

ENGINEERING TOMORROW

User Manual

PLUS+1® GUIDE Software PLUS+1 Function Block Library—Control Function Blocks

Revision history

Table of revisions

Date	Changed	Rev
January 2019	Rebranding	0101
May 2016	Updates for new library version.	CA
April 2014	Supports Rev 3.00	BC

Contents

Risk Reduction		
	Design, Test, and Secure to Reduce Risks	6
	Design	
	Test	6
	Secure	7
Controller_PI Function Blo	ck	
	Inputs	
	Outputs	
	Function Block Connections	
	Status Logic	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Controller_PID Function B		15
	Inputs	
	Outputs	
	Function Block Connections	
	Status Logic	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Profile_Knee Function Blo	ck	
	Inputs	22
	Outputs	
	Function Block Connections	
	Function Block Example	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Profile_6Pt Function Block		20
	Inputs	
	Outputs	
	Function Block Connections	
	Function Block Example	
	Status Logic	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Profile_8Pt Function Block		
	Inputs	34
	Outputs	35
	Function Block Connections	
	Function Block Example	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Comparison of 6Dt ODt		
-	d Profile_Knee Function Blocks	
Ackermann Function Block	(

Contents

	Outputs	44
	Function Block Connections	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Steering Modes	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Ackermann_Spd Function		F 1
	Inputs	
	Outputs	
	Function Block Connections	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Steering Modes	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Ackermann_Strg Function	n Block	
	Inputs	59
	Outputs	
	Function Block Connections	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Steering Modes	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
Inverse_Acker Function B		67
	Inputs	
	Outputs	
	Function Block Connections	
	How the Inverse_Acker Function Block Works to Restore Lost Ang Inputs	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Steering Modes	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	75
Hysteresis Function Block		
	Inputs	76
	Outputs	
	Function Block Connections	
	Function Block Example	
	Status and Fault Logic	
	Status Logic	
	Fault Logic	
	Identical Function Blocks Need Different Namespace Values to Successfully Compile	
	Change Namespace Value	
	IEC 61508-3 Annex D Supplemental Information	
		02
State_Brake Function Bloc		
	Inputs	83

Contents

Outputs	83
Parameters	84
About the Para Input	
Function Block Connections	
Function Block Examples	87
Status and Fault Logic	91
Status Logic	
Fault Logic	92
Identical Function Blocks Need Different Namespace Values to Successfully Compile	
Change Namespace Value	
IEC 61508-3 Annex D Supplemental Information	

Risk Reduction

Design, test, and secure applications that you develop to reduce risks of personal injury and equipment damage.

Design, Test, and Secure to Reduce Risks

Applications created with PLUS+1° GUIDE typically control equipment such as tractors, cranes, and harvesters.

Using heavy, powerful, and mobile off-road equipment always involves the risk of personal injury and equipment damage, even when this equipment is operating under normal operating conditions. Abnormal operating conditions greatly increase the risk of personal injury and equipment damage.

The PLUS+1[®] program has no automatic protections against these risks. The tool has no protection against the risks that result from bugs in the tool software, errors in the tool manual, or incompatibilities between software versions of the tool.

You must:

- Design your application to reduce these risks.
- Test your application to reduce these risks.
- Secure your application against unauthorized changes in its operating parameters to reduce these risks.

Design

As you design your application, you must include the fault checking and the error handling needed to reduce risks in normal and abnormal operating conditions.

Consider the following when developing fault checking and error handling for your PLUS+1[®] GUIDE application:

- How the machine is normally used.
- Possible operator errors and their consequences.
- Industry safety standards and legal requirements.
- Input and output failures and their consequences. These failures can include:
 - Joystick, sensor, and other inputs suddenly going to ± 100 % or to 0 %.
 - Joystick, sensor, and other inputs suddenly going to ± 100 % or to 0 %.
 - Outputs that control machinery direction, speed, and force suddenly changing direction or going to ±100 % or to 0 %.

Decide how likely each failure is. The more likely a failure, the more you need to protect against the consequences of the failure.

- The sequence of events and consequences of a fault or error.
- The sequence of events and consequences of an emergency stop.

Test

After creating an application, you are responsible for testing the application.

Download your application to hardware and test its operation under both normal and abnormal operating conditions. Make sure:

- Individual inputs produce expected outputs.
- Fault handling and error checking work as designed.

You must repeat your tests when you make configuration, calibration, or software changes to the application.

Risk Reduction

Secure

You have the responsibility to secure your application against unauthorized changes.

Always use the PLUS+1[®] GUIDE program's Toolkey feature to restrict access to your application's operating parameters.

• Without Toolkey protection, there is an increased risk that unauthorized personnel could use the PLUS+1° Service Tool program to change your application's operating parameters.

Changes in your application's operating parameters might cause unexpected machinery movement that results in personal injury and equipment damage.

• Toolkey protection reduces the risk that unauthorized personnel could use the PLUS+1[®] program to change your application's operating parameters.

Refer to *How to Use the Toolkey to Restrict Service Tool Access to Application Values* in the *PLUS+1—How-to* chapter of the *PLUS+1 GUIDE User Manual* (Danfoss part 10100824).

Controller_PI Controller_PI + ChkPt IO + P Gain Status + + I Gain + Rst/Hld + Rst Val + I Stop + Max Error + + Min Saturate + + Dband P + + Stpt I + + Fdbk Output +

Use the **Controller_PI** (Proportional and Integral) function block to control a closed-loop application.

This function block achieves closed-loop control by changing its output signal to get its feedback signal to equal its set point signal.

You can use this function block in:

- Constant speed control applications.
- Propel functions such as cruise control or straight tracking.
- Work functions such as transit mixers.

The **Controller_PID** function block is available to implement closed-loop control through proportional, integral and derivative (PID) functions. See *Controller_PID Function Block*. The **Controller_PI** function block uses less memory than the **Controller_PID** function block.

Inputs

The inputs to the **Controller_PI** function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

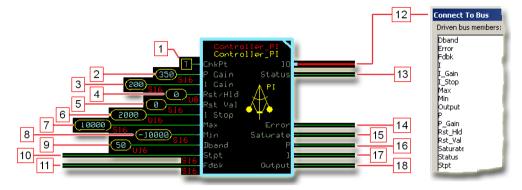
ltem	Туре	Range	Description	
ChkPt	BOOL		 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file. 	
P Gain	S16	-32768-32767	The proportional gain (P Gain) factor that determines how much the difference between Stpt and Fdbk influences the Output . 1000 = 1 (unity gain)	
l Gain	S16	-32768-32767	The integral gain (I Gain) factor that determines how much the continual summing of the difference between Stpt and Fdbk influences the Output . Integration occurs on every process loop. I Gain multiplies by OS.ExecTm to take account for processing time differences. 10000 = 1 (unity gain)	
Rst/Hld	U8	0-3	 The reset/hold (Rst/HId) setting: 0 = Normal operation—no reset or hold. 1 = Hold the integrator to the current values. 2 = Reset the integrator to the Rst Val. 3 = Reset the entire Output. 	

ltem	Туре	Range	Description	
Rst Val	S16	-32768-32767	The reset value (Rst Val) set in during a reset operation. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .	
l Stop	U16	0–65535	Sets the value at which the integral pauses where: Absolute (Stpt-Fdbk) > I_Stop . Use to limit overshoot due to large steps changes in errors. To disable this feature, set I_Stop = 65535. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .	
Max	S16	-32768-32767	The maximum allowed output value. When (P + IMax , the integrator holds and can only be reduced.) > This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .	
Min	S16	-32768-32767	The minimum allowed output value. When (P) + I) < Min, the integrator holds and can only be increased. This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I, and Output.	
Dband	U16	0–65535	The allowed difference between Stpt and Fdbk before the function block begins error correction. The function block makes no corrections until the error becomes greater than this value. The error used in PID error calculation stays at zero until it becomes greater than the Dband value. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .	
Stpt	S16	-32768-32767	The system set point (Stpt). The desired system output. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .	
Fdbk	S16	-32768-32767	The system feedback (Fdbk). The actual, measured system output. This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I , and Output .	

Outputs

The outputs of the **Controller_PI** function block are described.

ltem	Туре	Range	Description	
10	Bus		Outputs a bus with all of the function block's input and output signals. The bus conveniently distributes this function block's signals to your application.	
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status</i> topic.	
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Fault</i> topic.	
Error	S32	-65535–65535	The error or difference between the Stpt and the Fdbk . This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .	
Saturate	U8	0–2	 Output saturation indicator: 0 = No saturation. 1 = Down saturation. The function block's Output value equals its Min value. 2 = Up saturation. The function block's Output value equals its Max value. 	
Ρ	S16	-32768-32767	The proportional calculation's contribution to the Output . P = (Stpt – Fdbk) * P Gain) / 1000 This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I , and Output .	



ltem	Туре	Range	Description
1	S16	-32768-32767	The integral calculation's contribution to the Output . $I = \Sigma [(Stpt - Fdbk) * I Gain * OS.ExecTm)/10000]$ This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max, Min, Dband, Stpt, Fdbk, Error, P, I, and Output .
Output	S16	-32768-32767	 Sum of the internal P and I values. The sum of P and I may not equal Output because the function block: Calculates the P and I as S32 data types and then restricts them to the S16 range before returning an output. Calculates the Output before it restricts the P, I, and D values to the S16 range. Bounds the Output to within a range defined by the Max and Min values. This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I, and Output.

Function Block Connections

Connections you can make with the function block are described.

ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	The proportional gain (P Gain) factor that determines how much the Output is influenced by the difference in Stpt and Fdbk .
3.	The integral gain (I Gain) factor that determines how much the Output is influenced by continual summing of the difference between Stpt and Fdbk.
4.	 The reset/hold (Rst/Hid) setting: 0 = Normal operation—no reset or hold. 1 = Hold the integrator to the current values. 2 = Reset the integrator to the Rst Val. 3 = Reset the entire Output.
5.	The reset value (Rst Val) set during a reset operation.
6.	Sets the value at which the integral pauses where: Absolute (Stpt-Fdbk) \geq I_Stop .
7.	The maximum allowed output value.
8.	The minimum allowed output value.
9.	The allowed difference between Stpt and Fdbk before the function block begins error correction.
10.	The system set point (Stpt).
11.	The system feedback (Fdbk).
12.	Outputs a bus with all of the function block's input and output signals.
13.	Reports the status of the function block.
14.	The error or difference between the Stpt and the Fdbk .
15.	 Output saturation indicator: 0 = No saturation. 1 = Down saturation. The function block's Output value equals its Min value. 2 = Up saturation. The function block's Output value equals its Max value.
16.	The proportional calculation's contribution to the Output .
17.	The integral calculation's contribution to the Output .
18.	Sum of the internal P and I values.

Status Logic

This topic describes how status logic is indicated for the function block.

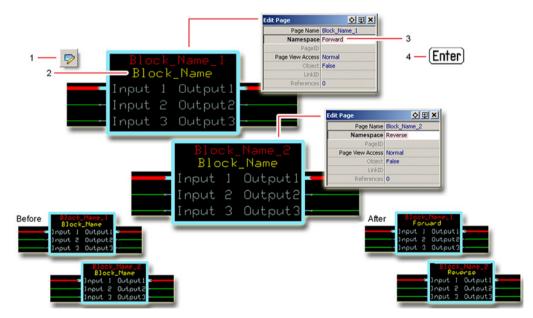
Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Rst/Hld value is out of range.	Rst/Hld becomes 0.	Return the Rst/Hld value to within its expected range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.


Some function blocks contain non-volatile memory components that store function block operating parameters.

Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

- 1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.
- 2. Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.
- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description
Function block name	Controller_PI
Function block version	4.0.
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [°] GUIDE compile process. When the PLUS+1 [°] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1[*] GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Controller_PID Controller_PID + ChkPt IO + Smpl Tm Status + + P Gain + I Gain + D Gain + Rst/Hld + Rst/Hld + Rst Val + I Stop Error + + Max Saturate + + Min P + + Dband I + + Stpt D + + Fdbk Output +

Use the **Controller_PID** (Proportional, Integral, and Derivative) function block to control a closed-loop application.

You can use this function block in:

- Constant speed control applications.
- Propel functions such as cruise control or straight tracking.
- Work functions such as transit mixers.

The **Controller_PI** function block is available to implement closed-loop control through proportional and integral (PI) functions. See *Controller_PI Function Block*. The **Controller_PI** function block uses less memory than the **Controller_PID** function block.

Inputs

The inputs to the Controller_PID function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description	
ChkPt	ChkPt BOOL ——		True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file.	
			• False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.	
Smpl Tm	U16	0–32767	ime between samples of the D Gain input. After ten samples, the function block calculates the verage error for the D Gain input. 000 = 1000 ms	
P Gain	S16	-32768-32767	The proportional gain (P Gain) factor that determines how much the difference between Stpt and Fdbk influences the Output . 1000 = 1 (unity gain)	
l Gain	S16	-32768–32767	The integral gain (I Gain) factor that determines how much the continual summing of the difference between Stpt and Fdbk influences the Output . Integration occurs on every process loop. I Gain multiplies by OS.ExecTm to take account for processing time differences. 10000 = 1 (unity gain)	

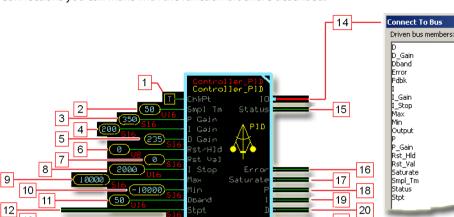
ltem	Туре	Range	Description		
D Gain	S16	-32768-32767	The differential gain (D Gain) factor that determines how much the difference between the current Stpt- Fdbk error and the previous Stpt-Fdbk error influences the Output . 100 = 1 (unity gain)		
Rst/Hld	U8	0–3	 The reset/hold (Rst/Hld) setting: 0 = Normal operation—no reset or hold. 1 = Hold the integrator to the current values. 2 = Reset the integrator to the Rst Val. 3 = Reset the entire Output. 		
Rst Val	S16	-32768-32767	The reset value (Rst Val) set in during a reset operation. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output .		
l Stop	U16	0–65535	Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output Sets the value at which the integral pauses where: Absolute (Stpt-Fdbk) > I_Stop . Use to limit overshoot due to large steps changes in errors. To disable this feature, set I_Stop = 65535. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output		
Мах	S16	-32768-32767	The maximum allowed output value. When (P + I + D) > Max , the integrator holds and can only be reduced. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output .		
Min	S16	-32768-32767	The minimum allowed output value. When (P + I + D) < Min , the integrator holds and can only be increased. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output .		
Dband	U16	0–65535	The allowed difference between Stpt and Fdbk before the function block begins error correction. The function block makes no corrections until the error becomes greater than this value. The error used in PID error calculation stays at zero until it becomes greater than the Dband value. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output .		
Stpt	S16	-32768-32767	The system set point (Stpt). The desired system output. This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I, D , and Outp		
Fdbk	S16	-32768-32767	The system feedback (Fdbk). The actual, measured system output. This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , D , and Output .		

Outputs

The outputs of the **Controller_PID** function block are described.

ltem	Туре	Range	Description	
10	Bus		Outputs a bus with all of the function block's input and output signals. The bus conveniently distributes this function block's signals to your application.	
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status</i> topic.	
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Fault</i> topic.	
Error	S32	-65535-65535	The error or difference between the Stpt and the Fdbk . This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I, D, and Output .	
Saturate	U8	0-2	 Output saturation indicator: 0 = No saturation. 1 = Down saturation. The function block's Output value equals its Min value. 2 = Up saturation. The function block's Output value equals its Max value. 	

ltem	Туре	Range	Description		
Ρ	S16	-32768–32767	The proportional calculation's contribution to the Output . P = (Stpt – Fdbk) * P Gain) / 1000 This item has no predefined unit value. Assign the same unit values to Rst Val , I Stop , Max , Min , Dband , Stpt , Fdbk , Error , P , I , and Output .		
1	S16	-32768–32767	The integral calculation's contribution to the Output . $I = \Sigma [(Stpt - Fdbk) * I Gain * OS.ExecTm)/10000]$ This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I , and Output . The derivative calculation's contribution to the Output.		
D	S16	-32768–32767	The derivative calculation's contribution to the Output. D = [(Stpt - Fdbk)Current - (Stpt - Fdbk)Last] * D Gain/(Smpl_Tm * 1000) • (Stpt - Fdbk)Current is the average of the most recent samples of Smpl_Tm/OS.ExecTm values. • (Stpt - Fdbk)Last is the average of the last nine samples of Smpl_Tm/OS.ExecTm values. This item has no predefined unit value. Assign the same unit values to Rst Val, I Stop, Max, Min, Dband, Stpt, Fdbk, Error, P, I, D, and Output		
Output	tput S16 -32768–32767 Sum of the internal P, I and D values The sum of P, I and D may not equal Output because the function block • Calculates P, I and D as S32 data types and then restricts them to the S1 output. • Calculates the Output before it restricts the P, I and D values to the S16 • Bounds the Output to within a range defined by the Max and Min valu This item has no predefined unit value.		 The sum of P, I and D may not equal Output because the function block: Calculates P, I and D as S32 data types and then restricts them to the S16 range before returning an output. Calculates the Output before it restricts the P, I and D values to the S16 range. Bounds the Output to within a range defined by the Max and Min values. 		



12

13

Controller_PID Function Block

Function Block Connections

21

tpt

ы

Connections you can make with the function block are described.

ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Time between samples of the D Gain input.
3.	The proportional gain (P Gain) factor that determines how much the Output is influenced by the difference in Stpt and Fdbk .
4.	The integral gain (I Gain) factor that determines how much the Output is influenced by continual summing of the difference between Stpt and Fdbk .
5.	The differential gain (D Gain) factor that determines how much the difference between the current Stpt-Fdbk error and the previous Stpt-Fdbk error influences the Output .
6.	 The reset/hold (Rst/Hld) setting: 0 = Normal operation—no reset or hold. 1 = Hold the integrator to the current values. 2 = Reset the integrator to the Rst Val. 3 = Reset the entire Output.
7.	The reset value (Rst Val) set during a reset operation.
8.	Sets the value at which the integral pauses where: Absolute (Stpt-Fdbk) \geq I_Stop .
9.	The maximum allowed output value.
10.	The minimum allowed output value.
11.	The allowed difference between Stpt and Fdbk before the function block begins error correction.
12.	The system set point (Stpt).
13.	The system feedback (Fdbk).
14.	Outputs a bus with all of the function block's input and output signals.
15.	Reports the status of the function block.
16.	The error or difference between the Stpt and the Fdbk .
17.	 Output saturation indicator: 0 = No saturation. 1 = Down saturation. The function block's Output value equals its Min value. 2 = Up saturation. The function block's Output value equals its Max value.
18.	The proportional calculation's contribution to the Output .
19.	The integral calculation's contribution to the Output .

ltem	Description
20.	The derivative calculation's contribution to the Output .
21.	Sum of the internal P , I , and D values.

Status Logic

This topic describes how status logic is indicated for the function block.

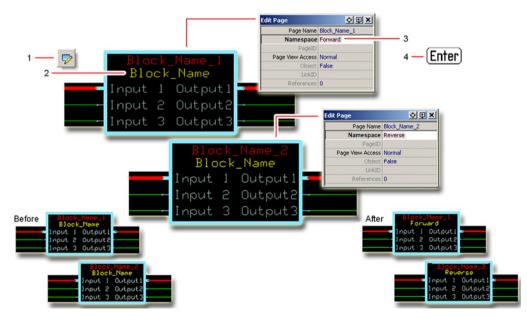
Condition	Hex [*]	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Rst/Hld or Smpl Tm value is out of range.	Either: • Rst/Hld becomes 0. • Smpl Tm clamps at either 0 or 32767.	Return the Rst/Hld or Smpl Tm value to within its expected range.

^{*} Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1^{*} Service Tool to read block input and output values.


Some function blocks contain non-volatile memory components that store function block operating parameters.

Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

- **1.** In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.
- **2.** Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.
- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description			
Function block name	Controller_PID.			
Function block version	4.0.			
Function block development environment	PLUS+1° GUIDE version 8.1 and later.			
Compatible hardware	Verified in the PLUS+1 [*] GUIDE compile process. When the PLUS+1 [*] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."			
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.			
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application. 			
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services			

Use the **Profile_Knee** function block to change the curve characteristics of a signal.

One X-Y parameter pair along with fixed endpoints (X = 0, Y = 0 and X = 10000, Y = 10000) create a twosegment profile that defines how the function block's **Output** values follow changes to its **Input** values.

Typically, you use this function block to:

- Increase control resolution at slow speeds or low power output.
- Linearize a sensor signal.
- Create a non-linear control signal for a non-linear actuator.

When using this function block, note the following:

- The function block's **Input** and **Output** values can range from -10000 to 10000.
- A change in the polarity of the function block's **Input** values from positive to negative or from negative to positive produces mirrored **Output** values.

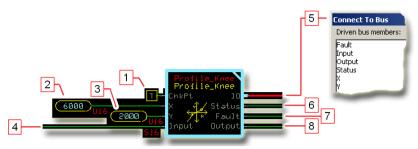
Inputs

The inputs to the **Profile_Knee** function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description	
ChkPt	BOOL		 True—include the function block's built-in Advanced Checkpoint with Namespace in the compil LHX download file. 	
			 False—exclude the function block's built-in Advanced Checkpoint with Namespace component from the compiled LHX download file. 	
x	U16	1–9999	Scaling input parameter. When Input = X, Output = Y. 0 < X < 10000	
Y	U16	0–10000	Scaling output parameter. When Input = X, Output = Y. When Input = -X, Output = -Y .	
Input	S16	-10000-10000	The input signal to be profiled.	

Outputs


The outputs of the **Profile_Knee** function block are described.

Item	Туре	Range	Description	
10	Bus		Outputs a bus with all of the function block's input and output signals. The bus conveniently distributes this function block's signals to your application.	
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status</i> topic.	
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Fault</i> topic.	
Output	S16	-10000-10000	The Input signal after profiling.	

Function Block Connections

Connections you can make with the function block are described.



ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Input for X parameter. The X-Y parameter pair profiles how the function block's Output values follows changes to its Input values.
3.	Input for Y parameter. The X-Y parameter pair profiles how the function block's Output values follows changes to its Input values.
4.	The signal to be profiled.
5.	Outputs a bus with all of the function block's input and output signals.
6.	Reports the status of the function block.
7.	Reports the faults of the function block.
8.	The Input signal after profiling.

Function Block Example

Use the following example to understand how configuration and operation changes impact the output of the function block.

ltem	Symbol	Description
1.	•• -	 Fixed, software-defined profile point where: X = 0 Y = 0 An Input value of 0 produces an Output value of 0.
2.		User-defined profile point created by the parameter pair X-Y where: • X = 6000 • Y = 2000 An Input value of 6000 produces an Output value of 2000.
3.		 Fixed, software-defined profile point where: X = 10000 Y = 10000 An Input value of 0 produces an Output value of 0.
4.	•	 Negatively mirrors the user-defined profile point created by X-Y where: X = -6000 Y = -2000 An Input value of -6000 produces an Output value of -2000.
5.		 Negatively mirrors the fixed profile where: X = -10000 Y = -10000 An Input value of -10000 produces an Output value of -10000.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup	0x8008	1000	X parameter is out-of-range.	X parameter clamps at 9999 or 1.	Return the X parameter to within its 1–9999 range.
Invalid setup.	0x8008		Y parameter is out-of-range.	Y parameter holds at 10000.	Return the Y parameter to within its 0–10000 range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Fault Logic

This topic describes how fault logic is indicated for the function block.

Condition	Hex*	Binary	Cause	Response	Correction
Input value is too low.	0x8001	0001	Input value < -10000.	Output = -10000	Return the Input to the valid
Input value is too high.	0x8002	0010	Input value > 10000.	Output = 10000	range.

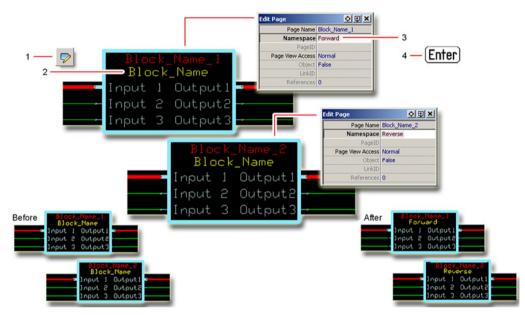
* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.

Some function blocks contain non-volatile memory components that store function block operating parameters.



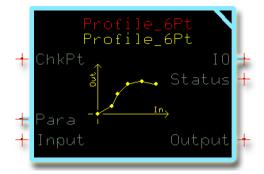
Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

- **1.** In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.
- 2. Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.
- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.


IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description
Function block name	Profile_Knee.
Function block version	4.0.
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [*] GUIDE compile process. When the PLUS+1 [*] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Use the **Profile_6Pt** function block to change the curve characteristics of a signal.

Six X-Y parameter pairs create a seven-segment profile that define how the function block's **Output** values follow changes to its **Input** values.

Input values that are:

- Less than the minimum X parameter produce **Output** values that follow the slope of the segment produced by the X1-Y1 and X2-Y2 parameter pairs.
- Greater than the maximum X parameter produce **Output** values that follow the slope of the segment produced by the X5-Y5 and X6-Y6 parameter pairs.

You can use this function block to:

- · Increase control resolution at slow speeds or low-power output.
- Linearize the signal from a sensor.
- Create a non-linear control signal for a non-linear actuator.

When using this function block, note the following:

- The function block's **Input** and **Output** values can range from -32768 to 32767.
- A change in the polarity of the function block's Input values from positive to negative or from negative to positive does not produce mirrored Output values.

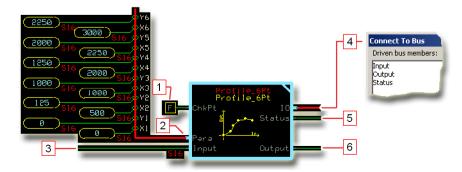
Inputs

The inputs to the **Profile_6pt** function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description
ChkPt	BOOL		 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
Para	Bus		Input for six X-Y parameter pairs. These pairs profile how the function block's Output values follows changes to its Input values.
X1	S16	-32768-32767	Scaling input parameter. When Input = X1, Output = Y1. -32768 ≤ X1 < X2 < X3 < X4 < X5 < X6 ≤ 32767
Х2	S16	-32768-32767	Scaling input parameter. When Input = X2, Output = Y2. -32768 ≤ X1 < X2 < X3 < X4 < X5 < X6 ≤ 32767
X3	S16	-32768-32767	Scaling input parameter. When Input = X3, Output = Y3. -32768 ≤ X1 < X2 < X3 < X4 < X5 < X6 ≤ 32767

ltem	Туре	Range	Description
X4	\$16	-32768-32767	Scaling input parameter. When Input = X4, Output = Y4. -32768 ≤ X1 < X2 < X3 < X4 < X5 < X6 ≤ 32767
X5	5 S16	-32768–32767	Scaling input parameter. When Input = X5, Output = Y5. -32768 ≤ X1 < X2 < X3 < X4 < X5 < X6 ≤ 32767
Xe	516 S16	-32768–32767	Scaling input parameter. When Input = X6, Output = Y6. -32768 ≤ X1 < X2 < X3 < X4 < X5 < X6 ≤ 32767
¥1	S16	-32768–32767	Scaling output parameter. When Input = X1, Output = Y1. Y values can increase, decrease, or stay the same.
Y2	S16	-32768–32767	Scaling output parameter. When Input = X2, Output = Y2. Y values can increase, decrease, or stay the same.
Y3	S16	-32768-32767	Scaling output parameter. When Input = X3, Output = Y3. Y values can increase, decrease, or stay the same.
¥4	S16	-32768-32767	Scaling output parameter. When Input = X4, Output = Y4. Y values can increase, decrease, or stay the same.
¥5	5 S16	-32768-32767	Scaling output parameter. When Input = X5, Output = Y5. Y values can increase, decrease, or stay the same.
Ye	516 S16	-32768-32767	Scaling output parameter. When Input = X6 , Output = Y6 . Y values can increase, decrease, or stay the same.
Input	S16	-32768-32767	The input signal to be profiled.

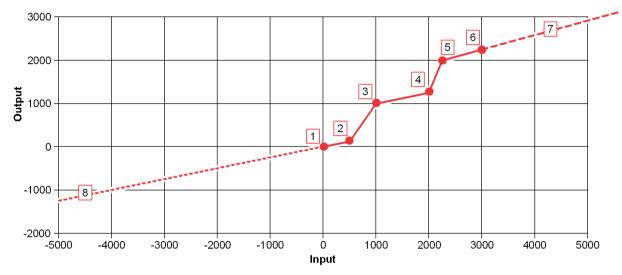

Outputs

The outputs of the **Profile_6Pt** function block are described.

ltem	Туре	Range	Description
ю	Bus		Outputs a bus with all of the function block's input and output signals. The bus conveniently distributes this function block's signals to your application.
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status</i> topic.
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Fault</i> topic.
Output	S16	-10000-10000	The Input signal after profiling.

Function Block Connections

Connections you can make with the function block are described.



Item	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Input for six X-Y parameter pairs. These pairs profile how the function block's Output follows changes to its Input values.
3.	The signal to be profiled.
4.	Outputs a bus with all of the function block's input and output signals.
5.	Reports the status of the function block.
6.	The Input signal after profiling.

Function Block Example

Use the following example to understand how configuration changes impact the output of the function block.

Item	Symbol	Description
1.		 Profile point created by parameter pair X1-Y1 where: X1 = 0 Y1 = 0 An Input value of 0 produces an Output value of 0.
2.		 Profile point created by parameter pair X2-Y2 where: X2 = 500 Y2 = 125 An Input value of 500 produces an Output value of 125.
3.		 Profile point created by parameter pair X3-Y3 where: X3 = 1000 Y3 = 1000 An Input value of 1000 produces an Output value of 1000.
4.		 Profile point created by parameter pair X4-Y4 where: X4 = 2000 Y4 = 1250 An Input value of 2000 produces an Output value of 1250.

ltem	Symbol	Description
5.		 Profile point created by parameter pair X5-Y5 where: X5 = 2250 Y5 = 2000 An Input value of 2250 produces an Output value of 2000.
6.		 Profile point created by parameter pair X6-Y6 where: X6 = 3000 Y6 = 2250 An Input value of 3000 produces an Output value of 2250.
7.		Slope extrapolated from the slope created by parameter pairs X5-Y5 and X6-Y6. Input values that are greater than 3000 produce Output values that follow this slope. The S16 data type sets the limits to the maximum Input values and the maximum Output values.
8.		Slope extrapolated from the slope created by parameter pairs X1-Y1 and X2-Y2. Input values that are less than 0 produce Output values that follow this slope. The S16 data type sets the limits to the maximum Input values and the maximum Output values.

Status Logic

This topic describes how status logic is indicated for the function block.

Condition	Hex [*]	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	X1-X6 parameters do not successively increase in value.	Output = 0.	Successively increase X parameter values.

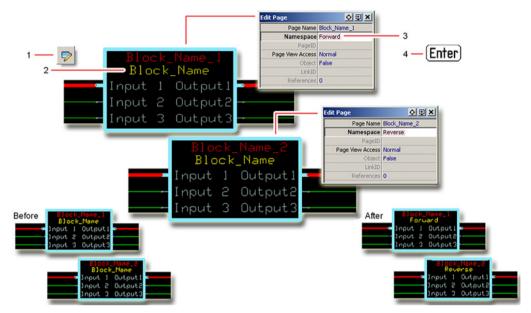
^b Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.

Some function blocks contain non-volatile memory components that store function block operating parameters.


Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

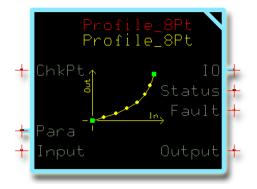
To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

2. Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.

3. In the Edit Page window, enter a meaningful Namespace value.

- **Namespace** values are case-sensitive.
- To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.


IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

ltem	Description
Function block name	Profile_6Pt.
Function block version	4.0.
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [*] GUIDE compile process. When the PLUS+1 [*] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Use the **Profile_8Pt** function block to change the curve characteristics of a signal.

Six X-Y parameter pairs along with fixed endpoints (X = 0, Y = 0 and X = 10000, Y = 10000) create a sevensegment profile that defines how the function block's **Output** values follow changes to its **Input** values.

You can use this function block to:

- Increase control resolution at slow speeds or low-power output.
- Linearize the signal from a sensor.
- Create a non-linear control signal for a non-linear actuator.

When using this function block, note the following:

- The function block's **Input** and **Output** values can range from -10000 to 10000.
- A change in the polarity of the function block's **Input** values from positive to negative or from negative to positive produces mirrored **Output** values.

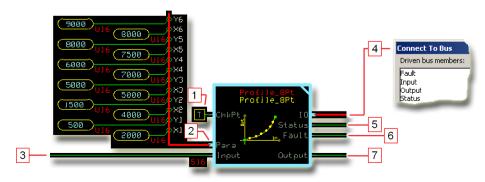
Inputs

The inputs to the Profile_8Pt function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description
ChkPt	BOOL		 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
Para	Bus		
X1	U16	1–9999	Scaling input parameter. When Input = X1 , Output = Y1 . 0 < X1 < X2 < X3 < X4 < X5 < X6 < 10000
X2	U16	1–9999	Scaling input parameter. When Input = X2 , Output = Y2 . 0 < X1 < X2 < X3 < X4 < X5 < X6 < 10000
Х3	U16	1–9999	Scaling input parameter. When Input = X3 , Output = Y3 . 0 < X1 < X2 < X3 < X4 < X5 < X6 < 10000
X4	U16	1–9999	Scaling input parameter. When Input = X4 , Output = Y4 . 0 < X1 < X2 < X3 < X4 < X5 < X6 < 10000
X5	U16	1–9999	Scaling input parameter. When Input = X5 , Output = Y5 . 0 < X1 < X2 < X3 < X4 < X5 < X6 < 10000

ltem	Туре	Range	Description
X6	U16	1–9999	Scaling input parameter. When Input = X6, Output = Y6. 0 < X1 < X2 < X3 < X4 < X5 < X6 < 10000
Y1	U16	0–10000	Scaling output parameter. When Input = X1, Output = Y1. Y values can increase, decrease, or stay the same.
Υ2	U16	0–10000	Scaling output parameter. When Input = X2, Output = Y2. Y values can increase, decrease, or stay the same.
Υ3	U16	0–10000	Scaling output parameter. When Input = X3, Output = Y3. Y values can increase, decrease, or stay the same.
Y4	U16	0–10000	Scaling output parameter. When Input = X4, Output = Y4. Y values can increase, decrease, or stay the same.
Υ5	U16	0–10000	Scaling output parameter. When Input = X5, Output = Y5. Y values can increase, decrease, or stay the same.
Y6	U16	0–10000	Scaling output parameter. When Input = X6, Output = Y6. Y values can increase, decrease, or stay the same.
Input	S16	-10000-10000	The input signal to be profiled.

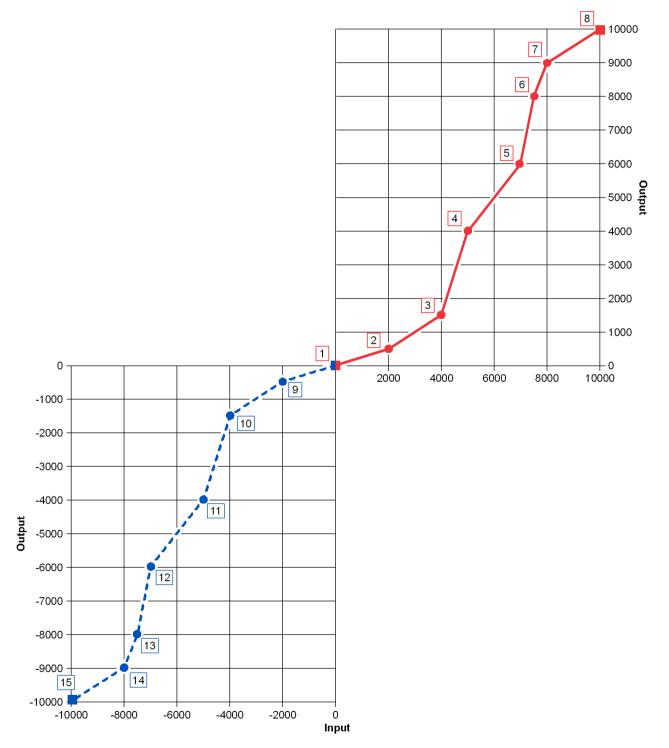

Outputs

The outputs of the **Profile_8Pt** function block are described.

ltem	Туре	Range	Description
ю	Bus		Outputs a bus with all of the function block's input and output signals. The bus conveniently distributes this function block's signals to your application.
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status</i> topic.
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Fault</i> topic.
Output	S16	-10000-10000	The Input signal after profiling.

Function Block Connections

Connections you can make with the function block are described.



ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Input for six X-Y parameter pairs. These pairs profile how the function block's Output follows changes to its Input values.
3.	The signal to be profiled.
4.	Outputs a bus with all of the function block's input and output signals.
5.	Reports the status of the function block.
6.	Reports the faults of the function block.
7.	The Input signal after profiling.

Function Block Example

Use the following example to understand how configuration changes impact the output of the function block.

Figure Details

ltem	Symbol	Description				
1.	• - 4	 Fixed, software-defined profile point where: X = 0 Y = 0 An Input value of 0 produces an Output value of 0. 				
2.		User-defined profile point created by the parameter pair X1-Y1 where: • X1 = 2000 • Y1 = 500 An Input value of 5=2000 produces an Output value of 500.				
3.		 Profile point created by parameter pair X2-Y2 where: X2 = 4000 Y2 = 1500 An Input value of 4000 produces an Output value of 1500. 				
4.		 Profile point created by parameter pair X3-Y3 where: X3 = 5000 Y3 = 4000 An Input value of 5000 produces an Output value of 4000. 				
5.		 Profile point created by parameter pair X4-Y4 where: X4 = 7000 Y4 = 6000 An Input value of 7000 produces an Output value of 6000. 				
6.		 Profile point created by parameter pair X5-Y5 where: X5 = 7500 Y5 = 8000 An Input value of 7500 produces an Output value of 8000. 				
7.		 Profile point created by parameter pair X6-Y6 where: X6 = 8000 Y6 = 9000 An Input value of 8000 produces an Output value of 9000. 				
8.		 Fixed, software-defined profile point where: X = 10000 Y = 10000 An Input value of 10000 produces an Output value of 10000. 				
9.	•	Negatively mirrors the user-defined profile point created by the parameter pair X1-Y1 where: • -X1 = -2000 • -Y1 = -500 An Input value of -2000 produces an Output value of -500.				
10.	•	 Negatively mirrors the user-defined profile point created by the parameter pair X2-Y2 where: -X2 = -4000 -Y2 = -1500 An Input value of -4000 produces an Output value of -1500. 				
11.	•	 Negatively mirrors the user-defined profile point created by the parameter pair X3-Y3 where: -X3 = -5000 -Y3 = -4000 An Input value of -5000 produces an Output value of -4000. 				
12.	•	 Negatively mirrors the user-defined profile point created by the parameter pair X4-Y4 where: -X4 = -7000 -Y4 = -6000 An Input value of -7000 produces an Output value of -6000. 				

Figure Details (continued)

ltem	Symbol	Description
13.		 Negatively mirrors the user-defined profile point created by the parameter pair X5-Y5 where: -X5 = -7500 -Y5 = -8000 An Input value of -7500 produces an Output value of -8000.
14.	•	 Negatively mirrors the user-defined profile point created by the parameter pair X6-Y6 where: -X6 = -8000 -Y6 = -9000 An Input value of -8000 produces an Output value of -9000.
15.		 Negatively mirrors the fixed profile point where: X = -10000 Y = -10000 An Input value of -10000 produces an Output value of -10000.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

Condition	Hex*	Binary	Cause	Response	Correction
	0x8008	1000	One or more Y parameters is out-of-range.	Out-of-range Y parameters clamp at 10000.	Return Y parameters to within their 0–10000 range.
Invalid setup.			X1-X6 parameters do not successively increase in value. parameter is out-of- range.	Output = 0.	Successively increase X parameter values.
			X1 is less than 1 or X6 is greater than 9999.	X1 clamps at 1 and X6 clamps at 9999.	Return the X1 and X6 values to within their 1–9999 range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Fault Logic

This topic describes how fault logic is indicated for the function block.

Condition	Hex [*]	Binary	Cause	Response	Correction
Input value is too low.	0x8001	0001	Input value < -10000.	Output = -10000	Return the Input to the valid
Input value is too high.	0x8002	0010	Input value > 10000.	Output = 10000	range.

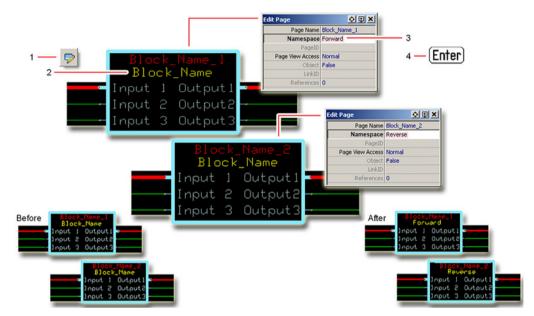
* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.

Some function blocks contain non-volatile memory components that store function block operating parameters.


Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1° GUIDE menu bar, click the **Query/Change** button.

- 2. Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.
- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description
Function block name	Profile_8Pt.
Function block version	4.0.
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [*] GUIDE compile process. When the PLUS+1 [*] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Comparison of 6Pt, 8Pt, and Profile_Knee Function Blocks

Function Block	Input Value Range	Output Value Range	Segments In Profile	Negative Input Produces Negative Mirrored Output?
Profile_6Pt	-32768-32767	-32768-32767	7	No.*
Profile_8Pt	-10000-10000	-10000-10000	7	Yes.
Profile_Knee	-10000-10000	-10000-10000	2	Yes.

Use the comparison table to determine which function block you want to use in your application.

* **Input** values that are less than the minimum **X** parameter produce **Output** values that follow the slope of the segment produced by the **X1-Y1** and **X2-Y2** parameter pairs. **Input** values that are greater than the maximum **X** parameter produce **Output** values that follow the slope of the segment produced by the **X5-Y5** and **X6-Y6** parameter pairs.

Use the **Ackermann** function block to calculate the wheel speeds and wheel angles for a given average steering command input and vehicle speed command input.

	Ackermann	
	Ackermann	
+	ChkPt I	0 +
+	Spd Statu	IS 🕂
+	Ang Faul	t 🕂
+	Wdth MaxStrAr	ig 🕂
+	Lgth	
+	MaxWhlSpd	
+	MaxWhlAng 🔥	
+	Wdth Ofst 🖳	
+	Lgth Ofst WhlSp	d +
+	Strg Mode WhlAr	ng 🕂

You can use this function block to calculate wheel angles and wheel speeds:

- For four-wheel propel applications that independently control the speed of two or four wheels.
- To determine the expected wheel speed when detecting wheel spin.

Inputs

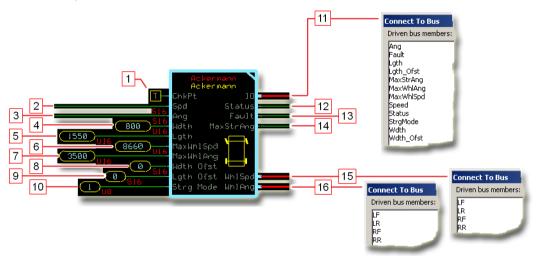
The inputs to the **Ackerman** function block are described.

ltem	Туре	Range	Description
ChkPt	BOOL		True—include the function block's built-in Advanced Checkpoint with Namespace False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
Spd	S16	-20000-20000	Requested vehicle speed. 1000 = 1000 mm/s
Ang	S16	-9000-9000	Requested steering angle. 1000 = 10.00°
Wdth	U16	200–10000	Width of the vehicle's wheelbase. 1000 = 1000 mm
Lgth	U16	800-20000	Length of vehicle's wheelbase. 1 = 1 mm
MaxWhlSpd	U16	0–20000	Maximum allowed wheel speed in both a positive and a negative direction. Once one wheel reaches the MaxWhISpd , the wheel speeds of the other wheels stop increasing. 1000 = 1000 mm/s
MaxWhlAng	U16	0–9000	The maximum allowed wheel steering angle in both a positive and a negative direction. Once one wheel reaches the MaxWhIAng , the wheel angles of the other wheels stop increasing. 1000 = 10.00°

ltem	Туре	Range	Description
Wdth Ofst	S16	-10000-10000	 Width offset for the center of rotation when steering. A positive Wdth Ofst value shifts the center of rotation when steering to the right of the vehicle. A negative Wdth Ofst value shifts the center of rotation when steering to the left of the vehicle. Use the Wdth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the left or right side of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm
Lgth Ofst	S16	-10000-10000	 Length offset for the center of rotation when steering. A positive Lgth Ofst value shifts the center of rotation when steering toward the front of the vehicle. A negative Lgth Ofst value shifts the center of rotation when steering toward the rear of the vehicle. Use the Lgth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the front or rear of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering. If your vehicle's wheelbase determines the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm
Strg Mode	U8	1-4	 Vehicle steering mode: 1 = Two-wheel front-steering. 2 = Two-wheel rear-steering. 3 = Four-wheel coordinated-steering. 4 = Four-wheel crab-steering.

Outputs

The outputs of the **Ackermann** function block are described.


ltem	Туре	Range	Description
10	Bus		Outputs a bus with all of the function block's input and output signals. This bus provides a convenient way to distribute this function block's signals to your application.
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.
MaxStrgAng	U16	0–9000	The maximum effective Ang input in both a positive and a negative direction. Any Ang inputs above this value cause no change increase in wheel angles. The function block calculates this output based on maximum allowed wheel angles and vehicle geometry. 1000 = 10.00°
WhISpd	Bus		Outputs a bus with calculated wheel speed signals for the left-front, right-front, left-rear, and right-rear wheels.
LF	S16	-20000-20000	Calculated wheel speed for the left-front wheel. 1000 = 1000 mm/s
RF	S16	-20000-20000	Calculated wheel speed for the right-front wheel. 1000 = 1000 mm/s
LR	S16	-20000-20000	Calculated wheel speed for the left-rear wheel. 1000 = 1000 mm/s
RR	S16	-20000-20000	Calculated wheel speed for the right-rear wheel. 1000 = 1000 mm/s
WhIAng	Bus		Outputs a bus with calculated wheel angle signals for the left-front, right-front, left-rear, and right-rear wheels.
LF	S16	-9000-9000	Calculated wheel angle for the left-front wheel. 1000 = 10.00°

ltem	Туре	Range	Description
RF S16-9000–9000Calculated wheel angle for the right-front wheel. 1000 = 10.00°		5 5	
LR S16 -9000-9000 Calculated wheel angle for the left-rear wheel. 1000 = 10.00° 10.00°		5	
RR	S16	-9000–9000	Calculated wheel angle for the right-rear wheel. 1000 = 10.00°

Function Block Connections

Connections you can make with the function block are described.

ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Requested speed.
3.	Requested steering angle.
4.	Width of the vehicle's wheelbase.
5.	Length of the vehicle's wheelbase.
6.	Maximum allowed wheel speed in both a positive and a negative direction.
7.	The maximum allowed wheel angle in both a positive and a negative direction.
8.	Width offset for the center of rotation when steering.
9.	Length offset for the center of rotation when steering.
10.	 1 = Two-wheel front-steering mode. 2 = Two-wheel rear-steering mode. 3 = Four-wheel coordinated-steering mode. 4 = Four-wheel crab-steering mode.
11.	Outputs a bus with all of the function block's input and output signals.
12.	Reports the status of the function block.
13.	Reports the faults of the function block.
14.	The maximum effective Ang input in both a positive and a negative direction. Ang inputs above this value cause no further change in wheel angles.

Item	Description
15.	Outputs a bus with calculated LF, RF, LR, and RR wheel speed signals.
16.	Outputs a bus with calculated LF, RF, LR, and RR wheel angle signals.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

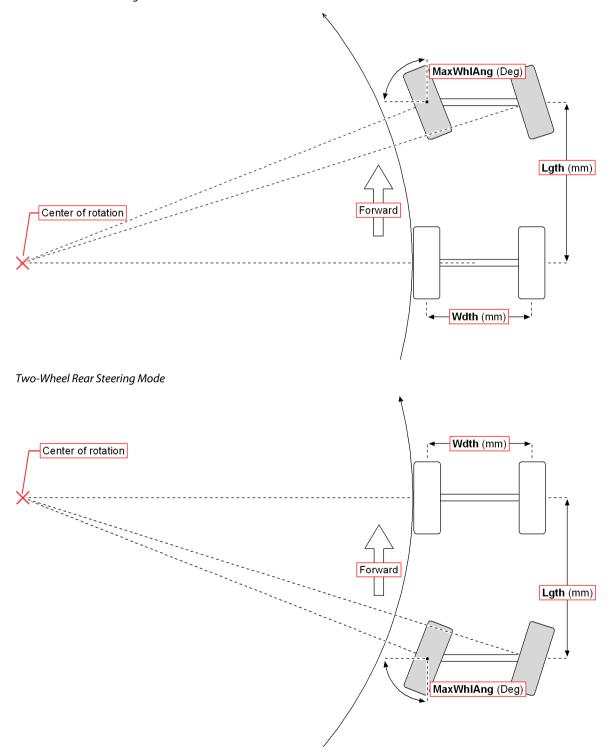
Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Wdth, Lgth, MaxWhlSpd, MaxWhlAng, Wdth Ofst, or Lgth Ofst value is out of range.	Output values based on the out-of-range value clamped at either its minimum or maximum value.	Return the out-of-range value to within its correct range.

^{*} Bit 16 set to 1 identifies a standard Danfoss status or fault code.

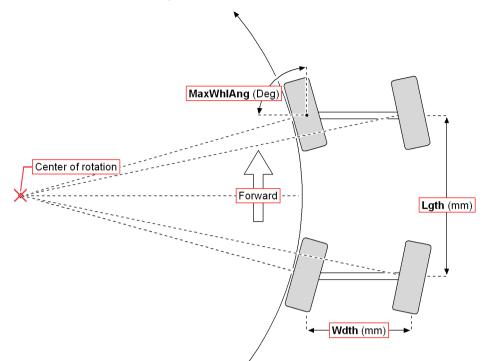
Fault Logic

This topic describes how fault logic is indicated for the function block.

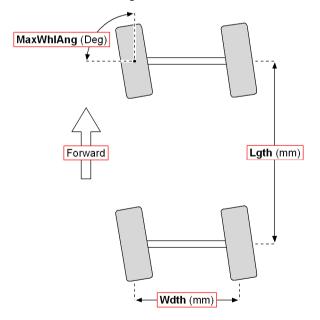
Condition	Hex*	Binary	Cause	Response	Correction
	0x8001	0001	Ang value is less than -9000.	 WhiSpd outputs hold at 0. MaxStrgAng and WhiAng outputs hold their previous valid value. 	Return the Ang input to within its -9000 to 9000 range.
Input value is too low.			Spd value is less than -20000.		Return the Spd input to within its -20000 to 20000 range.
			Strg Mode value is less than 1.		Select a Strg Mode input of 1, 2, 3, or 4.
	0x8002	0010	Ang value is greater than 9000.		Return the Ang input to within its -9000 to 9000 range.
Input value is too high.			Spd value is greater than 20000.		Return the Spd input to within its -20000 to 20000 range
			Strg Mode value is greater than 4.		Select a Strg Mode input of 1, 2, 3, or 4.


* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Steering Modes


Available steering modes are illustrated.

Two-Wheel Front Steering Mode



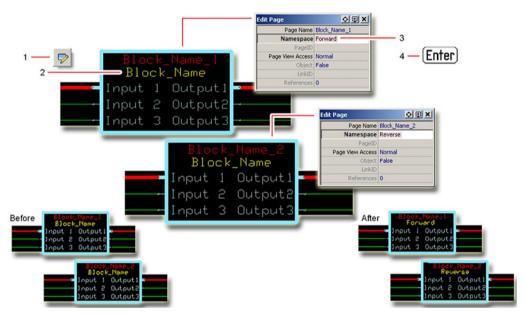
Four-Wheel Coordinated Steering Mode

Four-Wheel Crab Steering Mode

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.


Some function blocks contain non-volatile memory components that store function block operating parameters.

Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

 Click on the function block whose namespace you want to set to a unique value. The Edit Page window opens.

- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.

4. Press Enter.

5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description				
Function block name	Ackermann.				
Function block version	4.0.1				
Function block development environment	PLUS+1 [*] GUIDE version 8.1 and later.				
Compatible hardware	Verified in the PLUS+1 [°] GUIDE compile process. When the PLUS+1 [°] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."				
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.				
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application. 				
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services				

Use the **Ackermann_Spd** function block to calculate the wheel speeds for a given average steering command input and vehicle speed command input.

	Ackermann_Spd	
	Ackermann_Spd	
+	ChkPt IO	F
+	Spd Status -	⊢
+	Ang Fault-	┝
+	Wdth MaxStrAng -	┢╾
+	Lgth	
+	MaxWhlSpd 🔪 🔒	
+	MaxWhlAng LF -	┢
+	Wdth Ofst 📙 🕂 RF -	┝
+	Lgth Ofst 👘 LR –	┝
+	Strg Mode RR -	┢

You can use this function block to calculate wheel speeds for vehicles with:

- Two-wheel front steering.
- Two-wheel rear steering.
- Four-wheel coordinated steering.
- Four-wheel crab steering.

Inputs

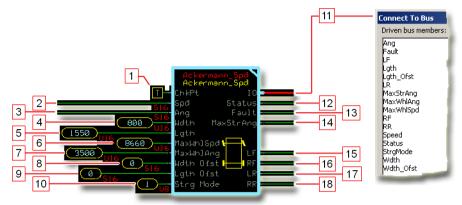
The inputs to the Ackerman_Spd function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description			
ChkPt	BOOL		True—include the function block's built-in Advanced Checkpoint with Namespace False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.			
Spd	S16	-20000-20000	Requested vehicle speed. 1000 = 1000 mm/s			
Ang	S16	-9000-9000	Requested steering angle. 1000 = 10.00°			
Wdth	U16	200-10000	Width of the vehicle's wheelbase. 1000 = 1000 mm			
Lgth	U16	800-20000	Length of vehicle's wheelbase. 1 = 1 mm			
MaxWhlSpd	U16	0–20000	Maximum allowed wheel speed in both a positive and a negative direction. Once one wheel reaches the MaxWhISpd , the wheel speeds of the other wheels stop increasing. 1000 = 1000 mm/s			
MaxWhlAng	U16	0–9000	The maximum allowed wheel steering angle in both a positive and a negative direction. Once one wheel reaches the MaxWhlAng , the wheel angles of the other wheels stop increasing. 1000 = 10.00°			

ltem	Туре	Range	Description	
Wdth Ofst	S16	-10000-10000	 Width offset for the center of rotation when steering. A positive Wdth Ofst value shifts the center of rotation when steering to the right of the vehicle A negative Wdth Ofst value shifts the center of rotation when steering to the left of the vehicle. Use the Wdth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the left or right side of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering, set the Wdth Ofst value of your vehicle's wheelbase determines the center of rotation when steering, set the Wdth Ofst value of your vehicle of your vehicle's wheelbase determines the center of rotation when steering, set the Wdth Ofst value of your vehicle of your vehicle of your vehicle's wheelbase determines the center of rotation when steering of your vehicle of your v	
Lgth Ofst	S16	-10000-10000	 Length offset for the center of rotation when steering. A positive Lgth Ofst value shifts the center of rotation when steering toward the front of the vehicle. A negative Lgth Ofst value shifts the center of rotation when steering toward the rear of the vehicle. Use the Lgth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the front or rear of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering. If your vehicle's wheelbase determines the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm 	
Strg Mode	U8	1-4	 Vehicle steering mode: 1 = Two-wheel front-steering. 2 = Two-wheel rear-steering. 3 = Four-wheel coordinated-steering. 4 = Four-wheel crab-steering. 	

Outputs


The outputs of the **Ackermann_Spd** function block are described.

ltem	Туре	Range	Description		
ю	Bus		Outputs a bus with all of the function block's input and output signals. This bus provides a convenient way to distribute this function block's signals to your application.		
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.		
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.		
MaxStrgAng	U16	0–9000	The maximum effective Ang input in both a positive and a negative direction. Any Ang inputs above this value cause no change increase in wheel angles. The function block calculates this output based on maximum allowed wheel angles and vehicle geometry. 1000 = 10.00°		
LF	S16	-20000–20000	Calculated wheel speed for the left-front wheel. 1000 = 1000 mm/s		
RF	S16	-20000–20000	Calculated wheel speed for the right-front wheel. 1000 = 1000 mm/s		
LR	S16	-20000–20000	Calculated wheel speed for the left-rear wheel. 1000 = 1000 mm/s		
RR	S16	-20000-20000	Calculated wheel speed for the right-rear wheel. 1000 = 1000 mm/s		

Function Block Connections

Connections you can make with the function block are described.

Function Block Connections

ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Requested speed.
3.	Requested steering angle.
4.	Width of the vehicle's wheelbase.
5.	Length of the vehicle's wheelbase.
6.	Maximum allowed wheel speed in both a positive and a negative direction.
7.	The maximum allowed wheel angle in both a positive and a negative direction.
8.	Width offset for the center of rotation when steering.
9.	Length offset for the center of rotation when steering.
10.	 1 = Two-wheel front-steering mode. 2 = Two-wheel rear-steering mode. 3 = Four-wheel coordinated-steering mode. 4 = Four-wheel crab-steering mode.
11.	Outputs a bus with all of the function block's input and output signals.
12.	Reports the status of the function block.
13.	Reports the faults of the function block.
14.	The maximum effective Ang input in both a positive and a negative direction. Ang inputs above this value cause no further change in wheel angles.
15.	Outputs a bus with calculated LF, RF, LR, and RR wheel speed signals.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

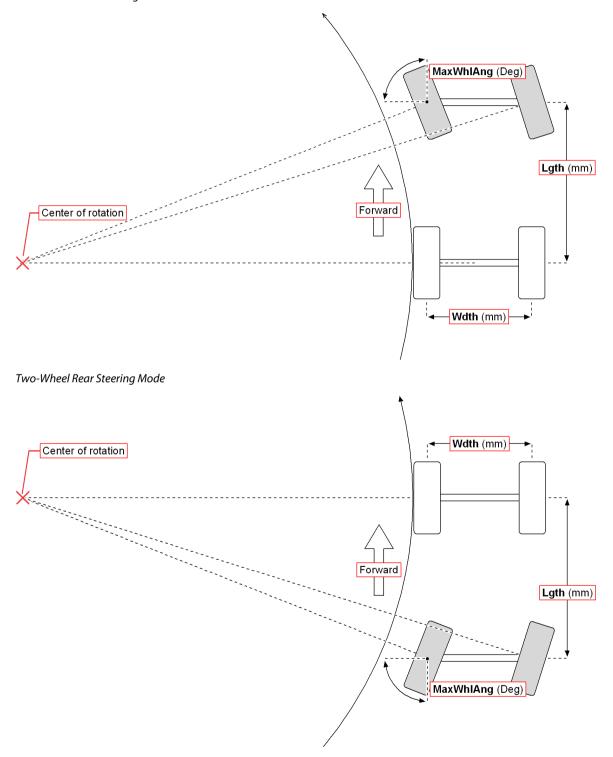
Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Wdth, Lgth, MaxWhlSpd, MaxWhlAng, Wdth Ofst, or Lgth Ofst value is out of range.	Output values based on the out-of-range value clamped at either its minimum or maximum value.	Return the out-of-range value to within its correct range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

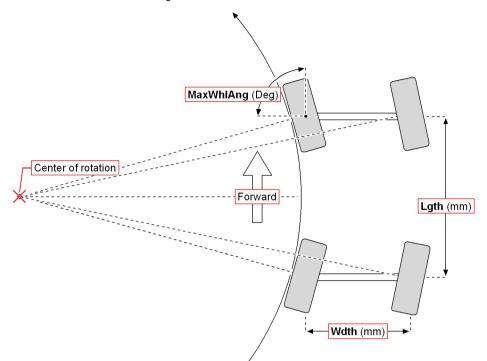
Fault Logic

This topic describes how fault logic is indicated for the function block.

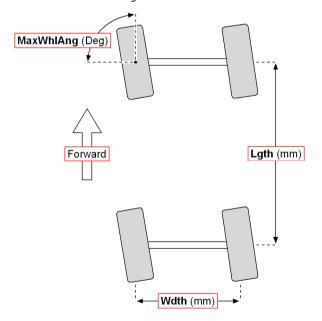
Condition	Hex*	Binary	Cause	Response	Correction
	0x8001	0001	Ang value is less than -9000.	 LF, RF, LR, and RR outputs hold at 0. MaxStrgAng output holds at its last valid value. 	Return the Ang input to within its -9000 to 9000 range.
Input value is too low.			Spd value is less than -20000.		Return the Spd input to within its -20000 to 20000 range.
			Strg Mode value is less than 1.		Select a Strg Mode input of 1, 2, 3, or 4.
	0x8002	0010	Ang value is greater than 9000.		Return the Ang input to within its -9000 to 9000 range.
Input value is too high.			Spd value is greater than 20000.		Return the Spd input to within its -20000 to 20000 range
			Strg Mode value is greater than 4.		Select a Strg Mode input of 1, 2, 3, or 4.


* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Steering Modes


Available steering modes are illustrated.

Two-Wheel Front Steering Mode



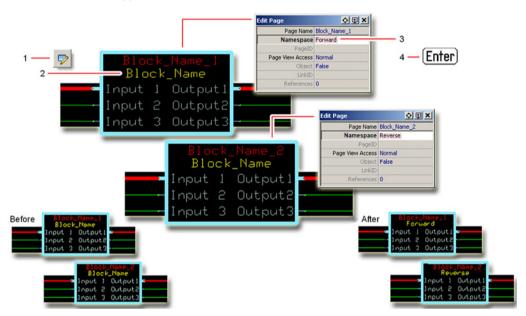
Four-Wheel Coordinated Steering Mode

Four-Wheel Crab Steering Mode

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.


Some function blocks contain non-volatile memory components that store function block operating parameters.

Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

 Click on the function block whose namespace you want to set to a unique value. The Edit Page window opens.

- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.

4. Press Enter.

5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description
Function block name	Ackermann_Spd.
Function block version	4.0.1
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [*] GUIDE compile process. When the PLUS+1 [*] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Use the **Ackermann_Strg** function block to calculate the wheel angles for a given average steering command input.

	Ackermann_Strg Ackermann_Strg	L
+	ChkPt IO	÷
+	Ang Status	+
+	Wdth Fault	+
╉	Lgth MaxStrAng	+
+	MaxWhlâng LF	+
┿	Wdth Ofst <mark>'</mark> RF	+
+	Lgth Ofst 🛛 LR	+
╇	Strg Mode 🖵 RR	+

You can use this function block to calculate wheel angles for vehicles with:

- Two-wheel front steering.
- Two-wheel rear steering.
- Four-wheel coordinated steering.
- Four-wheel crab steering.

Inputs

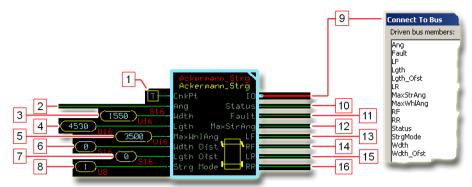
The inputs to the **Ackerman_Strg** function block are described.

ltem	Туре	Range	Description	
ChkPt	BOOL		True—include the function block's built-in Advanced Checkpoint with Namespace False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.	
Spd	S16	-20000-20000	Requested vehicle speed. 1000 = 1000 mm/s	
Ang	S16	-9000-9000	Requested steering angle. 000 = 10.00°	
Wdth	U16	200–10000	Width of the vehicle's wheelbase. 1000 = 1000 mm	
Lgth	U16	800-20000	Length of vehicle's wheelbase. 1 = 1 mm	
MaxWhlSpd	U16	0–20000	Maximum allowed wheel speed in both a positive and a negative direction. Once one wheel reaches the MaxWhISpd , the wheel speeds of the other wheels stop increasing. 1000 = 1000 mm/s	
MaxWhlAng	U16	0–9000	The maximum allowed wheel steering angle in both a positive and a negative direction. Once one wheel reaches the MaxWhIAng , the wheel angles of the other wheels stop increasing. 1000 = 10.00°	

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description
Wdth Ofst	S16	-10000-10000	 Width offset for the center of rotation when steering. A positive Wdth Ofst value shifts the center of rotation when steering to the right of the vehicle. A negative Wdth Ofst value shifts the center of rotation when steering to the left of the vehicle. Use the Wdth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the left or right side of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm
Lgth Ofst	S16	-10000-10000	 Length offset for the center of rotation when steering. A positive Lgth Ofst value shifts the center of rotation when steering toward the front of the vehicle. A negative Lgth Ofst value shifts the center of rotation when steering toward the rear of the vehicle. Use the Lgth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the front or rear of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering. If your vehicle's wheelbase determines the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm
Strg Mode	U8	1-4	 Vehicle steering mode: 1 = Two-wheel front-steering. 2 = Two-wheel rear-steering. 3 = Four-wheel coordinated-steering. 4 = Four-wheel crab-steering.

Outputs


The outputs of the **Ackermann_Strg** function block are described.

ltem	Туре	Range	Description	
10	Bus		Outputs a bus with all of the function block's input and output signals. This bus provides a convenient way to distribute this function block's signals to your application.	
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.	
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.	
MaxStrgAng	U16	0–9000	The maximum effective Ang input in both a positive and a negative direction. Any Ang inputs above this value cause no change increase in wheel angles. The function block calculates this output based on maximum allowed wheel angles and vehicle geometry. 1000 = 10.00°	
LF	S16	-9000–9000	Calculated wheel angle for the left-front wheel. 1000 = 10.00°	
RF	S16	-9000–9000	Calculated wheel angle for the right-front wheel. 1000 = 10.00°	
LR	S16	-9000–9000	Calculated wheel angle for the left-rear wheel. 1000 = 10.00°	
RR	S16	-9000–9000	Calculated wheel angle for the right-rear wheel. 1000 = 10.00°	

Function Block Connections

Connections you can make with the function block are described.

ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Requested steering angle.
3.	Width of the vehicle's wheelbase.
4.	Length of the vehicle's wheelbase.
5.	The maximum allowed wheel angle in both a positive and a negative direction.
6.	Width offset for the center of rotation when steering.
7.	Length offset for the center of rotation when steering.
8.	 1 = Two-wheel front-steering mode. 2 = Two-wheel rear-steering mode. 3 = Four-wheel coordinated-steering mode. 4 = Four-wheel crab-steering mode.
9.	Outputs a bus with all of the function block's input and output signals.
10.	Reports the status of the function block.
11.	Reports the faults of the function block.
12.	The maximum effective Ang input in both a positive and a negative direction. Ang inputs above this value cause no further change in wheel angles.
13.	Calculated angle for the left-front wheel.
14.	Calculated angle for the right-front wheel.
15.	Calculated angle for the left-rear wheel.
16.	Calculated angle for the right-rear wheel.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

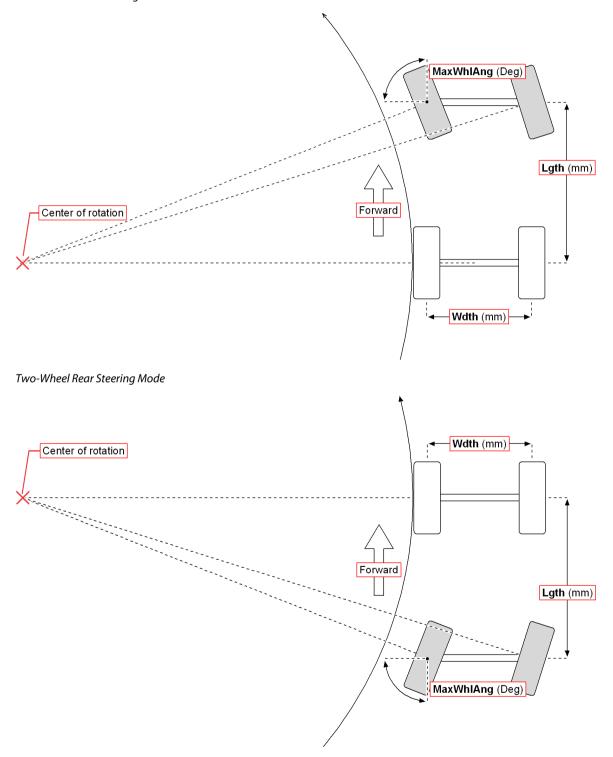
Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Wdth, Lgth, MaxWhlAng, Wdth Ofst, or Lgth Ofst value is out of range.	Output values based on the out-of-range value clamped at either its minimum or maximum value.	Return the out-of-range value to within its correct range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

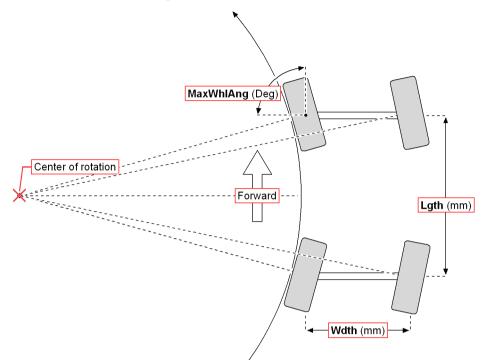
Fault Logic

This topic describes how fault logic is indicated for the function block.

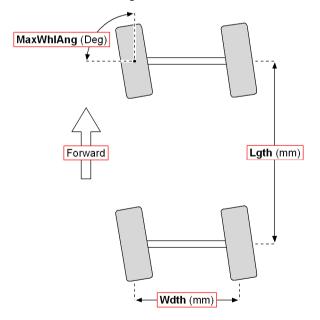
Condition	Hex*	Binary	Cause	Response	Correction				
Input value is too low.	0x8001		Ang value is less than -9000.	LF, RF, LR, RR and MaxStrgAng outputs hold their previous valid	Return the Ang input to within its -9000 to 9000 range.				
		0001	Strg Mode value is less than 1.		Select a outputs hold their previous valid value.Strg Mode input of 1, 2, 3, or 4.				
	0x8002	0.0002 001	0,2002 0010	0,48002	0,2003	0010	Ang value is greater than 9000.	value.	Return the Ang input to within its -9000 to 9000 range.
Input value is too high.		2 0010	Strg Mode value is greater than 4.		Select a Strg Mode input of 1, 2, 3, or 4.				


* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Steering Modes


Available steering modes are illustrated.

Two-Wheel Front Steering Mode



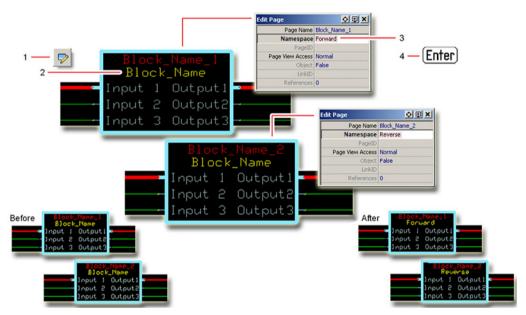
Four-Wheel Coordinated Steering Mode

Four-Wheel Crab Steering Mode

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.


Some function blocks contain non-volatile memory components that store function block operating parameters.

Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

 Click on the function block whose namespace you want to set to a unique value. The Edit Page window opens.

- 3. In the Edit Page window, enter a meaningful Namespace value.
 - Namespace values are case-sensitive.
 - To save controller memory, use a short namespace value.

4. Press Enter.

5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description
Function block name	Ackermann_Strg.
Function block version	4.0.
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [°] GUIDE compile process. When the PLUS+1 [°] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

The **Inverse_Acker** function block uses measured wheel angles and steering mode to determine the original steering angle command.

	Inverse_ Inverse_	
Т	ChkPt	
		IO +
+	Wdth	Status 🕇
+	Lgth	Fault <mark>+</mark>
+	Wdth Ofst	
+	Lgth Ofst	
+	StrgMode	
+	LF	LF Ang <mark>+</mark>
+	RF 🖌	RF Ang 🕂
+	LR	LR Ang <mark>+</mark>
╀	RR ·	RR Ang <mark>+</mark>

Steer-by-wire systems typically do not save the last known steering angle when the system powers off.

Smaller steering systems may initialize the steering to zero degrees on startup to align the wheels with the steering. This can be a potentially dangerous safety situation for anyone near the wheels during alignment.

Use the **Inverse_Acker** block to preset the steering system based on the angle of the tires to minimize wheel re-alignment motion.

You can use this function block to:

- Calculate wheel angles for vehicles with independently actuated steering applications.
- Calculate wheel angles for vehicles with steer-by-wire applications that do not store the last steer angle in non-volatile memory.
- Determine the commanded steering angle before the vehicle shut down.
- Detect if a wheel lost alignment while the vehicle was shut down to allow for a warning before wheel realignment occurs.

Inputs

The inputs to the function block are described.

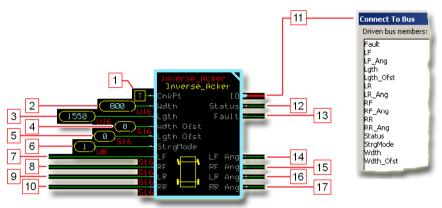
Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description	
ChkPt	BOOL		True—include the function block's built-in Advanced Checkpoint with Namespace False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.	
Spd	S16	-20000-20000	Requested vehicle speed. 1000 = 1000 mm/s	
Ang	S16	-9000-9000	Requested steering angle. 1000 = 10.00°	
Wdth	U16	200–10000	Width of the vehicle's wheelbase.1000 = 1000 mm	
Lgth	U16	800-20000	Length of vehicle's wheelbase. 1 = 1 mm	

ltem	Туре	Range	Description	
MaxWhlSpd	U16	0–20000	Maximum allowed wheel speed in both a positive and a negative direction. Once one wheel reaches the MaxWhISpd , the wheel speeds of the other wheels stop increasing. 1000 = 1000 mm/s	
MaxWhlAng	U16	0–9000	The maximum allowed wheel steering angle in both a positive and a negative direction. Once one wheel reaches the MaxWhIAng , the wheel angles of the other wheels stop increasing. 1000 = 10.00°	
Wdth Ofst	S16	-10000-10000	 Width offset for the center of rotation when steering. A positive Wdth Ofst value shifts the center of rotation when steering to the right of the vehicle. A negative Wdth Ofst value shifts the center of rotation when steering to the left of the vehicle. Use the Wdth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the left or right side of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm 	
Lgth Ofst	S16	-10000-10000	 Length offset for the center of rotation when steering. A positive Lgth Ofst value shifts the center of rotation when steering toward the front of the vehicle. A negative Lgth Ofst value shifts the center of rotation when steering toward the rear of the vehicle. Use the Lgth Ofst to shift your vehicle's center of rotation when steering if: You attach an implement to the front or rear of your vehicle. Your vehicle's wheelbase does not determine the center of rotation when steering, set the Wdth Ofst value to 0. 1000 = 1000 mm 	
Strg Mode	U8	1–4	 Vehicle steering mode: 1 = Two-wheel front-steering. 2 = Two-wheel rear-steering. 3 = Four-wheel coordinated-steering. 4 = Four-wheel crab-steering. 	
LF	S16	-9000-9000	Feedback angle from the left-front wheel. 1000 = 10.00°.	
RF	S16	-9000–9000	Feedback angle from the right-front wheel. 1000 = 10.00°.	
LR	S16	-9000–9000	Feedback angle from the left-rear wheel. 1000 = 10.00°.	
RR	S16	-9000-9000	Feedback angle from the right-rear wheel. 1000 = 10.00°.	

Outputs

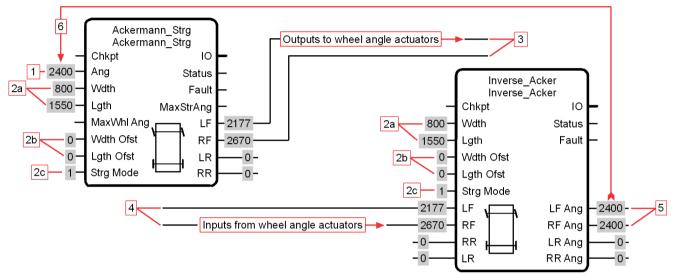
The outputs of the Inverse_Ackermann function block are described.


ltem	Туре	Range	Description	
10	Bus		Outputs a bus with all of the function block's input and output signals. This bus provides a convenient way to distribute this function block's signals to your application.	
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.	
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.	
LF Ang	S16	-9000–9000	Estimated vehicle steering input command based on the feedback angle from the left-front wheel. 1000 = 10.00°	
RF Ang	S16	-9000–9000	Estimated vehicle steering input command based on the feedback angle from the right-front wheel. 1000 = 10.00°	

ltem	Туре	Range	Description
LR Ang	S16	-9000–9000	Estimated vehicle steering input command based on the feedback angle from the left-rear wheel. 1000 = 10.00°
RR Ang	S16	-9000–9000	Estimated vehicle steering input command based on the feedback angle from the left-rear wheel. 1000 = 10.00°

Function Block Connections

Connections you can make with the function block are described.


ltem	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Width of the vehicle's wheelbase.
3.	Length of the vehicle's wheelbase.
4.	Width offset for the center of rotation when steering.
5.	Length offset for the center of rotation when steering.
6.	 1 = Two-wheel front-steering mode. 2 = Two-wheel rear-steering mode. 3 = Four-wheel coordinated-steering mode. 4 = Four-wheel crab-steering mode.
7.	Feedback angle from the left-front wheel.
8.	Feedback angle from the right-front wheel.
9.	Feedback angle from the left-rear wheel.
10.	Feedback angle from the right-rear wheel.
11.	Outputs a bus with all of the function block's input and output signals.
12.	Reports the status of the function block.
13.	Reports the faults of the function block.
14.	Estimated vehicle steering input command based on the feedback angle from the left-front wheel.
15.	Estimated vehicle steering input command based on the feedback angle from the right-front wheel.
16.	Estimated vehicle steering input command based on the feedback angle from the left-rear wheel.
17.	Estimated vehicle steering input command based on the feedback angle from the right-rear wheel.

How the Inverse_Acker Function Block Works to Restore Lost Ang Inputs

The **Ang** input to an **Ackermann** or **Ackermann_Strg** function block can be used to control wheel angles.

Depending on an application's configuration, the **Ang** input may be lost on power down. Loss of the **Ang** input can cause unpredictable and possibly unsafe wheel movements on power up. The following figure shows how the **Inverse_Acker** function block can restore the lost **Ang** input on power up. The logic shown here applies to both **Ackermann_Strg** and **Ackermann** function blocks.

ltem	Description						
1.	The Ang value input to the Ackermann_Strg function block requests a steering angle.						
2a.	The Ackermann_Strg and Inverse_Acker function blocks have identical Wdth and Lgth values.						
2b.	The Ackermann_Strg and Inverse_Acker function blocks have identical Wdth Ofst and Lgth Ofst values.						
2c.	The Ackermann_Strg and Inverse_Acker function blocks have identical Wdth and Lgth values.						
3.	The Ackermann_Strg function block outputs calculated LF and RF wheel angles that position the vehicle's wheels. Depending on an application's configuration, powering down the application can cause the Ang value that produces these wheel angles to be lost. Loss of the Ang value can cause unpredictable wheel movements when the application again powers up.						
4.	The Inverse_Acker function block's LF and RF inputs receive wheel angle inputs. On application power up, the Inverse_Acker function block uses these inputs to calculate the original Ang input (item 1) that produced each wheel angle.						
5.	 Typically, the LF Ang and RF Ang outputs: Equal or nearly equal to each other. Equal or nearly equal the original Ang input (item 1) to the Ackermann_Strg function block. 						
6.	The application software averages the Inverse_Acker function block's LF Ang and RF Ang outputs. It then applies the result to the Ackermann_Strg function block's Ang input (item 1.). This restores the original Ang value that was lost when the application powered down. Steering control resumes without unpredictable wheel movement.						

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

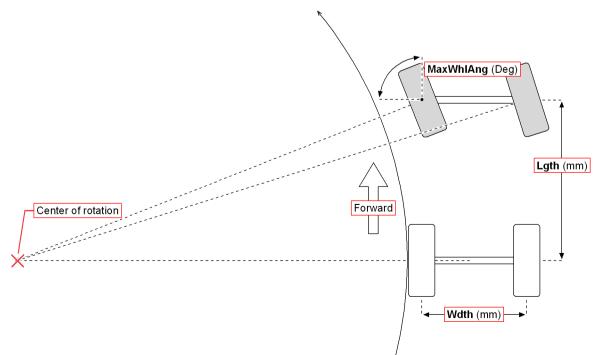
This topic describes how status logic is indicated for the function block.

Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Wdth, Lgth, Wdth Ofst, or Lgth Ofst value is out of range.	Output values based on the out-of-range value clamped at either its minimum or maximum value.	Return the out-of-range value to within its correct range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

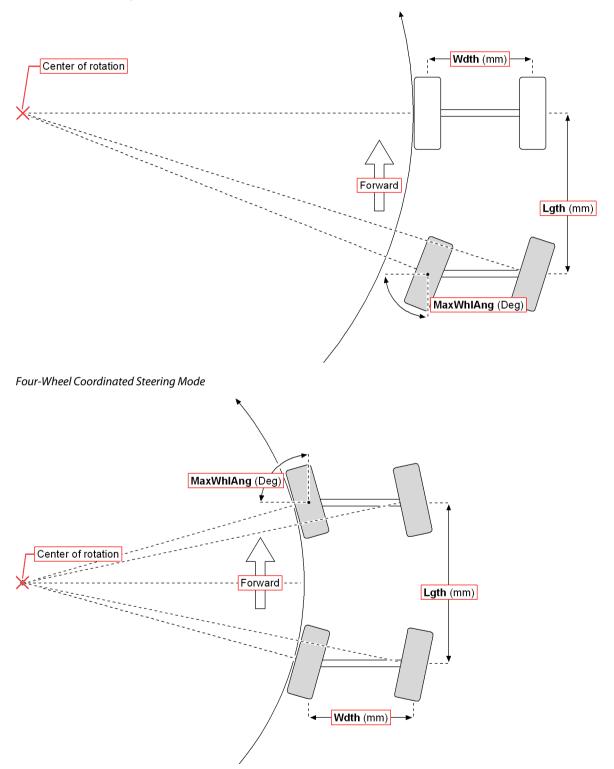
Fault Logic

This topic describes how fault logic is indicated for the function block.

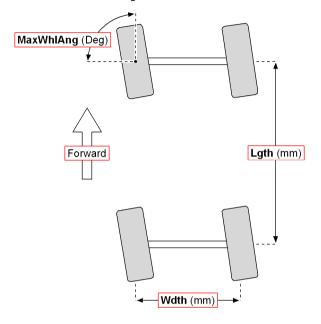

Condition	Hex*	Binary	Cause	Response	Correction
Input value is too low.	0x8001	0001	LF , RF , LF , or RR value is less than -9000.	LF Ang , RF Ang , LR Ang , and RR Ang outputs hold at their previous values.	Return the LF , RF , LF , or RR input to within its -9000 to 9000 range.
			Strg Mode value is less than 1.		Select a Strg Mode input of 1, 2, 3, or 4.
Input value is too high.	0x8002	0010	LF , RF , LF , or RR value is greater than 9000.		Return the LF , RF , LF , or RR input to within its -9000 to 9000 range.
input value is too high.			Strg Mode value is greater than 4.		Select a Strg Mode input of 1, 2, 3, or 4.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Steering Modes


Available steering modes are illustrated.

Two-Wheel Front Steering Mode


Two-Wheel Rear Steering Mode

Inverse_Acker Function Block

Four-Wheel Crab Steering Mode

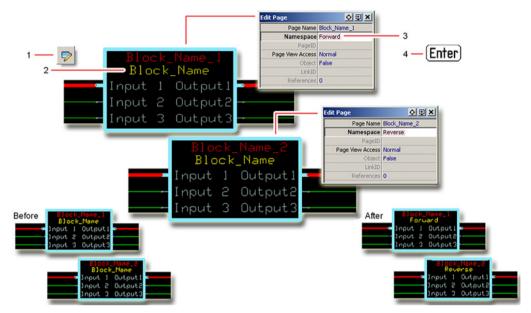
Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.

Some function blocks contain non-volatile memory components that store function block operating parameters.

Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.


The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Inverse_Acker Function Block

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

2. Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.

3. In the Edit Page window, enter a meaningful Namespace value.

- **Namespace** values are case-sensitive.
- To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.

Inverse_Acker Function Block

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

ltem	Description
Function block name	Inverse_Acker.
Function block version	4.0.1
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [*] GUIDE compile process. When the PLUS+1 [*] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1[*] GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Use the **Hysteresis** function block to remove hysteresis from an input by adding an offset when the input increases and subtracting an offset when the input decreases.

Hysteres	is
Hysteres	is
← ChkPt	IO +
- Ramp	Status +
- Hyst	Fault +
- Input	Output +

When the input is constant the offset ramps to zero, eventually resulting in an output that equals the input.

You can use this function block to:

- Compensate for mechanical lags.
- Improve an application's response to hysteresis step-changes in an input signal. In this use, the signal input to this function block should not command frequent direction changes. In an application, sudden changes in this function block's output should be tolerated or desirable.

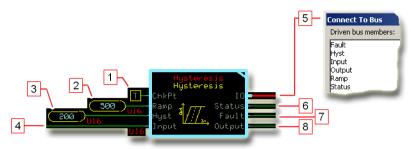
Inputs

The inputs to the **Hysteresis** function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

Item	Type	Range	Description	
item	Туре	Range	Description	
ChkPt	BOOL		True—include the function block's built-in Advanced Checkpoint with Namespace False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.	
Ramp	U16	0–32767	The function block applies a Hyst offset to its Output to compensate for hysteresis. The Ramp value sets the time that the function block takes to linearly ramp the Hyst offset to 0. With a steady Input , this function block's Output will equal its Input at the end of the Ramp time. 1000 = 1000 ms.	
Hyst	U16	0-32767	 The hysteresis offset that the function block applies to its Output when its Input changes. When the function block's Input: Increases, the function block adds the Hyst value to its Output. Decreases, the function block subtracts the Hyst value from its Output. 	
Input	U16	0–32767	The input signal that needs hysteresis compensation.	

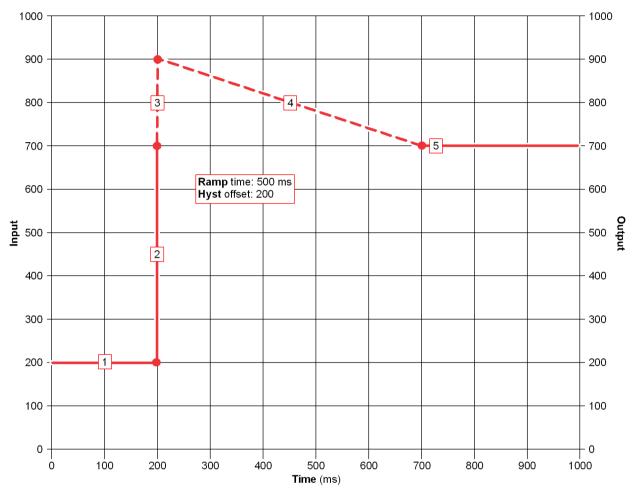
Outputs


The outputs of the **Hysteresis** function block are described.

ltem	Туре	Range	Description	
10	Bus		Outputs a bus with all of the function block's input and output signals. This bus provides a convenient way to distribute this function block's signals to your application.	
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.	
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.	
Output	U16	0–32767	The Input signal after hysteresis compensation.	

Function Block Connections

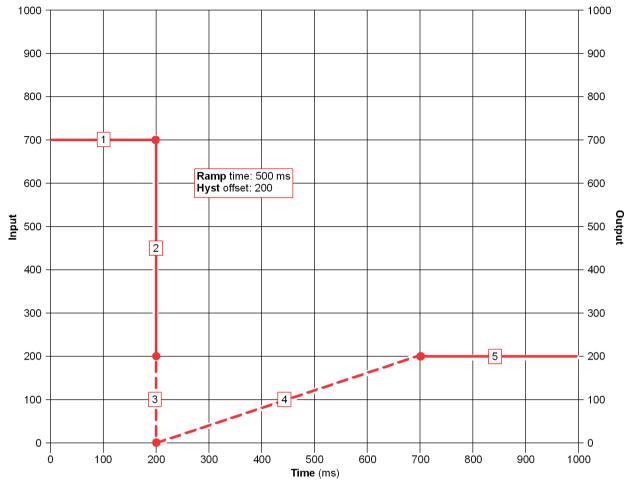
Connections you can make with the function block are described.


Function Block Connections

ltem	Description	
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file. 	
2.	The function block applies a Hyst offset to its Output to compensate for hysteresis. The Ramp value sets the time that the function block takes to linearly ramp the Hyst offset to 0.	
3.	The hysteresis offset applied to the function block's Output when its Input changes.	
4.	The input signal that needs hysteresis compensation.	
5.	Outputs a bus with all of the function block's input and output signals.	
6.	Reports the status of the function block.	
7.	Reports the faults of the function block.	
8.	The Input signal after hysteresis compensation.	

Function Block Example

Use the following example to understand how configuration changes impact the output of the function block.



The plot above shows how the **Hysteresis** function block applies hysteresis compensation when the value of its **Input** signal suddenly increases.

Figure Details

Item	Description
1.	From 0 ms to 200 ms, an Input of 200 to the function block produces a steady Output of 200.
2.	At 200 ms, the Input to the function block increases by 500, from 200 to 700. From 200 ms on, the Input holds at 700.
3.	At 200 ms, the function block applies a Hyst offset of 200 to increase its Output from 700 to 900.
4.	Between 200 ms and 700 ms, the function block applies a Ramp time of 500 ms to ramp down the Hyst offset applied to its Output to 0.
5.	At 700 ms, at the end of the Ramp time, the function block's Output equals its Input .

The plot above shows how the **Hysteresis** function block applies hysteresis compensation when the value of its **Input** signal suddenly decreases.

Figure Details

ltem	Description
1.	From 0 ms to 200 ms, an Input of 200 to the function block produces a steady Output of 700.
2.	At 200 ms, the Input to the function block decreases by 500, from 700 to 200. From 200 ms on, the Input holds at 200.
3.	At 200 ms, the function block applies a Hyst offset of 200 to decrease its Output from 200 to 0.
4.	Between 200 ms and 700 ms, the function block applies a Ramp time of 500 ms to ramp down the Hyst offset applied to its Output to 0.
5.	At 700 ms, at the end of the Ramp time, the function block's Output equals its Input.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

Condition	Hex*	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	Ramp or Hyst parameter is out-of-range.	Limits the Ramp or Hyst value to the defined maximum.	Return the Ramp or Hyst parameter to the valid range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Fault Logic

This topic describes how fault logic is indicated for the function block.

Condition	Hex [*]	Binary	Cause	Response	Correction
Input value is too high.	0x8002	0010	Input value > 32767.	Output = 32767	Return the Input to the valid range.

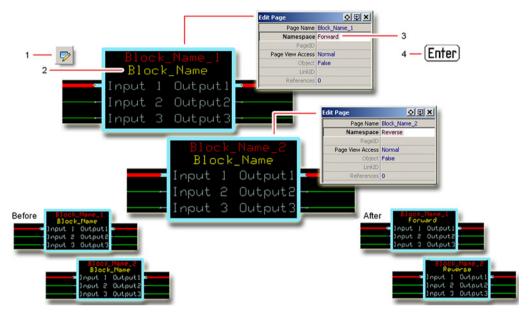
^{*} Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.

Some function blocks contain non-volatile memory components that store function block operating parameters.


Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

- **2.** Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.
- 3. In the Edit Page window, enter a meaningful Namespace value.
 - **Namespace** values are case-sensitive.
 - To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description			
Function block name	Hysteresis.			
Function block version	4.0.			
Function block development environment	PLUS+1° GUIDE version 8.1 and later.			
Compatible hardware	Verified in the PLUS+1 [°] GUIDE compile process. When the PLUS+1 [°] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."			
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.			
Competence required of function block integrator The knowledge, competence, and training required to: • Understand this manual. • Understand this manual. • Use the PLUS+1* GUIDE program to develop a machine control application. • Follow quality software practices to develop a machine control application.				
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services			

Use the **State_Brake** function block in applications that need smooth transition signals.

This function block has parameters to smooth:

- Acceleration transitions.
- Coasting transitions.
- Change of direction transitions.
- Braking transitions.
- Deceleration to neutral.

Typically, you use this function block in propel applications that require smooth starting and stopping but need faster ramp rates for other conditions.

Inputs

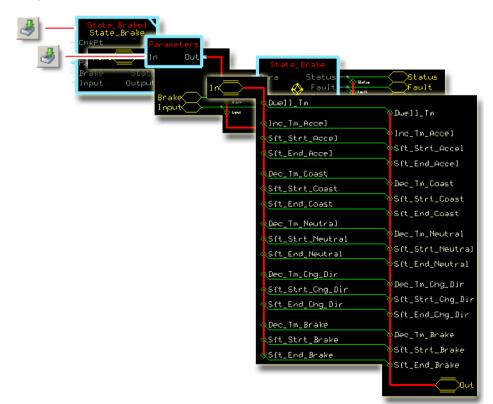
The inputs to the **State** _**Brake** function block are described.

Use only the data types specified in this table. Other data types cause compiler errors.

ltem	Туре	Range	Description
ChkPt	BOOL		True—include the function block's built-in Advanced Checkpoint with Namespace False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
Para	Bus		Input for acceleration and deceleration parameters that set how this function block's Output ramps in response to changes in its Input .
Brake	BOOL		 True—ignore the Input value and apply the Brake parameters to ramp the Output value to 0. False—apply the appropriate acceleration and deceleration parameters to the Output value in response to changes in the Input value.
Input	S16	-10000-10000	Command signal to be ramped.

Outputs

The outputs of the **State_Brake** function block are described.


ltem	Туре	Range	Description
ю	Bus		Outputs a bus with all of the function block's input and output signals. This bus provides a convenient way to distribute this function block's signals to your application.
Status	U16		Reports the status of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.
Fault	U16		Reports the faults of the function block. This output follows the standard bitwise scheme described in the <i>Status Logic</i> topic.

ltem	Туре	Range	Description
State	U8	0–5	Reports the function block's current state.
			• 0 = Not ramping; the Input equals the Output and the brake is not active.
			• 1 = The Input commands a deceleration but not a deceleration to neutral. The function block applies Coast parameters to its Output .
			• 2 = The Input commands deceleration to neutral. The function block applies Neutral parameters to its Output .
			• 3 = The Input commands a change in direction. The function block applies Chg_Dir and Dwell_Tm parameters to its Output .
			 4 = The boolean Brake input goes true and commands braking to neutral. The function block applies Brake parameters to its Output.
			• 5 = The Input commands forward or reverse acceleration. The function block applies Accel parameters to its Output .
Output	S16	-10000-10000	The Input command after ramping.

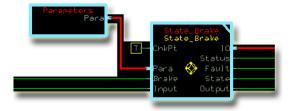
Parameters

The parameters of the **State_Brake** function block are described.

The **Parameters** page provides access to the function block's parameter (configuration) values.

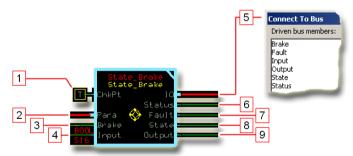
Typically, you input parameter values from an external page to this function block through its **Para** input.

ltem	Туре	Range	Description	
Dwell Tm	U16	0–65535	The time that the function block's Output must remain at 0 when its Input commands change in direction. 1000 = 1000 ms	
Inc_Tm_Accel	U16	0–65535	The time that the function block's Output takes to go from 0 to 10000 or from 0 to -10000 when its Input commands 100.00% acceleration. 1000 = 1000 ms	
Sft_Strt_Accel	U16	0–10000	The non-linear, soft-start portion of the Inc_Tm_Accel ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Sft_End_Accel	U16	0–10000	The non-linear, soft-end portion of the Inc_Tm_Accel ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Dec_Tm_Coast	U16	0–65535	 The time that the function block's Output takes to go from 10000 to 1 or from -10000 -1 when its Input commands deceleration to 1 or -1. The Dec_Tm_Coast value applies when the Input commands a deceleration but n a deceleration to neutral. The Dec_Tm_Neutral value applies when the Input commands a deceleration to neutral. 1000 = 1000 ms 	
Sft_End_Coast	U16	0–10000	The non-linear, soft-end portion of the Dec_Tm_Coast ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Sft_Strt_Coast	U16	0–10000	The non-linear, soft-start portion of the Dec_Tm_Coast ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Dec_Tm_Neutral	U16	0–65535	 The time that the function block's Output takes to go from 10000 to 0 or from -10000 to 0 when its Input commands deceleration to neutral. The Dec_Tm_Coast value applies when the Input commands a deceleration but not a deceleration to neutral. The Dec_Tm_Neutral value applies when the Input commands a deceleration to neutral. 1000 = 1000 ms 	
Sft_Strt_Neutral	U16	0–10000	The non-linear, soft-start portion of the Dec_Tm_Neutral ramp as a percentage of th ramp's total time. 10000 = 100.00%.	
Sft_End_Neutral	U16	0–10000	The non-linear, soft-end portion of the Dec_Tm_Neutral ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Dec_Tm_Chg_Dir	U16	0–65535	The time that the function block's Output takes to go from 10000 to 0 or from -10000 to 0 when its Input commands a change in direction. 1000 = 1000 ms	
Sft_Strt_Chg_Dir	U16	0–10000	The non-linear, soft-start portion of the Dec_Tm_Chg_Dir ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Sft_End_Chg_Dir	U16	0–10000	The non-linear, soft-end portion of the Dec_Tm_Chg_Dir ramp as a percentage of this ramp's total time. 10000 = 100.00%.	
Dec_Tm_Brake	U16	0–65535	The time that the function block's Output takes to go from 10000 to 0 or from -10000 to 0 when its boolean Brake input goes true. 1000 = 1000 ms	



Item	Туре	Range	Description
Sft_Strt_Brake	U16	0–10000	The non-linear, soft-start portion of the Dec_Tm_Brake ramp as a percentage of this ramp's total time. 10000 = 100.00%.
Sft_End_Brake	U16	0–10000	The non-linear, soft-end portion of the Dec_Tm_Brake ramp as a percentage of this ramp's total time. 10000 = 100.00%.

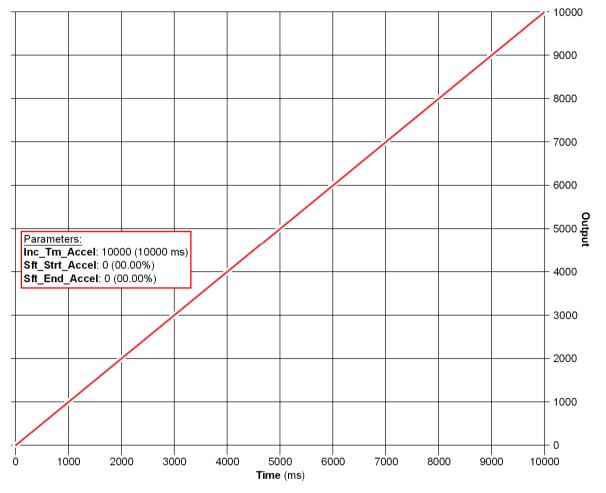
About the Para Input


Typically, you input parameter (configuration) values from an external page to this function block through its **Para** input.

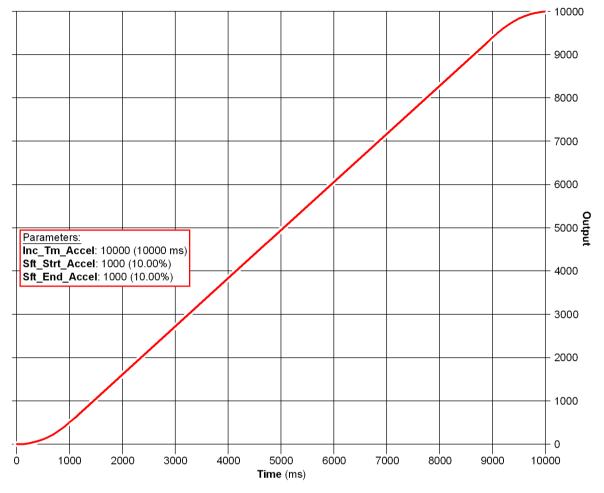
The **Parameters** page in the following figure has memory component for each of the function block's parameters.

Function Block Connections

Connections you can make with the function block are described.

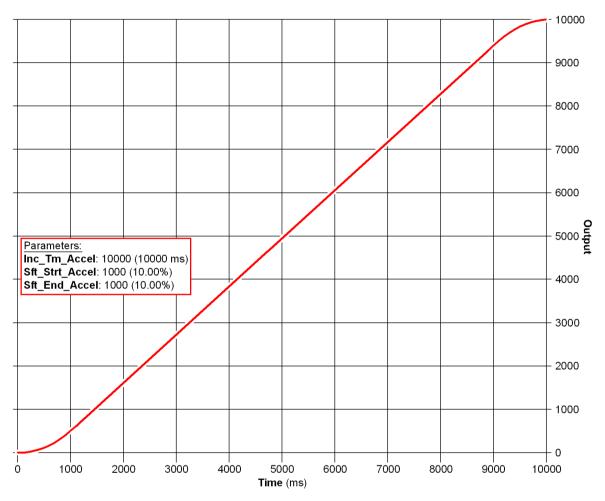

Function Block Connections

Item	Description
1.	 True—include the function block's built-in Advanced Checkpoint with Namespace in the compiled LHX download file. False—exclude the function block's built-in Advanced Checkpoint with Namespace components from the compiled LHX download file.
2.	Input for the acceleration and deceleration parameters that set how this function block's Output ramps in response to changes in its Input .
3.	 True—ignore the Input value and apply the Brake parameters to ramp the Output value to 0. False—apply the appropriate acceleration and deceleration parameters to the Output value in response to changes in the Input value.
4.	Command signal to be ramped.
5.	Outputs a bus with all of the function block's input and output signals.
6.	Reports the status of the function block.
7.	Reports the faults of the function block.
8.	Reports the function block's current state.
9.	The Input command after ramping.

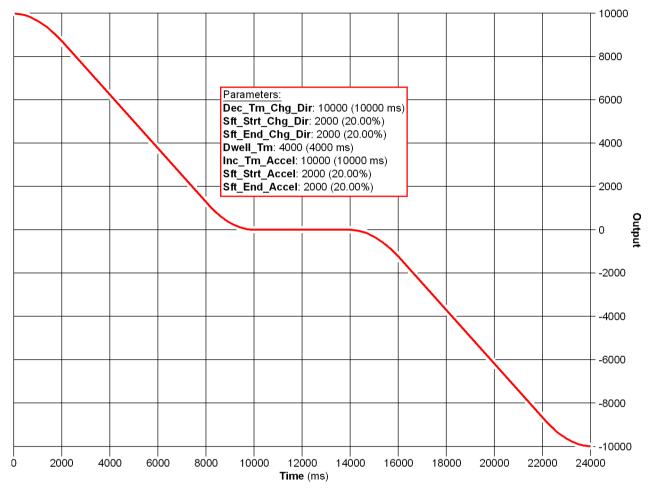

Function Block Examples

Use the following examples to understand how configuration changes impact the output of the function block.

The parameters applied in this figure make the ramp completely linear.



With the parameters shown in this figure, the:


- The **Sft_Strt_Accel** time starts at 0 ms and ends at 1000 ms.
- The Sft_End_Accel time starts at 9000 ms and ends at 10000 ms.

With the parameters shown in this figure, the:

- The Sft_Strt_Accel time starts at 0 ms and ends at 2000 ms.
- The Sft_End_Accel time starts at 8000 ms and ends at 10000 ms.

With the parameters shown in this figure, the:

- Sft_Strt_Chg_Dir time starts at 0 ms and ends at 2000 ms.
- Sft_End_Chg_Dir time starts at 8000 ms and ends at 10000 ms.
- Dwell_Tm starts at 10000 ms and ends at 14000 ms.
- Sft_Strt_Accel time starts at 14000 ms and ends at16000 ms.
- Sft_End_Accel time starts at 22000 ms and ends at 24000 ms.

				10000
-				9000
				8000
				7000
		Sft_Strt_	<u>Coast</u> : 10000 (10000 ms) Coast: 1000 (10.00%)	6000
		Stt_End_	Coast: 1000 (10.00%)	
				4000
				3000
				2000
 1000	2000 3000	 4000 5000 Time (ms)	6000 7000 8000	9000 10000

With the parameters shown in this figure, the:

- Dec_Tm_Coast time starts at 0 ms with an Output of 10000 and ends at 5000 ms with an Output of 5000.
- 50.00% decrease in the **Output** takes 5000 ms. (A 100.00% decrease in the **Output** takes 10000 ms.)
- Sft_Strt_Coast time starts at 0 ms and ends at 500 ms.
- Sft_End_Coast time starts at 4500 ms and ends at 5000 ms.
- Sft_Strt_Coast and Sft_End_Coast times are equal to 10.00% of the ramp time and each take 500 ms.

Status and Fault Logic

Use status and fault codes to determine proper program operation.

Status Logic

This topic describes how status logic is indicated for the function block.

Condition	Hex [*]	Binary	Cause	Response	Correction
Invalid setup.	0x8008	1000	 A Sft_Strt or Sft_End value is out-of range. The sum ofSft_Strt and Sft_End is greater than 10000. 	The out-of-range Sft_Strt or Sft_End value is limited to 10000.	Return the Sft_Strt or Sft_End parameter to the valid range.

* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Fault Logic

This topic describes how fault logic is indicated for the function block.

Condition	Hex*	Binary	Cause	Response	Correction
Input value is too low.	0x8001	0001	Input value < -10000.	Input limited to -10000.	Return the Input to the valid
Input value is too high.	0x8002	0010	Input value > 10000.	Input limited to 10000.	range.

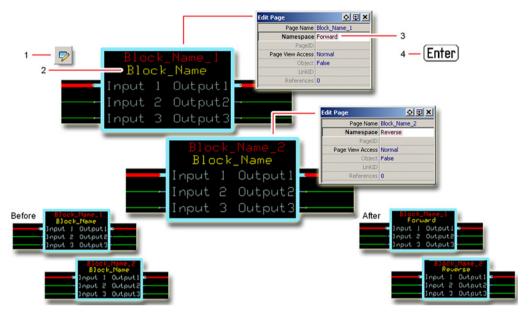
* Bit 16 set to 1 identifies a standard Danfoss status or fault code.

Identical Function Blocks Need Different Namespace Values to Successfully Compile

If you use the same function block more than once in an application, you must change each function block's namespace value to avoid compiler errors.

All function blocks contain Advanced Checkpoint with Namespace components that enable the PLUS+1[®] Service Tool to read block input and output values.

Some function blocks contain non-volatile memory components that store function block operating parameters.


Both these components use memory names ("aliases") to allocate memory. Identical memory names cause compiler errors.

The namespace value adds a unique prefix to each component name to avoid errors. Keep each namespace value short to save controller memory.

Change Namespace Value

To successfully compile your application, change the namespace value for function blocks that are used more than once in an application.

1. In the PLUS+1[®] GUIDE menu bar, click the **Query/Change** button.

- **2.** Click on the function block whose namespace you want to set to a unique value. The **Edit Page** window opens.
- 3. In the Edit Page window, enter a meaningful Namespace value.
 - **Namespace** values are case-sensitive.
 - To save controller memory, use a short namespace value.
- 4. Press Enter.
- 5. Repeat these steps to enter unique namespace values for other identical function blocks.

IEC 61508-3 Annex D Supplemental Information

The following table provides IEC 61508-3 Annex D supplemental information.

Item	Description
Function block name	State_Brake.
Function block version	4.0.
Function block development environment	PLUS+1° GUIDE version 8.1 and later.
Compatible hardware	Verified in the PLUS+1 [°] GUIDE compile process. When the PLUS+1 [°] GUIDE compiler finds a function block that is incompatible with hardware, it aborts the compile process and logs an error message. The error message gives the location of the function block and states "Error 80: component not supported in hwd."
Function block developed in compliance with	Danfoss Software Product Development Process (PDP), which includes ISO 9001 and IEC 61508-3 standards.
Competence required of function block integrator	 The knowledge, competence, and training required to: Understand this manual. Use the PLUS+1° GUIDE program to develop a machine control application. Follow quality software practices to develop a machine control application.
Contacting Danfoss	https://www.danfoss.com/en/products/software/dps/plus1-software-services-support-and-training/plus1-support-and-services

Products we offer:

- DCV directional control valves
- Electric converters
- **Electric machines**
- **Electric motors**
- Hydrostatic motors
- Hydrostatic pumps
- Orbital motors
- PLUS+1[®] controllers
- PLUS+1[®] displays
- PLUS+1[®] joysticks and pedals
- PLUS+1[®] operator interfaces
- PLUS+1[®] sensors
- PLUS+1[®] software
- PLUS+1[®] software services, support and training
- Position controls and sensors
- PVG proportional valves
- Steering components and systems
- Telematics

Danfoss Power Solutions is a global manufacturer and supplier of high-guality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market as well as the marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster.

Danfoss Power Solutions - your strongest partner in mobile hydraulics and mobile electrification.

Go to www.danfoss.com for further product information.

We offer you expert worldwide support for ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components.

Comatrol www.comatrol.com	Local address:
Turolla www.turollaocg.com	
Hydro-Gear www.hydro-gear.com	
Daikin-Sauer-Danfoss www.daikin-sauer-danfoss.com	

Danfoss **Power Solutions (US) Company** 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000

Danfoss Power Solutions GmbH & Co. OHG Krokamp 35 D-24539 Neumünster, Germany Phone: +49 4321 871 0

Danfoss **Power Solutions ApS** Nordborgvej 81 DK-6430 Nordborg, Denmark Phone: +45 7488 2222

Danfoss Power Solutions Trading (Shanghai) Co., Ltd. Building #22, No. 1000 Jin Hai Rd Jin Qiao, Pudong New District Shanghai, China 201206 Phone: +86 21 3418 5200

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.