데이터 시트

다기능 온도 조절 순환 밸브 MTCV - 저연

MTCV는 순환 기능이 있는 가정용 온수 설비에 사용 되는 다기능 온도 조절 밸런싱 밸브입니다.

MTCV는 시스템의 온도를 일정하게 유지하여 온수 설비의 열 균형을 제공하므로 순환 배관의 유량을 필 요 최소 수준으로 제한합니다.

음용수 품질에 대한 증가하는 요구를 충족하기 위해 Danfoss MTCV 밸브는 내부식성 및 저연 소재로 제 작됩니다.

- rg5 청동 소재로 제작된 밸브 몸통저연 소재로 제작된 구성품
- 첨단 엔지니어링 폴리머 POM-C로 제작된 메인 콘.

동시에 MTCV는 두 가지 기능을 통해 소독 공정을 구 현할 수 있습니다.

- 자동 (자체 작동) 소독 모듈 열 소자(그림 2).
- 열동식 TWA 및 온도 센서 PT1000이 장착된 전자 제어기(그림 3).

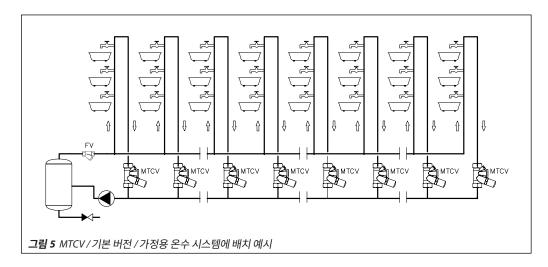
MTCV의 주요 기능

- 35 60°C 온도 범위 내에서 온수 시스템의 온도 조절 밸런싱 - 버전 "A".
- 온도가 75℃ 이상으로 상승하는 것을 방지하기 위 해 설비의 안전 보호 기능으로 68℃ 이상의 온도 에서 자동(자체 작동) 열 소독(순환 유량 자동 차 단) - 버전 "B".
- 전자적으로 제어되는 자동 소독 공정, 소독 온도 및 지속 시간 프로그래밍 가능 - 버전 "C".
- 온도 설정을 일시적으로 낮추어 MTCV 밸브를 완 전히 열어 최대 유량을 확보함으로써 시스템을 자 동 세척합니다.
- 온도 측정 가능.
- 원치 않는 조작 방지.
- 지속적인 온도 측정 및 모니터링 버전 "C". 볼 밸브가 내장된 옵션 피팅을 통한 순환 입상관 의 차단 기능.
- 가압 조건에서 작동 중에도 MTCV 밸브의 모듈식 업그레이드 가능.
- 서비스 필요한 경우 보정된 열 소자를 교체할 수 있습니다.

기능

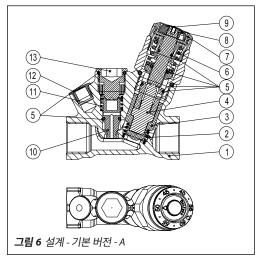
MTCV는 자동 온도 조절식 비례 밸브입니다. 열 소자 (그림 6 소자 4)가 밸브 콘(그림 6 소자 3)에 배치되어 온도 변화에 반응합니다.

수온이 설정포인트 이상으로 상승하면 열 소자가 팽 창하고 밸브의 콘이 밸브 시트 쪽으로 이동하여 순환 유량을 제한합니다.


수온이 설정포인트 이하로 내려가면 열 소자가 밸브 를 열어 순환 배관에 더 많은 유량을 허용합니다. 수 온이 밸브에 설정된 값에 도달하면 밸브는 평형 상태 (공칭 유량 = 계산된 유량)가 됩니다.

MTCV 조절 특성은 그림 13, 버전 A에 나와 있습니다.

수온이 설정포인트보다 5°C 높으면 밸브를 통한 유량 이 중단됩니다.


열 소자의 특수 실링은 용수와의 직접적인 접촉으로 부터 보호하여 열 소자의 내구성을 연장하는 동시에 정밀한 조절을 보장합니다.

안전 스프링(그림 6 소자 6)은 수온이 설정포인트를 초과할 때 열 소자가 손상되지 않도록 보호합니다.

설계

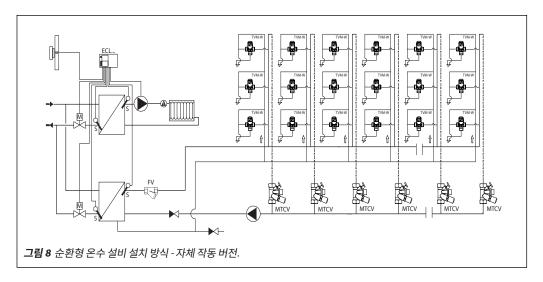
- 1. 밸브 몸통
- 2. 스프링
- 3. 콘 4. 열소자
- 5. 0-링
- 안전 스프링 6.
- 설정 링 7. 8. 설정 노브
- 9. 설정 가림용 플러그
- 10. 소독 모듈용 콘
- **11.** 안전 스프링
- 12. 온도계용 플러그
- 13. 소독 모듈용 플러그

2 | © Danfoss | 2025.06 Al289439150822ko-000302

기능

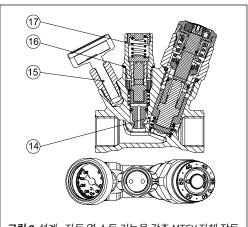
그림 7 자동 열 소독 기능이 있는 MTCV 자동 작동 버전 - B *온도계는 부속품임

MTCV 표준 버전 - A는 온수 시스템에 레지오넬라균에 대 열 소독 기능으로 쉽고 빠르게 업그레이드할 수 있습니다.


소독 플러그에서 플러그를 제거한 후(그림 6 소자 13)-(이 작업은 가압 조건에서 작동 중에도 수행할 수 있 음) 자동 온도 조절 소독 모듈을 장착할 수 있습니다 (그림 9 소자 17). 소독 모듈은 조절 특성에 따라 유량을 제어하여(그림 13, 버전 B) 온수 설비의 열 소독을 수행합니다.

장착된 소독 모듈은 자동으로 Kv min = 0.15 m³/h의 바이패스를 열어 소독을 위한 유량을 허용합니다. MTCV의 A버전에서는 먼지와 칼슘의 침전을 방지하기 위해 이 바이패스가 항상 닫혀 있습니다. 따라서바이패스가 막힐 위험 없이 A 버전에서 장시간 작업한 후에도 소독 모듈을 사용하여 MTCV를 업그레이드할 수 있습니다.

기본 버전 A의 조절 모듈은 35-60°C 온도 범위 내에 서 작동합니다. 온수 온도가 65°C 이상으로 상승하면 소독 공정이 시작되며, 이는 MTCV 밸브의 메인 시트 를 통과하는 유량이 멈추고 바이패스가 열리면서 "소 독 유량"이 시작됨을 의미합니다. 이제 조절 기능은 소독 모듈에 의해 수행되며, 온도가 65°C 이상일 때 바이패스가 열립니다.


소독 공정은 온도가 70°C에 도달할 때까지 수행됩니다. 온수 온도가 더 높아지면 소독 바이패스를 통과하는 유량이 감소하고(소독 중 설비의 열 균형을 맞추는 공정), 75°C에 도달하면 유량이 멈춥니다. 이는 칼슘의 부식과 침전으로부터 온수 설비를 보호하고 화상의 위험을 낮추기 위한 것입니다.

온도계는 순환 온수의 온도를 측정하고 제어하기 위 해 버전 A와 B 모두에 선택적으로 장착할 수 있습니다.

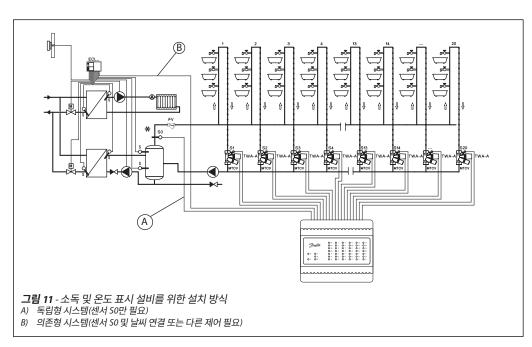
설계

- 1-13 그림 6의 설명과 같음
- 14 소독용 바이패스
- 15 온도계
- 16 가스켓 Cu
- 17 소독 모듈

그림 9 설계 - 자동 열 소독 기능을 갖춘 MTCV 자체 작동 버전 - B

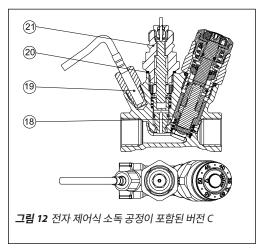
Al289439150822ko-000302

기능


MTCV 버전 "A" 및 "B"는 전자 제어식 소독 공정(버전 C)으로 업그레이드할 수 있습니다.

소독 플러그를 제거한 후(그림 6 소자 13) 어댑터를 장착할 수 있고(그림 12 소자 21) 열동식 액추에이터 TWA를 장착할 수 있습니다. 온도 센서 PT 1000은 온도계 헤드에 장착해야 합니다(그림 12 소자 19).

열동식 액추에이터와 센서는 각 순환 입상관에서 효율적이고 효과적인 소독 공정을 가능하게 하는 전자 제어기 CCR2+에 연결됩니다. 메인 조절 모듈은 35~60°C의 온도 범위 내에서 작동합니다. 소독 공정/열수 처리가 시작되면 CCR2+는 열동식 액추에이터 TWA를 통해 MTCV를 통과하는 요량을 제


소독 공정/열수 처리가 시작되면 CCR2+는 열동식 액 추에이터 TWA를 통해 MTCV를 통과하는 유량을 제 어합니다. CCR2+를 통한 전자 제어 소독 공정의 이점 은 다음과 같습니다.

- 각 개별 입상관의 소독 공정 완벽 제어 가능.
- 총 소독 시간 최적화.
- 소독 온도 선택 가능.
- 소독 시간 선택 가능.
- 각 개별 입상관의 수온을 온라인으로 측정 및 모니터링.
- 난방 온수기 또는 보일러실의 제어기(예: 댄포스 ECL) 또는 BMS(Modbus)에 연결 가능.

설계

- 1-13 그림 6의 설명과 같음 18 바이패스; (닫힘 위치)
- **19** 온도 센서 PT 1000
- 20 가스켓 Cu
- 21 열동식 액추에이터 TWA 연결 어댑터

4 | © Danfoss | 2025.06 Al289439150822ko-000302

기술 데이터

최대 작동 압력. 10 bar 시험 압력 16 bar 최대 유체 온도 100 °C 20°C 기준 k/s: - DN20 1.8 m³/h - DN15 1.5 m³/h 히스테리시스 1.5 K

 물과 접촉하는 부품의 소재:

 밸브 본체: 기본
 Rg5

 PURE(< 0.1% 납)</td>
 Rg+

 스프링 하우징 등
 Cuphin 합금 (CW724R)

 O-링
 EPDM

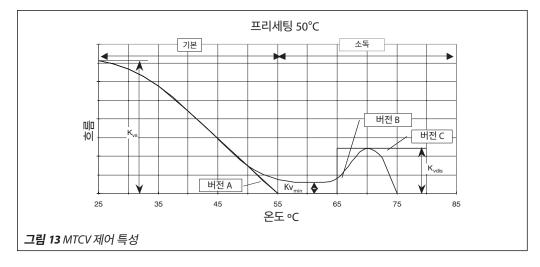
 스프링, 바이패스 콘
 스테인리스강

 콘
 POM-C(아세탈 호모폴리머)

주문

밸브 - 기본 버전 A	코드 번호
DN 15	003Z4515
DN 20	003Z4520

밸브 - PURE 버전 A	코드 번호
DN 15	003Z6515
DN 20	003Z6520


부속품 및 예비 부품

부속품		비고	코드 번호
으도 조절 소독 모듈 - B		DN 15/DN 20	003Z2021
차단_볼_밸브가 있는 피팅		G ½ × Rp ½	003Z1037
(알렌 키 5 mm용)		G ¾ × Rp ¾	003Z1038
어댑터가 있는 온도계		DN 15/DN 20	003Z1023
ESMB PT1000용 소켓		DN 15/DN 20	003Z1024
열동식 액추에이터용 어댑터		DN 15/DN 20	003Z1022
CCR2+ 제어기		관련 데이터 시트 참조	003Z3851
CCR+ 슬레이브 유닛		관련 데이터 시트 참조	003Z3852
온도 센서 ESMB 범용		관련 데이터 시트 참조	087B1184
온도 센서 ESMC 접촉부		선인 데이디 시느 검소	087N0011
납땜용 피팅 Cu 15 mm		DN 15	003Z1034
납땜용 피팅 Cu 18 mm		내부 R 1/2"	003Z1035
납땜용 피팅 Cu 22 mm 납땜용 피팅 Cu 28 mm		DN 20	003Z1039
		내부 R 3/4"	003Z1040
열동식 액추에이터 TWA-A/NC, 24V		관련 데이터 시트 참조	088H3110

Al289439150822ko-000302 © Danfoss | 2025.06 | 5

제어 특성

- 기본 버전 A
- 버전 B:

Kv_{min} = 0.15 m³/h - 메인 제어 모듈이 닫혀 있을 때 바이패스를 통과하는 최소 유량입니다.

- *Kv_{dis} = 0.60 m³/h(DN 20의 경우),
- *Kv_{dis} = 0.50 m³/h(DN 15의 경우) 70°C의 온도에서 소독 공정의 최대 유량.
- 버전 C:
 - *Kv_{dis} = 0.60 m³/h(DN 20 및 DN 15의 경우) -소독 모듈이 완전히 열렸을 때 MTCV를 통과하는 유량(열동식 액추에이터 TWA-NC에서의 조절).
 - * Kv_{dis} 소독 공정 중 Kv

주요 기능 설정

	1	설정 링	4 -\ -3	1¬
	2	기준점이 있는 링	60.	60.
	3	플라스틱 커버 - 원치 않는 조작 방지	.C Pri	.Co
	4	드라이버용 구멍	07	G
	5	온도 설정 나사 - 알렌 키 2.5 mm		
	6	기준 온도 설정포인트	CO CX	a co
			04 • 3	5-04.6
_	!림 14	4 MTCV 온도 설정		

온도 범위: 35-60 °C MTCV 출고시 프리셋 50 °C

플라스틱 커버(3)를 제거한 후 구멍(4)을 이용해 드라이버로 들어 올려 온도를 설정할 수 있습니다. 온도 설정 나사(5)를 알렌 키로 돌려서 눈금의 원하는 온도를 기준점과 일치시켜야 합니다. 설정이 완료되면 플라스틱 덮개(3)를 다시 제자리에 눌러서 장착합니다.

온도계로 설정 온도를 제어하는 것이 좋습니다. 입 상관의 마지막 출탕 지점에서 나오는 온수 온도를 측정해야 합니다*. 마지막 출탕 지점에서 측정된 온 도와 MTCV에 설정된 온도의 차이는 MTCV와 출탕 지점 사이의 순환 배관 내 열 손실로 인한 것입니다.

* TVM 밸브(온도 조절 혼합 밸브)가 설치된 경우 TVM 밸브 전에 온 도를 측정해야 합니다.

6 | © Danfoss | 2025.06 Al289439150822ko-000302

설정 절차

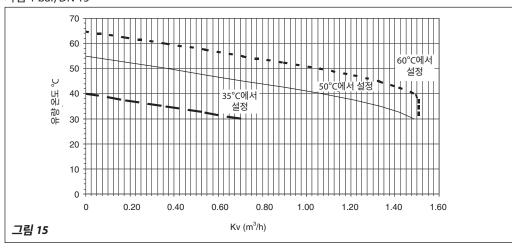
MTCV에 필요한 온도 설정은 마지막 출탕부에서 필요한 온도와 동일한 입상관에 있는 출탕부에서 MTCV까지의 열 손실에 따라 달라집니다.

마지막 출탕부에서 필요한 온도: 48 °C 마지막 출탕부에서 MTCV까지의 열 손실: 3 K

필요한 것:

MTCV의 올바른 설정

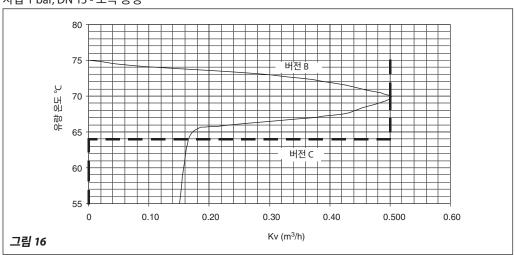
솔루션:


MTCV의 올바른 설정: 48 - 3 = 45 °C

참고:

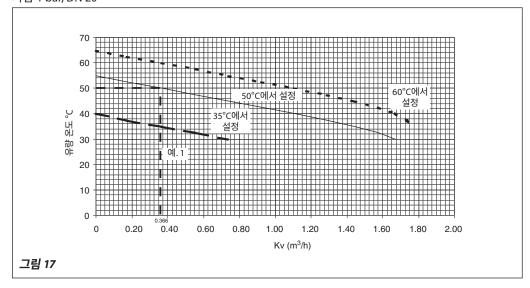
___ 새로운 설정 후 온도계를 사용하여 출탕부에서 필요 한 온도에 도달했는지 확인하고 그에 따라 MTCV 설 정을 수정합니다.

압력 및 유량 도표 MTCV - DN 15

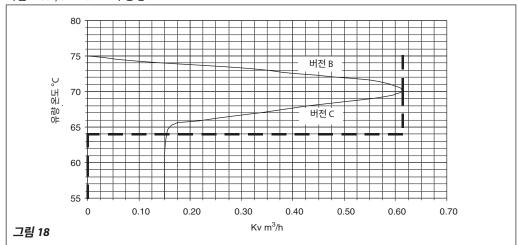

차압 1 bar, DN 15

丑1

	프리세팅	프리세팅	프리세팅	프리세팅	프리세팅	프리세팅	kv
	60 °C	55 ℃	50 ℃	45 ℃	40 °C	35 °C	(m³/h)
	65	60	55	50	45	40	0
	62.5	57.5	52.5	47.5	42.5	37.5	0.238
	60	55	50	45	40	35	0.427
	57.5	52.5	47.5	42.5	37.5	32.5	0.632
	55	50	45	40	35	30	0.795
ွ	52.5	47.5	42.5	37.5	32.5		0.963
l iH	50	45	40	35	30		1.087
어머	47.5	42.5	37.5	32.5			1.202
治	45	40	35	30			1.283
"	42.5	37.5	32.5				1.351
	40	35	30				1.394
	37.5	32.5					1.437
	35	30					1.469
	32.5						1.500
	30						1.500


차압 1 bar, DN 15 - 소독 공정

압력 및 유량 도표 MTCV -DN 20


차압 1 bar, DN 20

丑2

	프리세팅	프리세팅	프리세팅	프리세팅	프리세팅	프리세팅	kv
	60 °C	55 ℃	50 ℃	45 ℃	40 °C	35 °C	(m³/h)
	65	60	55	50	45	40	0
	62.5	57.5	52.5	47.5	42.5	37.5	0.251
	60	55	50	45	40	35	0.442
	57.5	52.5	47.5	42.5	37.5	32.5	0.645
	55	50	45	40	35	30	0.828
ပ	52.5	47.5	42.5	37.5	32.5		1.000
	50	45	40	35	30		1.164
심	47.5	42.5	37.5	32.5			1.322
승	45	40	35	30			1.462
٠,	42.5	37.5	32.5				1.577
	40	35	30				1.667
	37.5	32.5					1.733
	35	30					1.753
	32.5						1.761
	30						1.761

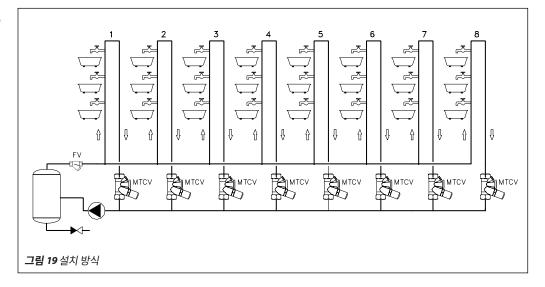
차압 1 bar, DN 20 - 소독 공정

8 | © Danfoss | 2025.06 Al289439150822ko-000302

계산 예시

예:

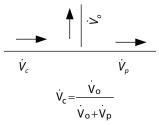
계산은 8개의 입상관이 있는 3층 건물 에 대해 수행됩니다.


계산을 단순화하기 위해 다음과 같은 가정을 사용했습니다.

- 배관 미터당 열 손실, q₁ =10 W/m *
- *계산 시 국가별 표준에 따라 열 손실을 계 산해야 합니다.

일반적으로 계산된 열 손실은 다음에 따라 달라집 니다

- 배관 치수
- 단열재에 사용된 소재
- 배관이 위치한 주변 온도
- 단열재의 효율 및 상태


- 온수 인입부 온도, T_{sup} = 55 ℃
- 시스템을 통한 온도 강하, △T= 5 K
- 입상관 간 거리, L = 10 m
- 입상관 높이, I = 10 m
- 아래 그림과 같은 설치 방식:

I 기본 작동

계산:

- 각 입상관(Qr) 및 헤더(Qh)의 열 손실 계산 Qr = I riser x q = (10 + 10) x 10 = 200 W Qh = I horiz. x q = 10 x 10= 100 W
- 표 3은 계산 결과를 보여줍니다.

丑3

			열 손실				
입상관	입상관 내	입상관 내 헤더 내 각 부분의 합계		ΣQ 합계	입상관 계수	각 부분의 유량	총 유량
	Qr (W)	Qh (W)	(W)	(W)	급경단 계구	Vo (I/h)	Vc (I /h)
1				2400	-	36	412
2				2100	0.09	38	376
3				1800	0.1	40	339
4	200	100	300	1500	0.12	43	299
5	200	100	300	1200	0.14	47	256
6				900	0.18	52	210
7				600	0.25	63	157
8				300	0.4	94	94

계산 예시(계속)

온수 순환 시스템의 총 유량은 다음 공식을 사용 하여 계산됩니다.

$$\dot{V} = \frac{\sum \dot{Q}}{r \quad c_w \quad \Delta t_{hw}}$$

ΣQ - 설비 내 총 열 손실, (kW)

따라서:

$$\dot{V}_{C}^{total} = \frac{2.4}{1 \times 4.18 \times 5}$$

= 0.114 l/s = 412 l/h

온수 순환 시스템의 총 유량은 다음과 같습니다. 412 l/h - 순환 펌프는 이 유량에 맞게 크기가 조정 되어야 합니다.

각 입상관의 유량은 다음 공식을 사용하여 계산됩

입상관 번호 1의 유량:

$$\dot{V}_o = \dot{V}_c \times \frac{Q_o}{Q_o + Q_p}$$

따라서:

$$\dot{V}_0^1 = 412 \times \frac{200}{200 + 2100}$$

= 35.84 l/h \(\times\) 36 l/h

나머지 입상관의 유량도 같은 방식으로 계산해야 합니다.

- 시스템의 압력 강하 계산을 단순화하기 위해 다음과 같은 가정을 했습 니다.
 - 선형 압력 강하, p, = 60 Pa/m (선형 압력은 모든 배관에서 동일)
 - 국소 압력 강하는 전체 선형 압력 강하의 33%, p, = 0.33 p,과 같습니다.

따라서:

 $p_r = 0.33 \times 60 = 19.8 \text{ Pa/m} \cong 20 \text{ Pa/m}$

- 사용된 계산의 경우 $p_{basic} = p_r + p_l = 60 + 20 = 80 \text{ Pa/m}$ 산됩니다.

- MTCV의 국소 압력 강하는 다음을 기준으로 계

$$\Delta p_{MTCV} = \left(\frac{0.01 \times \dot{V}_0}{Kv}\right)^2$$

여기에서:

Kv - 이 경우 그림 19 페이지 10에 따름 Kv = 0.366^m3 /h(프리세팅 50 °C 기준)

v₀- 유량 온도 50°C(I/h)에서 MTCV를 통과하는 유량

• 설계 유량이 계산된 경우 9페이지의 그림 17을 사 용합니다.

참고:

밸브 전체에 걸쳐 압력 강하를 계산하는 동안 순환수 의 온도를 관찰해야 합니다. MTCV - 다기능 온도 조절 순환 밸브에는 프리세팅 온도와 유량 온도의 두 가지 값에 따라 달라지는 가변 Kv 값이 있습니다.

ý,과 Kv를 알면 다음 공식을 사용하여 MTCV의 압력 강하를 계산할 수 있습니다.

$$\Delta p_{_{MTCV}} = \left(\frac{0.01 \times \dot{V}_0}{Kv}\right)^2$$

따라서:

$$\Delta p_{MTCV} = \left(\frac{0.01 \times 94}{0.366}\right)^2 = 6.59 \, kPa$$

$$\Delta p_{MTCV} = (0.01 \text{ x } 94 / 0.366)^2 = 6.59 \text{ kPa}$$

• 펌프 전체의 차압:

$$\label{eq:pump} \begin{split} ^*p_{\text{pump}} &= \Delta p_{\text{circuit}} + \Delta p_{\text{MTCV}} \\ &= 14.4 + 6.59 = 21 \text{ kPa} \end{split}$$

Δρ_{circuit} - 임계 회로의 압력 강하(표 4) *ρ_{pump} - 보일러, 여과기 등과 같은 순환 설비의 모든 장치에 걸친 압력 강하를 포함합니다.

丑4

		압력 강하	MTCV 전체		ITCV 전체	ᄎ 아려 퍼ㅠ
입상관	입상관 내 (kPa)	헤더 내 (kPa)	p circuit (kPa)	V₀-유량 (I/h)	ΔmMTCV 압력 강하 (kPa)	총 압력 펌프 (kPa)
1			14.4	36	0.97	
2			12.8	38	1.07	
3			11.2	40	1.19	
4	1.6	1.6	9.6	43	1.38	21
5	1.0	1.6	8.0	47	1.64	21
6			6.4	52	2.01	
7			4.8	63	2.96	
8			3.2	94	6.59	

계산 예시(계속)

Ⅱ 소독

열 손실과 압력 강하는 새로운 조건에 따라 계산해야

- 소독 중 인입부 온수 온도 T_{dis} = 70 ℃
- 주변 온도 *T_{amb} = 20 ℃ (*T_{amb} - 필수 표준 및 규범에 따름)
- 1. 열 손실은 다음 공식으로 계산됩니다.

$$q_1 = K_j \times I \times \Delta T_1 \rightarrow K_j$$

 $K_i \times I = q_1/\Delta T_1$ (기본 공정의 경우)

$$q_2 = K_i \times I \times \Delta T_2 \rightarrow$$

$$K_i \times I = q_2 / \Delta T_2$$

(소독 공정의 경우) 따라서:

$$q_2 = q_1 \frac{\Delta T_2}{\Delta T_1} = q_1 \left(\frac{T_{dis} - T_{amb}}{T_{sup} - T_{amb}} \right)$$

주어진 경우:

$$q_2 = 10 \text{ (W/m)} \left(\frac{70 \text{ °C} - 20 \text{ °C}}{55 \text{ °C} - 20 \text{ °C}} \right) = 14.3 \text{ W/m}$$

이 경우 소독 공정 중 열 손실은 약 43% 증가합 니다.

2. 필요 유량

소독 공정(단계별)을 순차적으로 진행하기 때문에 임계 회로만 계산해야 합니다.

주어진 경우:

$$Q_{dis} = Q_r + Q_h$$

 $Q_{dis} = ((10+10) + (8 \times 10)) \times 14.3 \text{ W/m} = 1430 \text{ W} = 1.43 \text{ kW}$

$$\dot{V}_{dis} = \frac{1.43}{4.18 \times 5} = 0.0684 \, l/s = 246 \, l/h$$

스독 과정 중 필요한 압력을 확인해야 합니다.

$$p_{dispump} = p_{dis(circuit)} + \Delta p_{MTCV}$$
 여기서:

$$\Delta p_{_{MTCV}} = \left(\frac{0.01 \times \dot{V}_0}{Kv}\right)^2$$

$$\Delta p_{MTCV} = \left(\frac{0.01 \times 246}{0.6}\right)^2 = 16.81 \text{kPa}$$

기본 조건(412 l/h)에 비해 유량이 낮기 때문에 설 치 시 압력 강하가 발생하므로 p_{circuit}를 다시 계산 해야 합니다.

$$\Delta p = \xi \frac{\rho w^2}{2}$$

여기서:

w - 물의 유속(m/s)

기본 작동 및 소독 중 상태를 비교하여 추정 할 수 있습니다.

$$p_{dis} = p_{basic} \times \frac{V_{dis}^2}{V_c^2}$$

여기서: V_{dis} - 소독 유량(l/h) V_C - 기본 유량(l/h)

따라서:

- 설치 첫 번째 부분의 경우

$$p_{dis}^1 = 80 \times \left(\frac{246}{412}\right)^2 = 29 \, Pa/m$$

이 계산은 모든 임계 회로에 대해 수행해야 합니 다. 표 5는 계산 결과를 보여줍니다.

임계 회로의 경우:

$$p_{dis(circuit)} = 0.57 + 0.68 + 0.84 + 1.08 + 1.48 + 2.20 + 3.93 + 21.92 = 32.70 \text{ kPa}$$

$$p_{dispump} = p_{dis(circuit)} + \Delta p_{MTCV}$$

= 32.70 + 16.81 = 49.51 kPa

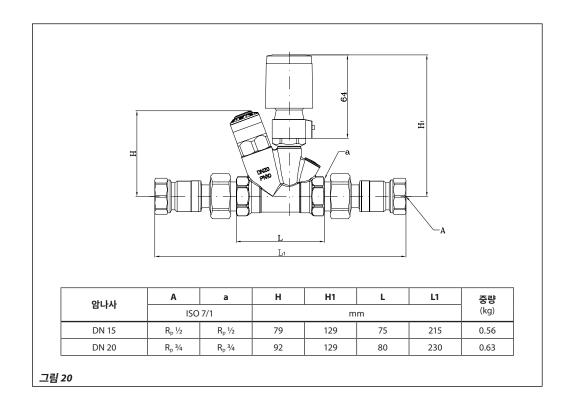
펌프는 두 가지 요구 사항을 모두 충족하도록 선택 해야 합니다.

• 기본 작동,

 \dot{V}_0 = 412 l/h and p_{pump} = 21 kPa

• 소독 작동

 $\dot{V}_0 = 246 \text{ l/h} \text{ and } P_{\text{pump}} = 49.51 \text{ kPa}$


丑 5

유링	t(l/h)	새로운 압력 강하	길이	압력 강하	임계 회로의 총 압력 강하			
기본	소독	(Pa/m)	(m)	(kPa)	0 1			
412	246	29		0.57				
376	246	34		0.68				
339	246	42		0.84				
299	246	54	20	1.08	32.70			
256	246	74		1.48	32.70			
210	246	110		2.20				
157	246	196		3.93				
94	246	548	40	21.92				

Σ32.70

데이터 시트 MTCV - 저연

치수

대포스㈜

Climate Solutions • danfoss.kr • +82 8 0822 1488 • customercare.kr@danfoss.com

제품 설명서, 카탈로그 설명서, 광고 등에 있는 제품의 선택, 적용 또는 사용, 제품 디자인, 중량, 치수, 용량 또는 그 밖의 기술관련 데이터를 포함하되 이에 국한되지 않은 모든 정보는, 서면이나 구두로 볼 수 있는 것이든, 전자적으로 볼 수 있는 것이든, 온라인이나 다운로드 방식으로 볼 수 있는 것이든 상관없이, 이는 정보의 고지로 간주되며, 견적서나 주문확인서에 명시적으로 언급이 된 정보에 한하여 그 범위 내에서만 구속력을 가집니다. Danfoss는 카탈로그, 브로셔, 동영상 및 기타 자료의 오류에 대해 그 책임을 일체 지지 않습니다. Danfoss는 통지 없이도, 제품에 대해 변경을 가할 수 있는 권리를 보유합니다. 이 권리는 그러한 변경이 제품의 형식, 적합성 또는 기능에 영향을 미치지 않는다는 가정하에 주문되었으나 아직 배송되지 않은 제품에도 적용됩니다. 이 자료에 실린 모든 상표는 Danfoss A/S 또는 Danfoss 그룹사의 재산입니다. Danfoss와 Danfoss 로고는 Danfoss A/S의 상표입니다. All rights reserved