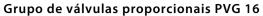
ENGINEERING TOMORROW

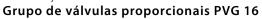
Informações técnicas

Grupo de válvulas proporcionais PVG 16



Histórico de revisões

Tabela de revisões


Data	Modificado	Rev
Março de 2016	Pequena atualização das características técnicas do PVHC	0303
Março de 2016	Atualização no design de Engineering Tomorrow.	0302
Fevereiro de 2016	O desenho foi atualizado no tópico: Como selecionar um êmbolo corretamente	0301
Setembro de 2015	PVG 16 Etapa II	0200
Março de 2015	PVH, PVMD mudou em Módulos	BF
Fevereiro de 2015	Kit de vedação para PVB + PVM	BE
Dezembro de 2014	Seção de PVHC atualizada	BD
Agosto de 2014	Descrições do pino PVEO atualizadas	ВС
Janeiro de 2014	Convertido para o layout da Danfoss - DITA CMS	ВВ
Fevereiro de 2013	Revisão geral do layout, mudança nos desenhos	ВА
Outubro de 2012	Nova Edição	AA

Conteúdo

Referência		
	Literatura de referência para produtos PVG	5
Informações gerais		
	Introdução à PVG 16	
	Características gerais do PVG 16	
	Dados técnicos da PVG 16	8
Segurança em sistemas		
Jegurunija em sistemus	Considerações gerais de segurança	10
	Exemplo de sistema de controle	
	·	
PVB - módulos básicos (se		
	Pórticos de trabalho do PVB, êmbolos intercambiáveis	
	Esquema hidráulico e números de código do PVB	
	Características do fluxo de óleo do PVB	14
PVBS, êmbolo principal		
• •	Controle de fluxo, característica do êmbolo	19
	Esquema hidráulico e números do código da PVBS	21
	Características do fluxo de óleo da PVBS	
PVM e PVH - módulos de a		
	Informações gerais sobre PVM e PVH	
	Módulo de atuação por PVM	
	Módulo de acionamento do PVH	
	Símbolos hidráulicos e números de código do PVM/PVH	
	Características de fluxo de óleo do PVM/PVH	27
PVAS		
	Design do PVAS	29
	Guia de seleção de módulo	
	•	
PVE - módulos de acionar		
	Recursos de PVE	
	Acionamento elétrico	
	Saída de posição do êmbolo	
	Monitoramento de falhas	
	Economia de energia	
	Números de código do PVEO/A	
	Números do código do PVE-CI	
	Layout do conector do pino PVEA	
	Layout do conector do pino PVEA-F	
	Layout do conector do pino PVEO	
	Layout do conector do pino PVE-CI	
	Dados técnicos do PVE	
	Características do fluxo de óleo do PVE	40
	PVHC, módulo de atuação de alta corrente - elétrico	41
Dimensões da PVG 16		
J	PVG 16	44
	PVG 32/16	
	PVG 100/16	
	PVG 120/16	
Instalação		
	Instalação da PVG 16	52
Exemplos de aplicação		
	PVG 16	53
	PVG 32/16	
	PVG 100/16	
	PVG 120/16	

Conteúdo

C	ict	em	2	hi	ы	rá	 li <i>cc</i>	

Jisteilia illuraulico		
	Eficiência do sistema hidráulico	57
	Sistema de deslocamento fixo com fluxo constante	57
	Sistema de deslocamento variável com pressão constante	57
	Sistema de deslocamento variável com sensoriamento de carga	57
Módulos e números d	le código da PVG 16	
	Módulos e números de código	59
	Acessórios	

Especificação do pedido

Referência

Literatura de referência para produtos PVG

Literatura de referência

Título da literatura	Tipo	Número do pedido
Grupo de válvulas proporcionais PVG 32	Informações técnicas	520L0344
Grupo de válvulas proporcionais PVG 100	Informações técnicas	520L0720
Grupo de válvulas proporcionais PVG 120	Informações técnicas	520L0356
Portas métricas PVG 32	Informações técnicas	11051935
PVE série 4	Informações técnicas	520L0553
Atuador eletro-hidráulico PVED-CC	Informações técnicas	520L0665
Atuador eletro-hidráulico PVED-CX	Informações técnicas	11070179
PVE-CI	Informações técnicas	L1505234
Módulo básico para PVBZ	Informações técnicas	520L0721
Módulo PVSK com válvula de desvio integrada e função de desconexão de P	Informações técnicas	520L0556
Módulo lateral da bomba PVPV / PVPM	Informações técnicas	520L0222
Módulo de combinação PVGI	Informações técnicas	520L0405
Módulo de prioridade PVSP/M	Informações técnicas	520L0291
Controle de levante	Descrição do sistema	11036124
	Manual do usuário	11033753
PVBZ	Folha de dados	520L0681
PVBZ-HS	Folha de dados	520L0956
PVBZ-HD	Folha de dados	11035599
Controladores MC024-010 e MC024-012	Folha de dados	520L0712

Informações gerais

Introdução à PVG 16

PVG 16 é um grupo de válvulas proporcionais com sensoriamento de carga hidráulica projetada para fornecer máxima flexibilidade ao projeto e conceito de construção. O PVG 16 foi projetado como uma válvula de controle direcional com sensoriamento de carga que levará a uma eficiência aumentada da aplicação, reduzindo requisitos de resfriamento e economia de combustível em comparação com válvulas de controle direcional convencionais. Quando a bomba é iniciada e as bobinas principais nos módulos básicos individuais (6) (*ver*) estão na posição neutra, óleo flui da bomba através da conexão em P na bobina de ajuste de pressão (4) para o tanque. A mola na válvula de ajuste de pressão determina a pressão da bomba (pressão de espera) em neutro.

Quando uma ou mais das bobinas principais são acionadas, a pressão de carga mais alta é alimentada através do circuito da válvula alternadora para a câmara da mola atrás da bobina de ajuste de pressão (4) e fecha completamente ou parcialmente a conexão com o tanque. A pressão da bomba é aplicada no lado direito da bomba de ajuste de pressão (4). A válvula de alívio de pressão (1) abrirá se a pressão da carga exceder o valor definido, desviando o fluxo da bomba de volta para o tanque.

Com um módulo básico sem pressão compensada incorporando uma válvula de retenção de queda de carga (8) no canal P, a válvula de retenção impede o fluxo de retorno de óleo.

O módulo básico pode ser fornecido sem a válvula de retenção de queda de carga no canal P para funções com válvula além do centro.

As válvulas de choque e sucção PVLP (7) com ajustes fixos nos pórticos A e B são usadas para proteção da função de trabalho individual contra sobrecarga e/ou cavitação.

Na versão de centro fechado, um orifício (3) e um bujão (5) foram equipados ao invés do bujão (2). Isso significa que a bobina de ajuste de pressão (4) abrirá para o tanque somente quando a pressão no canal P exceder o valor definido da válvula de alívio de pressão (1).

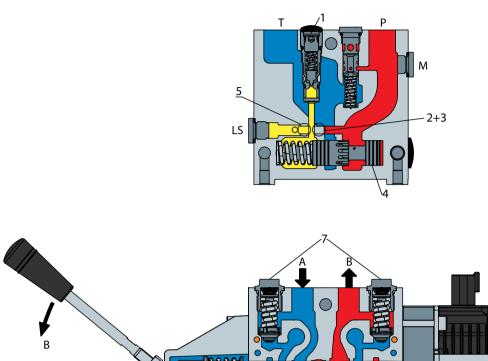
Alternativamente, uma entrada PVPV dedicada para bombas de deslocamento variável pode ser utilizada. Em sistemas de sensoriamento de carga, a pressão de carga é levada para o regulador da bomba através da conexão LS. Na posição neutra, o controle da bomba ajusta o deslocamento de modo que o vazamento no sistema é compensado, para manter a pressão de espera definida.

Quando uma bobina principal é atuada, o regulador da bomba ajustar o deslocamento de modo que a pressão diferencial entre P e LS será mantida. A válvula de alívio de pressão (1) no PVP deve ser ajustada a uma pressão de aproximadamente 30 bar [435 psi] acima da pressão máxima do sistema (definida na bomba ou na válvula de alívio de pressão externa).

A PVG 16 é parte de uma família inteira de válvulas PVG que envolve uma ampla linha de opções de fluxo. Um recurso comum é o conceito de construção modular combinando montagem de fatias entre as famílias, dessa maneira, tornando possível construir um grupo de válvulas para atender exatamente aos requisitos. A largura e a altura da válvula permanecem inalteradas não importando a combinação especificada.

O PVB 16 está disponível como um módulo básico compensado que fornece os recursos de controle de fluxo independente da carga:

- O fluxo de óleo para uma função de trabalho individual é independente da pressão da carga dessa função
- O fluxo de óleo para uma função é independente da pressão da carga de outras funções.


O PVB 16 emprega o mesmo princípio de compensação como a tecnologia comprovada do PVB 32 - o compensador mantém uma queda de pressão constante no êmbolo principal (PVBS).

V310 361.B

Informações gerais

Visão transversal da PVG 16

<u>Legenda:</u>

- 1. Válvula de alívio de pressão
- 2. Bujão, centro aberto
- 3. Orifício, centro fechado
- 4. Êmbolo de ajuste de pressão
- 5. Bujão, centro fechado
- 6. Êmbolo principal
- 7. Válvula antichoque e sucção, PVLP
- 8. Compensador ou válvula de retenção de queda de carga (a figura mostrada é uma válvula de retenção de queda de carga)

Características gerais do PVG 16

- Controle directional com load sense:
 - Controle proporcional do fluxo de óleo para uma função de trabalho
- Conceito de construção modular:
 - Até 12 módulos básicos por grupo de válvula PVG 16
 - Variedade de bobinas diferentes e intercambiáveis
 - Pressão do sistema de até 350 bar [5075 psi]
 - Diversos tipos de roscas de conexão nos pórticos
 - Possível combinação com toda a família PVG, tanto PVG 32, PVG 100 ou PVG 120

Informações gerais

PVP e PVS do portfólio PVG 32

O PVG 16 faz interface direta com a linha de produtos PVG 32 A válvula PVG 16 foi projetada para ser utilizada com o PVP e o PVS existentes no portfólio de produtos da família PVG 32. Ao especificar uma montagem da válvula PVG 16, consulte as *Informações Técnicas do PVG 32, 520L0344* para obter informações detalhadas sobre PVP e/ou PVS.

Construção padrão (montagem) da válvula PVG 16

Seção de entrada (PVP reutilizada do portfólio da PVG 32), 1-12 sessões de trabalho (PVB) com bobinas de controle de fluxo individuais e seção final (PVS reutilizada do portfólio da PVG 32). Cada seção de trabalho é atuada por alavanca manual, (PVM), sinal de controle elétrico (PVE) ou sinal de controle hidráulico (PVH).

Combinando a família PVG em uma única montagem de válvula

A PVG 16 pode ser usada em conjunto com as outras válvulas da família PVG combinando-as em uma única montagem de válvula. Dessa maneira, uma montagem da válvula PVG 32/16, PVG 100/16 ou PVG 120/16 pode ser configurada. Em uma construção PVG 32/16 não é necessário um módulo de interface, pois, uma fatia da PVG 16 pode substituir uma fatia da PVG 32. Em uma construção PVG 100/16 ou PVG 120/16 os módulos de interface padrão conhecidos atualmente (PVTI e PVGI, respectivamente) são utilizados.

Dados técnicos da PVG 16

Dados técnicos da PVG 16

Pressão máxima	Pórtico P contínuo	350 bar ¹⁾	[5075 psi] ¹⁾
Pressao maxima			
	Pórtico P intermitente	400 bar	[5800 psi]
	Pórtico A/B contínuo	380 bar	[5510 psi]
	Pórtico A/B intermitente	420 bar	[6090 psi]
	Pórtico T, estático/dinâmico	25/40 bar	[365/580 psi]
Fluxo de óleo nominal	Pórtico P	140/230 l/min	[37/61 US gal/min]
	Pórtico A/B	65 l/min @ Queda de pressão de 10 bar	[17 US gal/min a queda de pressão de 145 psi]
Curso da bobina	Banda morta	± 1,5 mm	[± 0,06 pol]
	Faixa proporcional	± 5,0 mm	± 0,2 in]
	Posição de flutuação	± 7,5 mm	[± 0,3 in]
Vazamento interno máximo a 100 bar [1450 psi] e	A/B → T sem válvula de choque	20 cm ³ /min	[1,85 in ³ /min]
21 mm ² /s [102 SUS]	A/B → T com válvula de choque (ajuste do sistema 30 bar [435 psi]	25 cm ³ /min	[2,15 pol ³ /min]
Temperatura do óleo	Temperatura recomendada	30 → 60 °C	[86 → 140 °F]
(temperatura da entrada)	Temperatura mínima	-30 °C	[-22 °F]
	Temperatura máxima	90 ℃	[194 °F]
Temperatura ambiente		-30 → 60 °C	[-22 → 140 °F]
Viscosidade do óleo	Faixa operacional	12 - 75 mm ² /s	[65 - 347 SUS]
	Viscosidade mínima	4 mm ² /s	[39 SUS]
	Viscosidade máxima	460 mm ² /s [2128 SUS]	
Filtragem Contaminação máxima (ISO 4406)		23/19/16	

Informações gerais

Dados técnicos da PVG 16 (continuação)

Faixa de regulagem PVM	Proporcional Posição de flutuação		13.9°		
			22.3°		
Força operacional da PVM			2,2 ± 0,2 Nm	[5,0 ± 1,8 lbf•pol]	
	PVMD PVM + PVE ²⁾	Curso máximo	2,8 ± 0,2 Nm	[6,3 ± 1,8 lbf•pol]	
	PVM + PVH	Pos. neutra	2,7 ± 0,2 Nm	[23,9 ± 1,8 lbf•pol]	
		Curso máximo	7,1 ± 0,2 Nm	[62,8 ± 1,8 lbf•pol]	
Pressão de PVH	Faixa de regulagem		5 – 15 bar	[75 – 220 psi]	
	Pressão piloto	máxima	30 bar	[435 psi]	
	Pressão máxima no pórtico T		10 bar	[145 psi]	
Tensão de entrada da PVE ³⁾	Alimentação		11 – 32 V _{CC}		
	Faixa de regu	lagem	25 – 75% da tensão de al	imentação	
Tensão de saída do pino SP	Flutuação		0,5 V _{CC}		
do PVE ³⁾	Fluxo para o pórtico B		1,25 – 2,5 V _{CC}		
	Neutro		2,5 V _{CC}		
	Fluxo para o p	oórtico A	2,5 – 3,75 V _{CC}		
	Erro		5 V _{CC}		

¹⁾ Com placa final de PVSI. Utilizando placa final PVS máximo de 300 bar [4351 psi].

²⁾ PVE sem tensão.

³⁾ A tensão é medida entre o pino de saída da bobina e o terra (GND)

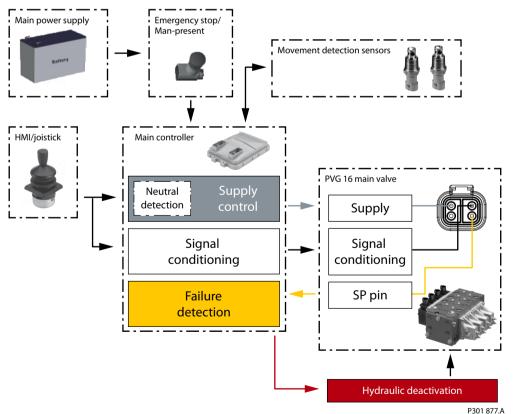
Segurança em sistemas

Considerações gerais de segurança

Todos os tipos e marcas de válvulas de controle, incluindo válvulas proporcionais, podem falhar. Portanto, a proteção necessária contra as graves consequências de uma falha funcional sempre deve ser integrada no sistema. Para cada aplicação, uma avaliação deve ser realizada para as consequências do sistema em caso de falha de pressão e movimentos não controlados ou bloqueados.

A Aviso

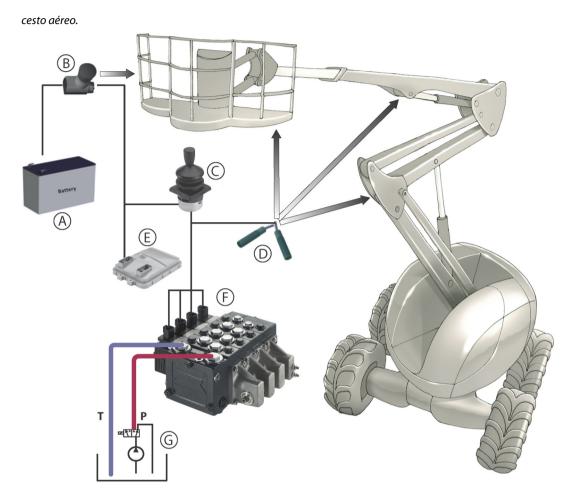
É de inteira responsabilidade do fabricante da máquina garantir que todos os requisitos de desempenho, segurança e advertência da aplicação sejam atendidos em sua seleção de produtos. O processo de escolha do sistema de controle e subsequentes níveis de segurança é normatizado pela diretiva de máquinas EN 13849.


Exemplo de sistema de controle

Um exemplo de um sistema de controle utilizando um elevador aéreo é mostrado a seguir. Mesmo apesar de muitos Danfoss componentes mostrados, o exemplo é concentrado no sistema de controle PVG 16.

Este exemplo divide o sistema de controle em partes menores explicando a arquitetura com profundidade.

A função do sistema de controle é usar a saída da PVEA Série 6 em conjunto com outros sensores externos para garantir o funcionamento correto dos controladores principais PLUS+1[®] do cesto aéreo.


Diagrama de bloco elétrico da ilustração a seguir

Exemplo de sistema de controle para cesto aéreo utilizando sinais de entrada de monitoramento de falhas do PVE e sinais de sensores externos para garantir a função correta dos controladores principais PLUS+1® do

Segurança em sistemas

- A: Fonte de alimentação principal
- **B:** Interruptor de parada de emergência/homem presente
- **C:** Controle HMI/Joystick
- **D:** Sensores de detecção de movimento
- E: Controlador principal
- F: Grupo de válvulas PVG 16
- **G:** Alimentação hidráulica com desativação

É responsabilidade do fabricante do equipamento declarar que o sistema de controle usado na máquina está em conformidade com as diretivas de máquina relevantes.

Pórticos de trabalho do PVB, êmbolos intercambiáveis

A PVB (estação de trabalho) é dedicada para distribuir o fluxo de óleo vindo da sessão de entrada através da galeria em P ao longo da bobina de regulagem de fluxo (PVBS) para o pórtico de trabalho A ou B. Além disso, o PVB retorna o fluxo vindo do implemento (motor ou cilindro) através do pórtico de trabalho A ou B ao longo da bobina principal até a galeria em T.

A PVB está disponível com duas roscas de pórtico de trabalho diferentes:

- 3/8" BSP
- 3/4"-16 UNF (SAE-8)

Devido ao conceito modular das válvulas PVG, a bobina principal da PVG 16 (PVBS) pode ser substituída por qualquer outra versão da bobina principal da PVG 16.

Versões disponíveis:

Imagem dos pórticos de trabalho (A e B)

Imagem das bobinas de PVBS

- 1. Módulos compensados
- 2. Módulos não compensados
- 3. Válvulas de retenção no canal P
- 4. Válvulas antichoque (PVLP)

Versões disponíveis:

PVB 16 compensado

- Módulo básico
- Módulo básico com cavidades para válvulas de antichoque e anticavitação (PVLP/PVLA)
- Módulo básico com um LS comum para pórtico A e B

PVB 16 não compensado

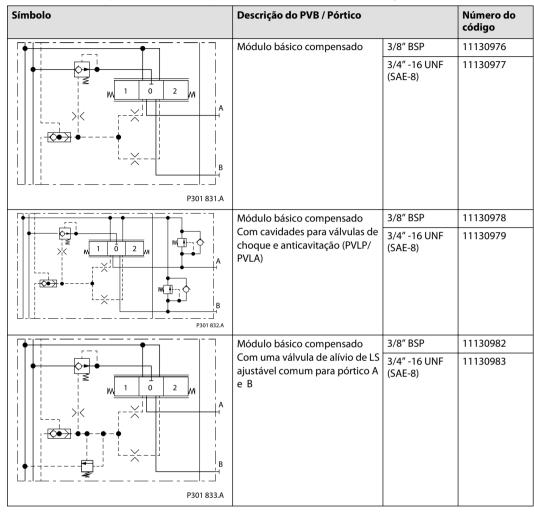
- Módulo básico
- Módulo básico com válvula de retenção no canal P
- Módulo básico com cavidades para válvulas de antichoque e anticavitação (PVLP/PVLA)
- Módulo básico com válvula de retenção no canal P e cavidade para válvulas de antichoque e anticavitação (PVLP/PVLA)

A Aviso

A ativação de muitas funções simultaneamente pode causar uma velocidade operacional reduzida em seções com carga alta. A ativação de uma seção com requisito de alta pressão ao mesmo tempo que uma seção com baixa carga pode aumentar a velocidade operacional na segunda seção.

Válvula de retenção no canal P

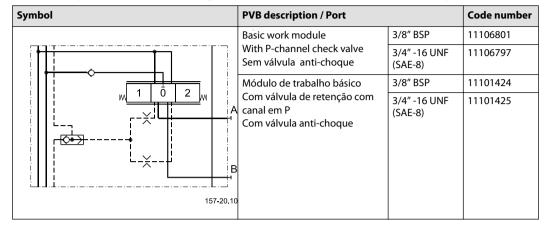
Para impedir o fluxo de óleo de retorno e, dessa maneira, baixar a carga, uma válvula de retenção no canal P pode ser incorporada. Para aplicações com válvulas de Contrabalanço, versões sem a válvula de retenção com canal em P também estão disponíveis.


Válvulas anti-choque

A válvula anti-choque (PVLP) com ajuste de pressão fixa para proteção da função de trabalho individual contra sobrecarga removendo qualquer pico de pressão transiente gerado pela carga.

Esquema hidráulico e números de código do PVB

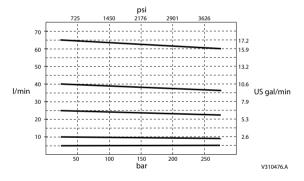
Módulos básicos compensados da PVB - esquemas hidráulicos e números do código



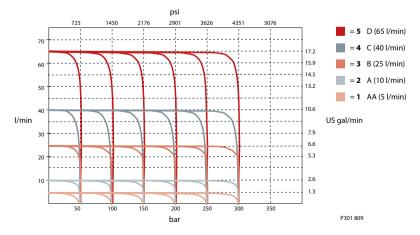
PVB Non-compensated Basic Modules – hydraulic schematics and code numbers

Symbol	PVB description / Port		Code number
	Módulo de trabalho básico	3/8" BSP	11101421
M 1 0 2 W	Sem válvula de retenção no canal P Sem válvula anti-choque	3/4" -16 UNF (SAE-8)	11101423
	Basic work module	3/8" BSP	11106754
- <u>X</u> -	Sem válvula de retenção no canal P With shock valve	3/4" -16 UNF (SAE-8)	11106755
V310 412.A			

PVB Non-compensated Basic Modules – hydraulic schematics and code numbers (continuação)

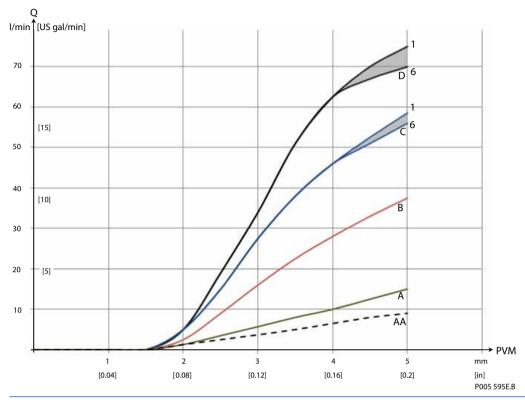


Características do fluxo de óleo do PVB


O fluxo de óleo dos pórticos de trabalho depende do tipo de bomba e, às vezes, do modelo da bomba. A diferenca é deslocamento fixo (Centro aberto) ou deslocamento variável (Centro fechado).

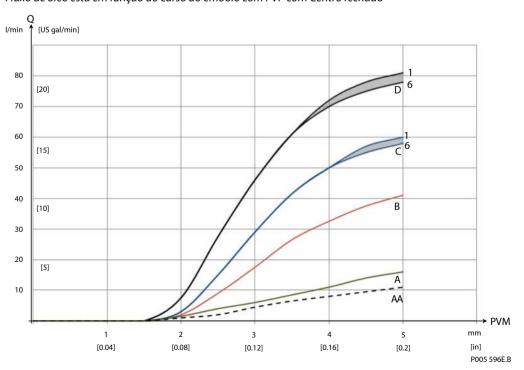
As letras AA, A, B, C e D denotam os tamanhos do fluxo do êmbolo variando de 5 l/min a 65 l/min [de 1,32 a 17,17 US gal/min]. Todos os testes são realizados utilizando a Tellus32 @ 21mm²/s.

Característica de fluxo de óleo Independente de carga, PVB compensado por pressão



limitação da pressão de LS

O fluxo de óleo está em função do curso do êmbolo com PVP com Centro aberto

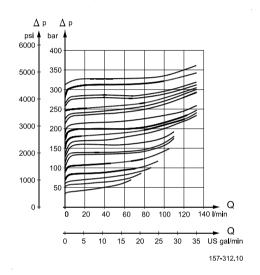


O fluxo depende do fluxo fornecido, Qp.

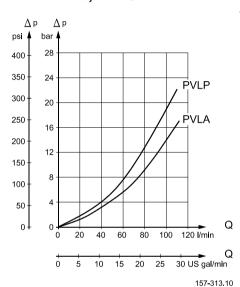
As características são aplicáveis ao óleo de alimentação de 130 l/min [34,3 gal/min].

Os números 1 e 6 referem se a posição da PVB na montagem de válvula.

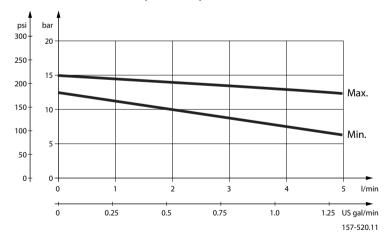
Fluxo de óleo está em função do curso do êmbolo com PVP com Centro fechado


O fluxo depende da diferença de pressão entre a pressão da bomba e do sinal LS. Normalmente, a diferença da pressão é ajustada no regulador da bomba LS.

Ajuste da diferença de pressão entre a pressão da bomba e o sinal LS = 20 bar [290 psi].

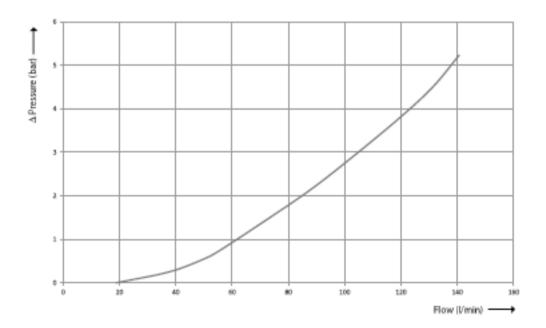

O PVLP é ajustado para fluxo de óleo de 10 l/min [2,6 gal/min]. A válvula PVLP é projetada para absorver efeitos de choque. Consequentemente, não deve ser usado como uma válvula de alívio de pressão.

Características do fluxo de óleo - PVLP/PVLA, PVP

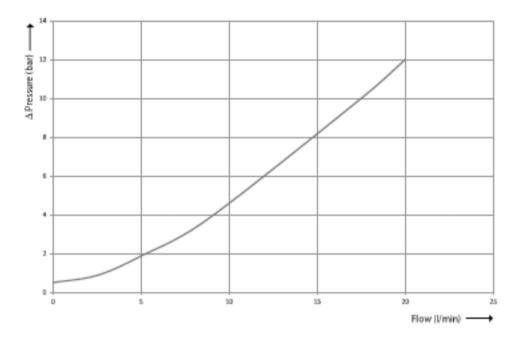

Válvula anti- choque PVLP

Válvula anti-cavitação PVLP/PVLA

Módulos da PVP, Curvas de pressão do piloto



Queda de pressão através da linha em P



Queda de pressão através da linha em T

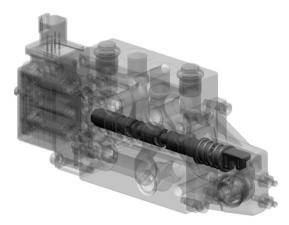
Queda de pressão através da linha em Pp

Controle de fluxo, característica do êmbolo

A êmbolo está controlando diretamente o fluxo de óleo para os pórticos trabalho. O fluxo é diretamente proporcional ao curso da bobina. O curso do êmbolo é composto por uma banda morta de 1,5 mm [0,06 pol] e uma região ativa de 3,5 mm [0,14 pol] em cada direção proporcionando fluxo zero total. Um curso adicional de 2,5 mm [0,1 pol] em uma direção para acomodar a funcionalidade de flutuação poder ser utilizado dependendo da escolha da PVM.

Controle de fluxo

Os êmbolos são projetados de maneira que o fluxo de óleo vindo da bomba para os pórticos de trabalho são controlados pelo curso do êmbolo. Quando o êmbolo é movido, forma um orifício variável entre a galeria em P e uma pórtico de trabalho e, entre a outro pórtico de trabalho e a galeria em T. O tamanho do orifício é diretamente vinculado à distância percorrida pelo êmbolo.


Característica das bobinas

As características dos êmbolos com uma partida suave. A bobina terá um comportamento progressivo a partir do neutro até 10% do fluxo total. A partir daí, será linear até o fluxo máximo.

Versões disponíveis:

- 1. Versões de fluxo diferentes
- 2. Aberto/fechado em neutro
- 3. Flutuação
- 4. Êmbolos assimétricos

Visão seccional - êmbolo mostrado

Versões disponíveis:

Versões de fluxo diferentes

Todos os êmbolos são êmbolos 4/4 com fluxo controlado. A êmbolo é fornecido em 5 versões de fluxo diferentes, todos com fluxo simétrico: 5 l/min [1,32 gal/min], 10 l/min [2,64 gal/min], 25 l/min [6,60 gal/ min], 40 l/min [10,57 gal/min], 65 l/min [17,17 gal/min].

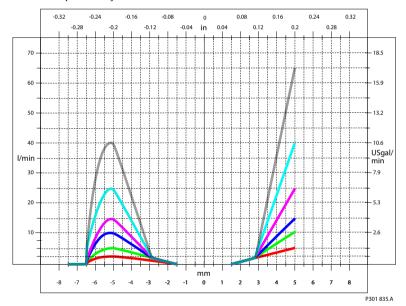
O fluxo especificado é a 10 bar [145 psi] com 21 mm²/ s [97 SUS].

Aberto/fechado em neutro

Os êmbolos principais do PVG 16 estão disponíveis com duas funções diferentes em neutro - aberto ou fechado. Aberto no centro significa que existe uma conexão aberta bombeada ao longo da bobina principal a partir das duas portas de trabalho A e B até a galeria em T ao longo da bobina principal. Aberto em neutro geralmente é utilizado em conjunto com motores hidráulicos. Fechado em neutro significa que não há conexão do pórtico de trabalho A ou B até a galeria em T ao longo do êmbolo principal. Émbolos fechados em neutro geralmente são utilizados em conjunto com cilindros.

Aviso

Utilizar bobinas fechadas em neutro em conjunto com um motor hidráulico pode causar uma parada repentina e abrupta da rotação.



Flutuação

Um êmbolo com função de flutuação, bem como com atuação normal é capaz de abrir uma conexão entre os dois pórticos de trabalho até a galeria em T. Isso torna possível, por exemplo, para o óleo no cilindro fluir livremente para o tanque e o óleo no tanque fluir livremente do tanque para os pórticos de trabalho. Essa conexão é aberta ao atuar 7,5 mm para a direção B (o controle proporcional normal termina a 5 mm). A flutuação é usada se uma aplicação deve mover livremente para frente e para trás para, por exemplo, acompanhar terreno irregular.

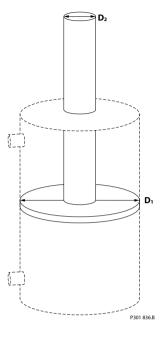
Êmbolos assimétricos

Os êmbolos principais assimétricos são projetadas para uso com cilindros cuja haste e o lado do pistão diferem grandemente em volume. Ao operar com um êmbolo principal simétrico, a diferença de volume faz a velocidade do cilindro ser diferente em situações de elevação e de abaixamento, dado o mesmo ponto de ajuste. Para ter a mesma velocidade tanto em situações de avanço quanto de retorno, é necessário um êmbolo principal assimétrico. Os êmbolos assimétricos apresentam uma característica de fluxo linear com partida suave progressiva. A partida suave garante uma boa resolução na área de fluxo baixo em que medição fina é necessária.

Como selecionar um êmbolo corretamente

1. Calcule a relação entre a haste e o pistão do cilindro

$$us and o \frac{D_{1}^{\ 2}}{D_{1}^{\ 2} - D_{2}^{\ 2}}$$


2. Use o resultado para localizar o êmbolo principal assimétrico certo na tabela

Exemplo

- solicitação de fluxo = 25 l/min
- use com PVE
- diâmetro do pistão = 150 mm = D₁
- diâmetro da haste = 100 mm = D₂
- Calcule a relação entre a haste e o pistão do cilindro

Equação:
$$\frac{D_1^2}{D_1^{2-}D_2^{2}} = \frac{(150 \text{ mm})^2}{(150 \text{ mm})^2 - (100 \text{ mm})^2} = 1.$$

2. Use o resultado para encontrar a relação haste-pistão certa do êmbolo principal assimétrico A de 1,8 para êmbolos com fluxo de 25 l/min que não pode ser encontrado na tabela com números do código. Portanto, arredondamos para a relação mais próxima (1,6). O êmbolo com fluxo de 25 l/min e relação de cilindro de 1,6 tem o número do código 11109645.

Acionamento

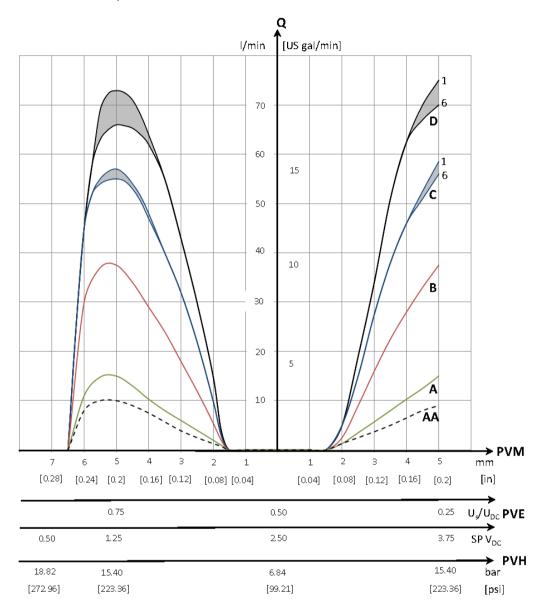
O êmbolo principal no PVG 16 pode ser acionado por uma de três maneiras. Uma é por alavanca para acionamento manual, a segunda é eletricamente por um PVE e a terceira é hidraulicamente por um PVH. Acionando o êmbolo principal com um PVM ou PVE, a mola de retorno do êmbolo age com força equivalente a 77 N [12,5 bar]. Ao acionar o êmbolo principal com um PVH, a mola de retorno age com força equivalente a 268 N [23 bar].

Esquema hidráulico e números do código da PVBS

Êmbolos principais simétricos

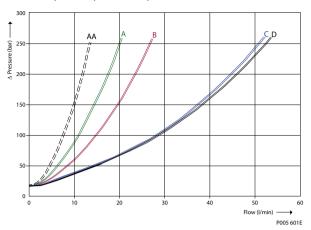
Símbolo	Descrição	Número do	código de ac	ordo com o fl	uxo l/min [ga	l/min]
		5 [1,32]	10 [2,64]	25 [6,60]	40 [10,57]	65 [17,17]
	PVBS Émbolo principal Posição neutra aberta bombeada Acionamento por PVM/PVE Com flutuação na direção B	11105537	11105538	11105539	11105540	11105541
	PVBS Êmbolo principal Posição neutra aberta bombeada Acionamento por PVH Com flutuação na direção B	11109637	11109638	11109639	11109640	11109641
T T T T T	PVBS Êmbolo principal Posição neutra fechada Acionamento por PVM/PVE Com flutuação na direção B	11105532	11105533	11105534	11105535	11105536
	PVBS Émbolo principal Posição neutra fechada Acionamento por PVH Com flutuação na direção B	11109632	11109633	11109634	11109635	11109636

Êmbolos principais assimétricos

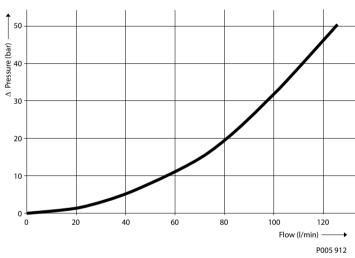

Símbolo	Descrição	ição Número do código de acordo com o fluxo l/min [gal/min]					
		5/2,5 [1,32/0,66]	10/5 [2,64/1,32]	25/10 [6,60/2,64]	25/15 [6,60/3,96]	40/15 [10,57/3,96]	40/25 [10,57/6,60]
	Relação do cilindro	2,0	2,0	2,5	1,6	2,7	1,6
	PVBS Émbolo principal Posição neutra fechada Acionamento por PVM/PVE Com flutuação na direção B	11109642	11109643	11109644	11109645	11109646	11109647
	PVBS Émbolo principal Posição neutra fechada Acionamento por PVH Com flutuação na direção B	11146752	11146753	11146754	11146755	11146756	11146757

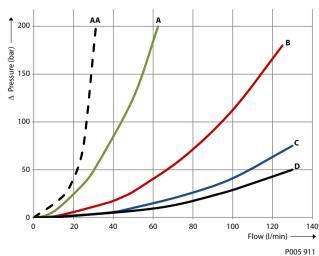
Características do fluxo de óleo da PVBS

As letras AA, A, C e D denotam a quantidade do fluxo variando de 5 l/min até 65 l/min [1,32 até 17,17 gal/min]. Todos os testes são realizados utilizando a Tellus32 @ 21mm²/s.



Fluxo de óleo em função do curso do êmbolo

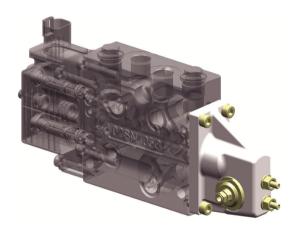



Queda de pressão para o tanque com êmbolo aberto em neutro

Queda de pressão com curso total do êmbolo

Queda de pressão na flutuação

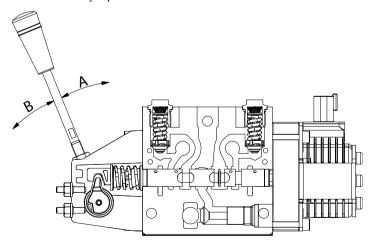
Informações gerais sobre PVM e PVH


PVM e PVH são duas maneiras de controlar mecanicamente o fluxo dos pórticos de trabalho. O fluxo é controlado por um operador usando uma alavanca ou a distância por um joystick hidráulico.

Esses são tipos de módulo de acionamento mecânico para a PVG 16.

- PVM um módulo totalmente manual controlado por alavanca
- PVH um módulo controlado hidraulicamente
- PVMD tampa

Versões disponíveis:


- 1. PVM com controle de flutuação
- 2. PVM sem parafusos de ajuste
- 3. PVM com parafusos de ajuste

Módulo de atuação por PVM

O PVM consiste em uma base de alumínio montada sobre a extremidade da fatia da válvula e uma alavanca. Ao acionar a alavanca, o operador está diretamente puxando ou empurrando a bobina principal dentro da válvula, controlando o fluxo. A alavanca possui curso de 16º em qualquer direção a partir do neutro. Acionar totalmente a alavanca move o êmbolo todos os 5 mm e dá fluxo total. A alavanca pode ser montada / removida sem ter que remover a base do PVM. O PVM pode ser combinado com qualquer PVE, PVH ou PVMD (tampa).

Módulo de atuação por PVM

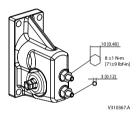
Versões disponíveis:

PVM com controle de fluxo

Se uma aplicação com funcionalidade de flutuação for necessária, esse PVM é utilizado. É utilizado quando a posição de flutuação é com acionamento manual do operador. Não há parafusos de ajuste

disponíveis para esta versão do PVM. O ajuste desse PVM é um curso de 5 mm da bobina na direção A e um curso de 7,5 mm da bobina na direção B dando flutuação total.

• PVM sem parafusos de ajuste


O PVM padrão sem parafusos de ajuste permitem um curso da bobina de 5 mm em qualquer direção. O movimento completo da alavanca para um lado dá fluxo total para os pórticos de trabalho. Quando a bobina é movida 5 mm, parará devido à limitação mecânica integrada na base do PVM.

PVM com parafusos de ajuste.

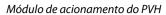
O PVM padrão sem parafusos de ajuste permitem um curso da bobina de 5 mm em qualquer direção. O curso da bobina em qualquer direção pode ser limitado pelos parafusos de ajuste. Isso limita o fluxo para fora dos pórticos de trabalho, reduzindo assim a velocidade de uma aplicação.

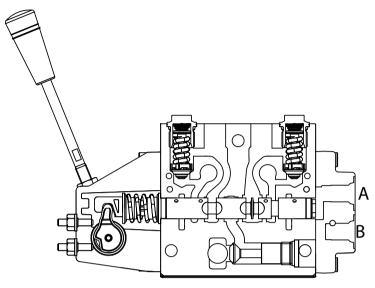
O curso do êmbolo é ajustado primeiro soltando a porca e depois ajustando o parafuso pino. Após o ajuste, a porca deve ser reapertada.

Características técnicas do PVM

Módulo de acionamento do PVH

O PVH é uma placa de alumínio com duas conexões roscadas. Ao aplicar pressão por uma dos pórticos, um lado da bobina é pressionado para uma direção, assim o fluxo está vindo dos pórticos de trabalho.


O PVH está disponível em dois tipos de rosca do conector:

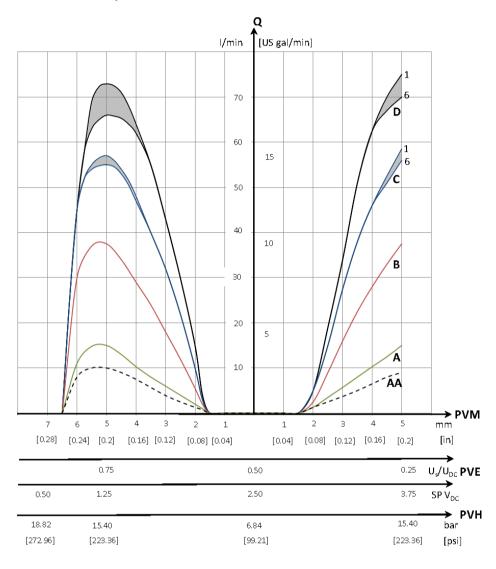

- ¼ BSP
- 1/2" -20 UNF

Ao utilizar o PVH, uma bobina projetada para acionamento hidráulico deve ser escolhida. Esse êmbolos possuem uma mola mais dura projetada para a pressão de acionamento mais alta utilizada em sistemas com controles hidráulicos.

O PVH deve ser combinado com um PVM.

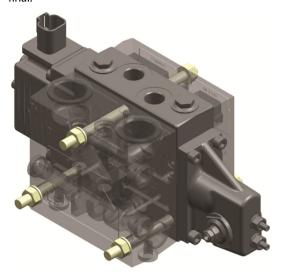
V310363.B

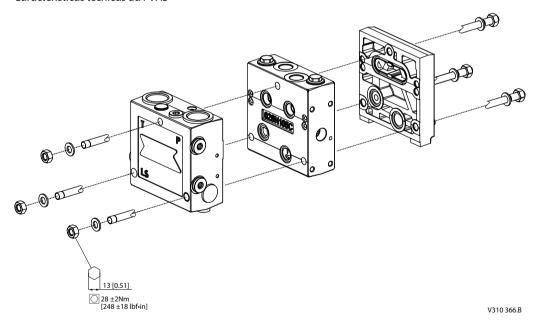
Símbolos hidráulicos e números de código do PVM/PVH


Símbolo	Descrição	Comentários	Número de código
	PVM	Sem alavanca	11107505
157-10.10	Acionamento manual Sem parafusos de ajuste Sem flutuação	Com alavanca	11107333
	PVM	Sem alavanca	11107506
	Acionamento manual Sem parafusos de ajuste Com flutuação	Com alavanca	11107335
	PVM	Sem alavanca	11107507
	Acionamento manual Com parafusos de ajuste Sem flutuação	Com alavanca	11107332
	PVH	1⁄4 " BSP	11108380
1 0 2	Tampa hidráulica	UNF ½" -20	11108381
-	Tampa de PVMD para PVM		11105518

Características de fluxo de óleo do PVM/PVH

As letras AA, A, B, C e D denotam os tamanhos do fluxo do êmbolo variando de 5 l/min a 65 l/min [de 1,32 a 17,17 US gal/min]. Todos os testes são realizados utilizando a Tellus32 @ 21mm²/s.


Fluxo de óleo em função do curso do êmbolo


Design do PVAS

O PVAS consiste em três barras roscadas, seis arruelas e seis porcas. As barras roscadas são inseridas pelo comprimento inteiro da montagem de válvula PVG. As porcas são apertadas no lado da bomba e na placa final.

Para determinadas combinações com a PVG 100/16, PVG 120/16 e algumas PVS 32, a barra roscada é rosqueada na interface.

Características técnicas da PVAS

Guia de seleção de módulo

Largura do módulo de acordo com o tipo de módulo

Tipo de módulo	Largura do módulo
PVB 32 / PVP / PVSK	48 mm [1,89 pol]
PVB 16	40 mm [1,57 pol]
PVS	23 mm [0,91 pol]

Números do código de acordo com o intervalo de largura de modo acumulado

Intervalo de la	argura de módulo ao	cumulado		Número do código PVAS
mm		[pol]		
Mínimo	Máximo	Mínimo	Máximo	
48	72	[1,89]	[2,83]	157B8000
73	96	[2,87]	[3,78]	157B8031
97	120	[3,82]	[4,72]	157B8001
121	144	[4,76]	[5,67]	157B8021
145	168	[5,71]	[6,61]	157B8002
169	192	[6,65]	[7,56]	157B8022
193	216	[7,60]	[8,50]	157B8003
217	240	[8,54]	[9,45]	157B8023
241	264	[9,49]	[10,39]	157B8004
265	288	[10,43]	[11,34]	157B8024
289	312	[11,38]	[12,28]	157B8005
313	336	[12,32]	[13,23]	157B8025
337	360	[13,27]	[14,17]	157B8006
361	384	[14,21]	[15,12]	157B8026
385	408	[15,16]	[16,06]	157B8007
409	432	[16,10]	[17,01]	157B8027
433	456	[17,05]	[17,95]	157B8008
457	480	[17,99]	[18,90]	157B8028
481	504	[18,94]	[19,84]	157B8009
505	528	[19,88]	[20,79]	157B8029
529	552	[20,83]	[21,73]	157B8010
553	576	[21,77]	[22,68]	157B8030
577	600	[22,72]	[23,62]	157B8061
601	624	[23,66]	[24,57]	157B8081
625	648	[24,61]	[25,51]	157B8062
649	672	[25,55]	[26,46]	157B8082

A PVG 100 e a PVG 120 possuem o próprio portfólio de barra roscada e não estão incluídas na tabela acima.

Configuração PVG 32/PVG 16, PVAS padrão

Nº de	Nº de módu	los PVB 16							
módulos PVB 32 (baixo)	0	1	2	3	4	5	6	7	8
0	157B8000	157B8001	157B8002	157B8022	157B8023	157B8024	157B8005	157B8006	157B8007
1	157B8001	157B8002	157B8003	157B8023	157B8024	157B8025	157B8006	157B8007	157B8008
2	157B8002	157B8003	157B8004	157B8024	157B8025	157B8026	157B8007	157B8008	157B8009
3	157B8003	157B8004	157B8005	157B8025	157B8026	157B8027	157B8008	157B8009	157B8010
4	157B8004	157B8005	157B8006	157B8026	157B8027	157B8028	157B8009	157B8010	157B8061
5	157B8005	157B8006	157B8007	157B8027	157B8028	157B8029	157B8010	157B8061	157B8062
6	157B8006	157B8007	157B8008	157B8028	157B8029	157B8030	157B8061	157B8062	-
7	157B8007	157B8008	157B8009	157B8029	157B8030	157B8081	157B8062	-	-
8	157B8008	157B8009	157B8010	157B8030	157B8081	157B8082	-	-	-
9	157B8009	157B8010	157B8061	157B8081	157B8082	-	-	-	-
10	157B8010	157B8061	157B8062	157B8082	-	-	-	-	-
11	157B8061	157B8062	-	-	-	-	-	-	-
12	157B8062	-	-	-	-	-	-	-	-

Configuração PVG 32/PVG 16, PVAS padrão (continuado)

Nº de módulos PVB 32 (baixo)	Nº de módulos	N° de módulos PVB 16										
	9	10	11	12	13	14	15					
0	157B8027	157B8028	157B8029	157B8010	157B8061	157B8062	157B8082					
1	157B8028	157B8029	157B8030	157B8061	157B8062	-	-					
2	157B8029	157B8030	157B8081	157B8062	-	-	-					
3	157B8030	157B8081	157B8082	-	-	-	-					
4	157B8081	157B8082	_	-	-	-	-					
5	157B8082	-	_	-	-	-	-					

Configuração PVG 32/PVG 16, meia entrada PVAS

Nº de	Nº de módulos	PVB 16						
módulos PVB 32	0	1	2	3	4	5	6	7
0	157B8031	157B8021	157B8022	157B8003	157B8004	157B8005	157B8025	157B8026
1	157B8021	157B8022	157B8023	157B8004	157B8005	157B8006	157B8026	157B8027
2	157B8022	157B8023	157B8024	157B8005	157B8006	157B8007	157B8027	157B8028
3	157B8023	157B8024	157B8025	157B8006	157B8007	157B8008	157B8028	157B8029
4	157B8024	157B8025	157B8026	157B8007	157B8008	157B8009	157B8029	157B8030
5	157B8025	157B8026	157B8027	157B8008	157B8009	157B8010	157B8030	157B8081
6	157B8026	157B8027	157B8028	157B8009	157B8010	157B8061	157B8081	157B8082
7	157B8027	157B8028	157B8029	157B8010	157B8061	157B8062	157B8082	-
8	157B8028	157B8029	157B8030	157B8061	157B8062	-	-	-
9	157B8029	157B8030	157B8081	157B8062	-	-	-	-
10	157B8030	157B8081	157B8082	_	-	-	-	-
11	157B8081	157B8082	_	_	-	-	_	-
12	157B8082	_	_	-	-	-	-	-

Configuração PVG 32/PVG 16, meia entrada PVAS (continuado)

Nº de módulos PVB 32	Nº de módulos P	N° de módulos PVB 16										
	8	9	10	11	12	13	14					
0	157B8027	157B8008	157B8009	157B8010	157B8030	157B8081	157B8082					
1	157B8028	157B8009	157B8010	157B8061	157B8081	157B8082	-					
2	157B8029	157B8010	157B8061	157B8062	157B8082	-	-					
3	157B8030	157B8061	157B8062	_	-	_	-					
4	157B8081	157B8062	-	_	-	-	-					
5	157B8082	_	-	_	-	-	-					

Configuração PVG 32/PVG 16, PVAS PVSK

Nº de	Nº de módulos	PVB 16						
módulos PVB 32	0	1	2	3	4	5	6	7
0	157B8031	157B8021	157B8022	157B8003	157B8004	157B8005	157B8025	157B8026
1	157B8021	157B8022	157B8023	157B8004	157B8005	157B8006	157B8026	157B8027
2	157B8022	157B8023	157B8024	157B8005	157B8006	157B8007	157B8027	157B8028
3	157B8023	157B8024	157B8025	157B8006	157B8007	157B8008	157B8028	157B8029
4	157B8024	157B8025	157B8026	157B8007	157B8008	157B8009	157B8029	157B8030
5	157B8025	157B8026	157B8027	157B8008	157B8009	157B8010	157B8030	157B8081
6	157B8026	157B8027	157B8028	157B8009	157B8010	157B8061	157B8081	157B8082
7	157B8027	157B8028	157B8029	157B8010	157B8061	157B8062	157B8082	-
8	157B8028	157B8029	157B8030	157B8061	157B8062	-	-	-
9	157B8029	157B8030	157B8081	157B8062	-	-	-	-
10	157B8030	157B8081	157B8082	-	-	-	-	-
11	157B8081	157B8082	-	-	-	-	-	-
12	157B8082	-	-	-	-	-	-	-

Configuração PVG 32/16 PVAS PVSK (continuado)

Nº de módulos PVB 32	Nº de módulos	PVB 16					
	8	9	10	11	12	13	14
0	157B8027	157B8008	157B8009	157B8010	157B8030	157B8081	157B8082
1	157B8028	157B8009	157B8010	157B8061	157B8081	157B8082	-
2	157B8029	157B8010	157B8061	157B8062	157B8082	-	-
3	157B8030	157B8061	157B8062	-	-	-	-
4	157B8081	157B8062	-	-	-	-	-
5	157B8082	-	-	-	-	-	-

Configuração PVG 100/16 ou PVG 120/16

Nº de	Nº de módulo	№ de módulos PVB 16										
módulos PVB 32	0	1	2	3	4	5	6	7	8			
0	-	157B8000	157B8001	157B8021	157B8022	157B8023	157B8004	157B8005	157B8006			
1	157B8000	157B8001	157B8002	157B8022	157B8023	157B8024	157B8005	157B8006	157B8007			
2	157B8001	157B8002	157B8003	157B8023	157B8024	157B8025	157B8006	157B8007	157B8008			
3	157B8002	157B8003	157B8004	157B8024	157B8025	157B8026	157B8007	157B8008	157B8009			

Configuração PVG 100/16 ou PVG 120/16 (continuação)

Nº de módulos PVB 32	Nº de módu	N° de módulos PVB 16										
	0	1	2	3	4	5	6	7	8			
4	157B8003	157B8004	157B8005	157B8025	157B8026	157B8027	157B8008	157B8009	157B8010			
5	157B8004	157B8005	157B8006	157B8026	157B8027	157B8028	157B8009	157B8010	157B8061			
6	157B8005	157B8006	157B8007	157B8027	157B8028	157B8029	157B8010	157B8061	157B8062			
7	157B8006	157B8007	157B8008	157B8028	157B8029	157B8030	157B8061	157B8062	-			
8	157B8007	157B8008	157B8009	157B8029	157B8030	157B8081	157B8062	-	-			
9	157B8008	157B8009	157B8010	157B8030	157B8081	157B8082	-	-	-			
10	157B8009	157B8010	157B8061	157B8081	157B8082	-	-	-	-			
11	157B8010	157B8061	157B8062	157B8082	-	-	-	-	-			
12	157B8061	157B8062	-	-	-	-	-	-	-			

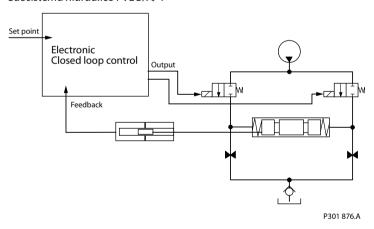
Configuração PVG 100/16 ou PVG 120/16 (continuado)

Nº de módulos	Nº de módulos P	VB 16					
PVB 100	9	10	11	12	13	14	15
0	157B8026	157B8027	157B8028	157B8009	157B8010	157B8061	157B8081
1	157B8027	157B8028	157B8029	157B8010	157B8061	157B8062	157B8082
2	157B8028	157B8029	157B8030	157B8061	157B8062	-	
3	157B8029	157B8030	157B8081	157B8062	-	-	-
4	157B8030	157B8081	157B8082	-	-	-	-
5	157B8081	157B8082	-	-	-	-	-
6	157B8082	-	-	-	-	-	-



PVE - módulos de acionamento elétrico

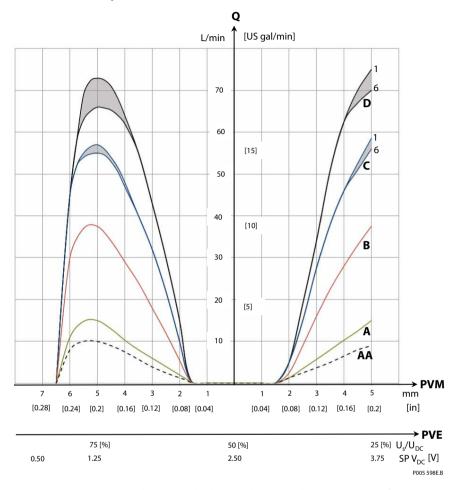
Recursos de PVE


- Acionamento elétrico
- Saída de posição do êmbolo
- · Monitoramento de falhas
- · Economia de energia

módulo de acionamento PVE

O PVE é uma maneira de controlar o fluxo dados pórticos de trabalho a uma certa distância da válvula física. O fluxo é controlado enviando um sinal de controle para o PVE. O resultado é a posição do êmbolo sendo proporcional ao sinal elétrico.

Subsistema hidráulico PVEO/A/-F


Acionamento elétrico

O PVEA é energizado pela fonte de tensão CC disponível na aplicação com qualquer tensão entre 11 e 32 V_{CC} inclusive. O sinal de controle para o PVEA é um sinal relacionado com referência à tensão de alimentação.

PVE - módulos de acionamento elétrico

Fluxo de óleo em função do curso do êmbolo

Fornecer ao PVEA um sinal de controle de 50% da tensão de alimentação o faz posicionar o êmbolo em sua posição neutra, sem fluxo assim para os pórticos de trabalho. Um sinal (U_s , U_{DC}) entre 25-50% ou entre 50-75% faz o êmbolo se mover em qualquer direção. A 25% e 75% a bobina estará no curso total em qualquer lado.

O PVEA e o PVEA-F apresentam um transdutor de feedback integrado que mede o movimento da bobina em relação ao sinal de entrada. Esse feedback é parte do controle de malha fechada da posição da bobina, tornando o PVEA e o PVEA-F capazes de compensar mudanças nas forças do fluxo no êmbolo, na pressão piloto ou na viscosidade do óleo.

O PVEO é alimentado por uma tensão fixa de 12 ou 24 V_{CC} . Aplicar essa tensão a um dos dois pinos fará o PVEO acionar ao êmbolo até o curso total. Ao remover a tensão novamente, a bobina retorna para a posição neutra.

Saída de posição do êmbolo

O PVEA possui um circuito de monitoramento de bobina integrado. Este circuito está em comunicação com os arredores por meio de um pino analógico de 0-5 V_{CC}. A tradução da saída de tensão no pino para o movimento da bobina pode ser encontrada na seção de características técnicas deste capítulo.

A tensão de saída entre 1,25 e 2,5 V_{CC} e entre 2,5 e 3,75 V_{CC} é diretamente proporcional à posição do êmbolo e, portanto, ao fluxo.

O PVEO não tem pino de saída de posição da bobina.

PVE - módulos de acionamento elétrico

Monitoramento de falhas

Quando a tensão no pino SP atingir 5 V $_{\rm CC}$ o PVEA terá detectado um erro. A detecção de erro é monitorar a integridade do sinal de comando, comparar a posição da bobina com o sinal de comando e o controle de malha fechada.

Além da saída de 5 V _{CC} no pino de posição da bobina, o PVEA mudará a cor do LED para reconhecimento visual do erro. Normalmente, o LED acenderia em verde, porém, em caso de erro de sinal de comando o LED piscará em vermelho. Ao ocorrer qualquer dos outros dois erros, o LED de mudará sua cor para vermelho contínuo.

O PVEO não tem monitoramento de falha.

Economia de energia

O PVEA possui um modo de economia de energia. Esse comando é acionado quando o sinal de comando para o PVEA estiver abaixo de 15% da tensão de alimentação. Entrar no modo de economia de energia desligará a energia para as válvulas solenoides. O modo de economia de energia pode ser identificado pelo LED piscando em verde a 1 Hz.

O PVEO não tem modo de economia de energia.

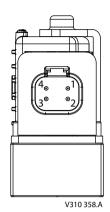
Números de código do PVEO/A

Versões e números de código do PVEO/A

Descrição	Número do código	
PVEO, acionamento elétrico, controle ON/OFF	Sinal de controle de 12 V _{CC}	11106793
	Sinal de controle de 24 V _{CC}	11106794
PVEA, acionamento elétrico, controle proporcional	•	11103692
PVEA-F, acionamento elétrico, controle proporcional, com	flutuação na direção B	11106795

Números do código do PVE-CI

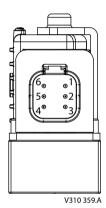
Números do código e versões do PVE-CI


Descrição	Número do código	
PVEO-CI	J1939/ISObus	11124002
PVEA-CI		11121945
PVEO-CI	CANopen	11149443
PVEA-CI		11149437

Consulte PVE-CI, Series 6, Technical Information L1505234 para obter mais informações.

Layout do conector do pino PVEA

O PVEA está disponível como o PVE para controle proporcional da bobina. Ele tem um conector DEUTSCH de 4 pinos.



<u>Legenda:</u>

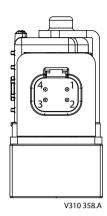
- 1. Vi (pino de sinal)
- 2. Sp (posição da bobina)
- **3.** Vneg (÷)
- **4.** Vbat (+)

Layout do conector do pino PVEA-F

O PVEA-F está disponível para opções de flutuação. Possui um conector DEUTSCH de 6 pinos em que o comando de flutuação possui um pino dedicado. Todos os recursos do PVEA também estão disponíveis no PVEA-F.

- Legenda:

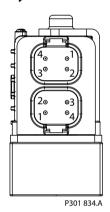
 1. Vi (pino de sinal)
- 2. NC (Não conectado)
- 3. Vf (flutuação)
- **4.** Sp (posição da bobina)
- **5.** Vneg (÷)
- **6.** Vbat (+)


Aviso

Quando o PVEA-F recebe um comando de flutuação, acionará a bobina para o estado de flutuação independente da posição em que a bobina estava ou do ponto de ajuste dado para o PVEA-F.

Layout do conector do pino PVEO

O PVEO está disponível para simples acionamento ON/OFF da bobina principal. Ele tem um conector DEUTSCH de 4 pinos.



<u>Legenda:</u>

- 1. Vbat de alimentação quando o fluxo é desejado na direção A
- 2. Vneg (÷)
 3. Vneg (÷)
- 4. Vbat de alimentação quando o fluxo é desejado na direção B

Layout do conector do pino PVE-CI

- <u>Legenda:</u> **1.** CAN_H
- **2.** CAN_L
- **3.** Vbat (+)
- **4.** Vneg (÷)

Dados técnicos do PVE

Tempo de reação do PVEA/PVEA-F/PVEA-CI

Tempo de reação	Direção A	Direção B
Curso do neutro ao deslocamento total do êmbolo	188 ms	142 ms
Curso total do êmbolo até o neutro	125 ms	120 ms

Technical characteristics for PVEA / PVEA-F

Supply voltage U _{DC}	Rated	11 to 32 V _{DC}
	Range	11 to 32 V _{DC}
	Ripple	max. 5 %
Current consumption at rated voltage		320 mA @ 12 V _{DC} 170 mA @ 24 V _{DC}
Power consumption		0.5 W
Oil consumption	Neutral	0.04 l/min
	Full flow steady state	1 l/min
	Peak	1.3 l/min

Technical characteristics for PVEA / PVEA-F (continuação)

Signal voltage	Neutral	0.5 • U _{DC}
	A-port	0.25 • U _{DC}
	B-port	0.75 • U _{DC}
Signal current at rated voltage	0.25 to 70 mA	
Input impedance in relation to neutral		12 kΩ
Input capacitor		100 μF
SP pin current		2 mA
SP pin resolution		250 steps from 0-5 V _{DC}

Technical characteristics for PVE-CI

Supply voltage U _{DC}	Rated	11 to 32 V _{DC}
	Range	11 to 32 V _{DC}
	Ripple	max. 5 %
Current consumption at rated voltage		320 mA @ 12 V _{DC} 170 mA @ 24 V _{DC}
Power consumption		0.5 W
Oil consumption	Neutral	0.04 l/min
	Full flow steady state	1 l/min
	Peak	1.3 l/min

Consulte PVE-CI, Series 6, Technical Information L1505234 para obter mais informações.

SP pin

Voltage	Translation
0.5 V _{DC}	Float (B-direction)
1.25 V _{DC}	Full flow B-port
2.5 V _{DC}	Neutral
3.75 V _{DC}	Full flow A-port
5.0 V _{DC}	Error

PVEO/PVEO-CI reaction time

Reaction time	A-direction	B-direction
Neutral to full spool stroke	173 ms	105 ms
Full spool stroke to neutral	396 ms	565 ms

PVEA/PVEA-F/PVEA-CI reaction time

Reaction time	A-direction	B-direction
Neutral to full spool stroke	188 ms	142 ms
Full spool stroke to neutral	125 ms	120 ms

PVEO and PVEA/PVEA-F oil consumption

PVE type	PVEO	PVEA/PVEA-F
Neutral position	0.04 /min [0.01 US gal/min]	0.04 l/min [0.01 US gal/min]
Actuating to full stroke	0.6 l/min [0.16 US gal/min]	1 l/min [0.26 US gal/min]
Full stroke steady state	1 l/min [0.26 US gal/min]	1.3 l/min [0.34 US gal/min]

Visão geral do monitoramento de falhas

PVE Type	Fault monitoring	Delay before error out	Error mode	LED light
PVEO	No fault monitoring	-	-	-
PVEA	Passive	250 ms	No fault	Green
			Input signal faults	Flashing red
			Transducer (LVDT)	Constant red
			Close loop fault	

Características do fluxo de óleo do PVE

As letras AA, A, B, C e D denotam os tamanhos do fluxo do êmbolo variando de 5 l/min a 65 l/min [de 1,32 a 17,17 US gal/min]. Todos os testes são realizados utilizando a Tellus32 @ 21mm²/s.

Fluxo de óleo em função do curso do êmbolo

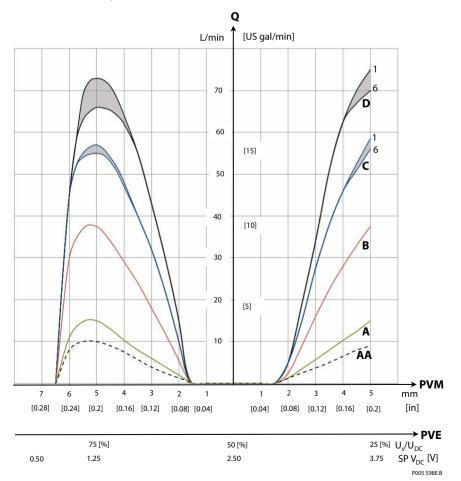
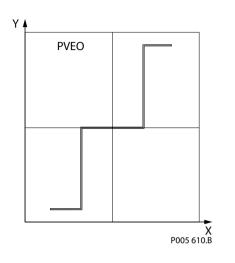
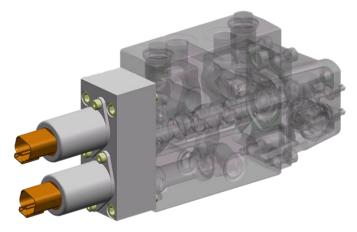



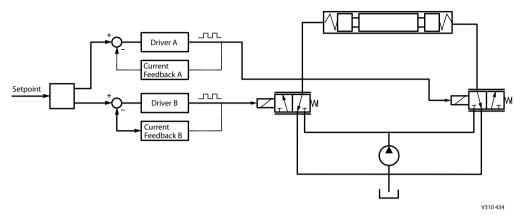
Diagrama da posição de tensão do PVEO e PVEO-CI

Diagrama da posição de tensão do PVEA/PVEA-F e PVEA-CI



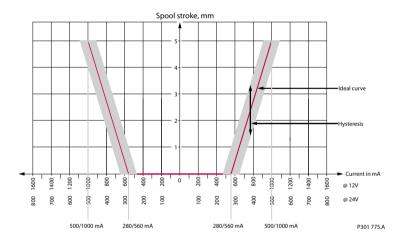
PVHC, módulo de atuação de alta corrente - elétrico

- Acionamento elétrico
- · Layout do pino


Atuador de alta corrente PVHC

O PVHC é uma maneira de controlar o fluxo dos pórticos de trabalho a uma certa distância da válvula física. O fluxo é controlado enviando um sinal PWM para uma das duas válvulas redutoras de pressão. O resultado é a posição da bobina sendo proporcional à corrente.

Subsistema hidráulico PVHC



O PVHC exige pressão piloto de 25 bar, portanto, é utilizado em conjunto com PVBS e PVP para atuação hidráulica (PVH).

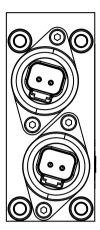
Acionamento elétrico

O PVHC é controlado por um sinal PWM disponível para aplicação tanto com tensão 12 ou 24 V $_{\rm CC}$, dependendo do tipo de PVHC.

Características do PVHC

Fornecer ao PVHC um sinal PWM com uma corrente de 0 mA, fará com que posicione a bobina em sua posição neutra, logo, sem fluxo para os pórticos de trabalho. Aumentar a corrente em uma das duas válvulas redutoras de pressão fará com que a bobina se mova em uma direção.

O PVHC não contém transdutor de feedback integrado para medir a posição da bobina. Portanto, não apresenta nenhum controle de malha fechada do êmbolo.


Versões e números de código

Versões e números de código PVHC

Descrição	Número de código	
	12 V _{CC}	24 V _{CC}
PVHC, atuação elétrica, controle proporcional	11126941	11127535

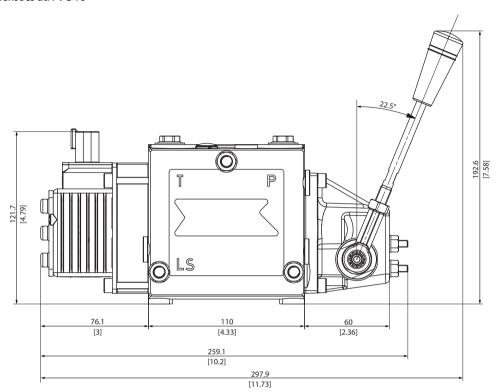
Layout do pino PVHC – versão DEUTSCH

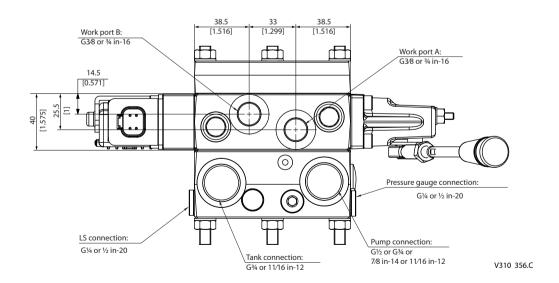
V310 435

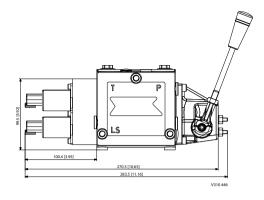
Características técnicas do PVHC

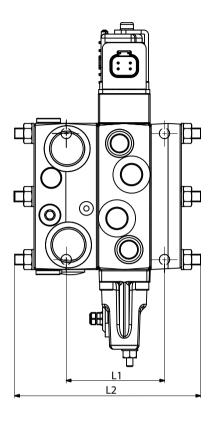
Características técnicas do PVHC

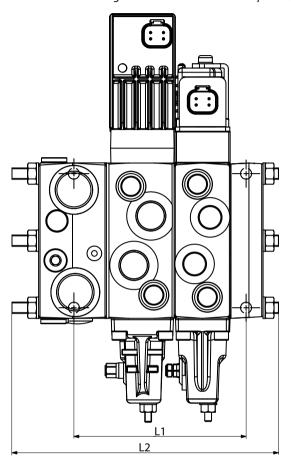
Tensão de alimentação em U _{CC}	12 V _{CC}	24 V _{CC}
Corrente de saída do controlador	0 – 1200 mA	0 – 600 mA
Resistência	4,75 Ω +-5%	20,8 Ω +-5%
Faixa de controle da pressão piloto	20 – 25 bar [290 – 363 psi]	
Frequência do dither recomendada	40 Hz	
Amplitude recomendada	250 mA	


Tempo de resposta do PVHC


Da posição neutra para o curso máximo da bobina com a	Direção A	<90 ms
energia ligada	Direção B	<90 ms
	Direção A	<90 ms
energia desligada	Direção B	<90 ms


PVG 16


Dimensões da PVG 16


Dimensões da PVB 16 (12 seções)

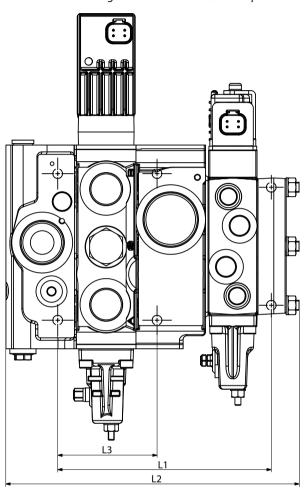
Número o	do PVB 16	1	2	3	4	5	6	7	8	9	10	11	12
L1	mm	74	114	154	194	234	274	314	354	394	434	474	514
	[pol]	[2.91]	[4.49]	[6.06]	[7.64]	[9.21]	[10.79]	[12.36]	[13.94]	[15.51]	[17.09]	[18.66]	[20.24]
L2	mm	140	189	213	262	311	336	385	434	458	507	551	576
	[pol]	[5.51]	[7.44]	[8.39]	[10.31]	[12.24]	[13.23]	[15.16]	[17.09]	[18.03]	[19.96]	[21.69]	[22.68]

PVG 32/16

Dimensões da montagem da válvula com combinação PVB 32/16

Dimensões da montagem da válvula com combinação PVB 32/16

	ero do PVE	3 32 (para	Número	do PVB 16									
baixo)			1	2	3	4	5	6	7	8	9	10	11
1	L1	mm	122	162	202	242	282	322	362	402	442	482	522
		[pol]	[4.80]	[6.38]	[7.95]	[9.53]	[11.10]	[12.68]	[14.25]	[15.83]	[17.40]	[18.98]	[20.55]
	L2	mm	189	238	262	311	360	385	434	483	507	551	600
		[pol]	[7.44]	[9.37]	[10.31]	[12.24]	[14.17]	[15.16]	[17.09]	[19.02]	[19.96]	[21.69]	[23.62]
2	L1	mm	170	210	250	290	330	370	410	450	490	530	570
		[pol]	[6.69]	[8.27]	[9.84]	[11.42]	[12.99]	[14.57]	[16.14]	[17.72]	[19.29]	[20.87]	[22.44]
	L2	mm	238	287	311	360	409	434	483	507	551	600	646
		[pol]	[9.37]	[11.30]	[12.24]	[14.17]	[16.10]	[17.09]	[19.02]	[19.96]	[21.69]	[23.62]	[25.43]
3	L1	mm	218	258	298	338	378	418	458	498	538	578	618
		[pol]	[8.58]	[10.16]	[11.73]	[13.31]	[14.88]	[16.46]	[18.03]	[19.61]	[21.18]	[22.76]	[24.33]
	L2	mm	287	336	360	409	458	483	527	576	600	646	694
		[pol]	[11.30]	[13.23]	[14.17]	[16.10]	[18.03]	[19.02]	[20.75]	[22.68]	[23.62]	[25.43]	[27.32]


Dimensões da montagem da válvula com combinação PVB 32/16 (continuação)

Número do PVB 32 (para baixo)		VB 32 (para	Número	Número do PVB 16										
раіх	0)		1	2	3	4	5	6	7	8	9	10	11	
4	L1	mm	266	306	346	386	426	466	506	546	586	626	-	
		[pol]	[10.47]	[12.05]	[13.62]	[15.20]	[16.77]	[18.35]	[19.92]	[21.50]	[23.07]	[24.65]	-	
	L2	mm	336	385	409	458	483	527	576	622	646	694	-	
		[pol]	[13.23]	[15.16]	[16.10]	[18.03]	[19.02]	[20.75]	[22.68]	[24.49]	[25.43]	[27.32]	-	
5	L1	mm	314	354	394	434	474	514	554	594	634	-	-	
		[pol]	[12.36]	[13.94]	[15.51]	[17.09]	[18.66]	[20.24]	[21.81]	[23.39]	[24.96]	-	-	
	L2	mm	385	434	458	507	551	576	622	670	694	-	-	
		[pol]	[15.16]	[17.09]	[18.03]	[19.96]	[21.69]	[22.68]	[24.49]	[26.38]	[27.32]	-	-	
6	L1	mm	362	402	442	482	522	562	602	-	-	-	-	
		[pol]	[14.25]	[15.83]	[17.40]	[18.98]	[20.55]	[22.13]	[23.70]	-	-	-	-	
	L2	mm	434	483	507	551	600	622	670	-	-	-	-	
		[pol]	[17.09]	[19.02]	[19.96]	[21.69]	[23.62]	[24.49]	[26.38]	-	-	-	-	
7	L1	mm	410	450	490	530	570	610	-	-	-	-	-	
		[pol]	[16.14]	[17.72]	[19.29]	[20.87]	[22.44]	[24.02]	-	-	-	-	-	
	L2	mm	483	527	551	600	646	670	-	-	-	-	-	
		[pol]	[19.02]	[20.75]	[21.69]	[23.62]	[25.43]	[26.38]	-	-	-	-	-	
8	L1	mm	458	498	538	578	618	-	-	-	-	-	-	
		[pol]	[18.03]	[19.61]	[21.18]	[22.76]	[24.33]	-	-	-	-	-	-	
	L2	mm	527	576	600	646	694	-	-	-	-	-	-	
		[pol]	[20.75]	[22.68]	[23.62]	[25.43]	[27.32]	-	-	-	-	-	-	
9	L1	mm	506	546	586	626	-	-	-	-	-	-	-	
		[pol]	[19.92]	[21.50]	[23.07]	[24.65]	-	-	-	-	-	-	-	
	L2	mm	576	622	646	694	-	-	-	-	-	-	-	
		[pol]	[22.68]	[24.49]	[25.43]	[27.32]	-	-	-	-	-	-	-	
10	L1	mm	554	594	634	-	-	-	-	-	-		-	
		[pol]	[21.81]	[23.39]	[24.96]	-	-	-	-		-		-	
	L2	mm	622	670	694	-	-	-	-	-	-	-	-	
		[pol]	[24.49]	[26.38]	[27.32]	-	-	-	-	-	-	-	-	
11	L1	mm	602	-	-	-	-	-	-	-	-	-	-	
		[pol]	[23.70]	-	-	-	-	-	-	-	-	-	-	
	L2	mm	670	-	-	-	-	-	-	-	-	-	-	
		[pol]	[26.38]	-	-	-	-	-	-	-	-	-	-	

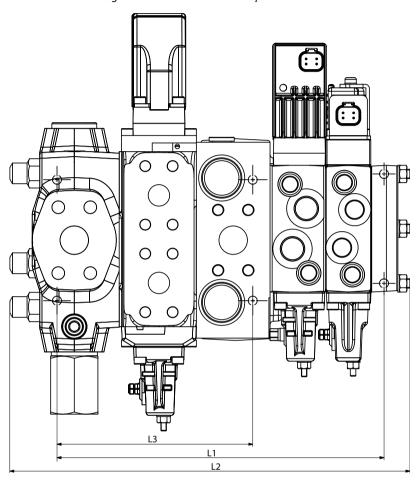
PVG 100/16

Dimensões da montagem da válvula com combinação PVB 100/16

Dimensões da montagem da válvula com combinação PVB 100/16

	Número do PVB 100 (para			do PVB 16										
baixo)			1	2	3	4	5	6	7	8	9	10	11	
1	L1	mm	172	212	252	292	332	372	412	452	492	532	572	
		[pol]	[6.77]	[8.35]	[9.92]	[11.50]	[13.07]	[14.65]	[16.22]	[17.80]	[19.37]	[20.94]	[22.52]	
	L2	mm	236	285	311	358	407	432	481	530	554	603	652	
		[pol]	[9.29]	[11.22]	[12.24]	[14.09]	[16.02]	[17.01]	[18.94]	[20.87]	[21.81]	[23.74]	[25.67]	
	L3	80 mm [3,	[5 pol]											
2	L1	mm	220	260	300	340	380	420	460	500	540	580	620	
		[pol]	[8.66]	[10.24]	[11.81]	[13.39]	[14.96]	[16.54]	[18.11]	[19.69]	[21.26]	[22.83]	[24.41]	
	L2	mm	284	333	359	406	455	480	529	578	602	651	700	
		[pol]	[11.18]	[13.11]	[14.13]	[15.98]	[17.91]	[18.90]	[20.83]	[22.76]	[23.70]	[25.63]	[27.56]	
	L3	128 mm [5	3 mm [5,04 pol]											

Dimensões da montagem da válvula com combinação PVB 100/16 (continuação)


Número do PVB 100 (para baixo)			Número	do PVB 16									
раіх	ю)		1	2	3	4	5	6	7	8	9	10	11
3	L1	mm	268	308	348	388	428	468	508	548	588	628	668
		[pol]	[10.55]	[12.13]	[13.70]	[15.28]	[16.85]	[18.43]	[20.00]	[21.57]	[23.15]	[24.72]	[26.30]
	L2	mm	332	381	407	454	503	528	577	626	650	699	748
		[pol]	[13.07]	[15.00]	[16.02]	[17.87]	[19.80]	[20.79]	[22.72]	[24.65]	[25.59]	[27.52]	[29.45]
	L3	176 mm [6	5,93 pol]										
4	L1	mm	316	256	396	436	476	516	556	596	636	676	716
		[pol]	[12.44]	[10.08]	[15.59]	[17.17]	[18.74]	[20.31]	[21.89]	[23.46]	[25.04]	[26.61]	[28.19]
	L2	mm	380	429	455	502	551	576	625	674	698	747	796
		[pol]	[14.96]	[16.89]	[17.91]	[19.76]	[21.69]	[22.68]	[24.61]	[26.54]	[27.48]	[29.41]	[31.34]
	L3	224 mm [8	3,82 pol]			-		·	1				
5	L1	mm	364	404	444	484	524	564	604	644	684	724	764
		[pol]	[14.33]	[15.91]	[17.48]	[19.06]	[20.63]	[22.20]	[23.78]	[25.35]	[26.93]	[28.50]	[30.08]
	L2	mm	428	477	503	550	599	624	673	722	746	795	844
		[pol]	[16.85]	[18.78]	[19.80]	[21.65]	[23.58]	[24.57]	[26.50]	[28.43]	[29.37]	[31.30]	[33.23]
	L3	272 mm [1	10,71 pol]	'	1	-1	_	'	1				
6	L1	mm	412	452	492	532	572	612	652	692	732	772	812
		[pol]	[16.22]	[17.80]	[19.37]	[20.94]	[22.52]	[24.09]	[25.67]	[27.24]	[28.82]	[30.39]	[31.97]
	L2	mm	476	525	551	598	647	672	721	770	794	843	892
		[pol]	[18.74]	[20.67]	[21.69]	[23.54]	[25.47]	[26.46]	[28.39]	[30.31]	[31.26]	[33.19]	[35.12]
	L3	320 mm [12,60 pol]	•			•	•	•	•		•	
7	L1	mm	460	500	540	580	620	660	700	740	780	820	860
		[pol]	[18.11]	[19.69]	[21.26]	[22.83]	[24.41]	[25.98]	[27.56]	[29.13]	[30.71]	[32.28]	[33.86]
	L2	mm	524	573	599	646	695	720	769	818	842	891	940
		[pol]	[20.63]	[22.56]	[23.58]	[25.43]	[27.36]	[28.35]	[30.28]	[32.20]	[33.15]	[35.08]	[37.01]
	L3	368 mm [1	14,49 pol]	•			•	•	•			•	
8	L1	mm	508	548	588	628	668	708	748	788	828	868	908
		[pol]	[20.00]	[21.57]	[23.15]	[24.72]	[26.30]	[27.87]	[29.45]	[31.02]	[32.60]	[34.17]	[35.75]
	L2	mm	572	621	647	694	743	768	817	866	890	939	988
		[pol]	[22.52]	[24.45]	[25.47]	[27.32]	[29.25]	[30.24]	[32.17]	[34.09]	[35.04]	[36.97]	[38.90]
	L3	416 mm [16,38 pol]	•		•	•	•	•				

Há uma diferença horizontal de 23,5 mm [0,93 pol] no plano de montagem da PVG 100/PVG 16.

PVG 120/16

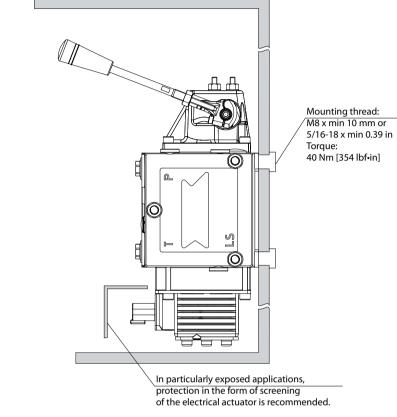
Dimensões da montagem da válvula com combinação PVB 120/16

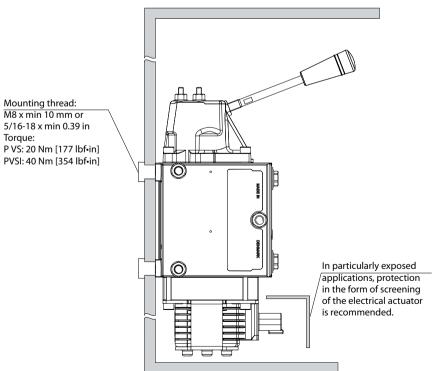
Há uma diferença horizontal de 62,5 mm [2,46 pol] no plano de montagem da PVG 120/PVG 16.

Dimensões da montagem da válvula com combinação PVB 120/16

		120 (para	Número do PVB 16										
baixo)			1	2	3	4	5	6	7	8	9	10	11
1	L1	mm	284	324	364	404	444	484	524	564	604	644	684
		[pol]	[11.18]	[12.76]	[14.33]	[15.91]	[17.48]	[19.06]	[20.63]	[22.20]	[23.78]	[25.35]	[26.93]
	L2	mm	348	397	421	470	519	544	593	642	666	715	759
		[pol]	[13.70]	[15.63]	[16.57]	[18.50]	[20.43]	[21.42]	[23.35]	[25.28]	[26.22]	[28.15]	[29.88]
	L3	170 mm [6	5,69 pol]						•	•	•	•	
2	L1	mm	351	391	431	471	511	551	591	631	671	711	751
		[pol]	[13.82]	[15.39]	[16.97]	[18.54]	[20.12]	[21.69]	[23.27]	[24.84]	[26.42]	[27.99]	[29.57]
	L2	mm	413	462	486	535	584	609	658	707	731	780	824
		[pol]	[16.26]	[18.19]	[19.13]	[21.06]	[22.99]	[23.98]	[25.91]	[27.83]	[28.78]	[30.71]	[32.44]
	L3	237 mm [9,33 pol]											

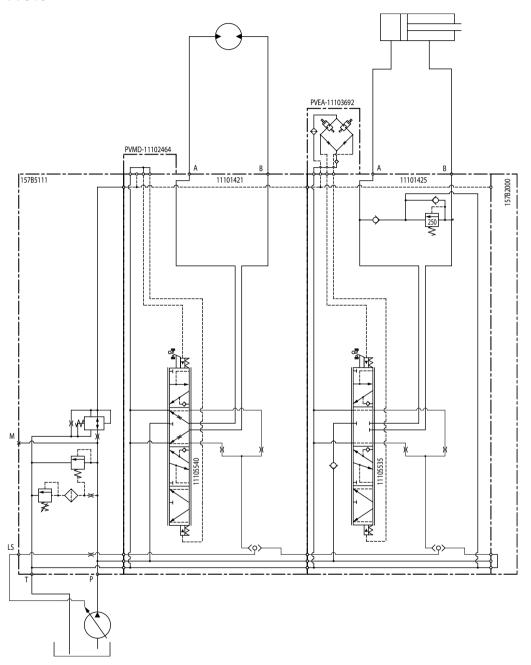
Dimensões da montagem da válvula com combinação PVB 120/16 (continuação)


		VB 120 (para	Número do PVB 16										
baix	(0)		1	2	3	4	5	6	7	8	9	10	11
3	L1	mm	418	458	498	538	578	618	658	698	738	778	818
		[pol]	[16.46]	[18.03]	[19.61]	[21.18]	[22.76]	[24.33]	[25.91]	[27.48]	[29.06]	[30.63]	[32.20]
	L2	mm	478	527	551	600	649	674	723	772	796	845	889
		[pol]	[18.82]	[20.75]	[21.69]	[23.62]	[25.55]	[26.54]	[28.46]	[30.39]	[31.34]	[33.27]	[35.00]
	L3	304 mm [11,91 pol]		-	•		-	•	•	•	•	•
4	L1	mm	485	525	565	605	545	685	725	765	805	845	885
		[pol]	[19.09]	[20.67]	[22.24]	[23.82]	[21.46]	[26.97]	[28.54]	[30.12]	[31.69]	[33.27]	[34.84]
	L2	mm	543	592	616	665	714	739	788	837	86	910	954
		[pol]	[21.38]	[23.31]	[24.25]	[26.18]	[28.11]	[29.09]	[31.02]	[32.95]	[3.39]	[35.83]	[37.56]
	L3	371 mm [14,61 pol]	•	•			•	•	•	•	•	•
5	L1	mm	552	592	632	672	712	752	792	832	872	912	952
		[pol]	[21.73]	[23.31]	[24.8]	[26.46]	[28.03]	[29.61]	[31.18]	[32.76]	[34.33]	[35.91]	[37.48]
	L2	mm	608	657	681	730	779	804	853	902	926	975	1019
		[pol]	[23.94]	[25.87]	[26.81]	[28.74]	[30.67]	[31.65]	[33.58]	[35.51]	[36.46]	[38.39]	[40.12]
	L3	438 mm [17,24 pol]	•	•				•	•	•	•	•
6	L1	mm	619	659	699	739	779	819	859	899	939	979	1019
		[pol]	[24.37]	[25.94]	[27.52]	[29.09]	[30.67]	[32.24]	[33.82]	[35.39]	[36.97]	[38.54]	[40.12]
	L2	mm	673	722	746	795	844	869	918	967	991	1040	1084
		[pol]	[26.50]	[28.43]	[29.37]	[31.30]	[33.23]	[34.21]	[36.14]	[38.07]	[39.02]	[40.94]	[42.68]
	L3	505 mm [19,88 pol]	•	•				•	•	•	•	•
7	L1	mm	686	726	766	806	846	886	926	966	1006	1046	1086
		[pol]	[27.01]	[28.58]	[30.16]	[31.73]	[33.31]	[34.88]	[36.46]	[38.03]	[39.61]	[41.18]	[42.76]
	L2	mm	738	787	811	860	909	934	983	1032	1056	1105	1149
		[pol]	[29.06]	[30.98]	[31.93]	[33.86]	[35.79]	[36.77]	[38.70]	[40.63]	[41.57]	[43.50]	[45.24]
	L3	572 mm [2	22,52 pol]	•	•				•	•	•	•	•
8	L1	mm	753	793	833	873	913	953	993	1033	1073	1113	1153
		[pol]	[29.65]	[31.22]	[32.80]	[34.37]	[35.94]	[37.52]	[39.09]	[40.67]	[42.24]	[43.82]	[45.39]
	L2	mm	803	852	876	925	974	999	1048	1097	1121	1170	1214
		[pol]	[31.61]	[33.54]	[34.49]	[36.42]	[38.35]	[39.33]	[41.26]	[43.19]	[44.13]	[46.06]	[47.80]
	L3	639 mm [2	25,16 pol]				•						


Devido ao tamanho grande do módulo de interface da PVG 120, é necessário ter ao menos um módulo PVG 32 entre a PVGI e a primeira fatia de PVG 16.

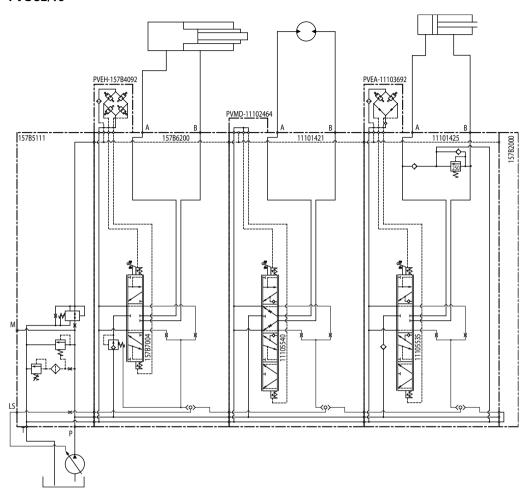
Instalação

Instalação da PVG 16

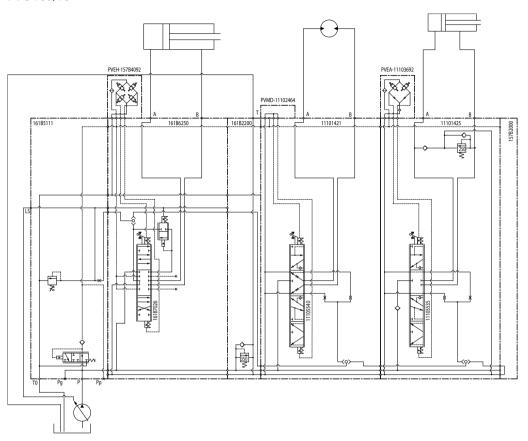


L1526389 | BC00000211en-US0303

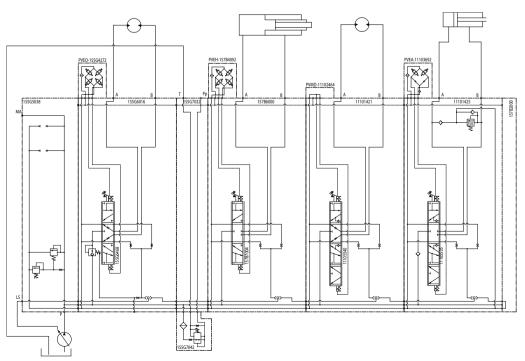
V310 365.C



PVG 16



PVG 32/16



PVG 100/16

PVG 120/16

Devido ao tamanho grande do módulo de interface da PVG 120, é necessário ter ao menos um módulo PVG 32 entre a PVGI e a primeira fatia de PVG 16.

Sistema hidráulico

Eficiência do sistema hidráulico

Um sistema hidráulico completo pode ser implementado de muitas maneiras diferentes. Não existe uma resposta única para: qual solução de sistema é a correta? A solução dependerá de qual é o objetivo dos fabricantes do veículo, se estiverem buscando alta produtividade e/ou baixo consumo de combustível e/ou design compacto e/ou alto conforto do operador etc.

Um tópico importante a ser considerado ao se tratar de design de sistema é a *eficiência da energia*. Componentes em um sistema possuem sua eficiência individual, dessa maneira, os componentes contribuem para o consumo total de energia. Esse consumo de energia é diretamente proporcional à emissão da aplicação e aos custos operacionais.

A energia necessária para gerar o fluxo e a pressão para cada função do sistema é vital, pois, a energia sobressalente usada para gerar fluxo em excesso e a pressão são convertidos em calor e, portanto, em perda.

Geralmente, existem três tipos de sistemas hidráulicos móveis:

- Deslocamento fixo com fluxo constante.
- Deslocamento variável com pressão constante e
- Deslocamento variável com Load Sense de carga (LS).

Sistema de deslocamento fixo com fluxo constante

Usa uma bomba com deslocamento fixo para gerar um fluxo fixo para o sistema. Em espera, o fluxo é enviado da bomba através da válvula e de volta para o reservatório. Sempre que um consumidor solicitar uma porção do fluxo vai realizar uma função de trabalho, o sistema de deslocamento fixo traz o fluxo inteiro até a pressão de carga. Em seguida, a válvula dividirá o fluxo para o fluxo do pórtico e o fluxo excedente enviando-o de volta para o reservatório.

A eficiência de um sistema de deslocamento fixo é diretamente proporcional à porcentagem do fluxo total utilizado pelo consumidor. Se o consumidor utilizar 10% do fluxo total disponível, o sistema de deslocamento fixo terá eficiência de 10%. Se o consumidor utilizar 75% do fluxo total disponível, o sistema terá eficiência de 75%.

Sistema de deslocamento variável com pressão constante

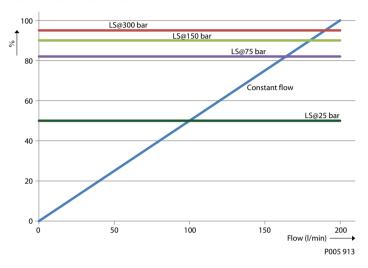
Utiliza uma bomba de deslocamento variável para regular o fluxo para as necessidades do cliente para o sistema. O fluxo sempre é pressurizado para o ajuste do compensador de pressão da bomba, independente das necessidades de pressão do consumidor. Em espera, a pressão permanece com pressão total do sistema e somente o fluxo de vazamento é circulado de volta para o reservatório. Sempre que um consumidor solicitar um fluxo para realizar uma função de trabalho, a bomba entregará somente esse fluxo, porém, com pressão total do sistema, independente das necessidades de pressão da função.

A eficiência de um sistema de deslocamento fixo é diretamente proporcional à porcentagem da pressão total necessária para realizar o trabalho, se for necessário 10% da pressão, o sistema de deslocamento fixo terá eficiência de 10%. Se for necessário 75% da pressão, o sistema terá eficiência de 75%.

Sistema de deslocamento variável com sensoriamento de carga

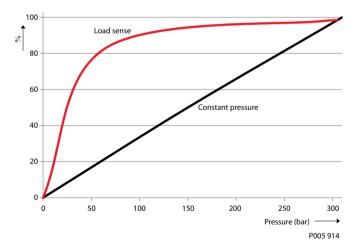
Utiliza uma bomba de deslocamento variável para dar ao consumidor o fluxo solicitado com a pressão necessária. Em espera, somente o vazamento da bomba é circulado de volta para o reservatório - somente com pressão de margem. Sempre que um consumidor solicitar um fluxo, a bomba entrega esse fluxo com a pressão necessária mais uma pressão de margem para compensar a resistência interna e o controle do sistema.

A eficiência de um sistema LS, apesar de seu controle de pressão, não é proporcional ao fluxo ou à pressão, mas um resultado do ajuste de pressão de margem da bomba.


A maneira mais fácil de comparar as eficiências de sistemas é fazer um exemplo. Considerando uma bomba com taxa de fluxo máximo de 200 l/min [52,8 gal/min] e pressão de sistema de 300 bar [4351 psi].

Sistema hidráulico

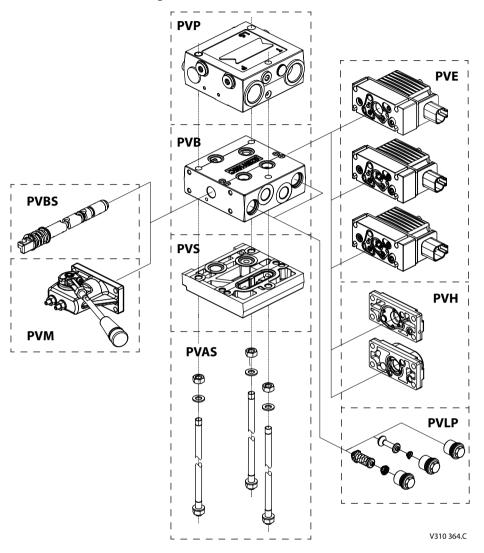
Uma comparação de sistemas de deslocamento fixo e variável confere ao sistema LS uma enorme vantagem de eficiência sobre o sistema de deslocamento fixo, especialmente nas aplicações de alta pressão e fluxo baixo para médio.


Sistema de deslocamento fixo vs. variável

Considerando múltiplos consumidores onde funções de trabalho de alto fluxo são usadas raramente, o sistema LS aumentará a vantagem sobre o sistema de deslocamento fixo.

Uma comparação de sistemas de deslocamento fixo e variável confere ao sistema de deslocamento variável uma vantagem de eficiência sobre o sistema de deslocamento fixo na faixa de baixa pressão de uma aplicação.

Sistema de deslocamento fixo vs. variável



Considerando múltiplos consumidores a pressões diferentes, o sistema de deslocamento variável aumentará a eficiência sobre o sistema de deslocamento fixo.

Apesar de o sistema de deslocamento variável ser o mais complexo dos três sistemas, ele oferece potencialmente grandes vantagens em termos de uso eficiente da energia e, consequentemente, da conformidade com os requisitos de gerenciamento de energia. A família PVG oferece produtos para fluxo constante e sistemas de sensoriamento de carga para a melhor solução para o sistema hidráulico móvel.

Módulos e números de código

Conexões de pórticos:

 $P = G \frac{1}{2}$ pol; 14 mm de profundidade ou $G \frac{3}{4}$ pol; 16 mm de profundidade [7/8-14; 0,65] pol de profundidade ou 11/16-12; 0,75 pol de profundidade]

LS, M = G $\frac{1}{2}$ pol; 12 mm de profundidade [$\frac{1}{2}$ -20; 0,47 pol de profundidade]

 $T = G \frac{3}{4}$ pol; 16 mm de profundidade [11/16–12; 0,75 pol de profundidade]

PVE, Acionamento elétrico

Descrição	Número de código					
	12 V _{CC}	24 V _{CC}				
Controle PVEO, ON/OFF	11106793	11106794				
Controle proporcional PVHC	11126941	11127535				
Controle proporcional PVEA	11103692					
Controle proporcional, com flutuação na direção B PVEA-F	11106795					

PVE-CI, Acionamento elétrico

Descrição		Número do código					
PVEO-CI	J1939/ISObus	11124002					
PVEA-CI		11121945					
PVEO-CI	CANopen	11149443					
PVEA-CI		11149437					

PVB, módulo compensado

Descrição	Número do código	
Módulo básico compensado	3/8" BSP	11130976
	3/4"-16UNF	11130977
Módulo básico compensado com cavidades para válvulas de antichoque e	3/8" BSP	11130978
anticavitação (PVLP/PVLA)	3/4"-16UNF	11130979
Módulo básico compensado com uma válvula de alívio LS ajustável	3/8" BSP	11130982
comum para pórtico A e pórtico B	3/4"-16UNF	11130983

PVB, módulo básico não compensado

Descrição		Número do código	Número do código					
		Com válvula de retenção	Sem válvula de retenção					
Sem instalações para válvulas antichoque	3/8" BSP	11106801	11101421					
	3/4"-16UNF	11106797	11101423					
Sem instalações para válvulas antichoque	3/8" BSP	11101424	11106754					
	3/4"-16UNF	11101425	11106755					

PVM, Acionamento mecânico

Descrição	Número de código					
	Com alavanca	Sem alavanca				
Sem parafusos de ajuste, sem flutuação	11107333	11107505				
Sem parafusos de ajuste, com flutuação	11107335	11107506				
Com parafusos de ajuste, sem flutuação	11107332	11107507				

PVBS, Bobinas

Descrição	Número de código								
	Fluxo I/min [gal/min]	Fluxo l/min [gal/min]							
	5 [1.32]	10 [2.64]	25 [6.60]	40 [10.57]	65 [17.17]				
Neutro aberto, usar com PVE	11105537	11105538	11105539	11105540	11105541				
Neutro aberto, usar com PVH	11109637	11109638	11109639	11109640	11109641				
Neutro fechado, usar com PVE	11105532	11105533	11105534	11105535	11105536				
Neutro fechado, usar com PVH	11109632	11109633	11109634	11109635	11109636				

Êmbolos principais assimétricos

Descrição	Número do códig	Número do código de acordo com o fluxo l/min [gal/min]							
	5/2,5 [1,32/0,66]	5/2,5 [1,32/0,66]		40/15 [10,57/3,96]	40/25 [10,57/6,60]				
Relação do cilindro	2,0	2,0	2,5	1,6	2,7	1,6			
Neutro fechado, usar com PVE	11109642	11109643	11109644	11109645	11109646	11109647			
Neutro fechado, usar com PVH	11146752	11146753	11146754	11146755	11146756	11146757			

PVH, PVMD, Tampas

Descrição		Número de código
PVH, Acionamento hidráulico	G 1/4 BSP	11108380
	9/16-18 UNF	11108381
PVMD, Tampa para PVM		11105518

PVP, Módulo lateral da bomba

Descrição	Rosca	Número de código
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo.	P = G ½; T = G ¾	157B5000
Para grupos de válvulas com acionamento puramente mecânico.	P = 7/8-14; T = 11/16-12	157B5200
	P, T = G 3/4	157B5100
	P, T = 11/16-12	157B5300
Módulo lateral de bomba com centro fechado para bombas com deslocamento	P = G ½; T = G ¾	157B5001
variável. Para grupos de válvulas com acionamento puramente mecânico.	P = 7/8-14; T = 11/16-12	157B5201
Tata grupos de valvulas com acionamento puramente mecanico.	P, T = G 3/4	157B5101
	P, T = 11/16-12	157B5301
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo.	P = G ½; T = G ¾	157B5010
Com alimentação de óleo piloto para válvulas com acionamento elétrico.	P = 7/8-14; T = 11/16-12	157B5210
	P, T = G 3/4	157B5110
	P, T = 11/16-12	157B5310
Módulo lateral de bomba com centro fechado para bombas com deslocamento	P = G ½; T = G ¾	157B5011
variável. Com alimentação de óleo piloto para válvulas com acionamento elétrico.	P = 7/8-14; T = 11/16-12	157B5211
com alimentação de oleo piloto para valvalas com acionamento eletrico.	P, T = G 3/4	157B5111
	P, T = 11/16-12	157B5311
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo.	P = G ½; T = G ¾	157B5012
Com alimentação de óleo piloto para válvulas com acionamento elétrico Conexão para válvula elétrica de descarga LS, PVPX.	P = 7/8-14; T = 11/16-12	157B5212
Coriexao para varvula eletrica de descarga ES, PVPA.	P, T = G 3/4	157B5112
	P, T = 11/16-12	157B5312
Módulo lateral de bomba com centro fechado para bombas com deslocamento	P = G ½; T = G ¾	157B5013
variável. Com alimentação de óleo piloto. Conexão para válvula elétrica de descarga LS, PVPX	P = 7/8-14; T = 11/16-12	157B5213
Coriexao para varvula eletrica de descarga ES, F VF X	P, T = G 3/4	157B5113
	P, T = 11/16-12	157B5313
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo. Para válvulas com acionamento mecânico. Conexão para válvula elétrica de descarga LS, PVPX.	P, T = G ¾	157B5102
Módulo lateral de bomba com centro fechado para bombas com deslocamento variável. Para válvulas com acionamento mecânico. Conexão para válvula elétrica de descarga LS, PVPX.	P, T = G ³ / ₄	157B5103

PVP, Módulo lateral da bomba (continuação)

Descrição	Rosca	Número de código
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo. Com	P, T = G 3/4	157B5180
alimentação de óleo piloto para acionamento elétrico e conexão para pressão de óleo piloto.	P, T = 11/16–12	157B5380
Módulo lateral de bomba com centro fechado para bombas com deslocamento	P, T = G 3/4	157B5181
variável. Com alimentação de óleo piloto para acionamento elétrico e conexão para pressão de óleo piloto.	P, T = 11/16-12	157B5381
'	P, T = G 3/4	157B5190
alimentação de óleo piloto para acionamento hidráulico e conexão para pressão de óleo piloto.	P, T = 11/16–12	157B5390
Módulo lateral de bomba com centro fechado para bombas com deslocamento	P, T = G 3/4	157B5191
variável. Com alimentação de óleo piloto para acionamento hidráulico e conexão para pressão de óleo piloto.	P, T = 11/16–12	157B5391
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo. Com alimentação de óleo piloto para válvulas com acionamento elétrico e bobina de ajuste de pressão amortecida.	P, T = G ¾	11008849
Módulo lateral de bomba com centro aberto para bombas com deslocamento fixo. Com alimentação de óleo piloto para válvulas com acionamento hidráulico e êmbolo de ajuste de pressão amortecida.	P, T = G ¾	11008851

PVS, Placa final

Descrição	Rosca	Número de código		
PVS, placa final de alumínio	Pé = M8	157B2000		
	Pé = 5/16-18	157B2020		
PVS, placa final de alumínio com conexão LX	LX = G1/8; Pé = M8	157B2011		
	LX = 3/8-24; Pé = 5/16-18	157B2021		
PVSI, placa final de ferro fundido	Pé = M8	157B2014		
	Pé = 5/16-18	157B2004		
PVSI, placa final de ferro fundido com conexão LX	LX = G1/4; Pé = M8	157B2015		
	LX = ½-20; Pé = 5/16-18	157B2005		
PVSI, placa final de ferro fundido com conexões P, T, LX e M	P = 3/8; T = ½; LX = ½; M = ½; Pé = M8	157B2920		
PVST, placa final de ferro fundido com conexão T	T = ½; Pé = M8	157B2500		
	T = 7/8-14; Pé = 5/16-18	157B2520		

PVAS, Kit de montagem

Intervalo de comprimento de módulo acumulado		Número de código
mm	[pol]	
55 – 72	[2.17 – 2.83]	157B8000
79 – 96	[3.11 – 3.78]	157B8031
103 – 120	[4.06 – 4.72]	157B8001
127 – 144	[5.00 – 5.67]	157B8021
151 – 168	[5.49 – 6.61]	157B8002
175 – 192	[6.89 – 7.56]	157B8022
199 – 216	[7.83 – 8.50]	157B8003
223 – 240	[8.78 – 9.45]	157B8023
247 – 264	[9.72 – 10.39]	157B8004
271 – 288	[10.67 – 11.34]	157B8024
295 – 312	[11.61 – 12.28]	157B8005

PVAS, Kit de montagem (continuação)

Intervalo de comprimento de módulo acumulado		Número de código
mm	[pol]	
319 – 336	[12.56 – 13.23]	157B8025
343 – 360	[13.50 – 14.17]	157B8006
367 – 384	[14.45 – 15.12]	157B8026
391 – 408	[15.39 – 16.06]	157B8007
415 – 432	[16.34 – 17.00]	157B8027
439 – 456	[17.28 – 17.95]	157B8008
463 – 480	[18.23 – 18.90]	157B8028
487 – 504	[19.17 – 19.84]	157B8009
511 – 528	[20.12 – 20.79]	157B8029
535 – 552	[21.06 – 21.73]	157B8010
559 – 576	[22.00 – 22.68]	157B8030
583 – 600	[22.95 – 23.62]	157B8061
607 – 624	[23.90 – 24.57]	157B8081
631 – 648	[24.84 – 25.51]	157B8062
655 – 672	[25.79 – 26.46]	157B8082

PVLP, Válvulas de choque e anticavitação

Número d código	lo	157B2032	157B2050	157B2063	157B2080	157B2100	157B2125	157B2140	157B2150	157B2160	157B2175	157B2190
Ajustes	bar	32	50	63	80	100	125	140	150	160	175	190
	[psi]	[460]	[725]	[914]	[1160]	[1450]	[1813]	[2031]	[2175]	[2320]	[2538]	[2755]

Número d código	lo	157B2210	157B2230	157B2240	157B2250	157B2265	157B2280	157B2300	157B2320	157B2350	157B2380	157B2400
Ajustes	bar	210	230	240	250	265	280	300	320	350	380	400
	[psi]	[3045]	[3335]	[3480]	[3625]	[3845]	[4061]	[4351]	[4641]	[5075]	[5511]	[5801]

PVLA, Válvula anticavitação

Descrição	Número de código
Plugue A ou B	157B2002
Válvula A ou B	157B2001

Acessórios

Kit de vedação

Descrição	Número do código					
Kit de vedação para PVE e PVHC	11133165					
Kit de vedação para uma seção de trabalho	157B8999					
Kit de vedação para sete seções de trabalho	11156335					
Kit de vedação PVM	157B3999					
Cabo de malha de 175 mm, DEUTSCH 4 PINOS	11095622					

© Danfoss | Março de 2016

Kit de vedação (continuação)

Descrição	Número do código
Cabo 4000 mm, DEUTSCH 4 PINOS	11095741
CG 1502*	11153051
Terminador de 120 Ω	11007561

^{*} Para ser usado somente com PLUS+1® Ferramenta de Serviço versão 7.1.10 ou mais recente.

Especificação do pedido

<u>Danfoss</u>	PVG16		
Subsidiary/Dealer		PVG No.	
Customer		Customer Part No.	
Application		Revision No.	

Application				Revision No.			
Section	A-Port					B-Port	
v Function	V					V	
1		PVP				_	
-		p =	bar				
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
2	b PVLP/PVLA	LS _A	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
3	b PVLP/PVLA	LSA	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
4	b PVLP/PVLA	LSA	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
5	b PVLP/PVLA	LSA	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
6	b PVLP/PVLA	LS _A	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
7	b PVLP/PVLA	LSA	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
8	b PVLP/PVLA	LS _A	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
9	b PVLP/PVLA	LS _A	bar	LS _B	bar	PVLP/PVLA	b
	a PVM	PVB		PVBS		PVE/PVH/PVMD	c
10	b PVLP/PVLA	LSA	bar	LS _B	bar	PVLP/PVLA	b
11 End section		PVS					
12 PVAS section		PVAS					
Comments:							
Filled in by:						Date:	

Produtos que oferecemos:

- · Motores de eixo curvo
- Bombas de pistão axial de circuito fechado e motores
- Displays
- Direção de potência eletrohidráulica
- Eletro-hidráulica
- Direcão Hidrostática
- · Sistemas integrados
- Joysticks de controle
- Microcontroladores e Software
- Bombas de pistão axial de circuito aberto
- Motores orbitais
- GUIA do PLUS+1®
- Válvulas proporcionais
- Sensores
- Direção
- Controles para Betoneiras

Danfoss Power Solutions é uma fabricante e distribuidora global de componentes hidráulicos e eletrônicos de alta qualidade. Somos especializados em fornecer tecnologia de ponta e soluções que superam em excelência as mais agressivas condições de operação do mercado móbil fora de estrada. Com base em nossa perícia em aplicações extensivas, trabalhamos lado a lado com nossos clientes para garantir um desempenho excepcional para uma ampla variedade de veículos fora de estrada.

Ajudamos OEMs por todo o mundo no desenvolvimento de sistema de aceleração, reduzindo custos e trazendo veículos ao mercado mais rápido.

Danfoss – Seu parceiro mais forte em hidráulica móbil.

Visite www.powersolutions.danfoss.com para obter mais informações sobre os produtos.

Onde quer que veículos fora de estrada estejam trabalhando, Danfoss estará. Oferecemos suporte técnico por todo o mundo para nossos clientes, garantindo as melhores soluções possíveis para o desempenho excepcional. E com uma extensiva rede de Parceiros de serviço global, também fornecemos serviço global que abrange todos os nossos componentes.

Entre em contato com o representante da Danfoss Power Solutions mais próximo.

Comatrol

www.comatrol.com

Schwarzmüller-Inverter

www.schwarzmuellerinverter.com

Turolla

www.turollaocg.com

Hydro-Gear

www.hydro-gear.com

Daikin-Sauer-Danfoss

www.daikin-sauer-danfoss.com

Endereço local:

Danfoss Power Solutions (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 **Danfoss Power Solutions GmbH & Co. OHG**Krokamp 35

D-24539 Neumünster, Germany Phone: +49 4321 871 0 Danfoss Power Solutions ApS Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222 Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 3418 5200

Danfoss não pode aceitar nenhuma responsabilidade por eventuais erros em catálogos, folhetos, e outros materiais impressos. Danfoss reserva-se o direito de modificar seus produtos sem aviso prévio. Isto também se aplica aos produtos com pedidos já colocados, desde que essas modificações possam ser feitas sem afetar as especificações já acordadas.
Todas as marcas registradas mencionadas neste material são de propriedade de suas respectivas empresas. Danfoss e o logotipo da Danfoss são marcas registradas da Danfoss A/S. Todos os direitos