

Руководство по эксплуатации

Mining Drive MD 202/MD 302

315-710 кВт, типоразмер Е

Оглавление

1 Введение	4
1.1 Цель этого руководства	4
1.2 Дополнительные ресурсы	
1.3 Версия руководства и программного обеспечения	
1.4 Разрешения и сертификаты	4
1.5 Утилизация	5
2 Техника безопасности	ϵ
2.1 Символы безопасности	6
2.2 Квалифицированный персонал	6
2.3 Меры предосторожности	ϵ
3 Описание изделия	g
3.1 Назначение	ç
3.2 Номинальная мощность, масса и размеры	ç
3.3 Внутреннее устройство корпусов E1h/E2	10
3.4 Внутреннее устройство корпусов E3h/E4h	11
3.5 Полка управления	12
3.6 Панель местного управления (LCP)	13
4 Механический монтаж	15
4.1 Поставляемые компоненты	15
4.2 Необходимый инструмент	15
4.3 Хранение	15
4.4 Рабочая среда	16
4.5 Требования к монтажу и охлаждению	17
4.6 Поднятие устройства	18
4.7 Механический монтаж E1h/E2h	18
4.8 Механический монтаж E3h/E4	20
5 Электрический монтаж	24
5.1 Инструкции по технике безопасности	24
5.2 Монтаж с учетом требований ЭМС	24
5.3 Схема подключений	27
5.4 Подключение двигателя	28
5.5 Подключение к сети питания переменного тока	30
5.6 Подключение заземления	32
5.7 Размеры клемм	34
5.8 Подключение элементов управления	44
5.9 Перечень предпусковых проверок	50

6 I	ввод в эксплуатацию	52
	6.1 Инструкции по технике безопасности	52
	6.2 Подключение к сети питания	52
	6.3 Меню LCP	53
	6.4 Программирование преобразователя частоты	54
	6.5 Тестирование перед запуском системы	58
	6.6 Пуск системы	58
	6.7 Настройки параметров	59
7 I	Примеры конфигураций проводки	61
	7.1 Проводка при регулировании скорости в разомкнутом контуре управления	61
	7.2 Проводка пуска/останова	62
	7.3 Проводка для внешнего сброса аварийной сигнализации	64
	7.4 Проводка термистора двигателя	64
	7.5 Проводка цепи рекуперации	64
	Гехническое обслуживание, диагностика и устранение	
He	исправностей	65
	8.1 Техобслуживание и текущий ремонт	65
	8.2 Панель доступа к радиатору	65
	8.3 Сообщения о состоянии	66
	8.4 Типы предупреждений и аварийных сигналов	69
	8.5 Перечень предупреждений и аварийных сигналов	70
	8.6 Устранение неисправностей	81
9 -	Гехнические характеристики	85
	9.1 Электрические характеристики	85
	9.1.1 MD 202 Питание от сети 3 x 380–500 В перем. тока	85
	9.1.2 MD 202 Питание от сети 3 x 525–690 В перем. тока	87
	9.1.3 MD 302 Питание от сети 3 x 380–500 В перем. тока 9.1.4 MD 302 Питание от сети 3 x 525–690 В перем. тока	90 92
	9.2 Питание от сети	95
	9.3 Выходная мощность и другие характеристики двигателя	95
	9.4 Условия окружающей среды	96
	9.5 Технические характеристики кабелей	97
	9.6 Вход/выход и характеристики цепи управления	97
	9.7 Предохранители	100
	9.8 Размеры корпусов	106
	9.9 Циркуляция воздуха через корпус	118
	9.10 Номинальные усилия затяжки фиксаторов	119
10	9.10 Поминальные усилия затяжки фиксаторов) Приложение	120
10		
	10.1 Сокращения и условные обозначения	120
	10.2 Международные/североамериканские настройки параметров по умолчани	
	10.3 Структура меню параметров	121

Оглавление Руководство по эксплуатации

Алфавитный указатель

127

1 Введение

1.1 Цель этого руководства

Это руководство по эксплуатации содержит сведения по безопасному монтажу и вводу в эксплуатацию преобразователей частоты MD в корпусах размеров E (E1h, E2h, E3h и E4h).

Руководство по эксплуатации предназначено для использования квалифицированным персоналом. Чтобы обеспечить профессиональное и безопасное использование преобразователя частоты, прочтите это руководство по эксплуатации и следуйте изложенным в нем указаниям. Обращайте особое внимание на инструкции по технике безопасности и общие предупреждения. Держите это руководство поблизости от преобразователя частоты, чтобы всегда иметь возможность обратиться к нему.

1.2 Дополнительные ресурсы

Существует дополнительная информация о расширенных функциях и программировании преобразователей частоты в корпусах E1h–E4h.

- Руководство по программированию Mining Drive MD 202/MD 302 содержит более подробное описание работы с параметрами и примеры применения в системах автоматизации.
- PB Руководстве по эксплуатации функции Safe Torque Off содержатся подробные технические характеристики, необходимые требования и ук азания по монтажу функции Safe Torque Of

Дополнительные публикации и руководства можно запросить в компании Danfoss. Их перечень см. по agpecy drives.danfoss.com/knowledge-center/technical-documentation/.

1.3 Версия руководства и программного обеспечения

Это руководство регулярно пересматривается и обновляется. Все предложения по его улучшению будут приняты и рассмотрены. В *Таблица 1.1* указаны версия руководства и соответствующая версия ПО.

Версия руководства	Комментарии	Версия ПО
RI.09.MD2.50	Первый выпуск	7.51

Таблица 1.1 Версия руководства и программного обеспечения

1.4 Разрешения и сертификаты

Таблица 1.2 Разрешения и сертификаты

Имеются и другие разрешения и сертификаты. Обратитесь в местный офис компании или к партнеру Danfoss в вашем регионе. Преобразователи частоты, рассчитанные на напряжение Т7 (525–690 В), сертифицируются на соответствие UL только в диапазоне напряжений 525–600 В.

Преобразователь частоты удовлетворяет требованиям UL 61800-5-1, касающимся тепловой памяти. Подробнее см. раздел *Тепловая защита двигателя* в *руководстве по проектированию* соответствующего продукта.

УВЕДОМЛЕНИЕ

НАЛАГАЕМЫЕ ОГРАНИЧЕНИЯ ВЫХОДНОЙ ЧАСТОТЫ

Начиная с версии ПО 6.72, выходная частота преобразователя частоты ограничена уровнем 590 Гц в соответствии с экспортными правилами. Программное обеспечение версий бх.хх также ограничивает максимальную выходную частоту значением 590 Гц. Эти версии нельзя «перепрошить», то есть нельзя перейти на более низкую или более высокую версию ПО.

1.4.1 Соответствие требованиям ADN

Сведения об условиях соответствия Европейскому соглашению о международной перевозке опасных грузов по внутренним водным путям (ADN) см. в разделе Установка в соответствии ADN в руководстве по проектированию.

1.5 Утилизация

Оборудование, содержащее электрические компоненты, нельзя утилизировать вместе с бытовыми отходами.

Его следует собирать для утилизации отдельно в соответствии с действующими местными правовыми актами.

2 Техника безопасности

2.1 Символы безопасности

В этом руководстве используются следующие символы:

▲ВНИМАНИЕ!

Указывает на потенциально опасную ситуацию, при которой существует риск летального исхода или серьезных травм.

▲ПРЕДУПРЕЖДЕНИЕ

Указывает на потенциально опасную ситуацию, при которой существует риск получения незначительных травм или травм средней тяжести. Также может использоваться для обозначения потенциально небезопасных действий.

УВЕДОМЛЕНИЕ

Указывает на важную информацию, в том числе о такой ситуации, которая может привести к повреждению оборудования или другой собственности.

2.2 Квалифицированный персонал

Правильная и надежная транспортировка, хранение, монтаж, эксплуатация и обслуживание необходимы для беспроблемной и безопасной работы привода. Монтаж и эксплуатация этого оборудования должны выполняться только квалифицированным персоналом.

Квалифицированный персонал определяется как обученный персонал, уполномоченный проводить монтаж, ввод в эксплуатацию и техническое обслуживание оборудования, систем и цепей в соответствии с применимыми законами и правилами. Кроме того, персонал должен хорошо знать инструкции и правила безопасности, описанные в этом руководстве.

2.3 Меры предосторожности

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

Преобразователи частоты, подключенные к сети переменного тока, источнику постоянного тока, цепи разделения нагрузки или двигателям с постоянными магнитами, находятся под высоким напряжением. Установка, пусконаладка и обслуживание преобразователя частоты должны выполняться только квалифицированным персоналом; несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

 Монтаж, пусконаладка и техническое обслуживание должны выполняться только квалифицированным персоналом.

▲ВНИМАНИЕ!

НЕПРЕДНАМЕРЕННЫЙ ПУСК

Если привод подключен к сети питания переменного тока, источнику постоянного тока или цепи разделения нагрузки, двигатель может включиться в любой момент. Случайный пуск во время программирования, техобслуживания или ремонтных работ может привести к летальному исходу, получению серьезных травм или порче имущества. Двигатель может запуститься внешним переключателем, командой по шине последовательной связи, входным сигналом задания с LCP или LOP, в результате дистанционной работы Средство конфигурирования МСТ 10 либо после устранения неисправности.

Чтобы предотвратить случайный пуск двигателя:

- Перед программированием параметров обязательно нажмите на LCP кнопку [Off/ Reset] (Выкл./Сброс).
- Отключите привод от сети питания.
- Прежде чем подключать преобразователь частоты к сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, следует полностью завершить подключение проводки и монтаж компонентов преобразователя частоты, двигателя и любого ведомого оборудования.

▲ВНИМАНИЕ!

ВРЕМЯ РАЗРЯДКИ

В цепи постоянного тока преобразователя частоты установлены конденсаторы, которые остаются заряженными даже после отключения питания. Высокое напряжение может присутствовать даже в том случае, если светодиоды предупреждений погасли. Несоблюдение 40-минутного периода ожидания после отключения питания перед началом обслуживания или ремонта может привести к летальному исходу или серьезным травмам.

- Остановите двигатель.
- Отсоедините сеть переменного тока и дистанционно расположенные источники питания цепи постоянного тока, в том числе резервные аккумуляторы, ИБП и подключения к цепи постоянного тока других преобразователей частоты.
- Отсоедините или заблокируйте двигатель.
- Подождите 40 минут до полной разрядки конденсаторов.
- Перед выполнением любых работ по обслуживанию или ремонту удостоверьтесь с помощью устройства для измерения напряжения, что конденсаторы полностью разряжены.

▲ВНИМАНИЕ!

ОПАСНОСТЬ ТОКА УТЕЧКИ

Токи утечки превышают 3,5 мА. Неправильно выполненное заземление привода может привести к летальному исходу или серьезным травмам.

 Правильное заземление оборудования должно быть устроено сертифицированным специалистом-электромонтажником.

▲ВНИМАНИЕ!

ОПАСНОЕ ОБОРУДОВАНИЕ

Прикосновение к вращающимся валам и электрическому оборудованию может привести к летальному исходу или серьезным травмам.

- Обеспечьте, чтобы монтаж, пусконаладка и техническое обслуживание выполнялись только обученным и квалифицированным персоналом.
- Убедитесь, что электромонтажные работы выполняются в соответствии с государственными и местными электротехническими нормами.
- Соблюдайте процедуры, описанные в этом руководстве.

▲ПРЕДУПРЕЖДЕНИЕ

ГОРЯЧИЕ ПОВЕРХНОСТИ

Преобразователь частоты содержит металлические компоненты, которые остаются горячими даже после выключения преобразователя. Невыполнение требований, соответствующих предупреждающему символу высокой температуры (желтый треугольник) на преобразователе частоты, может привести к серьезным ожогам.

- Учитывайте, что внутренние компоненты, такие как шины, могут быть очень горячими даже после выключения питания преобразователя.
- Наружные поверхности, помеченные символом высокой температуры (желтый треугольник), разогреваются до высокой температуры во время использования преобразователя частоты и остаются горячими сразу после его выключения.

▲ВНИМАНИЕ!

ОПАСНОСТЬ В СЛУЧАЕ ВНУТРЕННЕГО ОТКАЗА

В определенных обстоятельствах неисправность внутреннего компонента может привести к взрыву компонента. Работа с открытым корпусом или неправильно закрепленными крышками корпуса может привести к летальному исходу или серьезным травмам.

- Запрещается работа преобразователя частоты с открытыми дверцами или снятыми панелями.
- Убедитесь, что во время работы корпус надлежащим образом закрыт, и доступ к нему ограничен.

УВЕДОМЛЕНИЕ

ДОПОЛНИТЕЛЬНОЕ СРЕДСТВО ЭКРАНИРОВАНИЯ ПОДКЛЮЧЕНИЙ СЕТЕВОГО ПИТАНИЯ

Для корпусов со степенью защиты IP21/IP 54 (Type 1/ Type 12) доступно дополнительное средство экранирования сети питания. В качестве экрана используется крышка Lexan, устанавливаемая внутри корпуса для обеспечения защиты от случайного прикосновения к силовым клеммам, в соответствии с требованиями стандартов BGV A2, VBG 4.

Danfoss A/S © 06/2019 Все права защищены. RI.09.MD2.50

3 Описание изделия

3.1 Назначение

Преобразователь частоты представляет собой электронный регулятор питания электродвигателей, служащий для преобразования переменного тока из сети питания в переменный ток с изменяющейся частотой и формой колебаний. Регулирование выходной частоты и напряжения позволяет управлять скоростью или крутящим моментом на валу двигателя. Преобразователь частоты выполняет следующие функции:

- Регулирует скорость двигателя в соответствии с сигналами обратной связи системы или в соответствии с дистанционно подаваемыми командами внешних контроллеров.
- Отслеживает состояние системы и двигателя.
- Обеспечивает защиту двигателя от перегрузки.

Преобразователь частоты предназначен для использования в коммерческих и производственных средах в соответствии с местными стандартами и законами. В зависимости от конфигурации, преобразователь частоты может использоваться как в автономных применениях, так и в качестве компонента более крупной системы или установки.

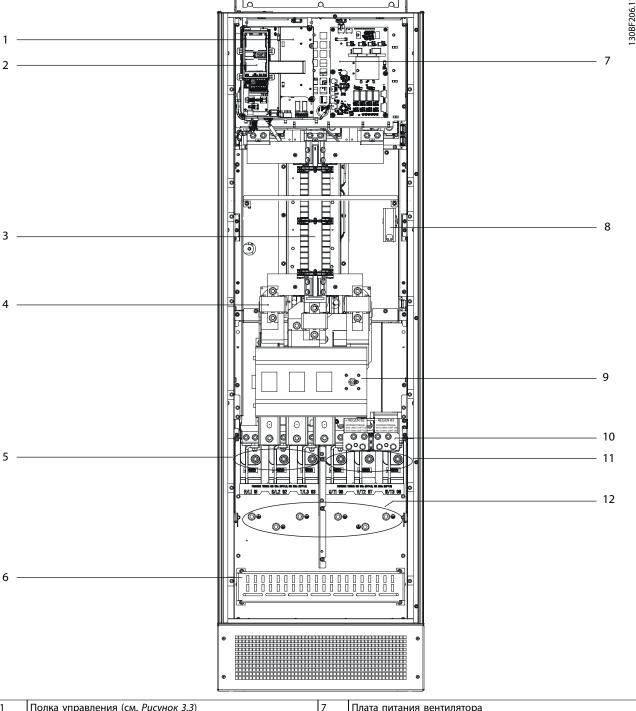
УВЕДОМЛЕНИЕ

В жилых районах эти изделия могут стать причиной радиопомех, и этом в случае может потребоваться принятие соответствующих мер защиты.

Возможное неправильное использование

Не используйте преобразователь частоты в применениях, не соответствующих указанным условиям эксплуатации и требованиям к окружающей среде. Обеспечьте соответствие условиям, указанным в глава 9 Технические характеристики.

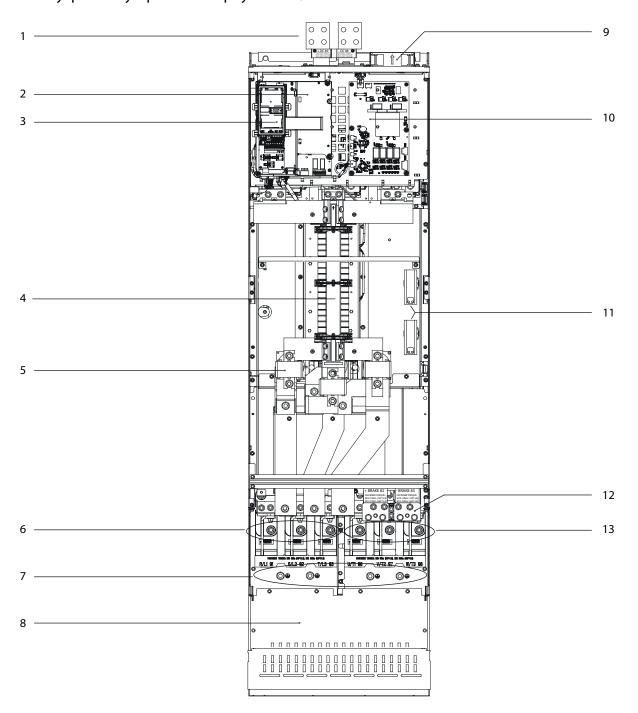
3.2 Номинальная мощность, масса и размеры


В *Таблица 3.1* приведены размеры для стандартных конфигураций. Размеры для дополнительных конфигураций см. в глава 9.8 Размеры корпусов.

Размер корпуса	E1h	E2h	E3h	E4h
Номинальная мощность при 380-500	250–355	400–450	250–355	400–450
В [кВт (л. с.)]	(350–500)	(550–600)	(350–500)	(550–600)
Номинальная мощность при 525-690	315–500	560-630	315–500	560-630
В [кВт (л. с.)]	(350–500)	(750–900)	(450–650)	(750–900)
Класс защиты корпуса	IР21/Тип 1	IP21/Тип 1	IP20/	IP 20/
	IP54/Тип 12	IP54/Тип 12	шасси	шасси
Размеры устройства				
Высота [мм (дюйм)]	2043 (80,4)	2043 (80,4)	1578 (62,1)	1578 (62,1)
Ширина [мм (дюйм)]	602 (23,7)	698 (27,5)	506 (19,9)	604 (23,89)
Глубина [мм (дюйм)]	513 (20,2)	513 (20,2)	482 (19,0)	482 (19,0)
Масса [кг (фунт)]	295 (650)	318 (700)	272 (600)	295 (650)
Габариты в упаковке		•		
Высота [мм (дюйм)]	768 (30,2)	768 (30,2)	746 (29,4)	746 (29,4)
Ширина [мм (дюйм)]	2191 (86,3)	2191 (86,3)	1759 (69,3)	1759 (69,3)
Глубина [мм (дюйм)]	870 (34,3)	870 (34,3)	794 (31,3)	794 (31,3)
Масса [кг (фунт)]	_	-	-	-

Таблица 3.1 Номинальная мощность и размеры для различных корпусов

3.3 Внутреннее устройство корпусов E1h/E2

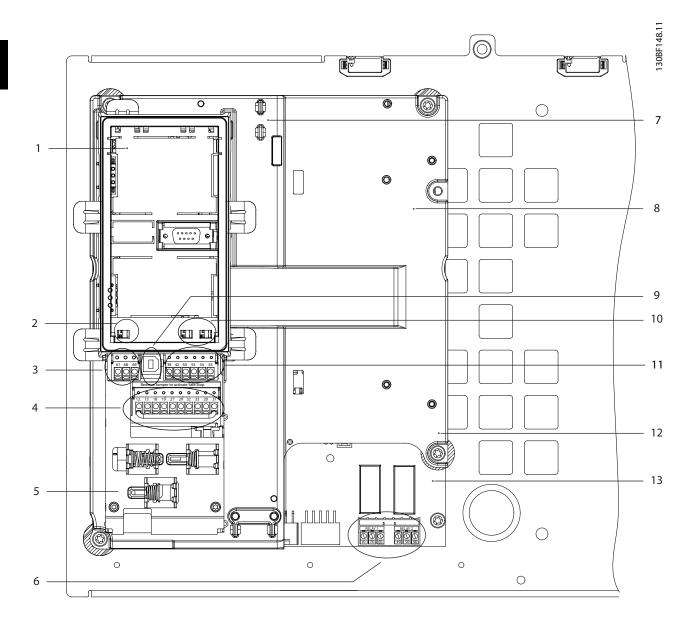


1	Полка управления (см. Рисунок 3.3)	7	Плата питания вентилятора
2	Рамка панели местного управления (LCP)	8	Нагреватель воздуха (опция)
3	Фильтр ВЧ-помех (опция)	9	Расцепитель сетевого питания (опция)
4	Сетевые плавкие предохранители (обязательны в	10	Клеммы подключения тормоза/цепи разделения нагрузки
	комплектациях, соответствующих UL, в остальных случаях — опция)		(опция)
5	Клеммы сети питания	11	Клеммы подключения электродвигателя
6	Клеммы экрана ВЧ-помех	12	Клеммы заземления

Рисунок 3.1 Внутреннее устройство корпуса E1h (корпус E2h аналогичен)

2

3.4 Внутреннее устройство корпусов E3h/E4h



1	Клеммы цепи разделения нагрузки/рекуперации (опция)	8	Клемма экрана ВЧ-помех (опция, но входит в стандартную комплектацию при заказе фильтра ВЧ-помех)
2	Полка управления (см. Рисунок 3.3)	9	Вентиляторы (используются для охлаждения передней секции корпуса)
3	Рамка панели местного управления (LCP)	10	Плата питания вентилятора
4	Фильтр ВЧ-помех (опция)	11	Нагреватель воздуха (опция)
5	Сетевые плавкие предохранители (опция)	12	Клеммы подключения тормоза (опция)
6	Клеммы сети питания	13	Клеммы подключения электродвигателя
7	Клеммы заземления	_	-

Рисунок 3.2 Внутреннее устройство корпуса E3h (корпус E4h аналогичен)

3.5 Полка управления

1	Рамка LCP (LCP не показана)	8	Полка управления
2	Переключатель клемм шины (см. глава 5.8.5 Настройка интерфейса последовательной связи RS485)	9	USB-порт
3	Клеммы последовательной связи (см. <i>Таблица 5.1</i>)	10	Переключатели аналоговых входов A53/A54 (see глава 5.8.10 Выбор входного сигнала по напряжению/ току)
4	Клеммы цифровых входов/выходов (см. Таблица 5.2)	11	Клеммы аналоговых входов/выходов (см. Таблица 5.3)
5	Кабельные зажимы, соответствующие требованиям ЭМС	12	Клеммы подключения тормозного резистора, 104–106 (на силовой плате питания под полкой управления)
6	Реле 1 и реле 2 (см. <i>Рисунок 5.19</i>)	13	Силовая плата питания (под полкой управления)
7	Плата управления (под LCP и клеммами управления)	-	_

Рисунок 3.3 Внешний вид полки управления

3

3.6 Панель местного управления (LCP)

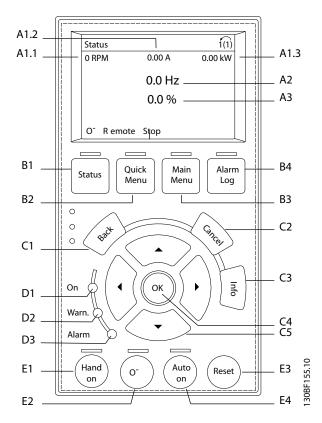


Рисунок 3.4 Графическая панель местного управления (GLCP)

А. Область экрана

Все показания дисплея связаны с конкретными параметрами. См. *Таблица 3.2*. Отображаемая на LCP информация может быть настроена в соответствии с требованиями конкретного применения. См. глава 6.3.1.2 Q1 Персональное меню.

Выноска	Номер параметра	Настройка по умолчанию
A1.1	0-20	Скорость [об/мин]
A1.2	0-21	Ток двигателя [А]
A1.3	0-22	Мощность [кВт]
A2	0-23	Частота [Гц]
A3	0-24	Задание [%]

Таблица 3.2 Область экрана LCP

В. Кнопки меню

Кнопки меню обеспечивают доступ к настройкам параметров, а также позволяют переключать режимы дисплея состояния во время работы и просматривать данные журнала отказов.

Выноск	Кнопка	Функция
a		
B1	Status	Выводит на дисплей рабочую
	(Состояние)	информацию.
B2	Quick Menu	Позволяет получить доступ к
	(Быстрое	параметрам и инструкциям по
	меню)	первоначальной настройке, а также к
		подробным инструкциям для
		различных применений. См.
		глава 6.3.1.1 Режим быстрого меню.
В3	Main Menu	Открывает доступ ко всем
	(Главное	параметрам. См. глава 6.3.1.7 Режим
	меню)	главного меню.
B4	Alarm Log	Отображает список текущих
	(Журнал	предупреждений и 10 последних
	аварий)	аварийных сигналов.

Таблица 3.3 Кнопки меню LCP

С. Кнопки навигации

Кнопки навигации используются для программирования функций и перемещения курсора на дисплее. При помощи навигационных кнопок можно также контролировать скорость в режиме местного (ручного) управления. Контрастность дисплея можно отрегулировать путем одновременного нажатия кнопок [Status] (Состояние) и [▲]/[▼].

Выноск	Кнопка	Функция	
a			
C1	Back	Позволяет вернуться к предыдущему шагу	
	(Назад)	или списку в структуре меню.	
C2	Cancel	Аннулирует последнее внесенное	
	(Отмена)	изменение или команду, пока режим	
		дисплея не изменен.	
C3	Info	Используется для вывода описания	
	(Информ	отображаемой функции.	
	ация)		
C4	ОК	Используется для доступа к группам	
		параметров или для включения	
		параметра.	
C5	▲ ▼ 	Позволяет перемещаться по пунктам	
		меню.	

Таблица 3.4 Навигационные кнопки LCP

D. Световые индикаторы

Световые индикаторы используются для определения состояния преобразователя частоты и визуального уведомления о предупреждениях или неполадках.

Выноск	Индикат	Светово	Функция
a	ор	й	
		индикат	
		ор	
D1	On (Вкл.)	3еленый	Горит, когда на
			преобразователь частоты
			поступает напряжение от сети
			или внешнего источника
			питания 24 В.
D2	Warn	Желтый	Горит, когда активны условия,
	(Предуп		требующие предупреждения.
	p.)		На дисплее отображается текст,
			идентифицирующий проблему.
D3	Alarm	Красный	Горит при наличии
	(Авар.		неисправности. На дисплее
	сигнал)		отображается текст,
			идентифицирующий проблему.

Таблица 3.5 Световые индикаторы на LCP

Е. Кнопки управления и сброса

Кнопки управления находятся в нижней части панели местного управления.

Выноск	Кнопка	Функция
a		
E1	[Hand On]	Запускает преобразователь частоты в
	(Ручной	режиме местного управления. Внешний
	режим)	сигнал останова, подаваемый входом
		управления или посредством
		последовательной связи, блокирует
		режим местного управления,
		включенный кнопкой [Hand On] (Ручной
		режим).

Выноск	Кнопка	Функция	
a			
E2	Off (Выкл.)	Останавливает двигатель без	
		отключения питания преобразователя	
		частоты.	
E3	Auto on	Переводит систему в дистанционный	
	(Автоматич	режим работы, при котором система	
	еский	может реагировать на внешнюю	
	режим)	команду пуска с клемм управления или	
		по последовательной связи.	
E4	Reset	Позволяет перезапустить	
	(Сброс)	преобразователь частоты вручную	
		после того, как неисправность	
		устранена.	

Таблица 3.6 Кнопки управления и светодиоды LCP

4 Механический монтаж

4.1 Поставляемые компоненты

Комплектность поставки может отличаться в зависимости от конфигурации изделия.

- Убедитесь, что поставляемое оборудование и сведения на паспортной табличке соответствуют подтвержденному заказу.
- Осмотрите упаковку и преобразователь частоты и убедитесь в отсутствии повреждений, вызванных нарушением правил транспортировки. При наличии любых повреждений предъявите претензии перевозчику. Сохраните поврежденные компоненты до прояснения ситуации.

Преобразователь частоты Демовь Mining Drive MD 302 1 — 444N9603 2 — MD-302N560T5E54H4XGC Демормация Тех. поддержка 3 — Серийный номер (S/N): 000330M329 Мощность: 560 кВт Степень защиты: IP54 5 — Входное напряжение: 3х 380-480 В, 50 Гц 6 — Выходное напряжение: 3х 0-Ивход, 0-590 Гц 8 — Быходное напряжение: Мыходной ток: 990A

1	Заказной код			
2	Тип код			
3	Серийный номер			
4	Номинальная мощность и Степень защиты			
5	Входное напряжение и частота			
6	Выходное напряжение и частота			
7	Входной и выходной ток			
8	Время разрядки			

Рисунок 4.1 Паспортная табличка изделия (пример)

4.2 Необходимый инструмент

Получение/выгрузка

- Крюки и двутавровые траверсы, рассчитанные на подъем веса преобразователя частоты. См. глава 3.2 Номинальная мощность, масса и размеры.
- Кран или иной подъемник для установки устройства на место.

Монтаж

- Дрель со сверлом диаметром 10 или 12 мм.
- Рулетка.
- Отвертки с прямыми и крестовыми шлицами различных размеров.
- Ключ с соответствующими метрическими головками (7–17 мм).
- Удлинители для ключа.
- Отвертки Torx (Т25 и Т50).
- Пробойник листового металла для кабелепроводов или кабельных уплотнений.
- Крюки и двутавровые траверсы, рассчитанные на подъем веса преобразователя частоты. См. глава 3.2 Номинальная мощность, масса и размеры.
- Кран или иной подъемник для установки преобразователя частоты на подставку и в нужное место.

4.3 Хранение

Храните преобразователь частоты в сухом месте. До момента установки храните оборудование в запечатанной упаковке. Рекомендуемые температуры окружающей среды см. в глава 9.4 Условия окружающей среды.

Периодическая формовка (зарядка конденсаторов) в ходе хранения не требуется, если срок хранения не превышает 12 месяцев.

УВЕДОМЛЕНИЕ

Удаление паспортной таблички с преобразователя частоты может стать причиной прекращения гарантии.

4.4 Рабочая среда

В случае установки преобразователя частоты в местах, где в воздухе содержатся капли жидкости, твердые частицы или вызывающие коррозию газы, убедитесь, что номинал IP/тип устройства соответствуют окружающим условиям. Требования к окружающей среде см. в глава 9.4 Условия окружающей среды.

УВЕДОМЛЕНИЕ

КОНДЕНСАЦИЯ

Влага может конденсироваться на электронных компонентах и вызывать короткие замыкания. Не производите установку в местах, где возможна отрицательная температура. Если температура преобразователя меньше, чем температура окружающей среды, рекомендуется установить в шкаф обогреватель. Работа в режиме ожидания снижает риск конденсации до тех пор, пока рассеиваемая мощность поддерживает отсутствие влаги в электрической схеме.

УВЕДОМЛЕНИЕ

ЭКСТРЕМАЛЬНЫЕ УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Высокие и низкие температуры отрицательно влияют на рабочие характеристики и срок службы оборудования.

- Запрещается использовать оборудование в средах с температурой окружающего воздуха выше 55 °C (131 °F).
- Преобразователь частоты может работать при температурах от -10 °C (14 °F). Однако правильная работа при номинальной нагрузке гарантируется только при температуре 0 °C (32 °F) или выше.
- Если температура окружающего воздуха выходит за допустимые пределы, требуется установка дополнительного кондиционирующего оборудования для шкафа или площадки, на которой установлено оборудование.

4.4.1 Газы

Агрессивные газы, такие как сероводород, хлор или аммиак, могут повредить электрические и механические компоненты. Для снижения негативного воздействия агрессивных газов в устройстве используются платы с конформным покрытием. Требования к классу и степени защиты конформного покрытия см. в глава 9.4 Условия окружающей среды.

4.4.2 Пыль

При установке преобразователя в запыленной среде обратите внимание на следующее:

Периодическое техобслуживание

Когда пыль накапливается на электронных компонентах, она действует как изоляционный слой. Этот слой снижает охлаждающую способность компонентов, и компоненты нагреваются. Высокая температура приводит к сокращению срока службы электронных компонентов.

Следите за тем, чтобы на радиаторе и вентиляторах не образовывались наросты пыли. Для получения дополнительной информации о техническом обслуживании и ремонте см. глава 8 Техническое обслуживание, диагностика и устранение неисправностей.

Вентиляторы охлаждения

Вентиляторы обеспечивают приток охлаждающего воздуха к преобразователю частоты. Когда вентиляторы работают в запыленной среде, пыль может вызвать преждевременный выход вентилятора из строя. Пыль также может накапливаться на лопастях вентиляторов, вызывая дисбаланс, из-за которого вентиляторы не смогут надлежащим образом охлаждать устройство.

4.4.3 Потенциально взрывоопасные среды

▲ВНИМАНИЕ!

ВЗРЫВООПАСНАЯ АТМОСФЕРА

Не устанавливайте преобразователь частоты в потенциально взрывоопасной атмосфере. Преобразователь частоты следует устанавливать в шкафу за пределами этой зоны. Несоблюдение этой рекомендации повышает риск летального исхода или получения серьезных травм.

Системы, работающие в потенциально взрывоопасных средах, должны соответствовать особым требованиям. Директива Евросоюза 94/9/ЕС (ATEX 95) описывает работу электронных устройств в потенциально взрывоопасных атмосферах.

- Класс защиты "d" предполагает, что в случае появления искр они не выйдут за пределы защищенной области.
- В классе "е" запрещено любое возникновение искр.

Двигатели с защитой класса "d"

Не требует одобрения. Требуется особая проводка и защитные оболочки.

Двигатели с защитой класса "е"

В сочетании с имеющим сертификацию ATEX устройством контроля температуры PTC, таким как плата PTC Thermistor Card MCB 112, для установки не требуется отдельного разрешения уполномоченной организации.

Двигатели с защитой класса "d/e"

Сам двигатель относится к классу е защиты от искрообразования, а проводка двигателя и соединительное оборудование соответствует требованиям класса "d". Для ослабления пикового напряжения используйте синусоидный фильтр на выходе преобразователя частоты.

При использовании преобразователя в потенциально взрывоопасной атмосфере используйте следующее оборудование:

- Двигатели с защитой от искрообразования класса "d" или "e".
- Датчик температуры РТС для отслеживания температуры двигателя.
- Короткие кабели электродвигателя.
- Выходные синусоидные фильтры, если экранированные кабели двигателя не используются.

УВЕДОМЛЕНИЕ

МОНИТОРИНГ С ИСПОЛЬЗОВАНИЕМ ТЕРМИСТОРНОГО ДАТЧИКА ДВИГАТЕЛЯ

Устройства Mining Drive с дополнительнойплатой PTC Thermistor Card MCB 112 сертифицированы в соответствии со стандартами PTB для использования в потенциально взрывоопасных средах.

4.5 Требования к монтажу и охлаждению

Ошибка монтажа может привести к перегреву и снижению уровня производительности.

Требования по монтажу:

- Установите устройство как можно ближе к двигателю. Максимальные длины кабелей двигателей см. в глава 9.5 Технические характеристики кабелей.
- Обеспечьте устойчивость устройства, смонтировав его на твердой поверхности.
- Корпуса Е3h и Е4h могут монтироваться:

- Вертикально, на задней пластине панели (типичный вариант монтажа).
- Вертикально, вверх ногами на задней пластине панели.¹⁾
- Горизонтально, на задней поверхности, монтаж на задней пластине панели.¹⁾
- Горизонтально, на боковой поверхности, монтаж на нижней пластине панели.¹⁾
- Убедитесь, что место, подготовленное для монтажа, выдержит массу устройства.
- Убедитесь, что вокруг устройства достаточно пространства для надлежащего охлаждения.
 См. глава 9.9 Циркуляция воздуха через корпус.
- Убедитесь, что имеется возможность открывания дверцы.
- Устройте ввод кабелей снизу.
- 1) При нетиповых вариантах монтажа обращайтесь к производителю.

Требования к охлаждению

- В верхней и нижней части преобразователя следует оставить зазор для доступа воздуха для охлаждения. Требования к зазорам: 225 мм (9 дюймов).
- Обеспечьте достаточную скорость подачи воздуха. См. *Таблица 4.1*.
- Следует принять во внимание снижение номинальных характеристик при температурах начиная с 45 °C (113 °F) до 50 °C (122 °F) и высотах начиная с 1 000 м (3 300 футов) над уровнем моря.

Для охлаждения преобразователя частоты используется тыльный канал, по которому отводится охлаждающий воздух от радиатора. Через тыльный канал уходит примерно 90 % охлаждающего воздуха радиатора. Чтобы перенаправить воздух тыльного канала от панели или из помещения, используйте следующее оборудование:

• Охлаждение с помощью вентиляционного канала

Для случаев, когда преобразователь частоты IP20/шасси установлен в корпусе Rittal, предусмотрены комплекты охлаждения через тыльный канал, которые позволяют направлять охлаждающий воздух радиатора за пределы панели. Использование этих комплектов уменьшает нагрев панели и позволяет устанавливать меньшие дверные вентиляторы.

• Охлаждение через заднюю стенку
Установка на устройство верхней крышки и крышки основания позволяет при использовании тыльного канала выбрасывать охлаждающий воздух за пределы комнаты.

УВЕДОМЛЕНИЕ

Для корпусов E3h и E4h (IP20/шасси) в корпусе необходим по меньшей мере один дверной вентилятор для отвода тепла, не отводимого в тыльный канал преобразователя частоты. Они позволят также удалять любые дополнительные теплопотери от других компонентов внутри преобразователя частоты. Чтобы выбрать соответствующий размер вентилятора, рассчитайте суммарный требуемый поток воздуха.

Обеспечьте необходимый поток воздуха для радиатора.

Типоразме	Дверной/верхний	Вентилятор радиатора
р	вентилятор	[м³/ч (куб. см в мин)]
	[м³/ч (куб. см в мин)]	
E1h	510 (300)	994 (585)
E2h	552 (325)	1053–1206 (620–710)
E3h	595 (350)	994 (585)
E4h	629 (370)	1053–1206 (620–710)

Таблица 4.1 Поток воздуха

4.6 Поднятие устройства

Преобразователь частоты можно поднимать только за предназначенные для этого проушины. Чтобы избежать изгиба подъемных петель, используйте металлический стержень.

▲ВНИМАНИЕ!

РИСК ЛЕТАЛЬНОГО ИСХОДА И СЕРЬЕЗНЫХ ТРАВМ

При подъеме тяжелых грузов следуйте местным нормам по технике безопасности. Невыполнение рекомендаций и местных правил техники безопасности может привести к летальному исходу или серьезным травмам.

- Убедитесь, что подъемное оборудование находится в надлежащем рабочем состоянии.
- Вес корпусов различных типов см. в глава 3.2 Номинальная мощность, масса и размеры
- Максимальный диаметр траверсы: 20 мм (0,8 дюйма).
- Угол между верхней частью преобразователя и подъемным тросом должен составлять 60° или больше.

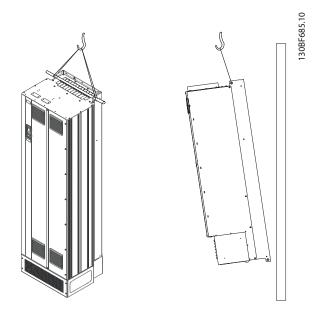


Рисунок 4.2 Рекомендуемый способ подъема

4.7 Механический монтаж E1h/E2h

Корпуса размеров E1h и E2h рассчитаны только на установку на полу; они поставляются с подставкой и панелью уплотнений. Для надлежащего монтажа необходимо установить подставку и панель уплотнений.

Подставка имеет высоту 200 мм; в ее передней части находится отверстие, позволяющее проходить достаточному потоку воздуха для охлаждения силовых компонентов преобразователя частоты.

Панель уплотнений необходима для подачи охлаждающего воздуха к управляющим компонентам преобразователя частоты с помощью дверного вентилятора, а также для обеспечения защиты корпуса по классу IP21/Type 1 или IP54/Type 12.

4.7.1 Крепление подставки к полу

Подставку следует прикрепить к полу шестью болтами, прежде чем монтировать корпус.

- Определите надлежащее расположение устройства с учетом условий эксплуатации и доступности кабелей.
- 2. Снимите переднюю панель подставки, чтобы получить доступ к монтажным отверстиям.
- 3. Установите подставку на пол и закрепите ее шестью болтами, завернув их в монтажные отверстия. См. обведенные кругами места на *Рисунок 4.3*.

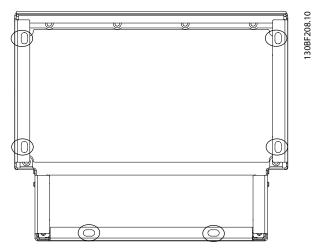
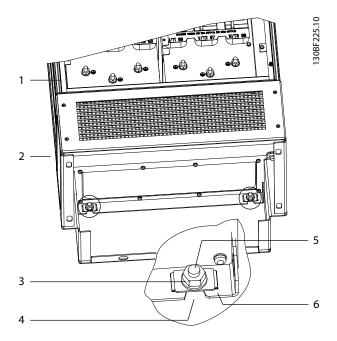
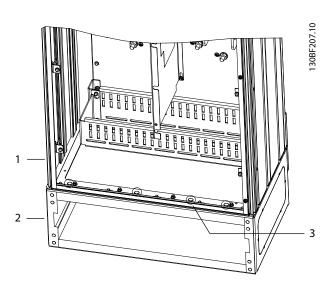



Рисунок 4.3 Точки монтажа подставки к полу

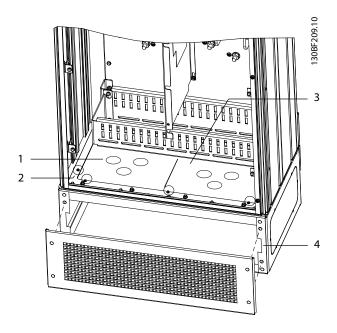

4.7.2 Крепление E1h/E2h к подставке

- 1. Поднимите преобразователь частоты и установите его на подставку. В задней части подставки имеется два болта, которые входят в два отверстия-паза на задней стороне корпуса. Для установки положения преобразователя частоты передвигайте болты вверх или вниз. Закрепите их, не затягивая, двумя гайками М10 и фиксирующими кронштейнами. См. Рисунок 4.4.
- 2. Убедитесь, что сверху остается не менее 225 мм свободного пространства для выброса воздуха.
- 3. Убедитесь, что доступ к воздухозаборнику в нижней передней части устройства не перекрыт.
- 4. Закрепите корпус вокруг верхней плоскости подставки с помощью шести фиксаторов М10х30. См. *Рисунок 4.5.* Затягивайте каждый из болтов без усилия, пока все не будут завернуты на место.
- 5. Надежно заверните каждый из болтов с усилием затяжки 19 Н·м (169 дюйм-фунтов).
- 6. Затяните две гайки М10 в задней части корпуса с усилием затяжки 19 Н·м (169 дюйм-фунтов).

1	Корпус	4	Отверстия-пазы в корпусе
2	Подставка	l	Монтаж на подставку с
			помощью болтов
3	Гайка М10	6	Фиксирующий кронштейн

Рисунок 4.4 Точки крепления подставки к корпусу сзади

1	Корпус	3	Фиксаторы М10х30
			(болты заднего угла не
			показаны)
2	Подставка	-	_


Рисунок 4.5 Точки крепления подставки к корпусу

4.7.3 Открытие кабельных отверстий

Панель уплотнений — это лист металла со шпильками вдоль наружного края. Панель уплотнений содержит точки кабельных вводов и крепления кабелей; ее необходимо установить для обеспечения уровня защиты IP21/IP54 (Туре 1/Туре 12). Панель уплотнений устанавливается между преобразователем частоты и подставкой. В зависимости от расположения шпилек пластину можно устанавливать изнутри корпуса или изнутри подставки. Размеры панели уплотнений см. в глава 9.8.1 Внешние габариты E1h.

Для выполнения следующих действий см. Рисунок 4.6.

- Создайте отверстия для ввода кабелей в панели уплотнений с помощью перфоратора по листовому металлу.
- 2. Вставьте панель уплотнений одним из следующих способов.
 - 2а Для вставки панели уплотнений через подставку вдвиньте панель уплотнений через щель (4) в передней стороне подставки.
 - 2b Чтобы вставить панель уплотнений через корпус, изогните панель уплотнений, пока не сможете вдвинуть ее под кронштейны с прорезями.
- Совместите шпильки на панели уплотнений с отверстиями на подставке и зафиксируйте их десятью гайками М5 (2).
- 4. Затяните каждую из гаек с усилием 2,3 Н⋅м (20 дюйм-фунтов).

1	Отверстие ввода кабелей	4	Прорезь в основании
			подставки
2	Гайка М5	5	Передняя крышка/решетка
3	Панель уплотнений	-	-

Рисунок 4.6 Установка панели уплотнений

4.8 Механический монтаж E3h/E4

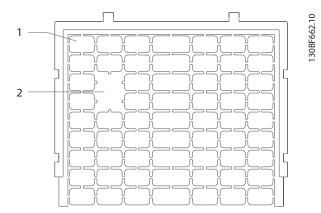
Корпуса размеров E3h и E4h предназначены для установки на стену или на монтажную панель в корпусе. В корпус устанавливается пластиковая панель уплотнений. Она предназначена для исключения неумышленного доступа к клеммам устройства в корпусе с классом защиты IP20/шасси.

УВЕДОМЛЕНИЕ

Опция рекуперации/разделения нагрузки В связи с наличием открытых клемм наверху корпуса, устройства с опцией рекуперации/разделения нагрузки имеют класс защиты IP00.

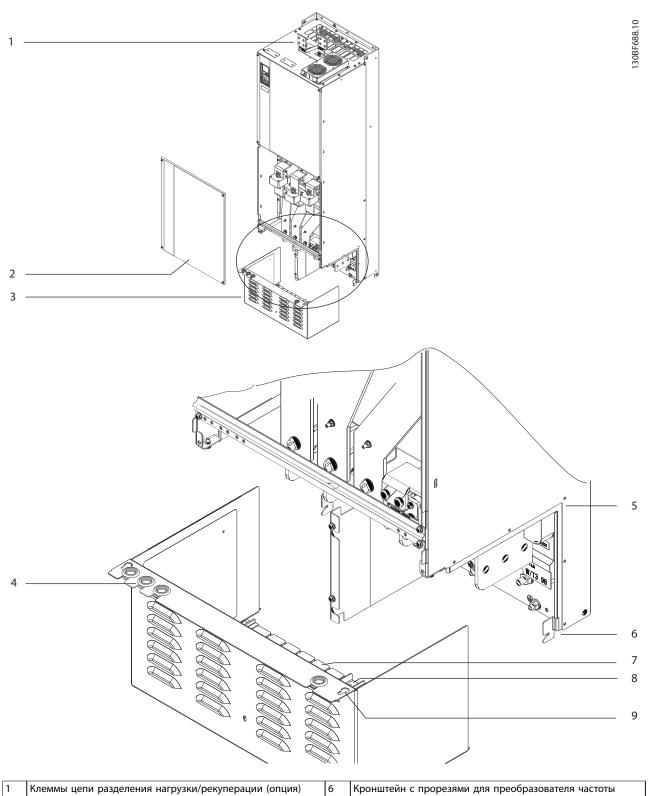
4.8.1 Крепление корпуса E3h/E4h к монтажной пластине или к стене

- 1. Просверлите монтажные отверстия в соответствии с размером корпуса. См. глава 9.8 Размеры корпусов.
- Прикрепите верхнюю часть корпуса преобразователя частоты к монтажной пластине или стене.
- Прикрепите нижнюю часть корпуса преобразователя частоты к монтажной пластине или стене.



4.8.2 Открытие кабельных отверстий

Панель уплотнений закрывает нижнюю часть корпуса преобразователя частоты; ее установка необходима для обеспечения уровня защиты IP20/шасси. Панель уплотнений состоит из пластиковых квадратов, которые можно вырезать, чтобы обеспечить доступ кабелей к клеммам. См. Рисунок 4.7.


- 1. Снимите нижнюю панель и клеммную крышку. См. *Рисунок 4.8*.
 - 1a Отсоедините нижнюю панель, выкрутив 4 винта T25.
 - 1b Выверните 5 винтов Т20, которые крепят низ преобразователя частоты к верху клеммной крышки, затем вытащите клеммную крышку прямо на себя.
- 2. Определите размеры и расположение кабелей двигателя, сети и заземления. Запишите их положение и результаты измерений.
- 3. В соответствии с результатами измерений и положением кабелей проделайте отверстия в пластиковой панели уплотнений, вырезав соответствующие квадраты.
- 4. Вдвиньте пластиковую панель уплотнений (7) в нижние направляющие на клеммной крышке.
- 5. Наклоняйте переднюю сторону клеммной крышки вниз, пока точки крепления (8) не лягут на кронштейны с прорезями преобразователя частоты (6).
- 6. Убедитесь, что боковые панели клеммной крышки не вошли в рельсовую направляющую (5).

- 7. Вдвигайте клеммную крышку, пока она не коснется кронштейна с прорезями преобразователя частоты.
- Наклоняйте переднюю сторону клеммной крышки вверх, пока отверстие фиксатора в нижней части преобразователя частоты не совпадет с отверстием в форме замочной скважины (9) на блоке клемм. Закрутите два винта Т25 с усилием затяжки 2,3 Н⋅м (20 дюймфунтов).
- 9. Закрепите нижнюю панель тремя винтами Т25 и затяните их с усилием 2,3 Н⋅м (20 дюймфунтов).

- 1 Пластиковый квадрат
- 2 Квадраты, убранные для обеспечения доступа кабелей

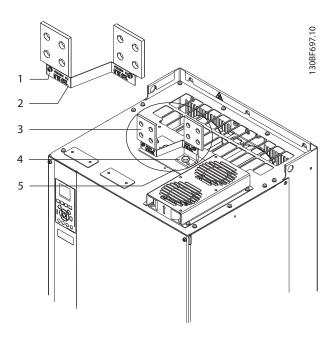
Рисунок 4.7 Пластиковая панель уплотнений

 2
 Нижняя панель
 7
 Пластиковая панель уплотнений (установлена)

 3
 Клеммная крышка
 8
 Точка крепления

 4
 Точка доступа для прокладки проводов управления
 9
 Отверстие в форме замочной скважины

 5
 Рельсовая направляющая


Рисунок 4.8 Сборка панели уплотнений и клеммной крышки

4.8.3 Установка клемм разделения нагрузки/рекуперации

Клеммы цепи разделения нагрузки/рекуперации, устанавливаемые в верхней части преобразователя частоты, не монтируются на заводе, чтобы исключить их повреждение при доставке. Для выполнения следующих действий см. *Рисунок 4.9*.

1	Фиксатор шильдика, М4
2	Шильдик
3	Клемма цепи разделения нагрузки/рекуперации
4	Фиксатор клеммы, М10
5	Пластина клемм с двумя отверстиями

Рисунок 4.9 Клеммы цепи разделения нагрузки/ рекуперации

- 1. Достаньте пластину клемм, 2 клеммы, шильдик и фиксаторы из пакета с комплектом принадлежностей, поставляемого с преобразователем частоты.
- 2. Снимите крышку с отверстия для цепи разделения нагрузки/рекуперации на верхней стороне преобразователя частоты. Отложите два фиксатора М5 для использования в дальнейшем.
- 3. Снимите пластиковую заглушку и установите пластину клемм на отверстие цепей разделения нагрузки/рекуперации. Закрепите двумя фиксаторами М5 и затяните их с усилием 2,3 Н·м (20 дюйм-фунтов).

- Установите обе клеммы на пластину клемм, используя по одному фиксатору М10 на каждую клемму. Усилие затяжки 19 Н⋅м (169 дюйм-фунтов).
- Закрепите шильдик перед клеммами, как показано на *Рисунок 4.9*. Закрутите два винта М4 с усилием затяжки 1,2 Н·м (10 дюймфунтов).

5 Электрический монтаж

5.1 Инструкции по технике безопасности

См. глава 2 Техника безопасности для ознакомления с общими инструкциями по технике безопасности.

▲ВНИМАНИЕ!

ИНДУЦИРОВАННОЕ НАПРЯЖЕНИЕ

Индуцированное напряжение от выходных кабелей, идущих к двигателям от разных преобразователей частоты и проложенных рядом друг с другом, может зарядить конденсаторы оборудования даже при выключенном и заблокированном оборудовании. Несоблюдение требований к раздельной прокладке выходных кабелей двигателя или использованию экранированных кабелей может привести к летальному исходу или серьезным травмам.

- Прокладывайте выходные кабели двигателя отдельно или
- Используйте экранированные кабели.
- Одновременно блокируйте все преобразователи частоты.

▲ВНИМАНИЕ!

ОПАСНОСТЬ ПОРАЖЕНИЯ ТОКОМ

Преобразователь частоты может вызвать появление постоянного тока в проводнике заземления, что может привести к летальному исходу или серьезным травмам.

 Там, где для защиты от поражения электрическим током используется устройство защитного отключения (RCD, датчик остаточного тока), на стороне питания разрешается устанавливать RCD только типа В.

Несоблюдение рекомендаций приведет к тому, что RCD не сможет обеспечить необходимую защиту.

Защита от перегрузки по току

- В применениях с несколькими двигателями необходимо между преобразователем частоты и двигателем использовать дополнительное защитное оборудование, такое как устройства защиты от короткого замыкания или устройства тепловой защиты двигателя.
- Для защиты от короткого замыкания и перегрузки по току должны быть установлены входные предохранители. Если предохранители отсутствуют в заводской комплектации, их должен установить специалист во время монтажа. Максимальные номиналы

предохранителей см. в глава 9.7 Предохранители.

Тип и номиналы проводов

- Вся проводка должна соответствовать государственным и местным нормам и правилам в отношении сечения провода и температур окружающей среды.
- Рекомендованный провод подключения питания: медный провод номиналом не ниже 75 °C (167 °F).

Рекомендуемые типы и размеры проводов см. в глава 9.5.1 Технические характеристики кабелей.

•ПРЕДУПРЕЖДЕНИЕ

ПОВРЕЖДЕНИЕ ИМУЩЕСТВА!

Защита электродвигателя от перегрузки не включена в заводских настройках. Для добавления данной функции установите параметр 1-90 Тепловая защита двигателя в значение [ЭТР: отключение] или [ЭТР: предупрежд.]. Для рынка Северной Америки: функции защиты с помощью ЭТР обеспечивают защиту двигателя от перегрузки по классу 20 согласно требованиям NEC. Если не установить в параметре параметр 1-90 Тепловая защита двигателя значения [ЭТР: отключение] или [ЭТР: предупрежд.], защита двигателя от перегрузки будет отключена и перегрев двигателя может привести к повреждению имущества.

5.2 Монтаж с учетом требований ЭМС

Чтобы выполнить монтаж в соответствии с требованиями ЭМС, следуйте указаниям в

- Глава 5.3 Схема подключений.
- Глава 5.4 Подключение двигателя.
- Глава 5.6 Подключение заземления.
- Глава 5.8 Подключение элементов управления.

<u>УВЕДОМЛЕНИЕ</u>

СКРУЧЕННЫЕ КОНЦЫ ЭКРАНОВ (СКРУТКИ)

Скрученные концы увеличивают сопротивление экрана на высоких частотах, что снижает эффект экранирования и увеличивает ток утечки. Избегайте применения скрученных концов экранов, используйте интегрируемые зажимы экрана.

 В кабелях подключения реле, кабелях управления, а также в кабелях сигнальных интерфейсов, периферийной шины и тормоза экран должен присоединяться к корпусу на обоих концах. Если контур заземления имеет высокое сопротивление, на нем присутствуют

- шумы или по нему протекает ток, разорвите подключение экрана на контакте 1, чтобы исключить протекание тока через контур заземления.
- Возвращайте токи назад на устройство через металлическую монтажную плиту. Следует обеспечить хороший электрический контакт монтажной платы с шасси преобразователя частоты через крепежные винты.
- Используйте экранированные выходные кабели двигателя. Вместо этого также можно применять неэкранированные кабели двигателя в металлических кабелепроводах.

УВЕДОМЛЕНИЕ

ЭКРАНИРОВАННЫЕ КАБЕЛИ

Без использования экранированных кабелей либо металлических кабелепроводов устройство и установка не будут соответствовать нормативным требованиям по уровню мощности излучения радиочастот.

- Используйте как можно более короткие кабели двигателя и тормоза, чтобы уменьшить уровень помех, создаваемых всей системой.
- Не прокладывайте сигнальные кабели чувствительных устройств вдоль кабелей двигателя и тормоза.
- Для линий обмена данными, а также линий команд/управления следуйте требованиям соответствующих стандартов на протоколы связи. Например, для USB использование экранированных кабелей обязательно, а для RS-485/Ethernet может использоваться как экранированная, так и неэкранированная витая пара.
- Убедитесь, что все подключения клемм управления гальванически изолированы от напряжения питания (PELV).

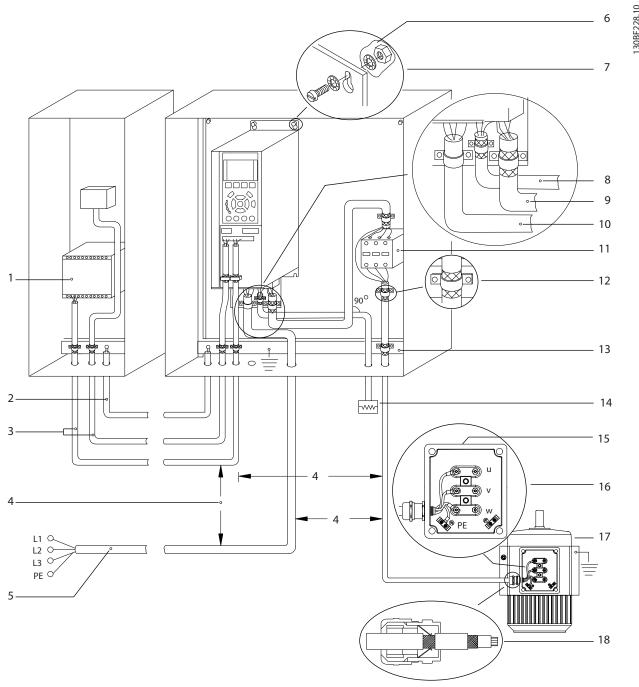
УВЕДОМЛЕНИЕ

помехи эмс

В качестве кабелей двигателя и проводки управления используйте экранированные кабели и прокладывайте кабели сетевого питания, двигателя и управления отдельно. Несоблюдение требований к изоляции силовых кабелей, кабелей двигателя и кабелей цепи управления может привести к непредусмотренным ситуациям и снижению эффективности работы оборудования. Минимальное расстояние между кабелями питания, кабелями двигателя и кабелями управления должно составлять 200 мм.

УВЕДОМЛЕНИЕ

УСТАНОВКА НА БОЛЬШОЙ ВЫСОТЕ НАД УРОВНЕМ МОРЯ


Существует риск превышения напряжения. Изоляция между компонентами и важнейшими деталями может быть недостаточной и не соответствовать требованиям PELV Сократите риск превышения напряжения с помощью внешних защитных устройств или гальванической развязки.
При установках на большой (выше 2 000 м) высоте над уровнем моря обратитесь в Danfoss относительно

УВЕДОМЛЕНИЕ

требований PELV.

COOTBETCTBUE PELV

Обеспечьте защиту от поражения электрическим током, используя систему электропитания с защитным сверхнизким напряжением (PELV), соответствующую местным и государственным нормативам по PELV.

1	плк	10	Кабель сети питания (неэкранированный)
2	Уравнительный кабель сечением минимум 16 мм²	11	Выходной контактор и т. п.
3	Кабели управления	12	Кабельная изоляция зачищена
4	Минимальное расстояние между кабелями управления,	13	Шина общего заземления. Соблюдайте местные и
	кабелем электродвигателя и кабелями сети питания		государственные требования к заземлению шкафов.
	составляет 200 мм		
5	Питание от сети	14	Тормозной резистор
6	Оголенная (неокрашенная) поверхность	15	Металлическая коробка
7	Звездообразные шайбы	16	Подключение к двигателю
8	Кабель тормоза (экранированный)	17	Двигатель
9	Кабель двигателя (экранированный)	18	Кабельное уплотнение, соответствующее требованиям
			ЭМС

Рисунок 5.1 Пример правильной установки в соответствии с требованиями ЭМС

5.3 Схема подключений

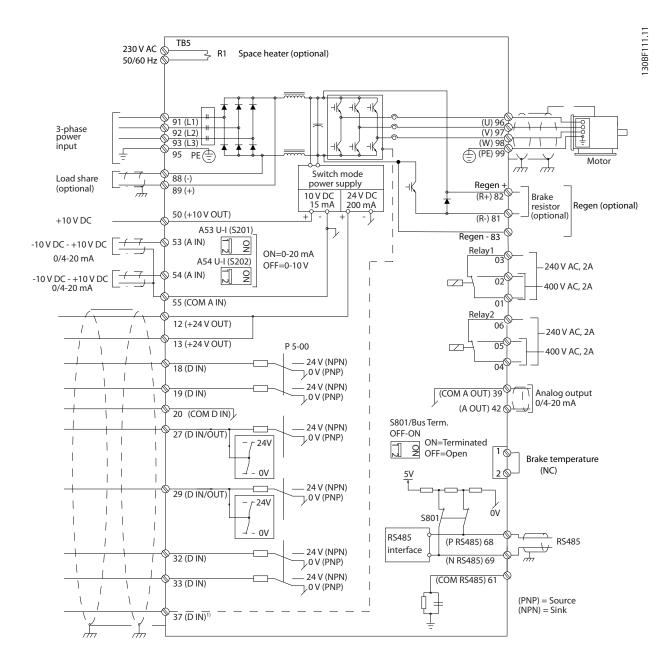


Рисунок 5.2 Схема основных подключений

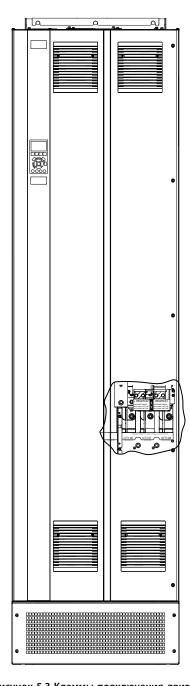
A =аналоговый, D =цифровой

1) Клемма 37 (опция) используется для функции Safe Torque Off. Указания по монтажу функции Safe Torque Off см. в руководстве по эксплуатации функции Safe Torque Off.

5.4 Подключение двигателя

▲ВНИМАНИЕ!

ИНДУЦИРОВАННОЕ НАПРЯЖЕНИЕ


Индуцированное напряжение от выходных кабелей двигателей, проложенных рядом друг с другом, может зарядить конденсаторы оборудования даже при выключенном и заблокированном оборудовании. Несоблюдение требований к раздельной прокладке выходных кабелей двигателя или использованию экранированных кабелей может привести к летальному исходу или серьезным травмам.

- Используйте кабель размера, рекомендуемого государственными и местными нормами электробезопасности. Максимальные размеры проводов см. в глава 9.1 Электрические характеристики.
- Соблюдайте требования производителя двигателя, относящиеся к его подключению.
- На подставках корпусов IP21/IP54 (Туре 1/Туре 12) имеются панели доступа или заглушки отверстий для проводки двигателя.
- Запрещается подключать пусковое устройство или устройство переключения полярности (например, двигатель Даландера или асинхронный электродвигатель с контактными кольцами) между преобразователем частоты и двигателем.

Процедура

- 1. Зачистите часть внешней изоляции кабеля.
- 2. Поместите зачищенный провод под кабельный зажим, чтобы установить механический и электрический контакт между экраном кабеля и землей.
- 3. Подключите провод заземления к ближайшей клемме заземления в соответствии с инструкциями по заземлению, см. глава 5.6 Подключение заземления.
- 4. Подключите проводку трехфазного двигателя к клеммам 96 (U), 97 (V) и 98 (W), см. *Рисунок 5.3*.
- 5. Затяните клеммы в соответствии с данными, указанными в глава 9.10.1 Номинальные усилия затяжки фиксаторов.

130BF150.10

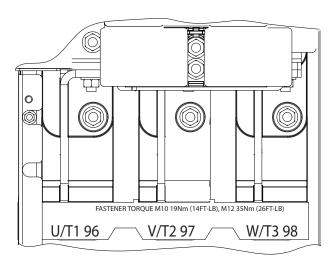


Рисунок 5.3 Клеммы подключения двигателя пер. тока (показан корпус E1h). Детальный вид расположения клемм см. в глава 5.7 Размеры клемм.

5.5 Подключение к сети питания переменного тока

- Выберите размер проводки в соответствии с входным током преобразователя частоты. Максимальные размеры проводов см. в глава 9.1 Электрические характеристики.
- Используйте кабель размера, рекомендуемого государственными и местными нормами электробезопасности.

Процедура

- 1. Зачистите часть внешней изоляции кабеля.
- 2. Поместите зачищенный провод под кабельный зажим, чтобы установить механический и электрический контакт между экраном кабеля и землей.
- 3. Подключите провод заземления к ближайшей клемме заземления в соответствии с инструкциями по заземлению, см. глава 5.6 Подключение заземления.
- 4. Подключите проводку трехфазной сети переменного тока к клеммам R, S и T (см. Рисунок 5.4).
- 5. При питании от сети, изолированной от земли (IT-сеть или плавающий треугольник) или от сети TT/TN-S с заземленной ветвью (заземленный треугольник), установите для пар. *параметр 14-50 Фильтр ВЧ-помех* значение [0] Выкл. во избежание повреждения цепи постоянного тока и для уменьшения емкостных токов на землю.
- 6. Затяните клеммы в соответствии с данными, указанными в глава 9.10.1 Номинальные усилия затяжки фиксаторов.

30

130BF151.10

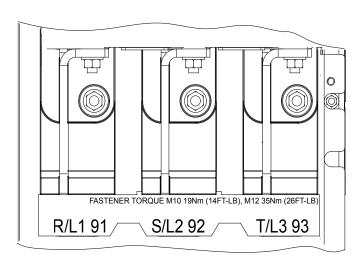


Рисунок 5.4 Клеммы подключения сети пер. тока (показан корпус E1h) Детальный вид расположения клемм см. в глава 5.7 Размеры клемм.

5.6 Подключение заземления

▲ВНИМАНИЕ!

ОПАСНОСТЬ ТОКА УТЕЧКИ

Токи утечки превышают 3,5 мА. Неправильно выполненное заземление привода может привести к летальному исходу или серьезным травмам.

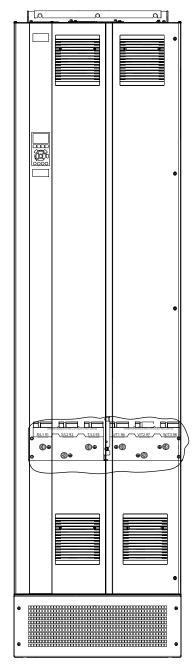
• Правильное заземление оборудования должно быть устроено сертифицированным специалистомэлектромонтажником.

Электробезопасность

- Преобразователь частоты должен быть заземлен в соответствии с применимыми стандартами и директивами.
- Для проводки входного питания, питания двигателя и управляющей проводки используйте отдельные заземляющие провода.
- Запрещается совместно заземлять несколько преобразователей частоты с использованием последовательного подключения.
- Заземляющие провода должны быть как можно более короткими.
- Соблюдайте требования производителя двигателя, относящиеся к его подключению.
- Мин. поперечное сечение кабеля: 10 мм² (6 AWG) (или 2 провода заземления номинального сечения, подключенные раздельно).
- Затяните клеммы в соответствии с данными, указанными в глава 9.10.1 Номинальные усилия затяжки фиксаторов.

Монтаж в соответствии требованиями ЭМС

- Создайте электрический контакт между экраном кабеля и корпусом преобразователя частоты с помощью металлических кабельных уплотнений или зажимов, поставляемых с оборудованием.
- Для уменьшения переходных процессов используйте многожильный провод.
- Не используйте скрутки.


УВЕДОМЛЕНИЕ

ВЫРАВНИВАНИЕ ПОТЕНЦИАЛОВ

Если потенциал заземления между преобразователем частоты и системой различаются между собой, имеется риск возникновения переходных процессов. Установите кабели выравнивания потенциалов между компонентами системы. Рекомендуемое поперечное сечение кабеля: 16 мм² (5 AWG).

5

130BF152.10

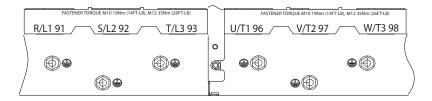
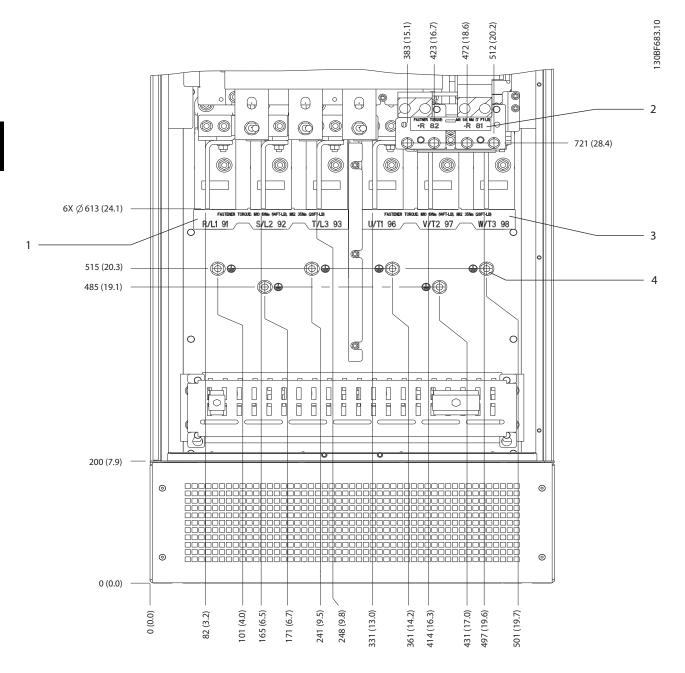
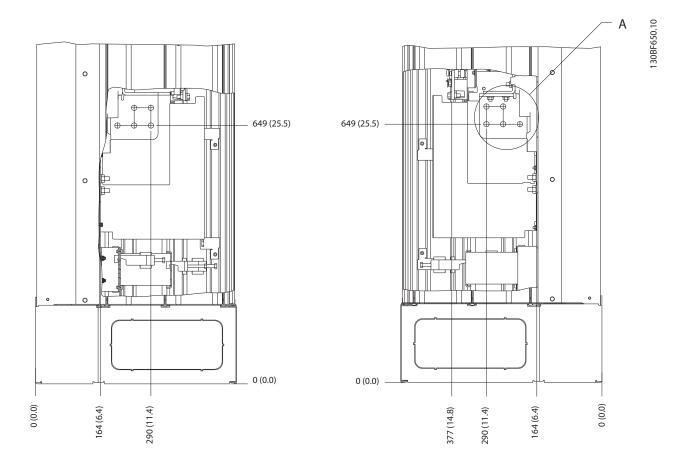



Рисунок 5.5 Клеммы заземления (показан корпус E1h). Детальный вид расположения клемм см. в *глава 5.7 Размеры клемм*.


5.7 Размеры клемм

5.7.1 Размеры клемм корпуса E1h

1	Клеммы сети питания	3	Клеммы подключения электродвигателя
2	Клеммы подключения тормоза или цепи рекуперации	4	Клеммы заземления, гайка М10

Рисунок 5.6 Размеры клемм корпуса E1h (вид спереди)

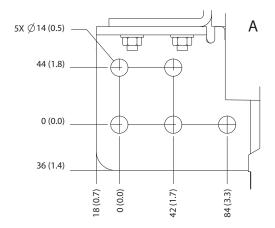
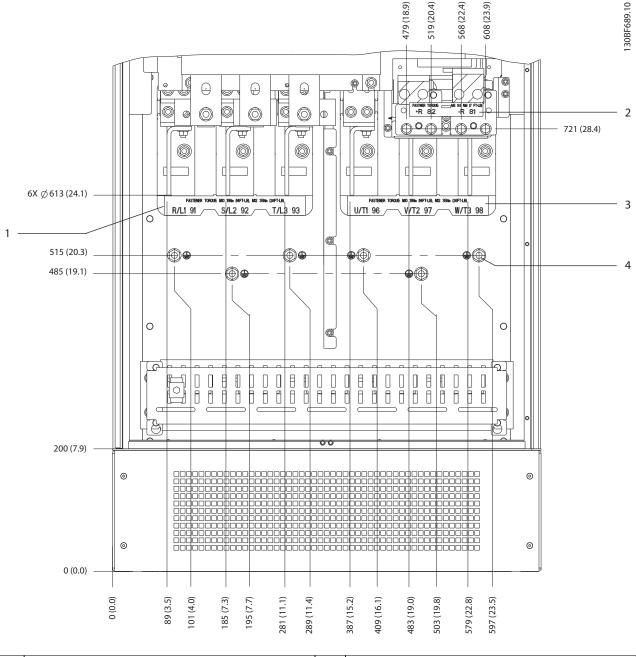
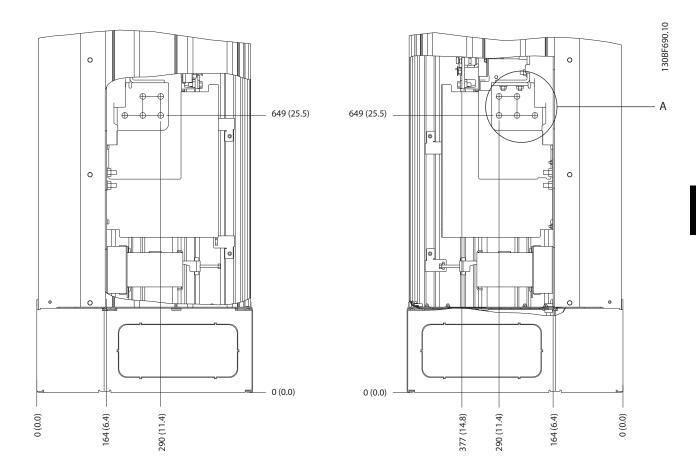



Рисунок 5.7 Размеры клемм корпуса E1h (вид сбоку)


5.7.2 Сеть, двигатель и заземление в корпусах E2h

1	Клеммы сети питания	3	Клеммы подключения электродвигателя
2	Клеммы подключения тормоза или цепи рекуперации	4	Клеммы заземления, гайка М10

Рисунок 5.8 Размеры клемм корпуса E2h (вид спереди)

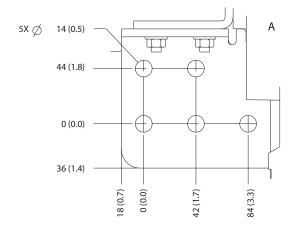
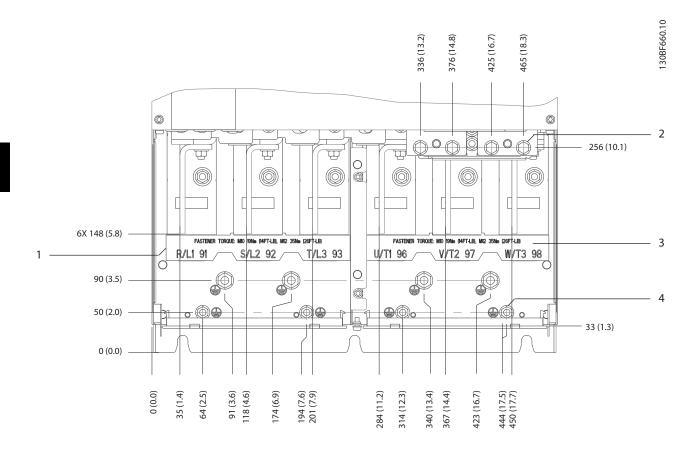
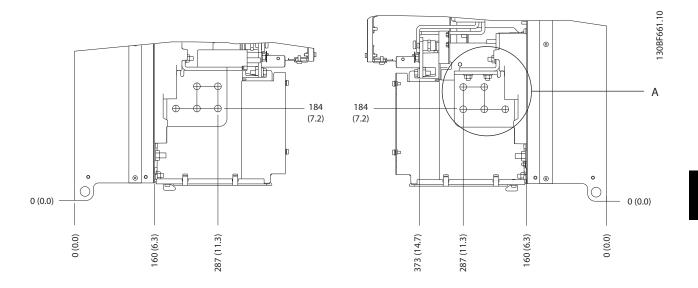



Рисунок 5.9 Размеры клемм корпуса E2h (вид сбоку)

5


5.7.3 Сеть, двигатель и заземление в корпусах E3h

1	Клеммы сети питания	3	Клеммы подключения электродвигателя
2	Клеммы подключения тормоза или цепи рекуперации	4	Клеммы заземления, гайки М8 и М10

Рисунок 5.10 Размеры клемм корпуса E3h (вид спереди)

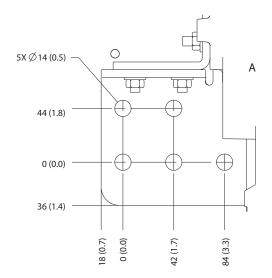
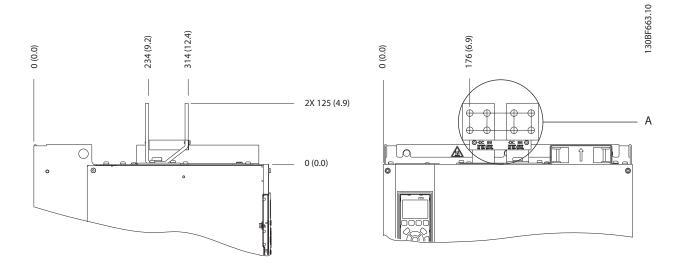



Рисунок 5.11 Размеры клемм подключения сети питания, двигателя и заземления для E3h (вид сбоку)

5

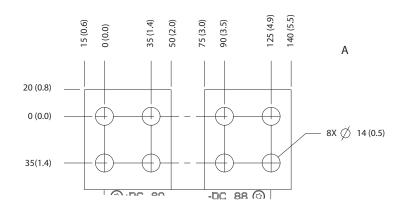
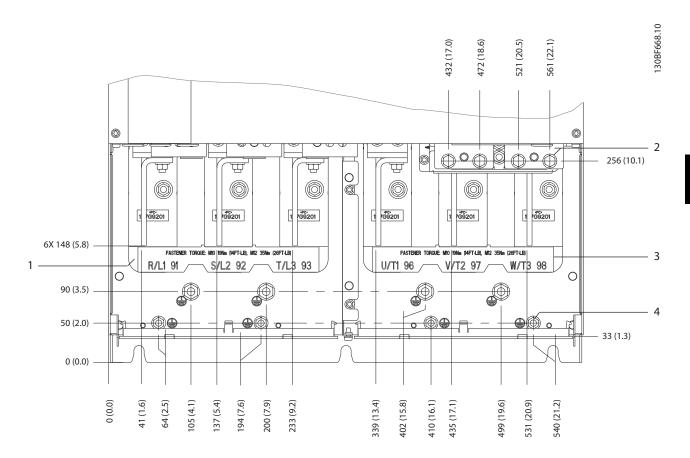
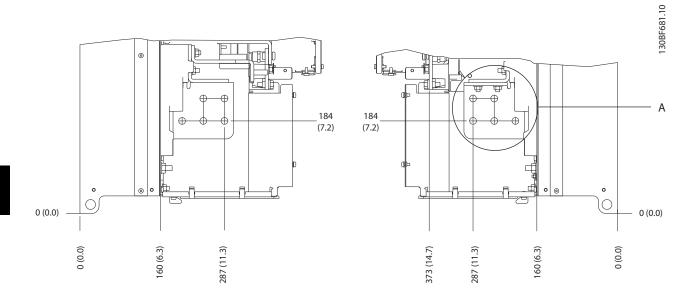



Рисунок 5.12 Размеры клемм подключения цепи разделения нагрузки/рекуперации в корпусе E3h

5


5.7.4 Сеть, двигатель и заземление в корпусах Е4

1	Клеммы сети питания	3	Клеммы подключения электродвигателя
2	Клеммы подключения тормоза или цепи рекуперации	4	Клеммы заземления, гайки М8 и М10

Рисунок 5.13 Размеры клемм корпуса E4h (вид спереди)

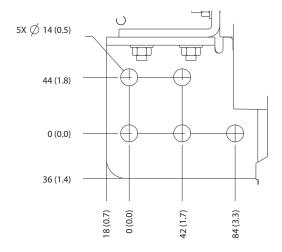
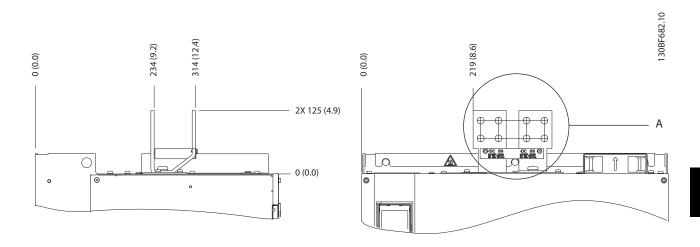



Рисунок 5.14 Размеры клемм подключения сети питания, двигателя и заземления в корпусе E4h (вид сбоку)

5

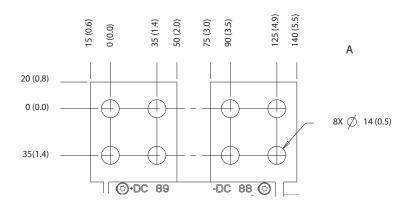


Рисунок 5.15 Размеры клемм подключения цепи разделения нагрузки/рекуперации в корпусе E4

5.8 Подключение элементов управления

Все клеммы кабелей управления расположены внутри преобразователя частоты под LCP. Чтобы получить доступ к ним, откройте дверь (E1h и E2h) или снимите переднюю панель (E3h и E4h).

5.8.1 Прокладка кабелей управления

Закрепите стяжками и проложите все провода управления, как показано на *Рисунок 5.16*. Не забудьте правильно подключить экраны, чтобы обеспечить оптимальную устойчивость к электрическим помехам.

- Изолируйте провода подключения элементов управления от высоковольтных кабелей в преобразователе частоты.
- Если преобразователь подключен к термистору, провода цепи управления данного термистора должны быть экранированы и иметь усиленную/двойную изоляцию. Рекомендуется напряжение питания 24 В пост. тока.

Подключение периферийной шины

Подключите проводку к соответствующим дополнительным устройствам на плате управления. Подробнее см. соответствующие инструкции для периферийной шины. Кабель должен быть закреплен стяжками и проложен вместе с другими проводами управления внутри устройства. См. Рисунок 5.16.

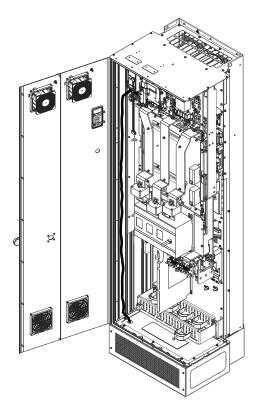


Рисунок 5.16 Маршрут прокладки проводки платы управления

5.8.2 Типы клемм управления

На *Рисунок 5.17* показаны съемные разъемы преобразователя частоты. Функции клемм и настройки по умолчанию приведены в *Таблица 5.1* — *Таблица 5.3*.

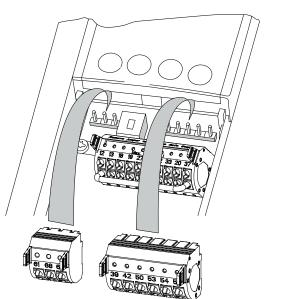
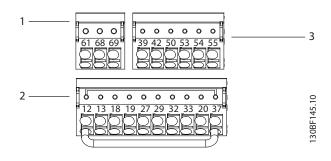



Рисунок 5.17 Расположение клемм управления

30BF144.10

1	Клеммы последовательной связи	
2	Клеммы цифровых входов/выходов	
3	Клеммы аналоговых входов/выходов	

Рисунок 5.18 Номера клемм на разъемах

	й связи		
Клемма	Параметр	Установка	Описание
		по	
		умолчани	
		ю	
61	-	_	Встроенный
			резистивно-
			емкостной фильтр
			для экрана кабеля.
			Используется
			ТОЛЬКО для
			подключения экрана
			при наличии
			проблем с ЭМС.
68 (+)	Группа	_	Интерфейс RS485. В
	параметров		качестве оконечного
	8-3*		сопротивления шины
	Настройки		предусмотрен
	порта ПЧ		переключатель на
69 (-)	Группа	-	плате управления
	параметров		(BUS TER.). Cm.
	8-3*		Рисунок 5.22.
	Настройки		
	порта ПЧ		
		Реле	
01, 02, 03	Параметр 5-40	[0] He	Выход реле типа
	Реле функций	использует	Form С. Для
	[0]	ся	подключения
04, 05, 06	Параметр 5-40	[0] He	напряжения
	Реле функций	использует	переменного и
	[1]	ся	постоянного тока, а
			также резистивных и
			индуктивных
			нагрузок.

Таблица 5.1 Описание клемм последовательной связи

	Клеммы цифро	овых входов	/выходов
Клемма	Параметр	Установка	Описание
		по	
		умолчани	
		ю	
12, 13	-	+24 В пост.	Питание 24 В пост.
		тока	тока для цифровых
			входов и внешних
			датчиков.
			Максимальный
			выходной ток
			составляет 200 мА
			для всех нагрузок 24
			B.
18	Параметр 5-10	[8] Пуск	Цифровые входы.
	Клемма 18,		
	цифровой вход		
19	Параметр 5-11	[10] Реверс	
	Клемма 19,		
	цифровой вход		
32	Параметр 5-14	[0] He	
	Клемма 32,	использует	
	цифровой вход	ся	
33	Параметр 5-15	[0] He	
	Клемма 33,	использует	
	цифровой вход	ся	
27	Параметр 5-12	[2] Выбег,	Для цифрового
	Клемма 27,	инверсный	входа или выхода.
	цифровой вход		По умолчанию
29	Параметр 5-13	[14] Фикс.	настроены в
	Клемма 29,	част.	качестве входов.
	цифровой вход		
20	-	-	Общая клемма для
			цифровых входов и
			потенциал 0 В для
			питания 24 В.
37	-	STO	Если не
			используется
			поставляемая по
			заказу функция STO,
			между клеммами 12
			(или 13) и 37 должна
			быть установлена
			перемычка. Такая
			конфигурация
			позволяет
			преобразователю
			частоты работать с
			заводскими
			настройками по

Таблица 5.2 Описания клемм цифровых входов/выходов

5

	Клеммы аналог	овых входов	з/выходов
Клемма	Параметр	Установка	Описание
		по	
		умолчани	
		ю	
39	_	-	Общий контакт для
			аналогового выхода.
42	Параметр 6-50	[0] He	Программируемый
	Клемма 42,	использует	аналоговый выход.
	выход	ся	Аналоговый сигнал
			0–20 мА или 4–20 мА
			при макс. 500 Ом.
50	-	+10 В пост.	Питание 10 В пост.
		тока	тока на аналоговых
			входах для
			подключения
			потенциометра или
			термистора.
			Максимум 15 мА.
53	Группа	Задание	Аналоговый вход.
	параметров		Для напряжения или
	6-1*		тока. Переключатели
	Аналоговый		А53 и А54
	вход 1.		используются для
54	Группа	Обратная	выбора мА или В.
	параметров	связь	
	6-2*		
	Аналоговый		
	вход 2.		
55	-	-	Общий для
			аналогового входа.

Таблица 5.3 Описания клемм аналоговых входов/выходов

Клеммы реле:

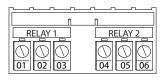


Рисунок 5.19 Клеммы реле 1 и реле 2

- Реле 1 и реле 2. Расположение выходов зависит от конфигурации преобразователя частоты. См. глава 3.5 Полка управления.
- Клеммы на встроенном дополнительном оборудовании. См. руководство к соответствующему дополнительному оборудованию.

5.8.3 Подключение к клеммам управления

Для облегчения монтажа разъемы клемм управления можно отключать от преобразователя частоты, как показано на *Рисунок 5.20*.

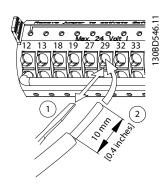


Рисунок 5.20 Подключение проводов цепи управления

УВЕДОМЛЕНИЕ

Для сведения помех к минимуму провода цепи управления должны быть как можно более короткими и проложены отдельно от высоковольтных кабелей.

- 1. Разомкните контакт, вставив небольшую отвертку в прорезь, расположенную над контактом, и подтолкнув отвертку немного вверх.
- Вставьте зачищенный управляющий провод в контакт.
- 3. Выньте отвертку для фиксации провода управления в контакте.
- 4. Убедитесь в том, что контакт надежно закреплен. Слабый контакт проводов управления может привести к сбоям в работе оборудования или к снижению рабочих характеристик.

Размеры проводки для клемм управления см. в глава 9.5 Технические характеристики кабелей, а типовые подключения элементов управления — в глава 7 Примеры конфигураций проводки.

5.8.4 Разрешение работы двигателя (клемма 27)

Между клеммами 12 (или 13) и 27 необходима перемычка для работы преобразователя частоты с запрограммированными значениями заводских настроек.

30BF156.

Danfoss

5

- Клемма 27 цифрового выхода служит для получения внешней команды блокировки 24 В постоянного тока.
- Если устройство блокировки отсутствует, соедините перемычкой клемму управления 12 (рекомендуется) или 13 с клеммой 27. Такая перемычка позволит передать внутренний сигнал 24 В на клемму 27.
- При отображении в строке состояния в нижней части LCP надписи AUTO REMOTE COAST (АВТОМАТИЧЕСКИЙ ДИСТАНЦИОННЫЙ СИГНАЛ ОСТАНОВА ВЫБЕГОМ) устройство готово к работе, но не хватает входного сигнала на клемме 27.
- Если к клемме 27 подключено дополнительное оборудование, установленное на заводе, не удаляйте эту проводку.

УВЕДОМЛЕНИЕ

Преобразователь частоты не может работать без сигнала на клемме 27, за исключением случаев, когда клемма 27 перепрограммирована с помощью параметра *параметр 5-12 Клемма 27*, цифровой вход.

5.8.5 Настройка интерфейса последовательной связи RS485

RS485 — это двухпроводный интерфейс шины, совместимый с топологией многоабонентской сети и отличающийся следующими особенностями:

- Возможно использование встроенного в преобразователь частоты протокола связи Danfoss FC или Modbus RTU.
- Функции можно программировать удаленно с использованием программного обеспечения протокола и соединения RS-485 либо через группу параметров 8-** Связь и доп. устр.
- Выбор конкретного протокола связи приводит к изменению параметров, заданных по умолчанию, для соблюдения спецификаций данного протокола и активации специализированных параметров этого протокола.
- В преобразователь частоты можно устанавливать дополнительные платы для поддержки дополнительных протоколов связи. Инструкции по установке и эксплуатации дополнительных плат см. в документации к ним.
- Для выбора оконечного сопротивления шины предусмотрен переключатель на плате управления (BUS TER.). См. *Рисунок 5.22*.

Для базовой настройки последовательной связи выполните следующие действия:

- Подключите провода интерфейса последовательной связи RS485 к клеммам (+)68 и (-)69.
 - 1а Рекомендуется использовать экранированный кабель последовательной связи.
 - 1b Правильное устройство заземления см. в глава 5.6 Подключение заземления.
- 2. Выберите следующие настройки параметров:
 - 2a Тип протокола в параметр 8-30 Протокол.
 - 2b Адрес преобразователя частоты в *параметр 8-31 Адрес*.
 - 2c Скорость передачи в параметр 8-32 Скорость передачи данных.

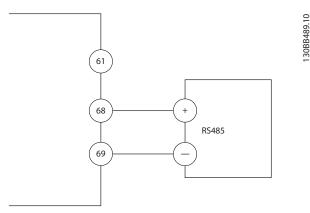


Рисунок 5.21 Схема подключения проводов последовательной связи

5.8.6 Подключение проводки Safe Torque Off (STO)

Функция Safe Torque Off (STO) является компонентом системы управления эксплуатационной безопасностью. STO предотвращает генерирование устройством напряжения, требуемого для вращения двигателя.

Для запуска функции STO необходима дополнительная проводка преобразователя частоты. Подробнее см. *Руководство по эксплуатации функции Safe Torque Off.*

5.8.7 Подключение проводки нагревателя воздуха

Для предотвращения конденсации влаги внутри корпуса при выключенном устройстве может использоваться нагреватель. Она рассчитана на подключение на месте и управление от системы отопления, вентиляции и кондиционирования (ОВК).

Технические характеристики

• Номинальное напряжение: 100-240

• Размер проводов: 12-24 AWG

5.8.8 Подключение дополнительных контактов к расцепителю.

Расцепитель в качестве опции устанавливается на заводе-изготовителе. Дополнительные контакты (как принадлежности, используемые с расцепителем) не монтируются на заводе, чтобы обеспечить дополнительную гибкость во время установки. Контакты устанавливаются и фиксируются на месте без какихлибо инструментов.

Контакты следует устанавливать на расцепителе в определенных местах, в соответствии с их функциями. См. листок технических данных, вложенный в пакет с принадлежностями, который поставляется вместе с преобразователем частоты.

Технические характеристики

U_i/[B]: 690

• U_{imp}/[κΒ]: 4

• Уровень загрязнения: 3

І_{тепл.}/[А]: 16

Размер кабеля: 1...2 х 0,75...2,5 мм²

• Макс. ток предохранителя: 16 A/gG

 NEMA: A600, R300, размер проводов: 18–14 AWG, 1(2)

5.8.9 Подключение термореле тормозного резистора

Клеммная колодка тормозного резистора находится на силовой плате питания и обеспечивает подключение внешнего термореле тормозного резистора. Это реле может быть настроено либо как нормально замкнутое, либо как нормально разомкнутое. При изменении состояния на входе преобразователь частоты отключается и выводит на дисплей LCP аварийный сигнал 27, Тормозной IGBT. Одновременно преобразователь частоты прекращает торможение и двигатель останавливается выбегом.

- 1. На силовой плате питания найдите клеммную колодку тормозного резистора (клеммы 104–106). См. *Рисунок 3.3*.
- 2. Снимите винты M3, крепящие перемычку к силовой плате питания.

- 3. Снимите перемычку и установите термореле тормозного резистора в одну из следующих конфигураций:
 - 3a **Нормально замкнутый контакт.** Подключите к клеммам 104 и 106.
 - 3b **Нормально разомкнутый контакт.** Подключите к клеммам 104 и 105.
- Закрепите провода переключателя винтами МЗ.
 Усилие затяжки: 0,5–0,6 Н⋅м (5 дюйм-фунтов).

5.8.10 Выбор входного сигнала по напряжению/току

Клеммы аналоговых входов 53 и 54 можно назначить как для работы с входными сигналами напряжения (0–10 В), так и с входными сигналами тока (0/4–20 мА)

Настройки параметров по умолчанию:

- Клемма 53: сигнал обратной связи в разомкнутом контуре (см. параметр 16-61 Клемма 53, настройка переключателя).
- Клемма 54: сигнал обратной связи в замкнутом контуре (см. параметр 16-63 Клемма 54, настройка переключателя).

УВЕДОМЛЕНИЕ

Перед изменением положения переключателя отключите преобразователь частоты от сети питания.

- 1. Снимите панель местного управления (LCP). См. глава 6.3 Меню LCP.
- 2. Снимите любое дополнительное оборудование, закрывающее переключатели.
- Установите переключатели А53 и А54 в положение, соответствующее выбранному типу сигнала (U = напряжение, I = ток).

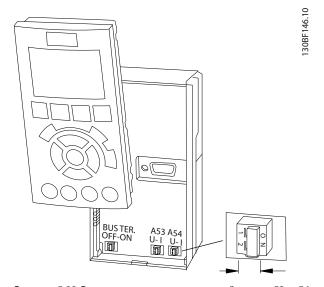


Рисунок 5.22 Расположение переключателей клемм 53 и 54

5

5.9 Перечень предпусковых проверок

Перед включением устройства в сеть проведите полный осмотр системы, как описано в *Таблица 5.4*. После завершения каждой проверки сделайте соответствующую отметку в списке.

Осматриваемый	Описание	Ø
компонент		
Вспомогательное оборудование	 Изучите вспомогательное оборудование, переключатели, расцепители, входные предохранители/ автоматические выключатели, которые установлены со стороны подключения питания к преобразователю частоты или со стороны подключения к двигателю. Убедитесь, что они готовы к работе в режиме полной скорости. Проверьте функционирование и установку датчиков, отвечающих за подачу сигналов обратной связи на преобразователь частоты. Отключите от двигателей все конденсаторы компенсации коэффициента мощности. Отрегулируйте конденсаторы компенсации коэффициента мощности со стороны сети и убедитесь, что они демпфированы. 	
Прокладка кабелей	• Убедитесь, что кабели двигателя, проводка тормоза (если есть) и проводка цепи управления разделены или экранированы или находятся в трех разных металлических кабелепроводах для изоляции высокочастотных помех.	
Проводка элементов управления	 Убедитесь в отсутствии повреждения кабелей или слабых соединений. Проверьте, изолирована ли проводка управления от силовых проводов; это необходимо для защиты от помех. Если требуется, проверьте источник питания для подаваемых сигналов. Рекомендуется использовать экранированный кабель или витую пару. Убедитесь в правильной заделке экрана кабеля. 	
Зазоры для охлаждения	• Измерьте зазор сверху устройства и убедитесь, что его достаточно для циркуляции охлаждающего воздуха, см. глава 4.5.1 Требования к монтажу и охлаждению.	
Условия окружающей среды	• Убедитесь, что требования к условиям окружающей среды соблюдены. См. глава 9.4 Условия окружающей среды.	
Предохранители и автоматические выключатели	 Необходимо использовать только подходящие предохранители или автоматические выключатели. Убедитесь, что все предохранители надежно установлены и готовы к работе, а все автоматические выключатели (если есть) находятся в разомкнутом положении. 	
Заземление	 Убедитесь в надежности контактов подключения заземления и в отсутствии окислений. Заземление на кабелепровод или монтаж задней панели на металлическую поверхность не является достаточным заземлением. 	
Подходящие и отходящие провода питания	 Убедитесь в надежности соединений. Убедитесь в том, что кабели двигателя и сетевые кабели прокладываются в отдельных кабелепроводах либо используется отдельно проложенные экранированные кабели. 	
Внутренние компоненты панели	 Проверьте внутренние компоненты на предмет наличия грязи, металлической стружки, влаги и коррозии. Убедитесь, что вы забрали все инструменты, использовавшиеся при монтаже, изнутри устройства. Для корпусов E3h и E4h убедитесь, что устройство установлено на неокрашенной металлической поверхности. 	
Переключатели	• Убедитесь, что все переключатели и расцепители установлены в требуемое положение.	

Электрический монтаж Руководство по эксплуатации

Осматриваемый	Описание	Ø
компонент		
Вибрация	• Убедитесь в том, что устройство установлено неподвижно либо при необходимости используются амортизирующие устройства.	
	• Проверьте оборудование на предмет чрезмерных вибраций.	

Таблица 5.4 Перечень предпусковых проверок

▲ПРЕДУПРЕЖДЕНИЕ

ПОТЕНЦИАЛЬНАЯ ОПАСНОСТЬ В СЛУЧАЕ ВНУТРЕННЕГО ОТКАЗА

В случае неправильно закрытых крышек преобразователя частоты существует опасность травмирования персонала.

• Перед включением в сеть убедитесь, что все защитные крышки (двери и панели) установлены на свои места и надежно закреплены. См. глава 9.10.1 Номинальные усилия затяжки фиксаторов.

6 Ввод в эксплуатацию

6.1 Инструкции по технике безопасности

Общие указания по технике безопасности см. в глава 2 Техника безопасности.

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

Подключенные к сети переменного тока преобразователи частоты находятся под высоким напряжением. Установка, пусконаладка и обслуживание преобразователя частоты должны выполняться только квалифицированным персоналом; несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

 Монтаж, пусконаладка и техническое обслуживание должны выполняться только квалифицированным персоналом.

Перед подключением к сети питания:

- 1. Закройте крышку надлежащим образом.
- 2. Убедитесь, что все кабельные уплотнения надежно затянуты.
- 3. Убедитесь, что входное питание устройства ВЫКЛЮЧЕНО и заблокировано. Расцепители преобразователя частоты не являются достаточным средством изоляции входного питания.
- 4. Убедитесь, что на входных клеммах L1 (91), L2 (92) и L3 (93), а также в линиях «фаза фаза» и «фаза земля» отсутствует напряжение.
- Убедитесь, что на выходных клеммах 96 (U), 97
 (V) и 98 (W), а также в линиях «фаза фаза» и «фаза — земля» отсутствует напряжение.
- Убедитесь в цельности цепи электродвигателя, измерив значение сопротивления в точках U–V (96–97), V–W (97–98) и W–U (98–96).
- Убедитесь в надлежащем заземлении преобразователя частоты и двигателя.
- 8. Осмотрите преобразователь на предмет надежного подключения к клеммам.
- 9. Убедитесь, что напряжение питания соответствует напряжению преобразователя частоты и двигателя.

6.2 Подключение к сети питания

▲ВНИМАНИЕ!

НЕПРЕДНАМЕРЕННЫЙ ПУСК

Если привод подключен к сети питания переменного тока, источнику постоянного тока или цепи разделения нагрузки, двигатель может включиться в любой момент. Случайный пуск во время программирования, техобслуживания или ремонтных работ может привести к летальному исходу, получению серьезных травм или порче имущества. Двигатель может запуститься внешним переключателем, командой по шине последовательной связи, входным сигналом задания с LCP или LOP, в результате дистанционной работы Средство конфигурирования МСТ 10 либо после устранения неисправности.

Чтобы предотвратить случайный пуск двигателя:

- Перед программированием параметров обязательно нажмите на LCP кнопку [Off/ Reset] (Выкл./Сброс).
- Отключите привод от сети питания.
- Прежде чем подключать преобразователь частоты к сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, следует полностью завершить подключение проводки и монтаж компонентов преобразователя частоты, двигателя и любого ведомого оборудования.
- Убедитесь, что входное напряжение на фазах не различается более чем 3 %. В противном случае следует откорректировать входное напряжение перед выполнением дальнейших действий. Повторите процедуру после корректировки напряжения.
- 2. Убедитесь, что все подключения дополнительного оборудования, при его наличии, соответствуют сфере его применения.
- 3. Убедитесь, что все регуляторы оператора переведены в положение ВЫКЛ.
- 4. Закройте все двери панели и надежно закрепите все крышки.
- 5. Подайте питание на устройство. НЕ ЗАПУСКАЙТЕ преобразователь частоты на данном этапе. Если используется расцепитель, переведите переключатель в положение ВКЛ для подачи питания на преобразователь.

УВЕДОМЛЕНИЕ

Если в строке состояния в нижней части LCP отображается сообщение AUTO REMOTE COASTING (АВТОМАТИЧЕСКИЙ ДИСТАНЦИОННЫЙ СИГНАЛ ОСТАНОВА ВЫБЕГОМ) или аварийный сигнал 60, Внешн.блокировка, устройство готово к работе, но не хватает входного сигнала на клемме 27. Для получения дополнительной информации см. глава 5.8.4 Разрешение работы двигателя (клемма 27).

6.3 Меню LCP

Более подробные инструкции относительно меню и параметров см. в руководстве по программированию.

6.3.1.1 Режим быстрого меню

LCP обеспечивает доступ к параметрам с помощью быстрых меню. Для просмотра вариантов быстрого меню нажмите клавишу [Quick Menu] (Быстрое меню).

0.0% 0.00 1(1) Quick Menus 01 My Personal Menu 02 Quick Setup 05 Changes Made 06 Loggings 07 Motor Setup					_
01 My Personal Menu 02 Quick Setup 05 Changes Made 06 Loggings	0.0	%	0.00	1(1)	243.10
02 Quick Setup 05 Changes Made 06 Loggings	Qui	ick Menus			130BF
05 Changes Made 06 Loggings	01	My Persor	nal Menu		
06 Loggings	02	Quick Set	up		
	05	Changes I	Made		
07 Motor Setup	06	Loggings			
	07	Motor Set	up	∇	

Рисунок 6.1 Как выглядит быстрое меню

6.3.1.2 Q1 Персональное меню

Персональное меню используется для того, чтобы указать, какие данные будут отображаться на дисплее. См. глава 3.6 Панель местного управления (LCP). В этом меню можно также просмотреть до 50 предварительно запрограммированных параметров. Эти 50 параметров вводятся вручную с помощью параметр 0-25 Моё личное меню.

6.3.1.3 Q2 Быстрая настройка

Параметры в меню *Q2 Быстрая настройка* содержат базовые данные о системе и двигателе, всегда требуемые для настройки преобразователя частоты. Процедуры настройки см. в глава 6.4.2 Ввод сведений о системе

6.3.1.4 О5 Внесенные изменения

Выберите меню *Q5 Внесенные изменения*, чтобы получить следующие сведения:

- 10 недавних изменений.
- Параметры, заводские установки которых были изменены.

6.3.1.5 Q6 Регистрация

Используйте *Q6 Регистрация* для поиска неисправностей. Чтобы получить сведения о показаниях строк дисплея, выберите пункт *Регистрация*. Информация отображается в форме графиков. Можно просматривать только те параметры, которые выбраны в пунктах с *параметр 0-20 Строка дисплея 1.1, малая* по *параметр 0-24 Строка дисплея 3, большая*. Для последующей справки можно хранить в памяти до 120 выборок.

Q6 Регистрация	
Параметр 0-20 Строка дисплея 1.1,	Скорость [об/мин]
малая	
Параметр 0-21 Строка дисплея 1.2,	Ток двигателя
малая	
Параметр 0-22 Строка дисплея 1.3,	Мощность [кВт]
малая	
Параметр 0-23 Строка дисплея 2,	Частота
большая	
Параметр 0-24 Строка дисплея 3,	Задание %
большая	

Таблица 6.1 Примеры параметров регистрации

6.3.1.6 Q7 Настройка двигателя

Параметры в меню *Q7 Настройка двигателя* содержат базовые и расширенные данные о двигателе, всегда требуемые для настройки преобразователя частоты. В этом меню находятся также параметры для настройки энкодера.

6.3.1.7 Режим главного меню

LCP обеспечивает доступ к режиму главного меню. Чтобы выбрать режим главного меню, нажмите кнопку [Main Menu] (Главное меню). На дисплее LCP отображаются соответствующие показания.

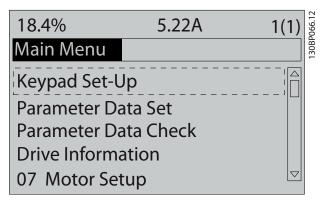


Рисунок 6.2 Как выглядит главное меню

В строках 2–5 отображается перечень групп параметров, которые можно выбрать при помощи кнопок [\blacktriangle] и [\blacktriangledown].

В главном меню можно изменять все параметры. Установка в блок дополнительных плат позволяет программировать дополнительные параметры, связанные с тем или иным дополнительным устройством.

6.4 Программирование преобразователя частоты

Подробную информации о функциях кнопок панели местного управления (LCP) см. в глава 3.6 Панель местного управления (LCP). Сведения о настройках параметров см. в руководстве по программированию.

Обзор параметров

Настройки параметров определяют работу преобразователя частоты; доступ к настройкам осуществляется через LCP. Этим настройкам на заводе-изготовителе присваиваются значения по умолчанию, но заказчик может настроить их под свое конкретное применение. Каждый параметр имеет наименование и номер, которые остаются неизменными независимо от режима программирования.

В режиме *главного меню* параметры делятся на группы. Номер группы параметров указывается первой слева цифрой номера параметра. Далее, если необходимо, группа параметров разбита на подгруппы. Например:

0-** Управл./отображ.	Группа
	параметров:
0-0* Основные настройки	Подгруппа
	параметров
Параметр 0-01 Язык	Параметр
Параметр 0-02 Единица измер. скор. вращ.	Параметр
двигат.	
Параметр 0-03 Региональные установки	Параметр

Таблица 6.2 Пример иерархии группы параметров

Перемещение по параметрам

Для перехода между параметрами используются следующие кнопки LCP:

- Для прокрутки вверх или вниз нажимайте [▲]
 [▼].
- Для перехода между разрядами в числовых значениях при редактировании параметров используйте кнопки [◄] [►].
- Чтобы принять новое значение, нажмите кнопку [ОК].
- Нажмите кнопку [Cancel] (Отмена) для отмены изменения и выхода из режима редактирования.
- Если дважды нажать кнопку [Back] (Назад), возвращается экран состояния.
- Нажмите [Main Menu] (Главное меню), чтобы вернуться в главное меню.

6.4.1 Пример программирования системы с разомкнутым контуром

Эта процедура используется для настройки типичной системы с разомкнутым контуром обратной связи и позволяет запрограммировать преобразователь частоты на получение аналогового сигнала управления 0–10 В пост. тока на входной клемме 53. Преобразователь частоты реагирует, подавая на двигатель выходной сигнал с частотой 20–50 Гц пропорционально входному сигналу (0–10 В пост. тока = 20–50 Гц).

Нажмите [Quick Menu] (Быстрое меню) и выполните следующие действия:

- 1. Выберите *Q3 Настройки функций* и нажмите [OK].
- 2. Выберите Parameter Data Set (Набор данных параметров) и нажмите [OK].

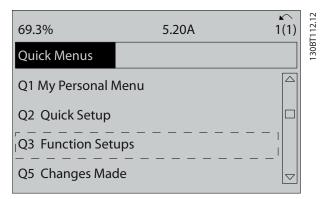


Рисунок 6.3 Q3 Настройки функций

3. Выберите *Q3-2 Настройки разомкнутого* контура и нажмите [OK].

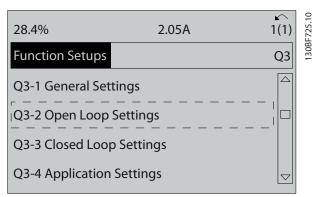


Рисунок 6.4 Q3-2 Настройки разомкнутого контура

4. Выберите *Q3-21 Аналоговое задание* и нажмите [OK].

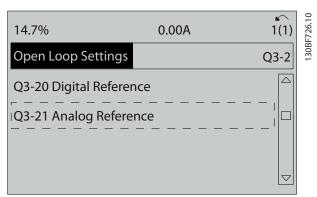


Рисунок 6.5 Q3-21 Аналоговое задание

5. Выберите *параметр 3-02 Мин. задание*. Установите минимальное внутреннее задание преобразователя частоты равным 0 Гц и нажмите [OK].

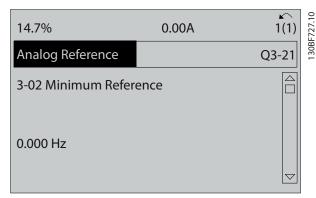


Рисунок 6.6 Параметр 3-02 Мин. задание

6. Выберите параметр 3-03 Максимальное задание.

Установите максимальное внутреннее задание преобразователя частоты равным 60 Гц и нажмите [OK].

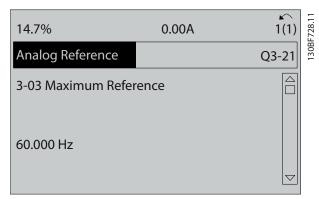


Рисунок 6.7 Параметр 3-03 Максимальное задание

7. Выберите *параметр 6-10 Клемма 53, низкое напряжение*.

Установите минимальное внешнее задание напряжения на клемме 53 на уровне 0 В и нажмите [OK].

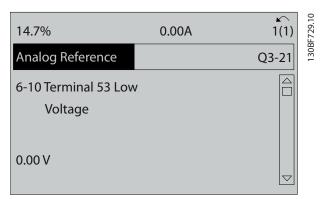


Рисунок 6.8 Параметр 6-10 Клемма 53, низкое напряжение

8. Выберите *параметр 6-11 Клемма 53, высокое* напряжение. Установите максимальное внешнее задание напряжения на клемме 53 на уровне 10 В и нажмите [OK].

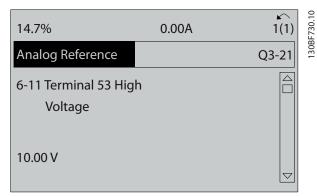


Рисунок 6.9 Параметр 6-11 Клемма 53, высокое напряжение

9. Выберите *параметр 6-14 Клемма 53, низкое зад./обр. связь*. Установите минимальное задание скорости на клемме 53 на уровне 20 Гц и нажмите [OK].

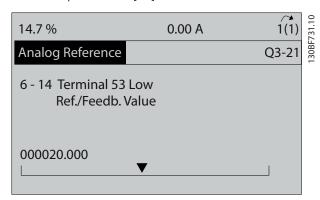


Рисунок 6.10 Параметр 6-14 Клемма 53, низкое зад./обр. связь

10. Выберите *параметр 6-15 Клемма 53, высокое зад./обр. связь*. Установите максимальное задание скорости на клемме 53 на уровне 50 Гц и нажмите [OK].

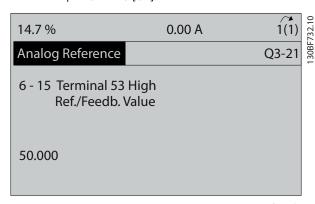


Рисунок 6.11 Параметр 6-15 Клемма 53, высокое зад./обр. связь

После подключения к клемме 53 преобразователя частоты внешнего устройства, подающего управляющий сигнал 0–10 В, система готова к работе.

УВЕДОМЛЕНИЕ

На *Рисунок 6.11* полоса прокрутки с правой стороны дисплея перемещена вниз. Это положение указывает на то, что процедура завершена.

На *Рисунок 6.12* показано подключение проводов, требуемое для активации внешнего устройства.

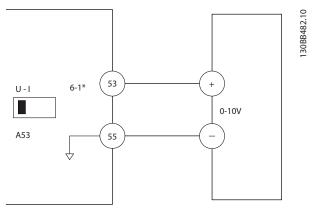


Рисунок 6.12 Пример подключения к внешнему устройству с управляющим сигналом 0–10 В

6.4.2 Ввод сведений о системе

УВЕДОМЛЕНИЕ

ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Для использования ПК в процессе ввода в эксплуатацию установите Средство конфигурирования МСТ 10. Это программное обеспечение можно загрузить из Интернета (базовая версия) или заказать с использованием номера для заказа 444В1000 (версия с расширенными возможностями). Для получения дополнительных сведений и загрузки ПО см. www.drives.danfoss.com/services/pc-tools.

Для ввода в преобразователь частоты базовой информации о системе необходимо выполнить следующие шаги. Рекомендуемые значения параметров предназначены для запуска и проверки устройства. Настройки для конкретных применений могут отличаться.

УВЕДОМЛЕНИЕ

Хотя эти шаги предполагают, что используется асинхронный двигатель, для двигателей с постоянными магнитами используются аналогичные шаги. Подробнее о типах двигателей см. руководство по программированию соответствующего продукта.

- 1. Нажмите кнопку [Main Menu] (Главное Меню) на LCP.
- 2. Выберите *0-** Управл./отображ.* и нажмите [OK].
- 3. Выберите 0-0* Основные настройки и нажмите [OK].
- 4. Выберите параметр 0-03 Региональные установки и нажмите [OK].
- 5. Выберите [0] Международные или [1] Северная Америка и нажмите [ОК]. (При этом изменяются значения по умолчанию для некоторых основных параметров).
- 6. Нажмите кнопку [Quick Menu] (Быстрое меню) на LCP, затем выберите пункт *Q2 Быстрая* настройка.
- Если необходимо, измените настройки следующих параметров (Таблица 6.3). Данные двигателя можно найти на паспортной табличке двигателя.

Параметр	Настройка по умолчанию
Параметр 0-01 Язык	Английский
Параметр 1-20 Мощность двигателя	4,00 кВт
[кВт]	
Параметр 1-22 Напряжение двигателя	400 B
Параметр 1-23 Частота двигателя	50 Гц
Параметр 1-24 Ток двигателя	9,00 A
Параметр 1-25 Номинальная скорость	1 420 об/мин
двигателя	
Параметр 5-12 Клемма 27, цифровой	Выбег, инверсный
вход	
Параметр 3-02 Мин. задание	0,000 об/мин
Параметр 3-03 Максимальное задание	1 500,000 об/мин
Параметр 3-41 Время разгона 1	3,00 c
Параметр 3-42 Время замедления 1	3,00 c
Параметр 3-13 Место задания	Linked to H/A MCO
Параметр 1-29 Авто адаптация	Выкл.
двигателя (ААД)	

Таблица 6.3 Настройки меню быстрой настройки

УВЕДОМЛЕНИЕ

ОТСУТСТВИЕ ВХОДНОГО СИГНАЛА

Если на LCP отображается сообщение AUTO REMOTE COASTING (АВТОМАТИЧЕСКИЙ ДИСТАНЦИОННЫЙ СИГНАЛ ОСТАНОВА ВЫБЕГОМ) или аварийный сигнал 60, Внешн.блокировка, устройство готово к работе, но не хватает входного сигнала. Подробнее см. в глава 5.8.4 Разрешение работы двигателя (клемма 27).

6.4.3 Настройка автоматической оптимизации энергопотребления

Автоматическая оптимизация энергопотребления (АОЭ) представляет собой процедуру, при выполнении которой напряжение, подаваемое на двигатель, снижается до минимума, что приводит к снижению потребляемой энергии, выделяемого тепла и издаваемого шума.

- 1. Нажмите кнопку [Main Menu] (Главное меню).
- 2. Выберите *1-** Нагрузка/двигатель* и нажмите [OK].
- 3. Выберите 1-0* Общие настройки и нажмите [OK].
- Выберите параметр 1-03 Хар-ка момента нагрузки и нажмите [OK].
- 5. Выберите [2] Авт. Оптим. Энергопот. СТ (постояный крутящий момент) или [3] Авт. Оптим. Энергопот. VT (переменный крутящий момент) и нажмите [OK].

6.4.4 Настройка автоматической адаптации двигателя

Автоматическая адаптация двигателя (ААД) представляет собой процедуру, при выполнении которой оптимизируется взаимодействие двигателя и преобразователя частоты.

В ходе этой процедуры преобразователь частоты строит математическую модель двигателя для регулировки выходного тока для двигателя. В ходе процедуры также выполняется проверка баланса входных фаз питания. Производится сравнение характеристик двигателя с данными, введенными в *параметрах с 1-20* по *1-25*.

УВЕДОМЛЕНИЕ

При возникновении предупреждений или аварийных сигналов см. глава 8.5 Перечень предупреждений и аварийных сигналов. Для некоторых двигателей полный тест выполнить невозможно. В этом случае, или если к двигателю подключен выходной фильтр, выберите [2] Включ.упрощ. ААД.

Для получения оптимальных результатов процедуру следует выполнять на холодном двигателе.

- 1. Нажмите кнопку [Main Menu] (Главное меню).
- 2. Выберите *1-** Нагрузка/двигатель* и нажмите [OK].
- 3. Выберите группу параметров 1-2** Данные двигателя и нажмите [OK].

- 4. Выберите параметр 1-29 Авто адаптация двигателя (ААД) и нажмите [ОК].
- 5. Выберите [1] Включ. полной ААД и нажмите [OK].
- 6. Нажмите кнопку [Hand On] (Ручной режим), затем нажмите кнопку [OK]. Тест будет выполнен автоматически; после его завершения на экран выводится соответствующее сообщение.

6.5 Тестирование перед запуском системы

▲ВНИМАНИЕ!

ЗАПУСК ДВИГАТЕЛЯ

Непроведение проверки готовности к запуску двигателя, системы и всего подключенного оборудования может привести к получению травм или повреждению оборудования. Перед пуском:

- Убедитесь, что при любых условиях использования все оборудование будет безопасно.
- Убедитесь, что двигатель, система и все подключенное оборудование готовы к запуску.

6.5.1 Вращение двигателя

УВЕДОМЛЕНИЕ

Вращение вала двигателя в в неправильном направлении может привести к повреждению оборудования. Перед запуском преобразователя частоты проверьте направление вращения, запустив двигатель на короткое время. Двигатель будет кратковременно вращаться с частотой 5 Гц или с другой минимальной частотой, заданной в параметр 4-12 Нижний предел скорости двигателя [Гц].

- 1. Нажмите [Hand On] (Ручной режим).
- Используя клавишу со стрелкой влево, установите курсор слева от десятичной точки, а затем введите значение частоты вращения в об/мин, при которой двигатель вращается медленно.
- Нажмите [OK].
- 4. Если двигатель вращается в неправильном направлении, установите в параметр 1-06 По часовой стрелке значение [1] Инверсное.

6.5.2 Вращение энкодера

Если используется обратная связь от энкодера, выполните следующие действия:

- 1. Выберите [0] Разомкнутый контур в параметр 1-00 Режим конфигурирования.
- 2. Выберите [1] Энкодер 24 В в параметр 7-00 Ист.сигн.ОС ПИД-рег.скор..
- 3. Нажмите [Hand On] (Ручной режим).
- Нажмите [►] для установки положительного задания скорости вращения (параметр 1-06 По часовой стрелке в значении [0] Нормальное).
- 5. Проверьте в *napaмemp 16-57 Feedback [RPM]*, что сигнал обратной связи положительный.

Подробнее о дополнительном устройстве энкодера см. руководство дополнительного устройства.

УВЕДОМЛЕНИЕ

ОТРИЦАТЕЛЬНОЕ ЗНАЧЕНИЕ ОБРАТНОЙ СВЯЗИ

Если сигнал обратной связи отрицательный, энкодер подключен неправильно. Используйте параметр 5-71 Клеммы 32/33, направление энкодера или параметр 17-60 Направление энкодера, чтобы сменить направление, либо поменяйте местами кабели энкодера. Параметр 17-60 Направление энкодера доступен только при наличии дополнительного устройства Encoder Input MCB 102.

6.6 Пуск системы

▲ВНИМАНИЕ!

ЗАПУСК ДВИГАТЕЛЯ

Непроведение проверки готовности к запуску двигателя, системы и всего подключенного оборудования может привести к получению травм или повреждению оборудования. Перед пуском:

- Убедитесь, что при любых условиях использования все оборудование будет безопасно.
- Убедитесь, что двигатель, система и все подключенное оборудование готовы к запуску.

Для выполнения процедур, описанных в данном разделе, требуется выполнить подключение всех пользовательских проводов и провести программирование в соответствии с применением устройства. После настройки в соответствии с применением рекомендуется выполнить следующую процедуру.

- 1. Нажмите [Auto On] (Автоматический режим).
- 2. Подайте внешнюю команду пуска. Внешние команды пуска могут поступать, например, с переключателя, кнопки или программируемого логического контроллера (PLC).
- 3. Отрегулируйте задание скорости по всему диапазону.
- 4. Чтобы убедиться, что система работает правильно, проверьте уровень звука и вибрации двигателя.
- 5. Снимите внешнюю команду пуска.

В случае появления предупреждений или аварийных сигналов см. глава 8.5 Перечень предупреждений и аварийных сигналов.

6.7 Настройки параметров

УВЕДОМЛЕНИЕ

РЕГИОНАЛЬНЫЕ УСТАНОВКИ

Для некоторых параметров предусмотрены различные значения по умолчанию в международных или североамериканских настройках. Список различающихся значений по умолчанию см. в глава 10.2 Международные/североамериканские настройки параметров по умолчанию.

Правильное программирование устройства в соответствии с применением подразумевает настройку функций в нескольких параметрах. Сведения о параметрах см. в руководстве по программированию.

Настройки параметров хранятся во внутренней памяти преобразователя частоты, что обеспечивает следующие преимущества:

- Настройки параметров могут быть загружены в память LCP и сохранены в виде резервной копии.
- Подключая LCP по очереди к каждому блоку и загружая в него сохраненные параметры, можно быстро запрограммировать несколько блоков.
- Пользовательские настройки, хранящиеся в LCP, не изменяются при восстановлении заводских настроек по умолчанию.
- Изменения, вносимые в установки по умолчанию, а также любые запрограммированные параметры сохраняются; их можно просмотреть в быстром меню. См. глава 6.3 Меню LCP.

6.7.1 Выгрузка и загрузка настроек параметров

Преобразователь частоты работает, обращаясь к параметрам, хранящимся на установленной в нем плате управления. Функции выгрузки и загрузки перемещают настройки параметров между платой управления и LCP.

- Нажмите [Off] (Выкл.).
- 2. Перейдите к *параметр 0-50 Копирование с LCP* и нажмите [OK].
- 3. Выберите один из следующих вариантов:
 - 3а Чтобы выгрузить данные с платы управления в LCP, выберите [1] Все в LCP.
 - 3b Чтобы загрузить данные с LCP в плату управления, выберите [2] Bce us LCP.
- Нажмите [OK]. Индикатор выполнения операции показывает процесс загрузки/ выгрузки.
- 5. Нажмите [Hand On] (Ручной режим) или [Auto On] (Автоматический режим).

6.7.2 Восстановление настроек по умолчанию

УВЕДОМЛЕНИЕ

ПОТЕРЯ ДАННЫХ

При восстановлении параметров до значений по умолчанию происходит потеря запрограммированных параметров, данных двигателя, параметров локализации и записей мониторинга. Перед инициализацией выгрузите данные в LCP, чтобы иметь их резервную копию. См. глава 6.7.1 Выгрузка и загрузка настроек параметров.

Чтобы восстановить настройки параметров по умолчанию, выполняется инициализация блока. Инициализация осуществляется с помощью *параметр 14-22 Режим работы* или вручную.

Параметр 14-22 Режим работы не выполняет сброс таких настроек, как:

- наработка в часах
- настройки последовательной связи
- настройки в персональном меню
- журнал отказов, журнал аварий, другие функции мониторинга

Рекомендуемый порядок инициализации

- 1. Дважды нажмите [Main Menu] (Главное меню) для доступа к параметрам
- 2. Перейдите к *параметр 14-22 Режим работы* и нажмите [OK].
- 3. Прокрутите до пункта *Инициализация* и нажмите [OK].
- 4. Отключите электропитание преобразователя и подождите, пока не погаснет дисплей.
- 5. Подключите питание к устройству. В ходе пусконаладки установки параметров восстанавливаются до заводских. Пусконаладка занимает несколько больше времени, чем обычно.
- 6. После появления аварийного сигнала 80, Привод инициал. нажмите [Reset] (Сброс).

Ручная инициализация

Ручная инициализация восстанавливает все установки по умолчанию, кроме следующих:

- Параметр 15-00 Время работы в часах
- Параметр 15-03 Кол-во включений питания
- Параметр 15-04 Кол-во перегревов
- Параметр 15-05 Кол-во перенапряжений

Для выполнения инициализации вручную:

- Отключите электропитание преобразователя и подождите, пока не погаснет дисплей.
- 2. Нажмите и удерживайте кнопки [Status] (Состояние), [Main Menu] (Главное меню) и [OK] и одновременно включите устройство в сеть (приблизительно 5 с или пока не послышится щелчок и вентилятор не начнет работать). Пусконаладка занимает несколько больше времени, чем обычно.

7 Примеры конфигураций проводки

Примеры, приведенные в данном разделе, носят справочный характер для наиболее распространенных случаев применения.

- Настройки параметров являются региональными по умолчанию, если не указано иное (выбирается в параметр 0-03 Региональные установки).
- Параметры, имеющие отношение к клеммам, а также их значения указаны рядом со схемами.
- Показаны также требуемые установки переключателя для аналоговых клемм А53 или А54, приводятся рисунки.

УВЕДОМЛЕНИЕ

Если поставляемая по заказу функция STO не используется, между клеммами 12 (или 13) и 37 должна быть установлена перемычка для работы преобразователя частоты с значениями настроек, запрограммированными по умолчанию.

7.1 Проводка при регулировании скорости в разомкнутом контуре управления

Таблица 7.1 Задание скорости через аналоговый вход (напряжение)

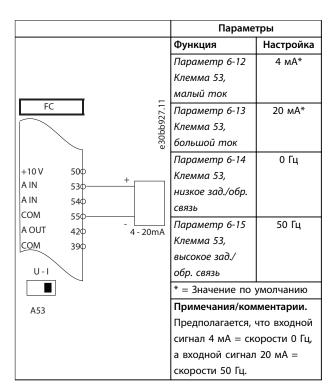


Таблица 7.2 Задание скорости через аналоговый вход (ток)

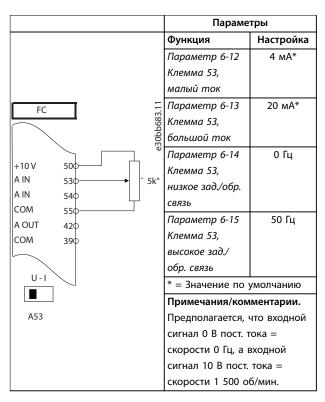


Таблица 7.3 Задание скорости (с помощью ручного потенциометра)

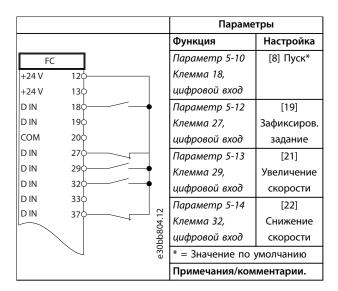


Таблица 7.4 Повышение/понижение скорости

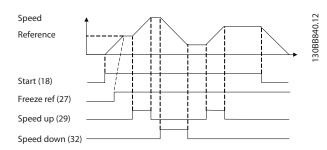


Рисунок 7.1 Повышение/понижение скорости

7.2 Проводка пуска/останова

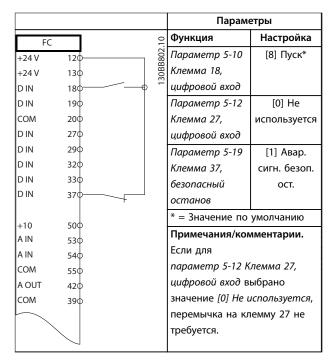


Таблица 7.5 Команда пуска/останова с использованием Safe Torque Off

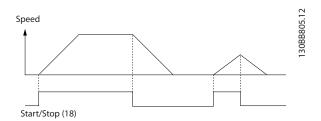


Рисунок 7.2 Команда пуска/останова с Safe Torque Off

Таблица 7.6 Импульсный пуск/останов

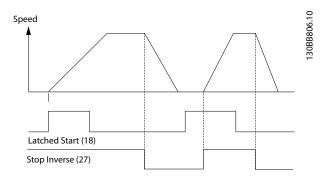


Рисунок 7.3 Импульсный запуск/останов, инверсный

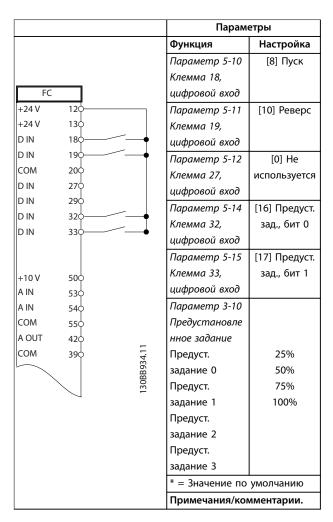


Таблица 7.7 Пуск/останов с реверсом и 4 предустановленными скоростями

7.3 Проводка для внешнего сброса аварийной сигнализации

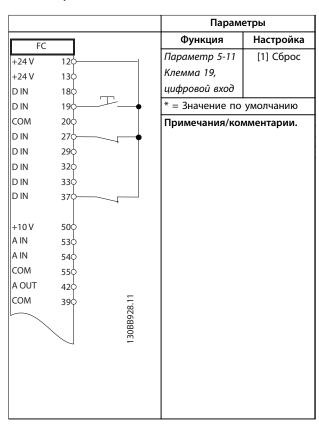


Таблица 7.8 Внешний сброс аварийной сигнализации

7.4 Проводка термистора двигателя

▲ВНИМАНИЕ!

ИЗОЛЯЦИЯ ТЕРМИСТОРА

Существует опасность травм или повреждения оборудования.

 Для соответствия требованиям к изоляции PELV используйте в термисторах усиленную или двойную изоляцию.

			Парам	етры
FC	$\overline{}$		Функция	Настройка
+24 V	120		Параметр 1-90	[2] Откл. по
+24 V	130		Тепловая	термистору
DIN	180		защита	
DIN	190		двигателя	
СОМ	200		Параметр 1-93	[1]
DIN	270		Источник	Аналоговый
DIN	290		термистора	вход 53
DIN	320		* = Значение по	умолчанию
DIN	330			
DIN	370		Примечания/ког	иментарии.
			Если требуется т	олько
+10 V	500		предупреждение	2, в
A IN	530		параметр 1-90 Т	епловая
A IN	540		защита двигате	еля следует
COM	550		выбрать [1] Пред	vnp.no
A OUT	420		термист.	, , ,
СОМ	390			
		12		
U-I		130BB686.12		
	7)BB6		
A53		13(

Таблица 7.9 Термистор двигателя

7.5 Проводка цепи рекуперации

			Параметры	
FC	_	-	Функция	Настройка
+24 V	120	30BD667.13	Параметр 1-90	100%*
+24 V	130	BD6	Тепловая	
DIN	180	130	защита	
DIN	190		двигателя	
СОМ	200		* = Значение по	умолчанию
DIN	270			
DIN	290		Примечания/ком	иментарии.
D IN	320		Для отключения	рекуперации
D IN	330		уменьшите	
D IN	370		параметр 1-90 Те	епловая
			защита двигате	ля до 0 %.
+10 V	500		Если система исг	ользует
A IN	530		мощность тормо	жения
A IN	540		двигателя и реку	перация не
COM A OUT	550		включена, блок	
COM	420		останавливается.	
COIVI	390			

Таблица 7.10 Рекуперация

8 Техническое обслуживание, диагностика и устранение неисправностей

8.1 Техобслуживание и текущий ремонт

В этой главе рассматриваются следующие вопросы:

- Рекомендации по обслуживанию и текущему ремонту;
- Сообщения о состоянии;
- Предупредительная и аварийная сигнализация
- Поиск и устранение основных неисправностей.

При нормальных условиях эксплуатации и профилях нагрузки преобразователь частоты не нуждается в техобслуживании на протяжении всего расчетного срока службы. Для предотвращения поломок оборудования, опасности для персонала и повреждения имущества, осматривайте преобразователь частоты через регулярные интервалы времени, зависящие от условий эксплуатации. Заменяйте изношенные и поврежденные детали оригинальными или стандартными запасными частями. Адреса сервисных центров и телефоны службы поддержки см. на сайте www.danfoss.com/contact/sales_and_services/.

▲ВНИМАНИЕ!

НЕПРЕДНАМЕРЕННЫЙ ПУСК

Если привод подключен к сети питания переменного тока, источнику постоянного тока или цепи разделения нагрузки, двигатель может включиться в любой момент. Случайный пуск во время программирования, техобслуживания или ремонтных работ может привести к летальному исходу, получению серьезных травм или порче имущества. Двигатель может запуститься внешним переключателем, командой по шине последовательной связи, входным сигналом задания с LCP или LOP, в результате дистанционной работы Средство конфигурирования МСТ 10 либо после устранения неисправности.

Чтобы предотвратить случайный пуск двигателя:

- Перед программированием параметров обязательно нажмите на LCP кнопку [Off/ Reset] (Выкл./Сброс).
- Отключите привод от сети питания.
- Прежде чем подключать преобразователь частоты к сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, следует полностью завершить подключение проводки и монтаж компонентов преобразователя частоты, двигателя и любого ведомого оборудования.

8.2 Панель доступа к радиатору

Преобразователь частоты может быть заказан с дополнительной панелью доступа в задней части блока. Эта панель доступа обеспечивает доступ к радиатору и позволяет очищать его от скоплений пыли.

8.2.1 Снятие панели доступа к радиатору

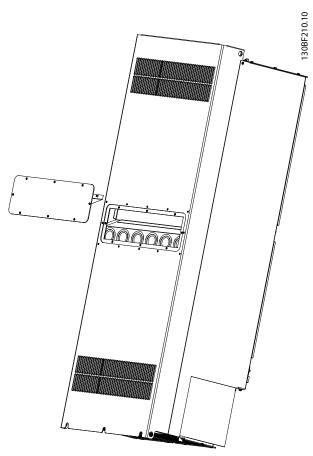
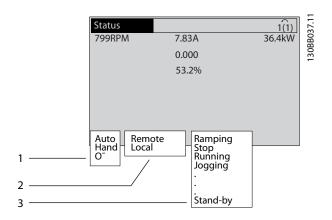


Рисунок 8.1 Преобразователь частоты со снятой панелью доступа к радиатору

- 1. Отключите питание преобразователя и подождите 40 минут до полной разрядки конденсаторов. См. глава 2 Техника безопасности.
- 2. Установите преобразователь частоты так, чтобы его задняя стенка была полностью доступна.
- 3. Удалите 8 фиксаторов М5, крепящих панель доступа к задней стенке корпуса, с помощью шестигранной отвертки с жалом 3 мм.

- 4. Осмотрите переднюю кромку радиатора на предмет наличия повреждений или мусора.
- Удалите лишний материал или мусор пылесосом.
- 6. Установите панель на место и закрепите ее на задней стенке корпуса, используя 8 фиксаторов. Затяните фиксаторы в соответствии с глава 9.10.1 Номинальные усилия затяжки фиксаторов.


УВЕДОМЛЕНИЕ

ПОВРЕЖДЕНИЕ РАДИАТОРА

Использование более длинных фиксаторов (по сравнению с теми, что изначально поставляются с панелью радиатора) может повредить охлаждающие ребра радиатора.

8.3 Сообщения о состоянии

Если преобразователь частоты находится в режиме отображения состояния, сообщения о состоянии будут генерироваться автоматически и отображаться на экране LCP в нижней строке. См. *Рисунок 8.2*. Описание сообщений о состоянии см. в разделах с *Таблица 8.1* по *Таблица 8.3*.

1	Место возникновения команды пуска/останова. См.
	Таблица 8.1.
2	Место возникновения сигнала управления скоростью. См.
	Таблица 8.2.
3	Информация о состоянии преобразователя частоты. См.
	Таблица 8.3.

Рисунок 8.2 Отображение состояния

УВЕДОМЛЕНИЕ

В автоматическом/дистанционном режиме преобразователь частоты получает внешние команды для выполнения функций.

В таблицах с Таблица 8.1 по Таблица 8.3 поясняется значение отображаемых сообщений о состоянии.

Выкл.	Преобразователь частоты не реагирует на
DDIIOI.	Theoopasobate/ib sacroth the pearupyer ha
	сигналы управления до нажатия кнопок
	[Auto On] (Автоматический режим) или
	[Hand On] (Ручной режим).
Авто	Команды пуска/останова поступают через
	клеммы управления и/или по
	последовательному каналу связи.
Ручной	Для управления преобразователем частоты
	могут использоваться кнопки навигации на
	LCP. Команды останова, сброса, реверса,
	торможения постоянным током, а также
	другие сигналы, подаваемые на клеммы
	управления, блокируют команды местного
	управления.

Таблица 8.1 Режим работы

Дистанц-е	Задание скорости поступает из следующих	
	источников:	
	• внешние сигналы,	
	• по последовательной связи,	
	• внутренние предустановленные задания.	
Местное	Преобразователь частоты использует	
	значения задания, поступающие с LCP.	

Таблица 8.2 Место задания

	T
Торм. перем.	В параметр 2-10 Функция торможения было
током	выбрано торможение переменным током.
	При торможении переменным током
	двигатель перемагничивается для
	достижения управляемого замедления.
ААД усп.зав	Автоматическая адаптация двигателя (ААД)
	завершена успешно.
Готовн.к ААД	ААД готова к запуску. Чтобы выполнить
	запуск, нажмите [Hand On] (Ручной пуск).
Выполнен.ААД	Выполняется ААД.
Торможение	Тормозной прерыватель функционирует.
	Генераторная энергия поглощается
	тормозным резистором.
Макс. тормож.	Тормозной прерыватель функционирует.
	Достигнут предел мощности для тормозного
	резистора, установленный в
	параметр 2-12 Предельная мощность
	торможения (кВт).
Выбег	• [2] Выбег, инверсный (группа параметров
	<i>5-1* Цифровые входы</i>) выбран в качестве
	функции для цифрового входа.
	Соответствующая клемма не подключена.
	• Останов выбегом активирован по каналу
	последовательной связи.

Упр.	[1] Упр. замедление было выбрано в
замедление	параметр 14-10 Отказ питания.
замедление	l ' '
	• Напряжение в сети ниже значения
	напряжения сбоя, заданного в
	параметр 14-11 Напряжение сети при
	отказе питания.
	• Преобразователь частоты выполняет
	замедление двигателя с использованием
	управляемого торможения.
Большой ток	Выходной ток преобразователя частоты
	превышает порог, установленный в
	параметр 4-51 Предупреждение: высокий
	ток.
Низкий ток	Выходной ток преобразователя частоты
THISKNIN TOK	
	превышает порог, установленный в
	параметр 4-52 Предупреждение: низкая
	скорость.
Удер.п.током	В параметр 1-80 Функция при останове
	выбрано удержание постоянным током и
	команда останова активна. Двигатель
	удерживается постоянным током, значение
	которого задано в параметр 2-00 Ток
	удержания (пост. ток).
Останов пост.	В течение определенного периода времени
током	(параметр 2-02 Время торможения пост.
	током) двигатель удерживается постоянным
	током (параметр 2-01 Ток торможения
	пост. током).
	• Торможение постоянным током
	активируется параметром
	параметр 2-03 Скорость
	включ.торм.пост.током [об/мин] и
	команда останова активна.
	• В качестве функции цифрового входа
	(группа параметров 5-1* Цифровые
	входы) выбрано торможение постоянным
	током (инверсное). Соответствующая
	клемма неактивна.
	TOTEWING TEAKTIBITA.
	• По каналу последовательной связи
	активируется торможение постоянным
	током.
Обр.связь,макс	Сумма всех активных сигналов обратной
•	связи превышает предельное значение
	обратной связи, установленное в
	параметр 4-57 Предупреждение: высокий
	сигн. ОС.
Обр.связь, мин	Сумма всех активных сигналов обратной
Сор.сьязь, мип	связи ниже предельного значения обратной
	связи, установленного в
	параметр 4-56 Предупреждение: низкий
	сигнал ОС.

[- ·	Ι.
Зафикс.выход	Активное дистанционное задание
	поддерживает текущую скорость.
	• [20] Зафиксировать выход выбрано
	качестве функции цифрового входа
	(группа параметров 5-1* Цифровые
	входы). Соответствующая клемма
	активна. Регулирование скорости
	возможно только через клемму с
	помощью функций повышения и
	понижения скорости.
	• По каналу последовательной связи
	активировано удержание изменения
	скорости.
Запрос	Команда фиксации выходной частоты
фиксации	подана, но двигатель остается неподвижным
	до тех пор, пока не получен сигнал
	разрешения работы.
Фикс.задания	[19] Зафиксировать задание выбрано
	качестве функции цифрового входа (группа
	параметров 5-1* Цифровые входы).
	Соответствующая клемма активна. В
	преобразователе частоты сохраняется
	фактическое задание. Изменение задания
	теперь возможно только через клемму с
	помощью функций увеличения и снижения
	скорости.
Запрос	Команда на включение режима
Запрос фиксации	Команда на включение режима фиксированной частоты подана, но
Запрос фиксации частоты	фиксированной частоты подана, но
фиксации	
фиксации	фиксированной частоты подана, но двигатель остается неподвижным до тех
фиксации	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения.
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в <i>параметр 3-19 Фикс</i> .
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин].
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы).
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна.
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например,
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна.
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи.
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи.
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал отсутствует) была выбрана функция
фиксации частоты	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал отсутствует) была выбрана функция фиксации частоты. Активна функция
фиксации частоты Фикс. скорость	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал отсутствует) была выбрана функция фиксации частоты. Активна функция мониторинга.
фиксации частоты Фикс. скорость Провер.	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал отсутствует) была выбрана функция фиксации частоты. Активна функция мониторинга.
фиксации частоты Фикс. скорость Провер.	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал отсутствует) была выбрана функция фиксации частоты. Активна функция мониторинга. В параметр 1-80 Функция при останове было выбрано значение [2] Провер.
фиксации частоты Фикс. скорость Провер.	фиксированной частоты подана, но двигатель остается неподвижным до тех пор, пока через цифровой вход не поступит сигнал разрешения вращения. Двигатель работает согласно программированию в параметр 3-19 Фикс. скорость [об/мин]. • [14] Фикс. част. была выбрана в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма (например, клемма 29) активна. • Режим фиксации частоты активируется по каналу последовательной связи. • В качестве реакции функции мониторинга (например, когда сигнал отсутствует) была выбрана функция фиксации частоты. Активна функция мониторинга. В параметр 1-80 Функция при останове было выбрано значение [2] Провер. электродвиг. Команда останова активна.

Выс. задание	Сумма всех активных заданий превышает предел задания, установленный в
Измен-е скор.	Двигатель выполняет ускорение/замедление с использованием активного ускорения/ замедления. Задание, пороговая величина или остановка не достигнуты.
Быстр.останов	Двигатель замедляется с использованием параметр 3-81 Время замедл.для быстр.останова. • [4] Быстр.останов,инверс был выбран в качестве функции цифрового входа (группа параметров 5-1* Цифровые входы). Соответствующая клемма неактивна. • Функция быстрого останова была активирована по каналу последовательной связи.
Eugen zerzus	 При отсутствии препятствий режим защиты отключается приблизительно через 10 секунд. Действие режима защиты можно ограничить в параметр 14-26 Зад. отк. при неисп. инв
	(слишком высокий ток или слишком высокое напряжение). • Если для параметр 14-55 Выходной фильтр установлено значение [2] Синус.фильтр, фикс., во избежание отключения частота коммутации сокращена до 1 500 кГц. В противном случае частота коммутации понижается до 1 000 кГц.
Режим защиты	преобразователя частоты от сети отключено, но плата управления питается от внешнего источника 24 В. Активен режим защиты. Устройством было обнаружено критическое состояние
Блок питания отключен	(Используется только в преобразователях частоты с внешним питанием 24 В). Питание
	функция контроля перенапряжения. Подключенный двигатель подает генераторную энергию на преобразователь частоты. Функция контроля перенапряжения регулирует соотношение «напряжение/ частота» для работы двигателя в управляемом режиме и для предотвращения отключения преобразователя частоты.
	С помощью параметр 2-17 Контроль перенапряжения, [2] Разрешено активирована

Низк. задание	Сумма всех активных заданий ниже предела задания, установленного в
	параметр 4-54 Предупреждение: низкое задание.
Раб.в с.с зад.	Преобразователь частоты работает в
	диапазоне задания. Значение сигнала
	обратной связи соответствует
	установленному значению.
Запрос на	Команда запуска подана, но двигатель
работу	остается неподвижным до тех пор, пока
	через цифровой вход не будет получен
	сигнал, разрешающий вращение.
Работа	Преобразователь частоты вращает
	двигатель.
Режим	Включена функция сбережения энергии. Это
ожидания	означает, что в настоящее время двигатель
	остановлен, но автоматически запустится
	снова, когда это потребуется.
Выс.скорость	Скорость двигателя превышает значение,
	заданное в параметр 4-53 Предупреждение:
	высокая скорость.
Низкая	Скорость двигателя ниже значения,
скорость	заданного в параметр 4-52 Предупреждение:
	низкая скорость.
Режим	В автоматическом режиме преобразователь
ожидания	частоты запускает двигатель, подавая сигнал
оли дании	запуска с цифрового входа или по каналу
	последовательной связи.
Задерж.пуска	В параметр 1-71 Задержка запуска было
эадерлигу спа	установлено время задержки при запуске.
	Активирована команда пуска, двигатель
	запускается после истечения времени
	задержки запуска.
Пуск впер/наз	[12] Разреш.запуск вперед и [13] Разреш.
пуск впер/наз	запуск назад выбраны в качестве функций
	для двух различных цифровых входов
	(группа параметров 5-1* Цифровые входы).
	Двигатель будет запущен вперед или назад
	в зависимости от того, какая из клемм будет
	активирована.
Останов	Преобразователь частоты получил команду
	останова из одного из следующих
	источников:
	• LCP
	• Цифровой вход
	• Последовательная связь
	• Последовательная связь

Отключение	Был подан аварийный сигнал и двигатель
	остановился. Как только причина
	возникновения аварийного сигнала
	устранена, преобразователь частоты можно
	перезапустить одним из следующих
	способов:
	• Нажатие кнопки [Reset] (Сброс).
	• Дистанционно через клеммы
	управления.
	• По каналу последовательной связи.
	Нажатием кнопки [Reset] (Сброс) либо
	дистанционно с помощью клемм
	управления или по каналу
	последовательной связи.
Откл.зафиксир	Был подан аварийный сигнал и двигатель
	остановился. Когда причина возникновения
	аварийного сигнала устранена, выключите и
	снова включите преобразователь частоты.
	Перезапустите преобразователь частоты
	вручную одним из следующих способов:
	• Нажатие кнопки [Reset] (Сброс).
	• Дистанционно через клеммы
	управления.
	• По каналу последовательной связи.

Таблица 8.3 Рабочее состояние

УВЕДОМЛЕНИЕ

В автоматическом/дистанционном режиме преобразователь частоты получает внешние команды для выполнения функций.

8.4 Типы предупреждений и аварийных сигналов

Тип	Описание	
предупрежд		
ений/		
аварийных		
сигналов		
Предупрежд	Предупреждение указывает на ненормальное	
ение	рабочее состояние, которое может привести к	
	аварийной ситуации. Предупреждение	
	прекращается при устранении ненормальной	
	ситуации.	

Тип	Описание		
предупрежд			
ений/			
аварийных			
сигналов			
Аварийный	Аварийный сигнал указывает на присутствие		
сигнал	неполадки, требующей немедленного		
	исправления. Неполадка всегда		
	сопровождается отключением или		
	отключением с блокировкой. Перезапустите		
	преобразователь частоты после аварийного		
	сигнала.		
	Перезапуск преобразователя частоты может		
	быть выполнен четырьмя способами:		
	• Нажмите кнопку [Reset] (Сброс)/[Off/Reset]		
	(Выкл./Сброс).		
	• Команда сброса через цифровой вход.		
	• Команда сброса по интерфейсу		
	последовательной связи.		
	• Автосброс.		

Отключение

При отключении преобразователь частоты приостанавливает работу для недопущения повреждения самого преобразователя или другого оборудования. При отключении двигатель останавливается выбегом. Логика преобразователя частоты продолжает работать и контролирует состояние преобразователя частоты. После того, как неполадка устранена, можно выполнить перезапуск преобразователя частоты.

Отключение с блокировкой

При отключении с блокировкой преобразователь частоты приостанавливает работу для недопущения повреждения самого преобразователя или другого оборудования. Когда происходит отключение с блокировкой, двигатель останавливается выбегом. Логика преобразователя частоты продолжает работать и контролирует состояние преобразователя частоты. Преобразователь частоты активирует отключение с блокировкой только в случае серьезного сбоя, который может привести к повреждению преобразователя частоты или другого оборудования. Прежде чем приступать к перезапуску преобразователя частоты после устранения неполадок, отключите и снова включите входное питание.

Дисплеи предупреждений и аварийных сигналов

- На LCP отображается предупреждение, а также номер предупреждения.
- Аварийный сигнал мигает вместе с кодом аварийного сигнала.

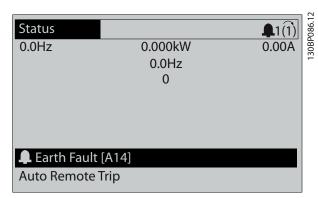
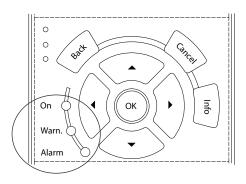



Рисунок 8.3 Пример аварийного сигнала

Кроме вывода текстового сообщения и аварийного кода на LCP используются также три световых индикатора состояния.

	Световой индикатор предупреждения	Световой индикатор аварийной ситуации
Warning	Горит	Не горит
(Предупреж		
дение)		
Alarm (Авар.	Не горит	Горит (мигает)
сигнал)		
Отключение	Горит	Горит (мигает)
С		
блокировкой		

Рисунок 8.4 Световые индикаторы состояния

8.5 Перечень предупреждений и аварийных сигналов

Ниже приводится информация о предупреждениях и аварийных сигналах, описывающая условия их возникновения, возможные причины и способ устранения либо процедуру поиска и устранения неисправностей.

ПРЕДУПРЕЖДЕНИЕ 1, Низкое напряжение источника 10 В

Напряжение с клеммы 50 на плате управления ниже 10 $\rm B.$

Снимите часть нагрузки с клеммы 50, поскольку источник питающего напряжения 10 В перегружен. Максимум 15 мА или минимум 590 Ом.

Это состояние может быть вызвано коротким замыканием в подключенном потенциометре или неправильным подключением проводов потенциометра.

Устранение неисправностей

• Отключите провод от клеммы 50. Если предупреждение исчезает, проблема связана с подключением проводов. Если предупреждение не исчезает, замените плату управления.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 2, Ошибка действующего нуля

Это предупреждение или аварийный сигнал отображается, только если пользователь запрограммировал соответствующую функцию в параметр 6-01 Функция при тайм-ауте нуля. Сигнал на одном из аналоговых входов составляет менее 50 % от минимального значения, запрограммированного для данного входа. Это состояние может быть вызвано обрывом проводов или неисправностью устройства, посылающего сигнал.

Устранение неисправностей

- Проверьте соединения на всех аналоговых клеммах и клеммах сети питания.
 - Клеммы платы управления 53 и 54 для сигналов, клемма 55 общая.
 - Клеммы 11 и 12 платы General Purpose I/O MCB 101 для сигналов, клемма 10 общая.
 - Клеммы 1, 3 и 5 платы Analog I/O Option MCB 109 для сигналов, клеммы 2, 4 и 6 общая.
- Убедитесь, что установки программирования привода и настройки переключателя совпадают с типом аналогового сигнала.
- Выполните тестирование сигнала входной клеммы.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 3, Нет двигателя

К выходу привода двигатель не подключен.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 4, Обрыв фазы питания

Отсутствует фаза со стороны источника питания, или слишком велика асимметрия сетевого напряжения. Это сообщение появляется также при отказе входного выпрямителя. Дополнительные устройства программируются в параметр 14-12 Функция при асимметрии сети.

Устранение неисправностей

 Проверьте напряжение питания и токи питания на входе преобразователя частоты.

ПРЕДУПРЕЖДЕНИЕ 5, Повышенное напряжение в цепи пост. тока

Напряжение в звене постоянного тока выше, чем предельное повышенное напряжение. Предел зависит от номинального напряжения преобразователя частоты. Устройство остается активным.

ПРЕДУПРЕЖДЕНИЕ 6, Пониженное напряжение в цепи пост. тока

Напряжение в цепи постоянного тока ниже значения, при котором формируется предупреждение о низком напряжении. Предел зависит от номинального напряжения преобразователя частоты. Устройство остается активным.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ

СИГНАЛ 7, Повышенное напряжение постоянного тока Если напряжение в цепи постоянного тока превышает предельное значение, преобразователь частоты через некоторое время отключается.

Устранение неисправностей

- Увеличьте время замедления.
- Выберите тип изменения скорости.
- Увеличьте параметр 14-26 Зад. отк. при неисп. инв...
- Убедитесь, что напряжение питания соответствует активному напряжению на входе преобразователя частоты.
- Выполните проверку входного напряжения.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ

СИГНАЛ 8, Пониженное напряжение постоянного тока

Если напряжение промежуточного звена (цепи постоянного тока) падает ниже предельно низкого напряжения, преобразователь частоты проверяет, подключен ли резервный источник питания 24 В пост. тока. Если резервный источник питания 24 В пост. тока не подключен, преобразователь частоты отключается через заданное время. Это время зависит от размера блока.

Устранение неисправностей

- Убедитесь, что напряжение питания соответствует напряжению преобразователя
- Выполните проверку входного напряжения.
- Выполните проверку цепи мягкого заряда.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 9, Перегруз инверт

Преобразователь частоты проработал с перегрузкой более 100 % в течение слишком длительного времени и скоро отключится. Счетчик электронной тепловой защиты инвертора выдает предупреждение при 98 % и отключает преобразователь при 100 %; отключение сопровождается аварийным сигналом. Преобразователь частоты не может быть перезапущен, пока значение счетчика не опустится ниже 90 %.

Устранение неисправностей

- Сравните выходной ток на LCP с номинальным током привода.
- Сравните выходной ток, отображаемый на LCP, с измеренным током двигателя.
- Отобразите термальную нагрузку преобразователем частоты на LCP и отслеживайте ее значение. При превышении номинальных значений непрерывного тока преобразователя частоты значение счетчика увеличивается. При значениях ниже номинальных значений непрерывного тока значения счетчика уменьшаются.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 10, Сработало ЭТР: перегрев двигателя

Электронная тепловая защита (ЭТР) сигнализирует о перегреве двигателя.

Выберите один из следующих вариантов:

- Преобразователь частоты выдает предупреждение или аварийный сигнал, когда счетчик достигает > 90 %, если в параметр 1-90 Тепловая защита двигателя установлены параметры предупреждения.
- Если в параметр 1-90 Тепловая защита двигателя выбраны параметры останова, при достижении счетчиком значения 100 % преобразователь частоты останавливается.

Сбой возникает в том случае, когда двигатель находится в состоянии перегрузки на уровне более 100 % в течение длительного времени.

Устранение неисправностей

- Проверьте, не перегрелся ли двигатель.
- Проверьте, нет ли механической перегрузки двигателя.
- Проверьте правильность установки тока двигателя в *параметр 1-24 Ток двигателя*.
- Проверьте правильность установки данных двигателя в *параметрах с 1-20* по *1-25*.
- Если используется внешний вентилятор, убедитесь в том, что он выбран в параметр 1-91 Внешний вентилятор двигателя.
- Выполнение ААД с помощью параметр 1-29 Авто адаптация двигателя (ААД) позволяет более точно согласовать преобразователь частоты с двигателем и снизить тепловую нагрузку.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 11, Сработал термистор: перегрев двигателя

Проверьте, отключен ли термистор. Выберите в параметр 1-90 Тепловая защита двигателя, должен ли преобразователь частоты подавать сигнал предупреждения или аварийный сигнал.

Устранение неисправностей

- Проверьте, не перегрелся ли двигатель.
- Проверьте, нет ли механической перегрузки двигателя.
- При использовании клемм 53 или 54 убедитесь в правильности подключения термистора между клеммами 53 или 54 (вход аналогового напряжения) и клеммой 50 (напряжение питания +10 В). Также проверьте правильно ли выбрано напряжение для клеммы для 53 или 54 на клеммном переключателе. Убедитесь, что в параметр 1-93 Источник термистора выбрана клемма 53 или 54.
- При использовании клемм 18, 19, 31, 32 или 33 (цифровые входы) проверьте правильность подключения термистора к используемой клемме цифрового входа (только цифровой вход PNP) и клемме 50. Выберите клемму для использования в параметр 1-93 Источник термистора.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 12, Предел крутящего момента

Крутящий момент выше значения, установленного в параметр 4-16 Двигательн.режим с огранич. момента или в параметр 4-17 Генераторн.режим с огранич.момента. Параметр 14-25 Задержка отключ.при пред. моменте может использоваться для замены типа реакции: вместо простого предупреждения — предупреждение с последующим аварийным сигналом.

Устранение неисправностей

- Если крутящий момент двигателя превышен при разгоне двигателя, следует увеличить время разгона.
- Если предел крутящего момента генератора превышен при замедлении, следует увеличить время замедления.
- Если во время работы достигается предел крутящего момента, увеличьте предел крутящего момента. Убедитесь в возможности безопасной работы системы при больших значениях крутящего момента.
- Проверьте систему на предмет избыточного увеличения значения тока двигателя.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 13, Перегрузка по току

Превышено пиковое значение тока инвертора (примерно 200 % от номинального значения тока). Предупреждение будет подаваться в течение приблизительно 1,5 с, после чего преобразователь частоты будет отключен с подачей аварийного сигнала. Эта неисправность может быть вызвана ударной нагрузкой или быстрым ускорением с высокими нагрузками инерции. Если ускорение во время

изменения скорости быстрое, неисправность может также появляться после возврата кинетической энергии. Если выбран режим расширенного управления механическим тормозом, сигнал отключения может быть сброшен извне.

Устранение неисправностей

- Отключите питание и проверьте, можно ли провернуть вал двигателя.
- Проверьте, соответствует ли размер двигателя преобразователю частоты.
- Проверьте правильность данных двигателя в параметрах от 1-20 до 1-25.

АВАРИЙНЫЙ СИГНАЛ 14, Пробой на землю (нуль)

Происходит разряд тока с выходных фаз на землю либо в кабеле между преобразователем частоты и двигателем, либо в самом двигателе. Замыкание на землю обнаруживается датчиками тока, измеряющими ток на выходе преобразователя частоты и ток, поступающий в преобразователь частоты от двигателя. Если разница между этими двумя токами токов слишком велика, выдается ошибка короткого замыкания на землю. Ток на выходе преобразователя частоты и ток на входе преобразователя частоты должен быть одинаковым.

Устранение неисправностей

- Выключите питание преобразователя частоты и устраните пробой на землю.
- Проверьте наличие замыкания на землю в двигателе, измерив сопротивление к земле кабелей двигателя и самого двигателя с помощью мегаомметра.
- Сбросьте любое потенциальное смещение в каждом из трех датчиков тока в преобразователе частоты. Выполните ручную инициализацию или полную ААД. Это способ лучше всего действует после смены силовой платы питания.

АВАРИЙНЫЙ СИГНАЛ 15, Несовместимость аппаратных средств

Установленное дополнительное устройство не работает с существующей платой управления (аппаратно или программно).

Запишите значения следующих параметров и свяжитесь с поставшиком Danfoss.

- Параметр 15-40 Тип ПЧ.
- Параметр 15-41 Силовая часть.
- Параметр 15-42 Напряжение.
- Параметр 15-43 Версия ПО.
- Параметр 15-45 Текущее обозначение.
- Параметр 15-49 № версии ПО платы управления.
- Параметр 15-50 № версии ПО силовой платы.

- Параметр 15-60 Доп. устройство установлено.
- Параметр 15-61 Версия прогр. обеспеч. доп. устр. (для каждого гнезда дополнительного устройства).

АВАРИЙНЫЙ СИГНАЛ 16, Короткое замыкание

В двигателе или проводке двигателя обнаружено короткое замыкание.

Устранение неисправностей

• Выключите питание преобразователя частоты и устраните короткое замыкание.

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

Приводы, подключенные к вводу сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, находятся под высоким напряжением. Установка, пусконаладка и обслуживание преобразователя частоты должны выполняться только квалифицированным персоналом; несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

 Перед выполнением работ отключите питание.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 17, Тайм-аут командного слова

Связь с преобразователем частоты отсутствует. Предупреждение выдается только в том случае, если для параметр 8-04 Функция таймаута командного слова НЕ установлено значение [0] Выкл.

Если для параметр 8-04 Функция таймаута командного слова установлено значение [5] Останов и отключение, появляется предупреждение и преобразователь частоты замедляет вращение до останова, после чего на дисплей выводится аварийный сигнал.

Устранение неисправностей

- Проверьте соединения на кабеле последовательной связи.
- Увеличьте параметр 8-03 Время таймаута командного слова.
- Проверьте работу оборудования связи.
- Проверьте правильность установки в соответствии с требованиями ЭМС.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 20, Ошибка температурного входа

Датчик температуры не подключен.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 21, Ошибка параметра

Параметр не входит в заданный диапазон. Номер параметра отображается на дисплее.

Устранение неисправностей

 Установите для параметра действительное значение.

ПРЕДУПРЕЖДЕНИЕ 22, Механический тормоз подъемного механизма

0 = Задание крутящего момента не достигнуто до таймаута.

1 = Отсутствовала обратная связь по торможению до истечения тайм-аута.

ПРЕДУПРЕЖДЕНИЕ 23, Отказ внутреннего вентилятора

Функция предупреждения об отказе вентилятора — это функция защиты, которая контролирует, работает ли вентилятор и правильно ли он установлен. Предупреждение об отказе вентилятора можно отключить с помощью параметра параметр 14-53 Контроль вентил. (установив для него значение [0] Запрещено).

На вентиляторе установлен датчик обратной связи. Если на вентилятор подается команда вращения, а обратная связь от датчика отсутствует, появляется данный аварийный сигнал. Этот аварийный сигнал также указывает на ошибку связи между платой питания вентилятора и платой управления.

Посмотрите в журнале аварийных сигналов (см. глава 3.6 Панель местного управления (LCP)) значение, связанное с этим предупреждением.

Значение «2» указывает на аппаратную проблему с одним из вентиляторов. Значение «12» указывает на проблему связи между платой питания вентилятора и платой управления.

Устранение проблем с вентиляторами

- Отключите и снова включите питание преобразователя частоты для проверки кратковременной работы вентилятора при включении.
- Убедитесь в правильной работе вентилятора. С помощью группы параметров 43-** Unit Readouts (Считывание данных устройства) можно вывести на дисплей скорость каждого вентилятора.

Устранение неисправностей платы питания вентилятора

- Проверьте проводку между платой питания вентилятора и платой управления.
- Возможно, потребуется заменить плату питания вентилятора.
- Возможно, потребуется заменить плату управления.

ПРЕДУПРЕЖДЕНИЕ 24, Отказ внешнего вентилятора

Функция предупреждения об отказе вентилятора — это функция защиты, которая контролирует, работает ли вентилятор и правильно ли он установлен.
Предупреждение об отказе вентилятора можно отключить с помощью параметра

параметр 14-53 Контроль вентил. (установив для него значение [0] Запрещено).

На вентиляторе установлен датчик обратной связи. Если на вентилятор подается команда вращения, а обратная связь от датчика отсутствует, появляется данный аварийный сигнал. Этот аварийный сигнал также указывает на ошибку связи между силовой платой питания и платой управления.

Посмотрите в журнале аварийных сигналов (см. глава 3.6 Панель местного управления (LCP)) значение, связанное с этим предупреждением.

Значение «1» указывает на аппаратную проблему с одним из вентиляторов. Значение «11» указывает на проблему связи между силовой платой питания и платой управления.

Устранение проблем с вентиляторами

- Отключите и снова включите питание преобразователя частоты для проверки кратковременной работы вентилятора при включении.
- Убедитесь в правильной работе вентилятора. С помощью группы параметров 43-** Unit Readouts (Считывание данных устройства) можно вывести на дисплей скорость каждого вентилятора.

Устранение неисправностей силовой платы питания

- Проверьте проводку между силовой платой питания и платой управления.
- Возможно, потребуется заменить силовую плату питания.
- Возможно, потребуется заменить плату управления.

ПРЕДУПРЕЖДЕНИЕ 25, Короткое замыкание тормозного резистора

Во время работы осуществляется контроль состояния тормозного резистора. Если происходит короткое замыкание, функция торможения отключается и подается предупреждение. Преобразователь частоты еще работает, но уже без функции торможения.

Устранение неисправностей

• Отключите питание преобразователя частоты и замените тормозной резистор (см. *параметр 2-15 Проверка тормоза*).

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 26, Предельная мощность на тормозном резисторе

Мощность, передаваемая на тормозной резистор, рассчитывается как среднее значение за 120 с работы. Расчет основывается на напряжении промежуточной цепи и значении тормозного сопротивления, указанном в параметр 2-16 Макс.ток торм.пер.ток. Предупреждение включается, когда рассеиваемая тормозная мощность превышает 90 % мощности тормозного резистора. Если в параметр 2-13 Контроль

мощности торможения выбрано значение [2] Отключение, то при достижении рассеиваемой тормозной мощностью уровня 100 % преобразователь частоты отключается.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 27, Отказ тормозного прерывателя

В процессе работы контролируется тормозной транзистор. Если происходит его короткое замыкание, функция торможения отключается и появляется предупреждение. Преобразователь частоты может продолжать работать, но поскольку тормозной транзистор замкнут накоротко, на тормозной резистор передается значительная мощность, даже если он не включен.

Устранение неисправностей

 Отключите питание преобразователя частоты и замените тормозной резистор.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 28, Тормоз не прошел проверку

Тормозной резистор не подключен или не работает.

Устранение неисправностей

• Проверьте параметр 2-15 Проверка тормоза.

АВАРИЙНЫЙ СИГНАЛ 29, Температура радиатора

Температура радиатора превысила максимальное значение. Этот аварийный сигнал основывается на значениях температуры, полученных датчиком радиатора, установленным в модулях IGBT. Отказ по температуре не может быть сброшен до тех пор, пока температура не окажется ниже значения, заданного для температуры радиатора. Точка отключения и сброса различаются в зависимости от мощности системы преобразователя частоты.

Устранение неисправностей

- Убедитесь в отсутствии следующих условий:
 - Слишком высокая температура окружающей среды
 - Слишком длинный кабель двигателя
 - Неверный зазор для подачи охлаждающего воздуха над и под преобразователем частоты
 - Заблокирован приток охлаждающего воздуха к преобразователю частоты
 - Поврежден вентилятор радиатора
 - Загрязнен вентилятор радиатора
- Проверьте сопротивление вентилятора.
- Проверьте предохранители мягкого заряда.
- Проверьте термодатчик IGBT.

АВАРИЙНЫЙ СИГНАЛ 30, Отсутствует фаза U двигателя

Обрыв фазы U между преобразователем частоты и двигателем.

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

Приводы, подключенные к вводу сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, находятся под высоким напряжением. Установка, пусконаладка и обслуживание преобразователя частоты должны выполняться только квалифицированным персоналом; несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

 Перед выполнением работ отключите питание.

Устранение неисправностей

 Отключите питание преобразователя частоты и проверьте фазу U двигателя.

АВАРИЙНЫЙ СИГНАЛ 31, Отсутствует фаза V двигателя Обрыв фазы V между преобразователем частоты и двигателем.

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

Приводы, подключенные к вводу сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, находятся под высоким напряжением. Установка, пусконаладка и обслуживание преобразователя частоты должны выполняться только квалифицированным персоналом; несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

 Перед выполнением работ отключите питание.

Устранение неисправностей

• Отключите питание преобразователя частоты и проверьте фазу V двигателя.

АВАРИЙНЫЙ СИГНАЛ 32, Отсутствует фаза W двигателя

Обрыв фазы W между преобразователем частоты и двигателем.

▲ВНИМАНИЕ!

ВЫСОКОЕ НАПРЯЖЕНИЕ!

Приводы, подключенные к вводу сети переменного тока, источнику постоянного тока или цепи разделения нагрузки, находятся под высоким напряжением. Установка, пусконаладка и обслуживание преобразователя частоты должны выполняться только квалифицированным персоналом; несоблюдение этого требования может привести к летальному исходу или получению серьезных травм.

 Перед выполнением работ отключите питание.

Устранение неисправностей

• Отключите питание преобразователя частоты и проверьте фазу W двигателя.

АВАРИЙНЫЙ СИГНАЛ 33, Отказ из-за броска тока Слишком много включений питания за короткое время.

Устранение неисправностей

- Охладите устройство до рабочей температуры.
- Убедитесь в отсутствии короткого замыкания на землю цепи постоянного тока.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 34, Отказ связи по шине периферийной шине

Не работает сетевая шина на дополнительной плате связи.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 35, Ошибка доп. оборудования

Получен аварийный сигнал дополнительного устройства. Аварийный сигнал зависит от дополнительного устройства. Наиболее вероятной причиной является сбой включения питания или связи.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 36, Неисправность сети питания

Это предупреждение/аварийный сигнал активируется только в случае пропадания напряжения питания на системе привода, если для *параметр 14-10 Отказ питания* не установлено значение [0] Не используется.

- Проверьте предохранители системы привода и сетевое питание устройства.
- Убедитесь, что напряжение сети соответствует техническим характеристикам изделия.
- Убедитесь в отсутствии следующих условий.
 Аварийный сигнал 307, Excessive THD(V) (Превыш. THD (В)), аварийный сигнал 321, Voltage imbalance (Асимметрия напряжения), предупреждение 417, Mains undervoltage (Низкое напряжение в сети) или предупреждение 418, Mains overvoltage (Повышенное напряжение в сети) срабатывает, если какое-либо из перечисленных ниже условий верно:

- Напряжение 3-фазной сети питания падает ниже 25 % от номинального.
- Напряжение любой фазы превышает 10 % от номинального напряжения сети.
- Асимметрия фаз или напряжения превышает 8 %.
- Общие гармонические искажения напряжения превышают 10 %.

АВАРИЙНЫЙ СИГНАЛ 37, Перекос фаз

Между силовыми блоками выявлен дисбаланс токов.

АВАРИЙНЫЙ СИГНАЛ 38, Внутренняя неисправность При возникновении внутренней ошибки отображается определенный в *Таблица 8.4* кодовый номер.

Устранение неисправностей

- Отключите и включите питание.
- Убедитесь в правильности установки дополнительных устройств.
- Убедитесь в надежности и полноте соединений.

Возможно, потребуется связаться с вашим поставщиком Danfoss или с отделом технического обслуживания. Для дальнейшей работы с целью устранения неисправности следует запомнить ее кодовый номер.

Номер	Текст
0	Последовательный порт невозможно
	инициализировать. Обратитесь к поставщику
	оборудования Danfoss или в сервисное
	подразделение Danfoss.
256–259,	Данные ЭСППЗУ, относящиеся к питанию,
266, 268	повреждены или устарели. Замените силовую
	плату.
512-519	Внутренний отказ. Обратитесь к поставщику
	оборудования Danfoss или в сервисное
	подразделение Danfoss.
783	Значение параметра выходит за минимальный/
	максимальный пределы.
1024–1284	Внутренний отказ. Обратитесь к поставщику
	оборудования Danfoss или в сервисное
	подразделение Danfoss.
1299	ПО для дополнительного устройства в гнезде А
	устарело.
1300	ПО для дополнительного устройства в гнезде В
	устарело.
1301	ПО для дополнительного устройства в гнезде СО
	устарело.
1302	ПО для дополнительного устройства в гнезде С1
	устарело.
1315	ПО для дополнительного устройства в гнезде А
	не поддерживается (не разрешено).
1316	ПО для дополнительного устройства в гнезде В
	не поддерживается (не разрешено).

Номер	Текст
1317	ПО для дополнительного устройства в гнезде СО
	не поддерживается (не разрешено).
1318	ПО для дополнительного устройства в гнезде С1
	не поддерживается (не разрешено).
1360–2819	Внутренний отказ. Обратитесь к поставщику
	оборудования Danfoss или в сервисное
	подразделение Danfoss.
2561	Замените плату управления.
2820	Переполнение стека LCP
2821	Переполнение последовательного порта
2822	Переполнение порта USB
3072-5122	Значение параметра выходит за допустимые
	пределы.
5123	Дополнительное устройство в гнезде А:
	аппаратные средства несовместимы с
	аппаратными средствами платы управления
5124	Дополнительное устройство в гнезде В:
	аппаратные средства несовместимы с
	аппаратными средствами платы управления
5125	Дополнительное устройство в гнезде С0:
	аппаратные средства несовместимы с
	аппаратными средствами платы управления
5126	Дополнительное устройство в гнезде С1:
	аппаратные средства несовместимы с
	аппаратными средствами платы управления
5127	Недопустимая комбинация дополнительных
	устройств (установлено 2 однотипных
	дополнительных устройства или энкодер в Е0 и
	резольвер в Е1, или подобная комбинация).
5168	Функция безопасного останова/safe torque off
	была обнаружена на плате управления, которая
	не имеет функции безопасного останова/safe
	torque off.
5376-65535	Внутренний отказ. Обратитесь к поставщику
	оборудования Danfoss или в сервисное
	подразделение Danfoss.

Таблица 8.4 Коды внутренних неисправностей

АВАРИЙНЫЙ СИГНАЛ 39, Датчик радиатора

Отсутствует обратная связь от датчика температуры радиатора.

Сигнал с термального датчика IGBT не поступает на силовую плату питания. Проблема может возникнуть на силовой плате питания, на плате драйвера или ленточном кабеле между силовой платой питания и платой привода заслонки.

ПРЕДУПРЕЖДЕНИЕ 40, Перегрузка цифрового выхода, клемма 27

Проверьте нагрузку, подключенную к клемме 27, или устраните короткое замыкание. Проверьте параметр 5-00 Режим цифрового ввода/вывода и параметр 5-01 Клемма 27, режим.

ПРЕДУПРЕЖДЕНИЕ 41, Перегрузка цифрового выхода, клемма 29

Проверьте нагрузку, подключенную к клемме 29, или устраните короткое замыкание. Также проверьте параметр 5-00 Режим цифрового ввода/вывода и параметр 5-02 Клемма 29, режим.

ПРЕДУПРЕЖДЕНИЕ 42, Перегрузка цифрового входа X30/6 или перегрузка цифрового входа X30/7

Для клеммы X30/6 проверьте нагрузку, подключенную к клемме X30/6, или устраните короткое замыкание. Также проверьте *параметр 5-32 Клемма X30/6, цифр. выход (MCB 101)* (General Purpose I/O MCB 101).

Для клеммы X30/7 проверьте нагрузку, подключенную к клемме X30/7, или устраните короткое замыкание. Проверьте *параметр 5-33 Клемма X30/7, цифр. выход (MCB 101)* (General Purpose I/O MCB 101).

АВАРИЙНЫЙ СИГНАЛ 43, Внешн. питание

Дополнительное устройство Extended Relay Option MCB 113 смонтировано без внешнего источникапитания 24 В пост. тока. Подключите внешний источник питания 24 В пост. тока или укажите, что внешний источник питания не используется, с помощью параметр 14-80 Доп. устр. с пит. от вн. 24 В=10] Нет. После изменения параметр 14-80 Доп. устр. с пит. от вн. 24 В=необходимо выключить-включить питание.

АВАРИЙНЫЙ СИГНАЛ 45, Пробой на землю 2 Замыкание на землю.

Устранение неисправностей

- Убедитесь в правильном подключении заземления и в надежности соединений.
- Убедитесь в правильном выборе размера провода.
- Проверьте кабели двигателя на предмет короткого замыкания или токов утечки на землю.

АВАРИЙНЫЙ СИГНАЛ 46, Питание силовой платы

На силовую плату питания подается питание, не соответствующее установленному диапазону. Другой причиной может быть неисправный вентилятор радиатора.

Импульсный блок питания (SMPS) на силовой плате питания вырабатывает три питающих напряжения:

- 24 B.
- 5 B.
- ±18 B.

При питании от 24 V DC Supply MCB 107, отслеживаются только источники питания 24 В и 5 В. При питании от трехфазного напряжения сети отслеживаются все три источника.

Устранение неисправностей

- Убедитесь в исправности силовой платы питания.
- Убедитесь в исправности платы управления.
- Убедитесь в исправности дополнительной платы.
- Если используется питание 24 В пост. тока, проверьте наличие питания.
- Проверьте, исправен ли вентилятор радиатора.

ПРЕДУПРЕЖДЕНИЕ 47, Низкое напряжение питания 24 в

На силовую плату питания подается питание, не соответствующее установленному диапазону.

Импульсный блок питания (SMPS) на силовой плате питания вырабатывает три питающих напряжения:

- 24 B.
- 5 B.
- ±18 B.

Устранение неисправностей

• Убедитесь в исправности силовой платы питания.

ПРЕДУПРЕЖДЕНИЕ 48, Низкое напряжение питания 1,8 В

Питание от источника 1,8 В пост. тока, использующееся на плате управления, выходит за допустимые пределы. Питание измеряется на плате управления.

Устранение неисправностей

- Убедитесь в исправности платы управления.
- Если установлена дополнительная плата, убедитесь в отсутствии перенапряжения.

ПРЕДУПРЕЖДЕНИЕ 49, Предел скорости

Если значение скорости находится вне диапазона, установленного в параметр 4-11 Нижн.предел скор.двигателя[об/мин] и параметр 4-13 Верхн.предел скор.двигателя [об/мин], выводится предупреждение. Когда значение скорости ниже предела, указанного в параметр 1-86 Низ. скорость откл. [об/мин] (за исключением запуска и останова), преобразователь частоты отключается.

АВАРИЙНЫЙ СИГНАЛ 50, Ошибка калибровки ААД Обратитесь к поставщику оборудования Danfoss или в сервисный отдел Danfoss.

АВАРИЙНЫЙ СИГНАЛ 51, ААД: проверить U_{ном.}и I_{ном.} Значения напряжения двигателя, тока двигателя и мощности двигателя заданы неправильно.

Устранение неисправностей

• Проверьте значения *параметров* от *1-20* до *1-25*.

АВАРИЙНЫЙ СИГНАЛ 52, ААД: низкое значение І_{ном.} Слишком мал ток двигателя.

Устранение неисправностей

• Проверьте настройки в *параметр 1-24 Ток* двигателя.

АВАРИЙНЫЙ СИГНАЛ 53, ААД:велик двиг

Слишком мощный двигатель для выполнения ААД.

АВАРИЙНЫЙ СИГНАЛ 54, ААД:мал.двигат

Двигатель имеют слишком малую мощность для проведения ААД.

АВАРИЙНЫЙ СИГНАЛ 55, Диапаз.пар ААД

Невозможно выполнить ААД, поскольку значения параметров двигателя находятся вне допустимых пределов.

АВАРИЙНЫЙ СИГНАЛ 56, ААД прервана

Выполнение ААД прервано вручную.

АВАРИЙНЫЙ СИГНАЛ 57, ААД: внутренний отказ Попытайтесь перезапустить ААД. При повторных перезапусках возможен перегрев двигателя.

АВАРИЙНЫЙ СИГНАЛ 58, ААД: внутренняя неисправность

Обратитесь к поставщику Danfoss.

ПРЕДУПРЕЖДЕНИЕ 59, Предел по току

Ток двигателя больше значения, установленного в параметр 4-18 Предел по току. Проверьте правильность установки данных двигателя в параметрах с 1-20 по 1-25. Если необходимо, увеличьте значение предела по току. Убедитесь в безопасности эксплуатации системы с более высоким пределом.

ПРЕДУПРЕЖДЕНИЕ 60, Внешняя блокировка

Цифровой входной сигнал указывает на отказ за пределами преобразователя частоты. Внешняя блокировка привела к отключению преобразователя частоты. Устраните внешнюю неисправность. Чтобы возобновить нормальную работу, подайте 24 В постоянного тока на клемму, запрограммированную для внешней блокировки, и выполните сброс преобразователя частоты.

ПРЕДУПРЕЖДЕНИЕ 61, Ошибка слежения

Вычисленное значение скорости двигателя не совпадает с измеренным значением скорости от устройства обратной связи. Функция «Предупреждение/Аварийный сигнал/Запрещено» задается в параметр 4-30 Функция при потере ОС двигателя. Параметр ошибки задается в параметр 4-31 Ошибка скорости ОС двигателя. В параметр 4-32 Тайм-аут при потере ОС двигателя можно задать допустимое время ошибки. Эта функция может быть полезна в процессе ввода в эксплуатацию.

ПРЕДУПРЕЖДЕНИЕ 62, Достигнут максимальный предел выходной частоты

Выходная частота достигла значения, установленного в параметр 4-19 Макс. выходная частота. Проверьте возможные причины в системе. Возможно, требуется увеличить предел выходной частоты. Убедитесь в возможности безопасной работы системы с более высокой выходной частотой. Предупреждение сбрасывается, когда частота на выходе падает ниже максимального предела.

АВАРИЙНЫЙ СИГНАЛ 63, Низкий ток не позволяет отпустить механический тормоз

Фактический ток двигателя не превышает значения тока отпускания тормоза в течение времени задержки пуска.

ПРЕДУПРЕЖДЕНИЕ 64, Предел напряжения

Сочетание значений нагрузки и скорости требует такого напряжения двигателя, которое превышает текущее напряжение в цепи постоянного тока.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 65, Перегрев платы управления

Температура платы управления, при которой происходит ее отключение, равна 85 °C (185 °F).

Устранение неисправностей

- Убедитесь в том, что температура окружающей среды находится в допустимых пределах.
- Удостоверьтесь в отсутствии засорения фильтров.
- Проверьте работу вентилятора.
- Проверьте плату управления.

ПРЕДУПРЕЖДЕНИЕ 66, Низкая темп. радиатора

Преобразователь частоты слишком холодный для работы. Данное предупреждение основывается на показаниях датчика температуры модуля IGBT. Увеличьте температуру окружающей среды для устройства. Кроме того, если установить параметр 2-00 Ток удержания (пост. ток)/ток предпускового нагрева на 5 % и включить параметр 1-80 Функция при останове, при остановке двигателя на преобразователь частоты может подаваться небольшой ток.

АВАРИЙНЫЙ СИГНАЛ 67, Изменена конфигурация дополнительных модулей

После последнего выключения питания добавлено или удалено одно или несколько дополнительных устройств. Убедитесь в том, что изменение конфигурации было намеренным, и выполните сброс.

АВАРИЙНЫЙ СИГНАЛ 68, Включен безопасный останов

Активирована функция Safe Torque Off (STO). Чтобы возобновить нормальную работу, подайте 24 В пост. тока на клемму 37, после чего подайте сигнал сброса (через шину, цифровой вход/выход или нажатием кнопки [Reset] (Сброс)).

АВАРИЙНЫЙ СИГНАЛ 69, Температура силовой платы Температура датчика силовой платы питания либо слишком высокая, либо слишком низкая.

Устранение неисправностей

- Убедитесь в том, что температура окружающей среды находится в допустимых пределах.
- Удостоверьтесь в отсутствии засорения фильтров.
- Проверьте работу вентилятора.
- Проверьте силовую плату.

АВАРИЙНЫЙ СИГНАЛ 70, Недопустимая конфигурация MD

Плата управления и силовая плата питания несовместимы. Для проверки совместимости обратитесь к поставщику Danfoss и сообщите код типа блока, указанный на паспортной табличке, и номера позиций плат.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 71, РТС 1, безопасный останов

Из-за перегрева двигателя платой PTC Thermistor Card MCB 112 активирована функция Safe Torque Of . Когда двигатель остынет и сигнал цифрового входа с MCB 112 будет деактивирован, может быть возобновлена нормальная работа, если MCB 112 снова подаст 24 В пост. тока на клемму 37. Когда двигатель готов к нормальной работе, следует подать сигнал сброса (по последовательной связи, через цифровой ввод/вывод или нажатием кнопки [Reset] (Сброс) на LCP). При включенном автоматическом перезапуске двигатель может запуститься, если неисправность устранена.

АВАРИЙНЫЙ СИГНАЛ 72, Опасный отказ

Safe Torque Off (STO) с блокировкой после отключения. Неожиданные уровни сигнала на входе STO и цифровом входе от платы термистора PTC Thermistor Card MCB 112.

ПРЕДУПРЕЖДЕНИЕ 73, Автоматический перезапуск при безопасном останове

Safe torque off (STO). При включении автоматического перезапуска двигатель может запуститься, если неисправность устранена.

АВАРИЙНЫЙ СИГНАЛ 74, Термистор РТС

Аварийный сигнал, относящийся к плате термистора РТС Thermistor Card MCB 112. РТС не работает.

АВАРИЙНЫЙ СИГНАЛ 75, Выбор недопуст. профиля Не записывайте этот параметр во время работы двигателя. Остановите двигатель перед записью профиля МСО в *параметр 8-10 Профиль командного слова*.

ПРЕДУПРЕЖДЕНИЕ 76, Настройка модуля мощности

Требуемое количество модулей питания не соответствует обнаруженному количеству активных модулей питания. Такое предупреждение возникает при замене модуля с размером корпуса F, если данные мощности в силовой плате модуля не соответствуют остальным компонентам преобразователя частоты.

Это предупреждение выдается также при потере связи с силовой платой питания.

Устранение неисправностей

- Убедитесь в том, что запасная деталь и силовая плата питания имеют правильные номера по каталогу.
- Убедитесь, что 44-контактные кабели между MDCIC и силовыми платами установлены надлежащим образом.

ПРЕДУПРЕЖДЕНИЕ 77, Режим пониженной мощности

Это предупреждение показывает, что преобразователь частоты работает в режиме пониженной мощности (то есть число секций инвертора меньше допустимого). Это предупреждение появляется после выключения и включения питания, если преобразователь частоты настроен на работу с меньшим количеством инверторов и затем продолжает работу.

АВАРИЙНЫЙ СИГНАЛ 78, Ошибка слежения

Разница между значением уставки и фактическим значением превышает значение, установленное в *параметр 4-35 Ошибка слежения*.

Устранение неисправностей

- Отключите данную функцию или выберите аварийный сигнал/предупреждение в параметр 4-34 Коэф. ошибки слежения.
- Проверьте механические компоненты вокруг нагрузки и двигателя. Проверьте подключения проводки обратной связи от энкодера двигателя к преобразователю частоты.
- Выберите функцию ОС двигателя в параметр 4-30 Функция при потере ОС двигателя.
- Отрегулируйте диапазон ошибки слежения в параметр 4-35 Ошибка слежения и параметр 4-37 Ошибка слежения, изм-е скорости.

АВАРИЙНЫЙ СИГНАЛ 79, Недопустимая конфигурация отсека питания

Плата масштабирования имеет неверный номер позиции или не установлена. Соединитель МК102 на силовой плате питания не может быть установлен.

АВАРИЙНЫЙ СИГНАЛ 80, Привод приведен к значениям по умолчанию

Установки параметров инициализируются до значений по умолчанию после сброса вручную. Для устранения аварийного сигнала выполните сброс.

АВАРИЙНЫЙ СИГНАЛ 81, Файл настроек параметров привода (CSIV) поврежден

В файле CSIV выявлены ошибки синтаксиса.

АВАРИЙНЫЙ СИГНАЛ 82, Ошибка параметра в файл настроек параметров привода

Ошибка инициализации параметра из файла настроек параметров привода (CSIV).

АВАРИЙНЫЙ СИГНАЛ 83, Недопустимое сочетание дополнительных устройств

Совместная работа смонтированных дополнительных устройств не поддерживается.

АВАРИЙНЫЙ СИГНАЛ 84, Дополнительное защитное устройство отсутствует

Защитное дополнительное устройство удалено без общего сброса. Заново подключите защитное дополнительное устройство.

АВАРИЙНЫЙ СИГНАЛ 85, Опасная неисправность РВ Ошибка модуля PROFIBUS/PROFIsafe.

АВАРИЙНЫЙ СИГНАЛ 88, Обнаружение дополнительного устройства

Обнаружено изменение схемы дополнительных устройств. В Параметр 14-89 Option Detection установлено значение [0] Protect Option Config. (Защита конфигурации доп. устройства), а схема дополнительных устройств изменилась.

- Чтобы применить изменение, разрешите внесение изменений конфигурации дополнительных устройств в параметр 14-89 Option Detection.
- Как вариант, можно восстановить правильную конфигурацию дополнительных устройств.

ПРЕДУПРЕЖДЕНИЕ 89, Скольжение механического тормоза

Монитор тормоза подъемного устройства обнаружил скорость двигателя больше 10 об/мин.

АВАРИЙНЫЙ СИГНАЛ 90, Монитор ОС

Проверьте подключение энкодера/резолвера и, если необходимо, замените Encoder Input MCB 102 или Resolver Input MCB 103.

АВАРИЙНЫЙ СИГНАЛ 91, Неправильные установки аналогового входа 54

Установите переключатель S202 в положение OFF (Выкл.) (вход по напряжению), когда к аналоговому входу, клемма 54, подключен датчик KTY.

АВАРИЙНЫЙ СИГНАЛ 99, Ротор заблокир. Ротор заблокирован.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 104, Неисправность смешивающего вентилятора

Вентилятор не работает. Монитор вентилятора проверяет, вращается ли вентилятор при подаче питания или включении вентилятора смешивания. Действие при неисправности вентилятора смешивания можно настроить как предупреждение или аварийное отключение в параметре параметр 14-53 Контроль вентил..

Устранение неисправностей

 Выключите и включите преобразователь частоты, чтобы определить, появляется ли предупреждение или аварийный сигнал снова.

ПРЕДУПРЕЖДЕНИЕ/АВАРИЙНЫЙ СИГНАЛ 122, Неожид. вращение двигателя

Преобразователь частоты выполняет функцию, которая требует неподвижного состояния двигателя, например, посредством удержания постоянным током для двигателей с постоянными магнитами.

ПРЕДУПРЕЖДЕНИЕ 163, ATEX ЭТР: предел по току, предупреждение

Преобразователь частоты работал выше кривой характеристики более 50 с. Предупреждение активизируется при достижении 83 % и отключается при 65 % от разрешенной тепловой перегрузки.

АВАРИЙНЫЙ СИГНАЛ 164, ATEX ЭТР: предел по току, аварийный сигнал

Работа выше кривой характеристики в течение более 60 с за период 600 с активирует аварийный сигнал, и преобразователь частоты отключается.

ПРЕДУПРЕЖДЕНИЕ 165, ATEX ЭТР: предел частоты, предупреждение

Преобразователь частоты работает более 50 секунд ниже минимально допустимой частоты (параметр 1-98 ATEX ETR interpol. points freq.).

АВАРИЙНЫЙ СИГНАЛ 166, ATEX ЭТР: предел частоты, аварийный сигнал

Преобразователь частоты проработал более 60 секунд (за период 600 секунд) ниже минимально допустимой частоты (*napamemp 1-98 ATEX ETR interpol. points freq.*).

АВАРИЙНЫЙ СИГНАЛ 244, Температура радиатора

Температура радиатора превысила максимальное значение. Отказ по температуре не может быть сброшен до тех пор, пока температура не окажется ниже значения, заданного для температуры радиатора. Точка отключения и сброса различаются в зависимости от типоразмера по мощности. Этот аварийный сигнал аналогичен аварийному сигналу 29, Темп. рад-ра.

Устранение неисправностей

Убедитесь в отсутствии следующих условий:

- Слишком высокая температура окружающей среды.
- Слишком длинный кабель двигателя.
- Неверный зазор для подачи охлаждающего воздуха над и под преобразователем частоты.
- Заблокирован поток воздуха вокруг блока.
- Поврежден вентилятор радиатора.
- Загрязнен вентилятор радиатора.

ПРЕДУПРЕЖДЕНИЕ 251, Новый код типа

Была заменена силовая плата питания или другие компоненты, и код типа изменился.

АВАРИЙНЫЙ СИГНАЛ 421, Отказ из-за перегрева

Температурным датчиком на плате питания вентилятора обнаружена неисправность.

Устранение неисправностей

- Проверьте проводку.
- Проверьте датчик.
- Замените плату питания вентилятора.

АВАРИЙНЫЙ СИГНАЛ 423, Обновление платы питания вентилятора

Когда плата питания вентилятора сообщает о недопустимом PUD, генерируется аварийный сигнал. Плата управления попытается обновить PUD. В зависимости от результатов обновления могут появиться дальнейшие аварийные сигналы. См. А424 и A425.

АВАРИЙНЫЙ СИГНАЛ 424, Успешное обновление платы питания вентилятора

Этот аварийный сигнал генерируется, когда плата управления успешно обновила PUD платы питания вентилятора. Для прекращения сигнала тревоги потребуется выполнить сброс преобразователя частоты.

АВАРИЙНЫЙ СИГНАЛ 425, Ошибка при обновлении платы питания вентилятора

Этот аварийный сигнал генерируется, когда плате управления не удалось обновить PUD платы питания вентилятора.

Устранение неисправностей

- Проверьте проводку силовой платы вентилятора.
- Замените плату питания вентилятора.
- Свяжитесь с поставщиком.

АВАРИЙНЫЙ СИГНАЛ 426, Настройка платы питания вентилятора

Количество обнаруженных плат питания вентилятора не совпадает с количеством настроенных плат питания вентилятора. Посмотрите число настроенных плат питания вентилятора в группе параметров 15-6* Идентиф. опций.

Устранение неисправностей

- Проверьте проводку платы питания вентилятора.
- Замените плату питания вентилятора.

АВАРИЙНЫЙ СИГНАЛ 427, Питание FPC

Обнаружен сбой питающего напряжения (5 В, 24 В или 48 В) на плате питания вентилятора.

Устранение неисправностей

- Проверьте проводку платы питания вентилятора.
- Замените плату питания вентилятора.

8.6 Устранение неисправностей

Признак	Возможная причина	Проверка	Решение
Дисплей не	Нет входного питания.	См. Таблица 5.4.	Проверьте источник питания на входе.
светится/не	Отсутствуют или неисправны	См. возможные причины в разделе	Следуйте приведенным рекомендациям.
работает	предохранители.	Разомкнутые предохранители в этой	
		таблице.	
	Отсутствует питание на LCP.	Убедитесь в правильном подключении	Замените неисправную панель LCP или
		кабеля LCP и в отсутствии его	соединительный кабель.
		повреждений.	
	Замыкание на клеммах	Проверьте подачу управляющего	Подключите клеммы надлежащим
	управляющего напряжения	напряжения 24 В на клеммах с 12/13 по 20-	образом.
	(клеммы 12 или 50) или на	39 или напряжения 10 В на клеммах 50–55.	
	всех клеммах управления.		
	Несовместимая панель LCP	-	Используйте только панель LCP 101
	(LCP от 2800 или		(номер по каталогу 130B1124) или LCP
	5000/6000/8000/ FCD или FCM)		102 (номер по каталогу 130В1107).
	Неправильно настроена	-	Нажмите кнопки [Status] (Состояние) +
	контрастность.		[▲]/[▼] для регулировки контрастности.
	Дисплей (LCP) неисправен.	Попробуйте подключить другую панель LCP.	Замените неисправную панель LCP или
			соединительный кабель.
	Сбой подачи внутреннего	-	Свяжитесь с поставщиком.
	питания или неисправность		
	импульсного блока питания		
	(SMPS).		

Признак	Возможная причина	Проверка	Решение
Периодическ	Перегрузка источника	Для устранения проблем с проводкой	Если дисплей продолжает светиться, то
oe	питания (SMPS) в связи с	подключения элементов управления	проблема заключается именно в
отключение	проблемами в проводкой	отключите все провода, отсоединив	подключении элементов управления.
дисплея	элементов управления или с	клеммные колодки.	Проверьте проводку на предмет
	неисправностью самого		замыкания или неправильного
	преобразователя частоты.		подключения. Если дисплей продолжает
			периодически отключаться, дальнейшие
			шаги следует выполнять в соответствии
			с процедурой в разделе Темный/
			неработающий дисплей.
Двигатель не	Сервисный выключатель	Проверьте подключение проводки	Подключите двигатель и проверьте
вращается	размокнут или нет	двигателя и убедитесь в отсутствии	сервисный выключатель.
	подключения к двигателю.	разрыва цепи (посредством сервисного	
		выключателя или другого устройства).	
	Отсутствует питание от	Если дисплей функционирует, но	Подайте сетевое питание.
	электросети дополнительной	изображение не выводится, проверьте	
	платы 24 В пост. тока.	подачу питания на преобразователь	
		частоты.	
	Останов с LCP.	Проверьте, не была ли нажата кнопка [Off]	Нажмите [Auto On] (Автоматический
		(Выкл.).	режим) или [Hand On] (Ручной режим)
			(в зависимости от режима работы).
	Отсутствует сигнал к запуску	Проверьте параметр 5-10 Клемма 18,	Подайте требуемый сигнал пуска.
	(режим ожидания).	<i>цифровой вход</i> на предмет правильной	
		настройки клеммы 18. Воспользуйтесь	
		значением по умолчанию.	
	Активен сигнал выбега	Проверьте параметр 5-12 Клемма 27,	Подайте питание 24 В на клемму 27 или
	двигателя (выбег).	цифровой вход на предмет правильной	запрограммируйте данную клемму на
		настройки клеммы 27 (используйте	режим [0] Не используется.
		значения по умолчанию).	
	Неправильный источник	Проверьте сигнал задания:	Запрограммируйте нужные параметры.
	сигнала задания.	• Местное	Проверьте параметр 3-13 Место
		• Удаленное задание или задание по	задания. Активируйте
		шине?	предустановленное заданное значение
		• Активно ли предустановленное задание?	в группе параметров 3-1* Задания.
			Проверьте правильность подключения
		• Правильно ли подключены клеммы?	проводки. Проверьте масштабирование
		• Правильно ли отмасштабированы	клемм. Проверьте сигнал задания.
		клеммы?	
		• Доступен ли сигнал задания?	
Двигатель	Пропол вращения пригатога		Запрограммируйто ворин о парамето
1	Предел вращения двигателя.	Проверьте правильность	Запрограммируйте нужные параметры.
вращается в обратном		программирования параметр 4-10 Направление вращения	
направлении		двигателя.	
Паправлении	Активный сигнал реверса.	Проверьте, запрограммирована ли для	Деактивируйте сигнал реверса.
	гливпый сигнал реверса.	клеммы команда реверса в группе	деактивируите сигнал реверса.
		параметров 5-1* Цифровые входы.	
	Неправильное подключение	паратетров з т цафровые вловы.	См. глава 6.5.1 Предупреждение —
	l. '	_	Запуск двигателя.
	фаз двигателя.		эшпуск овигишеля.

Признак	Возможная причина	Проверка	Решение
Двигатель не	Неправильно заданы пределы	Проверьте выходные пределы в	Запрограммируйте правильные
достигает	частоты.	параметр 4-13 Верхн.предел скор.двигателя	пределы.
максимально		 [об/мин], параметр 4-14 Верхний предел	
й скорости		скорости двигателя [Гц] и	
·		параметр 4-19 Макс. выходная частота.	
	Входной сигнал задания	Проверьте масштабирование входного	Запрограммируйте нужные параметры.
	отмасштабирован	сигнала задания в группах параметров 6-0*	
	некорректно.	Реж. аналог.вв/выв и 3-1* Задания.	
Нестабильна	Возможно, неправильно	Проверьте настройки всех параметров	Проверьте настройки в группе
я скорость	заданы параметры.	двигателя, включая все настройки	параметров 1-6* Настр.,зав. от нагр. В
двигателя		компенсации двигателя. В случае	случае замкнутого контура проверьте
		замкнутого контура проверьте настройки	настройки в группе параметров 20-0*
		пид.	Обратная связь.
Двигатель	Возможно избыточное	Проверьте настройки всех параметров	лина проверьте настройки двигателя в
 вращается	 намагничивание	двигателя.	группах параметров 1-2* Данные
тяжело			двигателя, 1-3* Доп. данн.двигателя и
			1-5* Настр.,нзав.от нагр.
Двигатель не	Возможно, неправильно	Проверьте параметры торможения.	Проверьте группы параметров 2-0*
тормозится	настроены параметры	Проверьте настройки времени изменения	
•	торможения. Возможно,	скорости.	, задания.
	выбрано слишком короткое	'	
	Время замедления.		
Открытые	Короткое междуфазное	Между фазами двигателя или панели —	Устраните любые обнаруженные
силовые	замыкание.	короткое замыкание. Проверьте	замыкания.
предохранит		 междуфазные соединения двигателя и	
ели		панели, чтобы выявить короткое	
		замыкание.	
	Перегрузка двигателя.	Перегрузка двигателя для выбранного	Выполните тестирование при запуске и
		применения.	убедитесь, что ток двигателя
			соответствует спецификациям. Если ток
			двигателя превышает значение тока при
			полной нагрузке, указанное на
			паспортной табличке, двигатель может
			работать только с пониженной
			нагрузкой. Проверьте соответствие
			характеристик условиям применения.
	Слабые контакты.	Выполните предпусковую проверку для	Затяните слабые контакты.
		выявления слабых контактов.	
Дисбаланс	Проблема с сетевым	Поверните силовые кабели на одно	Если за проводом находится
тока сети	питанием (см. описание	положение: с А на В, с В на С, с С на А.	несбалансированная ветвь, то проблема
превышает	аварийного сигнала 4, Обрыв		исходит от системы подачи энергии.
3 %	фазы).		Проверьте питание от сети.
	Проблема с	Поверните силовые кабели	Если несбалансированная ветвь
	преобразователем частоты.	преобразователя частоты на одно	остается на той же входной клемме,
		положение: с А на В, с В на С, с С на А.	значит, проблема в преобразователе
			частоты. Свяжитесь с поставщиком.
Дисбаланс	Неисправность двигателя или	Поверните кабели, выходящие из двигателя,	Если несбалансированная ветвь
тока	проводки двигателя.	на одно положение: с U на V, с V на W, с W	перемещается за проводом, значит,
двигателя		на U.	проблема в двигателе или в его
превышает			проводке. Проверьте двигатель и
			подключение двигателя.
3 %			
3 %	Проблема с	Поверните кабели, выходящие из двигателя,	Если несбалансированная ветвь
3 %	Проблема с преобразователем частоты.	Поверните кабели, выходящие из двигателя, на одно положение: с U на V, с V на W, с W	Если несбалансированная ветвь остается на той же выходной клемме,
3 %	· .	•	·

Признак	Возможная причина	Проверка	Решение
Преобразова	Данные двигателя введены	В случае появления предупреждений или	Увеличьте время разгона в
тель частоты	неправильно.	аварийных сигналов см. глава 8.5 Перечень	параметр 3-41 Время разгона 1.
имеет		предупреждений и аварийных сигналов.	Увеличьте предел по току в
проблемы с		Убедитесь в правильности введенных	параметр 4-18 Предел по току.
ускорением		данных двигателя.	Увеличьте предел крутящего момента в
			параметр 4-16 Двигательн.режим с
			огранич. момента.
Преобразова	Данные двигателя введены	В случае появления предупреждений или	Увеличьте значение времени
тель частоты	неправильно.	аварийных сигналов см. глава 8.5 Перечень	замедления в параметр 3-42 Время
имеет		предупреждений и аварийных сигналов.	замедления 1. Включите функцию
проблемы с		Убедитесь в правильности введенных	контроля перенапряжения в
замедлением		данных двигателя.	параметр 2-17 Контроль
			перенапряжения.

Таблица 8.5 Устранение неисправностей

9 Технические характеристики

9.1 Электрические характеристики

9.1.1 MD 202 Питание от сети 3 x 380-500 В перем. тока

Mining Drive MD 202	MD 202 N315 N355		N400			
Высокая (НО)/нормальная перегрузка (NO)	НО	NO	НО	NO	НО	NO
(Высокая перегрузка = 150 % тока в течение						
60 с, нормальная перегрузка = 110 % тока в						
течение 60 с)						
Типичная выходная мощность на валу [кВт]	315	355	355	400	400	450
при 400 В			333			.50
Типичная выходная мощность на валу [л. с.]	450	500	500	600	550	600
при 460 В						
Типичная выходная мощность на валу [кВт]	355	400	400	500	500	530
при 500 В						
Размер корпуса	E1h/	E3h	E1h	/E3h	E1h,	/E3h
Выходной ток (3 фазы)						
Непрерывный (при 400 B) [A]	600	658	658	745	695	800
Прерывистый (перегрузка 60 с)	900	724	987	820	1043	880
(при 400 В) [А]	900	724	967	620	1043	000
Непрерывный (при 460/500 B) [A]	540	590	590	678	678	730
Прерывистый (перегрузка 60 c) (при 460/500 B) [A]	810	649	885	746	1017	803
Непрерывный, мощность (при 400 В) [кВА]	416	456	456	516	482	554
Непрерывный, мощность (при 460 В) [кВА]	430	470	470	540	540	582
Непрерывный, мощность (при 500 В) [кВА]	468	511	511	587	587	632
Макс. входной ток		•	•	•		•
Непрерывный (при 400 B) [A]	578	634	634	718	670	771
Непрерывный (при 460/500 B) [A]	520	569	569	653	653	704
Макс. число и размер кабелей					•	•
на фазу (E1h)						
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	5 x 240 (5 x	(500 mcm)	5 x 240 (5	x 500 mcm)	5 x 240 (5	x 500 mcm)
– Сеть и двигатель, с тормозом [мм² (AWG)] ¹⁾	4 x 240 (4 x	500 mcm)	4 x 240 (4	x 500 mcm)	4 x 240 (4 x 500 mcm)	
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2 x	350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
Макс. число и размер кабелей						
на фазу (E3h)						
– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6 x	500 mcm)	6 x 240 (6	x 500 mcm)	6 x 240 (6 x 500 mcm)	
– Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2 x	350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
– Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4 >	350 mcm)	4 x 185 (4	x 350 mcm)	4 x 185 (4 x 350 mcm)	
Макс. внешние сетевые предохранители [A] ²⁾	80	10	800		80	00
Расчетные потери мощности при 400 В [Вт] ^{3) 4)}	6178	6928	6851	8036	7297	8783
Расчетные потери мощности при 460 В [Вт] ³⁾⁴⁾	5322	5910	5846	6933	7240	7969
КПД ⁴⁾	0,9	98	0,98		0,	1 <u> </u>
Вых. частота	0–59	0 Гц	0-59	90 Гц	0-59	90 Гц
Отключение при перегреве радиатора [°C	110	(220)	110	(220)	110	(220)
(°F)]	110 (23 0)	110	(230)	110	(230)
Отключение при перегреве платы управления	80 (176)	gn /	176)	QΛ /	176)
[°C (°F)]	OU (170)	00 (170)

VLT® AutomationDrive MD 202	N3	15	N355		N4	00
Высокая (HO)/нормальная перегрузка (NO)	HO NO		НО	NO	НО	NO
Отключение при перегреве силовой платы питания [°C (°F)]	85 (185)		85 (185)		85 (185)	
Отключение при перегреве платы питания вентилятора [°C (°F)]	85 (185)		85 (185)		85 (185)	
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)		85 (185)		85 (185)	

Таблица 9.1 MD 202.Технические характеристики, питание от сети 3 x 380–500 В пер. тока

Mining Drive MD 202	N-	450	N500		
Высокая (HO)/нормальная перегрузка (NO)	НО	NO	НО	NO	
(Высокая перегрузка = 150 % тока в течение 60 с, нормальная					
перегрузка = 110 % тока в течение 60 с)					
Типичная выходная мощность на валу [кВт] при 400 В	450	500	500	560	
Типичная выходная мощность на валу [л. с.] при 460 В	600	650	650	750	
Гипичная выходная мощность на валу [кВт] при 500 В	530	560	560	630	
Размер корпуса	E2h	n/E4h	E2h/	/E4h	
Выходной ток (3 фазы)	•				
Непрерывный (при 400 B) [A]	800	880	880	990	
Прерывистый (перегрузка 60 с)	1200	968	1320	1089	
(при 400 В) [А]	1200	908	1320	1009	
Непрерывный (при 460/500 B) [A]	730	780	780	890	
Прерывистый (перегрузка 60 с)	1095	858	1170	979	
(при 460/500 В) [А]	1095	030	1170	5/7	
Непрерывный, мощность (при 400 B) [кВА]	554	610	610	686	
Непрерывный, мощность (при 460 B) [кВА]	582	621	621	709	
Непрерывный, мощность	632	675	675	771	
(при 500 В) [кВА]	032	0/3	073	//1	
Макс. входной ток					
Непрерывный (при 400 B) [A]	771	848	848	954	
Непрерывный (при 460/500 B) [A]	704	752	752	858	
Макс. число и размер кабелей					
на фазу (E2h)					
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	6 x 240 (6	x 500 mcm)	6 x 240 (6 x	x 500 mcm)	
– Сеть и двигатель, с тормозом [мм² (AWG)] ¹⁾	5 x 240 (5	x 500 mcm)	5 x 240 (5 x	k 500 mcm)	
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2	x 350 mcm)	2 x 185 (2 x	x 350 mcm)	
Макс. число и размер кабелей	-!				
на фазу (E4h)					
– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6	x 500 mcm)	6 x 240 (6 x	x 500 mcm)	
- Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2	x 350 mcm)	2 x 185 (2 x	x 350 mcm)	
- Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4	x 350 mcm)	4 x 185 (4)	x 350 mcm)	
Макс. внешние сетевые предохранители [A] ²⁾	1:	200	12	00	
Расчетные потери мощности при 400 В [Вт] ³⁾⁴⁾	8352	9473	9449	11102	
Расчетные потери мощности при 460 В [Вт] ^{3) 4)}	7182	7809	7771	9236	
кпд ⁴⁾	+	,98	!	98	
		-590	-	590	
Выходная частота [Гц]	+				
Отключение при перегреве радиатора [°С (°F)]	+	(230)	+	(212)	
Отключение при перегреве платы управления [°C (°F)]	+	(176)	+	176)	
Отключение при перегреве силовой платы питания [°C (°F)]	+	(185)	·	185)	
Отключение при перегреве платы питания вентилятора [°C (°F)]	85	(185)	85 (185)	

MD 202	N4	150	N5	00
Высокая (HO)/нормальная перегрузка (NO)	но	NO	НО	NO
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)	85 (185)

Таблица 9.2 MD 202 Технические характеристики, питание от сети 3 x 380-500 В пер. тока

- 1) Американский сортамент проводов.
- 2) Номиналы предохранителей см. в глава 9.7 Предохранители.
- 3) Типовые значения потерь мощности приводятся при номинальной нагрузке; предполагается, что они находятся в пределах допуска ±15 % (допуск связан с изменениями напряжения и различием характеристик кабелей). Значения приведены исходя из типичного КПД двигателя (граница IE/IE3). Двигатели с меньшим КПД увеличивают потери мощности в преобразователе частоты. Касается определения размерных параметров охлаждения преобразователя частоты. Если частота коммутации превышает установленную по умолчанию, возможен существенный рост потерь. Приведенные данные учитывают мощность, потребляемую LCP и типовыми платами управления. Данные о потерях мощности в соответствии с EN 50598-2 см. на сайте www.danfoss.com/ vltenergyefficiency. Установка дополнительных устройств и нагрузки заказчика могут увеличить потери на 30 Вт, хотя обычно при полной нагрузке платы управления и установленных дополнительных платах в гнездах А или В увеличение потерь составляет всего 4 Вт для каждой платы.
- 4) Измеряется с использованием экранированных кабелей двигателя длиной 5 м при номинальной нагрузке и номинальной частоте. КПД, измеренный при номинальном токе. Класс энергоэффективности см. в глава 9.4 Условия окружающей среды. Потери при частичной нагрузке см. на www.danfoss.com/vltenergyefficiency.

9.1.2 MD 202 Питание от сети 3 x 525-690 В перем. тока

Mining Drive MD 202	N355		N400		N500	
Высокая (HO)/нормальная перегрузка (NO)	НО	NO	НО	NO	НО	NO
(Высокая перегрузка = 150 % тока в течение						
60 с, нормальная перегрузка = 110 % тока в						
течение 60 с)						
Типичная выходная мощность на валу [кВт]	315	355	315	400	400	450
при 550 В	313	333	313	100	400	430
Типичная выходная мощность на валу [л. с.]	400	450	400	500	500	600
при 575 В	400	130	400	300	300	000
Типичная выходная мощность на валу [кВт]	355	450	400	500	500	560
при 690 В			100	300		
Размер корпуса	E1h,	/E3h	E1h/	E3h	E1h	/E3h
Выходной ток (3 фазы)						
Непрерывный (при 550 B) [A]	395	470	429	523	523	596
Прерывистый (перегрузка в течение 60 с при	593	517	644	575	785	656
550 B) [A]		317	011	3/3	703	030
Непрерывный (при 575/690 B) [A]	380	450	410	500	500	570
Прерывистый (перегрузка 60 с)	570	495	615	550	750	627
(при 575/690 В) [А]		123	0.5	330	730	027
Непрерывный, мощность (при 550 В) [кВА]	376	448	409	498	498	568
Непрерывный, мощность (при 575 В) [кВА]	378	448	408	498	498	568
Непрерывный, мощность (при 690 В) [кВА]	454	538	490	598	598	681
Макс. входной ток						
Непрерывный (при 550 B) [A]	381	453	413	504	504	574
Непрерывный (при 575 B) [A]	366	434	395	482	482	549
Непрерывный (при 690 B) [A]	366	434	395	482	482	549
Макс. число и размер кабелей		•	•		•	
на фазу (E1h)						
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	5 x 240 (5 :	x 500 mcm)	5 x 240 (5 x	500 mcm)	5 x 240 (5	x 500 mcm)
– Сеть и двигатель, с тормозом [мм² (AWG)]1)	4 x 240 (4 :	x 500 mcm)	4 x 240 (4 x 500 mcm)		4 x 240 (4 x 500 mcm)	
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
Макс. число и размер кабелей			•		•	
на фазу (E3h)						

– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6 :	x 500 mcm)	6 x 240 (6 x 500 mcm)		6 x 240 (6 x 500 mcm)		
– Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2 :	x 350 mcm)	2 x 185 (2 >	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
– Разделение нагрузки и рекуперация $[мм^2 (AWG)]^{1)}$	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)		
Макс. внешние сетевые предохранители [A] ²⁾	80	00	80	00	8	00	
Расчетные потери мощности при 600 В [Вт] ³⁾⁴⁾	4989	6062	5419	6879	6833	8076	
Расчетные потери мощности при 690 В [Вт] ³⁾⁴⁾	4920	5939	5332	6715	6678	7852	
КПД ⁴⁾	0,	98	0,98		0,	98	
Выходная частота [Гц]	0-590		0–590		0-590		
Отключение при перегреве радиатора [°C (°F)]	110	(230)	110 (230)		110 (230)		
Отключение при перегреве платы управления [°C (°F)]	80 (176)		80 (176)		80 ((176)	
Отключение при перегреве силовой платы питания [°C (°F)]	85 (185)		85 (185)		85 (185)		
Отключение при перегреве платы питания вентилятора [°C (°F)]	85 (185)		85 (185)		85 (185)		
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)	85 (185)		85 (185)		

Таблица 9.3 MD 202. Технические характеристики, питание от сети 3 x 525–690 В пер. тока

MIning Drive MD 202	N5	560	N6	30	N.	N710	
Высокая (HO)/нормальная перегрузка (NO)	НО	NO	НО	NO	НО	NO	
(Высокая перегрузка = 150 % тока в течение							
60 с, нормальная перегрузка = 110 % тока в							
течение 60 с)							
Типичная выходная мощность на валу [кВт]	450	500	500	560	560	670	
при 550 В	450	300	300	360	360	670	
Типичная выходная мощность на валу [л. с.]	600	650	650	750	750	950	
при 575 В	000	050	030	/30	/50	930	
Типичная выходная мощность на валу [кВт]	560	630	630	710	710	800	
при 690 В	300	030	030	710	710	800	
Размер корпуса	E1h	/E3h	E2h/	E4h	E2h	/E4h	
Выходной ток (3 фазы)							
Непрерывный (при 550 B) [A]	596	630	659	763	763	889	
Прерывистый (перегрузка в течение 60 с при	894	693	989	839	1145	978	
550 B) [A]	094	093	909	639	1143	976	
Непрерывный (при 575/690 B) [A]	570	630	630	730	730	850	
Прерывистый (перегрузка 60 с)	855	693	945	803	1095	935	
(при 575/690 В) [А]	633	093	943	803	1093	933	
Непрерывный, мощность (при 550 В) [кВА]	568	600	628	727	727	847	
Непрерывный, мощность (при 575 В) [кВА]	568	627	627	727	727	847	
Непрерывный, мощность (при 690 В) [кВА]	681	753	753	872	872	1016	
Макс. входной ток					•	•	
Непрерывный (при 550 B) [A]	574	607	635	735	735	857	
Непрерывный (при 575 B) [A]	549	607	607	704	704	819	
Непрерывный (при 690 B) [A]	549	607	607	704	704	819	
Макс. число и размер кабелей		•	•		•		
на фазу (E2h)							
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	6 x 240 (6	x 500 mcm)	6 x 240 (6 x	500 mcm)	6 x 240 (6	x 500 mcm)	
– Сеть и двигатель, с тормозом [мм² (AWG)] ¹⁾	5 x 240 (5 :	x 500 mcm)	5 x 240 (5 x	500 mcm)	5 x 240 (5	x 500 mcm)	
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2 :	x 350 mcm)	2 x 185 (2 x	350 mcm)	2 x 185 (2	x 350 mcm)	

Макс. число и размер кабелей							
на фазу (E4h)							
– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6 x 500 mcm)		6 x 240 (6 x 500 mcm)		6 x 240 (6	6 x 240 (6 x 500 mcm)	
– Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2 x	x 350 mcm)	2 x 185 (2 x	(350 mcm)	2 x 185 (2	x 350 mcm)	
– Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)		4 x 185 (4	4 x 185 (4 x 350 mcm)	
Макс. внешние сетевые предохранители [A] ²⁾	80	00	12	00	12	200	
Расчетные потери мощности при 600 B [Bт] ³⁾⁴⁾	8069	9208	8543	10346	10319	12723	
Расчетные потери мощности при 690 В [Вт] ³⁾⁴⁾	7848	8921	8363	10066	10060	12321	
КПД⁴)	0,98		0,98		0,98		
Выходная частота [Гц]	0–590		0–590		0-	590	
Отключение при перегреве радиатора [°C (°F)]	110	(230)	110 (230)		110 (230)		
Отключение при перегреве платы управления [°C (°F)]	80 (176)	80 (176)		80 (176)		
Отключение при перегреве силовой платы питания [°C (°F)]	85 (185)	85 (85 (185)		85 (185)	
Отключение при перегреве платы питания вентилятора [°C (°F)]	85 (185)		85 (185)	85 (185)		
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)	85 (185)		85 (185)		

Таблица 9.4 MD 202. Технические характеристики, питание от сети 3 x 525-690 В пер. тока

- 1) Американский сортамент проводов.
- 2) Номиналы предохранителей см. в глава 9.7 Предохранители.
- 3) Типовые значения потерь мощности приводятся при номинальной нагрузке; предполагается, что они находятся в пределах допуска ±15 % (допуск связан с изменениями напряжения и различием характеристик кабелей). Значения приведены исходя из типичного КПД двигателя (граница IE/IE3). Двигатели с меньшим КПД увеличивают потери мощности в преобразователе частоты. Касается определения размерных параметров охлаждения преобразователя частоты. Если частота коммутации превышает установленную по умолчанию, возможен существенный рост потерь. Приведенные данные учитывают мощность, потребляемую LCP и типовыми платами управления. Данные о потерях мощности в соответствии с EN 50598-2 см. на сайте www.danfoss.com/ vltenergyefficiency. Установка дополнительных устройств и нагрузки заказчика могут увеличить потери на 30 Вт, хотя обычно при полной нагрузке платы управления и установленных дополнительных платах в гнездах А или В увеличение потерь составляет всего 4 Вт для каждой платы.
- 4) Измеряется с использованием экранированных кабелей двигателя длиной 5 м при номинальной нагрузке и номинальной частоте. КПД, измеренный при номинальном токе. Класс энергоэффективности см. в глава 9.4 Условия окружающей среды. Потери при частичной нагрузке см. на www.danfoss.com/vltenergyefficiency.

9.1.3 MD 302 Питание от сети 3 x 380–500 В перем. тока

Mining Drive MD 302	N250 N315		N355			
Высокая (НО)/нормальная перегрузка (NO)	НО	NO	но	NO	НО	NO
(Высокая перегрузка = 180 % тока в течение 60						
с, нормальная перегрузка = 150 % тока в						
течение 60 с)						
Типичная выходная мощность на валу [кВт]	250	315	315	355	355	400
при 400 В		3.3	3.3			
Типичная выходная мощность на валу [л. с.]	350	450	450	500	500	600
при 460 В						
Типичная выходная мощность на валу [кВт]	315	355	355	400	400	500
при 500 В						
Размер корпуса	E1h,	E3h	E1h	/E3h	E1h	/E3h
Выходной ток (3 фазы)						
Непрерывный (при 400 В) [А]	480	600	600	658	658	695
Прерывистый (перегрузка 60 c) (при 400 B) [A]	900	724	987	820	1043	880
Непрерывный (при 460/500 B) [A]	443	535	540	590	590	678
Прерывистый (перегрузка 60 с)	665	588	810	649	885	746
(при 460/500 В) [А]	003	300	810	049	883	740
Непрерывный, мощность (при 400 В) [кВА]	333	407	416	456	456	516
Непрерывный, мощность (при 460 В) [кВА]	353	426	430	470	470	540
Непрерывный, мощность (при 500 В) [кВА]	384	463	468	511	511	587
Макс. входной ток		1				
Непрерывный (при 400 В) [А]	463	567	578	634	634	718
Непрерывный (при 460/500 B) [A]	427	516	520	569	569	653
Макс. число и размер кабелей на фазу (E1h)						
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	5 x 240 (5 x	c 500 mcm)	5 x 240 (5 x 500 mcm)		5 x 240 (5 x 500 mcm)	
– Сеть и двигатель, с тормозом [мм² (AWG)]1)	4 x 240 (4 x	c 500 mcm)	4 x 240 (4 x 500 mcm)		4 x 240 (4 x 500 mcm)	
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2 x	(350 mcm)	2 x 185 (2 :	x 350 mcm)	2 x 185 (2 x 350 mcm)	
Макс. число и размер кабелей			•		•	
на фазу (E3h)						
– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6 x	c 500 mcm)	6 x 240 (6 :	x 500 mcm)	6 x 240 (6	k 500 mcm)
– Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2 x	k 350 mcm)	2 x 185 (2 :	x 350 mcm)	2 x 185 (2 :	x 350 mcm)
– Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4 :	x 350 mcm)	4 x 185 (4 :	x 350 mcm)	4 x 185 (4 :	x 350 mcm)
Макс. внешние сетевые предохранители [A] ²⁾	80	00	80	00	80	00
Расчетные потери мощности при 400 В [Вт] ^{3) 4)}	5005	6674	6178	6928	6851	8036
Расчетные потери мощности при 460 В [Вт] ³⁾⁴⁾	4458	5714	5322	5910	5846	6933
КПД ⁴⁾	0,	98	0,	98	0,	1 <u> </u>
Вых. частота	0-59	00 Гц	0-59	90 Гц	0-59	90 Гц
Отключение при перегреве радиатора [°C		(220)	44.5	·		(220)
(°F)]	110	(230)	110	(230)	110	(230)
Отключение при перегреве платы управления	75 (167)	80 (176)	80 (176)	
[°C (°F)]	.5 (-,		-,

Mining Drive MD 302	N2	50	N315		N355	
Высокая (HO)/нормальная перегрузка (NO)	НО	NO	НО	NO	НО	NO
Отключение при перегреве силовой платы питания [°C (°F)]	75 (167)		85 (185)		85 (185)	
Отключение при перегреве платы питания вентилятора [°C (°F)]	75 (167)		85 (185)		85 (185)	
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	75 (167)		85 (185)		85 (185)	

Таблица 9.5 MD 302. Технические характеристики, питание от сети 3 x 380–500 В пер. тока

Mining Drive MD 302	N-	400	N450		
Высокая (HO)/нормальная перегрузка (NO)	НО	NO	НО	NO	
Высокая перегрузка = 180 % тока в течение 60 с, нормальная					
перегрузка = 150 % тока в течение 60 с)					
Типичная выходная мощность на валу [кВт] при 400 В	400	450	450	500	
Типичная выходная мощность на валу [л. с.] при 460 В	550	600	600	650	
Типичная выходная мощность на валу [кВт] при 500 В	500	530	530	560	
Размер корпуса	E2h	/E4h	E2h/E4h		
Выходной ток (3 фазы)	•		•		
Непрерывный (при 400 B) [A]	695	800	800	880	
Прерывистый (перегрузка 60 с)	1200	968	1320	1089	
(при 400 B) [A]	1200	908	1320	1005	
Непрерывный (при 460/500 B) [A]	678	730	730	780	
Прерывистый (перегрузка 60 с)	1017	803	1095	858	
(при 460/500 В) [А]	1017	803	1093	050	
Непрерывный, мощность (при 400 В) [кВА]	482	554	554	610	
Непрерывный, мощность (при 460 В) [кВА]	540	582	582	621	
Непрерывный, мощность	587	632	632	675	
(при 500 В) [кВА]	307	032	032	073	
Макс. входной ток					
Непрерывный (при 400 B) [A]	670	771	771	848	
Непрерывный (при 460/500 B) [A]	653	704	704	752	
Макс. число и размер кабелей					
на фазу (E2h)					
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	5 x 240 (5	x 500 mcm)	6 x 240 (6 x 500 mcm)		
– Сеть и двигатель, с тормозом [мм² (AWG)] ¹⁾	4 x 240 (4	x 500 mcm)	5 x 240 (5 x 500 mcm)		
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2	x 350 mcm)	2 x 185 (2 x 350 mcm)		
Макс. число и размер кабелей	-				
на фазу (E4h)					
– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6	x 500 mcm)	6 x 240 (6 >	(500 mcm)	
- Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2	x 350 mcm)	2 x 185 (2 x	(350 mcm)	
– Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4	x 350 mcm)	4 x 185 (4 >	350 mcm)	
Макс. внешние сетевые предохранители [A] ²⁾	80	00	12	00	
Расчетные потери мощности при 400 В [Вт] ³⁾⁴⁾	7297	8783	8352	9473	
Расчетные потери мощности при 460 В [Вт] ^{3) 4)}	7240	7969	7182	7809	
кпд ⁴⁾	+	,98	0,9		
кі ід [,] Выходная частота [Гц]		590	0-5		
		(230)	110 (
Отключение при перегреве радиатора [°C (°F)]	+	· · · ·		•	
Отключение при перегреве платы управления [°С (°F)]	+	(176)	80 (176) 85 (185)		
Отключение при перегреве силовой платы питания [°C (°F)]	-	(185)			
Отключение при перегреве платы питания вентилятора [°C (°F)]	85	(185)	85 (185)	

Mining Drive MD-302	N4	100	N450	
Высокая (HO)/нормальная перегрузка (NO)	но	NO	НО	NO
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)		85 (185)	

Таблица 9.6 MD 302. Технические характеристики, питание от сети 3 x 380-500 В пер. тока

- 1) Американский сортамент проводов.
- 2) Номиналы предохранителей см. в глава 9.7 Предохранители.
- 3) Типовые значения потерь мощности приводятся при номинальной нагрузке; предполагается, что они находятся в пределах допуска ±15 % (допуск связан с изменениями напряжения и различием характеристик кабелей). Значения приведены исходя из типичного КПД двигателя (граница IE/IE3). Двигатели с меньшим КПД увеличивают потери мощности в преобразователе частоты. Касается определения размерных параметров охлаждения преобразователя частоты. Если частота коммутации превышает установленную по умолчанию, возможен существенный рост потерь. Приведенные данные учитывают мощность, потребляемую LCP и типовыми платами управления. Данные о потерях мощности в соответствии с EN 50598-2 см. на сайте www.danfoss.com/ vltenergyefficiency. Установка дополнительных устройств и нагрузки заказчика могут увеличить потери на 30 Вт, хотя обычно при полной нагрузке платы управления и установленных дополнительных платах в гнездах А или В увеличение потерь составляет всего 4 Вт для каждой платы.
- 4) Измеряется с использованием экранированных кабелей двигателя длиной 5 м при номинальной нагрузке и номинальной частоте. КПД, измеренный при номинальном токе. Класс энергоэффективности см. в глава 9.4 Условия окружающей среды. Потери при частичной нагрузке см. на www.danfoss.com/vltenergyefficiency.

9.1.4 MD 302 Питание от сети 3 x 525-690 В перем. тока

Mining Drive MD 302	N:	315	N3	55	N400	
Высокая (НО)/нормальная перегрузка (NO) (Высокая перегрузка = 180 % тока в течение 60 с, нормальная перегрузка = 150 % тока в течение 60 c)	НО	NO	НО	NO	НО	NO
Типичная выходная мощность на валу [кВт] при 550 В	250	315	315	355	315	400
Типичная выходная мощность на валу [л. с.] при 575 В	350	400	400	450	400	500
Типичная выходная мощность на валу [кВт] при 690 В	315	400	355	450	400	500
Размер корпуса	E1h	/E3h	E1h,	/E3h	E1h	/E3h
Выходной ток (3 фазы)			•		•	
Непрерывный (при 550 B) [A]	360	395	395	429	429	523
Прерывистый (перегрузка в течение 60 с при 550 В) [A]	593	517	644	575	785	656
Непрерывный (при 575/690 B) [A]	344	400	380	450	410	500
Прерывистый (перегрузка 60 c) (при 575/690 B) [A]	516	440	570	495	615	550
Непрерывный, мощность (при 550 В) [кВА]	343	398	376	448	409	498
Непрерывный, мощность (при 575 В) [кВА]	343	398	378	448	408	498
Непрерывный, мощность (при 690 В) [кВА]	411	578	454	538	490	598
Макс. входной ток		•	'		·!	!
Непрерывный (при 550 B) [A]	355	408	381	453	413	504
Непрерывный (при 575 B) [A]	339	390	366	434	395	482
Непрерывный (при 690 B) [A]	352	400	366	434	395	482
Макс. число и размер кабелей на фазу (E1h)		•		•		
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	5 x 240 (5	x 500 mcm)	5 x 240 (5 x	x 500 mcm)	5 x 240 (5	x 500 mcm)
– Сеть и двигатель, с тормозом [мм² (AWG)] ¹⁾	4 x 240 (4	x 500 mcm)	4 x 240 (4 x	x 500 mcm)	4 x 240 (4	x 500 mcm)
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2	x 350 mcm)	2 x 185 (2 x	x 350 mcm)	2 x 185 (2	x 350 mcm)
Макс. число и размер кабелей			ı		<u> </u>	
на фазу (E3h)						

– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6 x 500 mcm)		6 x 240 (6 x	6 x 240 (6 x 500 mcm)		6 x 240 (6 x 500 mcm)	
– Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2 x	x 350 mcm)	2 x 185 (2 >	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
– Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4 x 350 mcm)		4 x 185 (4 x	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)	
Макс. внешние сетевые предохранители [A] ²⁾	550		80	00	8	00	
Расчетные потери мощности при 600 B [Bт] ³⁾⁴⁾	4146	5028	4989	6062	5419	6879	
Расчетные потери мощности при 690 В [Вт] ³⁾⁴⁾	4258	5155	4920	5939	5332	6715	
кпд⁴)	0,	98	0,98		0,98		
Выходная частота [Гц]	0-590		0–590		0-	0–590	
Отключение при перегреве радиатора [°C (°F)]	110 (230)		110 (230)		110 (230)		
Отключение при перегреве платы управления [°C (°F)]	80 (176)	80 (176)		80 (176)		
Отключение при перегреве силовой платы питания [°C (°F)]	85 (185)	85 (85 (185)		85 (185)	
Отключение при перегреве платы питания вентилятора [°C (°F)]	85 (185)		85 (85 (185)		85 (185)	
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)		85 (185)		85 (185)		

Таблица 9.7 MD 302. Технические характеристики, питание от сети 3 x 525–690 В пер. тока

Mining Drive MD 302	N5	500	N5	60	N630	
Высокая (НО)/нормальная перегрузка (NO)	НО	NO	НО	NO	НО	NO
(Высокая перегрузка = 180 % тока в течение 60						
с, нормальная перегрузка = 150 % тока в						
течение 60 с)						
Типичная выходная мощность на валу [кВт]	400	450	450	500	500	560
при 550 В	400	430	430	300	300	300
Типичная выходная мощность на валу [л. с.]	500	600	600	650	650	750
при 575 В	500 600 600	050	050	730		
Типичная выходная мощность на валу [кВт]	500	560	560	630	630	710
при 690 В	300	300	300	030	030	710
Размер корпуса	E1h,	/E3h	E1h/	E3h	E2h	/E4h
Выходной ток (3 фазы)						
Непрерывный (при 550 B) [A]	523	596	596	659	659	763
Прерывистый (перегрузка в течение 60 с при	894	693	989	839	1145	978
550 B) [A]	0,74	0,5)0)	037	1143	370
Непрерывный (при 575/690 B) [A]	500	570	570	630	630	730
Прерывистый (перегрузка 60 с)	750	627	855	693	945	803
(при 575/690 В) [А]	730	027	655	093	943	803
Непрерывный, мощность (при 550 В) [кВА]	498	568	568	600	628	727
Непрерывный, мощность (при 575 В) [кВА]	498	568	568	627	627	727
Непрерывный, мощность (при 690 В) [кВА]	598	681	681	753	753	872
Макс. входной ток						
Непрерывный (при 550 B) [A]	504	574	574	607	635	735
Непрерывный (при 575 B) [A]	482	549	549	607	607	704
Непрерывный (при 690 B) [A]	482	549	549	607	607	704
Макс. число и размер кабелей			•		•	
на фазу (E2h)						
– Сеть и двигатель, без тормоза [мм² (AWG)] ¹⁾	5 x 240 (5 x	x 500 mcm)	6 x 240 (6 x	500 mcm)	6 x 240 (6	x 500 mcm)
– Сеть и двигатель, с тормозом [мм² (AWG)] ¹⁾	4 x 240 (4 x	x 500 mcm)	5 x 240 (5 x	500 mcm)	5 x 240 (5 x 500 mcm)	
– Тормоз или рекуперация [мм² (AWG)] ¹⁾	2 x 185 (2 x	x 350 mcm)	2 x 185 (2 x	350 mcm)	2 x 185 (2	x 350 mcm)

Макс. число и размер кабелей							
на фазу (E4h)							
– Сеть и двигатель [мм² (AWG)] ¹⁾	6 x 240 (6 x 500 mcm)		6 x 240 (6 x	6 x 240 (6 x 500 mcm)		x 500 mcm)	
– Тормоз [мм² (AWG)] ¹⁾	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)	2 x 185 (2	x 350 mcm)	
– Разделение нагрузки и рекуперация [мм² (AWG)] ¹⁾	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)		4 x 185 (4	4 x 185 (4 x 350 mcm)	
Макс. внешние сетевые предохранители [A] ²⁾	800		80	0	1.	200	
Расчетные потери мощности при 600 B [Bт] ³⁾⁴⁾	6833	8076	8069	9208	8543	10346	
Расчетные потери мощности при 690 В [Вт] ³⁾⁴⁾	6678	7852	7848	8921	8363	10066	
кпд⁴)	0,	98	0,98		0,98		
Выходная частота [Гц]	0-590		0–590		0-	-590	
Отключение при перегреве радиатора [°C (°F)]	110	(230)	110 (230)		110 (230)		
Отключение при перегреве платы управления [°C (°F)]	80 (176)	80 (176)		80 (176)		
Отключение при перегреве силовой платы питания [°C (°F)]	85 (185)	85 (185)		85 (185)		
Отключение при перегреве платы питания вентилятора [°C (°F)]	85 (185)		85 (185)	85 (185)		
Отключение при перегреве платы защиты от бросков тока [°C (°F)]	85 (185)	85 (185)		85 (185)		

Таблица 9.8 MD 302. Технические характеристики, питание от сети 3 x 525-690 В пер. тока

- 1) Американский сортамент проводов.
- 2) Номиналы предохранителей см. в глава 9.7 Предохранители.
- 3) Типовые значения потерь мощности приводятся при номинальной нагрузке; предполагается, что они находятся в пределах допуска ±15 % (допуск связан с изменениями напряжения и различием характеристик кабелей). Значения приведены исходя из типичного КПД двигателя (граница IE/IE3). Двигатели с меньшим КПД увеличивают потери мощности в преобразователе частоты. Касается определения размерных параметров охлаждения преобразователя частоты. Если частота коммутации превышает установленную по умолчанию, возможен существенный рост потерь. Приведенные данные учитывают мощность, потребляемую LCP и типовыми платами управления. Данные о потерях мощности в соответствии с EN 50598-2 см. на сайте www.danfoss.com/ vltenergyefficiency. Установка дополнительных устройств и нагрузки заказчика могут увеличить потери на 30 Вт, хотя обычно при полной нагрузке платы управления и установленных дополнительных платах в гнездах А или В увеличение потерь составляет всего 4 Вт для каждой платы.
- 4) Измеряется с использованием экранированных кабелей двигателя длиной 5 м при номинальной нагрузке и номинальной частоте. КПД, измеренный при номинальном токе. Класс энергоэффективности см. в глава 9.4 Условия окружающей среды. Потери при частичной нагрузке см. на www.danfoss.com/vltenergyefficiency.

9.2 Питание от сети

Питание от сети (L1, L2, L3)

Напряжение питания

Низкое напряжение сети/пропадание напряжения:

380-500 B ±10 %, 525-690 B ±10 %

При низком напряжении сети или при пропадании напряжения сети преобразователь частоты продолжает работать, пока напряжение в звене постоянного тока не снизится до минимального уровня, при котором происходит выключение преобразователя; обычно напряжение отключения на 15 % ниже минимального номинального напряжения питания преобразователя. Включение питания и полный крутящий момент невозможны

Частота питания 50/60 Гц ±5 % Макс. кратковременная асимметрия фаз сети питания 3,0 % от номинального напряжения питающей сети 11 Коэффициент активной мощности (11 Коэффициент реактивной мощности (11 Соэффициент реактивной мощности (11 Соэффициент реактивной мощности (11 Соэффициент реактивной питания L1, L2, L3 Не более 1 раза за 2 минуты Условия окружающей среды в соответствии с требованием Стандарта EN60664-1 Категория по перенапряжению III/степень загрязнения 2

Преобразователь частоты подходит для использования в схеме, способной при напряжении 480/600 В выдавать ток короткого замыкания (SCCR) 100 кА.

1) Расчеты основаны на стандартах UL/IEC61800-3.

9.3 Выходная мощность и другие характеристики двигателя

при напряжении сети меньше 10 % минимального напряжения питания привода.

Мощность двиг	ателя (U, V	', W)
---------------	---------	------	-------

Выходное наг	пряжение					0–100 % от напряжения г					
Вых. частота								0–590 Гц ¹⁾			
Число комму	таций на выхс	де					Без	ограничения			
Длительность	ь изменения с	корости				 0,01-					
1) Зависит о	т напряжения	и мощно	cmu.								
Характеристи	іки крутящего	момента									
	v	,	v	v	١	 					

· · · · · · · · · · · · · · · · · · ·	
Пусковой крутящий момент (постоянный крутящий момент)	Максимум 150 % на протяжении 60 с для MD202 ¹⁾²⁾
	Максимум 180 % на протяжении 60 с для MD302 ¹⁾²⁾
Перегрузка по крутящему моменту (постоянный крутящий момент)	Максимум 150 % на протяжении 60 с для MD202 ¹⁾²
	Максимум 180 % на протяжении 60 с для MD302 ¹⁾²

^{1) *}Значение в процентах относится к номинальному току преобразователя частоты.

^{2) 1} раз за 10 минут.

9.4 Условия окружающей среды

Окружающая среда		
Корпус E1h/E2h		IP21/Тип 1, IP54/Тип12
Корпус Е3h/Е4		IP20/шасси
Испытание на вибрацию (стандартное/усил		0,7 g/1,0 g
Относительная влажность	5–95 % (IEC 721-3-3); кла	сс 3К3 (без конденсации) во время работы
Агрессивная среда (IEC 60068-2-43), тест Н	² S	класс Kd
Агрессивная среда (IEC 60721-3-3)		класс 3С3
Метод испытаний соответствует требовани	ıям стандарта IEC 60068-2-43	H2S (10 дней)
Температура окружающей среды (в режим	е коммутации SFAVM)	
– со снижением номинальных характерист	гик	максимум 55 °C (максимум 131 °F) ¹⁾
– при полном непрерывном выходном ток Мин. температура окружающей среды во и	время работы с полной нагрузкой	
		гельностью 10 °C (50 °F)
Температура при хранении/транспортиров	вке	от -25 до +65/70 °C (от 13 до 149/158 °F)
Макс. высота над уровнем моря без сниже	ения номинальных характеристик	от -25 до +65/70 °C (от 13 до 149/158 °F) 1 000 м (3 281 футов)
Макс. высота над уровнем моря со снижен	нием номинальных характеристик	3 000 м
1) Подробнее о снижении номинальных хар продукта.		роектированию соответствующего
Стандарты ЭМС, излучение		EN 61800-3
Стандарты ЭМС, помехоустойчивость		EN 61800-3
Класс энергоэффективности ²⁾		IE2

- 2) Определяется в соответствии с требованием стандарта EN 50598-2 при следующих условиях:
 - Номинальная нагрузка.
 - Частота 90 % от номинальной.
 - Заводская настройка частоты коммутации.
 - Заводская настройка метода коммутации.

9.5 Технические характеристики кабелей

Длина и сечение кабелей управления $^{1)}$

Макс. длина экранированного/защищенного кабеля двигателя		150 м (492 фута)
Макс. длина неэкранированного/незащищенного кабеля двигателя		300 м (984 фута)
Макс. поперечное сечение кабеля для двигателя, сети, цепи разделения	См. глава 9	0.1 Электрические
нагрузки и тормоза		характеристики
Макс. сечение проводов, подключаемых к клеммам управления при монтаже жестким		
проводом	1,5 mm ² /16 A	$WG (2 \times 0.75 \text{ mm}^2)$
Макс. сечение проводов, подключаемых к клеммам управления при монтаже гибким к	абелем	1 мм²/18 AWG
Макс. сечение проводов, подключаемых к клеммам управления при монтаже кабелем	с центральной	••••••
жилой		0,5 mm ² /20 AWG
Мин. сечение проводов, подключаемых к клеммам управления	-	0,25 mm ² /23 AWG

¹⁾ Данные о кабелях питания приведены в таблицах электрических характеристик в глава 9.1 Электрические характеристики.

9.6 Вход/выход и характеристики цепи управления

I	иф	ровые	входы

Программируемые цифровые входы	4 (6)
Номер клеммы	18, 19, 27 ¹⁾ , 29 ¹⁾ , 32, 33
Логика	PNP или NPN
Уровень напряжения	0–24 В пост. тока
Уровень напряжения, логический «0» PNP	< 5 В пост. тока
Уровень напряжения, логическая «1» PNP	> 10 В пост. тока
Уровень напряжения, логический «0» NPN	> 19 В пост. тока
Уровень напряжения, логическая «1» NPN	< 14 В пост. тока
Максимальное напряжение на входе	28 В пост. тока
Входное сопротивление, R _i	Приблизительно 4 кОм

Все цифровые входы гальванически изолированы от напряжения питания (PELV) и других высоковольтных клемм. 1) Клеммы 27 и 29 могут быть также запрограммированы как выходы.

Аналоговые входы

Количество аналоговых входов	2
Номер клеммы	53, 54
Режимы	Напряжение или ток
Выбор режима	Переключатели А53 и А54
Режим напряжения	Переключатель A53/A54 = (U)
Уровень напряжения	от -10 B до +10 B (масштабируемый)
Входное сопротивление, R _i	Приблизительно 10 кОм
Максимальное напряжение	±20 B
Режим тока	Переключатель A53/A54 = (I)
Уровень тока	От 0/4 до 20 мА (масштабируемый)
Входное сопротивление, R _i	Приблизительно 200 Ом
Максимальный ток	30 мА
Разрешающая способность аналоговых входов	10 битов (+ знак)
Точность аналоговых входов	Погрешность не более 0,5 % от полной шкалы
Полоса частот	100 Гц

Аналоговые входы гальванически изолированы от напряжения питания (PELV) и других высоковольтных клемм.

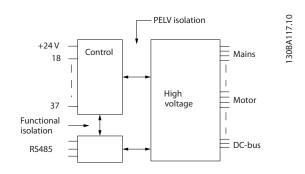


Рисунок 9.1 Изоляция PELV

Программируемые импульсные входы	2
Номера клемм импульсных входов	29, 33
	110 кГц (двухтактное управление)
Макс. частота на клеммах 29, 33	5 кГц (открытый коллектор)
Мин. частота на клеммах 29, 33	4 Гц
Уровень напряжения См. Цифровые вход	ды в глава 9.6 Вход/выход и характеристики цепи управления
Максимальное напряжение на входе	28 В пост. тока
Входное сопротивление, R _i	Приблизительно 4 кОм
Точность на импульсном входе (0,1–1 кГц)	Приблизительно 4 кОм Максимальная погрешность: 0,1 % от полной шкалы
Аналоговый выход	
Количество программируемых аналоговых выходов	1
Номер клеммы	42
Диапазон тока аналогового выхода	0/4-20 мА
Макс. нагрузка резистора на аналоговом выходе относител	льно общего провода 500 Ω
Точность на аналоговом выходе	Максимальная погрешность: 0,8 % от полной шкалы
Разрешающая способность на аналоговом выходе	8 битов
Аналоговый выход гальванически изолирован от напряжен	
Плата управления, последовательная связь через интерфе	йс RS485
Номер клеммы	68 (P, TX+, RX+), 69 (N, TX-, RX-)
Клемма номер 61	Общий для клемм 68 и 69
Схема последовательной связи RS485 функционально отдо изолирована от напряжения питания (PELV).	елена от других центральных схем и гальванически
изолировани от нипряжения питиния (FELV).	
цифровой выход	
·	2

1) Клеммы 27 и 29 могут быть также запрограммированы как входы.

Уровень напряжения на цифровом/частотном выходе Макс. выходной ток (потребитель или источник)

Минимальная выходная частота на частотном выходе Максимальная выходная частота на частотном выходе

Макс. емкостная нагрузка на частотном выходе

Разрешающая способность частотных выходов

Макс. нагрузка на частотном выходе

Цифровой выход гальванически изолирован от напряжения питания (PELV) и других высоковольтных клемм.

0-24 B

40 мА 1 кОм

10 нФ 0 Гц

32 кГц

12 бит

Точность частотного выхода Максимальная погрешность: 0,1 % от полной шкалы

Номер клеммы	12, 13
Максимальная нагрузка	200 мА
Источник напряжения 24 В пост. тока гальванически изолирован от напряжения питания	ı (PELV), но у него тот же
потенциал, что у аналоговых и цифровых входов и выходов.	ŕ
Выходы реле	
Программируемые выходы реле	2
Макс. поперечное сечение для клемм реле 	2,5 mm² (12 AWG
Мин. поперечное сечение для клемм реле 	0,2 mm² (30 AWG
Длина зачистки провода	8 MA
	азмыкание), 1–2 (замыкание
Макс. нагрузка (АС-1) ¹⁾ на клеммах 1–2 (нормально разомкнутый контакт) (резистивная нагрузка) ²⁾³⁾	400 B перем. тока, 2 <i>A</i>
Макс. нагрузка (АС-15) ¹⁾ на клеммах 1–2 (нормально разомкнутый контакт) (индуктивная	
нагрузка при соѕф 0,4)	240 В перем. тока, 0,2 <i>А</i>
Макс. нагрузка (DC-1) ¹⁾ на клеммах 1–2 (нормально разомкнутый контакт) (резистивная наг	рузка) 80 В пост. тока, 2 <i>Р</i>
Макс. нагрузка (DC-13) ¹⁾ на клеммах 1–2 (нормально разомкнутый контакт) (индуктивная	
нагрузка)	24 В пост. тока, 0,1 <i>F</i>
Макс. нагрузка (АС-1) ¹⁾ на клеммах 1–3 (нормально замкнутый контакт) (резистивная нагруз	вка) 240 В перем. тока, 2 <i>F</i>
Макс. нагрузка (АС-15) ¹⁾ на клеммах 1–3 (нормально замкнутый контакт) (индуктивная	
нагрузка при соѕф 0,4)	240 В перем. тока, 0,2 <i>F</i>
Макс. нагрузка (DC-1) ¹⁾ на клеммах 1–3 (нормально замкнутый контакт) (резистивная нагру:	
Макс. нагрузка (DC-13) ¹⁾ на клеммах 1–3 (нормально замкнутый контакт) (индуктивная нагр	узка) 24 В пост. тока, 0,1 <i>I</i>
Мин. нагрузка на клеммах 1–3 (нормально замкнутый контакт), 1–2	
	0 мА, 24 В перем. тока, 2 м <i>Р</i>
Условия окружающей среды согласно стандарту EN60664-1 Категория по перенапряжен	ию III/степень загрязнения 2
	азмыкание), 4–5 (замыкание
Макс. нагрузка (AC-1) ¹⁾ на клеммах 4–5 (нормально разомкнутый контакт) (резистивная	
нагрузка) ^{2) 3)}	400 В перем. тока, 2 А
Макс. нагрузка (AC-15) ¹⁾ на клеммах 4–5 (нормально разомкнутый контакт) (индуктивная	
нагрузка при соѕф 0,4	240 В перем. тока, 0,2 <i>А</i>
Макс. нагрузка (DC-1) ¹⁾ на клеммах 4–5 (нормально разомкнутый контакт) (резистивная наг	рузка) 80 В пост. тока, 2 <i>Е</i>
Макс. нагрузка (DC-13) ¹⁾ на клеммах 4–5 (нормально разомкнутый контакт) (индуктивная	
нагрузка)	24 В пост. тока, 0,1 <i>А</i>
Макс. нагрузка (АС-1) ¹⁾ на клеммах 4–6 (нормально замкнутый контакт) (резистивная нагруз	вка) 240 В перем. тока, 2 <i>Е</i>
Макс. нагрузка (AC-15) ¹⁾ на клеммах 4–6 (нормально замкнутый контакт) (индуктивная	
нагрузка при соѕф 0,4)	240 В перем. тока, 0,2 <i>Р</i>
Макс. нагрузка (DC-1) ¹⁾ на клеммах 4–6 (нормально замкнутый контакт) (резистивная нагру:	зка) 50 В пост. тока, 2 <i>Е</i>
Макс. нагрузка (DC-13) ¹⁾ на клеммах 4–6 (нормально замкнутый контакт) (индуктивная нагр	узка) 24 В пост. тока, 0,1 <i>F</i>
Мин. нагрузка на клеммах 4–6 (нормально замкнутый контакт), 4–5	
	0 мА, 24 В перем. тока, 2 мА
Условия окружающей среды согласно стандарту EN60664-1 Категория по перенапряжен	ию III/степень загрязнения 2
1) IEC 60947, части 4 и 5.	
Контакты реле имеют гальваническую развязку от остальной части схемы благодаря уси	иленной изоляции (PELV).
2) Категория по перенапряжению II.	
3) Аттестованные по UL применения при 300 В перем. тока, 2 А.	
Плата управления, выход +10 B пост. тока	
Номер клеммы	50
Выходное напряжение	10,5 B ±0,5 E

высоковольтных клемм.

Разрешающая способность выходной	частоты в интервале 0–1 000 Гц	±0,003 Гц
Время реакции системы (клеммы 18, 19, 27, 29, 32, 33)		≤ 2 MC
Диапазон регулирования скорости (разомкнутый контур)		1:100 синхронной скорости вращения
Точность регулирования скорости врасов (разомкнутый контур)	•	максимальная погрешность не более ±8 об/мин
Все характеристики регулирования с	относятся к управлению 4-полюс	ным асинхронным двигателем.
	, ,	ным асинхронным двигателем.
Все характеристики регулирования с Рабочие характеристики платы управ. Интервал сканирования	, ,	ным асинхронным двигателем. 5 мс
Рабочие характеристики платы управ	ления	ным асинхронным двигателем. 5 мс
Рабочие характеристики платы управ. Интервал сканирования	ления	ным асинхронным двигателем. 5 мс 1.1 (полная скорость)

УВЕДОМЛЕНИЕ

Подключение ПК осуществляется стандартным кабелем USB (хост/устройство).

Соединение USB гальванически изолировано от напряжения питания (с защитой PELV) и других высоковольтных клемм.

Соединение USB не изолировано гальванически от заземления. К разъему USB на преобразователе частоты может подключаться только изолированный переносной ПК или изолированный USB-кабель/преобразователь.

9.7 Предохранители

Предохранители используются для того, чтобы ограничить возможные повреждения преобразователя частоты лишь его внутренними повреждениями. Чтобы обеспечить соответствие стандарту EN50178, используйте для замены рекомендованные предохранители Bussmann. См. *Таблица 9.5*.

УВЕДОМЛЕНИЕ

Использование предохранителей на стороне питания является обязательным в установках, сертифицируемых по IEC 60364 (CE) и NEC 2009 (UL).

Входное напряжение [В]	Номер по каталогу Bussmann
380–500	170M7309
525–690	170M7342

Таблица 9.5 Возможные предохранители

Предохранители, указанные в *Таблица 9.5*, могут использоваться в схеме, способной (в зависимости от номинального напряжения преобразователя частоты) выдавать симметричный эффективный ток 100 000 А. При использовании правильных предохранителей номинальный ток короткого замыкания (SCCR) в преобразователе частоты составляет 100 000 А (эфф.). Преобразователи частоты в корпусах E1h и E2h поставляются со встроенными предохранителями, обеспечивающими защиту от тока короткого замыкания (SCCR), равного 100 кА. Преобразователи частоты E3h и E4h для защиты от тока SCCR, равного 100 кА, должны оснащаться предохранителями Туре aR.

УВЕДОМЛЕНИЕ

РАСЦЕПИТЕЛЬ

Для соблюдения требований к защите по току SCCR (100 кA) все блоки, заказанные и поставляемые с установленным на заводе расцепителем, требуют защиты параллельных цепей с помощью предохранителей Class L. Если используется автоматический выключатель, номинальный ток SCCR составляет 42 кA. Конкретный предохранитель Class L выбирается по входному напряжению и номинальной мощности преобразователя частоты. Входное напряжение и номинальная мощность указаны на паспортной табличке изделия. См. глава 4.1 Поставляемые компоненты.

Технические характеристики

Руководство по эксплуатации

Входное	Номинальная	Номинальный ток короткого замыкания	Требования к защите
напряжение [В]	мощность (кВт)	(A)	
380-500	315–400	42000	Автоматический выключатель
		100000	Предохранитель Class L, 800 A
380-500	450–500	42000	Автоматический выключатель
		100000	Предохранитель Class L, 1 200 A
525-690	355–560	40000	Автоматический выключатель
		100000	Предохранитель Class L, 800 A
525-690	630–710	42000	Автоматический выключатель
		100000	Предохранитель Class L, 1 200 A

Danfoss

9.8 Размеры корпусов

9.8.1 Внешние габариты E1h

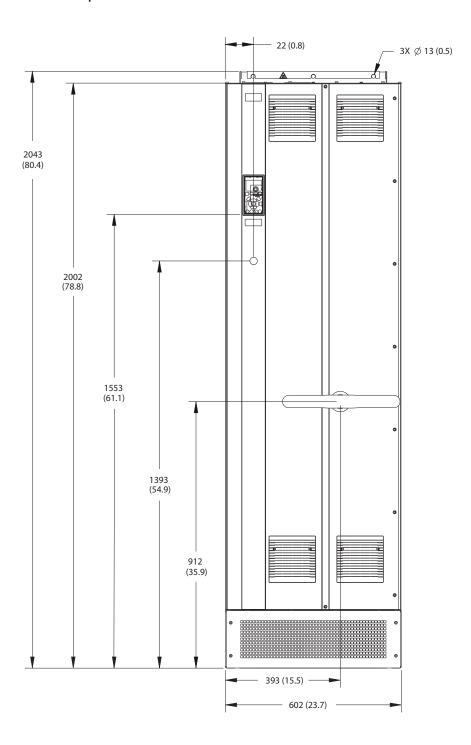
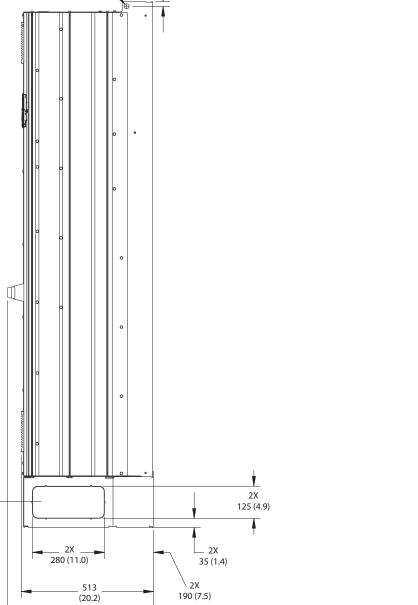



Рисунок 9.2 Вид устройства E1h спереди

2X Ø 20 (0.8)

130BF649.10

2X 101 (4.0) 2X 9 (0.7)

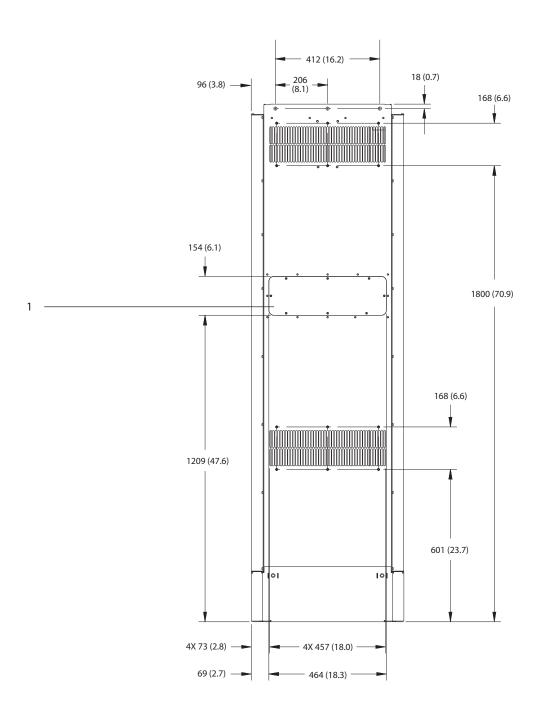
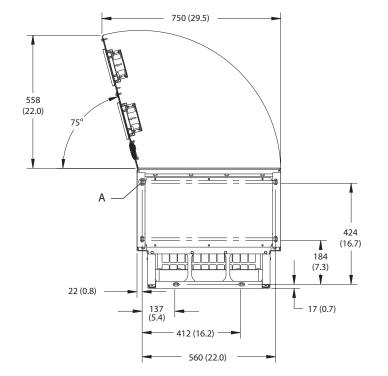
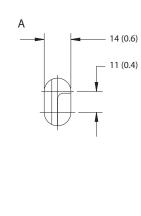

1 Панель заглушек

Рисунок 9.3 Вид сбоку E1h

Q

_ 567 (22.3)


<u>Danfoss</u>



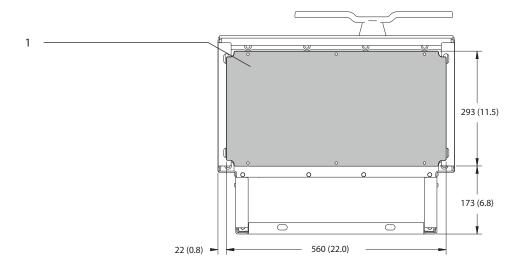

1 Панель доступа к радиатору (опция)

Рисунок 9.4 Вид сзади E1h

130BF651.10

1 Панель уплотнений

Рисунок 9.5 Пространство для открытия дверей и размеры панели уплотнений для E1h

9

Danfoss

9.8.2 Внешние габариты E2h

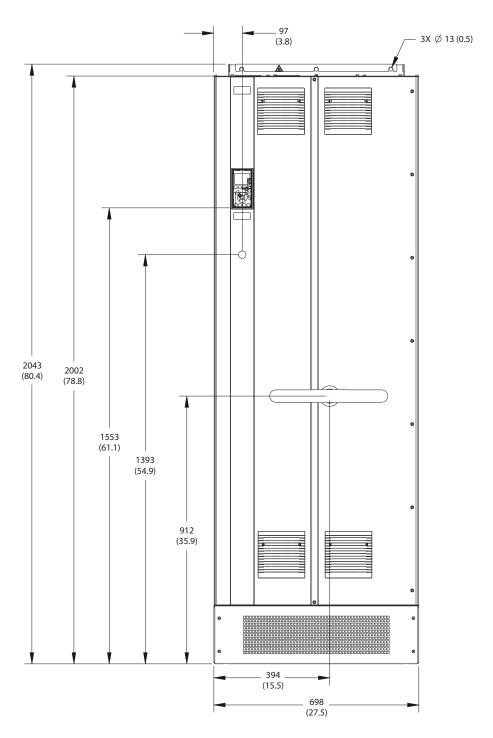
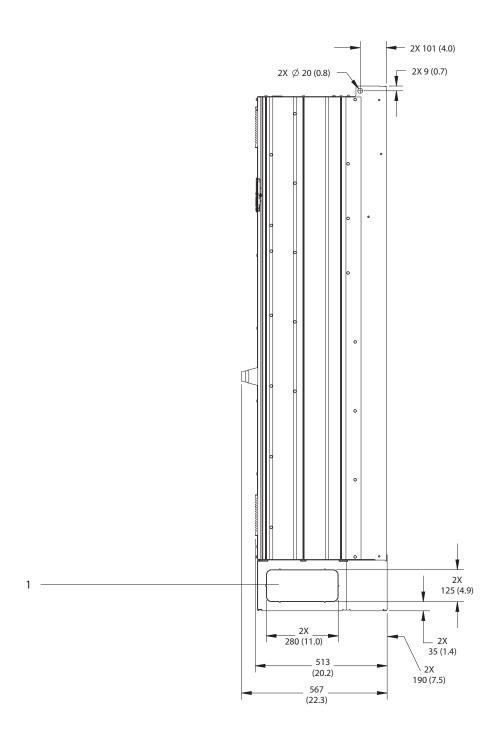
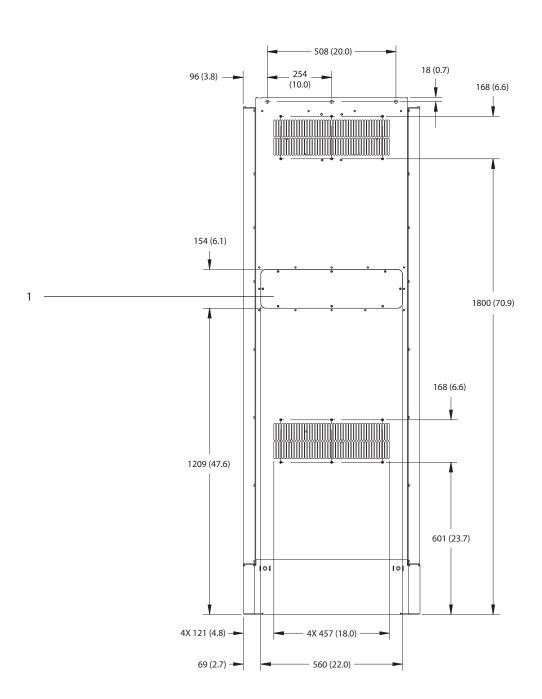



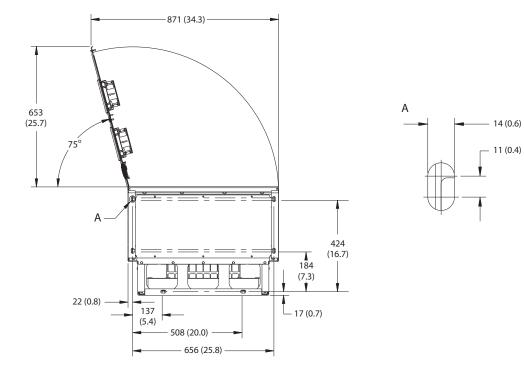
Рисунок 9.6 Вид спереди E2h


130BF653.10

Панель заглушек

Рисунок 9.7 Вид сбоку Е2

9



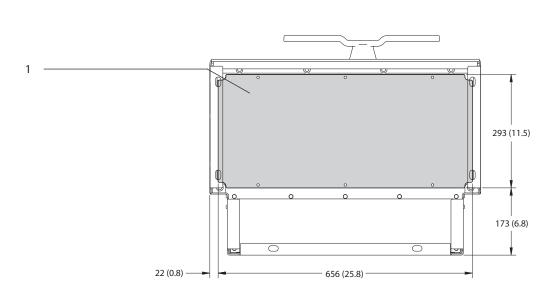

1 Панель доступа к радиатору (опция)

Рисунок 9.8 Вид сзади E2h

130BF652.10

1 Панель уплотнений

Рисунок 9.9 Пространство для открытия дверей и размеры панели уплотнений для E2h

9.8.3 Внешние габариты E3h

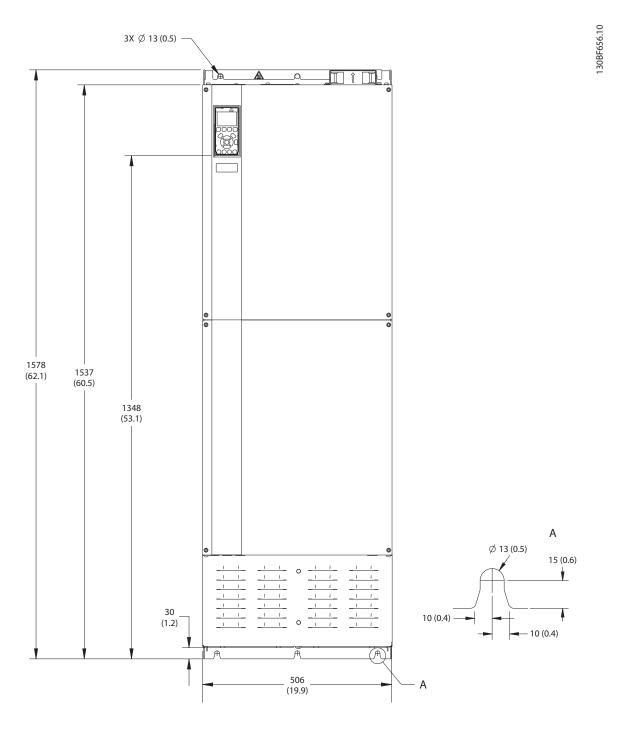
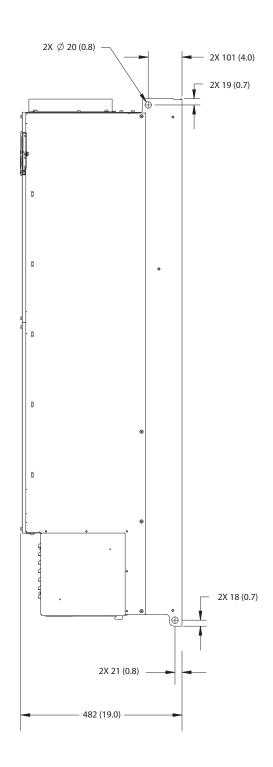
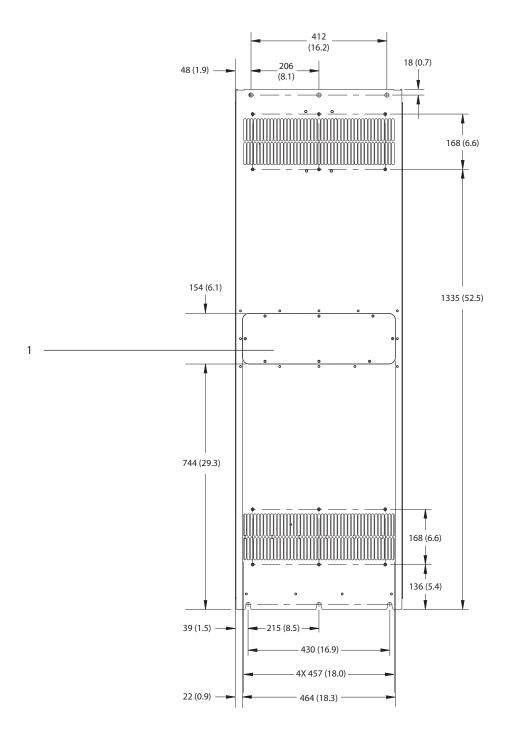
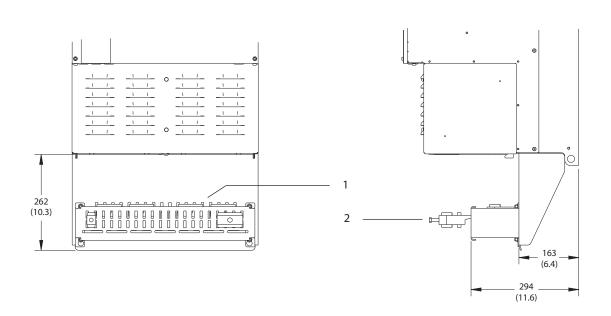
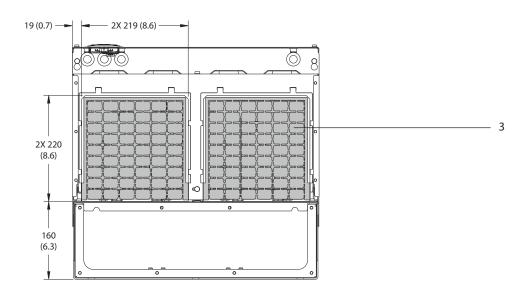


Рисунок 9.10 Вид спереди E3h

130BF65


Рисунок 9.11 Вид сбоку E3h


<u>Danfoss</u>

1 Панель доступа к радиатору (опция)

Рисунок 9.12 Вид сзади E3h

1	Клеммы для заделки экранов ВЧ-помех (входят в стандартную комплектацию при заказе дополнительного устройства
	защиты от ВЧ-помех)
2	Кабельный зажим, соответствующий требованиям ЭМС
3	Панель уплотнений

Рисунок 9.13 Клеммы для заделки экранов ВЧ-помех и размеры панели уплотнений для E3h

Q

9.8.4 Внешние габариты E4h

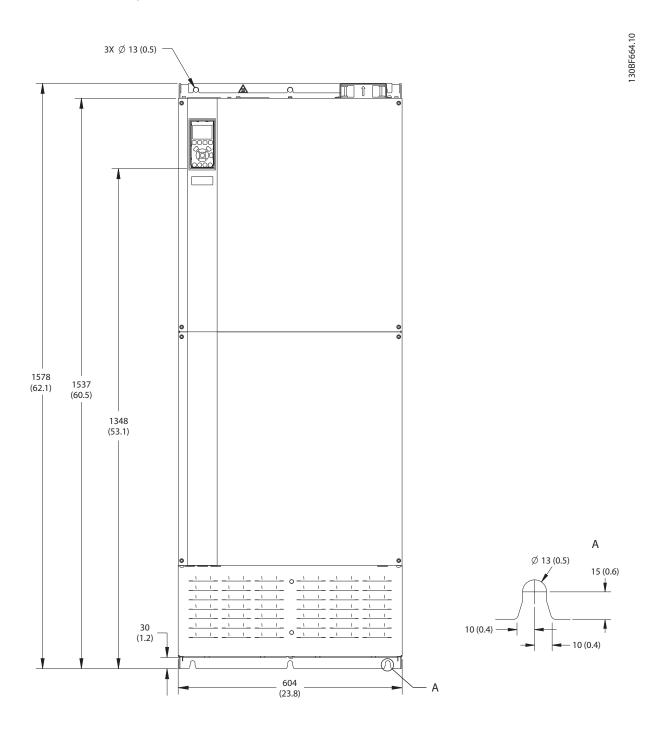


Рисунок 9.14 Вид спереди E4h

130BF66

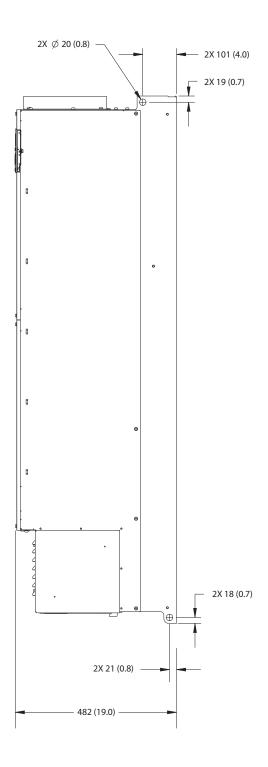
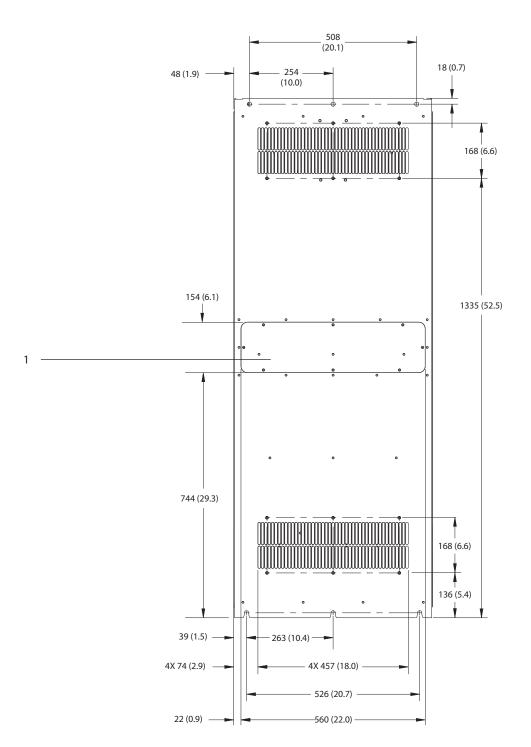
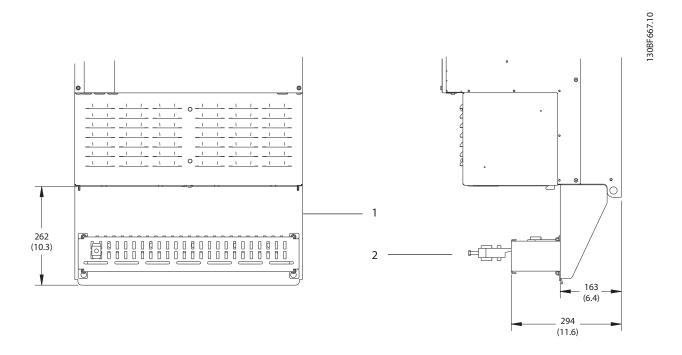
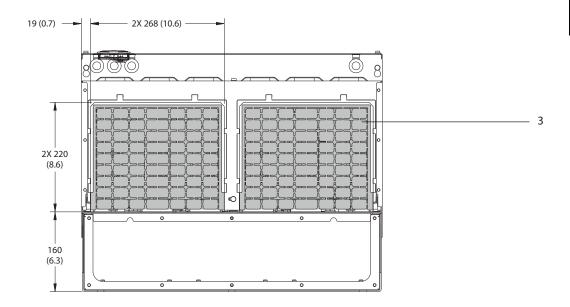



Рисунок 9.15 Вид сбоку E4h


O



1 Панель доступа к радиатору (опция)

Рисунок 9.16 Вид сзади E4h

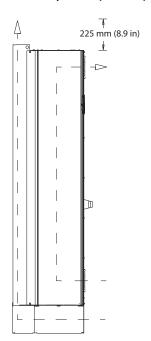

1	Клеммы для заделки экранов ВЧ-помех (входят в стандартную комплектацию при заказе дополнительного устройства
	защиты от ВЧ-помех)
2	Кабельный зажим, соответствующий требованиям ЭМС
3	Панель уплотнений

Рисунок 9.17 Клеммы для заделки экранов ВЧ-помех и размеры панели уплотнений для E4h

O

----- MD 202/MD 202

9.9 Циркуляция воздуха через корпус

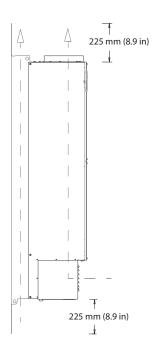
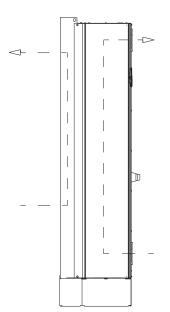



Рисунок 9.18 Циркуляция воздуха через корпуса E1h/E2h (слева) и E3h/E4h (справа)

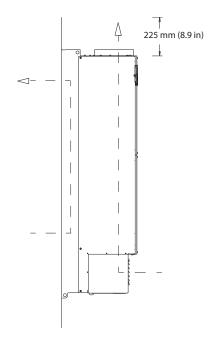


Рисунок 9.19 Циркуляция воздуха в комплекте охлаждения через заднюю стенку на E1h/E2h (слева) и E3h/E4h (справа)

9.10 Номинальные усилия затяжки фиксаторов

При затяжке фиксаторов в местах, перечисленных в *Таблица 9.6*, необходимо соблюдать правильные усилия. Слишком малое или слишком большое усилие затяжки контактов приводит к ненадежному электрическому соединению. Для обеспечения правильного усилия затяжки пользуйтесь динамометрическим ключом.

Расположение	Размер болта	Усилие [H·м (дюйм-фунт)]	
Клеммы сети питания	M10/M12	19 (168)/37 (335)	
Клеммы подключения электродвигателя	M10/M12	19 (168)/37 (335)	
Клеммы заземления	M8/M10	9,6 (84)/19,1 (169)	
Клеммы подключения тормоза	M8	9,6 (84)	
Клеммы разделения нагрузки	M10/M12	19 (168)/37 (335)	
Клеммы рекуперации (корпуса E1h/E2h)	M8	9,6 (84)	
Клеммы рекуперации (корпуса E3h/E4h)	M10/M12	19 (168)/37 (335)	
Клеммы реле	_	0,5 (4)	
Крышка двери/панели	M5	2,3 (20)	
Панель уплотнений	M5	2,3 (20)	
Панель доступа к радиатору	M5	3,9 (35)	
Крышка последовательной связи	M5	2,3 (20)	

Таблица 9.6 Номинальные усилия затяжки фиксаторов

10 Приложение

10.1 Сокращения и условные обозначения

°C	Градусы Цельсия
°F	Градусы Фаренгейта
Ом	Ом
Перем. ток	Переменный ток
	Автоматическая оптимизация
АОЭ	энергопотребления
ACP	Процессор управления применением
ААД	Автоматическая адаптация двигателя
AWG	Американский сортамент проводов
ЦП (CPU)	Центральный процессор
CSIV	Пользовательские значения инициализации
СТ	Трансформатор тока
Пост. ток	Постоянный ток
DVM	Цифровой вольтметр
эсппэу	Электрически-стираемое программируемое
ЭСППЗУ	постоянное запоминающее устройство
ЭМС	Электромагнитная совместимость
ЭМП	Электромагнитные помехи
Элстатич.	2
разряды	Электростатический разряд
ЭТР	Электронное тепловое реле
f _{M,N}	Номинальная частота двигателя
HF	Высокая частота
OBY	Отопление, вентиляция, кондиционирование
OBK	воздуха
Гц	Герц
ILIM	Предел по току
I _{INV}	Номинальный выходной ток инвертора
I _{M,N}	Номинальный ток двигателя
I _{VLT,MAX}	Максимальный выходной ток
	Номинальный выходной ток, обеспечиваемый
I _{VLT,N}	преобразователем частоты
IEC	Международная электротехническая комиссия
ILC	(International Electrotechnical Commission)
IGBT	Биполярный транзистор с изолированным
IGDI	затвором
I/O	Вход/выход
IP	Защита корпуса
кГц	Килогерц
кВт	Киловатт
Ld	Индуктивность двигателя по оси d
Lq	Индуктивность двигателя по оси q
LC	Индуктивно-емкостной
LCP	Панель местного управления
LED	Light-emitting diode = светодиод
LOP	Местный пульт управления
мА	Миллиампер
МСВ	Миниатюрные автоматические выключатели

МСО	Контроллер движения (опция)
MCP	Процессор управления двигателем
MCT	Служебная программа управления движением
MDCIC	Плата интерфейса управления несколькими
MDCIC	приводами
мВ	Милливольты
	Национальная ассоциация производителей
NEMA	электрооборудования (National Electrical
	Manufacturers Association)
NTC	Отрицательный температурный коэффициент
P _{M,N}	Номинальная мощность двигателя
PCB	Печатная плата
PE	Защитное заземление
PELV	Защитное сверхнизкое напряжение
пид-	Пропорционально-интегрально-
регулятор	дифференциальный
ПЛК	Программируемый логический контроллер
P/N	Номер детали
PROM	Постоянное запоминающее устройство
PS	Силовая часть
PTC	Положительный температурный коэффициент
PWM	Широтно-импульсная модуляция
Rs	Активное сопротивление статора
RAM	Оперативное запоминающее устройство
RCD	Датчик остаточного тока
Рекупераци я	Клеммы рекуперации
ВЧ-помехи	Радиочастотные помехи
	гадиочастотные помехи
эфф.	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического
эфф.	Эффективное (среднеквадратичное) значение
эфф.	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического
	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока)
об/мин	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту
об/мин SCR	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту Кремниевый управляемый тиристор
об/мин SCR SMPS	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту Кремниевый управляемый тиристор Импульсный источник электропитания
об/мин SCR SMPS S/N	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту Кремниевый управляемый тиристор Импульсный источник электропитания Серийный номер
об/мин SCR SMPS S/N STO	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту Кремниевый управляемый тиристор Импульсный источник электропитания Серийный номер Safe Torque Off
об/мин SCR SMPS S/N STO TLIM	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту Кремниевый управляемый тиристор Импульсный источник электропитания Серийный номер Safe Torque Off Предел крутящего момента
o6/мин SCR SMPS S/N STO T _{LIM} U _{M,N}	Эффективное (среднеквадратичное) значение (периодически изменяющегося электрического тока) Число оборотов в минуту Кремниевый управляемый тиристор Импульсный источник электропитания Серийный номер Safe Torque Off Предел крутящего момента Номинальное напряжение двигателя

Таблица 10.1 Сокращения, аббревиатуры и символы

Условные обозначения

- Нумерованные списки обозначают процедуры.
- Маркированные списки указывают на другую информацию и описания иллюстраций.
- Текст, выделенный курсивом, обозначает:

перекрестную ссылку

название параметра;

- ссылку;
- сноску;

- название группы параметров;
- значение параметра.
- Все размеры в миллиметрах (дюймах).

10.2 Международные/североамериканские настройки параметров по умолчанию

Установка для *параметр 0-03 Региональные установки* значения [0] *Международные* или [1] *Северная Америка* вносит определенные изменения в некоторые параметры международных или североамериканских установок по умолчанию. Данные параметры перечислены в *Таблица 10.2*.

Параметр	Международные значения параметров	Североамериканские значения
	установок по умолчанию	параметров установок по умолчанию
Параметр 0-03 Региональные установки	Международные	Северная Америка
Параметр 0-71 Формат даты	дд-мм-гггг	ММ/ДД/ГГГГ
Параметр 0-72 Формат времени	24 ч	12 ч
Параметр 1-20 Мощность двигателя [кВт]	1)	1)
Параметр 1-21 Мощность двигателя [л.с.]	2)	2)
Параметр 1-22 Напряжение двигателя	230 B/400 B/575 B	208 B/460 B/575 B
Параметр 1-23 Частота двигателя	50 Гц	60 Гц
Параметр 3-03 Максимальное задание	50 Гц	60 Гц
Параметр 3-04 Функция задания	Сумма	Внешнее/предуст.
Параметр 4-13 Верхн.предел скор.двигателя [об/мин] ³⁾	1 500 об/мин	1 800 об/мин
Параметр 4-14 Верхний предел скорости двигателя [Гц] ⁴⁾	50 Гц	60 Гц
Параметр 4-19 Макс. выходная частота	100 Гц	120 Гц
Параметр 4-53 Предупреждение: высокая скорость	1 500 об/мин	1 800 об/мин
Параметр 5-12 Клемма 27, цифровой вход	Выбег, инверсный	Внешняя блокировка
Параметр 5-40 Реле функций	Аварийный сигнал	Нет авар. сигналов
Параметр 6-15 Клемма 53, высокое зад./ обр. связь	50	60
Параметр 6-50 Клемма 42, выход	Скорость 0-HighLim	Скорость 4–20 мА
Параметр 14-20 Режим сброса	Сброс вручную	Беск.число автосбр.
Параметр 22-85 Скорость в расчетной точке [об/мин] ³⁾	1 500 об/мин	1 800 об/мин
Параметр 22-86 Скорость в расчетной точке [Гц]	50 Гц	60 Гц
Параметр 24-04 Макс. зад. пож. режима	50 Гц	60 Гц

Таблица 10.2 Международные/североамериканские настройки параметров по умолчанию

- 1) Параметр 1-20 Мощность двигателя [кВт] отображается только в том случае, если для параметр 0-03 Региональные установки установлено значение [0] Международные.
- 2) Параметр 1-21 Мощность двигателя [л.с.]отображается только в том случае, если для параметр 0-03 Региональные установки установлено значение [1] Северная Америка.
- 3) Этот параметр отображается только в том случае, если для параметр 0-02 Единица измер. скор. вращ. двигат. установлено значение [0] об/мин.
- 4) Этот параметр отображается только в том случае, если для параметр 0-02 Единица измер. скор. вращ. двигат. установлено значение [1] Гц.

10.3 Структура меню параметров

Mining Drive MD 202/MD 302	
Отне 5-обр.х-ки при быстр.ост.на замедл. Пуск Отне 5-обр.х-ки при быстр.ост. на замедл. Заверш. Ramp Lowpass Filter Time Цифр.лотенциометр Размер ступени Время изменения скор. Востановление питания Макс. предел Задержка рампъв Праделы двигателя Нижний предел скорсти двигателя Нижний предел скорсти двигателя [Пц] Верхний предел скорсти двигателя [Пц] Верхний предел скорости двигателя [Пц] Верхний предельные коэф. Источник пределения замес скорости Ошибка слежения, займ-аут после изм. ск-сти	Motor Speed Monitor Function Motor Speed Monitor Max Motor Speed Monitor Timeout
3-84 3-84 3-84 3-94 3-94 3-94 3-94 3-94 3-94 3-94 3-94 4-10 4-10 4-11 4-11 4-11 4-11 4-12 4-13 4-24 4-34	4-44 4-45
Брееd PID Start Integral Time Залану/вмен. скор. Пределы задания Диапазон задания Диапазон задания Диапазон задания Вадания Вадания Вадания Предустановленное задание Мункция задания Предустановленное задание Мункция задания Предустановленное задание Мсточание разгона/замедления Предустановл. относительное задания Мсто задания Предустановл. относительное задания Мсто задания Предустановл. относительное задания Мсточаник задания 1 Источник задания 2 Источник задания 1 Время замедления 1 Время разгона 1 Время разгона 1 Время разгона 1 Время замедления 2 Коот.5-рам. 1 в кочц. замедл. Изменение скор. тип 2 Время замедления 2 Время разгона 2 Время замедления 2 Соот.5-рам. 2 в кочц. разгона Соот.5-рам. 3 в комц. разгона Соот.5-рам. 3 в комц. разгона	Соот.5-рам.3 в нач. замедл. Соот.5-рам.3 в конц.замедл. Изменение скор. 4
_	3-67 3-68 3-7*
Начальная скорость [[ц]] Пусковой ток Регулировыстанова Функция при останове Мин.скордия функципри остан.[об/мин] Мин.скордия функципри останова Значение счетчика точных останова Задержка для компенс.скор.точн.остан. Темпердвигателя Вешний вентилятор двигателя Вешний вентилятор двигателя Источник термистора КТУ Источник термистора КТУ Источник термистора КТУ Пороговый уровень КТУ Пороговый уровень КТУ Пороговый уровень КТУ Пороговый уровень КТУ Пороковый уровень КТУ Пороможност. током Скорость включ.торм.пост.током Мин] Порможной резистор (Ом) Предельная мощность торможения Пороверка торможения Проверка тормоза Макс.ток торм. пост. т. Функция торможения Пороверка тормоза Макс.ток торможения Проверка тормоза Контроль перенапряжения	тооффицист усления перенапряжения Механич.тормоз Ток отпускания тормоза
	2-2 * 2-20
Мощность двигателя [п.с.] Напряжение двигателя Частога двигателя Частога двигателя Частога двигателя Номинальная скорость двигателя Длительный ном. момент двигателя Длительный ном. момент двигателя Доп, данн, двигателя Сопротивление статора (Rs) Сопротивление статора (Rs) Сопротивление ротора (Rs) Реакт, сопротивльрассеяния ротора (X2) Основное реактивное сопротивление (X2) Основное реактивное сопротивление (X2) Индуктивн. по оси q (Lq) Индуктивн. по оси q (Lq) Индуктивн. по оси q (Lq) Индуктивность по оси q (Lq) Индуктивн. при мин. скорости раментия Настр, зав. от натр Компенсация нагрузки на Выскорости Вкомпенсация нагрузки на Выскорости	компенсация скольжения Поствремени компенсации скольжения
	1-62
Показание: PedaKTKoHфигурацию/ канал Readout: actual setup Apkrneй LCP Строка дисплея 1.1, малая Строка дисплея 1.3, малая Строка дисплея 1.3, малая Строка дисплея 1.3, малая Строка дисплея 3, большая Моё личное меню Показ МПУвыб.плз. Едизм.показания, выб.польз. Вдиловзователем Зад.пользователем Кнопка [Hand on] на LCP Кнопка [Hand on] на LCP Кнопка [Hand on] на LCP Кнопка [Neset] на LCP Кнопка [Hand on] на LCP Кнопка [Neset] на LCP Копировать набор Пароль Пароль Забер Рагаметеегя Нагрузка/Даитатель Общие настройки Ремми конфинурирования Поминия илравления прамизяления Поминия илравления прамизяления	прицем пунскогом Кар-ка момента нагрузки Режим перегрузки
1-2 Agree Bonders marked to 3 2019/C CAGE 1-2 Annual 2-20 TOSTRUIT STATE TOTAL	According to the Conference of the Conference

Danfoss

Приложение	Руководство по эксплуатации
BTM Maximum Errors BTM Error Log Linфровое/Шина Выбор выбега Выбор торможения пост. током Выбор торможения пост. током Выбор реверса Выбор набора Выбор предустановленного задания	Bishop nap. OFF2 npusoga Profidive Bishop nap. OFF3 npusoga Profidive Ara nopra FC Inqcuccoodu, nepeax no wune Guerunk ouwfox npu ynpas. no wune Inonyu. coodu,a or nogu, ycrp-sa Inqcu. ouwfo. nogu, ycrp-sa Oukc. ckop. 1, ycr. no wune Oukc. ckop. 1, ycr. no wune Oukc. ckop. 1, ycr. no wune Brofidita Setpoint Actual Value PCD Read Configuration Node Address Drive Unit System Number Telegram Selection Parameter Edit Process Control Fault Message Counter Fault Code Fault Number Fault Situation Counter Fault Studion Counter Forfibus Warning Word Actual Baud Rate Device Identification Profile Number Control Word 1 Status Word 1 S
8-48 8-49 8-50 8-51 8-53 8-54 8-55 8-56	8.577 8.8757 8.8
Постоянная врем,дифф.ПИД-рег. проц. ПУ цепи дифф.ПИД-рег.пр. Зона соответствия заданию Р. ПИД-рег. пр. Сброс 1 части ПИД-рег. пр. Отр. выход ПИД-рег. пр. зажим Пол. выход ПИД-рег. пр. зажим Пол. выход ПИД-рег. пр. на мин.	зад. М-6 ус. ПИД-рег. пр. на макс. зад. Ресурс пр. св. ПИД-рег. пр. ПИД-реглроц., прям.связь, норм./инв. Упр. Ресурс пр. св. ПИД-рег. пр. Ресурс пр. св. ПИД-рег. пр. Режил ИД-рег. проц., расш. ПИД-рег. Увел. пр. св. ПИД-рег. пр. Замедл. проц., бл. предохр. вр. Общее настройке Место управления Источник командного слова Функция таймаута командного слова Функция паймаута командного слова Функция паймаута командного слова Функция паймаута командного слова Функция паймаута командного слова Функция порта ПЧ Битокоп Адрес Скорость передачи порта ПЧ Биты контроля четности / стоповые билы Протком Максимальная задержка реакции Максимальная задержка реакции Максимальная задержка реакции Максимальная задержка реакции Виксимальная задержка реакции Вистирого задержнае втМ тапазастоп Состояние ВТМ Тапазастоп Проского в ТМ
7-35 7-36 7-38 7-39 7-40 7-41 7-42	7-44 7-45 7-46 7-46 7-46 7-48 7-48 7-48 7-50 7-50 7-50 7-50 7-50 7-50 7-50 7-50
Клемма X30/12, макс.знач.задан./ОС Клемма X30/12, пост. времени фильтра Аналогов.выход 1 Клемма 42, выход Клемма 42, ман. выход Клемма 42, итравление вых. шиной Клемма 42, утравление вых. шиной Клемма 42, уст. вых. тайм-аута Клемма 42, уст. вых. тайм-аута Клемма 42, уст. вых. тайм-аута Клемма 42, фильтр выхода	Аналог. выход 2 Клемма ХЗ0/8, цифровой выход Клемма ХЗ0/8, имн. масштаб Клемма ХЗ0/8, мин. масштаб Клемма ХЗ0/8, мин. масштаб Клемма ХЗ0/8, мин. масштаб Клемма Х45/1, выход Клемма Х45/1 Мин. масштаб Клемма Х45/1 Мин. масштаб Клемма Х45/1 Мин. масштаб Клемма Х45/1 Мин. масштаб Клемма Х45/3 выход Клемма Х45/3 выход Клемма Х45/3 мин. масштаб Клемфе, пр. св. ПИД-регулят скор. Постояни, итетр. кр. мом. Время интр. для упр. процессом Источник ОС 1 для упр. процессом Источник ОС 2 для упр. процессом
6-45 6-46 6-50 6-51 6-53 6-53 6-54	6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-
Клемма 33, макс. задание/обр. связь Поствремени импульсн. фильтра мяз3 импульсный выход клемма 27, переменная импульс.выхода макс.частота имп.выхода №27 клемма 29, переменная импульс.выхода Макс.частота имп.выхода Макс.частота имп.выхода Макс.частота имп.выхода Макс.частота имп.выхода	Клемма X30/6, перем, имп. выхода ма. Макс.частота имп. выхода N930/6 6 6 8 ма. энкодера 24 в Клеммы 32/33, число имп. на об. Догу. вв./выв. 6 3д. переп. конденс. АНЕ Здд. переп. конденс. АНЕ Управление цифр. и репейн. шинами билп. выход №27, предуст. тайм-аута билп. вых №230/6, пруст. тайм-аута билп. вых. №330/6, пруст. тайм-аута билемма 53, низкое напряжение билемма 53, низкое зад./обр. связь билемма 53, низкое напряжение билемма 54, низкое напряжение билемма 54, низкое зад./обр. связь билемма 54, низкое зад./обр. связь билемма 54, низкое зад./обр. связь билемма 54, высокое зад./обр. связь билемма 54, потст. времени фильтра дилоговый вход 3 клемма X30/11, мин.знач.напряжения билемма X30/12, мин.знач.напряжения билемма X30/12, мин.знач.задан./ОС билемма X30/12, мин.знач.задан./ОС билемма X30/11, мин.знач.напряжения билемма X30/11, мин.знач.задан./ОС
	5.566 5.77 5.78 5.79 5.79 5.79 5.79 5.79 5.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6
Настр. предупр. Предупреждение: низкий ток Предупреждение: высокий ток Предупреждение: низкая скорость Предупреждение: высоко задание Предупреждение: низко задание Предупреждение: нызко задание Предупреждение: высоко задание Предупреждение: высоко задание Предупреждение: высоко задание Предупреждение: высокий сигнал ОС Предупреждение: высокий сигнал ОС Оункция при обрыве фазы двигателя	Миског Слеск Ат Start Исключение скорости с [об/мин] Исключение скорости с [об/мин] Исключение скорости до [об/мин] Исключение об/мин] Исключение об/мин задание/обр. связь Исклюма 29, макс. задание/обр. связь Исклюма 29, макс. задание/обр. связь Исклюма 33, макс. задание/обр. связь Исклюма 33, макс. задание/обр. связь Исклюма 33, мин. задание/обр. связь
* 4-54 4-51 4-52 4-54 4-55 4-55 4-56 4-57 4-57 4-57 4-57 4-57 4-57 4-57 4-57	4-66. 4-66. 4-66. 5-00. 5-

Πþ	м	Л	ж	e	н.	1e																			IV	ıır		19	L	<u> </u>	V (-	VIL	_	20	2/	/IV	υ _	3	U_	_																									
		1 Версия прогр. обеспеч. доп. устр.	2 Номер для заказа доп. устройства						_								ומסמסו: פרחו: פ אמכמא	п предуст. наработ. вент. в часах	9 Configuration Change Counter	» Информап.о парам.						* Показания)* Общее состояние					З слово состояния		6 Actual Position							•				7 Скорость [об/мин]		•	-	. –						;* Состояние привода											9 Температура платы управления
15-6*	15-60	15-61	15-62	15-63	15.70	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, ,	7/-61	15-73	15-74	15-75	77 77	-6	15-77	15-8*	15.80		λ-α	15-89	15-9*	15-92	15.03	2 2	- י	15-99	16-**	16-0*	16-00	20 7		16-07	16-03	16-05	16-06	16-09	16-1*	16-10	16-11	16.17	5 ,	10-13	16-14	16-15	•	16-17	•	16-19	16-20	16.21	16.21	2 6	10-23	16-24	16-25	16-3*	16-30	16-31	16-32	16-33	16-34	16-35	16-36	16.37	5 6	16-38	16-39
		14-55 Выходной фильтр	14-56 Емкостной выходной фильтр	14-57 Inductance Output Filter		14 FO				14-73 Слово предупреждения VLT					14-88 Option Data Storage			14-9* уст-ки неиспр.	14-90 Уровень отказа	15-** Информация о приводе						15-03 Кол-во включений питания	15-04 Кол-во перегревов		_			15-1* Настр. рег. данных		15-11 Интервал регистрации	15-12 Событие срабатывания	15-13 Режим регистрации			7.7* ×C.71						15-30 Журнал неисправностей: код ошибки	15-31 Журнал неисправностей: Значение	Журнал неисправностей:			_				15-44 Начальное обозначение	15-45 Текущее обозначение	15-46 Номер для заказа преобразов.	частоты	15-47 № для заказа силовой платы								15-59 Имя файла CSIV
14	4	4	7	14		7					4					17		<u>+</u>	7	15	7	; ,	,	ָרָ נַ	15	15	15	7.		2 ;	<u>-</u>	15	15 AN	15	15	15	15		1.	ָרַ בְּ	<u>.</u>	5 ;	12	12		•	15	7.	, t	7 .		<u>.</u>	12	15	15	15		15			7 7		7 7		. 15	5
RS Flip Flops	RS-FF Operand S	RS-FF Operand R	Таймеры						Оператор логического соотношения	_	Бупева переменная			Оператор логического соотношения	2	Булова поромонцая		логич.соотношенияз	Состояние	Событие контроллера SL		Коммут инвертора				Частота коммутации						Отказ питания	Напряжение сети при отказе питания 15-10	Функция при асимметрии сети										. Задрж. откл. при прд. токе	Задержка отключ.при пред. моменте									фильтра		Field-weakening Function										Корр.нап. на шине пост.т
13-1*	13-15	13-16	13-2*	13-20	13-4*	10,00	5		13-41		13-42	1	!	13-43		13-44	-		13-5*	13-51	13-57	*****	*0 /1	1	14-00	14-01	14-03	14-04		14-00	<u>-1-1</u>	14-10	14-11	14-12	14-14	14-15	14-16	14-2*	17.20	14-20	14-71	14-22	14-23	14-24	14-25	14-26	14-28	14-29	14.2	2 7 1	7 5	14-31	14-32		14-35	14-36	14-37	14-4*	14-40	14-41	14-47	14-43	14-5	1 5	14-50	14-51
		Э Сохранять всегда	* Ethernet/IP) Параметр предупреждения				МОДИФИК. СІР	Обознач. изд. СІР	5 Параметр EDS	Таймер запрета СОЅ		William CO3	Modbus TCP) Параметр состояния	פ-דייא שמסם ווואיז דפווימים ר	ווסקיבורו כסקי ווסקיבו מ	Подсчет сощ. оо искл. подч. уст-а	EtherCAT	Configured Station Alias		Ethor/ AT Status	Ethornot Domorfing			2 SDO Timeout	3 Basic Ethernet Timeout					9 Ethernet PowerLink Status	* Доп. Службы Ethernet) Cepsep FTP								-1) Диагностика кабеля	I Автопересечение	2 Слежение IGMP									3 Интерф. счетчики	Счетчики аудиовиз. информ.	Интеллектуальная логика	Настройка SLC	Режим контроллера SL			Coor SI	Компараторы	One of the organization of	Операнд сравнения	Оператор сравнения	Результат сравнения
12-27	12-28	12-29	12-3*	12-30	12-31	, ,	20.71	7-33	12-34	12-35	12-37	, ,	05-71	12-4*	12-40	12-41	1 (12-47	12-5*	12-50	12-51	12-59	******	0-71	15-60	12-62	12-63	12-66	1,000	70-71	7-68	12-69	12-8*	12-80	12-81	12-82	12-83	12-84	12.85	20-7-1	12-89	12-9*	12-90	12-91	12-92	12-93	12-94	1	12.05	7	,	96-71	12-97	12-98	12-99	13-**	13-0*	13-00	13-01	13-02	13-03	13-1*	13-10	, ,	13-11	13-12
Пер. шина САN	Общие настройки	10-00 Протокол CAN	10-01 Выбор скорости передачи		иодиния опперок			показание счетчика ошиоок приема	10-07 Показание счетчика отключения	ШИНЫ	PN¤+	D. Gos Ting Towns of the Park	рысор типа технологических данных	Запись конфигур. технологич.данных	10-12 Чтение	TOWN DEPTHE	Agamay Pag. IcAHOOO NA. Agamay	10-13 Параметр предупреждения	10-14 Задание по сети	10-15 Управление по сети		COS duntan 1	C C	COS WAIIBID 2	СОЅ фильтр 3	10-23 СОЅ фильтр 4	aM.	Инпекс массива		Сохранение значении данных	vicenet	Сохранять всегда		Параметры Devicenet F		Запись конфигур, технологич, данных 12-82	Чтение конфигур, технологич, данных 12-83	Ethernet	I N	<u>c</u>	ие адреса IP			юз по умолч.	Cepsep DHCP	Истек срок владения				2000	Pushaechin adpec	ла Etnernet		12-11 Продолжит. связи	12-12 Автомат. согласован.	12-13 Скорость связи	12-14 Дуплексн. связь		Supervisor IP Addr.	Техноп ланные	Пример управления	אחטוטנים חשוטנים	Utoulo Konduny Texhonoriu nautiky 13-10	District Date Cane With City	Process Data Config Write Size	12-24 Process Data Config Read Size

Danfoss

Приложение	Руководство по эксплуатации
 33-19 Тип главного маркера 33-20 Тип подчин. маркера 33-21 Окно допуска главн.маркера 33-22 Окно допуска главн.маркера 33-24 Номер маркера для ошибки 33-25 Номер маркера для тоговности 33-25 Номер маркера для готовности 33-25 Пост.вр.фильтра смещения 33-27 Пост.вр.фильтра смещения 33-28 Конфигурация маркерного фильтра 33-30 Пост.врем.маркерного фильтра 33-30 Макс. коррекция маркера 33-31 Макс. коррекция маркера 33-31 Тит синяориязации 	
32-37 Генерир-е такт. частоты абс.энк. 32-38 Длина кабеня абсолютного энкодера 32-49 Контроль энкодера 32-43 Епс.! Сопто! 32-44 Епс.! поde ID 32-44 Епс.! node ID 32-45 Источн. ситн. обр. св. 32-55 Source Slave (Подчиненный источник) 32-51 МСО 302, Посл. 32-65 МДА-регулятор 32-56 Коэф. плополя звена 32-66 Коэф. плополя звена	32-67 32-67 32-67 32-65 32-65 32-65 32-67 32-68 32-72 32-88 32-72 32-88 32-72 32-88 32-72 32-88 32-74 33-74 33-88 33-98
 30-07 Время последовательности качаний 30-08 Ускор./замедл. качания 30-09 Функция произв. качания 30-10 Отношение качания 30-11 Произв. макс. отношение качания 30-12 Произв. мин. отношение качания 30-12 Дельга част. качания Нормированный 30-2* Расш. зап. настр. 30-20 High Starting Torque Time [s] 30-21 High Starting Torque Current [%] 30-21 High Starting Torque Current [%] 30-21 Bpeмя определ. блокир. ротора [с] 33-24 Bpeмя определ. блокир. ротора [с] 30-24 Iorked Rotor Detection Sneed Fror 	
17-26 Формат данных SSI 17-34 Скорость передачи HIPERFACE 17-5* Интерф. резолвера 17-50 Число полюсов 17-51 Входное напряжение 17-52 Входное напряжение 17-54 Входное напряжение 17-55 Епсобет Sim. Resolution 17-59 Интерф. резолвера 17-6* Контроль и примен. 17-6* Контроль сигнала энкодера 17-6* Направление энкодера 17-6* Рокітол Scalina	
16-40 Буфер регистрации заполнен 16-41 Нижняя строка состояния LCP 16-45 Motor Phase U Current 16-46 Motor Phase W Current 16-48 Speed Ref. After Ramp [RPM] 16-49 Источник сбоя тока 16-5* Задание и обр.связь 16-50 Внешнее задание 16-51 Импульсное задание 16-51 Импульсное задание 16-52 Обратная связь [ед. изм.] 16-53 Задание от цифрового потенниометра	16-57 Feedback (RPM) 17-71 16-68 Bxoqus и выходы и выходы и серой вход 16-60 (Мифровой вход 53 (16-61 Клемма 53, настройка переключателя 17-73 (16-63 Клемма 54, настройка переключателя 17-73 (16-63 Клемма 54, настройка переключателя 18-27 (16-64 Аналоговый вход 42 (ма) 18-29 (16-67 Аналоговый вход 42 (ма) 18-29 (16-67 Аналоговый вход Ne29 (гц.) 18-38 (16-67 Аналоговый вход Ne29 (гц.) 18-38 (16-72 Счетчик В В Натоговый вход X30/12 (16-73 Аналоговый вход X30/12 (16-74 Аналоговый вход X30/12 (16-75 Aналоговый вход X30/12 (16-76 Ananorosum x00 x00/16-85 (16-85 nopr ПЧ, ком. слово 1 18-6* 16-8* Fieldbus, командное слово 1 18-75 (16-94 Cлово сост. вар. связи (16-95 Cлово аварийной сигнализации (16-97 Cлово аварийной сигнализации (16-97 Cлово аварийной сигнализации (16-97 Cлово аварийной сигнализации (16-97 Pacump. Слово состояния (16-97 Pacump. Слово предулреждения (10-30 (17-13 Paapeшение (позиции/об) (17-13 Paapeшение (позиции/об) (17-22 Multiturn Revolutions (17-22 Multiturn Revolutions (17-23 (17-24 Длина строки данных SSI (17-25 (17-24 (1

ī	lacksquare
ı	U

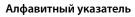
43-25 FPC Fan F Speed 600-2* PROFIdrive/safe Tel. Selected 600-22 PROFIdrive/safe Tel. Selected 600-44 Fault Number 600-45 Fault Situation Counter 600-52 PROFIdrive 2 601-22 PROFIdrive Safety Channel Tel. No	
42-22 Discrepancy Time 42-23 Stable Signal Time 42-24 Restart Behaviour 42-36 External Failure Reaction 42-37 Parameter Set Name 42-35 S-CRC Value 42-35 Level 1 Password 42-45 Times	
Функция авар. сигн. датч. темп. Temn. X48/4 Filter Time Constant Term. X48/4 Filter Time Constant Term. X48/4 Temp. Monitor Term. X48/4 High Temp. Limit Term. X48/4 High Temp. Limit Temn. X48/7 Filter Time Constant Term. X48/7 Filter Time Constant Term. X48/7 Temp. Monitor Term. X48/7 Temp. Temp. Temp. Temp. X48/7 Temp. X48/7 Temp. Temp. X48/7 Temp	Temn. X48/10 Filter Time Constant Temn. X48/10 Filter Time Constant Term. X48/10 Filter Time Constant Term. X48/10 Low Temp. Limit Ahanor. 8xog X48/2 Term. X48/10 Low Temp. Limit Ahanor. 8xog X48/2 Term. X48/2 High Current Term. X48/2 High Current Term. X48/2 Low Current Term. X48/2 Low Ref.Feedb. Value Term. X48/2 High Ref.Feedb. Value Term. X48/2 Filter Time Constant Preminal X49/9 Mode Terminal X49/9 Mode Terminal X49/7 Min. Scale Terminal X49/7 Min. Scale Terminal X49/7 Min. Scale Terminal X49/7 Min. Scale Terminal X49/9 Min. Scale Terminal X49/11 Min. Scale Terminal X49/1 Timeout Preset Output X49/11 Min. Scale Terminal X49/1 Timeout Preset Seed Monitoring Speed Monitoring Seed Source Encoder Resolution Feedback Filter Tolerance Error Zero Speed Timer Zero Speed Limit Safe Function Type
oate termination baud rate	Запись РСБ 5 в МСО Запись РСБ 6 в МСО Запись РСБ 8 в МСО Запись РСВ 8 в МСО Запись РСВ 9 в МСО Считывание РСВ 1 из МСО Считывание РСВ 2 из МСО Считывание РСВ 4 из МСО Считывание РСВ 5 из МСО Считывание РСВ 5 из МСО Считывание РСВ 6 из МСО Считывание РСВ 9 из МСО Считывание Сположение Текуще положение Текуще положение Текуще скорость главнустр. Состояние сикронизации 1 МСО Состояние сикронизации 2 МСО Опция вход, Састояние МСО 302, Управление SPI Еггог Соцпет Показан. диагност. Слово авар.ситнализации 1 МСО Опция вход, Тетот Соците Петт. X48/7 Теторетацие Unit Клем.X48/7 вид входа Тетт. X48/10 Теторетацие Unit Клем.X48/7 Вид входа Тетт. X48/10 Теторетацие Unit

Б

Алфавитный указатель

F	
FPC	1 (
см. также Плата питания вентилятора	10
L	
LCP	
Дисплей	
Расположение	
Световые индикаторы	
Устранение неисправностей	
M	
MCT 10	56
R	
DC405	
RS485	4/
S	
Safe Torque Off	
Подключение проводки	
Предупреждение	
Расположение клемм	
Руководство по эксплуатации	
STOсм. также Safe torque off	4
U	
USB	
Расположение порта	12
Технические характеристики10	
Α	
^	
ААД	
ААД также Автоматическая адаптация двигателя	77
Аварийные сигналы	
Журнал	13
Список	70
Аварийных сигналов Список	13
Автоматическая адаптация двигателя	
Настройка	57
Предупреждение	
Автоматическая оптимизация энергопотребления	57
Автоматические выключатели 50, 1	0
Автоматический режим 14, 6	56
Аналоговый выход/выход	
Описания и настройки по умолчанию	
Расположение клемм	12

Быстрое меню 13, 53
В
Вентиляторы Предупреждение
Версия программного обеспечения 4
Взрывоопасная атмосфера 16
Влажность
Внешние габариты
Внутреннее устройство 10
Внутренняя неисправность
Время замедления 84
Время разгона 84
Время разрядки 7
Вход/выход для подключения элементов управления Описания и настройки по умолчанию
Входное напряжение 52
ВЧ-помехи 10, 11, 30, 114, 117
Выравнивание потенциалов 32
Высокое напряжение 6, 52
Высота
Γ
Газы 16
Главное меню 53
Глоссарий120
Глубина9
Д
Датчик45


Двигатель	Клеммы
Вращение	Аналоговый выход/выход46
Данные 90	Клемма 37 45, 46
Кабели 24, 28	Последовательная связь 45
Класс защиты 16	Размеры клемм корпуса E1h (вид спереди и сбоку) 34
Клеммы 10	Размеры клемм корпуса E2h (вид спереди и сбоку) 36
Настройка 53	Размеры клемм корпуса E3h (вид спереди и сбоку) 38
Номинальное усилие затяжки 119	Размеры клемм корпуса E4h (вид спереди и сбоку) 41
Перегрев 72	Расположение элементов управления 12, 44
Подключение28	Реле 46
Предупреждение 71, 72, 75	Цифровой вход/выход45
Спецификации выходных параметров 96	Кнопки навигации 13, 54
Схема подключений	
Термистор 64	Конденсация 16
Устранение неисправностей 82, 83	Конфигурации монтажа17
Дополнительное оборудование 47, 52	Конфигурации проводки
• •	Внешний сброс аварийной сигнализации
Дополнительные контакты	Пуск/останов
	Разомкнутый контур61
Ж	Рекуперация
N/	Термистор
Журнал учета отказов	Короткое замыкание
3	Крутящий момент
	Предел72, 84
Заводские настройки по умолчанию 59	Характеристика
Заземление	
Заземленный треугольник 30	Крышка двери/панели
Клеммы 10, 11	Номинальное усилие затяжки 119
Номинальное усилие затяжки119	
Плавающий треугольник 30	M
Подключение	
Предупреждение	Macca9
Сеть, изолированная от земли	Меню
Список контрольных проверок 50	Кнопки13
Защита от перегрузки по току	Описания 53
Защита от перегрузки по току 24	Монтаж
	Быстрая настройка57
И	Инициализация60
Измеряемые величины	Квалифицированный персонал
	Клеммы цепи разделения нагрузки/рекуперации 23
Инструкции по технике безопасности 6, 24, 52	Механический
Инструменты	Необходимый инструмент15
• •	Пусконаладочные работы
Источник питания 24 В пост. тока	Соответствие по ЭМС
	Список контрольных проверок
K	Требования
V 6	Электрический24
Кабели	5/15/11 pr. 1551 u.m.
Двигатель	П
Длина и сечение кабелей	Н
Макс. число и размер кабелей на фазу	Нагреватель
Открытие отверстий для	Использование16
Предупреждения относительно монтажа	Подключение проводки 47
Прокладка	Расположение10, 11
Сеть питания	Схема подключений
Технические характеристики	
Экранированные25	Нагреватель воздуха
Квалифицированный персонал 6	см. также Нагреватель
Класс энергоэффективности	Напряжение
-T 1 1	Вход
	Перекос фаз 70
	Напряжение питания 52, 98

Настройка	13	Подставка
Непреднамеренный пуск	6	Подъем 15, 18
Номинальная мощность	9, 15, 85	Полка управления 10, 11, 12
Номинальный ток короткого замыкания (SCC		Помехи Радиочастотные9
0		ЭМС
Обслуживание	65	Последовательная связь
у Окружающая среда		Номинальное усилие затяжки крепежа крышек 119 Описания и настройки по умолчанию 45
Определения		Расположение12
Предупредительная и аварийная сигнализа	•	Потенциометр
Сообщения о состоянии	00	Потеря фазы 70
Охлаждение Предупреждение о пыли	16	Поток воздуха 16, 18, 118
Список контрольных проверок		Предохранители
Требования		Защита от перегрузки по току24
·		Расположение 10, 11
Охлаждение с помощью вентиляционного ка	нала 17	Список предпусковых проверок 50
Охлаждение через заднюю стенку	17, 112	Технические характеристики100
	•	Устранение неисправностей 83
П		Предупреждений
	102	Список 13,70
Панель заглушек	103	Преобразователь частоты
Панель уплотнений		Инициализация 60
Номинальное усилие затяжки		Определение9
Описание		Размеры 9
Размеры Е1h		Состояние
Размеры Е2h		Требования к зазорам17
Размеры ЕЗҺ		Проводка элементов управления 44, 46, 50
Размеры Е4h		
Параметры	53, 59, 119	Программирование
Паспортная табличка	15	Пространство для открытия дверей Е1h105
Первоначальная настройка	52	E2h
Переключатели		E3h 113
A53/A54	48	E4h119
Оконечная нагрузка шины		D /
Расцепители		Пуск/останов
Расцепитель		
		P
Переключатели А53/А54		Радиатор
Переключатель оконечной нагрузки шины	12, 47	Номинальное усилие затяжки крепежа панели доступа
Перенапряжение	84	119
Переходные процессы	32	Предупреждение
Периодическая формовка	15	Размеры панели доступа в E1h104 Размеры панели доступа в E2108
Периферийная шина	44	Размеры панели доступа в E3h 112
	95	Размеры панели доступа в Е4h 118
_		Точка отключения из-за перегрева
Плата питания вентилятора		Требуемый поток воздуха
Предупреждение		Чистка 16, 65
Расположение	10, 11	Разделение нагрузки
Плата управления		Клеммы 11
RS485	96	Номинальное усилие затяжки 119
Предупреждение	78	Предупреждение6
Расположение		Расположение клемм 11
Технические характеристики	100	Схема подключений
Точка отключения из-за перегрева		
Подключение к клеммам управления		
, , , , , , , , , , , , , , , , , , ,		

Разомкнутый контур		Термистор	
Пример программирования		Конфигурации проводки	
Проводка для регулировании скорости	61	Предупреждение	
Точность по скорости	100	Прокладка кабелей	
Разрешения и сертификаты	4	Расположение клемм	46
Расцепители		Техобслуживание	. 16, 65
Расцепитель		Ток	
·		Вход	
Расшифровка сообщений о состоянии		Предел	
Региональные установки	59, 121	Утечка	
Режим ожидания	68	Ток утечки	7, 32
Рекуперация		Тормоз	
Клеммы	11	Номинальное усилие затяжки	
Конфигурация проводки	64	Расположение клемм	
Номинальное усилие затяжки	119	Сообщение о состоянии	66
Расположение клемм		Тормозной резистор	
Реле		Предупреждение	74
Расположение	12 46	Проводка	
Спецификации выходных параметров	•	Расположение клемм	
		Схема подключений	
Температура тормозного резистора	40		
Руководство		V	
Номер версии	4	У	
Руководство по программированию	4	Указания по утилизации	5
Руководство по проектированию	4, 17, 96	Усилие затяжки	
Ручной режим	14.66	Номинальное усилие затяжки фиксаторов	119
, ,, pe		Условия окружающей среды	
6		Краткое описание	16
C		Технические характеристики	
Сброс	14, 69, 78	Устранение неисправностей	
Световые индикаторы	70	LCP	81
•		Двигатель	
Сертификация UL	4	Предохранители	
Сеть переменного тока	30	Предупредительная и аварийная сигнализация	
см. также Сеть питания		Сеть питания	
Cam			
Сеть питания	20	Устройство взаимоблокировки	4/
Кабели		Утилизация	5
Клеммы	•		
Номинальное усилие затяжки		Φ	
Подключение		Φ	
Предупреждение		Фильтр	16
Технические характеристики	89	•	
Силовая плата питания		V	
Предупреждение	78	X	
Расположение	12	Хранение	15
Силовые разъемы	24	Хранение конденсаторов	15
Скрутки	24		
. , Сокращения	120	Ц	
Соответствие требованиям ADNА		' Цифровой вход/выход	
·		цифровои вход/выход Описания и настройки по умолчанию	15
Средство конфигурирования МСТ 10	56	Расположение клемм	
Т		Ш	
Температура	16		
		Шильдик	15
тепловал защита	¬	Ширина	9

Э

Экранирование	
ВЧ-помехи	10, 1
Кабели	4
Клемма экрана ВЧ-помех	113, 11
Сеть питания	
Скрученные концы	24
Экранирование сети питания	
Электрические характеристики, 380–500 В	80
Электрические характеристики, 525–690 В	88
Электронное тепловое реле (ЭТР)	24
ЭМС	24, 25, 26
Энколер	58

Компания «Данфосс» не несет ответственности за возможные опечатки в каталогах, брошюрах и других видах печатных материалов. Компания «Данфосс» оставляет за собой право на изменение своих продуктов без предварительного извещения. Это относится также к уже заказанным продуктам при условии, что такие изменения не влекут последующих корректировок уже согласованных спецификаций. Все товарные знаки в этом материале являются собственностью соответствующих компаний. «Данфосс» и логотип «Данфосс» являются товарными знаками компании «Данфосс А/О». Все права защищены.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

RI.09.MD2.50