

Data Sheet

EM-PMI540B-T3000

Electric machine, permanent magnet internal

FEATURES

- Synchronous Reluctance assisted Permanent
 Magnet (SRPM) technology
- Extremely compact and robust aluminum frame structure
- Highest efficiency throughout the operation range on the market (~96 %)
- Liquid cooled with water-glycol mixture
- Low coolant flow required
- Allowed coolant temperature up to +65°C
- IP67 enclosure class to maximize reliability
- Multiple mounting possibilities

GENERATOR SPECIFIC FEATURES

- Standard SAE flange mounting to match the diesel engine connection
- Wide selection of speed ratings allowing the generator to be selected to customer specific applications with various voltage requirements
- Can be also used as starter motor for the ICE

MOTOR SPECIFIC FEATURES

- Extended speed and torque capabilities compared to standard PM motors from Danfoss reluctance assisted permanent magnet motor technology
- Motor structure is designed to be able to produce high starting torque: EM-PMI motor can produce instantly full torque to a non-rotating shaft
- Optimized speed range to meet the most common gear ratios used in heavy mobile machinery

GENERAL

The machine is developed especially for demanding applications. The design of these machines makes them smaller, lighter and more efficient than conventional products on the market.

TYPICAL APPLICATIONS

- Generator for diesel-electric/serial hybrid applications
- Traction/propulsion motor
- Generator/motor for parallel hybrid applications

SPECIFICATIONS

General electrical properties	
Nominal voltage (line-to-line)	500 V _{AC}
Voltage stress	IEC 60034-25:2009, Curve A: Without filters for motors up to 500 V _{AC}
Nominal efficiency	96 %
Pole pair number	8
Power supply	Inverter fed
Nominal inverter switching frequency	8 kHz
Minimal inverter switching frequency	4 kHz (with 10 % derated performance)
Maximum phase-to-phase peak-to-peak voltage without du/dt	1.5 kV
Maximum voltage rise time without du/dt	8 kV/μs

Basic information	
Machine type	Synchronous reluctance assisted permanent magnet
Frame material	Frame including coolant circuit: Aluminum 6063 Endshields: AlSi7Mg
Mounting direction	Only horizontal assembly (see user guide for details)
Mounting (IEC 60034-7)	See Table 7
Standard flange D-end (SAE J617)	SAE ½ mating transmission housing
D-end shaft	Male cylindrical shaft, diameter 70 mm h7
Bearing type	Standard: 6216/C3 (with LGHP2 grease) +BIN option: D-end: 6216/C3 (with LGHP2 grease) N-end: 6216/ C3VL0241 (with LGHP2 grease) +BIA option: 6216/C3VL0241 (with LGHP2 grease)
Standard rotation direction	Clockwise (both directions possible)
Protection class	IP67
Duty type (IEC 60034-1)	S1/S9
Machine coating	Coating is optional
Nominal altitude (IEC 60034-1)	Up to 4000 m (see Picture 1 for details)

Mechanical	
Total weight 719.6 kg (+/- 2 %, no options)	
Moment of inertia	7.4 kgm ²
Torsional stiffness of shaft drive end	18*10^5 Nm/rad (130 mm from the end of D-end shaft)
Rotating mass	309 kg
Maximum static torque range on the shaft, max. 25000 cycles, R=0 (*	7500 Nm
Maximum dynamic torque range on the shaft, max. 1e6 cycles, R=0 (*	6000 Nm
Maximum allowed vibratory torque range, 1e91e10 cycles (*	0.3 x nominal torque of machine
Maximum deceleration (fault stop)	1400 rad/s ²

 $^{(*\} The\ values\ are\ based\ on\ structural\ analysis,\ and\ they\ are\ not\ applicable\ to\ any\ marine\ class\ rules\ or\ requirements.$

Dimensions	
Length (frame)	766 mm
Diameter (frame)	600 mm

Cooling			
Cooling liquid Plain water with appropriate corrosive inhibitor (max. 50 % corrol inhibitor)			
Cooling liquid corrosive inhibitor type	Ethylene glycol (Glysantin G48 recommended)		
Cooling method (IEC 60034-6) IC 71 W			
Minimum cooling liquid flow	40 l/min		
Coolant circuit capacity	3.5 l		
Maximum operating pressure	2 bar		
Pressure loss	0.4 bar with 40 l/min (+25°C coolant) (see Picture 2 for details)		
Nominal cooling liquid temperature	+65°C (derating required if exceeded)		
Minimum cooling liquid temperature	-20°C		
Maximum cooling liquid temperature	+70°C		

Temperature rating		
Insulation class (IEC 60034-1) H (+180°C)		
Temperature rise (IEC 60034-1)	+85°C	
Maximum winding temperature	+150°C	
Nominal ambient temperature	+65°C	
Min. ambient temperature	-40°C	

Vibration & Shock tolerance	
3.19 G _{RMS} ISO 16750-3:2023 Mechanical vibration Test XVI - Hybrid-electric/fully electric commercial vehicle, so (vehicle body), large and heavy DUT Note: Test was executed with T4000 machine	
Mechanical shock	50 G ISO 16750-3:2023 4.2.2 Test for devices on rigid points on the body and on the frame Note: Test was executed with T4000 machine

Connections	
Coolant connection	2 x G3/4 bore (see dimension drawing for details)
Cable direction	Cable direction fixed upwards
HV cables	2 x 3 x 95 mm ² max. 4 x 3 x 95 mm ² max.
HV cable glands	Pflitsch blueglobe TRI bg 232ms tri
HV cable recommended type	HUBER+SUHNER Radox Elastomer S, screened, single core, automotive cable (FHLR4GC13X) www.hubersuhner.com
HV cable lug size	70-8, 95-8
Recommended cable lug	70 mm ² : Druseidt with narrow flange 03906 95 mm ² : Druseidt with narrow flange 03910 www.druseidt.de

HV connection boxes	2 x 3 phase box 4 x 3 phase box	
	47 pin DEUTSCH HD34-24-47PE for resolver and temperature	
LV connector	measurement	
	https://www.te.com	
LV connector type	DEUTSCH HD34-24-47PE	
LV connector pin type	Gold plated	
LV mating connector type	DEUTSCH HD36-24-47SE or	
	DEUTSCH HD36-24-47SE-059 (**	
	DEUTSCH 0462-201-1631	
LV mating connector pin type	DEUTSCH 0462-005-2031	
	Plug: DEUTSCH 0413-204-2005 (size 20)	
	Plug: DEUTSCH 0413-003-1605 (size 16)	
LV connector pin configuration	See Table 1 and Table 2	
	Type: Externally excited SIN/COS resolver	
	Pole pair number 8	
	Input 7 V	
Angle/Speed sensor	Frequency 10 kHz	
	Output 2 V +/- 0.2 V	
	Input impedance 80 +/- 16 Ohm	
	Output impedance 380 +/- 76 Ohm	
Anti-condensation heater (+HEAT2 option)	2 x 130 W 230 V _{AC} single phase heater resistors	
	Hummel art no. 7651 0 51 01 D (combination of housing 7651 0 00 00 0,	
Heater connector (+HEAT2 option)	insert 7084 9 51 10 1 / 7084 9 51 12 1, crimp pins 7010 9 42 01 1)	
	https://www.hummel.com	
Heater mating connector	Hummel art no. 7550 6 51 02 D (combination of housing 7550 6 00 00 0, insert 7084 9 51 10 2 / 7084 9 51 12 2, crimp socket 7010 9 42 00 2)	
Heater connector pin type	Hummel art. no. 7010 9 42 01 1	
Heater connector pin configuration	See Table 5	
	D-end: 4-pin M12 A coded male	
Bearing temp. measurement connector type	N-end: DEUTSCH HD34-24-47PE	
Positing town mossurement mating true	D-end: 4-pin M12 A coded female	
Bearing temp. measurement mating type	N-end: DEUTSCH HD36-24-47SE or DEUTSCH HD36-24-47SE-059	
Bearing temp. measurement connector pin configuration	See Table 1, Table 2 and Table 6	

^{(**} Connector IP-rating of IP67 is reached only when connector mating part is installed and all unused pin holes are plugged in the connector mating part with the following plugs, depending on the hole size: DEUTSCH 0413-003-1605 (size 16) or DEUTSCH 0413-204-2005 (size 20). For further information, contact the connector manufacturer TE connectivity directly.

Description		PIN	Option
Tanana anatama 1	phase U1, main sensor, PT100 (P)	47	
Temperature 1	phase U1, main sensor, PT100 (N)	46	
Temperature 2	phase V1, main sensor, PT100 (P)	33	
	phase V1, main sensor, PT100 (N)	32	
	phase W1, main sensor, PT100 (P)	45	
Temperature 3	phase W1, main sensor, PT100 (N)	31	
T 4	phase U2, main sensor, PT100 (P)	30	
Temperature 4	phase U2, main sensor, PT100 (N)	29	
T	phase V2, main sensor, PT100 (P)	44	
Temperature 5	phase V2, main sensor, PT100 (N)	43	
T	phase W2, main sensor, PT100 (P)	28	
Temperature 6	phase W2, main sensor, PT100 (N)	16	
T	phase U1, spare sensor, PT100 (P)	42	TEMPE
Temperature 7	phase U1, spare sensor, PT100 (N)	27	+TEMP5
T	phase V1, spare sensor, PT100 (P)	15	TEMPS
Temperature 8	phase V1, spare sensor, PT100 (N)	14	+TEMP5
	phase W1, spare sensor, PT100 (P)	40	
Temperature 9	phase W1, spare sensor, PT100 (N)	26	+TEMP5
	phase U2, spare sensor, PT100 (P)	41	
Temperature 10	phase U2, spare sensor, PT100 (N)	13	+TEMP5
T	phase V2, spare sensor, PT100 (P)	39	TEMPS
Temperature 11	phase V2, spare sensor, PT100 (N)	38	+TEMP5
T	phase W2, spare sensor, PT100 (P)	25	TEMPE
Temperature 12	phase W2, spare sensor, PT100 (N)	12	+TEMP5
Resolver COS	Resolver, RES_COS_N, Inbuilt non-contacting	35	
Resolver COS	Resolver, RES_COS_P, Inbuilt non-contacting	20	
Resolver SIN	Resolver, RES_SIN_N, Inbuilt non-contacting	36	
Resolver SIN	Resolver, RES_SIN_P, Inbuilt non-contacting	21	
Resolver EXCN	Resolver, EXCN, Inbuilt non-contacting	22	
Resolver EXCP	Resolver, EXCP, Inbuilt non-contacting	10	
Resolver shield	Resolver, SHIELD/GROUND, Inbuilt non-contacting	34	
Resolver2 COS	Resolver 2, RES_COS_N, Inbuilt non-contacting	37	+RES2
Resolver2 COS	Resolver 2, RES_COS_P, Inbuilt non-contacting	24	+RES2
Resolver2 SIN	Resolver 2, RES_SIN_N, Inbuilt non-contacting	23	+RES2
Resolver2 SIN	Resolver 2, RES_SIN_P, Inbuilt non-contacting	11	+RES2
Resolver2 EXCN	Resolver 2, EXCN, Inbuilt non-contacting	9	+RES2
Resolver2 EXCP	Resolver 2, EXCP, Inbuilt non-contacting	8	+RES2
Resolver2 shield	Resolver 2, SHIELD/GROUND, Inbuilt non-contacting	4	+RES2
Bearing temperature, sensor 1	PT100	2	
Bearing temperature, sensor 1	PT100_GND	18	
Bearing temperature, sensor 2	PT100	3	
Bearing temperature, sensor 2	PT100_GND	19	

Table 1 Pin configuration of LV-connector (+DUAL)

	LV-connector 1		
	Description	PIN	Option
Tomporaturo 1	phase U1, main sensor, PT100 (P)	47	
Temperature 1	phase U1, main sensor, PT100 (N)	46	
Temperature 2	phase V1, main sensor, PT100 (P)	33	
	phase V1, main sensor, PT100 (N)	32	
	phase W1, main sensor, PT100 (P)	45	
Temperature 3	phase W1, main sensor, PT100 (N)	31	
	phase U2, main sensor, PT100 (P)	30	
Temperature 4	phase U2, main sensor, PT100 (N)	29	
	phase V2, main sensor, PT100 (P)	44	
Temperature 5	phase V2, main sensor, PT100 (N)	43	
	phase W2, main sensor, PT100 (P)	28	
Temperature 6	phase W2, main sensor, PT100 (N)	16	
	phase U3, main sensor, PT100 (P)	42	
Temperature 7	phase U3, main sensor, PT100 (N)	27	
	phase V3, main sensor, PT100 (P)	15	
Temperature 8	phase V3, main sensor, PT100 (N)	14	
	phase W3, main sensor, PT100 (P)	40	
Temperature 9	phase W3, main sensor, PT100 (N)	26	
_	phase U4, main sensor, PT100 (P)	41	
Temperature 10	phase U4, main sensor, PT100 (N)	13	
	phase V4, main sensor, PT100 (P)	39	
Temperature 11	phase V4, main sensor, PT100 (N)	38	
	phase W4, main sensor, PT100 (P)	25	
Temperature 12	phase W4, main sensor, PT100 (N)	12	
Resolver COS	Resolver, RES_COS_N, Inbuilt non-contacting	35	
Resolver COS	Resolver, RES_COS_P, Inbuilt non-contacting	20	
Resolver SIN	Resolver, RES_SIN_N, Inbuilt non-contacting	36	
Resolver SIN	Resolver, RES_SIN_P, Inbuilt non-contacting	21	
Resolver EXCN	Resolver, EXCN, Inbuilt non-contacting	22	
Resolver EXCP	Resolver, EXCP, Inbuilt non-contacting	10	
Resolver shield	Resolver, SHIELD/GROUND, Inbuilt non-contacting	34	
Resolver2 COS	Resolver 2, RES_COS_N, Inbuilt non-contacting	37	+RES2
Resolver2 COS	Resolver 2, RES_COS_P, Inbuilt non-contacting	24	+RES2
Resolver2 SIN	Resolver 2, RES_SIN_N, Inbuilt non-contacting	23	+RES2
Resolver2 SIN	Resolver 2, RES_SIN_P, Inbuilt non-contacting	11	+RES2
Resolver2 EXCN	Resolver 2, EXCN, Inbuilt non-contacting	9	+RES2
Resolver2 EXCP	Resolver 2, EXCP, Inbuilt non-contacting	8	+RES2
Resolver2 shield	Resolver 2, SHIELD/GROUND, Inbuilt non-contacting	4	+RES2
Bearing temperature, sensor 1	PT100	2	
Bearing temperature, sensor 1	PT100_GND	18	
Bearing temperature, sensor 2	PT100	3	
Bearing temperature, sensor 2	PT100_GND	19	
J	LV-connector 2		
	Description	PIN	Option
Towns and we 12	phase U1, spare sensor, PT100 (P)	47	. TEMAS
Temperature 13	phase U1, spare sensor, PT100 (N)	46	+TEMP5

Temperature 14	phase V1, spare sensor, PT100 (P)	33	+TEMP5	
	phase V1, spare sensor, PT100 (N)	32	+1EIVIP3	
Temperature 15	phase W1, spare sensor, PT100 (P)	45	+TEMP5	
	phase W1, spare sensor, PT100 (N)	31	TIEMPS	
T 16	phase U2, spare sensor, PT100 (P)	30	+TEMP5	
Temperature 16	phase U2, spare sensor, PT100 (N)	29	+TEIMP3	
Tomanovatura 17	phase V2, spare sensor, PT100 (P)	44	TEMPE	
Temperature 17	phase V2, spare sensor, PT100 (N)	43	+TEMP5	
Temperature 18	phase W2, spare sensor, PT100 (P)	28	+TEMP5	
Temperature 18	phase W2, spare sensor, PT100 (N)	16	+TEIMP3	
T	phase U3, spare sensor, PT100 (P)	42	TEMPE	
Temperature 19	phase U3, spare sensor, PT100 (N)	27	+TEMP5	
Tomorovatura 20	phase V3, spare sensor, PT100 (P)	15	+TEMP5	
Temperature 20	phase V3, spare sensor, PT100 (N)	14	+ I EIVIPS	
Tomorovatura 21	phase W3, spare sensor, PT100 (P)	40	TEMPE	
Temperature 21	phase W3, spare sensor, PT100 (N)	26	+TEMP5	
Tommovatura 22	phase U4, spare sensor, PT100 (P)	41	+TEMP5	
Temperature 22	phase U4, spare sensor, PT100 (N)	13	T +TEMIPS	
	phase V4, spare sensor, PT100 (P)	39	TEMPE	
Temperature 23	phase V4, spare sensor, PT100 (N)	38	+TEMP5	
Tomorovoturo 24	phase W4, spare sensor, PT100 (P)	25	TEMPE	
Temperature 24	phase W4, spare sensor, PT100 (N)	12	+TEMP5	

Table 2 Pin configuration of LV-connectors (+QUAD)

Measurement	Description	PIN	Option						
	N-END								
HEAT	Heater, ground / protective earth	1 🖶	+HEAT						
HEAT	Heater, neutral	2	+HEAT						
HEAT	Heater, phase, 230 V _{AC}	3	+HEAT						
Resolver shield	Resolver, SHIELD/GROUND, Inbuilt non-contacting	4 ≟	+RES1						
Resolver COS	Resolver, RES_COS_N, Inbuilt non-contacting	5	+RES1						
Resolver COS	Resolver, RES_COS_P, Inbuilt non-contacting	6	+RES1						
Resolver SIN	Resolver, RES_SIN_N, Inbuilt non-contacting	7	+RES1						
Resolver SIN	Resolver, RES_SIN_P, Inbuilt non-contacting	8	+RES1						
Resolver EXCN	Resolver, EXCN, Inbuilt non-contacting	9	+RES1						
Resolver EXCP	Resolver, EXCP, Inbuilt non-contacting	10	+RES1						
Tomorovature 1	phase U1, main sensor, T100 (P)	11							
Temperature 1	phase U1, main sensor, PT100 (N)	12							
Tomorovature 3	phase V1, main sensor, PT100 (P)	13							
Temperature 2	phase V1, main sensor, PT100 (N)	14							
Tomorovature 2	phase W1, main sensor, PT100 (P)	15							
Temperature 3	phase W1, main sensor, PT100 (N)	16							
Tomorovaturo 4	phase U2, main sensor, PT100 (P)	17							
Temperature 4	phase U2, main sensor, PT100 (N)	18							
T	phase V2, main sensor, PT100 (P)	19							
Temperature 5	phase V2, main sensor, PT100 (N)	20							
Tomporaturo 6	phase W2, main sensor, PT100 (P)	21							
Temperature 6	phase W2, main sensor, PT100 (N)	22							
Temperature 7	phase U1, spare sensor, PT100 (P)	23	+TEMP5						

	phase U1, spare sensor, PT100 (N)	24	
emperature 8	phase V1, spare sensor, PT100 (P)	25	+TEMP5
- inperature o	phase V1, spare sensor, PT100 (N)	26	112.11.13
Temperature 9	phase W1, spare sensor, PT100 (P)	27	+TEMP5
remperature y	phase W1, spare sensor, PT100 (N)	28	112.00.5
Temperature 10	phase U2, spare sensor, PT100 (P)	29	+TEMP5
	phase U2, spare sensor, PT100 (N)	30	
Femperature 11	phase V2, spare sensor, PT100 (P)	31	+TEMP5
	phase V2, spare sensor, PT100 (N)	32	
Геmperature 12	phase W2, spare sensor, PT100 (P)	33	+TEMP5
	phase W2, spare sensor, PT100 (N)	34	
ГЕМР	N/A	27	
ГЕМР	N/A	28	
ГЕМР	N/A	29	
TEMP	N/A	30	
ЕМР	N/A	31	
TEMP	N/A	32	
ГЕМР	N/A	33	
ГЕМР	N/A	34	
ГЕМР	N/A	35	
ГЕМР	N/A	36	
ГЕМР	N/A	37	
ГЕМР	N/A	38	
ГЕМР	N/A	39	
ГЕМР	N/A	40	
ГЕМР	N/A	41	
ГЕМР	N/A	42	
ГЕМР	N/A	43	
ГЕМР	N/A	44	
ГЕМР	N/A	45	
ГЕМР	N/A	46	
ГЕМР	N/A	47	
ГЕМР	N/A	48	
ГЕМР	N/A	49	
ГЕМР	N/A	50	
ГЕМР	N/A	51	
ГЕМР	N/A	52	
ГЕМР	N/A	53	
ГЕМР	N/A	54	
ГЕМР	N/A	55	
ГЕМР	N/A	56	
ГЕМР	N/A	57	
ГЕМР	N/A	58	
Bearing temperature, sensor 1	PT100	59	+BTMP
Bearing temperature, sensor 1	PT100_GND	60	+BTMP
Bearing temperature, sensor 2	PT100	61	+BTMP
Bearing temperature, sensor 2	PT100_GND	62	+BTMP
Reserve		63	

Reserve		64					
Reserve		65					
Reserve		66					
Resolver2 shield	Resolver 2, SHIELD/GROUND, Inbuilt non-contacting	67	+RES2				
Resolver2 COS	Resolver 2, RES_COS_N, Inbuilt non-contacting	68	+RES2				
Resolver2 COS	Resolver 2, RES_COS_P, Inbuilt non-contacting	69	+RES2				
Resolver2 SIN	Resolver 2, RES_SIN_N, Inbuilt non-contacting	70	+RES2				
Resolver2 SIN	Resolver 2, RES_SIN_P, Inbuilt non-contacting						
Resolver2 EXCN	olver2 EXCN Resolver 2, EXCN, Inbuilt non-contacting						
Resolver2 EXCP	Resolver 2 EXCP Resolver 2, EXCP, Inbuilt non-contacting						
	D-END 1/2						
Bearing temperature, sensor 1	PT100	74	+BTMP				
Bearing temperature, sensor 1	PT100_GND	75	+BTMP				
Bearing temperature, sensor 2	PT100	76	+BTMP				
Bearing temperature, sensor 2	PT100_GND	77	+BTMP				
D-END 2/2							
HEAT2	Heater 2, ground / protective earth	78	+HEAT2				
HEAT2	Heater 2, neutral	79	+HEAT2				
HEAT2	Heater 2, phase, 230 V _{AC}	80	+HEAT2				

Table 3 Pin configuration of +LVB connection (+DUAL)

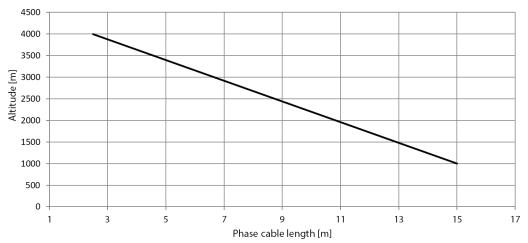
Measurement	Description	PIN	Option					
N-END								
HEAT	Heater, ground / protective earth	1 ≟	+HEAT					
HEAT	Heater, neutral	2	+HEAT					
HEAT	Heater, phase, 230 V _{AC}	3	+HEAT					
Resolver shield	Resolver, SHIELD/GROUND, Inbuilt non-contacting	4 ≟	+RES1					
Resolver COS	Resolver, RES_COS_N, Inbuilt non-contacting	5	+RES1					
Resolver COS	Resolver, RES_COS_P, Inbuilt non-contacting	6	+RES1					
Resolver SIN	Resolver, RES_SIN_N, Inbuilt non-contacting	7	+RES1					
Resolver SIN	Resolver, RES_SIN_P, Inbuilt non-contacting	8	+RES1					
Resolver EXCN	Resolver, EXCN, Inbuilt non-contacting	9	+RES1					
Resolver EXCP	Resolver, EXCP, Inbuilt non-contacting	10	+RES1					
T1	phase U1, main sensor, PT100 (P)	11						
Temperature 1	phase U1, main sensor, PT100 (N)	12						
T	phase V1, main sensor, PT100 (P)	13						
Temperature 2	phase V1, main sensor, PT100 (N)	14						
Toman ovature 2	phase W1, main sensor, PT100 (P)	15						
Temperature 3	phase W1, main sensor, PT100 (N)	16						
Tampagatura 4	phase U2, main sensor, PT100 (P)	17						
Temperature 4	phase U2, main sensor, PT100 (N)	18						
T	phase V2, main sensor, PT100 (P)	19						
Temperature 5	phase V2, main sensor, PT100 (N)	20						
Tamana matuma 6	phase W2, main sensor, PT100 (P)	21						
Temperature 6	phase W2, main sensor, PT100 (N)	22						
Toman ovature 7	phase U3, spare sensor, PT100 (P)	23						
Temperature 7	phase U3, spare sensor, PT100 (N)	24						
Temperature 8	phase V3, spare sensor, PT100 (P)	25						
remperature 8	phase V3, spare sensor, PT100 (N)	26						

Tamanaratura O	phase W3, spare sensor, PT100 (P)	27	
Temperature 9	phase W3, spare sensor, PT100 (N)	28	
Tamparatura 10	phase U4, spare sensor, PT100 (P)	29	
Temperature 10	phase U4, spare sensor, PT100 (N)	30	
Tomonovatura 11	phase V4, spare sensor, PT100 (P)	31	
Temperature 11	phase V4, spare sensor, PT100 (N)	32	
T	phase W4, spare sensor, PT100 (P)	33	
Temperature 12	phase W4, spare sensor, PT100 (N)	34	
T12	phase U1, spare sensor, PT100 (P)	35	TEMPE
Temperature 13	phase U1, spare sensor, PT100 (N)	36	+TEMP5
Tamanamatuwa 14	phase V1, spare sensor, PT100 (P)	37	TEMPE
Temperature 14	phase V1, spare sensor, PT100 (N)	38	+TEMP5
T	phase W1, spare sensor, PT100 (P)	39	TEMPE
Temperature 15	phase W1, spare sensor, PT100 (N)	40	+TEMP5
T 1.46	phase U2, spare sensor, PT100 (P)	41	TEMPS
Temperature 16	phase U2, spare sensor, PT100 (N)	42	+TEMP5
T	phase V2, spare sensor, PT100 (P)	43	. TELLOS
Temperature 17	phase V2, spare sensor, PT100 (N)	44	+TEMP5
	phase W2, spare sensor, PT100 (P)	45	
Temperature 18	phase W2, spare sensor, PT100 (N)	46	+TEMP5
	phase U3, spare sensor, PT100 (P)	47	
Temperature 19	phase U3, spare sensor, PT100 (N)	48	+TEMP5
	phase V3, spare sensor, PT100 (P)	49	
Temperature 20	phase V3, spare sensor, PT100 (N)	50	+TEMP5
T	phase W3, spare sensor, PT100 (P)	51	. TELLOS
Temperature 21	phase W3, spare sensor, PT100 (N)	52	+TEMP5
T	phase U4, spare sensor, PT100 (P)	53	TEMPS
Temperature 22	phase U4, spare sensor, PT100 (N)	54	+TEMP5
T	phase V4, spare sensor, PT100 (P)	55	TEMPE
Temperature 23	phase V4, spare sensor, PT100 (N)	56	+TEMP5
T . 24	phase W4, spare sensor, PT100 (P)	57	TEMPS
Temperature 24	phase W4, spare sensor, PT100 (N)	58	+TEMP5
Bearing temperature, sensor 1	PT100	59	+BTMP
Bearing temperature, sensor 1	PT100_GND	60	+BTMP
Bearing temperature, sensor 2	PT100	61	+BTMP
Bearing temperature, sensor 2	PT100_GND	62	+BTMP
Reserve		63	
Reserve		64	
Reserve		65	
Reserve		66	
Resolver2 shield	Resolver 2, SHIELD/GROUND, Inbuilt non-contacting	67	+RES2
Resolver2 COS	Resolver 2, RES_COS_N, Inbuilt non-contacting	68	+RES2
Resolver2 COS	Resolver 2, RES_COS_P, Inbuilt non-contacting	69	+RES2
Resolver2 SIN	Resolver 2, RES_SIN_N, Inbuilt non-contacting	70	+RES2
Resolver2 SIN	Resolver 2, RES_SIN_P, Inbuilt non-contacting	71	+RES2
Resolver2 EXCN	Resolver 2, EXCN, Inbuilt non-contacting	72	+RES2
Resolver2 EXCP	Resolver 2, EXCP, Inbuilt non-contacting	73	+RES2
	D-END 1/2	ı	1

Bearing temperature, sensor 1	PT100	74	+BTMP					
Bearing temperature, sensor 1	PT100_GND	75	+BTMP					
Bearing temperature, sensor 2	PT100	76	+BTMP					
Bearing temperature, sensor 2	PT100_GND	77	+BTMP					
	D-END 2/2							
HEAT2	Heater 2, ground / protective earth	78	+HEAT2					
HEAT2	Heater 2, neutral	79	+HEAT2					
HEAT2	Heater 2, phase, 230 V _{AC}	80	+HEAT2					

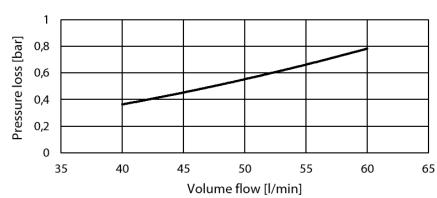
Table 4 Pin configuration of +LVB connection (+QUAD)

PIN	Description
1	Phase, 230 V _{AC}
2	Neutral
Ţ	Ground/protective earth
4	Reserve
5	Reserve


Table 5 Pin configuration of heater

PIN	Description
1	PT100, sensor 1
2	PT100_GND, sensor 1
3	PT100, sensor 2
4	PT100_GND, sensor 2

 $Table\ 6\ Pin\ configuration\ of\ bearing\ temperature\ sensor\ connector\ (one\ two-wire\ PT100\ sensor)\ in\ D-end$



ALLOWED ALTITUDES VS PHASE CABLE LENGTH

Picture 1 Allowed altitudes vs phase cable length

PRESSURE LOSS VS COOLANT FLOW

Picture 2 Pressure loss vs coolant flow

	Mount	ing			Sh	IEC60034-7			
	Foot	Side/V	Flange	D-end	Dual-end	Spline	Cylindrical	Code I	Code II
	\square							B35	IM2001
		Ø						B25	IM2401
							Ø	B35	IM2001
Horizontal		Ø	\square					B25	IM2401
		Ø						B20	IM1101
								В3	IM1001
		Ø		Ø			Ø	B20	IM1101
	Ø			Ø			Ø	В3	IM1001

Table 7 Mounting method

MOTORS

	Coolant temperature +65°C			Coolant temperature +40°C			Coolant temperature +40 / +65°C			
Туре	Cont. Torque [Nm]	Cont. Power [kW]	Nom. Current [A]	Cont. Torque [Nm]	Cont. Power [kW]	Nom. Current [A]	Nom. speed [rpm]	Max. speed [rpm]	Peak torque DUAL <i>(a</i>	Peak torque QUAD (b
EM-PMI540B-T3000-1300	2900	395	486	3383	461	569	1300	2600	3914	5940
EM-PMI540B-T3000-1500	2669	419	546	2991	470	609	1500	3000	3350	4560
EM-PMI540B-T3000-2000	2297	481	601	2784	583	732	2000	4000 (c	2700	4240
EM-PMI540B-T3000-2400	1900	480	681	2460	619	877	2400	4000 (c	-	4050

⁽a Peak torque achieved with two 350A inverters

The maximum allowed peak torque duration at stator winding starting temperature $+90^{\circ}$ C is 7 minutes. The given values indicate typical duration and are not verified. In case more accurate values are required, cyclic dimensions are needed.

GENERATORS

	Cool	ant tempe	erature +6	5°C	Coolant temperature +40°C				Coolant temperature +40 / +65°C		
Туре	Apparent power [kVA]	Cont. power [kW]	Nom. Current [A]	Power factor	Apparent power [kVA]	Cont. Power [kW]	Nom. Current [A]	Power factor	Nom. speed [rpm]	Nom. Freq. [Hz]	Volt/ speed ratio [V _{AC} /rpm] (d
EM-PMI540B-T3000-1300	420	415	483	0.99	490	480	565	0.98	1400	187	0.409
EM-PMI540B-T3000-1500	466	443	540	0.95	522	495	585	0.99	1600	213	0.341
EM-PMI540B-T3000-2000	507	497	592	0.98	607	599	704	0.99	2100	280	0.272
EM-PMI540B-T3000-2400	487	471	598	0.96	667	631	804	0.95	2600	347	0.204

(d Back EMF for cold (+20°C) generator

PRODUCT CODE AND OPTIONS

Use product code including all needed options for ordering. Standard options are not given with the code as they are selected by default if a non-standard option is not selected. Standard options are indicated by a star (*).

Product code	Description
EM-PMI540B-T3000-1500-DUAL	Standard 1500 rpm unit with standard options
EM-PMI540B-T3000-1500-DUAL+BIA+RES1	Standard unit with insulated bearings and resolver

Table 8 Product code examples

⁽b Peak torque achieved with four 350A inverters

⁽c Mechanical maximum speed

Variant	Code	Description	Additional information
High voltage connections	-DUAL	Two galvanically isolated 3 phase systems	1 x M32 cable gland per phase
	-QUAD	Four galvanically isolated 3 phase systems	1 x M32 cable gland per phase
Low voltage connections (signal and auxiliaries)	*	Low voltage connections done with connector	See Connections – section of the data sheet
	+LVB1	Low voltage connections done with connection box and terminal strip	D-end: LV connection box with 1 x M16 cable gland + terminal strips
			N-end: LV connection box with 1 x M25, 2 x M16 and 1 x M12 cable glands + terminal strips
			(see user guide for pinout)
Drive-end shaft	*	Male shaft, cylindrical	Cylindrical shaft, diameter 70 mm h7
	+S3	Male shaft, spline	DIN 5480 W70x2x30x34x8f
N-end attachment	*	None	
	+NE4 (***	Male shaft, no flange	Cylindrical shaft, diameter 70 mm h7 (standard) DIN 5480 W70x2x30x34x8f (+S3)
Foot mounting	*	None	
	+FM1	Foot	Foot mounting, shaft height 315 mm
Bearing insulation	*	Non-insulated bearings	Non-insulated bearings
	+BIN	Insulated bearing in N-end	Insulated bearing in N-end
	+BIA	Insulated bearing in both ends	Insulated bearing in both ends
Shaft grounding	*	None	
	+SG1	D-end shaft grounding	Inbuilt grounding ring
Rotation sensor	*	None	No resolver
	+RES1	Resolver	Inbuilt non-contacting resolver, 8-pole pair
	+RES2	Double resolver	Inbuilt non-contacting resolver, 8-pole pair
Winding temperature sensors	*	Temperature surveillance	DUAL: 6 x PT100 in windings
			QUAD: 12 x PT100 in windings
	+TEMP5	Redundant temperature surveillance	DUAL: 12 x PT100 in windings QUAD: 24 x PT100 in windings
Bearing temperature sensors	*	None	
	+BTMP1	PT100 in bearings	Plugin connector
Anti-condensation heaters	*	None	
	+HEAT2	Two anti-condensation heaters	2 x 230 V _{AC} /130 W (see user guide for more information)
Machine coating	*	None	
	+C5	High corrosion category	Dark grey RAL7024
			Type of coating: Epoxy
			Minimum number of coats (MNOC): 2
			Minimum nominal dry film thickness: 240 μm

^{(*} Standard option

Table 9 Option list

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

^{(***} Option not currently launched. Standard delivery time extended.