacción	
145H0867	SG - CDM con 7 circuitos de calefacción	
145H0868	SG - CDM con 8 circuitos de calefacción	
145H0869	SG - CDM con 9 circuitos de calefacción	
145H0870	SG - CDM con 10 circuitos de calefacción	
145H0871	SG - CDM con 11 circuitos de calefacción	
145H0872	SG - CDM con 12 circuitos de calefacción	

Unidades de distribución SGCI - CDM

Igual que el compresor SG, pero con el controlador avanzado Danfoss ICON2, montado en la caja empotrada con imanes.

Actuadores térmicos de 230 V TWA NC para el control de la calefacción mediante suelo radiante, con equilibrado automático.

Conectado con termostatos de ambiente inalámbricos o con cable y puede conectarse a Danfoss AllyTM a través de Ally Gateway para el control del usuario final. Puesta en servicio sencilla a través de la aplicación Danfoss ICON2, donde el instalador puede generar un informe de puesta en servicio del compresor.

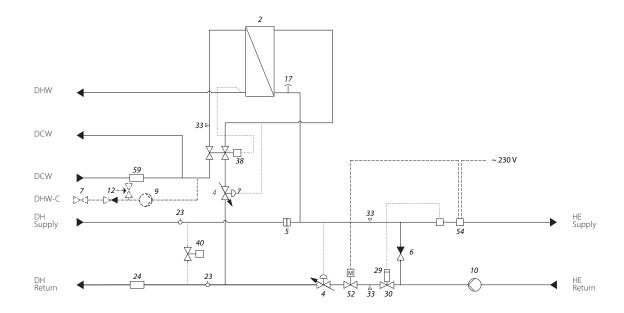
Unidad de distribución SGCI - CDM		
Código		
145H1882	SGCI - CDM con 2 circuitos de calentamiento, ICON 2, 230 V	
145H1883	SGCI - CDM con 3 circuitos de calentamiento, ICON 2, 230 V	
145H1884	SGCI - CDM con 4 circuitos de calentamiento, ICON 2, 230 V	
145H1885	SGCI - CDM con 5 circuitos de calentamiento, ICON 2, 230 V	
145H1886	SGCI - CDM con 6 circuitos de calentamiento, ICON 2, 230 V	
145H1887	SGCI - CDM con 7 circuitos de calentamiento, ICON 2, 230 V	
145H1888	SGCI - CDM con 8 circuitos de calentamiento, ICON 2, 230 V	
145H1889	SGCI - CDM con 9 circuitos de calentamiento, ICON 2, 230 V	
145H1890	SGCI - CDM con 10 circuitos de calentamiento, ICON 2, 230 V	
145H1891	SGCI - CDM con 11 circuitos de calentamiento, ICON 2, 230 V	
145H1892	SGCI - CDM con 12 circuitos de calentamiento, ICON 2, 230 V	

EvoFlat 4.0 M Folleto técnico

Termostatos de ambiente para compresores Danfoss ICON Los sensores de ambiente con cable se ofrecen para instalación empotrada o en pared.

Código		
088U1000	Dial Danfoss ICON ™, montado en pared	
088U1010	Pantalla Danfoss ICON ™, para montaje en pared	s îs.
088U1020	Danfoss ICON™ Programable, montado en pared	2. 6
088U1005	Dial Danfoss ICON ™, montado en pared	
088U1015	Pantalla Danfoss ICON ™, montada en pared	sís
088U1025	Danfoss ICON™ Programable, montado en pared	2 5
088U1110	Sensor de suelo	3

Termostatos de ambiente para controlador maestro avanzado de compresores Danfoss ICON2 Los sensores de ambiente con cable o inalámbricos se ofrecen para instalación empotrada o en pared.


Si utiliza termostatos de ambiente con cable, pueden conectarse como cadena Daysi, ya que se registran a través de su dirección MAC.

Es posible adquirir una puerta de enlace Ally™ para que el usuario pueda controlar la calefacción (refrigeración) de la sala a través de una aplicación de control.

Código		
088U2121	Termostato con pantalla Danfoss ICON2™ RT inalámbrico para compresores	5 6.
088U2122	Termostato con pantalla RT con sensor de suelo infrarrojo Danfoss ICON2™ característica del compresor	5 (2)
088U2120	Sensor Danfoss ICON2 ™ sin ajustes ni pantalla Inalámbrico	
088U2128	Termostato Danfoss ICON2™ para montaje en pared, 2 cables, 24 V	5 r2,
088U2125	Termostato empotrado de 2 hilos Danfoss ICON2™ 24 V	5 (2,
088U1110	Sensor de suelo	
014G2400	Danfoss Ally™ Gateway (para aplicación de usuario)	2 minut

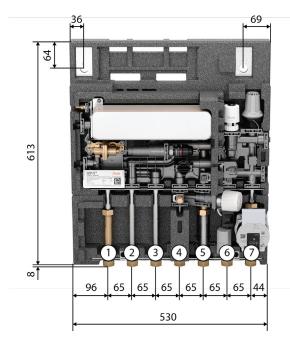


Diagrama de circuitos

- 2 Intercambiador de calor de placas ACS
- 4 Controlador de presión diferencial
- 5 Tamiz
- 6 Válvula de retención
- 7 Válvula de bola*
- 9 Bomba de circulación de ACS*
- 10 Circuito de mezcla de la bomba de calor
- 12 Válvula de seguridad*
- 17 Respirador
- 23 Bolsillo del sensor

- 24 Racor para medidor de energía 3/4" x 110 mm
- 29 Sensor de temperatura
- 30 Válvula HE
- 33 Conector del circuito de alta temperatura (HTC)
- 38 Controlador de agua caliente
- 40 Bypass de verano
- 52 Válvula de zona TWA*
- 54 Termostato de seguridad
- 59 Racor para contador de agua 3/4" x 110 mm
- * Opcional

Conexiones:

- 1 Entrada de agua fría sanitaria (ACS)
- 2 Entrada de agua caliente sanitaria (ACS)
- 3 Salida de agua fría sanitaria (ACS)
- 4 Fuente de calefacción (DH), alimentación
- 5 Retorno de fuente de calor (DH)
- 6 Alimentación de calefacción mediante suelo radiante (HE)
- 7 Retorno de calefacción mediante suelo radiante (HE)

Datos técnicos

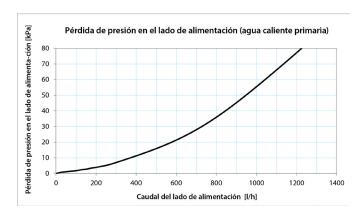
Controlador de ACS	TPC-M
Presión nominal	PN10
Presión temperatura de alimentación (DH)	95 °C
Agua fría estática DCW	P _{min} = 1.5 bar
Soldadura (HEX)	Cobre o acero inoxidable
Aislamiento	ΕΡΡ λ 0.039
Fuente de alimentación	230V AC
Tamaños de conexión	G 3/4" Rosca interna
Presión nominal primaria	10 bar
Presión nominal secundaria	10 bar
Peso sin accesorios - Tipo 1 HEX	12.2 kg
Peso sin accesorios - Tipo 2 HEX	13.3 kg
Peso sin accesorios - Tipo 3 HEX	13.8 kg
Peso sin accesorios - Tipo 4 HEX	14.6 kg

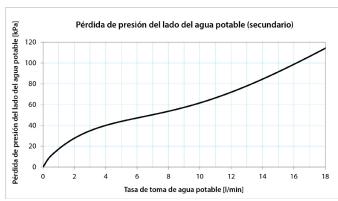
Ejemplos de capacidad de ACS

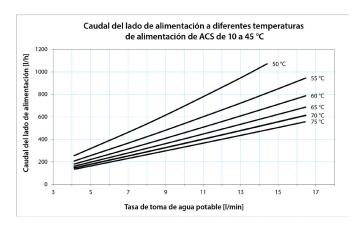
Tipo de unidad HEX	DHW Potencia nominal [kW]	Temperatura DHS/DHR [°C]	Caudal primario [I/h]	Pérdida de presión prima- ria* [kPa]	Carga de grifo 50°C [I/min]
Tipo 1	37	65/15	637	25	13.3
	43	65/16	750	32	15.4
Tipo 2	45	65/15	770	29	16.2
	49	65/15	844	35	17.6
Tipo 3	55	65/15	943	40	19.8
	38	55/19	901	37	13.7
Tipo 4	60	65/14	1014	41	21.6
	70	65/14	1197	57	25.2
***************************************	49	55/19	1158	52	17.6

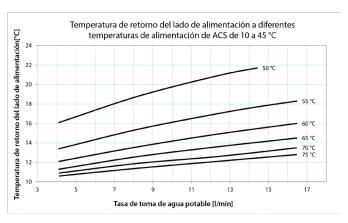
^{*}Medidor de energía no incluido

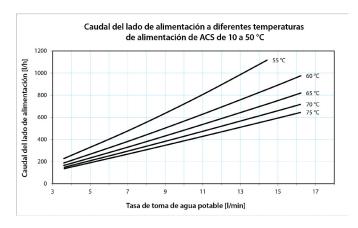
Ejemplos de capacidad de calentamiento

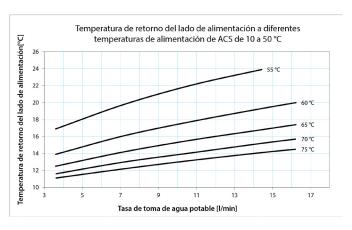

Potencia calorífica [kW]	Circuitode calefacción ΔT [°C]	Pérdida de presión total primaria*	Caudal de alimentación [l/h]
		[kPa]	
10	20	12	430
10	25	8	344
10	30	6	287
10	35	5	246
10	40	4	215
17.5	30	20	500**

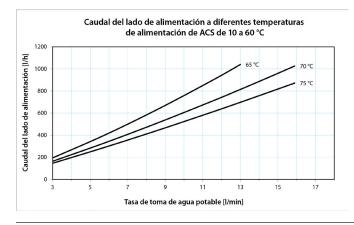

^{*}Medidor de energía y calefacción de ACS no incluidos

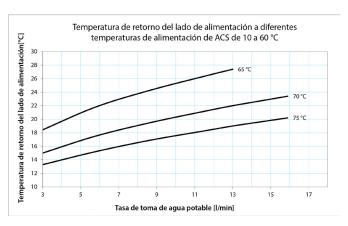

^{**}Flujo máx

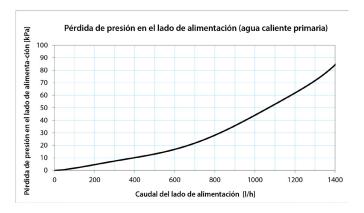


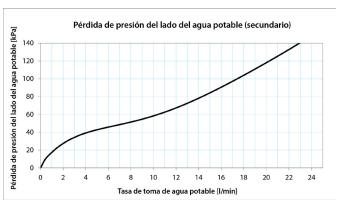

Caudal tipo 1 HEX

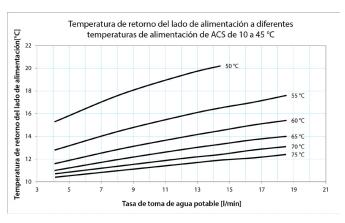


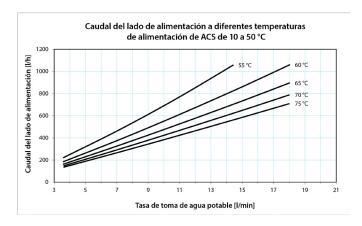


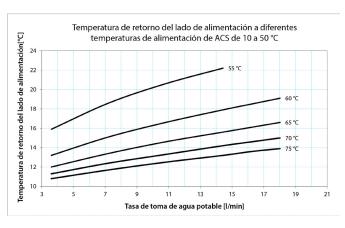


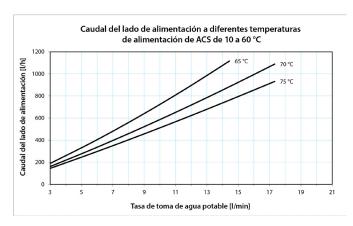


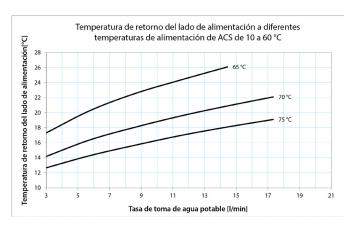


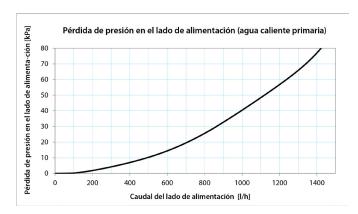


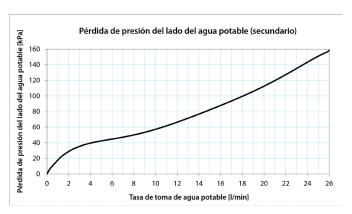

Caudal tipo 2 HEX

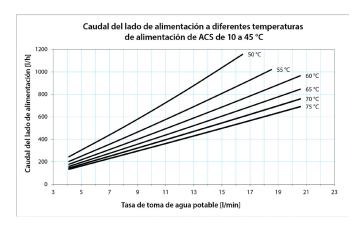


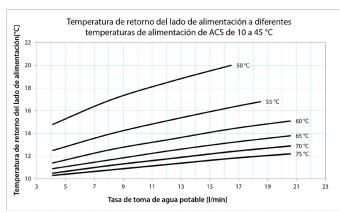


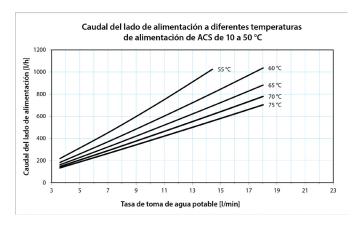


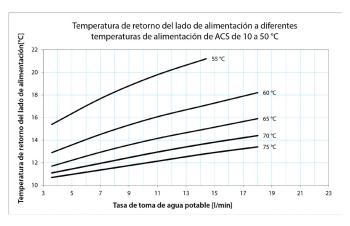


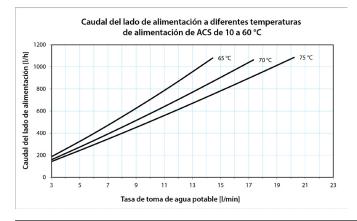


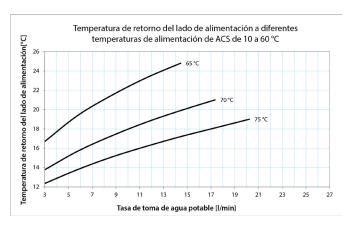


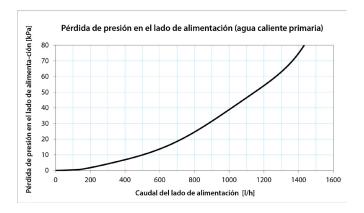


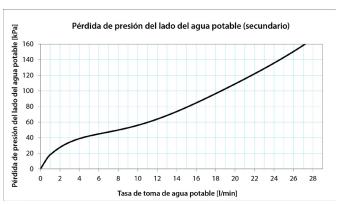

Caudal tipo 3 HEX

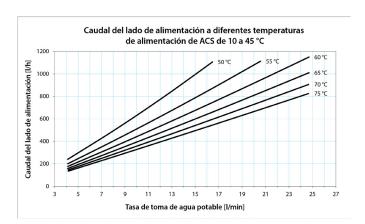


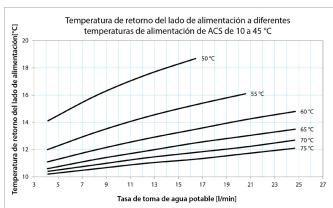


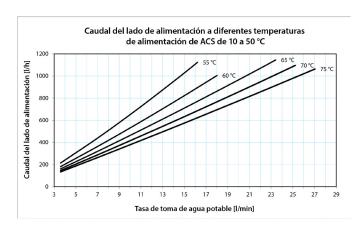


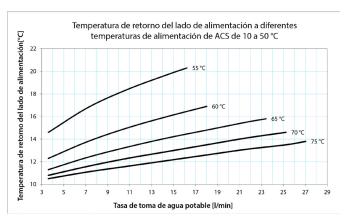


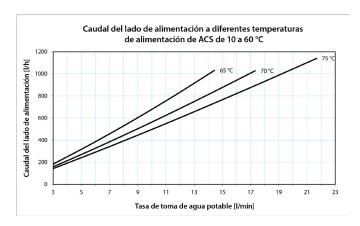


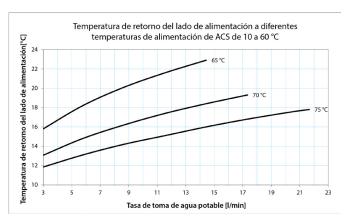


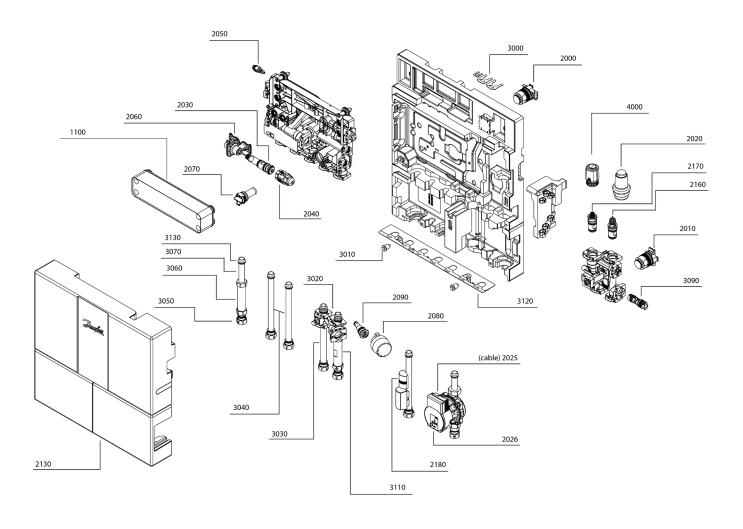



Caudal tipo 4 HEX









Repuestos

		,
Pos.	Code number	Describpion
1100	183B0503	Kit de servicio para intercambiador de calor tipo 1 en cobre
1100	183B0504	Kit de servicio para intercambiador de calor tipo 2 en cobre
1100	183B0505	Kit de servicio para intercambiador de calor tipo 3 en cobre
1100	183B0506	Kit de servicio para intercambiador de calor tipo 4 en cobre
1100	183B0507	Kit de servicio para intercambiador de calor tipo 1 de acero inoxidable
1100	183B0508	Kit de servicio para intercambiador de calor tipo 2 de acero inoxidable
1100	183B0509	Kit de servicio para intercambiador de calor tipo 3 de acero inoxidable
1100	183B0510	Kit de servicio para intercambiador de calor tipo 4 de acero inoxidable
2000	183B0563	Regulador de presión diferencial DHW EvoFlat 4.0 SAC
2010	183B0564	Regulador de presión diferencial HE EvoFlat 4.0 SAC
2020	013G5081	Termostato FTC 15-50 °C
2025	145H4074	Enchufe para Wilo Yonos Para 1.5 m cable
2026	145H4296	Bomba Wilo Yonos Para RS 15/61"
2030	183B0511	Conjunto de válvula de control DHW EvoFlat 4.0 SAC
2040	183B0512	Conjunto de termostato de control DHW EvoFlat 4.0 SAC
2050	183B0513	Conjunto de ventilación Danfoss EvoFlat 4.0
2060	183B0514	Activador de flujo con tornillos y juntas
2070	183B0515	Conjunto de filtros EvoFlat 4.0
2080	183B0516	Conjunto de válvula de bypass manual EvoFlat 4.0 SAC
2090	183B0517	Conjunto de válvula de bypass termostática EvoFlat 4.0 SAC
2130	183B0521	Conjunto de cubierta EPP Danfoss EvoFlat 4.0
2160	183B0527	Conjunto de válvula HE EvoFlat 4.0 SAC
2170	183B5029	Conjunto de válvula de zona EvoFlat 4.0 SAC
2180	183B0542	Interruptor de temperatura de seguridad + TWA-Q-NO EvoFlat 4.0 SAC (4000)
3000	183B0552	Kit de soporte para EvoFlat 4.0
3010	183B0553	Tornillo de plástico 15x25
3020	183B0554	Bloque para bypass EvoFlat 4.0
3030	183B0555	Tubería Ø18 - 171 mm
3040	183B0556	Tubería Ø18 - 223 mm
3050	183B0557	Buje con tuercas 3/4" x 3/4" x 32 mm
3060	183B0558	Pieza de ajuste 3/4" x 110 mm - DHW
3070	183B0559	Tubería Ø18 - 77 mm
3090	183B0561	Válvula de retención para EvoFlat 4.0
3110	183B0565	Pieza de ajuste 3/4" x 110 mm - HE
3120	183B0566	Riel de montaje con símbolos para EvoFlat 4.0
3130	183B0560	Clips, juntas tóricas y arandelas para EvoFlat 4.0
4000	082F1601	Válvula de zona, TWA-Q-NO
	183B0533	Herramienta de limpieza EvoFlat 4.0 HEX
	1	<u> </u>

Líneas guía para la calidad del agua

Danfoss ha elaborado estas directrices para la calidad del agua del grifo y del agua de calefacción urbana utilizada en intercambiadores de calor de placas de acero inoxidable (EN 1,4404 ~ AISI 316L) soldados con cobre puro (Cu), CoResist (Cn) o acero inoxidable (StS). Es importante señalar que la especificación del agua no es una garantía contra la corrosión, pero debe considerarse como una herramienta para evitar las aplicaciones de agua más críticas.

			Placa	Material de	soldadura
Parámetro	Unidad	Valor o concentración	AISI 316L W. Nr. 1.4404	Cu	StS
		< 0.6	0	-	О
11		6.0 -7.5	+	0/-	+
рН		7.5 - 10.5	+	+	+
		> 10.5	+	0	+
		< 10	+	+	+
	6,	10 - 500	+	+	+
Conductividad	μS/cm	500 - 1000	+	0	+
		> 1000	+	-	+
		< 0.5	+	+	+
Cl. III	, [0.5 - 1	0	+	+
Cloro libre	mg/l	1 - 5	-	0	0
		> 5	-	-	-
		< 2	+	+	+
Amoníaco (NH ₃ , NH ₄ +)	mg/l	2 - 20	+	0	+
		> 20	+	-	+
		< 60	+	+	+
Alcalinidad (HCO ₃ -)	mg/l	60 - 300	+	+	+
		> 300	+	0	+
		< 100	+	+	+
Sulfato (SO ⁴² -)	mg/l	100 - 300	+	0/-	+
		> 300	+	-	+
1160 /60 ?	/1	< 1.5	+	+	+
HCO_3^-/SO_4^{-2}	mg/l	> 1.5	+	0/-	+
NII (NO.)	//	< 100	+	+	+
Nitrato (NO ₃)	mg/l	> 100	+	0	+
AA (AA)	//	< 0.1	+	+	+
Manganeso (Mn)	mg/l	> 0.1	+	0	+
	mg/l	< 0.2	+	+	+
Hierro (Fe)		> 0.2	+	0	+
		0 - 0.3	+	-	+
[Ca ² +, Mg ² +]/[HCO ₃ -]*		0.3 - 0.5	+	0/-	+
, and the second		> 0.5	+	+	+

+	Buena resistencia a la corrosión
О	**La corrosión podría ocurrir cuando se evalúan más parámetros con O
o/-	Riesgo de corrosión
-	No se recomienda su uso

^{*} Límites de la relación de dureza definidos por experiencia y pruebas internas en el laboratorio de Danfoss

^{**} En caso de que se evalúen tres o más parámetros, es necesario consultar al consultor de corrosión y microbiología o al representante de la unidad de negocio de HHE

Concentración de cloruro recomendada para evitar el agrietamiento por corrosión bajo tensión (SCC) en las placas de acero inoxidable:

Temperatura de aplicación	Concentración de cloruro
a T ≤ 20°C	máx. 1000 mg/l
a T ≤ 50°C	máx. 400 mg/l
a T ≤ 80°C	máx. 200 mg/l
a T ≥ 100°C	máx. 100 mg/l

Certificados, declaraciones Aprobaciones

CE	
EU RoHS	
EPD	

Texto de licitación Cobre HEX

Diseño

Estación de compresor EvoFlatTM de Danfoss para calefacción directa y suministro higiénico de agua caliente sanitaria con una válvula de control sin energía auxiliar en el sistema continuo. Montado sobre una placa base aislada térmicamente, incluida la campana aislante térmica de EPP, para montaje enrasado o en superficie.

Agua caliente sanitaria (ACS)

El agua del grifo se calienta mediante intercambiadores de calor basados en el principio de flujo continuo. La temperatura del agua del grifo se regula mediante el controlador automático. Estos controladores garantizan una facilidad de uso excepcional. La parte de control de flujo permite el flujo primario y secundario a través del intercambiador de calor solo durante el consumo de agua caliente. El flujo se bloquea inmediatamente después de finalizar el suministro de agua caliente.

La parte del termostato, a su vez, regula la temperatura del agua caliente.

Gracias a la válvula de control de acción rápida, se evitan en gran medida los depósitos de cal y el crecimiento de bacterias.

El controlador, en combinación con el controlador de presión diferencial, garantiza una temperatura constante del ACS, incluso con temperaturas de impulsión y presiones diferenciales variables.

La línea primaria se mantiene caliente mediante una válvula de bypass controlada termostáticamente (bypass de verano).

La subestación está equipada con una conexión para la circulación de agua caliente sanitaria. El kit de circulación está disponible como opción.

Calefacción (HE)

El circuito de mezcla para el control de la temperatura del calentamiento de superficies, que consta de un grupo de control mecánico con un segundo controlador de presión diferencial integrado para el ajuste de la temperatura de impulsión FBH, válvula de retencióny una bomba de circulación de alta eficiencia (indicando un índice de eficiencia energética EEI ≤ 0,20). Dispositivo de seguridad para el control de la temperatura de impulsión mediante un termostato de seguridad de Danfoss (55 °C). Si la temperatura es demasiado alta, un servomotor cierra la válvula de zona integrada.

La subestación está equipada con una conexión para un segundo circuito de calefacción en el circuito de alta temperatura. El juego de conexión de alta temperatura está disponible como opción.

Equipo del lado de suministro

Reguladores de temperatura y presión, dos reguladores de presión diferencial, válvula de zona, filtro y ventilación

Marca: Danfoss

Actuador térmico, 230 V, normalmente abierto

Marca: Danfoss Tipo: TWA-Q 230V NO

Racor para contador de energía G3/4"x110 mm en retorno, soporte de sensor como sensor de inmersión directa M10x1 mm

Intercambiador de calor

Intercambiador de calor de placas de acero inoxidable con menos juntas, cobre soldado al vacío para formar una unidad compacta. Nueva tecnología de intercambiador de calor Micro Plate™ con una estructura de placas única para una transferencia de calor más eficaz, pérdidas de baja presión y una vida útil más larga. Resistencia a la corrosión.

Cálculo y materiales según folletos técnicos AD. Fabricado de acuerdo con la norma DIN ISO 9001, probado CE de acuerdo con la Directiva de equipos a presión 97/23/CE (PED).

Marca: Danfoss Tipo: XB05H

Equipamiento de consumo

Conexión para circuito de calefacción estático (circuito de alta temperatura), bomba de circulación de alto rendimiento con control de velocidad:

Marca: Wilo

Tipo: Para 15-130/6

Válvula de retención en el bypass.

Controlador de valor fijo sin energía auxiliar

Marca: Danfoss FTC

Termostato de seguridad

Marca: Danfoss

Equipo del lado del agua del grifo

Racor para contador de agua fría G3/4"x110 mm (entrada CW)

Datos técnicos

Calefacción

Potencia máx. [kW]: 17.5

Máx. velocidad caudal [m³/h]: 0.5 (lado de alimentación) / 1.29 (lado del consumidor)

Calentamiento de agua

Potencia máx. [kW]: 45 @ VL65°C (tipo 1 HEX)

a máx. Capacidad de extracción

[l/min]: 13.2

Potencia máx. [kW]: 53 @ VL65°C (tipo 2 HEX)

a máx. Capacidad de extracción

[l/min]: 15.4

Potencia máx. [kW]: 60 @ VL65°C (tipo 3 HEX)

a máx. Capacidad de extracción

[l/min]: 17.4

Potencia máx. [kW]: 80 @ VL65°C (tipo 4 HEX)

a máx. Capacidad de extracción

[l/min]: 28.3

Nivel de presión (lado de salida de agua):

Nivel de presión (lado de alimentación):

PN10

PN10

PN10, máx. presión diferencial [bar]:

Red CW, mín. presión estática [bar]:

Red DH, máx. temperatura de impulsión [°C]:

95

Tamaño conex. nominal:G¾" (unión, 7x)Conexión eléctrica:230V ACDimensiones H/W/D [mm]:613/530/150Peso [kg]:9.2 (tipo 1 HEX)

9.7 (tipo 2 HEX) 10.3 (tipo 3 HEX) 10.8 (tipo 4 HEX)

Texto para ofertas HEX de acero inoxidable

Diseño

Estación de compresor EvoFlatTM de Danfoss para calefacción directa y suministro higiénico de agua caliente sanitaria con una válvula de control sin energía auxiliar en el sistema continuo. Montado sobre una placa base aislada térmicamente, incluida la campana aislante térmica de EPP, para montaje enrasado o en superficie.

Agua caliente sanitaria (ACS)

El agua caliente sanitaria se calienta mediante intercambiadores de calor basados en el principio de flujo continuo. La temperatura del agua de salida se regula mediante el controlador automático. Estos controladores garantizan una facilidad de uso excepcional. La parte de control de flujo permite el flujo primario y secundario a través del intercambiador de calor solo durante el consumo de agua caliente. El flujo se bloquea inmediatamente después de finalizar el suministro de agua caliente.

La parte del termostato, a su vez, regula la temperatura del agua caliente.

Gracias a la válvula de control de acción rápida, se evitan en gran medida los depósitos de cal y el crecimiento de bacterias.

El controlador, en combinación con el controlador de presión diferencial, garantiza una temperatura constante del ACS, incluso con temperaturas de impulsión y presiones diferenciales variables.

La línea primaria se mantiene caliente mediante una válvula de bypass controlada termostáticamente (bypass de verano).

La subestación está equipada con una conexión para la circulación de agua caliente sanitaria. El kit de circulación está disponible como opción.

Calefacción (HE)

El circuito de mezcla para el control de la temperatura del calentamiento de superficies, que consta de un grupo de control mecánico con un segundo controlador de presión diferencial integrado para el ajuste de la temperatura de impulsión FBH, válvula de retencióny una bomba de circulación de alta eficiencia (indicando un índice de eficiencia energética EEl \leq 0,20). Dispositivo de seguridad para el control de la temperatura de impulsión mediante un termostato de seguridad de Danfoss (55 °C). Si la temperatura es demasiado alta, un servomotor cierra la válvula de zona integrada.

La subestación está equipada con una conexión para un segundo circuito de calefacción en el circuito de alta temperatura. El juego de conexión de alta temperatura está disponible como opción.

Equipo del lado de suministro

Reguladores de temperatura y presión, dos reguladores de presión diferencial, válvula de zona, filtro y ventilación

Marca: Danfoss

Actuador térmico, 230 V, normalmente

Marca: Danfoss

Tipo: TWA-Q 230V NO

Racor para contador de energía G3/4"x110 mm en retorno, soporte de sensor como sensor de inmersión directa M10x1 mm

Intercambiador de calor

Intercambiador de calor de placas de acero inoxidable sin juntas, soldado con acero inoxidable al vacío para formar una unidad compacta. Nueva tecnología de intercambiador de calor Micro PlateTM con estructura de placas única para una transferencia de calor más eficaz, pérdidas de baja presión y una vida útil más larga. Resistencia a la corrosión.

Cálculo y materiales según folletos técnicos AD. Fabricado de acuerdo con la norma DIN ISO 9001, probado CE de acuerdo con la Directiva de equipos a presión 97/23/CE (PED).

Marca: Danfoss Tipo: XB05H

Equipamiento de consumo

Conexión para circuito de calefacción estático (circuito de alta temperatura), bomba de circulación de alto rendimiento con control de velocidad:

Marca: Wilo

Tipo: Para 15-130/6

Válvula de retención en el bypass.

Controlador de valor fijo sin energía auxiliar

Marca: Danfoss FTC

Termostato de seguridad

Marca: Danfoss

Equipo del lado del agua del grifo

Racor para contador de agua fría G3/4"x110 mm (entrada CW)

Datos técnicos

Calefacción

Potencia máx. [kW]: 17.5

Máx. velocidad caudal [m³/h]: 0.5 (lado de alimentación) / 1.29 (lado del consumidor)

Calentamiento de agua

Potencia máx [kW]: 45 @ VL65°C (tipo 1 HEX)

a máx. Capacidad de extracción

[l/min]: 13.2

Potencia máx. [kW]: 53 @ VL65°C (tipo 2 HEX)

a máx. Capacidad de extracción

[l/min]: 15.4

Potencia máx [kW]: 60 @ VL65°C (tipo 3 HEX)

a máx. Capacidad de extracción

[l/min]: 17.4

Potencia máx. [kW]: 80 @ VL65°C (tipo 4 HEX)

a máx. Capacidad de extracción

[l/min]: 28.3

Nivel de presión (lado del agua del grifo):

Nivel de presión (lado de alimentación):

PN10

DH PN10, máx. presión diferencial [bar]:

Red CW, mín. presión estática [bar]:

Red DH, máx. temperatura de impulsión [°C]:

95

Tamaño conex. nominal:G¾" (unión, 7x)Conexión eléctrica:230V ACDimensiones H/W/D [mm]:613/530/150Peso [kg]:9.2 (tipo 1 HEX)

9.7 (tipo 2 HEX) 10.3 (tipo 3 HEX) 10.8 (tipo 4 HEX)

Otras estaciones de esta cartera

EvoFlat 4.0 F

Subestación para agua caliente sanitaria y calefacción por radiadores.

EvoFlat 4.0 W

Subestación para agua caliente sanitaria.

EvoFlat 4.0 Four pipe

Subestación para agua caliente sanitaria y calefacción mediante suelo radiante. Especialmente para bombas de calor.

Danfoss Industries S.A. de C.V.

Climate Solutions • danfoss.mx • +52 01 800 953 0088 • sac.mexico@danfoss.com

Cualquier información, incluida, entre otras, la información sobre la selección del producto, su aplicación o uso, el diseño del producto, el peso, las dimensiones, la capacidad o cualquier otro dato técnico presente en los manuales de los productos, descripciones de catálogos, anuncios, etc., independientemente de si se ofrece por escrito, oralmente, electrónicamente, en línea o mediante descarga, se considera información de carácter informativo y solo será vinculante en la medida en que se haga referencia explícita a dicha información en un presupuesto o confirmación de pedido. Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos, videos y otros materiales.

Danfoss se reserva el derecho a modificar sus productos sin previo aviso. Esto también se aplica a los productos solicitados pero no entregados, siempre que dichas alteraciones puedan realizarse sin cambios en la forma, el ajuste o la función del producto.

Todas las marcas comerciales que aparecen en este material son propiedad de Danfoss A/S o de empresas del grupo Danfoss. Danfoss y el logotipo de Danfoss son marcas comerciales de Danfoss A/S. Todos los derechos reservados.