

Datasheet, technical data

General Characteristics

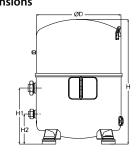
Model number (on compressor nameplate)		VTZ171AGNR1A		
Code number for Singlepack*		120B0005		
Drawing number		8504018a		
Suction and discharge connections		Rotolock		
Suction connection		1-3/4 " Rotolock		
Discharge connection		1-1/4 " Rotolock		
Suction connection with supplied sleeve		1-1/8 " ODF		
Discharge connection with supplied sleeve		3/4 " ODF		
Oil sight glass		Threaded		
Oil equalization connection		3/8" flare SAE		
Oil drain connection		None		
LP gauge port		Schrader		
IPR valve		435 psi / 115 psi		
Cylinders	4			
Swept volume	10.45 ir	n3/rev		
Net weight	132	lbs		
Oil charge	132 oz, PO	E - 160PZ		
Maximum system test pressure Low Side / High side	363 psi / 435 psi			
Maximum differential test pressure	435 psi			
Maximum number of starts per hour	12			
Refrigerant charge limit	11	bs		
Approved refrigerants	R404A, R507A, R134a, R407C			

Electrical Characteristics

Licetifical Characteristics	
Nominal voltage	Frequency converter CD302 required with supply
	voltage 380-480V/3/50-60Hz
Voltage range	342-528 V supply to frequency converter
Winding resistance (between phases) +/- 7% at 77°F	0.67 Ω
Rated Load Amps (RLA)	30.5 A
Maximum Must Trip current (MMT)	38.1 A
Locked Rotor Amps (LRA)	130 A
Motor protection	Motor protection by frequency converter

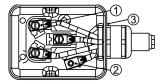
Recommended Installation torques

Oil sight glass	37 ft.lbs
Power connections / Earth connection	2 ft.lbs / 1 ft.lbs
Mounting bolts	37 ft.lbs


Parts shipped with compressor

Mounting kit with grommets, bolts, nuts, sleeves and washers
Suction & Discharge solder sleeves, rotolock nuts and gaskets (shipped with rotolock version only)
Initial oil charge
Installation instructions

 $\textbf{Approvals:} \ \mathsf{CE} \ \mathsf{certified}, \ \mathsf{UL} \ \mathsf{certified} \ \mathsf{when} \ \mathsf{connected} \ \mathsf{to} \ \mathsf{frequency} \ \mathsf{converter}, \mathsf{-}$


*Singlepack: Compressor in cardboard box

Dimensions

D=13.9 inch, H=20.4 inch, H1=9.2 inch, H2=4.9 inch, H3=- inch

Terminal box

IP54 (with cable gland)

- 1: Power connection, 3 x 4.8 mm (3/16")
- 2: Earth M4
- 3: Hole Ø 33 mm (1.30")

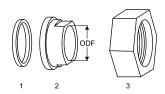
Datasheet, accessories and spare parts

Inverter reciprocating compressors VTZ171-G

8153004
8168028
8156132

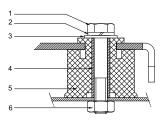
Rotolock accessories, discharge side	Code no.
Solder sleeve, P04 (1-1/4" Rotolock, 3/4" ODF)	8153008
Rotolock valve, V04 (1-1/4" Rotolock, 3/4" ODF)	8168029
Gasket, 1-1/4"	8156131

Rotolock accessories, sets	Code no.
Valve set, V02 (1-3/4"~1-1/8"), V04 (1-1/4"~3/4")	7703009
Gasket set, 1", 1-1/4", 1-3/4", OSG gaskets black & white	8156009


Oil / lubricants	Code no.
POE lubricant, 160PZ, 1 liter can	7754019
POE lubricant, 160PZ, 2.5 liter can	120Z0573

Crankcase heaters	Code no.
PTC heater 27W, CE mark, UL	120Z0459
Belt type crankcase heater, 65 W, 230 V, CE mark, UL	7773107
Belt type crankcase heater, 65 W, 400 V, CE mark, UL	7773117
Belt type crankcase heater, 65 W, 460 V, CE mark, UL	120Z0466

Miscellaneous accessories	Code no.
Acoustic hood for 4 cylinder compressor	120Z0473
Oil equalisation nut	8153127


Spare parts	Code no.
Mounting kit for 4 cylinder compressor & MS, including 4 grommets, 4 bolts	8156007
Oil sight glass with gaskets (black & white)	8156019
Gasket for oil sight glass (black chloroprene)	8156145
Terminal box incl cover	120Z0146
Terminal box cover	120Z0149
T block connector 2.1" x 2.3"	8173230

Gaskets, sleeves and nuts

- 1: Gasket
- 2: Solder sleeve
- 3: Rotolock nut

Mounting kit

- 1: Bolt (4x)
- 2: Lock washer (4x)
- 3: Flat washer (4x)
- 4: Sleeve (4x)
- 5: Grommet (4x)
- 6: Nut (4x)

Inverter reciprocating compressors VTZ171-G

Performance data at 30 Hz, ARI rating conditions

R134a

Cond. temp.		1	1	1	ting temperature	, , ,	1	T	1
in °F (tc)	5	15	25	30	35	40	45	50	55
	to die Daude								
ooling capacit	ty in Btu/n	_	_	_	_	_	_		_
100	11 190	16 177	22 370	25 971	29 936	34 286	39 041	44 223	49 851
110	9 772	14 460	20 270	23 647	27 368	31 453	35 923	40 798	46 100
120	8 353	12 737	18 156	21 308	24 781	28 598	32 779	37 345	42 317
130	6 949	11 022	16 046	18 968	22 191	25 737	29 627	33 881	38 520
140	-	9 331	13 954	16 643	19 614	22 886	26 482	30 421	34 726
150		9 33 1	-	-	17 065	20 061	23 360	26 983	30 951
100			I	1	17 000	20 001	20 000	20 000	00 001
Power input in	w								
90	-	-	-	-	-	-	-	-	-
100	2 072	2 293	2 466	2 539	2 604	2 663	2 719	2 772	2 825
110	2 115	2 393	2 613	2 706	2 790	2 866	2 935	3 000	3 062
120	2 120	2 465	2 744	2 863	2 970	3 067	3 155	3 237	3 314
130	2 079	2 501	2 849	2 999	3 135	3 258	3 371	3 475	3 572
140	-	2 493	2 920	3 106	3 276	3 431	3 574	3 705	3 827
150	-	-	-	-	3 385	3 578	3 755	3 919	4 071
Current consun	nption in A								
90	-	-	-	-	-	-	-	-	-
100	4.42	4.87	5.21	5.35	5.47	5.57	5.67	5.76	5.85
110	4.58	5.10	5.50	5.67	5.81	5.95	6.07	6.18	6.29
120	4.65	5.25	5.72	5.93	6.11	6.28	6.44	6.58	6.72
130	4.62	5.32	5.89	6.14	6.36	6.57	6.77	6.96	7.14
140	-	5.31	5.99	6.29	6.57	6.83	7.08	7.31	7.54
150	-	-	-	-	6.74	7.06	7.36	7.65	7.93
Mass flow in Ibs	s/h								
90	-	-	-	-	-	-	_	-	-
100	165	234	316	363	414	469	529	593	662
110	152	220	302	348	398	452	511	574	642
120	138	205	285	331	380	434	491	554	621
130	122	189	267	312	361	413	470	531	597
140	-	170	248	292	339	391	446	506	571
150	-	-	-	-	316	366	421	479	543
		•	•	•	•			•	
	cy Ratio (E.E.R.		_		1				_
90	-	- 7.05		-	- 44.50	- 40.07	- 44.20	-	
100	5.40	7.05	9.07	10.23	11.50	12.87	14.36	15.95	17.65
110	4.62	6.04	7.76	8.74	9.81	10.98	12.24	13.60	15.05
120	3.94	5.17	6.62	7.44	8.34	9.33	10.39	11.54	12.77
130	3.34	4.41	5.63	6.33	7.08	7.90	8.79	9.75	10.78
140 150	-	3.74	4.78	5.36	5.99	6.67	7.41	8.21	9.07
150	_	_	_	_	5.04	5.61	6.22	6.88	7.60

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity 29 627 Btu/h

Cooling capacity	29 627	Btu/h	Current consumption	6.77	Α
Power input	3 371	W	Mass flow	470	lbs/h
E.E.R.	8.79				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 35 Hz, ARI rating conditions

R134a

Cond. temp.				· ·	ting temperature			I _	Ι
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
90	-	-	-	-	-	-	-	-	-
100	13 595	19 578	26 984	31 282	36 008	41 188	46 844	53 001	59 683
110	11 891	17 529	24 488	28 523	32 961	37 827	43 144	48 936	55 229
120	10 164	15 454	21 958	25 728	29 875	34 424	39 400	44 825	50 726
130	8 430	13 365	19 412	22 913	26 767	30 997	35 628	40 684	46 190
140	-	11 279	16 863	20 094	23 652	27 561	31 845	36 530	41 639
150	-	-	-	-	20 546	24 132	28 068	32 380	37 091
Power input in	w								
90	-	-	-	-	-	-	-	-	-
100	2 436	2 695	2 903	2 993	3 075	3 151	3 224	3 295	3 366
110	2 483	2 809	3 070	3 181	3 282	3 374	3 459	3 539	3 617
120	2 483	2 890	3 220	3 361	3 488	3 603	3 708	3 806	3 897
130	2 420	2 923	3 337	3 515	3 676	3 822	3 955	4 077	4 190
140	-	2 892	3 404	3 627	3 830	4 014	4 183	4 337	4 478
150	-	-	-	-	3 933	4 164	4 375	4 569	4 747
Current consur	nption in A								
90	-	-	-	-	-	-	-	-	-
100	5.04	5.57	5.98	6.15	6.29	6.42	6.53	6.64	6.75
110	5.20	5.80	6.28	6.48	6.66	6.83	6.98	7.13	7.27
120	5.28	5.96	6.51	6.76	6.98	7.19	7.39	7.58	7.77
130	5.26	6.03	6.68	6.97	7.25	7.51	7.76	8.00	8.25
140	-	6.02	6.78	7.12	7.45	7.77	8.08	8.38	8.69
150	-	-	-	-	7.60	7.98	8.35	8.72	9.09
Mass flow in lb:	s/h								
90	-	-	-	-	-	-	-	-	-
100	201	283	381	437	498	563	634	711	793
110	185	267	364	419	479	544	614	689	770
120	168	249	345	399	458	522	591	664	744
130	148	229	324	377	435	498	565	638	715
140	-	206	299	352	409	470	537	608	684
150	-	-	-	-	380	441	505	575	650
Energy Efficien	cy Ratio (E.E.R.)							
90		-	-	-	-	-	-	-	-
100	5.58	7.26	9.29	10.45	11.71	13.07	14.53	16.09	17.73
110	4.79	6.24	7.98	8.97	10.04	11.21	12.47	13.83	15.27
120	4.09	5.35	6.82	7.66	8.57	9.55	10.62	11.78	13.02
130	3.48	4.57	5.82	6.52	7.28	8.11	9.01	9.98	11.03
140	-	3.90	4.95	5.54	6.18	6.87	7.61	8.42	9.30
			1	1	5.22	5.80	6.42	7.09	7.81

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity	35 628	Btu/h	Current consumption	7.76	Α
Power input	3 955	W	Mass flow	565	lbs/h
E.E.R.	9.01				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 40 Hz, ARI rating conditions

R134a

Cond. temp.		I .		1	ting temperature	· ' '	1	1	T
in °F (tc)	5	15	25	30	35	40	45	50	55
!:	to die Daude								
ooling capaci	ty in Btu/n	_	_	_	_	_		_	_
100	15 982	22 946	31 545	36 526	42 000	47 992	54 532	61 645	69 360
110	13 996	20 573	28 664	33 347	38 492	44 126	50 277	56 973	64 242
120	11 968	18 153	25 729	30 110	34 923	40 195	45 955	52 231	59 050
130	9 914	15 700	22 757	26 833	31 310	36 218	41 585	47 437	53 803
140	-	13 232	19 764	23 532	27 673	32 214	37 183	42 610	48 521
150		-	-	-	24 026	28 198	32 770	37 769	43 224
100		I	1	1	21020	20 100	02770	07.700	10 22 1
Power input in	w								
90	-	-	-	-	-	-	-	-	-
100	2 797	3 100	3 349	3 457	3 558	3 652	3 742	3 830	3 919
110	2 847	3 225	3 533	3 665	3 786	3 897	4 001	4 099	4 192
120	2 843	3 313	3 699	3 865	4 015	4 152	4 278	4 394	4 503
130	2 762	3 344	3 825	4 034	4 223	4 395	4 552	4 696	4 829
140	-	3 295	3 891	4 151	4 388	4 604	4 802	4 982	5 148
150	-	-	-	-	4 488	4 758	5 005	5 231	5 439
Current consur	nption in A								
90	-	-	-	-	-	-	-	-	-
100	5.64	6.28	6.75	6.95	7.12	7.27	7.40	7.53	7.65
110	5.81	6.51	7.06	7.30	7.51	7.71	7.90	8.08	8.25
120	5.89	6.66	7.31	7.59	7.86	8.11	8.35	8.59	8.83
130	5.87	6.73	7.48	7.81	8.14	8.45	8.75	9.05	9.36
140	-	6.71	7.56	7.96	8.34	8.72	9.09	9.46	9.84
150	-	-	-	-	8.47	8.91	9.35	9.80	10.25
Mass flow in lb	s/h								
90	-	-	_	-	-	-	-	-	_
100	236	332	446	511	581	656	738	827	921
110	218	313	426	490	560	634	715	802	895
120	198	292	404	467	536	609	689	774	866
130	174	269	379	442	509	581	659	743	833
140	-	242	351	412	479	550	627	709	797
150	-	-	-	-	445	515	590	671	758
	cy Ratio (E.E.R.				1				I
90	-	- 7.40	-	- 40.57	-	-	-	-	- 47.70
100	5.71	7.40	9.42	10.57	11.81	13.14	14.57	16.09	17.70
110	4.92	6.38	8.11	9.10	10.17	11.32	12.57	13.90	15.32
120	4.21	5.48	6.96	7.79	8.70	9.68	10.74	11.89	13.11
130	3.59	4.70	5.95	6.65	7.41	8.24	9.13	10.10	11.14
140	-	4.02	5.08	5.67	6.31	7.00	7.74	8.55	9.42
150	_	_	_	_	5.35	5.93	6.55	7.22	7.95

Nominal performance at to = 45 °F, tc = 130 °F									
	Cooling capacity	41 585	Btu/h	Current consumption	8.75	Α			
	Power input	4 552	W	Mass flow	659	lbs/h			
	FFR	9.13							

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 45 Hz, ARI rating conditions

R134a

Cond. temp.		1		1	ting temperature			1	1
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Rtu/h								
90	-	_	_	_	_	_	_	_	_
100	18 352	26 282	36 052	41 705	47 911	54 701	62 106	70 156	78 883
110	16 090	23 593	32 800	38 120	43 960	50 351	57 324	64 910	73 139
120	13 766	20 834	29 470	34 454	39 924	45 912	52 448	59 564	67 291
130	11 402	18 027	26 083	30 726	35 823	41 403	47 499	54 141	61 361
140	-	15 189	22 659	26 958	31 676	36 846	42 497	48 662	55 373
150	-	-	-	-	27 505	32 260	37 465	43 150	49 349
	14 /								
Power input in 90	<u>vv</u> -	_	_	_	_	_	_	_	_
100	3 154	3 508	3 802	3 932	4 053	4 166	4 275	4 380	4 484
110	3 206	3 642	4 002	4 159	4 303	4 436	4 561	4 678	4 790
120	3 197	3 734	4 181	4 375	4 552	4 715	4 865	5 003	5 133
130	3 105	3 763	4 315	4 556	4 776	4 978	5 163	5 333	5 490
140	-	3 703	4 379	4 677	4 950	5 201	5 431	5 642	5 837
150	-	-	-	-	5 051	5 360	5 645	5 907	6 149
Į.		l.	1	•		1	1		ı
Current consur	nption in A								
90	-	-	-	-	-	-	-	-	-
100	6.24	6.98	7.53	7.75	7.95	8.12	8.28	8.42	8.55
110	6.40	7.21	7.85	8.12	8.37	8.60	8.82	9.03	9.24
120	6.48	7.36	8.10	8.43	8.74	9.03	9.32	9.60	9.88
130	6.47	7.43	8.28	8.66	9.03	9.39	9.75	10.11	10.47
140	-	7.40	8.35	8.80	9.24	9.67	10.10	10.54	10.98
150	-	-	-	-	9.35	9.85	10.36	10.88	11.42
Mass flow in Ib	s/h								
90	-	-	-	-	-	-	-	-	-
100	271	380	510	583	662	748	841	941	1 048
110	251	359	488	561	639	724	815	914	1 019
120	227	336	463	535	612	696	786	883	987
130	201	308	435	506	582	665	753	848	950
140	-	277	402	472	548	629	716	810	910
150	-	-	-	-	509	589	675	767	865
neray Efficien	ıcy Ratio (E.E.R.)							
90	-	-	-	-	-	-	-	-	-
100	5.82	7.49	9.48	10.61	11.82	13.13	14.53	16.02	17.59
110	5.02	6.48	8.20	9.17	10.22	11.35	12.57	13.88	15.27
120	4.31	5.58	7.05	7.88	8.77	9.74	10.78	11.90	13.11
130	3.67	4.79	6.05	6.74	7.50	8.32	9.20	10.15	11.18
	-	4.10	5.17	5.76	6.40	7.08	7.83	8.63	9.49
140									

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity	47 499	Btu/h	Current consumption	9.75	Α
Power input	5 163	W	Mass flow	753	lbs/h
E.E.R.	9.20				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 50 Hz, ARI rating conditions

R134a

in °F (tc)	5	15	25	30	ating temperature 35	40	45	50	55
III I (to)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
90	-	-	-	-	-	-	-	_	-
100	20 706	29 586	40 506	46 817	53 741	61 313	69 566	78 534	88 253
110	18 170	26 587	36 893	42 842	49 367	56 503	64 285	72 745	81 920
120	15 559	23 499	33 179	38 760	44 880	51 574	58 877	66 824	75 448
130	12 893	20 346	29 389	34 595	40 304	46 550	53 369	60 795	68 863
140	=	17 151	25 545	30 371	35 663	41 457	47 786	54 687	62 194
150	-	-	-	-	30 983	36 318	42 154	48 525	55 467
Power input in	w	T		T	T	1			
90	-	-	-	-	-	-	-	-	-
100	3 508	3 919	4 264	4 417	4 560	4 694	4 821	4 942	5 061
110	3 560	4 059	4 478	4 663	4 833	4 991	5 138	5 277	5 409
120	3 548	4 154	4 666	4 891	5 099	5 290	5 468	5 633	5 787
130	3 448	4 181	4 805	5 080	5 335	5 569	5 786	5 987	6 173
140	-	4 116	4 870	5 206	5 516	5 804	6 069	6 315	6 544
150	-	-	-	-	5 621	5 970	6 294	6 595	6 875
Current consur	nption in A	I		T		T			
90	-	- 7.07	-	- 0.50	0.70		- 0.45	- 0.04	- 0.40
100	6.84	7.67	8.31	8.56	8.79	8.98	9.15	9.31	9.46
110	6.99	7.91	8.64	8.95	9.24	9.50	9.75	9.99	10.22
120	7.06	8.06	8.90	9.28	9.63	9.97	10.29	10.61	10.93
130	7.04	8.13	9.08	9.52	9.94	10.35	10.75	11.16	11.58
140	-	8.08	9.15	9.65	10.15	10.64	11.13	11.62	12.13
150	-	-	-	-	10.24	10.81	11.39	11.97	12.58
Mass flow in Ib	s/h								
90	-	-	-	-	-	-	-	-	-
100	306	428	573	654	743	839	942	1 053	1 172
110	283	405	549	630	718	812	914	1 024	1 141
120	257	379	521	602	688	782	882	990	1 106
130	227	348	490	569	655	747	846	953	1 067
140	-	313	454	532	617	708	805	910	1 022
150	-	-	-	-	574	663	759	862	972
<u> </u>			1		•	•	•	•	
nergy Efficien	cy Ratio (E.E.R.)							
90	-	-	-	-	-	-	-	-	-
100	5.90	7.55	9.50	10.60	11.79	13.06	14.43	15.89	17.44
110	5.10	6.55	8.24	9.19	10.21	11.32	12.51	13.79	15.15
120	4.39	5.66	7.11	7.92	8.80	9.75	10.77	11.86	13.04
130	3.74	4.87	6.12	6.81	7.55	8.36	9.22	10.15	11.15
	-	4.17	5.25	5.83	6.46	7.14	7.87	8.66	9.50
140									

Power input 5 786 W E.E.R. 9.22

53 369

Btu/h

T 0 : Evaporating temperature at dew point T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

10.75

lbs/h

846

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 55 Hz, ARI rating conditions

R134a

Cond. temp.	_			· ·	ting temperature	1 '			
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ity in Btu/h								
90	-	-	-	-	-	-	_	-	-
100	23 041	32 858	44 907	51 863	59 491	67 828	76 911	86 779	97 468
110	20 238	29 556	40 946	47 513	54 712	62 581	71 158	80 480	90 585
120	17 345	26 146	36 858	43 027	49 789	57 182	65 243	74 010	83 521
130	14 389	22 656	32 675	38 437	44 753	51 660	59 196	67 400	76 310
140	-	19 116	28 424	33 772	39 633	46 046	53 050	60 684	68 984
150	-	-	-	-	34 459	40 372	46 837	53 892	61 577
Power input in	w								
90	-	-	_	_	-	-	_	_	_
100	3 858	4 332	4 734	4 913	5 080	5 235	5 381	5 519	5 651
110	3 909	4 476	4 960	5 176	5 375	5 560	5 733	5 896	6 049
120	3 893	4 572	5 154	5 414	5 655	5 879	6 087	6 282	6 465
130	3 792	4 597	5 295	5 608	5 899	6 170	6 423	6 658	6 879
140	-	4 533	5 363	5 738	6 087	6 413	6 718	7 003	7 270
150	-	-	-	-	6 198	6 588	6 954	7 296	7 618
urrent consu	mption in A								
90	-	-	-	-	-	-	-	-	-
100	7.42	8.37	9.09	9.38	9.63	9.85	10.04	10.21	10.36
110	7.57	8.60	9.43	9.79	10.11	10.41	10.69	10.95	11.21
120	7.63	8.76	9.70	10.13	10.53	10.90	11.27	11.63	11.99
130	7.60	8.82	9.88	10.37	10.85	11.31	11.77	12.22	12.69
140	-	8.76	9.95	10.51	11.06	11.61	12.16	12.71	13.28
150	-	-	-	-	11.15	11.78	12.42	13.07	13.74
Mass flow in Ib	ns/h								
90	-	-	_	_	-	-	_	-	_
100	341	475	635	725	822	928	1 041	1 164	1 295
110	315	450	609	699	795	900	1 012	1 133	1 262
120	287	421	579	668	764	867	978	1 097	1 225
130	253	388	545	633	727	829	939	1 056	1 182
140	-	349	505	592	685	786	894	1 010	1 134
150	-	-	-	-	638	737	843	957	1 079
	acy Patic /E E B	`							
noray Efficien	icy Raud (E.E.R.	_	1 -	1 -	_	_	_	_	l -
			9.49	10.56	11.71	12.96	14.29	15.72	17.25
90	- 5 07	7 50		10.50	11./1	1	+		14.98
100	5.97 5.18	7.59 6.60		0.19	10 19	11 25	12/11	13 65	
90 100 110	5.18	6.60	8.25	9.18 7.95	10.18	11.25	12.41	13.65	1
90 100 110 120	5.18 4.45	6.60 5.72	8.25 7.15	7.95	8.80	9.73	10.72	11.78	12.92
90 100 110	5.18	6.60	8.25	1		+			1

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity	59 196	Btu/h	Current consumption	11.77	Α
Power input	6 423	W	Mass flow	939	lbs/h
E.E.R.	9.22				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

With accoustic hood	0	dB(A)
Sound power level	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 60 Hz, ARI rating conditions

R134a

Cond. temp.			1		ating temperature		1	1	1
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h	ı	1	1	1				1
90	-	-	-	-	-	- 74.047	-	-	- 400 500
100	25 360	36 097	49 254	56 843	65 160	74 247	84 143	94 890	106 529
110	22 294	32 500	44 956	52 132	59 995	68 585	77 945	88 114	99 133
120	19 125	28 775	40 506	47 257	54 652	62 734	71 544	81 123	91 511
130	15 888	24 958	35 941	42 254	49 170	56 732	64 980	73 956	83 701
140	-	21 085	31 296	37 159	43 585	50 615	58 290	66 652	75 744
150	-	-	-	-	37 934	44 421	51 513	59 252	67 679
ower input in	w								
90	-	-	_	-	-	-	_	_	_
100	4 204	4 747	5 213	5 420	5 611	5 789	5 954	6 108	6 253
110	4 253	4 894	5 449	5 698	5 930	6 145	6 346	6 534	6 711
120	4 235	4 987	5 646	5 943	6 221	6 481	6 724	6 952	7 166
130	4 136	5 013	5 787	6 139	6 470	6 780	7 072	7 347	7 606
140	-	4 956	5 859	6 272	6 662	7 030	7 377	7 705	8 015
150	-	-	-	-	6 783	7 214	7 623	8 010	8 378
									1
Current consur	nption in A								
90	-	-	-	-	-	-	-	-	-
100	8.00	9.07	9.87	10.20	10.48	10.72	10.92	11.11	11.27
110	8.13	9.29	10.23	10.63	10.99	11.32	11.63	11.92	12.20
120	8.18	9.44	10.51	10.98	11.43	11.85	12.26	12.66	13.05
130	8.14	9.50	10.69	11.24	11.77	12.28	12.79	13.29	13.80
140	-	9.44	10.75	11.38	11.99	12.59	13.19	13.80	14.42
150	-	-	-	-	12.07	12.76	13.46	14.17	14.91
				•		•			•
lass flow in lbs	s/h								
90	-	-	-	-	-	-	-	-	-
100	375	522	696	794	901	1 016	1 139	1 272	1 415
110	348	495	669	767	872	986	1 108	1 240	1 381
120	316	464	637	734	838	951	1 072	1 202	1 342
130	279	427	599	695	799	911	1 030	1 159	1 297
140	-	385	556	651	754	864	982	1 109	1 245
150	-	-	-	-	702	811	928	1 053	1 186
nergy Efficien	cy Ratio (E.E.R.)	•		_	_			T
90	-	-	-	-	-	-	-	-	-
100	6.03	7.60	9.45	10.49	11.61	12.83	14.13	15.53	17.04
110	5.24	6.64	8.25	9.15	10.12	11.16	12.28	13.48	14.77
120	4.52	5.77	7.17	7.95	8.79	9.68	10.64	11.67	12.77
130	3.84	4.98	6.21	6.88	7.60	8.37	9.19	10.07	11.00
140	-	4.25	5.34	5.92	6.54	7.20	7.90	8.65	9.45
110					5.59	6.16	6.76	7.40	8.08

E.E.R. 9.19

64 980

7 072

Btu/h

W

T 0 : Evaporating temperature at dew point T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Power input

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound	power	data
ocuna	PO 1101	uutu

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

12.79

1 030

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 65 Hz, ARI rating conditions

R134a

Cond. temp.					ting temperature	1 ' '			
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
90	-	-	-	-	-	-	-	-	-
100	27 661	39 304	53 548	61 757	70 749	80 569	91 261	102 868	115 436
110	24 336	35 418	48 925	56 700	65 216	74 516	84 645	95 647	107 566
120	20 898	31 386	44 123	51 448	59 470	68 233	77 782	88 162	99 417
130	17 390	27 252	39 187	46 045	53 556	61 766	70 720	80 462	91 037
140		23 059	34 159	40 534	47 520	55 162	63 505	72 593	82 473
150	-	-	-	-	41 407	48 465	56 182	64 604	73 774
ower input in	w								
90	-	-	-	-	-	-	-	-	-
100	4 547	5 166	5 699	5 936	6 155	6 356	6 542	6 712	6 867
110	4 592	5 312	5 945	6 230	6 497	6 746	6 977	7 193	7 394
120	4 572	5 401	6 140	6 478	6 796	7 095	7 377	7 642	7 892
130	4 481	5 427	6 279	6 673	7 046	7 400	7 735	8 053	8 355
140	-	5 383	6 356	6 809	7 241	7 653	8 045	8 420	8 778
150	-	-	-	-	7 375	7 849	8 302	8 737	9 155
urrent consur	nption in A								
90		-	-	-	-	-	-	-	-
100	8.57	9.76	10.66	11.02	11.33	11.59	11.82	12.01	12.18
110	8.68	9.98	11.03	11.47	11.88	12.24	12.58	12.90	13.19
120	8.72	10.13	11.32	11.84	12.34	12.81	13.25	13.68	14.11
130	8.67	10.17	11.50	12.11	12.69	13.26	13.81	14.36	14.91
140	-	10.11	11.56	12.25	12.92	13.58	14.24	14.90	15.57
150	-	-	-	-	13.00	13.75	14.51	15.28	16.07
lass flow in lb	s/h								
90	-	-	-	-	-	-	-	-	-
100	409	568	757	863	978	1 102	1 236	1 379	1 533
110	379	540	728	834	948	1 071	1 204	1 346	1 499
120	345	506	693	799	912	1 034	1 166	1 307	1 458
130	306	466	653	758	870	991	1 121	1 261	1 410
140	-	421	607	710	822	942	1 070	1 208	1 355
150	-	-	-	-	767	885	1 012	1 148	1 293
nergy Efficien	cy Ratio (E.E.R.)							
90	-	-	-	-	-	-	-	-	-
100	6.08	7.61	9.40	10.40	11.49	12.68	13.95	15.33	16.81
110	5.30	6.67	8.23	9.10	10.04	11.05	12.13	13.30	14.55
120	4.57	5.81	7.19	7.94	8.75	9.62	10.54	11.54	12.60
130	3.88	5.02	6.24	6.90	7.60	8.35	9.14	9.99	10.90
140	-	4.28	5.37	5.95	6.56	7.21	7.89	8.62	9.40
	_	_	_	_	5.61	6.17	6.77	7.39	8.06

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity	70 720	Btu/h	Current consumption	13.81	Α
Power input	7 735	W	Mass flow	1 121	lbs/h
E.E.R.	9.14				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 70 Hz, ARI rating conditions

R134a

in °F (tc)	-	15	25	20	25	40	45	50	
III F (IC)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
90	-	-	-	_	-	-	_	-	-
100	29 945	42 479	57 789	66 604	76 257	86 795	98 264	110 713	124 189
110	26 366	38 312	52 853	61 217	70 374	80 372	91 257	103 078	115 883
120	22 666	33 980	47 710	55 601	64 241	73 677	83 957	95 128	107 239
130	18 896	29 538	42 413	49 810	57 911	66 764	76 417	86 918	98 316
140	-	25 037	37 016	43 897	51 438	59 688	68 695	78 506	89 171
150	-	-	-	-	44 878	52 505	60 846	69 948	79 862
ower input in		ı	1	1			1		1
90			-	-	-	-			
100	4 887	5 587	6 194	6 463	6 711	6 937	7 143	7 328	7 494
110	4 927	5 731	6 447	6 772	7 077	7 361	7 626	7 872	8 099
120	4 905	5 813	6 637	7 019	7 380	7 723	8 047	8 353	8 641
130	4 827	5 840	6 772	7 209	7 628	8 028	8 411	8 777	9 126
140	-	5 815	6 856	7 349	7 824	8 282	8 724	9 150	9 560
150	-	-	-	-	7 975	8 491	8 992	9 477	9 949
	untion in A								
urrent consur	iipuon in A	_	_	_	_	_	_	_	
100	9.14	10.45	11.45	11.84	12.18	12.47	12.71	12.92	13.09
110	9.23	10.43	11.83	12.33	12.77	13.17	13.54	13.87	14.19
120	9.24	10.81	12.13	12.71	13.26	13.77	14.25	14.72	15.17
130	9.17	10.85	12.31	12.98	13.62	14.24	14.84	15.43	16.02
140	-	10.77	12.37	13.13	13.86	14.58	15.29	15.99	16.71
150	_	-	-	-	13.95	14.76	15.57	16.40	17.23
		I		L		1			
lass flow in lb	s/h								
90	-	-	-	-	-	-	-	-	-
100	443	614	817	931	1 054	1 187	1 331	1 484	1 649
110	411	584	786	900	1 023	1 155	1 298	1 451	1 615
120	374	547	750	863	985	1 117	1 258	1 410	1 573
130	332	505	707	820	941	1 072	1 212	1 362	1 523
140	-	457	657	769	890	1 019	1 158	1 306	1 465
150	-	-	-	-	831	959	1 096	1 243	1 400
	Datia /E E D	`							
90	cy Ratio (E.E.R.)	1 .	_					
100	6.13	7.60	9.33	10.31	11.36	12.51	13.76	15.11	16.57
110	5.35	6.68	8.20	9.04	9.94	10.92	11.97	13.09	14.31
120	4.62	5.85	7.19	7.92	8.70	9.54	10.43	11.39	12.41
130	3.91	5.06	6.26	6.91	7.59	8.32	9.09	9.90	10.77
140	-	4.31	5.40	5.97	6.57	7.21	7.87	8.58	9.33
150	<u>-</u>	4.31	5.40	5.97	5.63	6.18	6.77	7.38	8.03
100	-				5.03	0.10	0.77	1.30	0.03

T 0 : Evaporating temperature at dew point

76 417

8 411

9.09

Btu/h

W

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

14.84

1 212

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 75 Hz, ARI rating conditions

R134a

Cond. temp.	_			1	ting temperature	1 1	1		I
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ity in Btu/h								
90	-	-	-	-	-	-	-	-	-
100	32 212	45 621	61 976	71 385	81 684	92 923	105 154	118 425	132 788
110	28 384	41 180	56 739	65 683	75 471	86 154	97 784	110 409	124 083
120	24 427	36 557	51 266	59 716	68 966	79 065	90 067	102 021	114 978
130	20 406	31 815	45 619	53 549	62 233	71 723	82 070	93 325	105 540
140	-	27 018	39 864	47 247	55 339	64 193	73 860	84 391	95 838
150	-	-	-	-	48 349	56 541	65 503	75 285	85 942
Power input in	w								
90	-	-	-	-	-	-	_	-	-
100	5 223	6 011	6 697	7 001	7 279	7 532	7 758	7 958	8 133
110	5 256	6 150	6 955	7 323	7 669	7 992	8 293	8 570	8 825
120	5 233	6 224	7 138	7 566	7 975	8 364	8 734	9 083	9 414
130	5 173	6 251	7 266	7 749	8 215	8 666	9 100	9 518	9 919
140	-	6 252	7 358	7 891	8 411	8 919	9 413	9 894	10 361
150	-	-	-	-	8 582	9 141	9 691	10 230	10 759
Current consu	mption in A								
90	-	-	-	-	-	-	-	-	-
100	9.70	11.14	12.24	12.67	13.04	13.36	13.61	13.83	14.00
110	9.76	11.35	12.64	13.18	13.67	14.10	14.50	14.86	15.19
120	9.75	11.48	12.94	13.58	14.18	14.74	15.26	15.76	16.23
130	9.66	11.51	13.13	13.86	14.56	15.23	15.88	16.51	17.12
140	-	11.43	13.19	14.01	14.81	15.58	16.34	17.10	17.85
150	-	-	-	-	14.90	15.78	16.65	17.52	18.39
Mass flow in Ib	s/h								
90	-	-	-	-	-	-	_	-	-
100	476	660	876	998	1 129	1 271	1 424	1 588	1 764
110	442	627	844	966	1 097	1 239	1 391	1 554	1 729
120	404	589	806	927	1 058	1 199	1 350	1 512	1 686
130	359	544	760	881	1 011	1 151	1 301	1 462	1 635
140	-	493	708	828	957	1 096	1 245	1 404	1 575
150	-	-	-	-	895	1 032	1 180	1 337	1 506
Energy Efficien	ncy Ratio (E.E.R.)							
90	-	-	-	-	-	-	-	-	-
100	6.17	7.59	9.25	10.20	11.22	12.34	13.55	14.88	16.33
110	5.40	6.70	8.16	8.97	9.84	10.78	11.79	12.88	14.06
120	4.67	5.87	7.18	7.89	8.65	9.45	10.31	11.23	12.21
130	3.94	5.09	6.28	6.91	7.58	8.28	9.02	9.81	10.64
			1	ł		1	+	1	
140	-	4.32	5.42	5.99	6.58	7.20	7.85	8.53	9.25

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity	82 070	Btu/h	Current consumption	15.88	Α
Power input	9 100	W	Mass flow	1 301	lbs/h
E.E.R.	9.02				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 80 Hz, ARI rating conditions

R134a

					ating temperature			T	1
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capacit	y in Btu/h	ı	1	1				<u> </u>	
90	-	-	-	-	-	-	-	-	-
100	34 462	48 731	66 109	76 100	87 031	98 956	111 929	126 003	141 232
110	30 389	44 024	60 584	70 098	80 506	91 863	104 223	117 640	132 167
120	26 183	39 116	54 791	63 793	73 644	84 400	96 114	108 840	122 633
130	21 920	34 085	48 806	57 263	66 524	76 645	87 680	99 683	112 709
140	-	29 004	42 705	50 584	59 223	68 677	79 000 70 153	90 248 80 615	102 475 92 014
150		-	-	-	51 818	60 572	70 153	00 615	92 014
ower input in \	N								
90	-	-	_	-	-	-	_	-	_
100	5 555	6 437	7 208	7 549	7 859	8 139	8 387	8 602	8 784
110	5 581	6 570	7 470	7 884	8 274	8 639	8 977	9 289	9 573
120	5 557	6 632	7 642	8 119	8 578	9 018	9 437	9 835	10 210
130	5 520	6 661	7 760	8 291	8 809	9 313	9 802	10 276	10 734
140	-	6 694	7 862	8 436	9 003	9 561	10 111	10 651	11 181
150	-	-	-	-	9 197	9 800	10 400	10 996	11 587
			•			1			
urrent consun	nption in A								
90	-	-	-	-	-	-	-	-	-
100	10.25	11.83	13.03	13.51	13.91	14.25	14.52	14.74	14.92
110	10.28	12.04	13.45	14.04	14.57	15.05	15.47	15.85	16.19
120	10.25	12.15	13.75	14.46	15.11	15.71	16.27	16.80	17.30
130	10.13	12.17	13.95	14.75	15.51	16.23	16.92	17.59	18.23
140	-	12.08	14.01	14.91	15.77	16.60	17.41	18.20	18.99
150	-	-	-	-	15.88	16.81	17.73	18.64	19.56
•				•	-	•			
ass flow in Ibs	/h								
90	-	-	-	-	-	-	-	-	-
100	509	705	935	1 064	1 203	1 354	1 516	1 689	1 876
110	474	671	901	1 031	1 170	1 321	1 482	1 656	1 842
120	433	630	861	990	1 130	1 279	1 441	1 613	1 798
130	386	583	813	942	1 081	1 230	1 390	1 562	1 746
140	-	529	758	886	1 024	1 172	1 331	1 502	1 684
150	-	-	-	-	959	1 106	1 263	1 432	1 613
nergy Efficien	cy Ratio (E.E.R.)							
90	-	-	-	-	-	-	-		-
100	6.20	7.57	9.17	10.08	11.07	12.16	13.35	14.65	16.08
110	5.44	6.70	8.11	8.89	9.73	10.63	11.61	12.66	13.81
120	4.71	5.90	7.17	7.86	8.58	9.36	10.19	11.07	12.01
130	3.97	5.12	6.29	6.91	7.55	8.23	8.94	9.70	10.50
140	-	4.33	5.43	6.00	6.58	7.18	7.81	8.47	9.17
			i .	1	5.63	6.18	6.75	7.33	7.94

87 680

9 802

8.94

Btu/h

W

T 0 : Evaporating temperature at dew point T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

16.92

1 390

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 85 Hz, ARI rating conditions

R134a

Cond. temp.					ating temperature		1	1	
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h	1	1	1	1				
90	-	-	-	- 00.740	-	-	-	-	- 440.500
100	36 695	51 809	70 190	80 749	92 298	104 892	118 590	133 448	149 523
110	32 381	46 842	64 387	74 461	85 479	97 498	110 575	124 769	140 136
120	27 932	41 658	58 285	67 832	78 277	89 680	102 097	115 586	130 204
130	23 437	36 346	51 972	60 951	70 784	81 530	93 247	105 991	119 822
140 150	-	30 995	45 539	53 909	63 090 55 285	73 139 64 599	84 116 74 797	96 077 85 938	109 081 98 079
150	<u>-</u>				33 283	04 599	74 797	65 956	90 079
ower input in	w								
90	-	_	_	_	_	_	_	_	
100	5 884	6 867	7 727	8 107	8 452	8 760	9 030	9 259	9 447
110	5 901	6 990	7 991	8 455	8 892	9 300	9 679	10 027	10 342
120	5 876	7 039	8 148	8 679	9 192	9 685	10 157	10 606	11 031
130	5 867	7 070	8 255	8 836	9 408	9 969	10 518	11 052	11 571
140	-	7 141	8 368	8 984	9 598	10 211	10 820	11 423	12 019
150	_	-	-	-	9 819	10 466	11 119	11 774	12 432
			l	I.		1	1		
urrent consun	nption in A								
90	-	-	-	-	-	-	_	-	-
100	10.80	12.52	13.83	14.35	14.78	15.14	15.43	15.66	15.84
110	10.80	12.72	14.26	14.91	15.48	15.99	16.44	16.84	17.19
120	10.72	12.82	14.57	15.34	16.05	16.69	17.29	17.85	18.36
130	10.58	12.82	14.77	15.64	16.46	17.24	17.97	18.67	19.34
140	-	12.73	14.84	15.81	16.74	17.62	18.48	19.31	20.13
150	-	-	-	-	16.86	17.85	18.82	19.77	20.72
		•	•		•	1		•	
lass flow in lbs	s/h								
90	-	-	-	-	-	-	-	-	-
100	542	749	992	1 129	1 276	1 435	1 606	1 789	1 986
110	505	713	958	1 095	1 243	1 402	1 573	1 756	1 953
120	462	671	916	1 053	1 201	1 359	1 530	1 713	1 910
130	412	622	866	1 003	1 150	1 308	1 479	1 661	1 856
140	-	566	809	945	1 091	1 249	1 418	1 599	1 793
150	-	-	-	-	1 024	1 180	1 347	1 527	1 719
•									
nergy Efficien	cy Ratio (E.E.R.)							
90	-	-	-	-	-	-	-	-	-
100	6.24	7.54	9.08	9.96	10.92	11.97	13.13	14.41	15.83
110	5.49	6.70	8.06	8.81	9.61	10.48	11.42	12.44	13.55
120	4.75	5.92	7.15	7.82	8.52	9.26	10.05	10.90	11.80
130	3.99	5.14	6.30	6.90	7.52	8.18	8.87	9.59	10.36
110	-	4.34	5.44	6.00	6.57	7.16	7.77	8.41	9.08
140									

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

93 247

10 518

8.87

Btu/h

W

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)

Sound power data

LP pump down setting

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

psi(g)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

17.97

1 479

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 90 Hz, ARI rating conditions

R134a

Cond. temp.		1	•	Evapora	ting temperature	1 ' '	1		ſ
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capac	ity in Btu/h	ı			ı	1			1
90	38 910	- 54 854	- 74 217	85 332	97 483	110 732	405 407	140 760	157 659
							125 137		
110 120	34 361 29 675	49 635 44 182	68 149 61 748	78 773 71 832	90 389 82 864	103 059 94 906	116 841	131 798 122 259	147 988 137 692
							108 017		
130	24 958	38 598	55 119	64 613	75 012	86 378	98 770	112 250	126 879
140	-	32 989	48 365	57 221	66 939	77 581 68 622	89 206	101 878	115 656
150	-	-	-	-	58 751	08 022	79 435	91 253	104 137
Power input in	w								
90	-	_	-	-	_	-	_	-	_
100	6 209	7 299	8 254	8 676	9 057	9 394	9 686	9 930	10 123
110	6 216	7 410	8 519	9 035	9 522	9 978	10 400	10 785	11 132
120	6 192	7 444	8 658	9 245	9 814	10 365	10 893	11 398	11 875
130	6 215	7 478	8 751	9 385	10 013	10 635	11 246	11 846	12 430
140	-	7 593	8 877	9 534	10 198	10 867	11 538	12 209	12 876
150	-	-	-	-	10 448	11 141	11 848	12 566	13 293
						•			
Current consu	mption in A								
90	-	-	-	-	-	-	-	-	-
100	11.34	13.20	14.63	15.19	15.66	16.04	16.35	16.58	16.75
110	11.30	13.39	15.08	15.78	16.40	16.95	17.43	17.84	18.20
120	11.19	13.48	15.40	16.23	16.99	17.68	18.32	18.90	19.43
130	11.01	13.47	15.59	16.54	17.43	18.25	19.03	19.76	20.45
140	-	13.37	15.67	16.72	17.71	18.66	19.56	20.43	21.27
150	-	-	-	-	17.85	18.90	19.92	20.91	21.88
	_								
Mass flow in Ib	I	1			1	1			ı
90	-	-	-	-	-	-	-	-	- 0.004
100	575	793	1 049	1 193	1 348	1 515	1 694	1 887	2 094
110	536	756	1 014	1 158	1 314	1 482	1 662	1 855	2 062
120	490	712	970	1 115	1 271	1 439	1 619	1 812	2 019
130	439	660	919	1 063	1 219	1 386	1 566	1 759	1 966
140	-	602	859	1 003	1 158	1 324	1 503	1 695	1 901
450	-	-	-	-	1 088	1 253	1 431	1 621	1 825
150									
	ncv Ratio (E.E.R.)					1	1	
Energy Efficier	ncy Ratio (E.E.R.)	<u> </u>	_	_	_	_	_	
Energy Efficier 90	-	-							
Energy Efficier 90 100	6.27	7.52	8.99	9.84	10.76	11.79	12.92	14.18	15.57
90 100 110	- 6.27 5.53	- 7.52 6.70	8.99 8.00	9.84 8.72	10.76 9.49	11.79 10.33	12.92 11.24	14.18 12.22	15.57 13.29
90 100 110 120	- 6.27 5.53 4.79	- 7.52 6.70 5.94	8.99 8.00 7.13	9.84 8.72 7.77	10.76 9.49 8.44	11.79 10.33 9.16	12.92 11.24 9.92	14.18 12.22 10.73	15.57 13.29 11.59
90 100 110	- 6.27 5.53	- 7.52 6.70	8.99 8.00	9.84 8.72	10.76 9.49	11.79 10.33	12.92 11.24	14.18 12.22	15.57 13.29

Nominal performance at to = 45 °F, tc = 130 °F										
Cooling capacity	98 770	Btu/h	Current consumption	19.03	Α					
Power input	11 246	W	Mass flow	1 566	lbs/h					
FFR	8 78									

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	328	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	7	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 30 Hz, ARI rating conditions

R404A

Cond. temp. in °F (tc)	-20	-10	0	10	ting temperature	25	30	35	40
111 1 (10)	-20	-10	0	10	20	25	30	35	40
ooling capacit	y in Btu/h								
70	13 936	19 748	27 097	36 149	47 072	53 287	-	-	-
90	10 147	14 923	20 967	28 447	37 531	42 726	48 385	54 529	61 179
100	8 483	12 754	18 158	24 864	33 040	37 732	42 854	48 428	54 473
110	6 958	10 732	15 505	21 445	28 722	32 915	37 504	42 511	47 957
120	5 562	8 847	12 996	18 180	24 566	28 263	32 323	36 768	41 619
130	-	7 088	10 623	15 058	20 561	23 767	27 302	31 189	35 449
140	-	-	-	12 068	16 698	19 416	22 431	25 764	29 437
ower input in \	N								
70	2 379	2 683	2 944	3 155	3 309	3 363	_	_	_
90	2 400	2 781	3 128	3 434	3 693	3 802	3 897	3 977	4 040
100	2 406	2 835	3 235	3 597	3 916	4 058	4 186	4 300	4 400
110	2 396	2 879	3 336	3 761	4 148	4 324	4 489	4 641	4 779
120	2 358	2 901	3 423	3 917	4 376	4 591	4 795	4 988	5 167
130		2 892	3 484	4 053	4 592	4 848	5 094	5 330	5 555
140	-	-	-	4 160	4 784	5 084	5 376	5 658	5 930
		I.		1		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
urrent consun	nption in A								
70	3.27	3.63	3.98	4.29	4.56	4.67	-	-	-
90	3.51	3.94	4.35	4.73	5.08	5.23	5.37	5.50	5.60
100	3.56	4.03	4.50	4.94	5.35	5.53	5.70	5.86	6.00
110	3.55	4.09	4.62	5.13	5.61	5.84	6.05	6.24	6.42
120	3.49	4.10	4.71	5.31	5.88	6.14	6.40	6.64	6.87
130	-	4.07	4.77	5.46	6.13	6.45	6.76	7.05	7.33
140	-	-	-	5.60	6.38	6.75	7.12	7.47	7.81
lass flow in lbs		0.45	100	204	704	055			
70	249	345	462	601	764	855	- 070	- 070	4.070
90	210	301	410	540	693	779	872	972	1 078
100	191	278	384	510	658	741	830	927	1 030
110	172	256	358	479	622	702	788	881	981
120	154	235	332	448	585	662	746	835	932
130	-	213	306	417	549	623	703	789	882
140	-	-	-	387	512	583	660	742	831
nergy Efficien	cy Ratio (E.E.R.)							
70	5.86	7.36	9.20	11.46	14.23	15.85	-	-	-
90	4.23	5.37	6.70	8.28	10.16	11.24	12.42	13.71	15.14
100	3.53	4.50	5.61	6.91	8.44	9.30	10.24	11.26	12.38
110	2.90	3.73	4.65	5.70	6.92	7.61	8.35	9.16	10.04
120	2.36	3.05	3.80	4.64	5.61	6.16	6.74	7.37	8.05
130	-	2.45	3.05	3.72	4.48	4.90	5.36	5.85	6.38
140	-	-	-	2.90	3.49	3.82	4.17	4.55	4.96
							· · · · · · · · · · · · · · · · · · ·		· ·

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

24 566

4 376

5.61

Btu/h

W

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

5.88

585

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 35 Hz, ARI rating conditions

R404A

Cond. temp.		1	1		ting temperature	1 ' '		1 _	Ι
in °F (tc)	-20	-10	0	10	20	25	30	35	40
ooling capaci	ty in Btu/h								
70	16 215	22 735	31 076	41 476	54 170	61 452	-	-	-
90	12 237	17 711	24 677	33 372	44 033	50 174	56 896	64 228	72 198
100	10 398	15 351	21 631	29 476	39 123	44 696	50 808	57 488	64 767
110	8 650	13 084	18 680	25 676	34 309	39 314	44 817	50 847	57 435
120	6 984	10 900	15 814	21 962	29 584	34 021	38 916	44 297	50 195
130	-	8 794	13 026	18 329	24 940	28 811	33 098	37 831	43 039
140	-	-	-	14 769	20 371	23 676	27 356	31 441	35 961
ower input in	w								
70	2 722	3 077	3 388	3 653	3 870	3 959	-	-	-
90	2 797	3 240	3 639	3 992	4 295	4 428	4 548	4 655	4 748
100	2 828	3 329	3 786	4 196	4 558	4 719	4 868	5 004	5 125
110	2 835	3 404	3 928	4 405	4 834	5 029	5 212	5 380	5 536
120	2 805	3 451	4 052	4 606	5 111	5 344	5 565	5 772	5 965
130	-	3 456	4 143	4 783	5 374	5 651	5 914	6 164	6 400
140	-	-	-	4 924	5 610	5 935	6 245	6 543	6 827
urrent consur	nption in A								
70	3.76	4.16	4.53	4.85	5.11	5.22	-	-	-
90	4.01	4.50	4.97	5.40	5.77	5.94	6.09	6.21	6.32
100	4.08	4.63	5.17	5.66	6.12	6.32	6.50	6.67	6.82
110	4.09	4.72	5.33	5.91	6.45	6.70	6.93	7.15	7.34
120	4.03	4.76	5.46	6.14	6.78	7.08	7.36	7.63	7.88
130	-	4.74	5.55	6.34	7.08	7.44	7.78	8.11	8.41
140	-	-	-	6.49	7.36	7.78	8.19	8.58	8.95
lass flow in Ibs	s/h								
70	290	398	530	689	879	987	-	-	-
90	253	357	483	634	813	915	1 025	1 144	1 273
100	234	335	457	604	778	877	984	1 100	1 225
110	214	313	431	573	742	838	942	1 054	1 175
120	193	289	404	541	705	797	898	1 006	1 123
130	-	264	375	508	666	755	852	957	1 070
140	-	-	-	473	625	711	805	906	1 015
Energy Efficien	cy Ratio (E.E.R.)							
70	5.96	7.39	9.17	11.35	14.00	15.52	-	-	-
90	4.37	5.47	6.78	8.36	10.25	11.33	12.51	13.80	15.21
100	3.68	4.61	5.71	7.02	8.58	9.47	10.44	11.49	12.64
110	3.05	3.84	4.76	5.83	7.10	7.82	8.60	9.45	10.38
120	2.49	3.16	3.90	4.77	5.79	6.37	6.99	7.67	8.41
130		2.54	3.14	3.83	4.64	5.10	5.60	6.14	6.72

Nominal performance at to = 20 °F, tc = 120 °F

Cooling capacity	29 584	Btu/h	Current consumption	6.78	Α
Power input	5 111	W	Mass flow	705	lbs/h
E.E.R.	5.79				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 40 Hz, ARI rating conditions

R404A

ooling capacity 70 90 100	-20 y in Btu/h	-10	0	10	20	25	30	35	40
70 90 100	y in Btu/h								10
70 90 100	y in Btu/h								
90 100	10 100	05.770	25.450	40,000	04.200	CO CO7	I		
100	18 489	25 776	35 156	46 923	61 369	69 687	- 65.254	72 047	- 02.026
	14 270	20 483	28 405	38 330	50 549	57 610	65 354	73 817	83 036
	12 238 10 252	17 908 15 375	25 095 21 822	34 092 29 886	45 191 39 861	51 620 45 655	58 684 52 037	66 419 59 043	74 863 66 709
110	8 308	12 879	18 582	25 709	34 555	39 713	45 411	51 684	58 570
130	-	10 416	15 370	21 557	29 269	33 788	38 800	44 339	50 443
140		-	-	17 424	23 998	27 878	32 200	37 004	42 324
140		_		11 727	20 000	27 070	02 Z00	37 004	42 024
ower input in V	V								
70	3 081	3 491	3 855	4 174	4 450	4 573	-	-	-
90	3 205	3 717	4 175	4 580	4 934	5 092	5 239	5 373	5 496
100	3 254	3 835	4 358	4 824	5 236	5 422	5 594	5 754	5 900
110	3 271	3 934	4 535	5 075	5 556	5 774	5 979	6 170	6 347
120	3 240	3 997	4 687	5 313	5 876	6 134	6 377	6 605	6 818
130	-	4 007	4 799	5 523	6 180	6 484	6 771	7 043	7 298
140	-	-	-	5 688	6 451	6 806	7 144	7 465	7 770
70	4.26	4.71	5.11	5.46	5.74	5.85	_	_	_
90	4.52	5.09	5.63	6.10	6.52	6.70	6.86	7.00	7.12
100	4.60	5.25	5.86	6.42	6.93	7.16	7.36	7.55	7.72
110	4.61	5.36	6.06	6.73	7.33	7.61	7.87	8.11	8.33
120	4.56	5.41	6.22	7.00	7.71	8.05	8.37	8.67	8.94
130	-	5.39	6.33	7.22	8.06	8.46	8.84	9.21	9.55
140	-	-	-	7.39	8.37	8.84	9.29	9.72	10.14
110		I	<u> </u>	7.00	0.01	0.01	0.20	0.72	10.11
ass flow in lbs	/h								
70	331	452	600	781	997	1 120	-	-	-
90	295	413	556	728	933	1 050	1 177	1 315	1 464
100	275	391	531	698	899	1 013	1 136	1 270	1 415
110	254	367	504	667	862	973	1 093	1 224	1 364
120	230	341	475	634	823	931	1 048	1 174	1 311
130	-	313	443	597	781	886	999	1 122	1 254
140	-	-	-	558	736	838	947	1 066	1 195
	Datia /F F D								
70	6.00	7.38	9.12	11.24	13.79	15.24	_	_	_
90	4.45	5.51	6.80	8.37	10.25	11.31	12.47	13.74	15.11
100	3.76	4.67	5.76	7.07	8.63	9.52	10.49	11.54	12.69
110	3.13	3.91	4.81	5.89	7.17	7.91	8.70	9.57	10.51
120	2.56	3.22	3.96	4.84	5.88	6.47	7.12	7.82	8.59
130	-	2.60	3.90	3.90	4.74	5.21	5.73	6.30	6.91
140	-	2.60	-	3.90	3.72	4.10	4.51	4.96	5.45
140				3.00	5.12	4.10	4.51	4.90	3.43

Cooling capacity	34 555	Btu/h	Current consumption	7.71	Α
Power input	5 876	W	Mass flow	823	lbs/h
E.E.R.	5.88				

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 °F , Subcooling = 0 °F

Tolerance according EN12900

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)	
With accoustic hood	0	dB(A)	

Inverter reciprocating compressors VTZ171-G

Performance data at 45 Hz, ARI rating conditions

R404A

Cond. temp.		1	F	· ·	ting temperature	1 ' '	_	1 _	
in °F (tc)	-20	-10	0	10	20	25	30	35	40
ooling capaci	ty in Btu/h								
70	20 759	28 871	39 337	52 491	68 668	77 994	-	-	-
90	16 245	23 240	32 154	43 323	57 080	65 033	73 759	83 298	93 692
100	14 002	20 424	28 549	38 711	51 244	58 504	66 482	75 220	84 760
110	11 765	17 606	24 932	34 077	45 378	51 940	59 167	67 099	75 778
120	9 533	14 784	21 301	29 421	39 479	45 339	51 809	58 931	66 745
130	-	11 954	17 655	24 740	33 546	38 699	44 408	50 715	57 661
140	-	-	-	20 033	27 578	32 020	36 963	42 450	48 523
Power input in	w								
70	3 458	3 926	4 344	4 717	5 051	5 204	-	-	-
90	3 624	4 212	4 735	5 199	5 608	5 794	5 968	6 131	6 284
100	3 684	4 354	4 951	5 482	5 951	6 164	6 364	6 550	6 725
110	3 703	4 470	5 156	5 769	6 312	6 559	6 791	7 009	7 212
120	3 663	4 540	5 330	6 039	6 671	6 960	7 232	7 487	7 726
130	-	4 545	5 453	6 273	7 008	7 346	7 665	7 966	8 248
140	-	-	-	6 452	7 305	7 699	8 072	8 425	8 759
urrent consur	nption in A								
70	4.78	5.29	5.74	6.12	6.42	6.54	-	-	-
90	5.04	5.71	6.31	6.85	7.32	7.53	7.71	7.87	8.00
100	5.12	5.88	6.58	7.22	7.79	8.05	8.28	8.49	8.68
110	5.14	6.00	6.81	7.57	8.25	8.57	8.86	9.13	9.38
120	5.08	6.06	7.00	7.87	8.68	9.06	9.42	9.76	10.07
130	-	6.04	7.11	8.12	9.07	9.52	9.95	10.36	10.74
140	-	-	-	8.30	9.40	9.92	10.43	10.92	11.38
Mass flow in lb	s/h								
70	372	507	673	874	1 117	1 255	-	-	-
90	336	469	629	822	1 054	1 186	1 329	1 484	1 652
100	315	446	604	793	1 019	1 148	1 287	1 439	1 602
110	291	421	576	761	982	1 107	1 243	1 390	1 550
120	263	392	544	725	941	1 063	1 195	1 339	1 494
130	-	359	509	686	896	1 015	1 143	1 283	1 434
140	-	-	-	642	846	962	1 087	1 223	1 370
Energy Efficien	cy Ratio (E.E.R.)							
70	6.00	7.35	9.06	11.13	13.60	14.99	-	-	-
90	4.48	5.52	6.79	8.33	10.18	11.22	12.36	13.59	14.91
100	3.80	4.69	5.77	7.06	8.61	9.49	10.45	11.48	12.60
110	3.18	3.94	4.84	5.91	7.19	7.92	8.71	9.57	10.51
120	2.60	3.26	4.00	4.87	5.92	6.51	7.16	7.87	8.64
			ł	+	4.79	5.27	5.79	6.37	6.99
130	-	2.63	3.24	3.94	4.19	5.27	5.79	0.57	0.55

Nominal performance at to = 20 °F, tc = 120 °F

Cooling capacity	39 479	Btu/h	Current consumption	8.68	Α
Power input	6 671	W	Mass flow	941	lbs/h
E.E.R.	5.92				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 50 Hz, ARI rating conditions

R404A

Cond. temp.			1		ting temperature	1 ' '		1 -	
in °F (tc)	-20	-10	0	10	20	25	30	35	40
ooling capaci	ty in Btu/h								
70	23 023	32 019	43 617	58 179	76 067	86 371	-	-	-
90	18 162	25 980	35 921	48 348	63 624	72 443	82 110	92 670	104 167
100	15 689	22 898	31 992	43 332	57 282	65 349	74 203	83 891	94 458
110	13 188	19 776	28 008	38 248	50 859	58 167	66 203	75 013	84 642
120	10 658	16 612	23 971	33 097	44 356	50 898	58 110	66 035	74 720
130	-	13 407	19 879	27 880	37 773	43 543	49 923	56 958	64 692
140	-	-	-	22 595	31 111	36 103	41 645	47 782	54 560
Power input in	w								
70	3 852	4 382	4 856	5 283	5 671	5 853		-	-
90	4 053	4 724	5 320	5 848	6 318	6 533	6 736	6 929	7 113
100	4 119	4 885	5 566	6 169	6 704	6 948	7 178	7 394	7 599
110	4 132	5 011	5 793	6 488	7 104	7 385	7 649	7 897	8 132
120	4 073	5 080	5 980	6 782	7 496	7 822	8 129	8 418	8 689
130	-	5 071	6 105	7 032	7 859	8 239	8 596	8 933	9 251
140	-	-	-	7 215	8 173	8 613	9 030	9 423	9 795
Current consur	nption in A								
70	5.31	5.89	6.40	6.83	7.17	7.30	-	-	-
90	5.57	6.34	7.03	7.65	8.18	8.41	8.62	8.80	8.97
100	5.65	6.52	7.33	8.06	8.70	8.99	9.26	9.51	9.73
110	5.66	6.66	7.58	8.44	9.21	9.57	9.90	10.21	10.50
120	5.58	6.72	7.78	8.77	9.69	10.11	10.52	10.90	11.26
130	-	6.68	7.89	9.04	10.11	10.61	11.09	11.56	11.99
140	-	-	-	9.22	10.45	11.04	11.61	12.15	12.68
Mass flow in lb	s/h								
70	413	563	747	970	1 239	1 392	-	-	-
90	376	524	702	918	1 175	1 321	1 479	1 651	1 837
100	353	500	676	888	1 139	1 282	1 437	1 604	1 785
110	326	473	647	854	1 100	1 240	1 391	1 554	1 731
120	295	440	612	816	1 057	1 193	1 341	1 500	1 672
130	-	403	573	773	1 009	1 142	1 286	1 441	1 609
140	-	-	-	724	955	1 084	1 225	1 377	1 540
Energy Efficien	cy Ratio (E.E.R.)							
70	5.98	7.31	8.98	11.01	13.41	14.76		-	-
90	4.48	5.50	6.75	8.27	10.07	11.09	12.19	13.37	14.64
100	3.81	4.69	5.75	7.02	8.54	9.41	10.34	11.35	12.43
110	3.19	3.95	4.83	5.90	7.16	7.88	8.66	9.50	10.41
120	2.62	3.27	4.01	4.88	5.92	6.51	7.15	7.84	8.60
420	-	2.64	3.26	3.96	4.81	5.29	5.81	6.38	6.99
130									

Nominal performance at to = 20 °F, tc = 120 °F

Cooling capacity	44 356	Btu/h	Current consumption	9.69	Α
Power input	7 496	W	Mass flow	1 057	lbs/h
E.E.R.	5.92				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 55 Hz, ARI rating conditions

R404A

in °F (tc)	-20	-10	0	10	20	25	30	35	40
111 1 (10)	-20	-10	U	10	20	25	30	35	40
ooling capacit	y in Btu/h								
70	25 283	35 222	47 998	63 987	83 567	94 820	-	-	-
90	20 022	28 705	39 708	53 409	70 183	79 841	90 409	101 932	114 459
100	17 301	25 332	35 425	47 957	63 306	72 154	81 847	92 433	103 957
110	14 521	21 885	31 052	42 400	56 306	64 337	73 148	82 788	93 302
120	11 685	18 366	26 591	36 739	49 187	56 392	64 313	72 999	82 494
130	-	14 776	22 044	30 975	41 950	48 321	55 345	63 068	71 538
140	-	-	-	25 111	34 596	40 126	46 245	52 999	60 435
ower input in \	w								
70	4 263	4 858	5 391	5 871	6 311	6 520		_	_
90	4 493	5 255	5 930	6 529	7 063	7 309	7 543	7 767	7 982
100	4 557	5 429	6 202	6 886	7 493	7 772	8 035	8 285	8 523
110	4 558	5 557	6 445	7 232	7 930	8 250	8 551	8 836	9 106
120	4 472	5 616	6 637	7 544	8 351	8 720	9 068	9 397	9 707
130	-	5 584	6 755	7 801	8 733	9 161	9 565	9 945	10 305
140	-	-	-	7 978	9 054	9 549	10 017	10 459	10 877
		•		•		-1	1	1	ı
urrent consun	nption in A								
70	5.85	6.52	7.10	7.59	7.98	8.14	-	-	-
90	6.11	6.99	7.78	8.48	9.08	9.35	9.59	9.82	10.01
100	6.18	7.19	8.10	8.93	9.66	9.99	10.30	10.58	10.84
110	6.18	7.32	8.37	9.34	10.21	10.61	10.99	11.35	11.69
120	6.07	7.37	8.58	9.69	10.72	11.20	11.66	12.10	12.51
130	-	7.31	8.68	9.97	11.17	11.74	12.28	12.80	13.30
140	-	-	-	10.14	11.52	12.18	12.82	13.43	14.02
	_								
Mass flow in Ibs		610	823	1.060	1 264	1 522			1
-	454	619	1	1 069	1 364	1 532	1 620	1 017	2.010
90 100	390	578 553	776 749	1 014 982	1 296 1 259	1 456 1 415	1 629 1 585	1 817 1 767	2 019 1 965
110	359	523	749	947	1 218	1 371	1 536	1 715	1 907
120	323	487	679	906	1 172	1 322	1 484	1 658	1 846
130	323	444	635	859	1 120	1 267	1 425	1 596	1 779
140		-	-	804	1 061	1 205	1 360	1 527	1 706
140	<u> </u>			004	1 001	1 203	1 300	1 321	1700
nergy Efficien	cy Ratio (E.E.R.)		.					1
70	5.93	7.25	8.90	10.90	13.24	14.54	-	-	-
90	4.46	5.46	6.70	8.18	9.94	10.92	11.99	13.12	14.34
100	3.80	4.67	5.71	6.96	8.45	9.28	10.19	11.16	12.20
110	3.19	3.94	4.82	5.86	7.10	7.80	8.55	9.37	10.25
120	2.61	3.27	4.01	4.87	5.89	6.47	7.09	7.77	8.50
130	-	2.65	3.26	3.97	4.80	5.27	5.79	6.34	6.94
140	_	_	_	3.15	3.82	4.20	4.62	5.07	5.56

Cooling capacity	49 187	Btu/h	Current consumption	10.72	Α
Power input	8 351	W	Mass flow	1 172	lbs/h
E.E.R.	5.89				

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 °F , Subcooling = 0 °F

Tolerance according EN12900

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 60 Hz, ARI rating conditions

R404A

in °F (tc)	-20					25			40
		-10	0	10	20	25	30	35	40
ooling capacit	y in Btu/h								
70	27 536	38 477	52 478	69 915	91 166	103 339	-	-	-
90	21 823	31 413	43 513	58 502	76 756	87 226	98 654	111 086	124 570
100	18 835	27 724	38 847	52 585	69 314	78 919	89 413	100 844	113 258
110	15 764	23 933	34 062	46 531	61 718	70 449	80 001	90 421	101 757
120	12 612	20 044	29 162	40 344	53 971	61 819	70 419	79 820	90 068
130	-	16 059	24 147	34 026	46 075	53 031	60 672	69 045	78 197
140	-	-	-	27 580	38 034	44 091	50 763	58 100	66 147
ower input in \	N								
70	4 690	5 355	5 948	6 482	6 971	7 203	_	_	_
90	4 943	5 804	6 565	7 240	7 843	8 123	8 389	8 645	8 891
100	5 001	5 986	6 858	7 632	8 320	8 636	8 937	9 223	9 496
110	4 980	6 109	7 112	8 001	8 792	9 155	9 498	9 824	10 134
120	4 859	6 150	7 300	8 325	9 237	9 655	10 051	10 425	10 780
130	-	6 085	7 402	8 579	9 630	10 113	10 570	11 002	11 412
140		-	-	8 740	9 950	10 506	11 033	11 533	12 006
110		_	_	1 0770	1 0000	10 000	1.000	1 11 000	12 000
urrent consum	nption in A								
70	6.40	7.18	7.84	8.40	8.86	9.05	-	-	-
90	6.66	7.67	8.57	9.36	10.04	10.35	10.64	10.90	11.14
100	6.72	7.87	8.90	9.83	10.66	11.04	11.39	11.72	12.04
110	6.69	7.99	9.18	10.27	11.25	11.71	12.14	12.55	12.94
120	6.55	8.02	9.38	10.64	11.79	12.34	12.85	13.35	13.82
130	-	7.93	9.48	10.92	12.26	12.89	13.50	14.09	14.66
140	-	-	-	11.07	12.62	13.35	14.07	14.76	15.43
lass flow in lbs		T		1		_	1	Γ	1
70	494	677	900	1 170	1 492	1 673	-	-	-
90	452	633	850	1 110	1 418	1 591	1 779	1 981	2 198
100	424	605	821	1 077	1 378	1 548	1 731	1 928	2 140
110	390	572	786	1 039	1 335	1 501	1 680	1 873	2 080
120	348	532	745	995	1 286	1 449	1 625	1 813	2 015
130	-	482	696	943	1 231	1 391	1 563	1 747	1 945
140	-	-	-	883	1 166	1 324	1 493	1 674	1 868
nergy Efficiend	cy Ratio (E.E.R.)							
70	5.87	7.19	8.82	10.79	13.08	14.35	-	-	-
90	4.41	5.41	6.63	8.08	9.79	10.74	11.76	12.85	14.01
100	3.77	4.63	5.66	6.89	8.33	9.14	10.01	10.93	11.93
110	3.17	3.92	4.79	5.82	7.02	7.70	8.42	9.20	10.04
120	2.60	3.26	3.99	4.85	5.84	6.40	7.01	7.66	8.36
130	-	2.64	3.26	3.97	4.78	5.24	5.74	6.28	6.85
	_	-	-	3.16	3.82	4.20	4.60	5.04	5.51

E.E.R. 5.84

53 971

9 237

Btu/h

W

T 0 : Evaporating temperature at dew point T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

Tolerance according EN12900

Cooling capacity

Power input

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound	power	data
Journa	PO	uutu

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

11.79

1 286

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 65 Hz, ARI rating conditions

R404A

in °F (tc)	20	10	0	10	ating temperature		30	25	40
111 1 (10)	-20	-10	0	10	20	25	30	35	40
ooling capaci	ty in Btu/h								
70	29 785	41 787	57 058	75 963	98 866	111 930	-	-	-
90	23 567	34 106	47 338	63 629	83 344	94 599	106 846	120 131	134 499
100	20 295	30 075	42 260	57 216	75 309	85 645	96 902	109 126	122 361
110	16 918	25 921	37 040	50 643	67 095	76 504	86 762	97 914	110 007
120	13 441	21 648	31 683	43 915	58 708	67 179	76 429	86 501	97 442
130	-	17 258	26 192	37 034	50 150	57 675	65 907	74 890	84 670
140	-	-	-	30 004	41 425	47 996	55 201	63 086	71 697
ower input in	w								
70	5 135	5 873	6 527	7 115	7 651	7 905	_	-	_
90	5 405	6 370	7 224	7 982	8 660	8 974	9 274	9 562	9 841
100	5 448	6 555	7 536	8 407	9 184	9 542	9 882	10 207	10 519
110	5 399	6 667	7 793	8 795	9 689	10 100	10 491	10 862	11 216
120	5 235	6 680	7 971	9 123	10 152	10 626	11 075	11 502	11 908
130	-	6 573	8 046	9 367	10 550	11 095	11 613	12 104	12 571
140	-	-	-	9 503	10 858	11 485	12 079	12 644	13 181
•									
urrent consur	nption in A								
70	6.97	7.86	8.62	9.26	9.79	10.02	-	-	-
90	7.22	8.37	9.38	10.28	11.06	11.41	11.74	12.06	12.35
100	7.26	8.56	9.73	10.77	11.71	12.14	12.55	12.93	13.30
110	7.20	8.67	10.01	11.23	12.33	12.85	13.34	13.81	14.26
120	7.01	8.68	10.20	11.61	12.90	13.50	14.09	14.65	15.20
130	-	8.54	10.27	11.88	13.37	14.08	14.77	15.43	16.08
140	-	-	-	12.02	13.73	14.55	15.35	16.12	16.88
lass flow in lb	e/h								
70	535	736	980	1 274	1 621	1 817	_	_	_
90	488	687	925	1 208	1 540	1 726	1 927	2 143	2 374
100	457	656	893	1 172	1 498	1 680	1 876	2 086	2 312
110	419	620	855	1 131	1 451	1 630	1 822	2 028	2 248
120	371	574	810	1 083	1 399	1 575	1 763	1 965	2 180
130	-	518	755	1 027	1 339	1 512	1 698	1 895	2 106
140	-	-	-	960	1 270	1 441	1 623	1 817	2 025
		•	•	•	•	•	•	•	
	cy Ratio (E.E.R.						1	T	1
70	5.80	7.12	8.74	10.68	12.92	14.16	-	-	-
90	4.36	5.35	6.55	7.97	9.62	10.54	11.52	12.56	13.67
100	3.73	4.59	5.61	6.81	8.20	8.98	9.81	10.69	11.63
110	3.13	3.89	4.75	5.76	6.92	7.57	8.27	9.01	9.81
120	2.57	3.24	3.97	4.81	5.78	6.32	6.90	7.52	8.18
130	<u>-</u>	2.63	3.26	3.95	4.75	5.20	5.68	6.19	6.74
140		_	_	3.16	3.82	4.18	4.57	4.99	5.44

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

58 708

10 152

5.78

Btu/h

W

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

12.90

1 399

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 70 Hz, ARI rating conditions

R404A

in °F (tc)	20	40	_	1	ating temperature		20	0.5	40
III F (IC)	-20	-10	0	10	20	25	30	35	40
ooling capaci	y in Btu/h								
70	32 028	45 151	61 739	82 131	106 665	120 591	-	-	-
90	25 252	36 783	51 182	68 790	89 945	101 958	114 985	129 067	144 247
100	21 677	32 384	45 662	61 850	81 288	92 331	104 313	117 277	131 265
110	17 982	27 847	39 985	54 735	72 438	82 502	93 431	105 267	118 053
120	14 170	23 176	34 155	47 450	63 398	72 474	82 340	93 040	104 615
130	-	18 372	28 176	39 997	54 174	62 252	71 047	80 601	90 957
140	-	-	-	32 381	44 769	51 841	59 557	67 957	77 084
ower input in	W								
70	5 596	6 411	7 130	7 770	8 350	8 624	_	_	_
90	5 876	6 955	7 908	8 754	9 511	9 862	10 198	10 520	10 831
100	5 900	7 138	8 235	9 212	10 084	10 487	10 872	11 239	11 592
110	5 815	7 230	8 490	9 615	10 621	11 086	11 528	11 949	12 353
120	5 598	7 208	8 649	9 940	11 098	11 634	12 142	12 627	13 090
130	-	7 049	8 689	10 164	11 493	12 108	12 692	13 250	13 782
140	-	-	-	10 264	11 781	12 485	13 154	13 793	14 403
I		•			•		•	•	
urrent consun	nption in A								
70	7.55	8.57	9.44	10.17	10.79	11.07	-	-	-
90	7.79	9.09	10.23	11.24	12.12	12.53	12.92	13.29	13.64
100	7.80	9.27	10.58	11.75	12.81	13.29	13.76	14.21	14.64
110	7.70	9.36	10.86	12.22	13.45	14.03	14.59	15.13	15.65
120	7.46	9.33	11.04	12.60	14.03	14.71	15.37	16.01	16.63
130	-	9.14	11.07	12.86	14.52	15.31	16.08	16.82	17.55
140	-	-	-	12.97	14.87	15.78	16.67	17.54	18.39
lass flow in lbs	576	795	1 062	1 380	1 753	1 963			1
90	523	740	1 002	1 306	1 662	1 861	2 075	2 303	2 547
100	488	740	964	1 266	1 616	1 811	2 019	2 242	2 480
110	445	666	923	1 222	1 567	1 758	1 962	2 180	2 412
120	391	615	873	1 170	1 511	1 699	1 900	2 113	2 341
130	391	552	812	1 109	1 447	1 633	1 830	2 040	2 263
140	<u> </u>	-	-	1 036	1 372	1 556	1 751	1 958	2 177
140				1 000	1072	1 550	1731	1 330	2 177
nergy Efficien	cy Ratio (E.E.R.	.)	1	T	1	T	1	_	_
70	5.72	7.04	8.66	10.57	12.77	13.98	-	-	-
90	4.30	5.29	6.47	7.86	9.46	10.34	11.28	12.27	13.32
100	3.67	4.54	5.54	6.71	8.06	8.80	9.59	10.43	11.32
110	3.09	3.85	4.71	5.69	6.82	7.44	8.10	8.81	9.56
120	2.53	3.22	3.95	4.77	5.71	6.23	6.78	7.37	7.99
130	-	2.61	3.24	3.94	4.71	5.14	5.60	6.08	6.60
140	-	-	-	3.15	3.80	4.15	4.53	4.93	5.35
					•	•	•		•

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

63 398

11 098

5.71

Btu/h

W

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

14.03

1 511

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 75 Hz, ARI rating conditions

R404A

in °F (tc)	20	40		1	ating temperature	1	20	25	40
111 1 (10)	-20	-10	0	10	20	25	30	35	40
ooling capacit	y in Btu/h								
70	34 266	48 568	66 520	88 420	114 565	129 323	-	-	-
90	26 881	39 444	55 046	73 985	96 561	109 305	123 071	137 894	153 812
100	22 984	34 653	49 054	66 487	87 252	98 978	111 647	125 299	139 970
110	18 957	29 713	42 897	58 808	77 745	88 442	100 008	112 479	125 894
120	14 800	24 629	36 578	50 949	68 042	77 702	88 155	99 438	111 588
130	-	19 402	30 101	42 916	58 147	66 763	76 095	86 181	97 058
140	-	-	-	34 711	48 065	55 628	63 831	72 712	82 309
ower input in	N								
70	6 075	6 970	7 755	8 448	9 070	9 360	_	-	_
90	6 359	7 557	8 617	9 558	10 399	10 788	11 160	11 517	11 862
100	6 356	7 732	8 955	10 045	11 022	11 474	11 905	12 318	12 714
110	6 227	7 798	9 202	10 459	11 588	12 111	12 610	13 087	13 544
120	5 949	7 732	9 334	10 775	12 074	12 677	13 252	13 802	14 328
130	-	7 512	9 329	10 971	12 458	13 150	13 809	14 440	15 045
140	-	-	-	11 026	12 717	13 506	14 259	14 980	15 671
•									
urrent consun	nption in A								
70	8.14	9.31	10.29	11.13	11.86	12.19	-	-	-
90	8.36	9.83	11.11	12.24	13.25	13.71	14.16	14.59	15.01
100	8.35	10.00	11.46	12.77	13.95	14.50	15.03	15.55	16.06
110	8.20	10.06	11.73	13.24	14.61	15.26	15.89	16.50	17.10
120	7.89	9.98	11.88	13.61	15.20	15.96	16.70	17.42	18.12
130	-	9.73	11.87	13.85	15.69	16.57	17.42	18.26	19.08
140	-	-	-	13.93	16.03	17.04	18.03	18.99	19.95
	_								
lass flow in lbs	617	856	1 145	1 488	1 888	2 110	_	_	l _
90	557	793	1 075	1 404	1 785	1 996	2 221	2 461	2 716
100	518	756	1 036	1 361	1 735	1 942	2 162	2 396	2 644
110	470	710	990	1 313	1 682	1 884	2 100	2 329	2 572
120	409	654	935	1 257	1 622	1 822	2 034	2 259	2 496
130	-	583	868	1 190	1 553	1 751	1 960	2 182	2 415
140	_	-	-	1 110	1 472	1 669	1 876	2 095	2 325
-		I.			l				
	cy Ratio (E.E.R.	.)	1		1	1		ı	1
70	5.64	6.97	8.58	10.47	12.63	13.82	-	-	-
90	4.23	5.22	6.39	7.74	9.29	10.13	11.03	11.97	12.97
100	3.62	4.48	5.48	6.62	7.92	8.63	9.38	10.17	11.01
110	3.04	3.81	4.66	5.62	6.71	7.30	7.93	8.60	9.30
120	2.49	3.19	3.92	4.73	5.64	6.13	6.65	7.20	7.79
130	-	2.58	3.23	3.91	4.67	5.08	5.51	5.97	6.45
140	-	-	-	3.15	3.78	4.12	4.48	4.85	5.25

Cooling capacity	68 042	Btu/h	Current consumption	15.20	Α
Power input	12 074	W	Mass flow	1 622	lbs/h
E.E.R.	5.64				

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 °F , Subcooling = 0 °F

Tolerance according EN12900

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 80 Hz, ARI rating conditions

R404A

in °F (tc)	-20	-10	0	10	ating temperature 20	25	30	35	40
111 1 (10)	-20	-10	U	10	20	25	30	35	40
ooling capaci	ty in Btu/h								
70	36 500	52 040	71 402	94 828	122 565	138 126	-	-	-
90	28 452	42 090	58 929	79 214	103 191	116 640	131 104	146 612	163 196
100	24 216	36 881	52 436	71 128	93 202	105 584	118 904	133 191	148 476
110	19 842	31 519	45 777	62 861	83 017	94 325	106 492	119 551	133 530
120	15 333	26 008	38 953	54 414	72 639	82 864	93 873	105 695	118 361
130	-	20 348	31 966	45 792	62 070	71 206	81 048	91 627	102 972
140	-	-	-	36 996	51 315	59 356	68 025	77 353	87 371
ower input in	NA/								
70	6 571	7 550	8 402	9 148	9 809	10 114	_	_	
90	6 852	8 178	9 351	10 392	11 321	11 751	12 161	12 554	12 932
100	6 817	8 340	9 697	10 909	11 997	12 501	12 982	13 443	13 886
110	6 636	8 372	9 929	11 328	12 590	13 177	13 737	14 273	14 789
120	6 288	8 253	10 026	11 628	13 081	13 777	14 404	15 025	15 621
130	-	7 963	9 967	11 788	13 447	14 221	14 964	15 676	16 360
140	<u> </u>	-	-	11 787	13 667	14 548	15 393	16 205	16 986
170	-	_	_	11707	10 007	1 17 070	10 000	10 200	10 300
Current consur	nption in A								
70	8.74	10.07	11.19	12.14	12.98	13.37	-	-	-
90	8.95	10.59	12.03	13.29	14.42	14.95	15.46	15.97	16.47
100	8.90	10.74	12.37	13.82	15.14	15.76	16.36	16.96	17.54
110	8.70	10.77	12.62	14.29	15.81	16.54	17.25	17.94	18.63
120	8.31	10.64	12.73	14.64	16.41	17.25	18.07	18.88	19.68
130	-	10.31	12.68	14.86	16.89	17.86	18.81	19.74	20.67
140	-	-	-	14.89	17.21	18.33	19.42	20.49	21.56
	_								
lass flow in lb	s/h 658	918	1 231	1 599	2 025	2 260	_	_	_
90	589	846	1 150	1 504	1 909	2 131	2 368	2 618	2 883
100	546	804	1 107	1 456	1 853	2 071	2 302	2 546	2 804
110	492	754	1 057	1 403	1 796	2 010	2 236	2 475	2 727
120	423	691	996	1 343	1 732	1 943	2 166	2 401	2 648
130	-	612	922	1 270	1 658	1 868	2 088	2 320	2 563
140		-	-	1 182	1 571	1 780	1 999	2 228	2 469
			1	02					2 .00
	cy Ratio (E.E.R.					1	-1	1	
70	5.55	6.89	8.50	10.37	12.50	13.66	- 10.70		-
90	4.15	5.15	6.30	7.62	9.11	9.93	10.78	11.68	12.62
100	3.55	4.42	5.41	6.52	7.77	8.45	9.16	9.91	10.69
110	2.99	3.76	4.61	5.55	6.59	7.16	7.75	8.38	9.03
120	2.44	3.15	3.89	4.68	5.55	6.02	6.52	7.03	7.58
130	-	2.56	3.21	3.88	4.62	5.01	5.42	5.85	6.29
140	-	_	_	3.14	3.75	4.08	4.42	4.77	5.14

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

72 639

13 081

5.55

Btu/h

W

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

16.41

1 732

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 85 Hz, ARI rating conditions

R404A

Cond. temp.		1	1	Evapora	ting temperature	in °F (to)			r
in °F (tc)	-20	-10	0	10	20	25	30	35	40
ooling capaci		_	_	1	T		1	1	1
70	38 727	55 566	76 383	101 357	130 666	147 001	-	-	-
90	29 965	44 720	62 831	84 477	109 835	123 962	139 084	155 222	172 398
100	25 371	39 067	55 808	75 772	99 138	112 152	126 083	140 953	156 785
110	20 638	33 264	48 623	66 894	88 255	100 151	112 885	126 482	140 962
120	15 765	27 311	41 277	57 843	77 189	87 960	99 493	111 810	124 933
130	-	21 208	33 772	48 623	65 942	75 584	85 909	96 941	108 701
140	-	-	-	39 234	54 518	63 024	72 137	81 878	92 271
	14/								
Power input in	7 083	8 151	9 073	9 871	10 568	10.005	_	_	_
70 90	7 083	8 817	10 109	11 257	12 280	10 885 12 752	13 201	13 631	14 043
100	7 281	8 960	10 109	11 801	13 009	13 569	14 103	14 615	15 107
110	7 041	8 951	10 459	12 222	13 628	14 282	14 103	15 510	16 088
120	6 616	8 771	10 771	12 499	14 117	14 874	15 599	16 296	16 968
130		8 401	10 723	12 499	14 117	15 323	16 155	16 955	17 727
140			10 003	12 548	14 631	15 612	16 557	17 467	18 347
140	-	-	-	12 346	14 03 1	13 012	10 557	17 407	10 347
Current consu	mption in A								
70	9.36	10.85	12.12	13.21	14.18	14.63	-	-	-
90	9.54	11.38	12.97	14.38	15.64	16.25	16.84	17.42	18.01
100	9.45	11.50	13.31	14.91	16.38	17.07	17.76	18.43	19.11
110	9.19	11.49	13.53	15.37	17.06	17.86	18.65	19.44	20.22
120	8.71	11.29	13.60	15.70	17.65	18.58	19.49	20.40	21.30
130	-	10.88	13.49	15.88	18.11	19.18	20.24	21.28	22.31
140	-	-	-	15.87	18.41	19.64	20.85	22.04	23.22
			•						
lass flow in lb	s/h								
70	698	980	1 318	1 712	2 164	2 412	-	-	-
90	621	899	1 226	1 603	2 032	2 266	2 513	2 773	3 046
100	572	852	1 178	1 551	1 972	2 200	2 441	2 695	2 961
110	512	795	1 122	1 493	1 909	2 134	2 370	2 618	2 878
120	435	725	1 056	1 427	1 840	2 063	2 296	2 540	2 794
130	-	638	974	1 349	1 761	1 982	2 213	2 454	2 706
140	-	-	-	1 253	1 668	1 889	2 119	2 359	2 608
nergy Efficier	ncy Ratio (E.E.R.	.)		·	1	_	1	1	1
70	5.47	6.82	8.42	10.27	12.36	13.50	-	-	-
90	4.07	5.07	6.22	7.50	8.94	9.72	10.54	11.39	12.28
100	3.48	4.36	5.34	6.42	7.62	8.27	8.94	9.64	10.38
110	2.93	3.72	4.56	5.47	6.48	7.01	7.57	8.15	8.76
120	2.38	3.11	3.85	4.63	5.47	5.91	6.38	6.86	7.36
130	-	2.52	3.19	3.85	4.56	4.93	5.32	5.72	6.13
100									

Nominal performance at to = 20 °F, tc = 120 °F

Cooling capacity 77 189 Btu/h

Cooling capacity	77 189	Btu/h	Current consumption	17.65	Α
Power input	14 117	W	Mass flow	1 840	lbs/h
E.E.R.	5.47				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 90 Hz, ARI rating conditions

R404A

70 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 -	-10 59 145 47 334 41 213 34 948 28 539 21 984 8 772 9 473 9 592 9 536 9 286 8 826 11.67 12.19	9 765 10 893 11 427 11 431 11 236 -	108 006 89 773 80 419 70 907 61 237 51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	138 866 116 493 105 058 93 458 81 693 69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	25 155 946 131 271 118 679 105 919 92 990 79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697			- 181 419 164 894 148 189 131 305 114 243 97 009 - 15 195 16 378 17 442 18 371 19 147 19 755
70	47 334 41 213 34 948 28 539 21 984 8 772 9 473 9 592 9 536 9 286 8 826 	9 765 10 893 11 427 11 436 13 552 35 517 - 9 765 10 893 11 243 11 427 11 431 11 236 - 13 09 13 95	89 773 80 419 70 907 61 237 51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	116 493 105 058 93 458 81 693 69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	131 271 118 679 105 919 92 990 79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697	133 184 119 186 105 016 90 675 76 167 	148 585 133 272 117 784 102 121 86 288 - 14 748 15 835 16 796 17 617 18 280	164 894 148 189 131 305 114 243 97 009 - 15 195 16 378 17 442 18 371 19 147
90 31 420 100 26 450 110 21 343 120 16 099 130 - 140 - ower input in W 70 7 613 90 7 870 100 7 7443 120 6 931 130 - 140 - urrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - lass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	47 334 41 213 34 948 28 539 21 984 8 772 9 473 9 592 9 536 9 286 8 826 	9 765 10 893 11 427 11 436 13 552 35 517 - 9 765 10 893 11 243 11 427 11 431 11 236 - 13 09 13 95	89 773 80 419 70 907 61 237 51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	116 493 105 058 93 458 81 693 69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	131 271 118 679 105 919 92 990 79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697	133 184 119 186 105 016 90 675 76 167 	148 585 133 272 117 784 102 121 86 288 - 14 748 15 835 16 796 17 617 18 280	164 894 148 189 131 305 114 243 97 009 - 15 195 16 378 17 442 18 371 19 147
100 26 450 110 21 343 120 16 099 130 - 140 - 140 - 140 70 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 140 - 150 - 160 - 170 997 110 529 120 444 130 -	41 213 34 948 28 539 21 984 8 772 9 473 9 592 9 536 9 286 8 826 11.67	59 170 51 436 43 552 35 517 - 9 765 10 893 11 243 11 427 11 431 11 236 - 13.09 13.95	80 419 70 907 61 237 51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	105 058 93 458 81 693 69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	118 679 105 919 92 990 79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697	133 184 119 186 105 016 90 675 76 167 	148 585 133 272 117 784 102 121 86 288 - 14 748 15 835 16 796 17 617 18 280	164 894 148 189 131 305 114 243 97 009 - 15 195 16 378 17 442 18 371 19 147
110 21 343 120 16 099 130 - 140 - 140 - 140 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 130 - 140 - 140 - 150 - 161 - 170 739 90 651 100 597 110 529 120 444 130 -	34 948 28 539 21 984 - - 8 772 9 473 9 592 9 536 9 286 8 826 - -	9 765 10 893 11 243 11 427 11 431 11 236 - 13.09 13.95	70 907 61 237 51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	93 458 81 693 69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	105 919 92 990 79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697	119 186 105 016 90 675 76 167 	133 272 117 784 102 121 86 288 - 14 748 15 835 16 796 17 617 18 280	148 189 131 305 114 243 97 009 - 15 195 16 378 17 442 18 371 19 147
120 16 099 130 - 140 - 140 - ower input in W 70 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - urrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - lass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	28 539 21 984 - - 8 772 9 473 9 592 9 536 9 286 8 826 - -	9 765 10 893 11 243 11 427 11 431 11 236 - 13.09 13.95	61 237 51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	81 693 69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	92 990 79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697	105 016 90 675 76 167 	117 784 102 121 86 288 - 14 748 15 835 16 796 17 617 18 280	131 305 114 243 97 009 - 15 195 16 378 17 442 18 371 19 147
130 - 140 - 140 - 140 - 140 - 140 - 140 - 140 - 150 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - 140 - 140 - 150 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - 140 529 140 529 140 444 130 -	21 984 - 8 772 9 473 9 592 9 536 9 286 8 826 - 11.67	9 765 10 893 11 243 11 427 11 431 11 236 - 13.09 13.95	51 410 41 426 10 616 12 152 12 723 13 141 13 389 13 450 13 308	69 764 57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	79 894 66 633 11 674 13 790 14 677 15 428 16 026 16 455 16 697	90 675 76 167 - 14 281 15 268 16 126 16 836 17 383	- 14 748 15 835 16 796 17 617 18 280	- 15 195 16 378 17 442 18 371 19 147
140 -	8 772 9 473 9 592 9 536 9 286 8 826	9 765 10 893 11 243 11 427 11 431 11 236 - - 13.09 13.95	10 616 12 152 12 723 13 141 13 389 13 450 13 308	57 673 11 347 13 274 14 058 14 700 15 183 15 492 15 608	11 674 13 790 14 677 15 428 16 026 16 455 16 697	76 167 14 281 15 268 16 126 16 836 17 383	- 14 748 15 835 16 796 17 617 18 280	- 15 195 16 378 17 442 18 371 19 147
Power input in W 70	9 473 9 592 9 536 9 286 8 826 -	9 765 10 893 11 243 11 427 11 431 11 236 - - 13.09 13.95	10 616 12 152 12 723 13 141 13 389 13 450 13 308	11 347 13 274 14 058 14 700 15 183 15 492 15 608	11 674 13 790 14 677 15 428 16 026 16 455 16 697	- 14 281 15 268 16 126 16 836 17 383	- 14 748 15 835 16 796 17 617 18 280	- 15 195 16 378 17 442 18 371 19 147
70 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Sass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	9 473 9 592 9 536 9 286 8 826 -	10 893 11 243 11 427 11 431 11 236 - - 13.09 13.95	12 152 12 723 13 141 13 389 13 450 13 308	13 274 14 058 14 700 15 183 15 492 15 608	13 790 14 677 15 428 16 026 16 455 16 697	15 268 16 126 16 836 17 383	15 835 16 796 17 617 18 280	16 378 17 442 18 371 19 147
70 7 613 90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	9 473 9 592 9 536 9 286 8 826 -	10 893 11 243 11 427 11 431 11 236 - - 13.09 13.95	12 152 12 723 13 141 13 389 13 450 13 308	13 274 14 058 14 700 15 183 15 492 15 608	13 790 14 677 15 428 16 026 16 455 16 697	15 268 16 126 16 836 17 383	15 835 16 796 17 617 18 280	16 378 17 442 18 371 19 147
90 7 870 100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	9 473 9 592 9 536 9 286 8 826 -	10 893 11 243 11 427 11 431 11 236 - - 13.09 13.95	12 152 12 723 13 141 13 389 13 450 13 308	13 274 14 058 14 700 15 183 15 492 15 608	13 790 14 677 15 428 16 026 16 455 16 697	15 268 16 126 16 836 17 383	15 835 16 796 17 617 18 280	16 378 17 442 18 371 19 147
100 7 750 110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	9 592 9 536 9 286 8 826 -	11 243 11 427 11 431 11 236 - - 13.09 13.95	12 723 13 141 13 389 13 450 13 308	14 058 14 700 15 183 15 492 15 608	14 677 15 428 16 026 16 455 16 697	15 268 16 126 16 836 17 383	15 835 16 796 17 617 18 280	16 378 17 442 18 371 19 147
110 7 443 120 6 931 130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Sass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	9 536 9 286 8 826 -	11 427 11 431 11 236 - - 13.09 13.95	13 141 13 389 13 450 13 308	14 700 15 183 15 492 15 608	15 428 16 026 16 455 16 697	16 126 16 836 17 383	16 796 17 617 18 280	17 442 18 371 19 147
120 6 931 130 - 140 - urrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - lass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	9 286 8 826 - 11.67	11 431 11 236 - 13.09 13.95	13 389 13 450 13 308	15 183 15 492 15 608	16 026 16 455 16 697	16 836 17 383	17 617 18 280	18 371 19 147
130 - 140 - Surrent consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	8 826	11 236 - 13.09 13.95	13 450 13 308	15 492 15 608	16 455 16 697 15.96	17 383	18 280	19 147
140 - Current consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	11.67	13.09 13.95	13 308	15 608 15.43	16 697 15.96	ł		
Current consumption in A 70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	11.67	13.09 13.95	14.32	15.43	15.96	-	-	10 700
70 9.99 90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -		13.95				-	_	
90 10.15 100 10.01 110 9.67 120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -		13.95				-	-	
100 10.01 110 9.67 120 9.10 130 - 140 - 1ass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	12 19		15.51	16.92	4=		i .	-
110 9.67 120 9.10 130 - 140 - lass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	12.10				17.60	18.27	18.95	19.63
120 9.10 130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	12.28	14.27	16.04	17.66	18.44	19.21	19.97	20.74
130 - 140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	12.21	14.46	16.47	18.34	19.23	20.11	20.99	21.87
140 - Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	11.94	14.48	16.78	18.92	19.94	20.96	21.96	22.97
Mass flow in lbs/h 70 739 90 651 100 597 110 529 120 444 130 -	11.44	14.30	16.92	19.36	20.54	21.70	22.86	24.01
70 739 90 651 100 597 110 529 120 444 130 -	-	-	16.85	19.64	20.99	22.31	23.63	24.94
70 739 90 651 100 597 110 529 120 444 130 -								
90 651 100 597 110 529 120 444 130 -		•			_	•	•	•
100 597 110 529 120 444 130 -	1 044	1 407	1 828	2 306	2 566	-	-	-
110 529 120 444 130 -	951	1 302	1 704	2 156	2 401	2 657	2 926	3 207
120 444 130 -	898	1 248	1 645	2 089	2 328	2 579	2 841	3 113
130 -	836	1 187	1 583	2 021	2 257	2 502	2 758	3 025
	758	1 114	1 511	1 948	2 181	2 423	2 675	2 937
140 -	661	1 025	1 426	1 863	2 096	2 336	2 586	2 844
	-	-	1 323	1 764	1 997	2 237	2 486	2 742
nergy Efficiency Ratio (E	.E.R.)							
70 5.38	6.74	8.34	10.17	12.24	13.36	_	_	_
90 3.99	5.00	6.13	7.39	8.78	9.52	10.29	11.10	11.94
100 3.41	4.30	5.26	6.32	7.47	8.09	8.72	9.38	10.07
110 2.87	3.66	4.50	5.40	6.36	6.87	7.39	7.93	8.50
120 2.32		3.81	4.57	5.38	5.80	6.24	6.69	7.15
130 -	3.07	3.16	3.82	4.50	4.86	5.22	5.59	5.97
140 -	3.07 2.49	3.10	3.11	3.69	3.99	4.29	4.60	4.91

T 0 : Evaporating temperature at dew point

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}\text{F}$, Subcooling = 0 $^{\circ}\text{F}$

81 693

15 183

5.38

Btu/h

W

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	402	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	13	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

18.92

1 948

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 30 Hz, ARI rating conditions

R407C

Cond. temp.		T	T	· ·	ting temperature			1	ı
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
70	24 656	33 307	44 143	50 474	-	-	-	-	-
90	20 989	28 859	38 689	44 432	50 778	57 763	65 426	73 804	-
110	16 775	23 637	32 233	37 277	42 868	49 044	55 843	63 302	71 460
120	-	20 869	28 763	33 414	38 585	44 314	50 640	57 599	65 231
130	-	18 069	25 202	29 431	34 154	39 409	45 233	51 665	58 743
140	-	-	21 604	25 383	29 629	34 380	39 676	45 553	52 052
150	-	-	-	21 322	25 062	29 283	34 023	39 321	45 216
ower input in	w								
70	2 316	2 447	2 527	2 546	-	-	-	-	-
90	2 762	3 008	3 210	3 291	3 359	3 412	3 449	3 470	-
110	3 081	3 473	3 826	3 985	4 132	4 265	4 385	4 489	4 577
120		3 653	4 093	4 296	4 488	4 668	4 833	4 985	5 121
130		3 788	4 322	4 574	4 815	5 044	5 260	5 463	5 650
140	-	-	4 509	4 813	5 107	5 389	5 659	5 916	6 159
150	-	-	-	5 005	5 355	5 695	6 023	6 338	6 641
urrent consur	nption in A								
70	2.77	3.17	3.51	3.67	-	-	-	-	-
90	4.06	4.30	4.48	4.56	4.65	4.75	4.87	5.02	-
110	4.90	5.17	5.37	5.46	5.56	5.67	5.80	5.95	6.14
120	-	5.45	5.73	5.86	6.00	6.15	6.32	6.51	6.74
130	-	5.59	6.00	6.20	6.40	6.62	6.85	7.10	7.39
140	-	-	6.17	6.46	6.75	7.04	7.36	7.70	8.08
150	-	-	-	6.61	7.01	7.41	7.84	8.29	8.77
lass flow in lb	s/h								
70	286	381	496	563	-	-	-	-	-
90	265	359	473	539	611	690	776	869	-
110	235	324	434	498	568	644	728	818	917
120		303	409	471	539	614	695	784	881
130	-	278	380	440	506	578	658	744	839
140	-	-	348	405	468	538	615	699	791
150	-	-	-	366	426	493	567	648	736
nergy Efficien	cy Ratio (E.E.R.)							
70	10.65	13.61	17.47	19.83	-	-	-	-	-
90	7.60	9.59	12.05	13.50	15.12	16.93	18.97	21.27	-
110	5.45	6.81	8.42	9.35	10.37	11.50	12.74	14.10	15.61
120	-	5.71	7.03	7.78	8.60	9.49	10.48	11.56	12.74
130	<u>-</u> -	4.77	5.83	6.43	7.09	7.81	8.60	9.46	10.40
140	-	-	4.79	5.27	5.80	6.38	7.01	7.70	8.45

Cooling capacity	45 233	Btu/h	Current consumption	6.85	Α
Power input	5 260	W	Mass flow	658	lbs/h
E.E.R.	8.60				

T 0 : Evaporating temperature at dew point

Nominal performance at to = 45 °F, tc = 130 °F

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 35 Hz, ARI rating conditions

R407C

Cond. temp.		1		1	ting temperature			1	1
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ity in Btu/h								
70	30 234	40 393	53 043	60 409	i	-	-		-
90	25 356	34 574	46 076	52 791	60 206	68 364	77 308	87 080	-
110	20 137	28 163	38 267	44 208	50 798	58 082	66 102	74 902	84 524
120	-	24 876	34 187	39 693	45 825	52 626	60 140	68 409	77 477
130	-	21 611	30 065	35 106	40 749	47 037	54 013	61 723	70 209
140	-	-	25 959	30 503	35 626	41 371	47 782	54 903	62 779
150	-	-	-	25 945	30 517	35 690	41 508	48 015	55 256
Power input in	w								
70	2 784	2 936	3 010	3 013	-	-	-	-	_
90	3 252	3 555	3 792	3 881	3 949	3 994	4 014	4 007	-
110	3 562	4 042	4 468	4 656	4 825	4 974	5 101	5 205	5 283
120	-	4 226	4 756	4 998	5 223	5 429	5 615	5 778	5 917
130	-	4 366	5 005	5 305	5 589	5 855	6 102	6 328	6 532
140	-	-	5 212	5 573	5 918	6 248	6 560	6 852	7 124
150	-	-	-	5 797	6 207	6 604	6 984	7 346	7 688
Current consu	mption in A								
70	3.63	4.00	4.33	4.49	-	-	-	-	-
90	4.69	4.96	5.19	5.30	5.41	5.52	5.63	5.74	-
110	5.44	5.78	6.09	6.23	6.38	6.53	6.68	6.84	7.01
120	-	6.07	6.47	6.67	6.87	7.07	7.28	7.50	7.72
130	-	6.23	6.78	7.06	7.33	7.60	7.89	8.18	8.48
140	-	-	6.99	7.35	7.72	8.09	8.47	8.86	9.25
150	-	-	-	7.54	8.02	8.51	9.01	9.51	10.03
Mass flow in Ib	s/h								
70	351	462	596	674	-	-	-	-	-
90	321	430	563	640	724	816	917	1 026	-
110	282	386	515	590	672	763	861	968	1 085
	-	360	486	559	640	729	826	932	1 047
120						1	785	890	1 003
120 130	-	332	454	525	604	690	700		
	-	332	454 418	525 487	604 563	690 647	740	842	953
130		1	1	ł		+	+		953 899
130 140 150	-	-	418	487	563	647	740	842	
130 140 150 Energy Efficier	- - ncy Ratio (E.E.R.	-	418	487 445	563	647	740	842	
130 140 150 Energy Efficier 70	- - ncy Ratio (E.E.R. 10.86) 13.76	418 -	487 445 20.05	563 519 -	647 600	740 691	842 790	899
130 140 150 Energy Efficier 70 90	- - ncy Ratio (E.E.R. 10.86 7.80	- -) 13.76 9.73	418 - 17.62 12.15	487 445 20.05 13.60	563 519 - 15.25	647 600	740 691 - 19.26	842 790 - 21.73	899
130 140 150 Energy Efficier 70 90 110	- ncy Ratio (E.E.R. 10.86 7.80 5.65	13.76 9.73 6.97	17.62 12.15 8.56	487 445 20.05 13.60 9.49	563 519 - 15.25 10.53	647 600 - 17.12 11.68	740 691 - 19.26 12.96	790 - 21.73 14.39	- - 16.00
130 140 150 Energy Efficier 70 90 110 120	- ncy Ratio (E.E.R. 10.86 7.80 5.65	13.76 9.73 6.97 5.89	17.62 12.15 8.56 7.19	487 445 20.05 13.60 9.49 7.94	563 519 - 15.25 10.53 8.77	647 600 - 17.12 11.68 9.69	740 691 - 19.26 12.96 10.71	842 790 - 21.73 14.39 11.84	- - 16.00 13.09
130 140 150 Energy Efficier 70 90 110	- ncy Ratio (E.E.R. 10.86 7.80 5.65	13.76 9.73 6.97	17.62 12.15 8.56	487 445 20.05 13.60 9.49	563 519 - 15.25 10.53	647 600 - 17.12 11.68	740 691 - 19.26 12.96	790 - 21.73 14.39	- - 16.00

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity 54 013 Btu/h

Cooling capacity	54 013	Btu/h	Current consumption	7.89	Α
Power input	6 102	W	Mass flow	785	lbs/h
E.E.R.	8.85				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 40 Hz, ARI rating conditions

R407C

Cond. temp.		1	1	· ·	ting temperature	1 ' '	Т		ı
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
70	35 570	47 215	61 650	70 033	-	-	-	-	-
90	29 605	40 171	53 331	61 004	69 471	78 778	88 974	100 108	-
110	23 447	32 657	44 268	51 096	58 670	67 038	76 249	86 352	97 395
120	-	28 873	39 606	45 959	53 036	60 885	69 555	79 094	89 552
130	-	25 152	34 935	40 781	47 328	54 625	62 721	71 665	81 507
140	-	-	30 320	35 623	41 606	48 319	55 810	64 130	73 327
150	-	-	-	30 551	35 938	42 036	48 894	56 562	65 089
Power input in	w								
70	3 253	3 431	3 507	3 502	-	-	-	-	-
90	3 747	4 109	4 387	4 489	4 562	4 606	4 616	4 592	-
110	4 055	4 624	5 125	5 344	5 539	5 708	5 849	5 959	6 036
120	-	4 815	5 435	5 717	5 978	6 214	6 424	6 605	6 755
130	-	4 959	5 705	6 052	6 380	6 686	6 968	7 223	7 449
140	-	-	5 931	6 347	6 745	7 124	7 480	7 811	8 116
150	-	-	-	6 599	7 071	7 524	7 958	8 369	8 755
urrent consur	mption in A								
70	4.45	4.81	5.13	5.28	-	-	-	-	-
90	5.32	5.63	5.92	6.06	6.19	6.31	6.42	6.51	-
110	6.00	6.41	6.83	7.03	7.23	7.42	7.61	7.78	7.94
120	-	6.71	7.24	7.51	7.77	8.03	8.28	8.52	8.75
130	-	6.90	7.59	7.93	8.28	8.62	8.95	9.28	9.60
140	-	-	7.83	8.27	8.72	9.16	9.60	10.04	10.47
150	-	-	-	8.50	9.06	9.63	10.19	10.75	11.31
Mass flow in Ib	s/h								
70	412	540	693	781	-	-	_	-	-
90	374	500	652	740	836	941	1 055	1 179	-
110	328	448	596	682	777	880	993	1 116	1 250
120	-	418	563	648	741	843	955	1 077	1 210
130	-	386	527	610	701	802	912	1 033	1 165
140	-	-	488	568	658	756	865	984	1 114
150	-	-	-	524	611	707	813	930	1 058
Energy Efficien	cy Ratio (E.E.R.)							
70	10.93	13.76	17.58	20.00	-	-	-	-	-
90	7.90	9.78	12.16	13.59	15.23	17.11	19.27	21.80	-
110	5.78	7.06	8.64	9.56	10.59	11.74	13.04	14.49	16.14
120	-	6.00	7.29	8.04	8.87	9.80	10.83	11.98	13.26
130	-	5.07	6.12	6.74	7.42	8.17	9.00	9.92	10.94
	_	_	5.11	5.61	6.17	6.78	7.46	8.21	9.03
140									

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity	62 721	Btu/h	Current consumption	8.95	Α
Power input	6 968	W	Mass flow	912	lbs/h
FER	9 00				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 45 Hz, ARI rating conditions

R407C

in °F (tc) 5 15 Sooling capacity in Btu/h 70 40 665 53 77 90 33 737 45 68 110 26 708 37 12 120 - 32 86 130 - 28 66 140 150 Sower input in W 70 3 722 3 93 90 4 246 4 67 110 4 559 5 21 120 - 541 130 - 556 140 150 Surrent consumption in A 70 5.23 5.58 90 5.94 6.30 110 6.57 7.07 120 - 7.38 130 - 7.59 140 150 Surrent solution in Insumption in A 70 5.23 5.58 90 5.94 6.30 110 6.57 7.07 120 - 7.38 130 - 7.59 140 150 Mass flow in Ibs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 Mass flow in Ibs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 Mass flow in Ibs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 Mass flow in Ibs/h 70 10.93 13.66 7.11 120 - 6.07	2 60 456 3 50 238 3 45 020 2 39 814 34 686 - 4 020 4 996 3 5 796 6 130	30 79 347 69 074 57 943 52 212 46 456 40 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22 9.47	- 78 573 66 484 60 218 53 891 47 569 41 325 - 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74 10.12	- 89 006 75 913 69 092 62 173 55 224 48 321 - 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26 10.76		50	- 110 071 101 454 92 637 83 695 74 712 - 6 836 7 634 8 401 9 137 9 840 8 8.93 9.83 10.77 11.71
70	2 60 456 3 50 238 3 45 020 2 39 814 34 686 4 020 4 996 5 5 796 6 6 130 6 6420 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	69 074 57 943 52 212 46 456 40 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	66 484 60 218 53 891 47 569 41 325 - 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	89 006 75 913 69 092 62 173 55 224 48 321	86 286 78 887 71 355 63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	97 654 89 656 81 492 73 233 64 960 	110 071 101 454 92 637 83 695 74 712 6 836 7 634 8 401 9 137 9 840 8.93 9.83 10.77
90	2 60 456 3 50 238 3 45 020 2 39 814 34 686 4 020 4 996 5 5 796 6 6 130 6 6420 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	69 074 57 943 52 212 46 456 40 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	66 484 60 218 53 891 47 569 41 325 - 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	89 006 75 913 69 092 62 173 55 224 48 321	86 286 78 887 71 355 63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	97 654 89 656 81 492 73 233 64 960 	110 071 101 454 92 637 83 695 74 712 6 836 7 634 8 401 9 137 9 840 8.93 9.83 10.77
110	3 50 238 3 45 020 2 39 814 34 686 - 4 020 4 996 3 5 796 3 6 130 6 6420 6 664 - 5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640 601	57 943 52 212 46 456 40 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	66 484 60 218 53 891 47 569 41 325 - 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	75 913 69 092 62 173 55 224 48 321	86 286 78 887 71 355 63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	97 654 89 656 81 492 73 233 64 960 	110 071 101 454 92 637 83 695 74 712 6 836 7 634 8 401 9 137 9 840 8.93 9.83 10.77
120 - 32 86 130 - 28 69 140	3 45 020 2 39 814 34 686 - 4 020 4 996 3 5 796 3 6 130 6 6420 6 664 - 5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640 601	52 212 46 456 40 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	- 1 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	69 092 62 173 55 224 48 321 - 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	78 887 71 355 63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	89 656 81 492 73 233 64 960 	- 101 454 92 637 83 695 74 712 6 836 7 634 8 401 9 137 9 840 8.93 9.83 10.77
130	2 39 814 34 686 - 4 020 4 996 3 5 796 6 6 130 6 6 420 6 664 - 5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640 601	46 456 40 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	53 891 47 569 41 325 - 5 198 6 274 6 752 7 190 7 588 7 945 - - 6.99 8.11 8.70 9.26 9.74	62 173 55 224 48 321 - 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	71 355 63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	81 492 73 233 64 960 	92 637 83 695 74 712 - - - 6 836 7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
140 - - 150 - - ower input in W - - 70 3 722 3 93 90 4 246 4 67 110 4 559 5 21 120 - 5 41 130 - 5 56 140 - - 150 - - urrent consumption in A - 70 5 .23 5 .58 90 5 .94 6 .30 110 6 .57 7 .07 120 - 7 .38 130 - - 140 - - 150 - - 140 - - 150 - - 110 374 509 120 - 476 130 - 476 130 - 441 140 - - <td< td=""><td>34 686 4 020 4 996 5 5 796 6 6 130 6 6 420 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601</td><td>4 0 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22</td><td>- 1 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74</td><td>55 224 48 321 - 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26</td><td>63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05</td><td>73 233 64 960 - 5 225 6 752 7 466 8 147 8 794 9 407 - 7.33 8.76 9.58 10.42</td><td> 8.93 9.83 9.83 10.77</td></td<>	34 686 4 020 4 996 5 5 796 6 6 130 6 6 420 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	4 0 741 35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	- 1 5 198 6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	55 224 48 321 - 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	63 761 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	73 233 64 960 - 5 225 6 752 7 466 8 147 8 794 9 407 - 7.33 8.76 9.58 10.42	8.93 9.83 9.83 10.77
ower input in W 70 3 722 3 93 90 4 246 4 67 110 4 559 5 21 120 - 5 41 130 - 5 56 140 - - 150 - - 20 - - 30 5.23 5.58 90 5.94 6.30 110 6.57 7.07 120 - 7.38 130 - 7.59 140 - - 150 - - 120 - - 140 - - 150 - - 140 - - 90 427 568 110 374 509 120 - 476 130 - - 150 - - 150 - - <t< td=""><td>- 4 020 4 996 5 5 796 6 6 130 6 6 420 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601</td><td>35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22</td><td>- 5 198 6 274 6 752 7 190 7 588 7 945 - - 6.99 8.11 8.70 9.26 9.74</td><td>- 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26</td><td>- 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05</td><td>- 5 225 6 752 7 466 8 147 8 794 9 407 - 7.33 8.76 9.58 10.42</td><td>74 712 6 836 7 634 8 401 9 137 9 840 8.93 9.83 10.77</td></t<>	- 4 020 4 996 5 5 796 6 6 130 6 6 420 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	35 139 4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	- 5 198 6 274 6 752 7 190 7 588 7 945 - - 6.99 8.11 8.70 9.26 9.74	- 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	- 56 181 - 5 257 6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	- 5 225 6 752 7 466 8 147 8 794 9 407 - 7.33 8.76 9.58 10.42	74 712 6 836 7 634 8 401 9 137 9 840 8.93 9.83 10.77
Nower input in W	4 020 4 996 5 5 796 6 6 130 6 6 420 6 664 - 5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640 601	4 012 5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	- 5 198 6 274 6 752 7 190 7 588 7 945 - - 6.99 8.11 8.70 9.26 9.74	- 5 247 6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	- 5 257 6 628 7 261 7 858 8 420 8 945 - - 7.25 8.57 9.31 10.05	- 5 225 6 752 7 466 8 147 8 794 9 407 - - 7.33 8.76 9.58 10.42	- 6 836 7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
70 3 722 3 93 90 4 246 4 67 110 4 559 5 21: 120 - 5 41: 130 - 5 56: 140 150 urrent consumption in A 70 5 .23 5 .58: 90 5 .94 6 .30: 110 6 .57 7 .07 120 - 7 .38: 130 - 7 .59: 140 150 lass flow in lbs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 lass flow in lbs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 nergy Efficiency Ratio (E.E.R.) 70 10.93 13.6: 90 7.94 9.77 110 5 .86 7.11	4 996 5 5 796 6 6 130 6 6 420 6 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	5 198 6 274 6 752 7 190 7 588 7 945 - - 6.99 8.11 8.70 9.26 9.74	5 247 6 468 7 022 7 539 8 017 8 456 - - 7.13 8.35 9.01 9.66 10.26	5 257 6 628 7 261 7 858 8 420 8 945 - - 7.25 8.57 9.31	6 752 7 466 8 147 8 794 9 407 - - 7.33 8.76 9.58 10.42	- 6 836 7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
70	4 996 5 5 796 6 6 130 6 6 420 6 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	5 198 6 274 6 752 7 190 7 588 7 945 - - 6.99 8.11 8.70 9.26 9.74	5 247 6 468 7 022 7 539 8 017 8 456 - - 7.13 8.35 9.01 9.66 10.26	5 257 6 628 7 261 7 858 8 420 8 945 - - 7.25 8.57 9.31	6 752 7 466 8 147 8 794 9 407 - - 7.33 8.76 9.58 10.42	- 6 836 7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
90	4 996 5 5 796 6 6 130 6 6 420 6 6 664 5.91 6.66 7.60 8.05 8.42 8.69 787 739 676 640 601	5 114 6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31	6 752 7 466 8 147 8 794 9 407 - - 7.33 8.76 9.58 10.42	6 836 7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
110 4 559 5 21: 120 - 5 41: 130 - 5 56: 140 - - 150 - - urrent consumption in A - - 70 5.23 5.58: 90 5.94 6.30: 110 6.57 7.07: 120 - 7.38: 130 - 7.59: 140 - - 150 - - 18ass flow in lbs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 - - 150 - - 150 - - 150 - - 150 - - 140 - - 150 - <	5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640 601	6 049 6 454 6 816 7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	6 274 6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	6 468 7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	6 628 7 261 7 858 8 420 8 945 - 7.25 8.57 9.31	6 752 7 466 8 147 8 794 9 407 - - 7.33 8.76 9.58 10.42	6 836 7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
120 - 5 41: 130 - 5 56: 140 - - 150 - - surrent consumption in A - - 70 5.23 5.58: 90 5.94 6.30: 110 6.57 7.07: 120 - 7.59: 130 - - 150 - - 150 - - 120 - - 110 374 509 120 - 476 130 - 441 140 - - 150 - - 150 - - 150 - - 150 - - 140 - - 150 - - 150 - - 150 - - 150	5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640	6.454 6.816 7.136 7.413 6.06 6.83 7.86 8.38 8.84 9.22	6 752 7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	7 022 7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	7 261 7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	7 466 8 147 8 794 9 407 - - 7.33 8.76 9.58 10.42	7 634 8 401 9 137 9 840 - - - 8.93 9.83 10.77
130 - 556 140	5.91 6.66 7.60 8.05 8.42 8.69 - 787 739 676 640 601	6.06 6.83 7.86 8.38 8.84 9.22	7 190 7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	7 539 8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	7 858 8 420 8 945 - 7.25 8.57 9.31 10.05	8 147 8 794 9 407 - 7.33 8.76 9.58 10.42	8 401 9 137 9 840 - - - 8.93 9.83 10.77
140 - 150 - current consumption in A 70 5.23 90 5.94 110 6.57 120 - 130 - 150 - - - 1so - <	5.91 6.66 7.60 8.05 8.42 8.69 - - 787 739 676 640 601	7 136 7 413 6.06 6.83 7.86 8.38 8.84 9.22	7 588 7 945 - 6.99 8.11 8.70 9.26 9.74	8 017 8 456 - 7.13 8.35 9.01 9.66 10.26	- 7.25 8.57 9.31 10.05	8 794 9 407 - 7.33 8.76 9.58 10.42	9 137 9 840 - - - 8.93 9.83 10.77
150 - - -	5.91 6.66 7.60 8.05 8.42 8.69 - - 787 739 676 640	7 413 6.06 6.83 7.86 8.38 8.84 9.22	7 945 - 6.99 8.11 8.70 9.26 9.74	7.13 8.35 9.01 9.66 10.26	7.25 8.57 9.31 10.05	9 407 - 7.33 8.76 9.58 10.42	9 840 - - 8.93 9.83 10.77
Current consumption in A 70 5.23 5.58 90 5.94 6.30 110 6.57 7.07 120 - 7.38 130 - 7.59 140 150 Mass flow in Ibs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 471 140 150 Construct A construction of the	5.91 6.66 7.60 8.05 8.42 8.69 - - 787 739 676 640 601	6.06 6.83 7.86 8.38 8.84 9.22	- 6.99 8.11 8.70 9.26 9.74	7.13 8.35 9.01 9.66 10.26	7.25 8.57 9.31 10.05	7.33 8.76 9.58 10.42	- 8.93 9.83 10.77
70 5.23 5.58 90 5.94 6.30 110 6.57 7.07 120 - 7.38 130 - 7.59 140 150 Mass flow in Ibs/h 70 471 615 90 427 568 110 374 509 120 - 476 130 - 471 140 150 Energy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	6.66 7.60 8.05 8.42 8.69 - - 787 739 676 640 601	6.83 7.86 8.38 8.84 9.22	8.11 8.70 9.26 9.74	8.35 9.01 9.66 10.26	8.57 9.31 10.05	8.76 9.58 10.42	8.93 9.83 10.77
90 5.94 6.30 110 6.57 7.07 120 - 7.38 130 - 7.59 140 150 lass flow in lbs/h	6.66 7.60 8.05 8.42 8.69 - - 787 739 676 640 601	6.83 7.86 8.38 8.84 9.22	8.11 8.70 9.26 9.74	8.35 9.01 9.66 10.26	8.57 9.31 10.05	8.76 9.58 10.42	8.93 9.83 10.77
110 6.57 7.07 120 - 7.38 130 - 7.59 140 - - 150 - - 150 - - 150 - - 150 - - 90 427 568 110 374 509 120 - 476 130 - 441 140 - - 150 - - nergy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	7.60 8.05 8.42 8.69 - 787 739 676 640 601	7.86 8.38 8.84 9.22	8.11 8.70 9.26 9.74	8.35 9.01 9.66 10.26	8.57 9.31 10.05	8.76 9.58 10.42	8.93 9.83 10.77
120 - 7.38 130 - 7.59 140 - - 150 - - 150 - - 150 - - 150 - - 90 427 568 110 374 509 120 - 476 130 - 441 140 - - 150 - - 150 - - 109 10.93 13.6 90 7.94 9.77 110 5.86 7.11	8.05 8.42 8.69 - 787 739 676 640 601	8.38 8.84 9.22	8.70 9.26 9.74	9.01 9.66 10.26	9.31 10.05	9.58 10.42	9.83 10.77
130 - 7.59 140 - - 150 - - 150 - - 150 - - 150 - - 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 - - 150 - - 40 - - 10 10.93 13.6 90 7.94 9.77 110 5.86 7.11	8.42 8.69 - 787 739 676 640 601	8.84 9.22	9.26 9.74	9.66 10.26	10.05	10.42	10.77
140 - - 150 - - 150 - - 150 - - 70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 - - 150 - - 150 - - 10 10.93 13.6 90 7.94 9.77 110 5.86 7.11	787 739 676 640 601	9.22	9.74	10.26			
150	787 739 676 640 601		†		10.76	11.25	11.71
Ass flow in lbs/h	787 739 676 640 601	9.47	10.12	10.76			
70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 inergy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	739 676 640 601	1			11.40	12.02	12.62
70 471 615 90 427 568 110 374 509 120 - 476 130 - 441 140 150 inergy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	739 676 640 601	1					
90 427 568 110 374 509 120 - 476 130 - 441 140 150 Energy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	739 676 640 601			_	_	T	1
110 374 509 120 - 476 130 - 441 140 150 inergy Efficiency Ratio (E.E.R.) 70 10.93 13.6: 90 7.94 9.77 110 5.86 7.11	676 640 601	885	-	-	-	-	-
120 - 476 130 - 441 140 150 nergy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	640 601	838	945	1 063	1 190	1 329	-
130 - 441 140 150 inergy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	601	773	880	997	1 124	1 263	1 413
140 150 Energy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	1	736	841	957	1 083	1 221	1 371
150 Energy Efficiency Ratio (E.E.R.) 70 10.93 13.66 90 7.94 9.77 110 5.86 7.11	559	695	798	913	1 038	1 175	1 324
Energy Efficiency Ratio (E.E.R.) 70 10.93 13.6 90 7.94 9.77 110 5.86 7.11		650	752	864	988	1 123	1 271
70 10.93 13.6 90 7.94 9.77 110 5.86 7.11	-	603	702	812	934	1 067	1 214
70 10.93 13.6 90 7.94 9.77 110 5.86 7.11							
90 7.94 9.77 110 5.86 7.11	3 17.41	19.78	-	_	-	_	_
110 5.86 7.11	12.10	13.51	15.12	16.96	19.10	21.61	_
		9.58	10.60	11.74	13.02	14.46	16.10
		8.09	8.92	9.84	10.86	12.01	13.29
130 - 5.15		6.82	7.49	8.25	9.08	10.00	11.03
140	5.21	5.71	6.27	6.89	7.57	8.33	9.16
150	-	4.74	5.20	5.71	6.28	6.91	7.59

T 0 : Evaporating temperature at dew point

71 355

7 858

9.08

Btu/h

W

T C: Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

10.05

1 038

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 50 Hz, ARI rating conditions

R407C

Cond. temp.			1	Evapora	ting temperature	, , ,	,		ľ
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
70	45 517	60 071	77 987	88 349	-	-	-	-	-
90	37 751	51 016	67 449	76 998	87 512	99 048	111 663	125 416	-
110	29 918	41 557	56 176	64 748	74 239	84 708	96 211	108 807	122 553
120	-	36 843	50 429	58 451	67 371	77 246	88 135	100 095	113 184
130	-	32 231	44 700	52 131	60 439	69 681	79 917	91 204	103 601
140	-	-	39 058	45 858	53 515	62 087	71 634	82 213	93 884
150	-	-	-	39 710	46 678	54 545	63 369	73 210	84 127
Power input in	w								
70	4 191	4 437	4 547	4 543	_	-	-	_	-
90	4 751	5 240	5 617	5 756	5 857	5 918	5 935	5 906	-
110	5 076	5 824	6 483	6 772	7 030	7 253	7 438	7 583	7 684
120	-	6 035	6 841	7 208	7 547	7 854	8 126	8 361	8 555
130	-	6 193	7 151	7 597	8 019	8 412	8 773	9 099	9 388
140	-	-	7 411	7 940	8 446	8 927	9 379	9 799	10 185
150	-	-	-	8 237	8 830	9 400	9 945	10 461	10 945
Current consu	nption in A								
70	5.96	6.31	6.66	6.82	-	-	-	-	-
90	6.57	6.99	7.42	7.62	7.81	7.97	8.11	8.20	-
110	7.15	7.76	8.40	8.72	9.02	9.30	9.56	9.79	9.98
120	-	8.08	8.88	9.27	9.66	10.03	10.37	10.69	10.96
130	-	8.30	9.28	9.77	10.26	10.73	11.18	11.60	11.99
140	-	-	9.58	10.19	10.79	11.37	11.94	12.49	13.00
150	-	-	-	10.47	11.20	11.92	12.62	13.31	13.96
Mass flow in Ib	s/h								
70	528	687	877	986	-	-	-	-	-
90	477	634	825	934	1 053	1 183	1 324	1 476	-
110	419	570	756	864	983	1 112	1 253	1 407	1 573
120	-	534	717	824	941	1 070	1 210	1 364	1 530
130	-	495	675	779	895	1 023	1 163	1 315	1 481
140	-	-	629	732	846	972	1 110	1 261	1 426
150	-	-	-	681	793	917	1 053	1 203	1 366
Energy Efficier	cy Ratio (E.E.R.)							
70	10.86	13.54	17.15	19.45	-	-	-	-	-
90	7.95	9.74	12.01	13.38	14.94	16.74	18.81	21.24	-
110	5.89	7.14	8.66	9.56	10.56	11.68	12.94	14.35	15.95
120	-	6.10	7.37	8.11	8.93	9.84	10.85	11.97	13.23
130	-	5.20	6.25	6.86	7.54	8.28	9.11	10.02	11.04
		ł	5.27	5.78	6.34	6.96	7.64	8.39	9.22
140	-	-	5.21	3.70	0.0-	0.30	7.0-	0.00	J.ZZ

Cooling capacity	79 917	Btu/h	Current consumption	11.18	Α
Power input	8 773	W	Mass flow	1 163	lbs/h
E.E.R.	9.11				

T 0 : Evaporating temperature at dew point

Nominal performance at to = 45 °F, tc = 130 °F

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 55 Hz, ARI rating conditions

R407C

Cond. temp.				Evapora	ting temperature	in °F (to)			
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h	1	1	T	T	_	•	•	1
70	50 128	66 104	85 716	97 039	-	-	-	-	-
90	41 647	56 262	74 311	84 777	96 288	108 903	122 686	137 696	-
110	33 077	45 960	62 080	71 510	81 936	93 421	106 025	119 812	134 842
120	-	40 814	55 832	64 676	74 494	85 347	97 298	110 409	124 742
130	-	35 768	49 592	57 806	66 971	77 150	88 406	100 801	114 398
140	-	-	43 435	50 974	59 443	68 907	79 428	91 070	103 894
150	-	-	-	44 264	51 997	60 708	70 458	81 312	93 333
ower input in	w								
70	4 659	4 948	5 088	5 095	-	-	-	_	_
90	5 260	5 817	6 252	6 415	6 539	6 618	6 652	6 635	-
110	5 605	6 443	7 185	7 512	7 806	8 063	8 279	8 452	8 578
120	-	6 667	7 568	7 980	8 361	8 709	9 019	9 290	9 517
130	-	6 834	7 898	8 395	8 865	9 305	9 712	10 081	10 411
140	-	-	8 174	8 758	9 320	9 854	10 357	10 828	11 261
150	-	-	-	9 071	9 725	10 355	10 958	11 530	12 069
				•					•
urrent consur	•	1	1	1	T	1		1	1
70	6.65	7.02	7.40	7.56	-	-	-	-	-
90	7.20	7.69	8.19	8.43	8.65	8.84	9.00	9.11	-
110	7.74	8.47	9.23	9.60	9.96	10.29	10.60	10.86	11.08
120	-	8.80	9.73	10.20	10.64	11.07	11.47	11.83	12.15
130	-	9.04	10.17	10.73	11.29	11.82	12.33	12.81	13.24
140	-	-	10.49	11.18	11.85	12.51	13.15	13.75	14.31
150	-	-	-	11.48	12.30	13.10	13.87	14.62	15.32
lass flow in lb	s/h								
70	581	756	964	1 083	-	-	-	-	-
90	527	700	908	1 028	1 158	1 300	1 454	1 621	-
110	463	630	836	955	1 085	1 227	1 381	1 549	1 731
120	-	591	794	911	1 041	1 182	1 336	1 504	1 686
130	-	550	748	864	992	1 133	1 286	1 453	1 635
140	-	-	700	814	940	1 079	1 231	1 397	1 578
150	-	-	-	759	883	1 020	1 171	1 336	1 516
		•	•	•	•	•	•	•	•
	cy Ratio (E.E.R.		1	Т	T	T	T	1	T
70	10.76	13.36	16.85	19.05	-	-	-	-	-
90	7.92	9.67	11.89	13.22	14.73	16.45	18.44	20.75	-
110	5.90	7.13	8.64	9.52	10.50	11.59	12.81	14.18	15.72
120	-	6.12	7.38	8.10	8.91	9.80	10.79	11.89	13.11
130	-	5.23	6.28	6.89	7.55	8.29	9.10	10.00	10.99
140	-	-	5.31	5.82	6.38	6.99	7.67	8.41	9.23
150	_	-	-	4.88	5.35	5.86	6.43	7.05	7.73

T 0 : Evaporating temperature at dew point

Nominal performance at to = 45 °F, tc = 130 °F

88 406

9 712

9.10

Btu/h

W

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Power input

E.E.R.

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

12.33

1 286

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 60 Hz, ARI rating conditions

R407C

Cond. temp.				1	ting temperature			_	
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Btu/h								
70	54 497	71 873	93 153	105 420	-	-	-	-	-
90	45 427	61 391	81 041	92 412	104 901	118 573	133 494	149 728	-
110	36 186	50 333	67 953	78 231	89 576	102 053	115 728	130 667	146 936
120	-	44 777	61 231	70 889	81 588	93 396	106 378	120 600	136 128
130	-	39 305	54 493	63 481	73 487	84 579	96 822	110 282	125 027
140	-	-	47 818	56 088	65 355	75 685	87 146	99 803	113 724
150	-	-	-	48 800	57 283	66 810	77 449	89 266	102 330
ower input in	w								
70	5 128	5 464	5 645	5 668	-	-	-	-	-
90	5 773	6 401	6 899	7 092	7 243	7 349	7 406	7 412	-
110	6 145	7 074	7 902	8 270	8 603	8 898	9 151	9 360	9 520
120	-	7 314	8 311	8 769	9 195	9 587	9 940	10 252	10 520
130	-	7 491	8 661	9 209	9 730	10 220	10 675	11 092	11 468
140	-	-	8 950	9 592	10 209	10 798	11 356	11 879	12 365
150	-	-	-	9 917	10 631	11 321	11 984	12 615	13 212
urrent consur	nption in A								
70	7.29	7.70	8.10	8.29	-	-	-	-	-
90	7.82	8.39	8.98	9.26	9.51	9.74	9.93	10.07	-
110	8.36	9.21	10.09	10.52	10.93	11.31	11.67	11.98	12.24
120	-	9.55	10.62	11.15	11.66	12.15	12.60	13.01	13.38
130	-	9.80	11.08	11.72	12.35	12.95	13.52	14.05	14.54
140	-	-	11.43	12.19	12.95	13.68	14.38	15.04	15.66
150	-	-	-	12.52	13.42	14.29	15.14	15.95	16.72
lass flow in lb	s/h								
70	632	821	1 048	1 176	-	-	-	-	-
90	575	763	991	1 121	1 262	1 416	1 582	1 763	-
110	506	690	915	1 044	1 186	1 340	1 508	1 689	1 886
120	-	649	871	999	1 140	1 293	1 461	1 643	1 840
130	-	604	822	949	1 089	1 242	1 408	1 590	1 787
140	-	-	770	895	1 033	1 185	1 350	1 531	1 728
150	-	-	-	837	973	1 123	1 287	1 466	1 662
nergy Efficien	cy Ratio (E.E.R.)							
70	10.63	13.15	16.50	18.60	-	-	-	-	-
90	7.87	9.59	11.75	13.03	14.48	16.14	18.03	20.20	-
110	5.89	7.12	8.60	9.46	10.41	11.47	12.65	13.96	15.43
120	-	6.12	7.37	8.08	8.87	9.74	10.70	11.76	12.94
130	-	5.25	6.29	6.89	7.55	8.28	9.07	9.94	10.90
140	-	-	5.34	5.85	6.40	7.01	7.67	8.40	9.20
140									

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity 96 822 Btu/h

Cooling capacity	96 822	Btu/h	Current consumption	13.52	Α
Power input	10 675	W	Mass flow	1 408	lbs/h
E.E.R.	9.07				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 65 Hz, ARI rating conditions

R407C

Cond. temp.		1	T	1	ting temperature	1 '	ı		
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ity in Btu/h								
70	58 623	77 379	100 297	113 488	-	-	-	-	-
90	49 088	66 403	87 640	99 902	113 351	128 057	144 087	161 511	-
110	39 244	54 675	73 794	84 910	97 157	110 604	125 320	141 375	158 836
120	-	48 730	66 624	77 087	88 653	101 392	115 374	130 667	147 342
130	-	42 840	59 400	69 156	79 988	91 968	105 165	119 649	135 489
140	-	-	52 206	61 202	71 250	82 421	94 785	108 413	123 375
150	-	-	-	53 319	62 534	72 851	84 340	97 072	111 118
ower input in	w								
70	5 596	5 986	6 216	6 263	-	-	-	-	-
90	6 292	6 992	7 560	7 786	7 970	8 109	8 198	8 236	-
110	6 697	7 718	8 634	9 045	9 421	9 759	10 055	10 306	10 509
120	-	7 976	9 070	9 576	10 050	10 489	10 889	11 249	11 564
130	-	8 164	9 439	10 041	10 614	11 155	11 662	12 132	12 560
140	-	-	9 742	10 440	11 113	11 759	12 373	12 954	13 497
150	-	-	-	10 773	11 549	12 299	13 023	13 716	14 375
urrent consu	mption in A								
70	7.89	8.34	8.79	8.99	-	-	-	-	-
90	8.45	9.11	9.78	10.10	10.39	10.66	10.89	11.08	-
110	8.98	9.97	10.97	11.46	11.93	12.37	12.77	13.14	13.45
120	-	10.33	11.54	12.13	12.70	13.25	13.76	14.24	14.66
130	-	10.58	12.03	12.74	13.43	14.10	14.73	15.33	15.87
140	-	-	12.39	13.23	14.06	14.86	15.63	16.37	17.05
150	-	-	-	13.58	14.56	15.51	16.43	17.31	18.14
lass flow in Ib	s/h								
70	679	884	1 128	1 266	-	-	-	-	-
90	621	826	1 071	1 211	1 364	1 529	1 708	1 901	-
110	549	750	994	1 133	1 286	1 452	1 633	1 828	2 039
120	-	706	947	1 086	1 238	1 404	1 584	1 780	1 991
130	-	658	896	1 034	1 185	1 350	1 530	1 725	1 937
140	-	-	841	977	1 126	1 290	1 469	1 663	1 874
150	-	-	-	915	1 062	1 224	1 402	1 595	1 805
neray Efficier	ncy Ratio (E.E.R.	`							
	10.48	12.93	16.14	18.12	-	-	_	_	_
	7.80	9.50	11.59	12.83	14.22	15.79	17.57	19.61	_
70		1	8.55	9.39	10.31	11.33	12.46	13.72	15.11
70 90		7.08		0.00		+	10.60		12.74
70 90 110	5.86	7.08 6.11		8 05	1 8 82	9 n/		110/	
70 90 110 120		6.11	7.35	8.05 6.89	8.82 7.54	9.67 8.24	+	11.62 9.86	
70 90 110	5.86			8.05 6.89 5.86	8.82 7.54 6.41	8.24 7.01	9.02 7.66	9.86 8.37	10.79

Power input 11 662 W E.E.R. 9.02

Nominal performance at to = 45 °F, tc = 130 °F

105 165

Btu/h

T 0 : Evaporating temperature at dew point T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

14.73

1 530

lbs/h

Current consumption

Inverter reciprocating compressors VTZ171-G

Performance data at 70 Hz, ARI rating conditions

R407C

Cond. temp.	Evaporating temperature in °F (to)										
in °F (tc)	5	15	25	30	35	40	45	50	55		
ooling capacit	y in Btu/h										
70	62 509	82 622	107 149	121 246	-	-	-	-	-		
90	52 632	71 298	94 108	107 247	121 638	137 354	154 466	173 045	-		
110	42 252	58 987	79 602	91 547	104 680	119 074	134 801	151 933	170 543		
120	-	52 675	72 013	83 272	95 689	109 336	124 286	140 611	158 384		
130	-	46 374	64 315	74 831	86 474	99 317	113 435	128 900	145 784		
140	-	-	56 600	66 314	77 127	89 114	102 347	116 900	132 847		
150	-	-	-	57 821	67 752	78 831	91 133	104 730	119 698		
Power input in \	W										
70	6 065	6 514	6 802	6 878	_	-	-	-	-		
90	6 815	7 591	8 234	8 498	8 720	8 898	9 029	9 109	-		
110	7 261	8 374	9 381	9 838	10 260	10 645	10 989	11 290	11 545		
120	-	8 652	9 845	10 400	10 924	11 414	11 866	12 279	12 650		
130	-	8 853	10 234	10 889	11 515	12 111	12 674	13 200	13 688		
140	-	-	10 547	11 303	12 033	12 737	13 411	14 052	14 657		
150	-	-	-	11 640	12 476	13 289	14 075	14 832	15 556		
Current consum	notion in A										
70	8.45	8.95	9.45	9.68	-	-	-	-	-		
90	9.07	9.84	10.59	10.95	11.29	11.61	11.89	12.13	-		
110	9.62	10.76	11.89	12.43	12.95	13.45	13.92	14.34	14.72		
120	-	11.13	12.48	13.14	13.78	14.39	14.96	15.50	15.99		
130	-	11.39	13.00	13.78	14.54	15.27	15.98	16.64	17.26		
140	-	-	13.38	14.30	15.20	16.07	16.91	17.71	18.47		
150	-	-	-	14.66	15.72	16.74	17.73	18.69	19.60		
Mass flow in Ibs	s/h										
70	724	944	1 205	1 353	-	-	-	-	-		
90	666	887	1 151	1 300	1 463	1 640	1 831	2 037	-		
110	591	809	1 072	1 222	1 386	1 563	1 756	1 964	2 189		
120	-	763	1 024	1 173	1 337	1 514	1 707	1 915	2 141		
130	-	713	970	1 119	1 281	1 458	1 650	1 858	2 084		
140	-	-	912	1 058	1 219	1 395	1 586	1 793	2 018		
150	-	-	-	992	1 151	1 325	1 514	1 721	1 944		
Energy Efficien	cy Patic /E E B	`									
70	10.31	12.68	15.75	17.63	_	_	_	<u> </u>	l <u>-</u>		
90	7.72	9.39	11.43	12.62	13.95	15.44	17.11	19.00	_		
110	5.82	7.04	8.49	9.31	10.20	11.19	12.27	13.46	14.77		
120	-	6.09	7.31	8.01	8.76	9.58	10.47	11.45	12.52		
130	<u> </u>	5.24	6.28	6.87	7.51	8.20	8.95	9.76	10.65		
140	-	- 5.24	5.37	5.87	6.41	7.00	7.63	8.32	9.06		
	-	1						1	7.69		
150	-	-	-	4.97	5.43	5.93	6.47	7.06	7		

Nominal performance at to = 45 °F, tc = 130 °F

- ite i i i i i i i i i i i i i i i i i i		.,	· ·		
Cooling capacity	113 435	Btu/h	Current consumption	15.98	Α
Power input	12 674	W	Mass flow	1 650	lbs/h
E.E.R.	8.95				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 75 Hz, ARI rating conditions

R407C

Cond. temp.		1		Evapora	ting temperature i			1	ľ
in °F (tc)	5	15	25	30	35	40	45	50	55
	to to Diville								
ooling capaci	66 152	87 602	113 708	128 693		_	1	1	
90	56 059	76 076	100 444	114 447	129 763	146 465	164 630	184 330	_
110	45 209	63 268	85 378	98 142	112 145	127 463	144 170	162 343	182 056
120	-	56 610	77 396	89 444	102 695	117 227	133 113	150 431	169 254
130		49 907	69 238	80 506	92 943	106 627	121 632	138 035	155 912
140	-	-	60 999	71 425	82 987	95 764	109 830	125 264	142 140
150		_	-	62 305	72 936	84 750	97 826	112 240	128 070
130		<u> </u>	<u> </u>	02 303	12 930	04 7 30	97 020	112 240	120 070
ower input in	w								
70	6 533	7 047	7 402	7 515	-	-	-	-	-
90	7 343	8 197	8 920	9 227	9 493	9 718	9 897	10 030	-
110	7 837	9 043	10 143	10 648	11 120	11 556	11 954	12 312	12 628
120	-	9 343	10 636	11 242	11 818	12 362	12 871	13 344	13 777
130	-	9 557	11 045	11 753	12 435	13 088	13 710	14 298	14 850
140	-	-	11 368	12 180	12 969	13 732	14 467	15 172	15 845
150	-	-	-	12 518	13 415	14 290	15 140	15 963	16 757
Current consur	nption in A								
70	8.96	9.54	10.09	10.35	-	-	-	-	-
90	9.69	10.57	11.42	11.83	12.21	12.58	12.92	13.23	-
110	10.27	11.57	12.83	13.43	14.01	14.57	15.09	15.59	16.05
120	-	11.96	13.46	14.18	14.88	15.55	16.19	16.80	17.37
130	-	12.22	13.99	14.85	15.68	16.48	17.25	17.98	18.68
140	-	-	14.38	15.39	16.36	17.31	18.22	19.09	19.93
150	-	-	-	15.76	16.89	18.00	19.06	20.09	21.08
Mass flow in Ib	s/h								
70	767	1 001	1 279	1 436	-	_	_	_	-
90	709	946	1 228	1 388	1 561	1 749	1 952	2 170	-
110	632	868	1 150	1 310	1 484	1 674	1 878	2 099	2 337
120	-	820	1 101	1 260	1 434	1 623	1 828	2 049	2 287
130	-	767	1 045	1 204	1 377	1 565	1 769	1 990	2 228
140	-	-	983	1 140	1 312	1 499	1 702	1 922	2 159
150	-	-	-	1 069	1 239	1 424	1 626	1 845	2 081
		ı	ı		1		ı	ı	
	cy Ratio (E.E.R.				1		1	T	T
70	10.13	12.43	15.36	17.12	-	-	-	-	-
90	7.63	9.28	11.26	12.40	13.67	15.07	16.63	18.38	-
110	5.77	7.00	8.42	9.22	10.09	11.03	12.06	13.19	14.42
120	-	6.06	7.28	7.96	8.69	9.48	10.34	11.27	12.29
130	-	5.22	6.27	6.85	7.47	8.15	8.87	9.65	10.50
140	-	-	5.37	5.86	6.40	6.97	7.59	8.26	8.97
150	_	_	_	4.98	5.44	5.93	6.46	7.03	7.64

Nominal performance at to = 45 °F, tc = 130 °F

Cooling capacity 121 632 Btu/h

Cooling capacity	121 632	Btu/h	Current consumption	17.25	Α
Power input	13 710	W	Mass flow	1 769	lbs/h
E.E.R.	8.87				

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 80 Hz, ARI rating conditions

R407C

Cond. temp.			1	Evapora	ating temperature	in °F (to)		1	1
in °F (tc)	5	15	25	30	35	40	45	50	55
Cooling capacit		1	1	1	Т	1	1	1	
70	69 554	92 318	119 974	135 829	-	-	-	-	-
90	59 368	80 736	106 649	121 503	137 724	155 391	174 579	195 366	-
110	48 116	67 518	91 122	104 695	119 551	135 770	153 429	172 604	193 374
120	-	60 537	82 774	95 602	109 673	125 065	141 857	160 127	179 952
130	-	53 438	74 168	86 181	99 398	113 897	129 757	147 056	165 872
140	-	-	65 404	76 534	88 831	102 372	117 236	133 504	151 253
150	-	-	-	66 773	78 086	90 609	104 421	119 602	136 232
Power input in \	w								
70	7 001	7 585	8 018	8 173	_	_	_	_	_
90	7 875	8 811	9 620	9 973	10 289	10 567	10 804	10 999	-
110	8 425	9 724	10 920	11 476	12 000	12 493	12 951	13 373	13 758
120	-	10 048	11 442	12 101	12 732	13 334	13 904	14 442	14 945
130		10 278	11 872	12 635	13 374	14 086	14 771	15 425	16 048
140		-	12 203	13 072	13 920	14 744	15 544	16 316	17 060
150		-	-	13 407	14 365	15 302	16 218	17 110	17 977
100	_		_	10 407	14 000	10 302	10 2 10	17 110	17 377
Current consun	nption in A								
70	9.44	10.09	10.71	11.01	-	-	-	-	-
90	10.31	11.32	12.27	12.72	13.16	13.58	13.99	14.38	-
110	10.94	12.41	13.80	14.46	15.10	15.72	16.31	16.89	17.44
120	-	12.81	14.46	15.25	16.01	16.75	17.46	18.15	18.81
130	-	13.08	15.02	15.94	16.84	17.71	18.55	19.36	20.14
140	-	-	15.42	16.50	17.55	18.56	19.55	20.50	21.42
150	-	-	_	16.88	18.09	19.27	20.41	21.52	22.59
		•	•	•			•	•	
Mass flow in Ibs	s/h								
70	806	1 055	1 349	1 515	-	-	-	-	-
90	751	1 004	1 304	1 473	1 657	1 856	2 070	2 300	-
110	673	926	1 227	1 398	1 583	1 783	1 999	2 231	2 482
120	-	877	1 177	1 347	1 532	1 732	1 948	2 181	2 432
130	-	822	1 119	1 288	1 472	1 672	1 887	2 120	2 370
140	-	_	1 053	1 221	1 404	1 602	1 816	2 048	2 298
150	-	-	-	1 146	1 326	1 523	1 736	1 966	2 214
		1	•		1	1			
Energy Efficien	cy Ratio (E.E.R.)				Т	1		
70	9.93	12.17	14.96	16.62	-	-	-	-	-
90	7.54	9.16	11.09	12.18	13.39	14.71	16.16	17.76	-
110	5.71	6.94	8.34	9.12	9.96	10.87	11.85	12.91	14.06
120	-	6.02	7.23	7.90	8.61	9.38	10.20	11.09	12.04
130	-	5.20	6.25	6.82	7.43	8.09	8.78	9.53	10.34
140	-	-	5.36	5.85	6.38	6.94	7.54	8.18	8.87
150	_	_	_	4.98	5.44	5.92	6.44	6.99	7.58
150		<u> </u>	<u> </u>	<u> </u>					

E.E.R. 8.78

129 757

14 771

Btu/h

W

Current consumption

Mass flow

T 0 : Evaporating temperature at dew point T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Cooling capacity

Power input

Fressure switch settings		
Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype and Performer are trademarks of Danfoss A/S. All rights reserved.

18.55

1 887

lbs/h

Inverter reciprocating compressors VTZ171-G

Performance data at 85 Hz, ARI rating conditions

R407C

Cond. temp.				Evapora	ting temperature i	1 ' '		1	ľ
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Rtu/h								
70	72 713	96 771	125 948	142 654	_	_	_	_	_
90	62 560	85 280	112 722	128 413	145 522	164 129	184 313	206 153	_
110	50 972	71 738	96 834	111 205	126 900	143 996	162 575	182 716	204 498
120	-	64 455	88 148	101 746	116 620	132 850	150 517	169 699	190 477
130	-	56 969	79 105	91 856	105 836	121 126	137 808	155 961	175 665
140	-	-	69 814	81 643	94 656	108 937	124 564	141 620	160 186
150	-	-	-	71 222	83 202	96 406	110 917	126 816	144 185
									l .
Power input in	W 7 469	8 129	8 648	8 852	_	_	_	_	_
70 90	8 412	9 432	10 333	10 737	11 108	11 445	11 748	12 015	-
110	9 025	10 417	10 333	12 321	12 902	13 455	13 978	14 472	14 935
120	9 025	10 417	12 265	12 321	13 666	13 455	14 965	15 574	16 155
130		11 014	12 714	13 533	14 331	15 105	15 855	16 581	17 281
140		-	13 052	13 979	14 886	15 773	16 639	17 483	18 304
150	<u> </u>	_	15 052	14 306	15 325	16 326	17 309	18 272	19 216
100				14 300	10 020	10 320	17 303	10 272	13 2 10
Current consur	nption in A								
70	9.86	10.61	11.30	11.64	-	-	-	-	-
90	10.93	12.07	13.12	13.62	14.12	14.60	15.09	15.58	-
110	11.62	13.27	14.79	15.51	16.21	16.90	17.57	18.23	18.88
120	-	13.70	15.50	16.35	17.17	17.97	18.76	19.53	20.29
130	-	13.96	16.07	17.06	18.03	18.97	19.88	20.77	21.65
140	-	-	16.47	17.63	18.75	19.84	20.90	21.93	22.94
150	-	-	-	18.02	19.31	20.57	21.78	22.97	24.13
Mass flow in Ibs	s/h								
70	843	1 106	1 416	1 591	-	-	-	-	-
90	791	1 060	1 378	1 557	1 751	1 960	2 185	2 427	-
110	713	984	1 304	1 485	1 680	1 891	2 118	2 362	2 624
120	-	934	1 253	1 434	1 629	1 840	2 067	2 311	2 574
130	-	876	1 194	1 373	1 567	1 778	2 004	2 248	2 510
140	-	-	1 124	1 303	1 496	1 704	1 930	2 173	2 434
150	-	-	-	1 222	1 413	1 620	1 844	2 085	2 344
	cy Ratio (E.E.R.	Ì	1	T	T	1	1		1
70	9.74	11.91	14.56	16.12	-	-	-	-	-
90	7.44	9.04	10.91	11.96	13.10	14.34	15.69	17.16	-
110	5.65	6.89	8.27	9.03	9.84	10.70	11.63	12.63	13.69
120	-	5.99	7.19	7.84	8.53	9.27	10.06	10.90	11.79
130	-	5.17	6.22	6.79	7.39	8.02	8.69	9.41	10.17
140	-	-	5.35	5.84	6.36	6.91	7.49	8.10	8.75
150			i .	4.98	5.43	5.91	6.41	6.94	7.50

Nominal performance at to = 45 °F, tc = 130 °F								
Cooling capacity	137 808	Btu/h	Current consumption	19.88	Α			
Power input	15 855	W	Mass flow	2 004	lbs/h			
FFR	8 69							

T 0 : Evaporating temperature at dew point

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)

Inverter reciprocating compressors VTZ171-G

Performance data at 90 Hz, ARI rating conditions

R407C

Cond. temp.				1	ting temperature		T	1	
in °F (tc)	5	15	25	30	35	40	45	50	55
ooling capaci	ty in Rtu/h								
70	75 631	100 961	131 629	149 168	_	_	_	_	_
90	65 634	89 706	118 665	135 179	153 158	172 683	193 834	216 691	_
110	53 778	75 928	102 513	117 674	134 190	152 142	171 612	192 680	215 429
120	-	68 365	93 516	107 877	123 539	140 584	159 093	179 148	200 831
130	_	60 498	84 050	97 531	112 259	128 317	145 787	164 751	185 292
140	_	-	74 229	86 750	100 466	115 460	131 815	149 615	168 941
150	-	-	-	75 655	88 284	102 143	117 314	133 882	151 931
	14/								
Power input in 70	7 937	8 678	9 292	9 552	_	_	_	_	_
90	8 954	10 061	11 059	11 518	11 949	12 353	12 730	13 080	_
110	9 636	11 123	12 519	13 183	13 824	14 442	15 037	15 609	16 159
120	-	11 503	13 103	13 872	14 620	15 347	16 054	16 740	17 406
130	_	11 766	13 573	14 449	15 306	16 144	16 964	17 766	18 549
140	-	-	13 917	14 901	15 868	16 820	17 755	18 673	19 575
150	_	_	-	15 216	16 296	17 361	18 413	19 450	20 474
				19 - 19			10 110		
Current consur	mption in A								
70	10.25	11.09	11.87	12.26	-	-	-	-	-
90	11.55	12.84	13.99	14.55	15.10	15.65	16.22	16.82	-
110	12.31	14.16	15.82	16.60	17.36	18.11	18.86	19.61	20.38
120	-	14.60	16.56	17.47	18.36	19.23	20.09	20.95	21.82
130	-	14.86	17.14	18.21	19.25	20.25	21.24	22.22	23.20
140	-	-	17.56	18.79	19.99	21.14	22.28	23.39	24.50
150	-	-	-	19.19	20.55	21.88	23.17	24.44	25.69
Mass flow in Ib	s/h								
70	877	1 153	1 480	1 664	-	-	-	-	-
90	830	1 115	1 451	1 639	1 843	2 062	2 298	2 552	-
110	752	1 042	1 381	1 571	1 777	1 998	2 236	2 491	2 765
120	-	991	1 330	1 520	1 726	1 947	2 185	2 440	2 713
130	-	930	1 268	1 458	1 662	1 883	2 120	2 375	2 648
140	-	-	1 195	1 384	1 587	1 806	2 042	2 295	2 567
150	-	-	-	1 298	1 499	1 717	1 950	2 202	2 471
	P-41. (E.E.	,							
70	9.53	11.63	14.17	15.62	_		_	_	<u> </u>
90	7.33	8.92	10.73	11.74	12.82	13.98	15.23	16.57	_
110	5.58	6.83	8.19	8.93	9.71	10.53	11.41	12.34	13.33
110		5.94	7.14	7.78	9.71 8.45	9.16	9.91	12.34	13.33
130	-	5.94	ł	6.75	7.33	7.95	9.91 8.59	9.27	9.99
+	-		6.19	+		1	1		
140 150	-	-	5.33	5.82 4.97	6.33 5.42	6.86 5.88	7.42 6.37	8.01 6.88	8.63 7.42
	_	_	_	, <u>4</u> 4 /	5 47	5 88	n 3/		1 (47)

 Cooling capacity
 145 787
 Btu/h
 Current consumption
 21.24
 A

 Power input
 16 964
 W
 Mass flow
 2 120
 lbs/h

 E.E.R.
 8.59

T 0 : Evaporating temperature at dew point $% \left\{ 1,2,...,N\right\}$

Nominal performance at to = 45 °F, tc = 130 °F

T C : Condensing temperature at dew point

Rating conditions : Superheat = 20 $^{\circ}F$, Subcooling = 15 $^{\circ}F$

Tolerance according EN12900

Pressure switch settings

Maximum HP switch setting	426	psi(g)
Minimum LP switch setting	3	psi(g)
LP pump down setting	19	psi(g)

Sound power data

Sound power level	0	dB(A)
With accoustic hood	0	dB(A)