

Ficha técnica

Controlador de reducción de presión (PN 16, 25 y 40)

AFD / VFG 2(1) - para aplicaciones con agua AFD / VFGS 2 - para aplicaciones con vapor

Descripción

Este controlador se emplea como reductor de presión automático, principalmente, en sistemas de calefacción urbana. Se trata de un controlador normalmente abierto que se cierra al aumentar la presión.

Posee una válvula de control, un actuador con un diafragma de control y un muelle que permite ajustar la presión.

Además, se encuentra disponible con tres versiones de válvula diferentes:

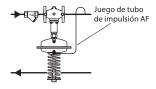
- VFG 2, para aplicaciones con agua (con cono obturador metálico).
- VFG 2(1), para aplicaciones con agua (con cono obturador blando).
- VFGS 2, para aplicaciones con vapor (con cono obturador metálico).

Datos principales:

- DN 15-250
- k_{vs} 4,0-400 m³/h
- PN 16, 25 y 40
- Rangos de ajuste:
 0,05-0,35 bar / 0,15-1,5 bar / 0,1-0,7 bar /
 0,5-3 bar / 1-6 bar / 3-12 bar / 8-16 bar
- Temperatura:
 - VFG: agua de circulación / agua glicolada hasta 30 %: de 2 a 150/200 °C
 - VFGS: vapor / agua de circulación / agua glicolada hasta 30 %: 2 a 200/300/350 °C
- Conexiones:
 - Brida

Pedidos

Ejemplo 1: Controlador de reducción de presión para aplicaciones con agua; DN 15; k_{yx} 4,0; PN 16; obturador metálico;


rango de ajuste de 0,15 a 1,5 bar; $T_{m\acute{a}x}$ 150 °C; brida.

1 × válvula VFG 2, DN 15Código: **065B2388**1 × actuador AFD

Código: **003G1005**– 1 × juego de tubo de impulsión AF

impulsión AF Código: **003G1391**

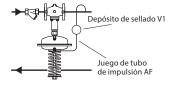
Los productos se suministran por separado.

Válvulas VFG 2 con cono obturador metálico para aplicaciones con agua

Ilustración	DN	k _{vs}	Conexiones	T _{máx}	Código	T _{máx}	Cóc	ligo
llustracion	(mm)	(m³/h)	Conexiones	(°C)	PN 16	(°C)	PN 25	PN 40
	15	4,0			065B2388		065B2401	065B2411
	20	6,3			065B2389		065B2402	065B2412
	25	8,0			065B2390		065B2403	065B2413
	32	16			065B2391		065B2404	065B2414
	40	20		150	065B2392	2001)	065B2405	065B2415
	50	32		150	065B2393	200"	065B2406	065B2416
	65	50			065B2394		065B2407	065B2417
	80	80	Bridas según norma EN 1092-1	-	065B2395		065B2408	065B2418
	100	125			065B2396		065B2409	065B2419
	125	160			065B2397		065B2410	065B2420
	150	280		150	065B2398		-	065B2421
	200	320			065B2399	150	ı	065B2422
	250	400			065B2400		-	065B2423
4								
	1502)	280			-		-	Por encargo
	2002)	320			ı	2001)	ı	Por encargo
	2502)	400			-		_	Por encargo
app d								

 $^{^{1)}}$ Con temperaturas por encima de 150 $^{\circ}$ C, solo con depósitos de sellado (consulte la sección «Accesorios»).

²⁾La válvula incluye una extensión de cuerpo de válvula (VBE).

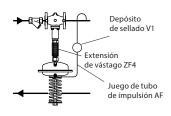


Pedidos (continuación)

Ejemplo 2: Controlador de reducción de presión para aplicaciones con agua; DN 15; k_{VS} 4,0; PN 25; obturador metálico; rango de ajuste de 0,15 a 1,5 bar; T_{max} 200 °C; brida.

- 1 × válvula VFG 2, DN 15
 Código: 065B2401
- 1 × actuador AFD Código: **003G1005**
- 1 × juego de tubo de impulsión AF Código: 003G1391
- 1 × depósito de sellado V1
 Código: 003G1392

Los productos se suministran por separado.



Ejemplo 3:

Controlador de reducción de presión para aplicaciones con vapor; DN 15; k_{vs} 4,0; PN 25; obturador metálico; rango de ajuste de 0,15 a 1,5 bar; T_{max} 350 °C; brida.

- 1 × válvula VFGS 2 DN 15 Código: **065B2443**
 - 1 × actuador AFD Código: **003G1005**
- 1 × juego de tubo de impulsión AF Código: 003G1391
- 1 × depósito de sellado V1
 Código: 003G1392
- 1 × extensión de vástago ZF4
 Código: 003G1394

Los productos se suministran por separado.

Válvulas VFG 21 con cono obturador blando para aplicaciones con agua

Ilustración	DN	k _{vs}	Conexiones	T _{máx}	Código
liustracion	(mm)	(m³/h)	Conexiones	(°C)	PN 16
	15	4,0			065B2502
	20	6,3			065B2503
	25	8,0			065B2504
	32	16			065B2505
	40	20		150	065B2506
	50	32		130	065B2507
	65	50	Bridas según norma EN 1092-1		065B2508
	80	80			065B2509
	100	125			065B2510
	125	160			065B2511
	150	280			065B2512
	200	320		150	065B2513
	250	400			065B2514
A B					

Nota: Otras válvulas disponibles previa solicitud.

Válvulas VFGS 2 con cono obturador metálico para aplicaciones con vapor

Ilustración	DN	k _{vs}	k _{vs} 1)	T _{máx}	Código	T _{máx}	Cód	ligo
ilustracion	(mm)	(m³/h)	(m³/h)	(°C)	PN 16	(°C)	PN 25	PN 40
	15	4,0	2,5		065B2430		065B2443	065B245
	20	6,3	4,0		065B2431		065B2444	065B245
	25	8,0	6,3		065B2432		065B2445	065B245
	32	16	10		065B2433		065B2446	065B245
	40	20	16	150 ²⁾	065B2434	2503)	065B2447	065B245
	50	32	25		065B2435	350 ⁻²⁾	065B2448	065B245
	65	50	40		065B2436		065B2449	065B245
	80	80	63		065B2437		065B2450	065B246
	100	125	100		065B2438		065B2451	065B246
	125	160	125		065B2439		065B2452	065B246
	150 ³⁾	280	200		065B2440		-	065B246
	2003)	320	225	150 ²⁾	065B2441	300 2)	-	065B246
` \	2503)	400	280	1	065B2442		-	065B246

- Válvulas que incorporan un divisor de flujo que reduce el nivel de ruido (consulte la sección «Accesorios»).
- Temperaturas máximas del medio para válvulas VFGS 2 (en aplicaciones con vapor, siempre deben utilizarse accesorios; consulte la tabla correspondiente).
- 3) La válvula incluye una extensión de cuerpo de válvula (VBE) y un divisor de flujo preinstalado.

Temperaturas máximas del medio y uso de accesorios

Temperatura	PN	16	PN	25	PN 40		
del vapor	DN 15-125	DN 150-250	DN 15-125	DN 150-250	DN 15-125	DN 150-250	
hasta 150 °C	SP	SP + VBE	SP		SP	SP + VBE	
Hasta 200 °C			35		35		
200 a 300 °C			SP + ZFx		SP + ZFx	SP + VBE	
300 a 350 °C			SP + ZFx		SP + ZFx		

Observación: Se deberán usar los accesorios siguientes de acuerdo con lo indicado en la tabla superior:

SP: Depósito de sellado

ZF: Extensión de vástago

VBE: Válvula con extensión de cuerpo de válvula

- Esta válvula no debe utilizarse Consulte la sección «Accesorios».

Pedidos (continuación)

Actuadores **AFD**

llustración	Rango de ajuste de presión (bar)	Para DN	Código
	8-16	DN 15 125	003G1000
	3-12	DN 15-125	003G1001
	1-6	DN 150-250	003G1413
MARAMANI	1-6	DN 15-125	003G1002
	0,5-3	DIN 13-123	003G1003
	0,15-1,5		003G1005
	0,1-0,7	DN 15-250	003G1004
	0,05-0,35		003G1006

Accesorios

llustración	Denominación	Descripción	Conexiones	Código
	Juego de tubo de impulsión AF	- 1 × tubo de cobre (ø10 × 1 × 1500 mm) - 1 × racor de compresión para la conexión del tubo de impulsión a la tubería (G1/4) - 2 × conexiones	-	003G1391
. a	Depósito de sellado V11)	Capacidad de 1 litro; con racores de compresión para tubo de impulsión de ø10	-	003G1392
	Depósito de sellado V21)	Capacidad de 3 litros; con racores de compresión para tubo de impulsión de ø10 (para actuadores de 630 cm²)	-	003G1403
	Racor de compresión ²⁾	Para la conexión del tubo de impulsión de ø10 al controlador	G1/4	003G1468
_@	Pieza de combinación KF3	Para su combinación con actuadores de presión y eléctricos	C11 /4 / 2 C11 /4	003G1397
	Pieza de combinación KF2	Para su combinación con un termostato	G11/4 / 2 × G11/4	003G1398
	Válvula de corte	Para tubo de impulsión de ø10	-	003G1401
	Válvula de regulación			065B2909
		Divisor de flujo, DN 15 y 20		065B2775
	D	Divisor de flujo, DN 25 y 32		065B2776
	Divisores de flujo para válvulas VFGS 2 ³⁾	Divisor de flujo, DN 40 y 50	-	065B2777
		Divisor de flujo, DN 65 y 80		065B2778
		Divisor de flujo, DN 100 y 125		065B2779

Deberá utilizarse un depósito de sellado en los tubos de impulsión cuando $T_{max} \ge 200$ °C, así como en todas las aplicaciones con vapor.

²⁾ Se compone de una boquilla, un anillo de compresión y una tuerca.

Accesorios: extensiones de vástago¹⁾

Ilustración	Ilustración Tipo		T _{máx}	Medio		Función	Función de	Código	
ilustracion	nustracion ripo	válvulas	(°C)	Agua	Vapor	de sellado	aislamiento	Coulgo	
A P	ZF4		350		Sí ²⁾		Sí	003G1394	
	ZF5	15 125	350	Sí	Sí	Sí	31	003G1396	
	ZF6	15-125	200	31	Sí ²⁾	31	_3)	003G1393	
D40 ZF4, 5 ZF6	D40		200		3I ²)		Sí	065B2986	

 $^{^{1)}}$ Debe utilizarse una extensión de vástago siempre que $T_{máx}$ >200 °C.

VD.CA.L9.05 © Danfoss | 2018.12 | 3

³⁾ Los divisores de flujo pueden utilizarse para reducir el nivel de ruido en aplicaciones con vapor; tras instalarlos en las válvulas, el valor k_{vs} disminuirá (consulte la tabla correspondiente a las válvulas VFGS 2).

³⁾La extensión ZF6 puede utilizarse como indicador de posición.

Pedidos (continuación)

Kits de mantenimiento

llustración	Denominación	DN	k _{vs}		Código	
ilustracion	Denomination	(mm)	(m³/h)	Para VFG 2	Para VFG 21	Para VFGS 2 065B2802 065B2803 065B2804 065B2805 065B2806
		15	4,0	065B2796	065B2790	065B2802
		20	6,3	065B2797	065B2791	065B2803
		25	8	065B2798	065B2792	06503004
		32	16	00362798	00382792	00302004
0		40	20	065B2799	065B2793	06503005
	Inserto de válvula	50	32	00362799	00362793	00302003
	iliserto de valvula	65	50	06583000	06502004	0650006
T		80	80	065B2800	065B2894	00362600
		100	125	065B2801	065B2895	06503007
		125	160	06582801	06582895	00582807
		150	280	065B2964	065B2966	-
		250	400	065B2965	_	-
0	Cono de empaquetadura	con juntas tóricas		003G1464		

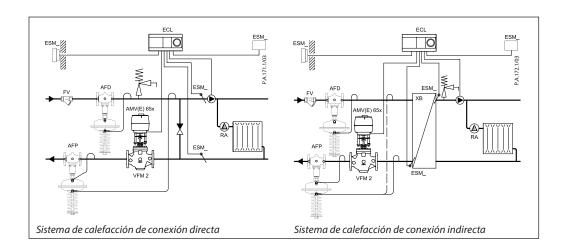
Datos técnicos

Válvulas

Diámetro nominal			DN	15	20	25	32	40	50	65	80	100	125	150	200	250		
Valor k _{vs}			3 /I:	4,0	6,3	8,0	16	20	32	50	80	125	160	280	320	400		
Valor k _{vs} 1)			m³/h	2,5	4,0	6,3	10	16	25	40	63	100	125	-	-	-		
Factor de cavitación	Z			0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35	0,3	0,2	0,2		
		VFG 2						≤0	,03						≤0,05			
Fugas según norma	IEC 534 (% del valor k _{vs})		1		≤0,01													
12C 33 1 (70 del valor	VFGS		2		≤0,03 ≤0,05													
Presión nominal PN			PN							16, 25,	40							
Presión diferencial	PN 1	6	bar				1	6				1	5	12	1	0		
máx.	PN 2	5 y 40	Dai				2	.0				13		12				
Medio	VFG	2 y VFG	21				Agua	de circi	ulaciór	ı / agua	glicol	ada ha	sta 30 ⁹	%				
Wedio	VFGS 2				Vapor / agua de circulación / agua glicolada hasta 30 %													
pH del medio									Mí	n. 7, má	ix. 10							
VFG		2		2 a 150 / 2 a 200 ²⁾						2 a	150 (20	004)						
Temperatura del medio	VFG	21	°C							2 a 15	0							
	VFG	5 2 ³⁾					2 a 20	0 / 2 a	300/2	a 350				2 a 300				
Conexiones				Brida														
Materiales																		
6	PN 1	6						Fundi	ión gr	is EN-G	JL-250	(GG-2	5)					
Cuerpo de la válvula	PN 2	5					Fu	ndició	n dúcti	I EN-G.	JS-400	(GGG-4	40.3)					
	PN 4	0						Acero	fundid	lo GP24	40GH (0	GS-C 2	5)					
Asiento de la válvula	a			Acero inoxidable, mat. n.º 1.4021								Acero inoxidable, mat. n.º 1.4313						
Cono obturador de la válvula						Ac	ero ino	xidable	e, mat.	n.º 1.44	104				o inoxio	,		
Called	VFG	2 y VFG	iS 2							Metáli	со							
Sellado	VFG	21							Tet	flón (EF	PDM)							
Sistema de alivio de	presi	ón		Fuelles (acero inoxidable, mat. n.º 1.4571)							afragma Ión (EPI							

VD.CA.L9.05 4 | © Danfoss | 2018.12

Válvulas que incorporan un divisor de flujo que reduce el nivel de ruido (consulte la sección «Accesorios»).
 Con temperaturas por encima de 150 °C, solo con depósitos de sellado (consulte la sección «Accesorios»).
 En aplicaciones con vapor, siempre deben utilizarse accesorios (consulte la tabla correspondiente).
 Por encargo.


Datos técnicos (continuación)

Actuadores1)

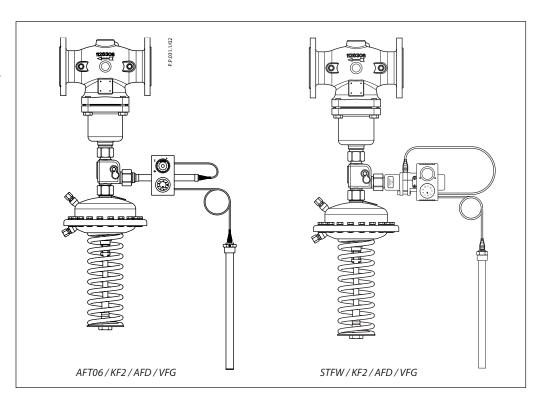
Tipo	AFD								
Tamaño del actuador	cm ²	3	32		80	160	250		630
Presión máx. de funcionamiento	bar	25		25		25	25		16
Rangos de ajuste de presión y	h	Negro	Rojo	Rojo	Amarillo	Azul	Rojo	Amarillo	Amarillo
colores de muelle	bar	8-16	3-12	1-6	0,5-3	1-6	0,15-1,5	0,1-0,7	16
Materiales									
Carcasa del actuador Acero, mat. n.º 1.0338, cincado y cromado amarillo									
Diafragma de control Teflón (EPDM) laminado y reforzado con fibras									

¹⁾La temperatura mínima del actuador y de los tubos de impulsión es de 2 °C para evitar que el medio se congele.

Principios de aplicación

Combinaciones

Ejemplo


Reductor de presión y controlador de temperatura AFD / AFT06 / VFG 2; $k_{\rm VS}$ 4,0; DN 15; PN 16; $T_{\rm max}$ 150 °C; 0,15-1,5 bar; rango de 20 a 90 °C.

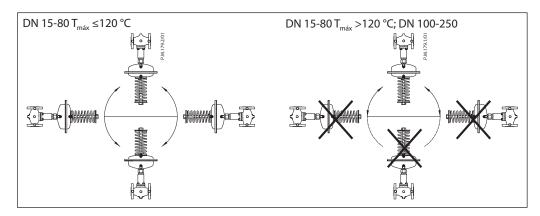
- 1 × válvula VFG 2, DN 15
 Código: 065B2388
- 1 × actuador AFD Código: 003G1005
- 1 × termostato AFT06
 Código: **065-4391**
- 1 × pieza de combinación KF2
 Código: 003G1398
- 1 × juego de tubo de impulsión AF Código: 003G1391

Las piezas se suministran por separado.

Nota

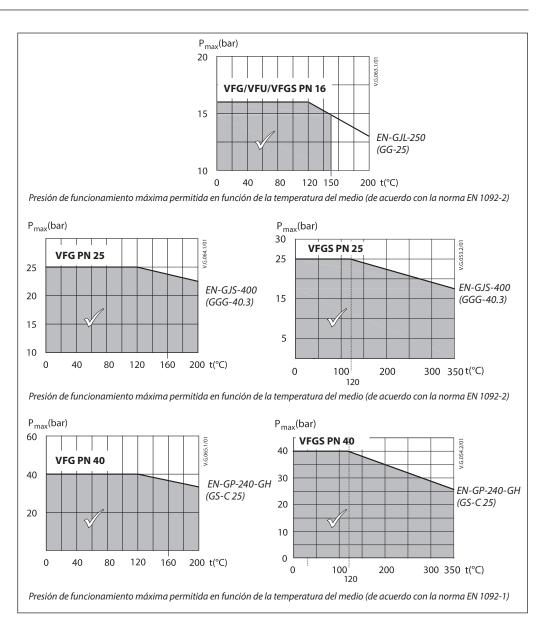
Si desea obtener información sobre los termostatos AFT 06 y STFW, consulte la especificación técnica correspondiente.

VD.CA.L9.05 © Danfoss | 2018.12 | 5


Posición de instalación

DN 15-80 T_{máx} ≤120 °C

Los controladores se pueden instalar en cualquier posición.


DN 15-80 $T_{m\acute{a}x}$ >120 °C; DN 100-250

Los controladores únicamente se pueden instalar en tuberías horizontales con un actuador de presión orientado hacia abajo.

Diagrama de presión y temperatura

El área de trabajo se sitúa por debajo de la línea P-T y su límite es el valor $T_{máx}$ de cada válvula.

Dimensionamiento: aplicaciones con agua

El reductor de presión debe controlar presiones de hasta 6,0 bar después del controlador. El caudal máximo en el sistema debe ser menor de 4,0 m³/h, con una presión mínima de flujo de 7,5 bar.

Datos de partida:

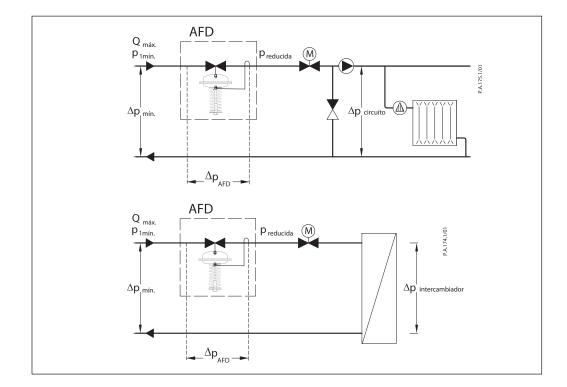
 $Q_{\text{máx}} = 35 \text{ m}^3/\text{h}$ $p_{1 \text{ mín}} = 7.5 \text{ bar}$ $p_{\text{reducida}} = 6.0 \text{ bar}$

Presión nominal PN 25

La presión diferencial mínima a través del controlador se calcula con la fórmula siguiente:

$$\Delta p_{AFD} = p_{1 \text{ min}} - p_{reducida} = 7.5 - 6.0$$

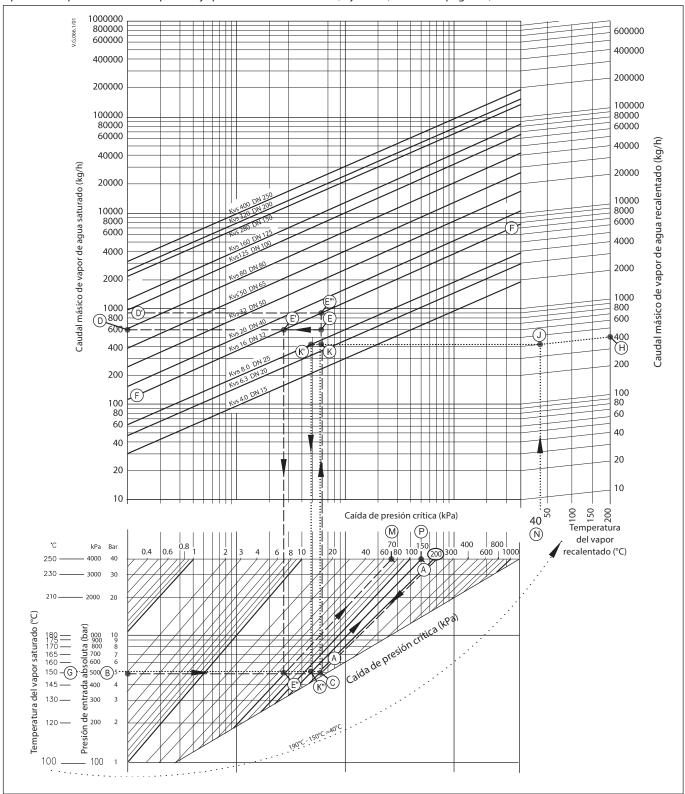
$$\Delta p_{AFD} = 1.5 \text{ bar}$$


El valor k, se calcula según la fórmula:

$$k_{v} = \frac{Q_{\text{máx}}}{\sqrt{\Delta p_{AFD}}} = \frac{35}{\sqrt{1.5}}$$

$$k_v = 28,6 \text{ m}^3/\text{h}$$

Solución:


En este caso, se debería seleccionar un VFG2 DN 65, con un valor k_{vs} de 50 y un rango de ajuste del actuador de presión comprendido entre 3 y 12 bar.

Dimensionamiento: aplicaciones con vapor

Δp máx. en aplicaciones con vapor a baja presión: variación entre 0,5 y 6 bar (consulte la página 2).

Como valor de dimensionamiento de una válvula para aplicaciones con vapor se utiliza el 40 % de la caída de presión de vapor absoluta (inmediatamente antes de la válvula) que existe en la válvula cuando está completamente abierta. En estas condiciones, el vapor se desplazará a su velocidad crítica (aprox. 300 m/s) o a una

velocidad muy próxima a esta, y la regulación se producirá en todo el movimiento de la válvula. Si el vapor se mueve a una velocidad inferior, la primera parte del movimiento de la válvula únicamente aumentará dicha velocidad sin reducir el caudal volumétrico.

Diagrama de dimensionamiento de válvulas de control para aplicaciones con vapor (continuación)

1 Para vapor saturado

Datos de diseño: Caudal: 600 kg/h Presión de entrada absoluta: 5 bar (500 kPa)

- siga las líneas discontinuas -

La presión de entrada absoluta es de 500 kPa. El 40 % de dicho valor son 200 kPa.

Localice la línea diagonal correspondiente a una caída de presión de 200 kPa (línea A-A).

Busque el valor de presión de entrada absoluta en la escala inferior izquierda (punto B); a continuación, trace desde ese punto una línea horizontal, que cortará la línea diagonal A-A de caída de presión en el punto C.

Desde dicho punto, trace una línea vertical ascendente hasta cortar la línea horizontal correspondiente a un caudal de vapor de 600 kg/h que parte desde el punto D. La intersección de ambas es el punto E.

La línea diagonal del valor K_{vs} más cercana es la F-F, que corresponde a un valor K_{vs} 16 (punto E'). Si el tamaño óptimo de válvula no se encuentra disponible, se deberá utilizar una válvula del tamaño inmediatamente superior para garantizar el caudal de diseño.

La caída de presión a través de la válvula con el caudal requerido se determina mediante la intersección de la línea de 600 kg/h con la línea F-F (punto E'); desde ese punto, se traza una línea vertical que corta la línea horizontal de presión de entrada de 500 kPa (punto E") en un punto que se corresponde con la línea diagonal de caída de presión de 70 kPa (punto M). Dicho valor supone únicamente el 14 % de la presión de entrada, por lo que la calidad del control no será buena hasta que la válvula se haya cerrado parcialmente. Al igual que para el resto de las válvulas para aplicaciones con vapor, se debe alcanzar un compromiso, ya que la válvula del tamaño inmediatamente menor no conseguiría el caudal necesario (el caudal máximo sería de unos 480 kg/h).

El caudal máximo para esa misma presión de entrada se determina prolongando la línea vertical C-E desde el punto E hasta cortar la línea F-F correspondiente a un valor k_{ys} 16 (punto E"'), obteniéndose un caudal de 900 kg/h (punto D').

Solución:

En este caso, se debería seleccionar un controlador AFD DN 32, con un valor k_{vs} 16 y un rango de ajuste de presión de 0,15-1,5 bar.

2 Para vapor recalentado

Datos de diseño: Caudal: 400 kg/h

Presión de entrada absoluta: 5 bar (500 kPa)

Temperatura del vapor: 190 °C

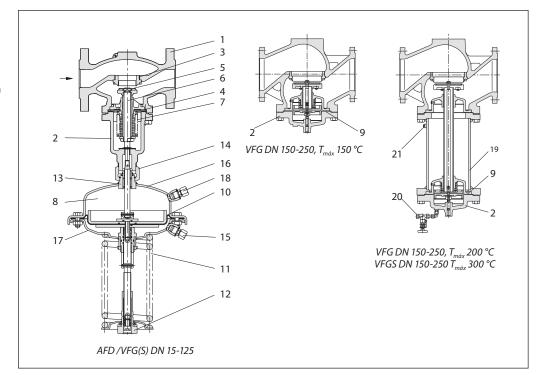
El procedimiento de cálculo para vapor recalentado es muy similar al de vapor saturado; sin embargo, se usa una escala de caudal distinta que da lugar a valores ligeramente mayores en función del grado de recalentamiento.

– siga las líneas de puntos –

Tal como en el caso anterior, se debe localizar la línea diagonal de caída de presión A-A correspondiente a un 40 % de 500 (200 kg/h). La línea horizontal de presión de entrada que parte del punto B se debe prolongar hacia la izquierda para obtener la temperatura del vapor saturado, indicada por el punto G (150 °C). La diferencia entre la temperatura del vapor saturado y la del vapor recalentado es igual a 190 °C – 150 °C = 40 °C (punto N).

El caudal de vapor recalentado se halla en la escala superior derecha (punto H), y la línea diagonal se debe seguir hacia abajo hasta cortar una línea vertical de elevación de temperatura del vapor (40 °C) en el punto J.

Al igual que en el caso anterior, se debe trazar una línea horizontal desde el punto B hasta cortar la línea A-A en el punto C; la intersección de la línea vertical que parte del punto anterior y la línea horizontal que parte del punto J es el punto de trabajo (punto K). La línea horizontal J-K es la línea del caudal corregido. La línea diagonal más cercana situada por encima de esta es la correspondiente al valor k_{vs} 8 (punto K'). La línea vertical trazada desde la intersección de la línea J-K con la línea del valor k_{vs} 8 corta la línea de presión de entrada de 500 kPa (punto K") en un punto que se corresponde con una línea diagonal de caída de presión de unos 150 kPa (punto P). Dicho valor supone, aproximadamente, el 30 % de la presión de entrada, lo que hará que la calidad del control sea adecuada (si se compara con el porcentaje recomendado del 40 %).


Solución:

En este caso, se debería seleccionar un controlador AFD DN 25, con un valor k_{VS} 8 y un rango de ajuste de presión de 0,15-1,5 bar.

Diseño

- 1. Cuerpo de la válvula
- 2. Cubierta
- 3. Asiento de la válvula
- 4. Inserto de válvula
- **5.** Cono obturador de la válvula con alivio de presión
- 6. Vástago de la válvula
- 7. Fuelle de alivio de presión del cono obturador de la válvula
- 8. Actuador
- Diafragma de alivio de presión del cono obturador de la válvula
- **10.** Diafragma de control de la presión
- **11.** Muelle de ajuste para el control de la presión
- **12.** Mando de ajuste de la presión (preparado para el sellado)
- 13. Cono de empaquetadura
- **14.** Tuerca de unión
- **15.** Racor de compresión para tubo de impulsión
- **16.** Carcasa superior del diafragma
- **17.** Carcasa inferior del diafragma
- 18. Orificio de la cámara de aire
- Extensión de cuerpo de la válvula
- **20.** Válvula de corte para el llenado con agua
- **21.** Tapón de cierre

Funcionamiento

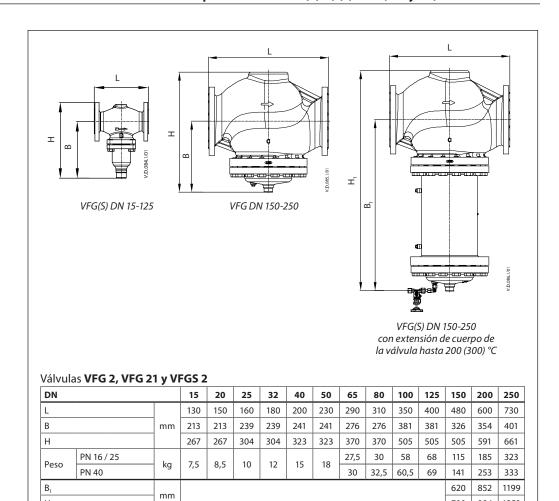
La presión existente después de la válvula de control se transfiere a través del tubo de impulsión hasta la cámara del actuador y actúa sobre el diafragma de control de la presión. Sobre el otro lado del diafragma actúa la presión atmosférica (gracias al orificio de la cámara de aire). La válvula de control se encuentra normalmente abierta. Se cierra cuando aumenta la presión y se abre cuando esta disminuye con el fin de mantener una presión constante.

Ajustes

Ajuste de la presión

El ajuste de la presión se lleva a cabo por medio del muelle de ajuste de la presión. El ajuste se puede llevar a cabo empleando el muelle y consultando los indicadores de presión.

1359


469

505

179 | 336

700 994

Dimensiones

VD.CA.L9.05 © Danfoss | 2018.12 | 11

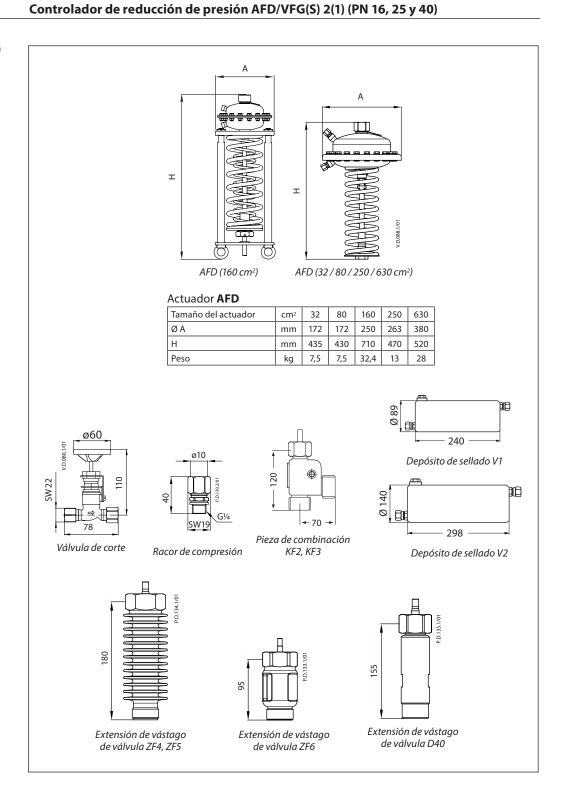
H₁

Peso (válvula

con extensión

de cuerpo)

PN 16 / 25


PN 40

kg

Dimensiones (continuación)

Danfoss S.A.

Heating Segment • heating.danfoss.es • +34 91 198 61 00 • E-mail: CSCIberia@danfoss.com

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso, reservándose el derecho de alterar sus productos sin previo aviso, incluyéndose los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.