

Inverter scroll compressors **VSH088-117-170**

50 - 60 Hz - R410A

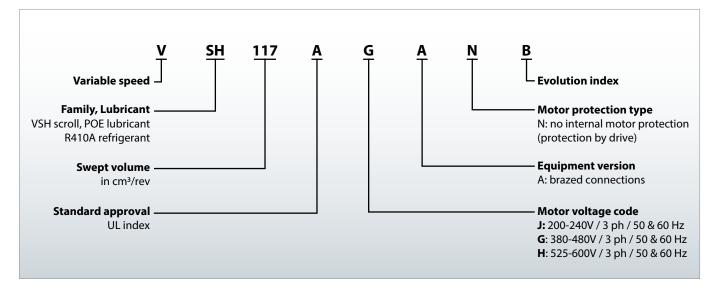
Danfoss

VSH scroll specificities	6
Inverter compressors	7
Compressor size	7
Frequency converter variants	
Compressor and frequency converter combinations	7
Nomenclature and specifications	8
Compressor nomenclature	
Frequency converter nomenclature	
Technical specifications	
Compressor specifications	
Frequency converter specifications	
Oil injection control	
Capacity at EN12900 rating conditions	
Capacity at ARI rating conditions	
Dimensions	
VSH088-G & H	
VSH088-J	
VSH117-G & H	
VSH117-J	
VSH170- G - H & J	
Sight glass	
Schrader Oil equalisation connection	
Oil drain fitting	
Suction & discharge connections	
Frequency converter dimensions	
CDS302 frequency converter - enclosure B1	
CDS302 frequency converter - enclosure B2	
CDS302 frequency converter - enclosure B3	
CDS302 frequency converter - enclosure B4	
CDS302 frequency converter - enclosure C1	
CDS302 frequency converter - enclosure C3	23
Electrical data, connections and wiring	
Supply voltage	
Compressor electrical specifications	
Fuses	
Wire sizes	
Wiring & EMC protection	
Hipot test procedure	
EMC correct installation of an IP20 frequency drive CDS302	
Wiring diagram	
Wiring connections	
Electrical connections	
Soft-start control	
Phase sequency and reverse rotation protection	
IP rating Motor protection	
Voltage imbalance	
Frequency converter efficiency	
Ambient temperature and altitude	
Approvals and certificates	
Approvals and certificates	
Pressure equipment directive 2014/68/EU	
Low voltage directive 2014/35/EU Internal free volume	

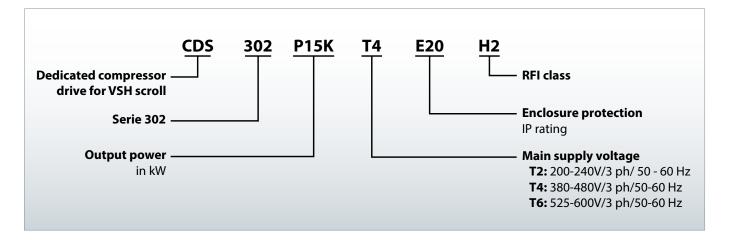
Danfoss

Co	ntent	
~~	III CIII	

Operating conditions	
Application envelope	
Short cycle timer function	
Discharge gas temperature protection function	
Discharge gas thermostat	
Oil return management function	
High and low pressure protection	35
System design recommendations	36
Essential piping design considerations	
Heat exchangers	
Refrigerant charge limits	
Off-cycle migration	
Liquid floodback during operation	
Specific application recommendations	41
Low ambient compressor operations	41
Brazed plate heat exchangers	
Reversible heat pump systems	
Discharge line and reversing valve	43
Sound and vibration management	44
Running sound level	
Sound generation in a refrigeration or air conditioning system	
Compressor sound radiation	
Mechanical vibrations	
Speed by-pass	
Gas pulsation	
Installation	45
Compressor handling	
Mounting	
Removing connections shipping plugs	
System cleanliness	
Tubing	
Filter driers	
Brazing and soldering	
Compressor connection	
System pressure test	
Leak detection	
Vacuum pump down and moisture removal	
Refrigerant charging	
Commissioning	
Oil level checking and top-up	
Ordering information and packaging	
Kit ordering and shipping	
Packaging	
VSH voltage code J - 200-240 Volt	
VSH voltage code G - 380-480 Volt	
VSH voltage code H - 525-600 Volt	51
Accessories	
Valves, adapters, connectors & gaskets for use on suction and discharge connections	
Crankcase heaters & thermostats	
Lubricant , acoustic hoods and spareparts	
Spare parts frequency converter	55


Danfoss

Application guidelines	Inverter compressors	
Compressor size	Inverter technology offers more flexibility in compressor selection than fixed speed compressors. Selection of the right inverter compressor size can be done by different methods:	3. Best Seasonal Efficiency Ratio: Select a compressor size which achieves the minimum system cooling demand at its minimum speed. Ensure that the compressor is able to cover the peak load system cooling capacity. This selection makes the compressor to run for a maximum of
	 Maximum cooling capacity: Select a compressor size which achieves the peak load system cooling capacity demand at its maximum 	time at part load where the system efficiency is highest.
	speed.	Performance tables at 3 speeds can be found in following pages. Detailed performances can be
	2. Nominal cooling capacity: Select a compressor size which achieves the nominal system cooling capacity at a rotational speed of 3600 - 4500 rpm (60-75 Hz).	found in datasheets and in selection program.
Frequency converter variants	Different frequency converter variants are available according to:	3. RFI class (Radio Frequency Interference) H2 or H3
	Main supply voltage IP class (CDS302 drives are available in IP20 or IP55 housings)	4. Local Control Panel (LCP) provided or not 5. Printed Circuit Board (PCB) coated or not coated.
Compressor and frequency converter combinations	When the compressor size and mains voltage have been defined with above selection criteria, the code number tables from section "Ordering information and packaging" give the	appropriate frequency converter sizes and up to 16 corresponding code numbers for each compressor model.


antosa

Application guidelines Nomenclature and specifications

Compressor nomenclature

Frequency converter nomenclature

Danfoss

Application guidelines Technical specifications

Compressor specifications

	Swept		Displac	ement		Oil charge	Notwoight	
Compressor model	volume (in³/rev)	Min speed (ft³/h)	50 Hz (ft³/h)	60 Hz (ft³/h)	Max speed (ft ³ /h)	(oz)	Net weight (lbs)	
VSH088	5.39	328	544	657	982	102	130	
VSH117	7.13	434	717	869	1292	112	143	
VSH170	10.39	629	1045	1261	1882	228	236	

T2: 200 - 240 V +/-10% (3-phase)

Frequency converter specifications

cnocifications								
specifications	Mains supply voltage	T4: 380 - 480 V +/-10	9% (3-phase)					
		T6: 525 - 600 V +/-10	% (3-phase)					
	Supply frequency	50 / 60 Hz						
	Output voltage	0 - 100 % of supply v	voltage					
	Inputs	6 digital (0 - 24 V), 2	analogue (-10 / +10 V or 0 / 4 V -20 mA, scalable)					
	Programmable outputs	2 digital (0- 24 V), 1 a	analogue (0-24 V), 2 relay					
	Protection functions	Over-current protect handling	Over-current protection, over-modulation handling, low / high current handling					
	Compressor functions	erature protection, pressostat / thermostat function, on, oil return management						
Oil injection control	VSH compressors are equipped	ed with an oil	The compressors are delivered with 230V					
-	injection system that ensures lubrication and controls the c at all running speeds. The free	oil circulation ratio,	coils. 24V coils are available as accessory (see accessories page at the end of this document).					
	an oil injection valve controls injection valve is a normally c	this system. The oil losed valve. At low	Control parameters are factory preset but accessible on the parameter list as read only values.					
	speed, the valve is closed and below the orbiting scroll.	the oil is injected	values.					

Danfoss

Capacity at EN12900 rating conditions

Model		To	-10		0		10		20		30		40		50	
model		Tc	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Ре	Qo	Pe	Qo	Pe	Qo	Pe
		70	-	-	23,000	2.31	28,800	2.31	35,800	2.28	44,100	2.23	53,800	2.15	-	-
	Ε	90	-	-	20,200	2.96	25,800	2.97	32,300	2.97	40,100	2.95	49,100	2.91	59,500	2.84
	800 rpm	110	-	-	-	-	21,700	3.80	27,500	3.80	34,400	3.79	42,400	3.78	51,700	3.74
	000	130	-	-	-	-	-	-	-	-	27,400	4.98	34,100	4.96	42,000	4.93
	1	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		154	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		70	39,100	4.44	49,100	4.52	61,200	4.59	75,700	4.64	92,800	4.66	112,700	4.65	-	_
	c	90	33,700	5.60	43,200	5.66	54,500	5.74	67,800	5.82	83,500	5.89	101,700	5.94	122,600	5.96
88	nd	110		-		-	47,300	7.12	59,200	7.20	73,200	7.30	89,300	7.40	108,000	7.48
VSH088	3600 rpm	130	-	-	-	-	-	,	55,200	7.20	61,200	9.12	75,000	9.23	91,000	9.36
>	36(150	_		_		_	-	_		01,200	2.12	, 3,000	7.25	71,100	11.81
		154	-			-	-				-		-			
-				-	72 500			-	-	-		-		-	66,700	12.39
		70	58,800	6.12	73,500	6.32	91,400	6.47	112,800	6.58	138,100	6.65	167,800	6.69	104500	- 40
	5400 rpm	90	51,000	8.49	65,100	8.74	81,900	8.95	101,900	9.12	125,400	9.26	152,800	9.38	184,500	9.48
	d L	110	-	-	-	-	71,400	10.95	89,300	11.19	110,300	11.40	134,900	11.59	163,400	11.78
	40(130	-	-	-	-	-	-	-	-	92,400	13.83	113,500	14.10	138,100	14.37
	ŝ	150	-	-	-	-	-	-	-	-	-	-	-	-	108,000	18.01
		154	-	-	-	-	-	-	-	-	-	-	-	-	101,300	18.93
		70	-	-	26,600	2.93	34,500	2.95	44,200	2.95	55,600	2.94	69,000	2.94	-	-
	ε	90	-	-	24,500	3.83	32,200	3.86	41,200	3.87	51,700	3.87	64,000	3.88	78,100	3.91
	1800 rpm	110	-	-	-	-	28,100	4.97	36,100	4.97	45,400	4.97	56,200	4.98	68,600	5.01
	8	130	-	-	-	-	-	-	-	-	37,000	6.44	45,900	6.43	56,100	6.45
	18	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		154	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		70	54,300	5.97	68,200	6.09	85,000	6.24	105,000	6.39	128,500	6.56	155,900	6.71	-	-
	~	90	45,100	7.38	57,900	7.48	73,100	7.61	91,100	7.79	112,300	7.99	137,000	8.21	165,500	8.44
17	μd	110		7.50	57,500	7.40	62,400	9.36	78,300	9.50	96,900	9.69	118,600	9.92	143,800	10.18
VSH117	3600 rpm	130	-	-	-	-	02,400	9.50	78,300	9.30						
VS	360		-	-	-	-	-	-	-	-	80,900	11.96	99,500	12.14	121,100	12.37
	,	150	-	-	-	-	-	-	-	-	-	-	-	-	96,100	15.34
-		154	-	-	-	-	-	-	-	-	-	-	-	-	90,700	16.05
		70	78,000	8.82	98,100	9.21	122,400	9.67	151,500	10.13	185,900	10.57	226,100	10.93	-	-
	5400 rpm	90	66,900	11.02	86,000	11.31	108,700	11.72	135,600	12.20	167,200	12.72	204,000	13.23	246,600	13.67
	d d	110	-	-	-	-	94,500	14.07	118,500	14.47	146,700	14.97	179,500	15.52	217,600	16.07
	40(130	-	-	-	-	-	-	-	-	123,100	17.82	151,300	18.31	184,100	18.87
	ŵ	150	-	-	-	-	-	-	-	-	-	-	-	-	145,000	22.58
		154	-	-	-	-	-	-	-	-	-	-	-	-	136,300	23.47
		70	-	-	37,500	4.22	51,800	4.24	68,700	4.23	88,200	4.15	110,400	3.95	-	-
	E	90	-	-	30,400	5.60	43,200	5.62	58,100	5.65	75,100	5.67	94,200	5.63	115,500	5.49
	1800 rpm	110	-	-	-	-	35,200	7.35	48,500	7.35	63,300	7.38	79,900	7.41	98,000	7.40
	8	130	-	-	-	-	-	-	-	-	50,800	9.71	65,100	9.72	80,700	9.75
	18	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		154	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		70	74,300	8.54	93,900	8 67	117,700	8 7 9	146,200	8.87	179,900	8.88	219,200	8.78	-	-
	~	90	63,100		81,500	11 28	103,500								237,700	11.55
70	μd	110	05,100	11.22	01,500	11.20	89,100			14.26	139,500			14.44	208,100	
VSH170	3600 rpm		-	-	-	-	69,100	14.21	112,200	14.20						14.50
S	360	130	-	-	-	-	-	-	-	-	110,000	17.91	143,200	17.97	174,800	18.06
	,	150	-	-	-	-	-	-	-	-	-	-	-	-	136,600	22.89
		154	-	-	-	-	-	-	-	-	-	-	-	-	128,200	24.07
		70	114,500	13.12	144,000	13.45	179,600	13.81	222,100	14.16	272,000	14.48	330,200	14.72	-	
	E	90	98,300	16.82	126,200	17.05		17.36	198,300	17.71	243,900	18.07	296,800	18.41	357,800	18.70
) rp	110	-	-	-	-	138,800	21.24	173,700	21.52	214,300	21.86	261,400	22.22	315,500	22.59
	5400 rpm	130	-	-	-	-	-	-	-	-	180,700	26.62	221,100	26.93	267,800	27.30
	54	150	-	-	-	-	-	-	-	-	-	-	-	-	212,100	33.61
		154	-	-	-	-	-	-	-	-	-	-	-	-	199,700	35.14
															122,100	

Superheat: 18°F

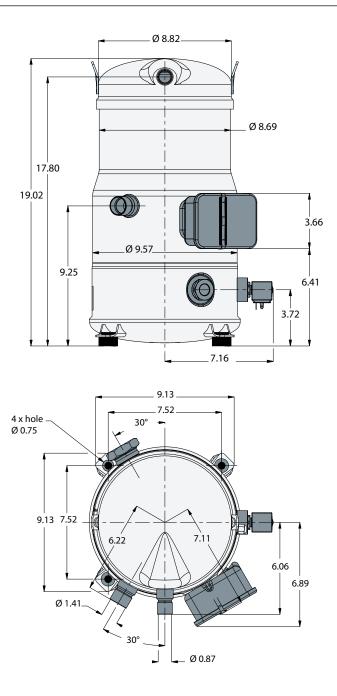
Subcooling: 0°F

Pe: Power input in kW

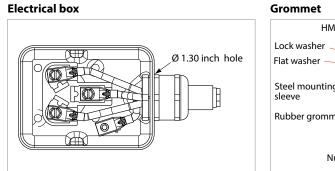
Presented data are for models with motor voltage code G

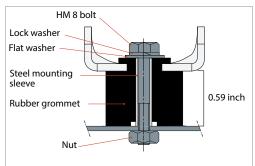
Danfoss

Capacity at ARI rating conditions


		То	-10		0		10		20		30		40		50	
Model		Tc	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe	Qo	Pe
		70	-	-	24 500	2.31	30 800	2.31	38 200	2.28	47 000	2.23	57 300	2.15	-	-
	ε	90	-	-	21 900	2.96	27 800	2.97	34 900	2.97	43 200	2.95	52 800	2.91	64 000	2.84
	d	110	-	-	-	-	23 800	3.80	30 200	3.80	37 700	3.79	46 400	3.78	56 500	3.74
	1800 rpm	130	-	-	-	-	-	-	-	-	30 900	4.98	38 400	4.96	47 100	4.93
	18	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		154	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		70	41 800	4.44	52 500	4.52	65 400	4.59	80 800	4.64	98 900	4.66	120 000	4.65	-	-
~	۶	90	36 500	5.60	46 700	5.66	58 900	5.74	73 200	5.82	90 000	5.89	109 500	5.94	131 900	5.96
VSH088	3600 rpm	110	-	-	-	-	52 000	7.12	65 000	7.20	80 200	7.30	97 700	7.40	118 000	7.48
E S	8	130	-	-	-	-	-	-	-	-	68 800	9.12	84 300	9.23	102 100	9.36
>	36	150	-	-	-	-	-	-	-	-	-	-	-	-	85 000	11.81
		154	-	-	-	-	-	-	-	-	-	-	-	-	81 600	12.39
-		70	62 900	6.12	78 600	6.32	97 600	6.47	120 300	6.58	147 300	6.65	178 800	6.69	-	-
	~	90	55 300	8.49	70 400	8.74	88 500	8.95	109 900	9.12	135 100	9.26	164 500	9.38	198 500	9.48
	nd,	110	-	0.15		0.7 1	78 500	10.95	98 000	11.19	120 900	11.40	147 600	11.59	178 600	11.78
	õ	130			-		70 500	10.55	50 000		104 000	13.83	127 600	14.10	155 000	14.36
	5400 rpm	150	_	_	_	_	-	-	_	-	104 000	13.05	127 000	14.10	129 100	18.00
		154	-	-	-	-	-	-	-	-	-	-	-	-	129 100	18.93
		70	-	-	28 400	2.93	36 900	2.95	47 100	2.05	59 300	2.94	73 500	2.94	124 000	10.95
	_		-	-						2.95					-	-
	1800 rpm	90	-	-	26 500	3.83	34 800	3.86	44 400	3.87	55 800	3.87	68 900	3.88	84 100	3.91
	0	110	-	-	-	-	30 800	4.97	39 600	4.97	49 800	4.97	61 500	4.97	74 900	5.00
	80	130	-	-	-	-	-	-	-	-	41 600	6.44	51 500	6.43	63 000	6.45
	-	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		154	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		70	58 100	5.97	72 900	6.09	90 800	6.24	112 000	6.39	137 000	6.55	166 100	6.71	-	-
~	E	90	48 800	7.38	62 600	7.48	79 000	7.61	98 300	7.79	121 000	7.99	147 500	8.21	178 000	8.44
VSH117	3600 rpm	110	-	-	-	-	68 500	9.36	86 800	9.50	106 100	9.69	129 800	9.92	157 100	10.18
-S	600	130	-	-	-	-	-	-	-	-	91 100	11.96	111 800	12.14	135 900	12.37
-	ñ	150	-	-	-	-	-	-	-	-	-	-	-	-	114 900	15.34
		154	-	-	-	-	-	-	-	-	-	-	-	-	111 100	16.05
		70	83 500	8.82	104 900	9.21	130 800	9.67	161 700	10.13	198 200	10.57	240 800	10.93	-	-
	E	90	72 500	11.02	93 000	11.31	117 400	11.72	146 300	12.20	180 200	12.72	219 700	13.23	265 400	13.67
	5400 rpm	110	-	-	-	-	103 800	14.07	130 000	14.47	160 700	14.97	196 400	15.52	237 800	16.07
	0	130	-	-	-	-	-	-	-	-	138 600	17.82	170 000	18.31	206 600	18.87
	57	150	-	-	-	-	-	-	-	-	-	-	-	-	173 300	22.58
		154	-	-	-	-	-	-	-	-	-	-	-	-	166 900	23.47
		70	-	-	40 100	4.22	55 400	4.24	73 300	4.23	94 100	4.15	117 600	3.95	-	-
	٦	90	-	-	32 900	5.60	46 700	5.62	62 700	5.65	80 900	5.67	101 400	5.63	124 300	5.49
	1800 rpm	110	-	-	-	-	38 600	7.35	53 200	7.35	69 400	7.38	87 400	7.41	107 200	7.40
	8	130	-	-	-	-	-	-	-	-	57 200	9.71	73 200	9.72	90 500	9.75
	18	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		154	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		70	79 500	8.54	100 400	8.67	125 700	8.79	156 000	8.87	191 800	8.88	233 500	8.78	-	-
	c	90		11.22							172 900		211 300	11.59	255 700	11.55
VSH170	3600 rpm	110	-	-	-	-	97 800	14.21	123 100	14.26		14.35	187 400	14.43	227 400	14.50
EH3	ō	130	_	-	-	-	-	-	125 100	-		17.91	160 900	17.97	196 100	18.06
Š	36(150	-		-				-				- 100 500		163 200	22.89
		154	-	-	-	-	-	-	-	-	-	-	-	-	156 900	24.07
		70	122 500	13.12	153 900	13.45	191 800	13.81	237 000	14.16	290 000	14.48	351 800	14.72		21.07
	-												319 600		204 000	10 70
	bm	90	106 400	16.82	136 400	17.05	172 000	17.36	213 900	17.71	262 900	18.07		18.41	384 900	18.70
	0 L	110	-	-	-	-	152 500	21.24	190 600	21.52	234 800	21.86	286 000	22.22	344 800	22.59
	5400 rpm	130	-	-	-	-	-	-	-	-	203 400	26.62	248 500	26.93	300 500	27.30
	Ψ)	150	-	-	-	-	-	-	-	-	-	-	-	-	253 500	33.61
		154	-	-	-	-	-	-	-	-	-	-	-	-	244 500	35.14
To: Evaporating Superheat: 20°F	tempe	rature in	°F			: Conden Ibcooling	sing temper J: 15°F	atuer in '	°F				ng capacity r input in kV			

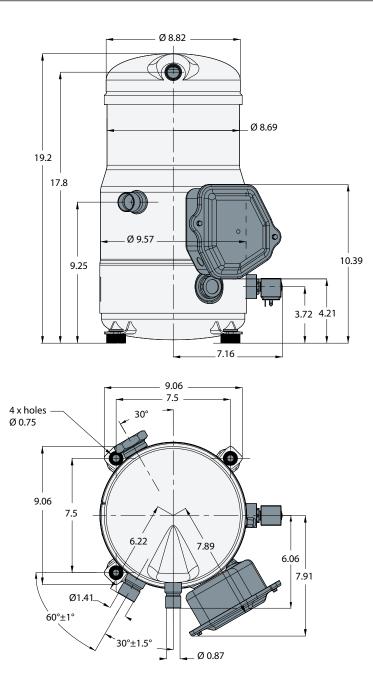
Presented data are for models with motor voltage code G

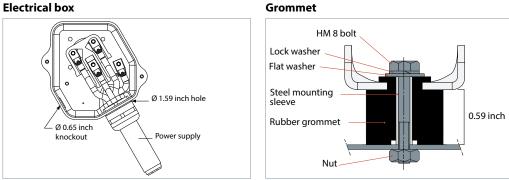



Application guidelines Dimensions

VSH088-G & H

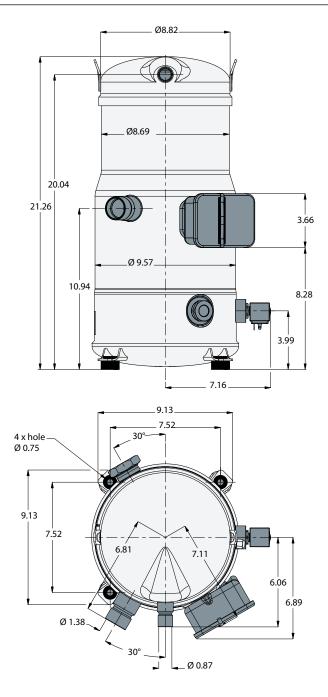
All dimensions in inch



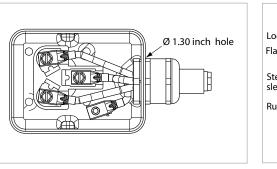

Danfoss

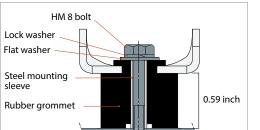
Application guidelines Dimensions

VSH088-J


All dimensions in inch

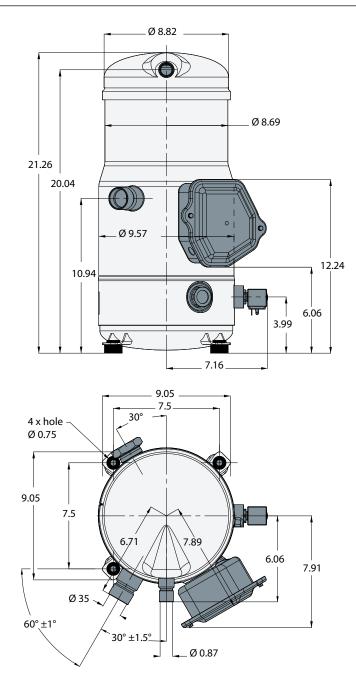
Application guidelines Dimensions


VSH117-G & H



Electrical box

Nut -



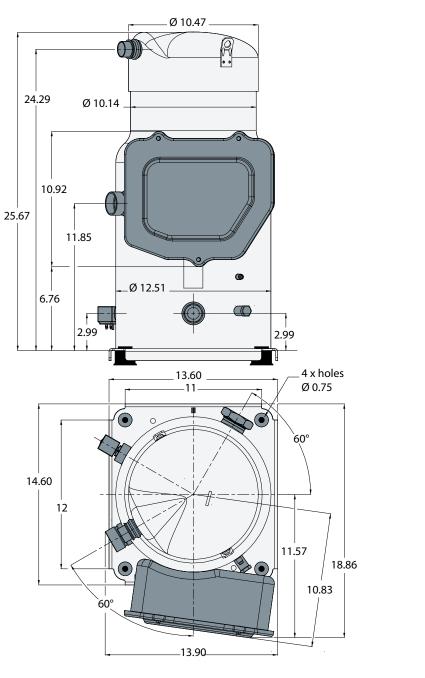
All dimensions in inch



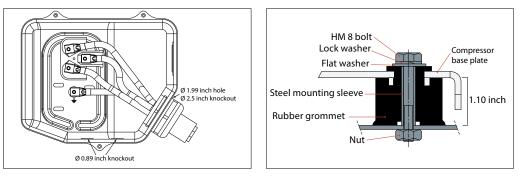
Application guidelines Dimensions

VSH117-J

Electrical box


All dimensions in inch

0.59 inch

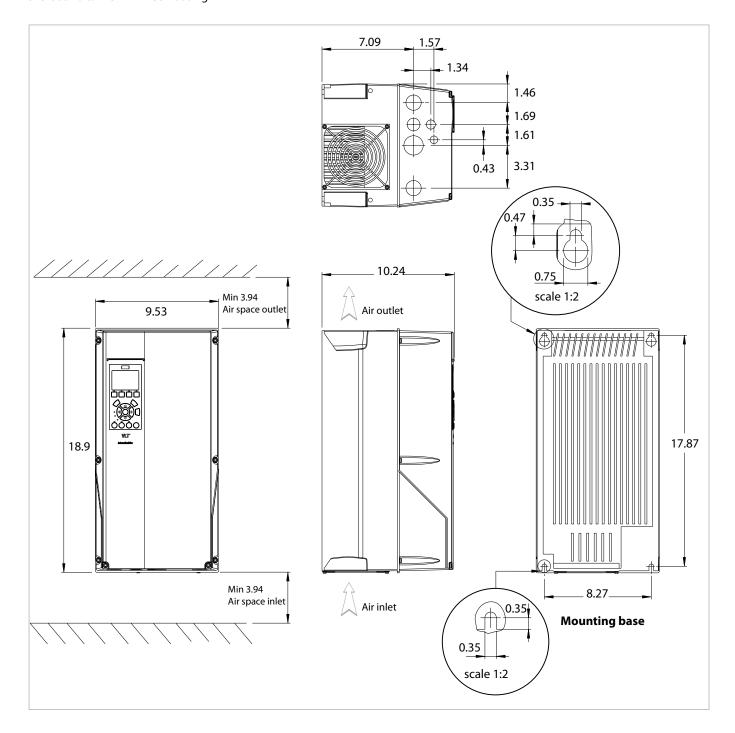

All dimensions in inch

VSH170-G-H&J

Electrical box

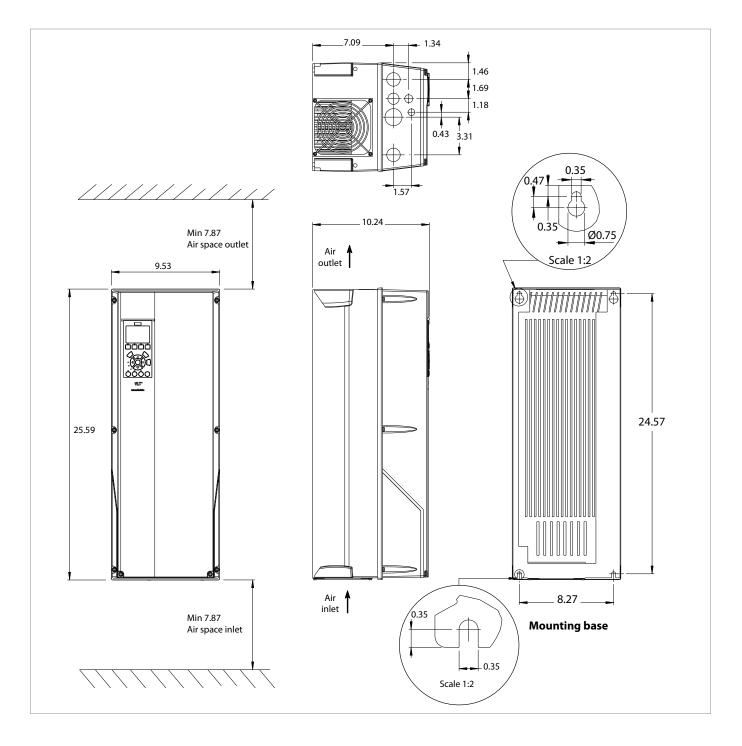
Grommet

Danfoss


Application guidelines	Dimensions					
Sight glass	VSH compressors come equipped with a threaded oil sight glass with 1"1/8 – 18 UNEF connection. It can be used for visual check of oil	amount and conditions, or it may be replaced by an oil management device.				
Schrader	The oil fill connection and gauge port is a 1/4" male flare connector incorporating a schrader valve.					
Oil equalisation connection	VSH compressors are equipped with rotolock		Oil equ	alization		
	oil equalisation connection. This connection is used when compressors are mounted in parallel.	VSH088	Rotolo	ck 1" 3/4		
	Contact Danfoss for further details.	VSH117	Rotolo	ck 1" 3/4		
	contact Damoss for further details.	VSH170 Rotolock 2" 1/4				
Oil drain fitting	VSH170 are equipped with oil drain connection. This connection is a female ¼" NPTF fitting, which allows oil to be removed for testing, replacement etc	This fitting contains an internal extension tube in order to collect the oil at the bottom of the o sump. VSH088 and VSH117 are not equipped with oil				
		drain fitting.				
Suction & discharge connections	VSH compressors are all delivered with suction		Suction	Discharge		
connections	and discharge brazed connections only. They are copper platted steel connections.	VSH088	1" 1/8	7/8"		
	copper platted steel connections.	VSH117	1" 3/8	7/8"		
	Rotolock adaptors are available, refer to section "Accessories".	VSH170	1" 5/8	1" 1/8		
Frequency converter dimensions	Frequency converter dimensions depend on supply voltage, IP rating and power. The below table gives an overview of the overall dimensions and different drive enclosures (B1 - C3). Details for each drive enclosure are on the following pages.					
		IP20		255		

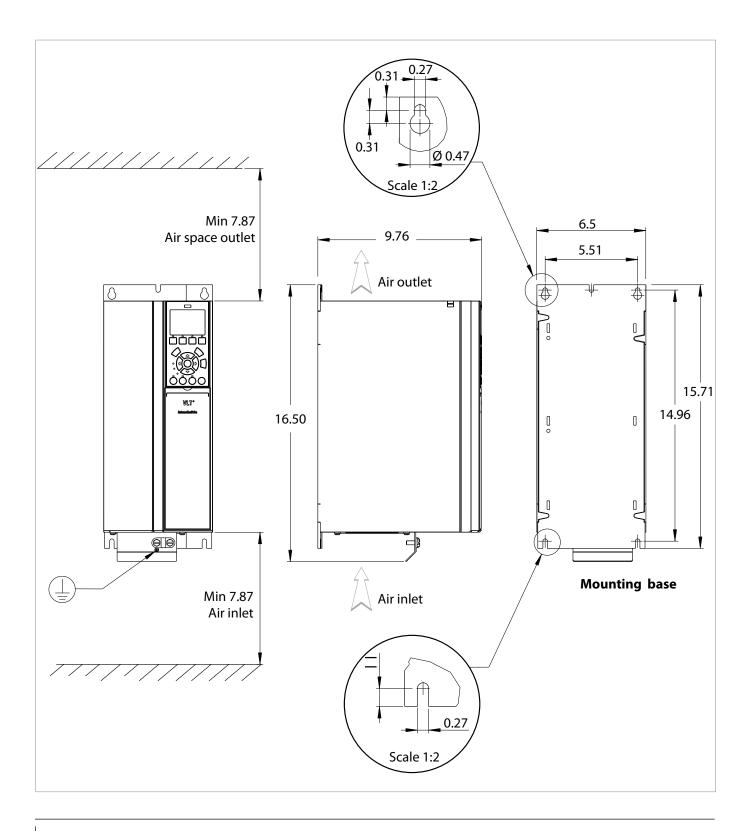
					IP20		IP55
Drive supply voltage	Drive power kW	Compressor voltage code	Compressor model	Drive enclosure	Overall drive size (h x w x L) inch	Drive enclosure	Overall drive size (h x w x L) inch
	15		VSH088	B4	23.43 x 9.09 x 9.53	C1	26.77 x 12.13 x 12.20
T2: 200-240/3/50-60	18.5	J	VSH117	C3	24.80 x 12.13 x 13.15	C1	26.77 x 12.13 x 12.20
	22		VSH170	C3	24.80 x 12.13 x 13.15	C1	26.77 x 12.13 x 12.20
	15		VSH088	B3	13.50 x 6.50 x 9.76	B1	18.90 x 9.45 x 10.24
T4: 380-480/3/50-60	18.5	G	VSH117	B4	23.43 x 9.09 x 9.53	B2	25.60 x 9.53 x 10.24
	22		VSH170	B4	23.43 x 9.09 x 9.53	B2	25.60 x 9.53 x 10.24
	15		VSH088	B3	13.50 x 6.50 x 9.76	B1	18.90 x 9.45 x 10.24
T6: 525-600/3/50-60	18.5	н	VSH117	B4	23.43 x 9.09 x 9.53	B2	25.60 x 9.53 x 10.24
	22		VSH170	B4	23.43 x 9.09 x 9.53	B2	25.60 x 9.53 x 10.24

CDS302 frequency converter - enclosure B1


380-480 Volts - 15 kW - IP55 housing 525-600 volts - 15 kW - IP55 housing

CDS302 frequency converter - enclosure B2

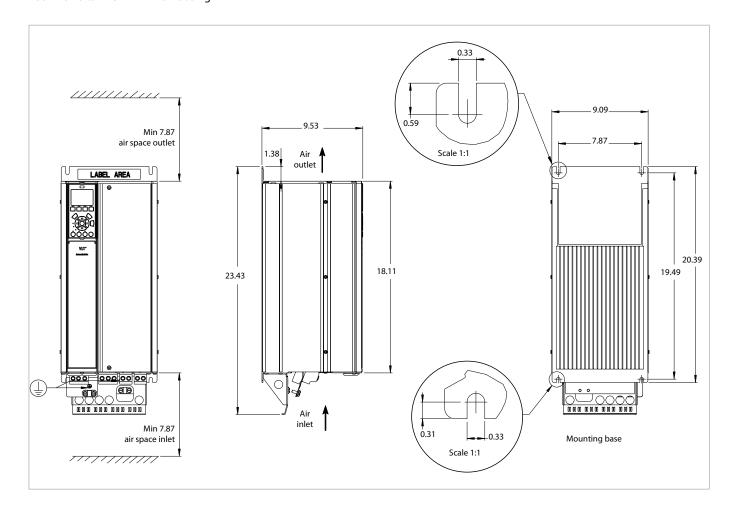
380-480 volts – 18-22 kW - IP55 housing 525-600 volts – 18-22 kW - IP55 housing



Dimensions

CDS302 frequency converter - enclosure B3

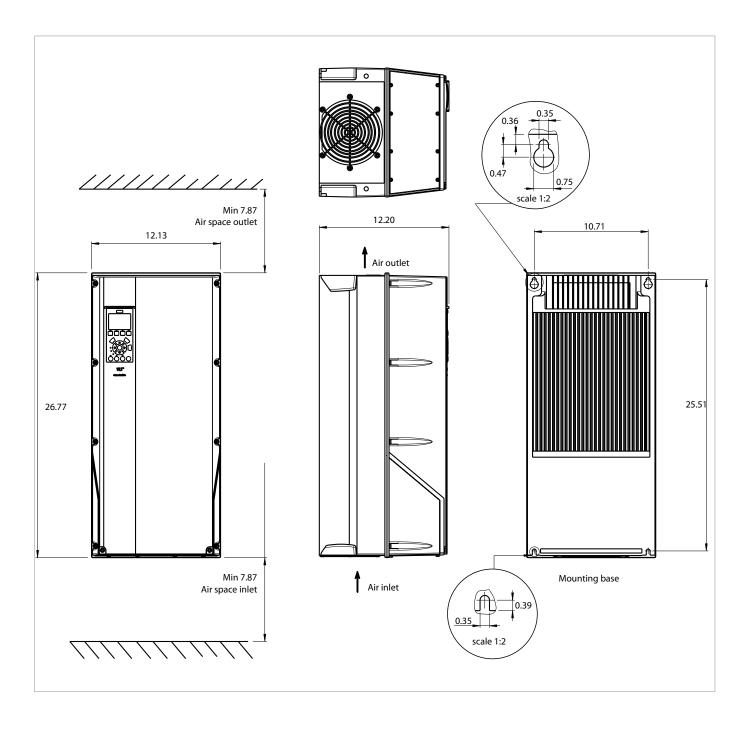
380-480 volts - 15 kW - IP20 housing 525-600 volts - 15 kW - IP20 housing



CDS302 frequency converter - enclosure B4

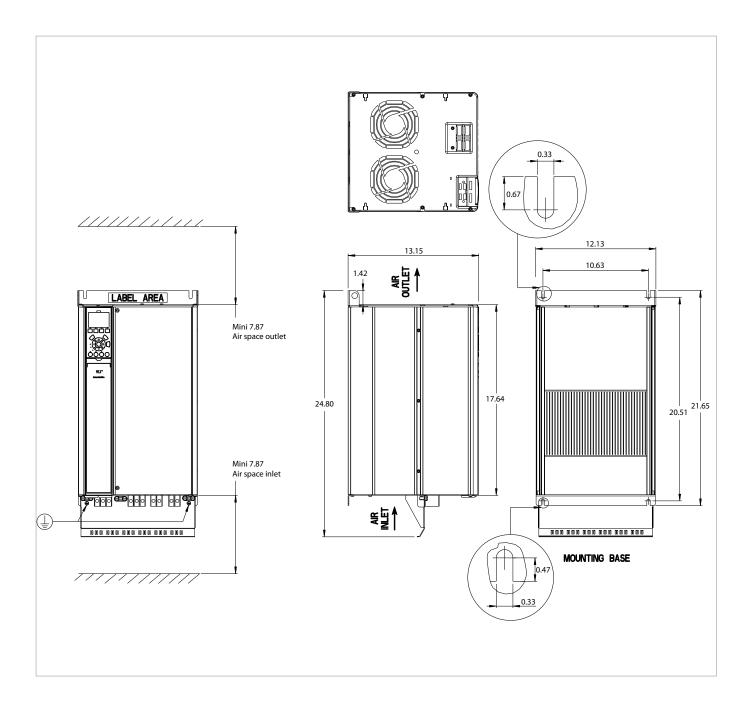
380-480 volts - 18-22 kW - IP20 housing

525-600 volts - 18-22 kW - IP20 housing 200-240 volts - 15 kW - IP20 housing



Dimensions

CDS302 frequency converter - enclosure C1


200-240 volts - 15-18-22 kW - IP55 housing

CDS302 frequency converter - enclosure C3

200-240 volts - 18-22 kW - IP20 housing

<u>Danfoss</u>

Application guidelines	Electrical data,	connections a	nd wiring									
Supply voltage	Because VSH compressors are powered by a											
	frequency conver	ter, the mains free	quency, 50 or	Voltage code	Mains voltage	range of drive						
	-	er an issue. Only th aken into account.	J	200-240 V / 3 ph / 200-200-200-200-200-200-200-200-200-200								
	voltage codes, the	e most common n are covered. Never	G	380-480 V / 3 ph / 380 - 480 V / 3 ph /								
		directly to the mai		Н	525-600 V / 3 ph / 525-600 V / 3 ph /							
ompressor electrical		Community	RW	RLA	MMT	LRA						
specifications		Compressor	(Ohm)	(A)	(A)	(A)						
		VSH088-J	0.0191	61.5	76.9	346						
	200 - 240 Volt	VSH117-J	0.0138	80	100	471						
		VSH170-J	0.0280	120	150	699						
		VSH088-G	0.26	29.9	37.4	159						
	380 - 480 Volt	VSH117-G	0.185	37.7	47.1	225						
		VSH170-G	0.127	57.3	71.6	346						
		VSH088-H	0.518	21	26.3	115						
	525 - 600 Volt	VSH117-H	0.366	30.8	38.5	157						
		VSH170-H	0.238	44	55.0	246						
	RW: Winding resistance per winding (in CDS302 parameter list) RLA: Rated load current MMT: Maximum must trip current LRA: Locked rotor current Note that parameter 1-30 in the frequency converter settings reflects the winding resistance per winding. This is not the same val as measured at the motor terminals.											
RA (Locked Rotor Amp)	Locked Rotor Am	p value is the high	ner average	on the nameplate. This current value can not								
-	current as measu	red on mechanica	lly blocked	be achieved in the case of VSH compressors,								
	compressor teste	d under nominal v	oltage. As	because the fre	equency converte	r will cut-out tl						
	•	gulation, this valu	5		ccording to MMT							
LA (Rated Load Amp)	Rated Load Amp	value is the currer	nt value at									
	maximum load, ir	n the operating er	velope, and at									
	maximum speed.		•									
IMT (Maximum Must Trip urrent)	compressors not	ust Trip current is o equipped with the 1MT value is the m	eir own motor	current protect value.	ion must never ex	ceed the MM						
	at which the com transient condition	pressor can be op ons and out of the oping current of e	erated in operating	For VSH compressors, according to UL requirements, MMT value is 125% of RLA. This value is printed on the compressor nameplate.								

		ENE0179 cor	muliantfuses	UL Compliant fuses					
Frequ	ency converter	ENSU178 CO	npliant fuses		Bussmann		SIBA	Little fuse	
		Size	Туре	Type RK1	Type J	Туре Т	Type RK1	Type RK1	Type RK1
40 V	CDS-15kW	125 A	gG	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R
Ņ	CDS-18.5 kW	125 A	gG	KTN-R125	JKS-150	JJN-125	2028220-125	KLN-R125	A2K-125R
200-	CDS-22 kW	160 A	gG	FWX-150	-	-	2028220-150	L25S-150	A25X-150
480 V	CDS-15 kW	63 A	gG	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	A6K-50R
	CDS-18.5 Kw	63 A	gG	KTS-R60	JKS-60	JJS-60	5014006 -063	KLS-R60	A6K-60R
380	CDS-22 kW	80 A	gG	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	A6K-80R
-600 V	CDS-15 kW	-	-	KTS-R50	JKS-50	JJS-50	5014006-050	KLS-R50	A6K-50R
5-60	CDS-18.5 kW	-	-	KTS-R60	JKS-60	JJS-60	5014006-063	KLS-R60	A6K-60R
525	CDS-22 kW	-	-	KTS-R80	JKS-80	JJS-80	2028220-100	KLS-R80	A6K-80R

Danfoss

Electrical data, connections and wiring

Wire sizes

Below table lists recommended wiring sizes for the motor compressor power supply cables. These wiring sizes are valid for a cable length up to 66 ft.

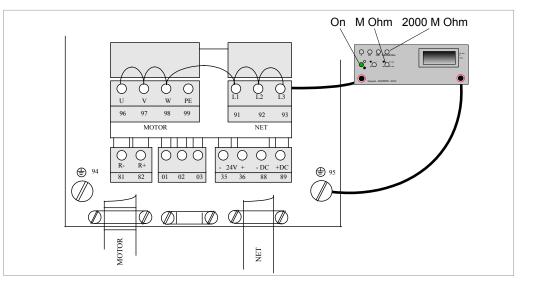
	From network to frequency converter			From frequency converter to compressor			
	Туре	inch ²	AWG	Туре	inch ²	AWG	
	CDS-15kW	0.039	4	VSH088-J	0.039	4	
200 - 240 V	CDS-18.5 kW	0.054	2	VSH117-J	0.054	2	
	CDS-22 kW	0.077	1	VSH170-J	0.077	1	
	CDS-15 kW	0.009	10	VSH088-G	0.009	10	
380 - 400 V	CDS-18.5 Kw	0.015	8	VSH117-G	0.015	8	
	CDS-22 kW	0.025	6	VSH170-G	0.025	6	
	CDS-15 kW	0.006	12	VSH088-H	0.006	12	
525 - 600 V	CDS-18.5 kW	0.009	10	VSH117-H	0.009	10	
	CDS-22 kW	0.015	8	VSH170-H	0.015	8	

Wiring & EMC protection

the CDS302 frequency converter to the VSH compressor must be done with a braided screened / armored cable. This cable needs to have its screen / armor conduit connected to earth on both ends. Avoid terminating this cable connection with twisting ends (pigtails) because that would result in an antenna phenomena and decreases the effectiveness of the cable.

The motor compressor power supply from

Control cables to the CDS302 frequency converter must use the same installation principles as the power supply cable. The motor compressor cable must be installed in a conduit separate from the control and mains cables.


Physical installation of the frequency converter on the mounting plate must ensure good electrical contact between the mounting plate and the metal chassis of the converter. Use starwashers and galvanically conductive installation plates to secure good electrical connections. Refer to instructions MG.34.M1.02 for tightening torques and screw sizes.

Note that the CDS302 must be mounted on a plain wall to ensure a good air flow through its heat exchanger.

Jantoss

Electrical data, connections and wiring

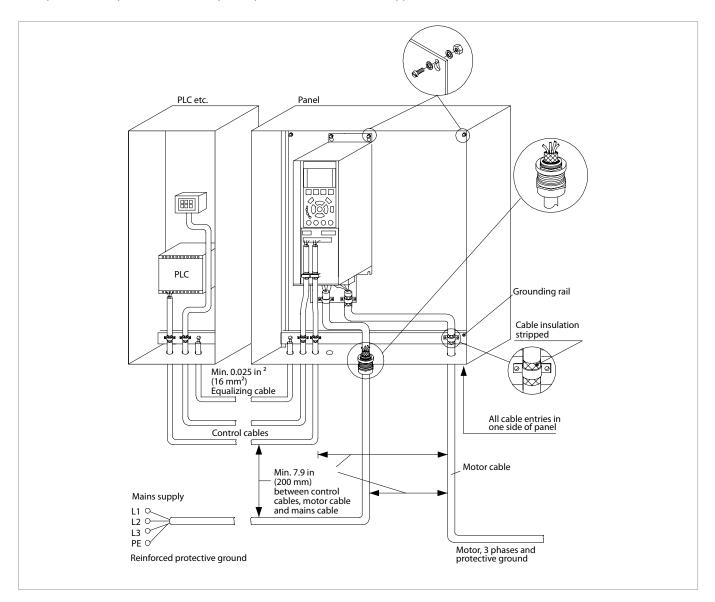
Hipot test procedure

It is not necessary to perform a Hipot test (dielectric withstand test) on frequency converters. This has already been done during factory final test.

If a Hipot test has to be done anyway, following instructions must be followed in order to not damage the frequency converter:

- Compressor not connected
- L1, L2, L3, U, V, W terminals must be shorten and connected to high voltage terminal of

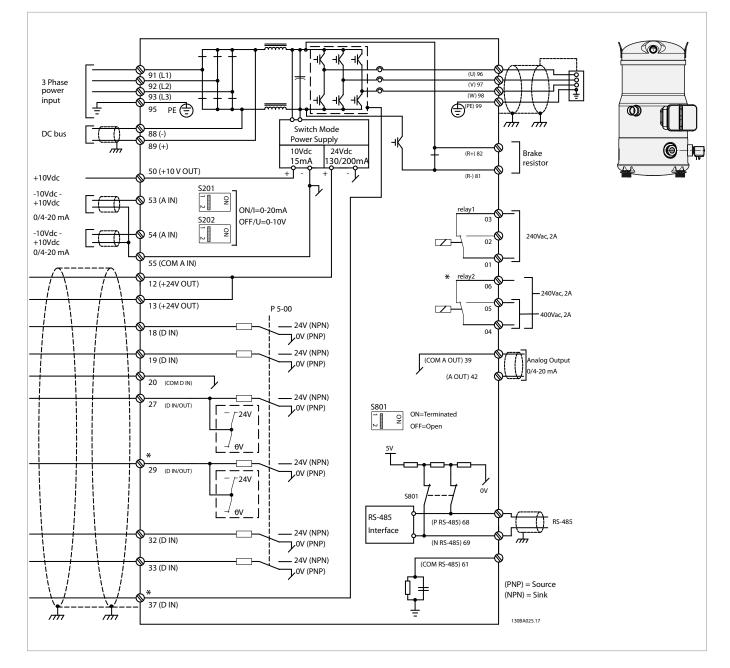
the testing device.


- Ground terminal (chassis) must be connected to low voltage terminal of the testing device.
- 2150VDC must be applied
- Ramp up time 3 seconds
- Full DC voltage must be established during 2 seconds
- The current leakage during the test must be below 1mA
- Ramp down time to 0V in 25 seconds.

Danfoss

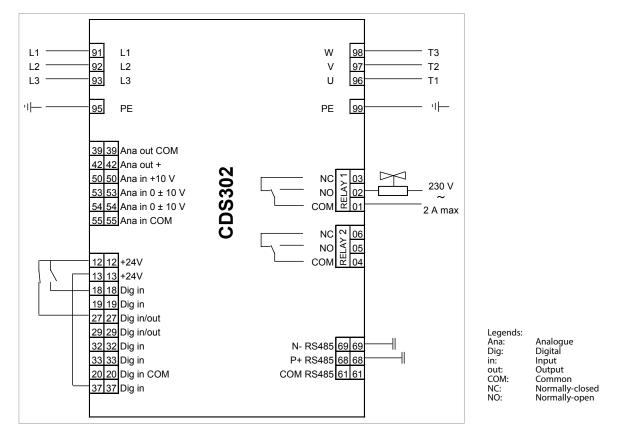
Electrical data, connections and wiring

EMC correct installation of an IP20 frequency drive CDS302


EMC qualification reports are available upon request to Danfoss technical support.

Danfoss

Electrical data, connections and wiring


Wiring diagram

Janfoss

Electrical data, connections and wiring

Wiring connections

		Open loop	Process loop
91, 92, 93	3 Phase mains input	Х	Х
95	Earth	Х	Х
39, 42	Analogue output	-	-
50	Analogue input	-	-
53	PLC+ (0 to 10 V)	Х	-
54	Sensor -	-	Х
55	PLC-	Х	-
12	HP/LP switch	Х	Х
12	External On/Off (NO)	Х	Х
13	Factory bridged to 37	Х	Х
13	Sensor +	-	Х
18	External On/Off (NO)	Х	Х
19	Digital input	-	-
27	HP/LP switch (NC) / safety devices	Х	Х
29	Digital input/output	-	-
32, 33	Digital input	-	-
20	Digital input Common	-	-
37	Factory bridged to 13	Х	Х
98	To compressor terminal T3	Х	Х
97	To compressor terminal T2	Х	Х
96	To compressor terminal T1	Х	Х
99	To compressor earth connection	Х	Х
02, 01	Relay 1 to oil solenoid valve	Х	Х
06, 05, 04	Relay 2	-	-
69, 68	RS485 Bus	-	-
61	RS485 Bus Common	-	-

The CDS302 frequency converter is factory preset with parameters for the open loop control principle. The process loop control principle can be selected by changing parameters in the "Quick menu". Open loop: preset on input 53 0 - 10 V control Frequency converter in slave mode Process loop: preset on input 54 4 - 20 mA control Frequency converter under own PID controller

- : Optional connection

X : Mandatory connection

Danfoss

Application guidelines	Electrical data, connections and wiring		
Electrical connections	Electrical power is connected to the compressor terminals by Ø 3/16" screws. The maximum thightening torque is 2ft.lbs. Use a 1/4" ring	The cable gland has to be of EMC design to garanty a good grounding of the armored cable.	
	terminal on the power leads.	Paint free areas on electrical box allow correct ground continuity.	
Soft-start control	The CDS302 frequency converter generates by design a compressor soft start with an initial ramp up of 0.9 sec.	Basically seen from the mains the inrush peak reach a level which is only a few percent more than the rated nominal current.	
	Current inrush is at highest the frequency converter maximum current.		
Phase sequency and reverse rotation protection	The CDS302 frequency converter is preset to run the VSH compressors clockwise so the only care is to well connect the CDS302 output to the compressor connectors: • CDS302 terminal U (96) to VSH terminal T1/U • CDS302 terminal V (97) to VSH terminal T2/V • CDS302 terminal W (98) to VSH terminal T3/W	Mains connection to the CDS302 frequency converter order has no influence on the output phase sequence which is managed by the frequency converter.	

Danfoss

Application guidelines	Electrical data, co	onnections a	nd wiring				
IP rating	The compressor tern cable glands are used		ting according	to CEI529 is I	P54 when coi	rrectly sized IP5	4 rated
Motor protection	Motor protection is provided by the frequency converter. All parameters are factory preset in order to guaranty locked rotor or overload current protection.			When a warning situation is reached in the current control, the CDS302 frequency convert will automatically reduce the compressor speed in order to keep the motor current of the compressor below the maximum allowed.			
Voltage imbalance	The maximum allowable voltage imbalance between each phases is 3%. Voltage imbalance causes high amperage over one or several phases, which in turn leads to overheating and possible drive damage.			in 14.12 parameter. It is, by default, factory pre			
Frequency converter efficiency		Drive a survey	Compressor	C		IP20 / IP55	
	Drive supply voltage	Drive power kW	voltage code	Compressor model	Drive enclosure	Estimated power loss at max load (W)	Efficiency
		15		VSH088	B4 /C1	624	0.96

	15		VSH088	B4 /C1	624	0.96
T2: 200-240/3/50-60	18.5	J	VSH117	C3 /C1	740	0.97
	22		VSH170	C3 /C1	874	0.97
	15		VSH088	B3 / B1	379	0.98
T4: 380-480/3/50-60	18.5	G	VSH117	B4 / B2	444	0.98
	22		VSH170	B4 / B2	547	0.98
	15		VSH088	B3 / B1	285	0.98
T6: 525-600/3/50-60	18.5	н	VSH117	B4 / B2	329	0.98
	22		VSH170	B4 / B2	700	0.98

Ambient temperature and altitude

The normal ambient temperature supported by the frequency converter covers a range from -10°C to +50°C without any issue or derating. Anyhow, the frequency converter will operate normally down to -20°C where only the screen of the LCP (if installed) will show display issues without being damaged.

For ambient temperatures above +50°C, it is mandatory to integrate a derating output factor for the maximum compressor electrical motor power/current. The derating values are shown in the drive application manual and are linked to the drive frame and IP protection level. For altitudes below 1000 m, the frequency converter will be able to deliver 100% output power under full load for above ambient temperature. However, for altitudes above 1000 m derating must be applied with following values.

Altitude	Derating factor
1000 m	1
1500 m	0.95
2000 m	0.90
2500 m	0.86
3000 m	0.82
3500 m	0.78

For more details about these specific running conditions, please contact Danfoss technical support.

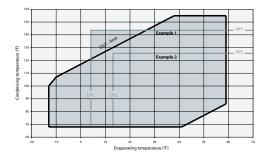
Danfoss

Application guidelines	Approvals and certificates						
Approvals and certificates	VSH compressors comply with the following approvals and certificates.						
	CE 0062 or CE 0038 (European Directive)	CE	All VSH models except code H				
	UL (Underwriters Laboratories)	c 911 us	All VSH models				
	EMC 2014/30/EU		All VSH models				
Pressure equipment directive 2014/68/EU	Products	VSH088	VSH117	VSH170			
directive 2014/68/EU	Fluids	000110.0	Group 2				
	Category PED		ll				
	Evaluation module		 D1				
	TS - service temperature LP	-31°F < TS < +131°F		-31°F < TS < +124°			
	PS - service pressure LP	483 psig	483 psig	438 psig			
Low voltage directive	Products		VSH088-1	17-170			
2014/35/EU	Declaration of conformity ref. Low voltage directive 2014/35/EU		Contact D	anfoss			
Internal free volume	Products		Internal free volume at LP	side without oil (inch ³)			
	VSH088		671				
	VSH117		781				
	VSH170		1751	I			
	VSH170		1751				

Danfoss

Application guidelines Operating conditions

_	•		•									
	167											
	158											
	149											
	149								50 - 90 Hz			
	140			Superl	neat: 11°F						-	
е. В	131			Capon							-	
ratur	122											
mpe												
Condensing temperature °F	113						30 - 90 Hz					
insin	104										÷ –	
onde	95		<u>₹</u>								_	
ŭ	00		6									
	86		50 -									
	77											
	68											
	59											
		22	-13	-4	5	14	23	32	41	50	59	68
		- 	er function	CDS302 fro 28.0* is en The functi minimum	equency cor abled. on is factory	nverter, wh v set to ena ve 12 secon	vided by the en parameter bled, with ds and interva	28.0*	cycle settings ist, in the "co		-	
te	Discharge gas temperature protection function			enabled in are availab factory pre • 28.20 input • 28.21 • 28.24 • 28.25 • 28.25	the frequent ole in param eset as follow [0] none - t [60] °C - ter [130 - warni [1] decreas [145 - emerg	ncy converi eter list 28. w: emperature ng level e cooling - gency level	e source (senso unit warning action	function modified to Ana for 54, an input "decreant the co n Hz) ev drops	ivate the disc on, with the f ication requir ilog Input 54 d set the para 54". When the ase cooling" ampressor spe ery 3 minute below the lev (warning leve	actory settin red is to con (4.20 mA) b ameter 28.20 e warning le action starts eed by steps s until the te vel, program	ng, the or nect the s etween 1 D to "[2] A vel is read by decre of 600 rp emperatu med in p	nly sensor 3 and nalog ched easing om (10 re, either paramete


Application envelope

anto

Application guidelines Operating conditions

Discharge gas thermostat

Discharge gas temperature (DGT) protection is required if the high and low pressure switch settings do not protect the compressor against operations beyond its specific application

envelope. Please refer to the examples below, which illustrate where DGT protection is required (Ex. 1) and where it is not (Ex. 2).

Example 1 (R410A, SH = 20°F) LP switch setting: LP1 = 48 psig (4.1°F) HP switch setting: HP1 = 551 psig (143.6°F) Risk of operation beyond the application envelope. DGT protection required. Example 2 (R410A, SH = 20°F) LP switch setting: LP2 = 67 psig (13.1°F) HP switch setting: HP2 = 450 psig (125.6°F) No risk of operation beyond the application envelope. No DGT protection required.

The discharge gas temperature must not exceed 275°F.

A discharge gas temperature protection device must be installed on all heat pumps. In reversible air-to-air and air-to-water heat pumps the discharge temperature must be monitored during development test by the equipment manufacturer.

The compressor must not be allowed to cycle on the discharge gas thermostat. Continuous operations beyond the compressor's operating range will cause serious damage to the compressor!

A DGT accessory is available from Danfoss: refer to accessories pages at the end of this document.

Oil return management
functionInsufficient oil level can be the result of oil
depositing itself in pipes and heat exchangers.
The oil deposit can be returned to the crankcase,
by increasing velocity for short period, at regular
time intervals or when velocity is too low to
ensure adequate oil returns.

The discharge gas thermostat accessory kit (code no.7750009) includes all components required for installation, as shown below. The thermostat must be attached to the discharge line within 5.91 inch from the compressor discharge port and must be thermally insulated and tightly fixed on the pipe.

With oil return management these two oil return mechanisms can be programmed in the CDS302.

Refer to section "Oil level checking and top-up" at the end of this document for details.

High and low pressure protection

High pressure	According to EN378-2, a high-pressure (HP) safety switch is required to shut down the compressor. The high-pressure switch can be set to lower values depending on the application and ambient conditions. The HP switch must either be placed in a lockout circuit or consist of a manual	reset device to prevent cycling around the high- pressure limit. If a discharge valve is used, the HP switch must be connected to the service valve gauge port, which must not be isolated. The lockout circuit or HP switch must be connected to the CDS302 input 27.
Low pressure	A low-pressure (LP) safety switch must be used. Deep vacuum operations of a scroll compressor can cause internal electrical arcing and scroll instability. VSH compressors exhibit high volumetric efficiency and may draw very low vacuum levels, which could induce such a problem. The minimum low-pressure safety switch (loss-of-charge safety switch) setting is given in the following table. For systems without	pump-down, the LP safety switch must either be a manual lockout device or an automatic switch wired into an electrical lockout circuit. The LP switch tolerance must not allow for vacuum operations of the compressor. LP switch settings for pump-down cycles with automatic reset are also listed in the table below. Lock-out circuit or LP switch or series with other safety devices (HP,) must be connected to CDS302 input 27.

Pressure settings	Pressure settings		R410A	
	Working pressure range high side	psig	195 - 645	
	Working pressure range low side	psig	33 - 168	
	Maximum high pressure safety switch setting	psig	652	
	Minimum low pressure safety switch setting *	psig	21	
	Minimum low pressure pump-down switch setting **	psig	33	
	*LP safety switch shall never be bypassed. ** Recommended pump-down switch settings: 21 psig below no	minal evaporating temperature with m	inimum of 33 psig	
Electronic expansion valve	With variable capacity systems, an electronic expansion valve (EXV) is one of the better solutions to handle refrigerant mass flow	he start up of the		
	variations. Ramp-up and ramp-down settings, of both EXV and compressor, must be done with great care.	Ramp-down of the EXV mus ramp-down of the compres pressure operation (except	sor, also to avoid low	
	Ramp-up of the EXV must be shorter than the ramp-up of the compressor, to avoid any low pressure operation on suction side of the compressor. The EXV can also be opened, up	EXV should be closed, and r when the compressor is off, refrigerant entering the con	to avoid any liquid	
Crankcase heating function	A DC-hold current through the motor windings can be used as an alternative to an external crankcase heater to keep the compressor warm when stopped.	factory preset to "disabled". An external cra		
	For VSH088 and VSH117 this function is factory preset to "enabled". Go to parameter 28.3* in the frequency converter for settings (factory presets are done).			

Application guidelines	System design recommendations			
Essential piping design considerations	The working pressure in systems with R410A is about 60% higher than in systems with R22 or R407C. Consequently, all system components and piping must be designed for this higher pressure level. Proper piping practices should be employed to ensure adequate oil return, even under minimum load conditions with special consideration given to the size and slope of the tubing coming from the evaporator. Tubing returns from the evaporator should be designed so as not to trap	In systems with R410A, the refrigerant mass flow will be lower compared to R22/R407C systems. To maintain acceptable pressure drops and acceptable minimum gas velocities, the refrigerant piping must be reduced in size compared to R22 / R407C systems. Take care not to create too high pressure drops neither since in R410A systems the negative impact of high pressure drops on the system efficiency is stronger than in R22/R407C systems.		
	oil and to prevent oil and refrigerant migration back to the compressor during off-cycles.			
	Piping should be designed with adequate three- dimensional flexibility. It should not be in contact with the surrounding structure, unless a proper	that structure as well. For more information on noise and vibration, see "Sound and Vibration Management" section.		
	tubing mount has been installed. This protection proves necessary to avoid excess vibration, which can ultimately result in connection or tube failure due to fatigue or wear from abrasion. Aside from tubing and connection damage, excess vibration may be transmitted to the surrounding structure and generate an unacceptable noise level within	CDS302 frequency converter integrates a special feature in the compressor functions in order to improve and secure the oil recovery from the system. Refer to "Oil Return Management" section.		
Suction lines	If the evaporator lies above the compressor, as is often the case in split or remote condenser systems, the addition of a pump-down cycle is strongly recommended. If a pump-down cycle were to be omitted, the suction line must have a loop at the evaporator outlet to prevent refrigerant from draining into the compressor during off-cycles. If the evaporator were situated below the compressor, the suction riser must be trapped so as to prevent liquid refrigerant from collecting at	To condenser U-trap max. 13 ft U-trap U-traD		
	the outlet of the evaporator while the system is idle, which would mislead the expansion valve's sensor (thermal bulb) at start-up.	13 ft/s or more U trap, as short as possible		
Discharge lines	When the condenser is mounted at a higher position than the compressor, a suitably sized "U"-shaped trap close to the compressor is necessary to prevent oil leaving the compressor from draining back to the discharge side of the compressor during off cycle. The upper loop also helps avoid condensed liquid refrigerant from draining back to the compressor when stopped.	Upper loop UTrap U Trap U Trap		

Danfoss

Jantosa

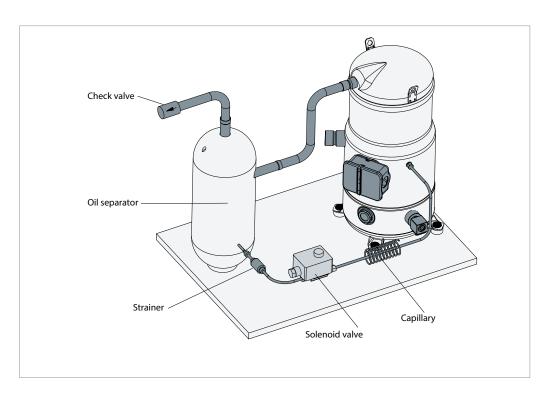
Application guidelines

System design recommendations

Oil management

Compressors discharge a small percentage of oil that is mixed with the compressed refrigerant. The oil is circulated through the system and the compressor is dependent on the system design to bring it back. The use of inverter compressor technology in systems with long piping, especially for split systems, is among the most challenging configurations for oil return. In order to prevent compressors from breaking down due to oil level issues, Danfoss requires the use of an oil separator in all long piping systems, particularly for split systems.

Inverter compressors used in split systems as well as long piping provide an increased challenge to system oil management due to the reduced velocities at low speed operation. Low oil velocity can cause oil deposits in pipes, heat exchangers and other system components that can cause an insufficient oil level inside the compressor.


It is the responsibility of the systems OEM to ensure the proper oil return to the compressors including the qualification of all possible operating modes, equipment configurations and accessory options (multiple evaporators, reheat coils for example) that could impact oil return to the compressors. Especially for split systems using inverter compressors, in which every installation is unique and qualification of individual installations is not practical, Danfoss requires that OEMs install an oil separator.

The requirement of an oil separator is also suitable for any other system with complex piping (long line set, U trap...), multiple heat exchangers and elevation changes.

Many oil separator designs exist, the selection, requirements and recommendations of the Oil Separator manufacturer should be followed.

Customers have the opportunity to select Chiyoda (CE marked) since it has been tested successfully by Danfoss. Detailed information hereafter.

Please note that an oil separator is not 100% efficient. A good system design and efficient oil management remain essential.

Danfoss

System design recommendations

Comp	pressor			VSH088	VSH117	VSH170
			and		Chiyoda	
		Contact in	formation	Email: sales@chiyodaseiki.com Tel: +86(512)62833498 Address: No.1 Sheng gang Rd, Suzhou Industrial Park, Jiang su,PRC, China. Website: http://www.chiyodaseiki.com/		
			del	OS-165DF088CE OS-165DF117CE		OS-165DF170CE
"OS separator (CE)"		out	line			
		Ту	pe		centrifugal	
		ΦD: Outter Diameter(mm)		Φ165.2	Ф165.2	Φ165.2
		Volume(L)		7.2	8.3	10.5
		Inlet size(in)		7/8"	7/8"	1"1/8
		outlet size (in)		7/8"	7/8"	1"1/8
		Footprint Lx\	N(mm x mm)		190.5x102	
		H1: Height(mm)		297	355	469
		H2: Height(mm)		457	515	635
		H: Height(mm)		469	527	645
Canilla	ary tube	Inner diameter(mm)		Φ1.6	Φ1.8	Φ1.8
Cupino	ily tube	lengtł	n(mm)	1400	1530	1380
Stra	ainer	Mesh size		100	100	100
		Orifice(mm)			Φ2.0	
Solenoiid valve		code number			032F1201	
	"Model: Danfoss	connec			1/4''	
	(Orifice $\Phi 2.0$)	"24V	code number		018F6257	
solenoil coil	(CE)"	50Hz AC"	specification		1m 3-core cable	
		"220-230V	code number		018F6282	
		50/60Hz AC"	specification		1m 3-core cable	

Customers can of course contact Danfoss application engineers for support regarding recommendations in such systems.

Application guidelines	System design recommendations			
Heat exchangers	To obtain optimum efficiency of the complete refrigerant system, optimized R410A heat exchangers must be used. R410A refrigerant has good heat transfer properties: it is worthwhile designing specific heat exchangers to gain in size and efficiency.	A sub-cooler circuit in the condenser that creat high sub-cooling will increase efficiency at high condensing pressure. In R410A systems the positive effect of sub-cooling on system efficiency will be significantly larger than in R2 R407C systems.		
	An evaporator with optimized R410A distributor and circuit will give correct superheat at outlet and optimal use of the exchange surface. This is critical for plate evaporators that have generally a shorter circuit and a lower volume than shell & tubes and air cooled coils.	Furthermore, for good operatio device and to maintain good eff evaporator it is important to ha of liquid sub-cooling. Without a cooling, flash gas will be formed device resulting in a high degre evaporator inlet leading to low	ficiency in the ve a high degree dequate sub- d at the expansior e of vapour at the	
	For all evaporator types a special care is required for superheat control leaving the evaporator and oil return.			
Refrigerant charge limits	VSH compressors can tolerate liquid refrigerant up to a certain extend without major problems. However, excessive liquid refrigerant in the	If the refrigerant charge exceeds the values in below table, a suction line accumulator is strongly recommended.		
	compressor is always unfavourable for service life. Besides, the installation cooling capacity may be reduced because of the evaporation taking place in the compressor and/or the suction line instead of the evaporator. System design must be such that the amount of liquid refrigerant in the compressor is limited. In this respect, follow the guidelines given in the section: "Essential piping design recommendations" in priority.	Model Refrigerar	nt charge limit (lb)	
		VSH088	13	
		VSH117	17	
		VSH170	30	
		More detailed information can paragraphs hereafter. Please co technical support for any devia guidelines.	ntact Danfoss	
	Liquid refrigerant can find its way into the compres floodback during operation.	or by means of off-cycle migratic	on or liquid	
Off-cycle migration	Off-cycle refrigerant migration is likely to occur when the compressor is located at the coldest part of the installation, when the system uses a bleed-type expansion device, or if liquid is allowed to migrate from the evaporator into	The presence of liquid in the crankcase can b easily detected by checking the sump level through the oil sight glass. Foam in the oil su indicates a flooded start.		
	the compressor sump by gravity. If too much liquid refrigerant accumulates in the sump it will saturate the oil and lead to a flooded start: when the compressor starts running again, the refrigerant evaporates abruptly under the sudden	VSH scroll compressors can tole flooded starts as long as the tot does not exceed the maximum refrigerant charge.	al system charge	
	decrease of the bottom shell pressure, causing the oil to foam. In extreme situations, this might result in liquid slugging (liquid entering the scroll elements), which must be avoided as it causes irreversible damage to the compressor.	Off-cycle migration can be prev implementing a crankcase heat pump-down cycle to the operat liquid line solenoid valve.	ing or adding a	

Danfoss

	Crankcase heater / sump heater: When the compressor is idle, the oil temperature in the sump of the compressor must be maintained at no lower than 18°F above the saturation temperature of the refrigerant on the low-pressure side. This requirement ensures that the liquid refrigerant is not accumulating in the sump.	appropriate oil temperature is maintained under all ambient conditions (temperature and wind). Provide separate electrical supply for the heaters so that they remain energized even when the machine is out of service (eg. seasonal shut-down). Refer to section "Crankcase heating function" for
	A crankcase heater is only effective if capable of sustaining this level of temperature difference. Tests must be conducted to ensure that the	details and settings of crankcase heating function integrated in the drive.
	Liquid line solenoid valve (LLSV): An LLSV may be used to isolate the liquid charge on the condenser side, thereby preventing against charge transfer or excessive migration to the compressor during off-cycles. When installed,	EXV ensures also this function. The quantity of refrigerant on the low-pressure side of the system can be further reduced by using a pump-down cycle in association with the LLSV.
	Pump-down cycle: A pump-down cycle represents one of the most effective ways to protect against the off-cycle migration of liquid refrigerant. Once the system has reached its set point and is about to shut off, the LLSV on the condenser outlet closes. The compressor then pumps the majority of the refrigerant charge into the condenser and receiver before the system	stops on the low pressure pump-down switch. This step reduces the amount of charge on the low side in order to prevent off-cycle migration. The recommended low-pressure pump-down switch setting is 21 psig below the nominal evaporating pressure. It shall not be set lower than 33 psig.
	Liquid receiver: Refrigerant charge optimisation varies with compressor speed. To avoid flash gas at low speed, a receiver may be necessary.	Receiver dimensioning requires special attention. The receiver shall be large enough to contain part of the system refrigerant charge, but shall not be too large, to avoid refrigerant overcharging during maintenance operations.
Liquid floodback during operation	Liquid floodback occurs when liquid refrigerant returns to the compressor when it is running. During normal operation, refrigerant leaves the evaporator and enters the compressor as a superheated vapour. The suction gas can still contain liquid refrigerant for example with a wrong dimensioning, a wrong setting or malfunction of the expansion device or in case of evaporator fan failure or blocked air filters. A continuous liquid floodback will cause oil dilution and, in extreme situations, lead to liquid slugging. VSH scroll compressors can tolerate occasional liquid floodback. However system design must be such that repeated and excessive floodback is not possible.	During operations, liquid floodback may be detected by measuring either the oil sump temperature or the discharge gas temperature. If at any time during operations, the oil sump temperature drops to within 18°F or less above the saturated suction temperature, or should the discharge gas temperature be less than 63°F above the saturated discharge temperature, this indicates liquid floodback. Repetitive liquid floodback testing must be carried out under TXV threshold operating conditions: a high pressure ratio and minimum evaporator load, along with the measurement of suction superheat, oil sump temperature and discharge gas temperature.

Application guidelines

Specific application recommendations

Danfoss

Low ambient compressor operations		
Low ambient operations and minimum pressure differential at steady running conditions	The VSH compressor requires a minimum pressure differential of 87 to 102 psig between the suction and discharge pressures to force the orbiting scroll-down against the oil film on the thrust bearing. Anything less than this differential and the orbiting scroll can lift up, causing a metal-to-metal contact. It is therefore necessary to maintain sufficient discharge pressure in order to ensure this pressure differential. Care	should be taken during low ambient operations when heat removal from air-cooled condensers is greatest and head pressure control may be required for low ambient temperature applications. Operation under low pressure differential may be observed by a significant increase in the sound power level generated by the compressor.
Low ambient start-up	Under cold ambient conditions, upon start-up the pressure in the condenser may be so low that a sufficient pressure differential across the expansion device cannot be developed to properly feed the evaporator. As a result, the compressor may go into abnormal low suction pressure, which can lead to compressor failure. Under no circumstances should the compressor be allowed to operate under vacuum. The low- pressure control must be set in accordance with	the table section "Pressure settings" in order to prevent this from happening. Low pressure differentials can also cause the expansion device to "hunt" erratically, which might cause surging conditions within the evaporator, with liquid spillover into the compressor. This effect is most pronounced during low load conditions, which frequently occur during low ambient conditions.
Head pressure control under low ambient conditions	Several possible solutions are available to prevent the compressor from drawing down to a vacuum upon start-up under low ambient conditions. In air-cooled machines, cycling the fans with a head pressure controller will ensure that the fans remain off until the condensing pressure has reached a satisfactory level. In water-cooled units, the same can be performed using a water regulator valve that is also operated by head pressure, thereby ensuring that the water valve does not open until the condensing pressure reaches a satisfactory level.	Under very low ambient conditions, in which testing has revealed that the above procedures might not ensure satisfactory condensing and suction pressures, the use of a liquid receiver with condenser and receiver pressure regulators would be possible. Condensing pressure control is also strongly recommended to improve any system efficiency. The most accurate value is to control the condensing temperature at 22°F above the ambient temperature for air cooled condensers. For further information, please contact Danfoss Technical support.
Crankcase heaters	A crankcase heating will minimize refrigerant migration caused by the large temperature gradient between the compressor and the remainder of the system.	Refer to crankcase heating section "Crankcase heating function" for details and settings.
Low load operations	It is recommended that the unit be tested and monitored at minimum load and, if possible, during low ambient conditions as well. During conditions of low load on the system, the following considerations should be taken into	account to ensure proper system operating characteristics. • The superheat setting of the expansion device should be sufficient to ensure proper superheat

<u>Danfoss</u>

Application guidelines	Specific application recommendations	
	levels during low loading periods. 9 to 10.8°F stable superheat is required. In addition, the refrigerant charge should be sufficient to ensure proper sub-cooling within the condenser so as to avoid the risk of flashing in the liquid line before the expansion device. The expansion device should be sized to ensure proper control of the refrigerant flow into the evaporator. An oversized valve may result in erratic control. This can lead to liquid refrigerant entering the compressor if the expansion valve does not provide stable refrigerant super-heat control under varying loads.	 Condenser fans should be cycled in such a way that the minimum pressure differential is maintained between the suction and discharge pressures. Inverter fans can also be used to control the amount of heat to be removed from the condenser. The compressors should be run for a minimum period in order to ensure that the oil has sufficient time to properly return to the compressor sump and that the motor has sufficient time to cool under conditions of lowest refrigerant mass flows. Refer to section "Oil return management function".
Brazed plate heat exchangers	A brazed plate heat exchanger needs very little internal volume to satisfy the set of heat transfer requirements. Consequently, the heat exchanger	exchanger to the compressor must be trapped to avoid refrigerant migration to the compressor.
	offers very little internal volume for the compressor to draw vapour from on the suction	When using a brazed plate condenser heat exchanger, a sufficient free volume for the
	side. The compressor can then quickly enter into	discharge gas to accumulate is required in order
	a vacuum condition. It is therefore important	to avoid excess pressure build-up. At least 1
	that the expansion device be sized correctly	meter of discharge line is necessary to generate
	and that a sufficient pressure differential across	this volume. To help reduce the gas volume
	the expansion device be available to ensure	immediately after start-up even further, the
	adequate refrigerant feed into the evaporator.	supply of cooling water to the heat exchanger
	This aspect is of special concern when operating	may be opened before the compressor starts
	the unit under low ambient and load conditions.	up so as to remove superheat and condense the
	For further information on these conditions,	incoming discharge gas more quickly.
	please refer to the previous sections.	Because of the large compressor capacity
	Due to the small volume of the brazed plate heat	variation and VSH capability to run at low
	exchanger, no pump-down cycle is normally	condensing temperature an EXV (electronic
	required. The suction line running from the heat	expansion valve) is mandatory.
Reversible heat pump	Transients are likely to occur in reversible heat	operating characteristics. Regardless of the
systems	pump systems, i.e. a changeover cycle from	refrigerant charge in the system, specific tests
	cooling to heating, defrost or low-load short	for repetitive flood-back are required to confirm
	cycles. These transient modes of operation	whether or not a suction accumulator needs to
	may lead to liquid refrigerant carry-over (or	be installed. The following considerations cover
	flood-back) or excessively wet refrigerant	the most important issues when dealing with
	return conditions. As such, reversible cycle	common applications. Each application design however should be thoroughly tested to ensure
	applications require specific precautions for ensuring a long compressor life and satisfactory	acceptable operating characteristics.
Discharge temperature	Heat pumps frequently utilize high condensing	temperature differentials between the evaporato
monitoring	temperatures in order to achieve a sufficient	and the outside temperature. This situation may
	temperature rise in the medium being heated.	result in high discharge temperature; as such, it is
	At the same time, they often require low	mandatory that a discharge gas safety control is
	At the same time, they often require low	manuatory that a discharge gas salety control is

Application guidelines	Specific application recommendations	
	sive temperatures. Operating the compressor at too high discharge temperatures can result in mechanical damage to the compressor as well as thermal degradation of the compressor lubricating oil and a lack of sufficient lubrication.	Refer to section "Discharge gas temperature protection" function for frequency converter settings and accessories availability.
Discharge line and reversing valve	The VSH scroll compressor is a high volumetric machine and, as such, can rapidly build up pressure in the discharge line if gas in the line becomes obstructed even for a very short period of time which situation may occur with slow- acting, reversing valves in heat pumps. Discharge pressures exceeding the operating envelope may result in nuisance high-pressure switch cutouts and can generate excessive load on bearings and	gas to collect and to reduce the pressure peak during the time it takes for the valve to change position. At the same time, it is important that the selection and sizing of the reversing or 4-way valve ensure that the valve switches quickly enough to prevent against too high discharge pressure and nuisance high-pressure cutouts. Check with the valve manufacturer for optimal
	motor.	sizing and recommended mounting positions.
	To prevent such occurrences, it is important that a 39.4 ft minimum discharge line length be allowed between the compressor discharge port and the reversing valve or any other restriction. This gives sufficient free volume for the discharge	It is strongly recommended to reduce the compressor speed to 30Hz before the 4-way valve is moved from a position to another. Refer also to high and low pressure protection.
Defrost and reverse cycle	After the 4-way valve is moved to defrost position, and in order to shorten the defrost period, the compressor speed can be maintained at 70Hz during the defrost period.	When the compressor is started again, after defrost, it will run at 30Hz for a 10 seconds period After this period it is recommended to maintain the speed at 50Hz for 10 to 15 seconds. Thus to avoid excessive liquid refrigerant to come back to the compressor sump.
Suction line accumulator	The use of a suction line accumulator is strongly recommended in reversible-cycle applications.	the cycle switches back to a defrost cycle or to normal cooling operations.
	This because of the possibility of a substantial quantity of liquid refrigerant remaining in the evaporator, which acts as a condenser during the heating cycle.	Sustained and repeated liquid slugging and floodback can seriously impair the oil's ability to lubricate the compressor bearings. This situation can be observed in wet climates where it is
	This liquid refrigerant can then return to the compressor, either flooding the sump with refrigerant or as a dynamic liquid slug when	necessary to frequently defrost the outdoor coil in an air source heat pump. In such cases a suction accumulator becomes mandatory.
Water utilizing systems	Apart from residual moisture in the system after commissioning, water could also enter the refrigeration circuit during operation. Water in the system shall always be avoided. Not only because it can shortly lead to electrical failure, sludge in sump and corrosion but in particular because it can cause serious safety risks. Common causes for water leaks are corrosion and freezing. Corrosion : Materials in the system shall be compliant with water and protected against corrosion.	Freezing : When water freezes into ice its volume expands which can damage heat exchanger walls and cause leaks. During off periods water inside heat exchangers could start freezing when ambient temperature is lower than 32°F. During on periods ice banking could occur when the circuit is running continuously at too low load. Both situations should be avoided by connecting a pressure and thermostat switch in the safety line.

Application guidelines	Sound and vibration management			
Running sound level	For VSH170, an inferior hood is delivered with the SSH (Surface Sump Heater) to improve its heating efficiency. Noise level for VSH170 given below includes this inferior hood attenuation. For VSH088 and VSH117, inferior hood are not available.	Model VSH088 VSH117 VSH170 Sound power at	Frequency (Hz) 30 60 90 30 60 90 30 60 90 30 60 90 30 60 90 ARI A/C conditions me	Noise Level (dBA) 67 74 84 68 77 85 68 (*) 79 (*) 88 (*) asured in free space.
Sound generation in a refrigeration or air conditioning system	Typical sound and vibration in refrigeration and air conditioning systems encountered by design and service engineers may be broken down into the following three source categories. Sound radiation : this generally takes an airborne path.	 (*) Level given with Surface Sump Heater and inferior installed at the bottom of the compressor. Mechanical vibrations: these generally examples along the parts of the unit and structure. Gas pulsation: this tends to travel through cooling medium, i.e. the refrigerant. 		er and inferior hood sor. generally extend I structure. avel through the erant. n the causes and
Compressor sound radiati	 on For sound radiating from the compressor, the emission path is airborne and the sound waves are travelling directly from the machine in all directions. The VSH scroll compressor is designed to be quiet and the frequency of the sound generated is pushed into the higher ranges, which not only are easier to reduce but also do not generate the penetrating power of lower-frequency sound. Use of sound-insulation materials on the inside of unit panels is an effective means of substantially reducing the sound being transmitted to the 	of transmittin come into di parts on the Because of th suction gas- insulation ac possible. Acc Danfoss as ac and easy to in	walls of the unit. ne VSH unique de cooled motor, con ross its entire ope pustic hoods are a ccessories. These I	n within the unit any non insulated sign of a full- npressor body rating range is vailable from noods are quick increase the overall
Mechanical vibrations	Vibration isolation constitutes the primary method for controlling structural vibration. VSH scroll compressors are designed to produce minimal vibration during operations. The use of rubber isolators on the compressor base plate or on the frame of a manifolded unit is very effective in reducing vibration being transmitted from the compressor(s) to the unit. Once the supplied rubber grommets have been properly mounted,	plate to the u In addition, if frame suppo of sufficient u any residual the frame. Fo	unit are held to a s t is extremely imp rting the mounter mass and stiffness vibration potentia or further informat s, please refer to t	ortant that the d compressor be to help dampen illy transmitted to ion on mounting
Speed by-pass	If vibrations occurs at some typical frequencies of the VSH inverter compressor system, design must be checked: frame, piping, pipes using cushioned clamps. But if some frequencies remain showing unacceptable vibration level, speed by-pass is	avoid some f Four by-pass	requency ranges.	nverter, in order to able, and settings *.
Gas pulsation	The VSH scroll compressor has been designed and tested to ensure that gas pulsation has been optimized for the most commonly encountered air conditioning pressure ratios. On heat pump installations and other installations where the pressure ratio lies beyond the typical range, testing should be conducted under all expected	conditions and operating configurations to ensure that minimum gas pulsation is prese an unacceptable level is identified, a dischar muffler with the appropriate resonant volur and mass should be installed. This informati can be obtained from the component manufacturer.		ation is present. If fied, a discharge esonant volume Fhis information

Application guidelines	Installation		
	Each compressor is shipped with printed instructions for installation. These instructions	can also be downloaded from: www.instructions.cc.danfoss. com	
Compressor handling	Each VSH scroll compressor is equipped with two lift rings on the top shell. Always use both these rings when lifting the compressor. Use lifting equipment rated and certified for the weight of the compressor. A spreader bar rated for the weight of the compressor is highly recommended to ensure a better load distribution. The use of lifting hooks closed with a clasp certified to lift the weight of the compressor is also highly recommended. Always respect the appropriate rules concerning lifting objects of the type and weight of these compressors. Maintain the compressor in an upright position during all handling operations. Never use only one lifting lug to lift the	When the compressor is mounted as part of an installation, never use the lift rings on the compressor to lift the installation. The risk is that the lugs could separate from the compressor or that the compressor could separate from the base frame with extensive damage and possible personal injury as a result.	
	compressor. The compressor is too heavy for the single lug to handle, and the risk is that the lug could separate from the compressor with extensive damage and possible personal injury as a result.	Never apply force to the terminal box with the intention of moving the compressor, as the force placed upon the terminal box can cause extensive damage to both the box and the components contained inside.	
Mounting	VSH compressors come delivered with four rubber mounting grommets and metal sleeve liners that serve to isolate the compressor from the base frame. These grommets must always be used to mount the compressor in a single application. The grommets must be compressed	until contact between the flat washer and the steel mounting sleeve is established. The grommets attenuate to a great extent the transmission of compressor vibrations to the base frame.	
	The required bolt size for the VSH 088 & 117 compressors is HM8-40. This bolt must be tightened to a torque of 11 ft.lb.	The required bolt size for VSH170 compressors is HM8-55 and must be tightened to a torque of 15 ft.lb.	
	HM 8 bolt Lock washer Flat washer Steel mounting sleeve Rubber grommet Nut	HM 8 bolt Lock washer Flat washer Steel mounting sleeve Nut	
Removing connections shipping plugs	Before the suction and discharge plugs are removed, the nitrogen holding charge must be released via the suction schrader valve to avoid an oil mist blowout. Remove the suction plug first and the discharge plug afterwards. The plugs shall be removed only just before connecting the	compressor to the installation in order to avoid moisture from entering the compressor. When the plugs are removed, it is essential to keep the compressor in an upright position so as to avoid oil spillage.	

Danfoss

Application guidelines	Installation	
System cleanliness	The refrigerant compression system, regardless of the type of compressor used, will only provide high efficiency and good reliability, along with a long operating life, if the system contains solely the refrigerant and oil it was designed for. Any other substances within the system will not improve performance and, in most cases, will be highly detrimental to system operations.	The presence of non-condensable substances and system contaminants such as metal shavings, solder and flux, have a negative impact on compressor service life. Many of these contaminants are small enough to pass through a mesh screen and can cause considerable damage within a bearing assembly.
	The use of highly hygroscopic polyolester oil in R410A compressors requires that the oil be exposed to the atmosphere as little as possible. System contamination is one of main factors affecting equipment reliability and compressor service life. It is important therefore to take system cleanliness into account when assembling a refrigeration system. During the manufacturing process, circuit	contamination may be caused by: • Brazing and welding oxides, • Filings and particles from the removal of burrs in pipe-work, • Brazing flux, • Moisture and air. Consequently, when building equipment and assemblies, the precautions listed in the following paragraphs must be taken.
Tubing	Only use clean and dehydrated refrigeration- grade copper tubing. Tube-cutting must be carried out so as not to deform the tubing roundness and to ensure that no foreign debris remains within the tubing. Only refrigerant grade fittings should be used and these must be of	both a design and size to allow for a minimum pressure drop through the completed assembly. Follow the brazing instructions bellow. Never drill holes into parts of the pipe-work where filings and particles can not be removed.
Filter driers	For new installations with VSH compressors with polyolester oil, Danfoss recommends using the Danfoss DML 100% molecular sieve, solid core filter drier. Molecular sieve filter driers with loose beads from third party suppliers shall be avoided. For servicing of existing installations where acid formation is present the Danfoss DCL solid core filter driers containing activated alumina are recommended.	The drier is to be oversized rather than undersized. When selecting a drier, always take into account its capacity (water content capacity), the system refrigeration capacity and the system refrigerant charge.
Brazing and soldering Copper to copper connections	When brazing copper-to-copper connections, the use of copper/phosphorus brazing alloy containing 5% silver or more with a melting	temperature of below 1500°F is recommended. No flux is required during brazing.
Dissimilar metals connections	When manipulating dissimilar metals such as copport anti-oxidant flux is necessary.	er and brass or steel, the use of silver solder and
Compressor connection	When brazing the compressor fittings, do not overheat the compressor shell, which could severely damage certain internal components due to excessive heating. Use of a heat shield and/or a heat-absorbent compound is highly recommended. Due to the relatively sizable tubing and fitting diameters a double-tipped torch using acetylene is recommended for brazing operation on VSH compressors.	heat shield

Application guidelines	Installation	
	 For brazing the suction and discharge connections, the following procedure is advised: Make sure that no electrical wiring is connected to the compressor. Protect the terminal box and compressor mainted wire as form to the box and compressor 	 Remove all remaining flux once the joint has been soldered with a wire brush or a wet cloth Remaining flux would cause corrosion of the tubing.
	 painted surfaces from torch heat damage (see diagram). Remove the Teflon gaskets when brazing rotolock connectors with solder sleeves. Use only clean refrigeration-grade copper 	Ensure that no flux is allowed to enter into the tubing or compressor. Flux is acidic and can caus substantial damage to the internal parts of the system and compressor.
	 tubing and clean all connections. Use brazing material with a minimum of 5% silver content. Purge nitrogen or CO₂ through the compressor in order to prevent against oxidation and flammable conditions. The compressor should not be exposed to the open air for extended periods. Use of a double-tipped torch is recommended. Apply heat evenly to area A until the brazing temperature is reached. Move the torch to area B and apply heat evenly until the brazing temperature has been reached there as well, and then begin adding the brazing material. Move the torch evenly around the joint, in applying only enough brazing material to flow 	The polyolester oil used in VSH compressors is highly hygroscopic and will rapidly absorb moisture from the air. The compressor must therefore not be left open to the atmosphere for a long period of time. The compressor fitting plugs shall be removed just before brazing the compressor. The compressor should always be the last component brazed into the system Before eventual unbrazing the compressor or any system component, the refrigerant charge must be removed from both the high- and low-pressure sides. Failure to do so may result in serious personal injury. Pressure gauges must be used to ensure all pressures are at atmospheric level.
	 the full circumference of the joint. Move the torch to area C only long enough to draw the brazing material into the joint, but not into the compressor. 	For more detailed information on the appropriat materials required for brazing or soldering, pleas contact the product manufacturer or distributor. For specific applications not covered herein, please contact Danfoss for further information.
System pressure test	Always use an inert gas such as nitrogen for pressure testing. Never use other gasses such as oxygen, dry air or acetylene as these may form	an inflammable mixture. Do not exceed the following pressures:
	Maximum compressor test pressure (low side)	483 psig for VSH088 & 117 438 psig for VSH170
	Maximum compressor test pressure (high side)	645 psig
	Maximum pressure difference between high and low side of the compressor	537 psi
	Pressurize the system on HP side first then LP side to prevent rotation of the scroll. Never let the	pressure on LP side exceed the pressure on HP side with more than 73 psig.
Leak detection	Leak detection must be carried out using a mixture of nitrogen and refrigerant or nitrogen and helium, as indicated in the table below. Never use other gasses such as oxygen, dry air or acetylene as these may form an inflammable	Pressurize the system on HP side first then LP side. Leak detection kith refrigerant Leak detection with a mass spectrometer
	mixture.	Nitrogen & R410A Nitrogen & Helium

Danfoss

Application guidelines	Installation	
Vacuum pump down and moisture removal	Moisture obstructs the proper functioning of both the compressor and the refrigeration system. Air and moisture reduce service life and increase condensation pressure, which causes abnormally high discharge temperatures that are then capable of degrading the lubricating properties of the oil. The risk of acid formation is also increased by air and moisture, and this	condition can also lead to copper plating. All these phenomena may cause both mechanical and electrical compressor failures. The typical method for avoiding such problems is a vacuum pump-down executed with a vacuum pump, thus creating a minimum vacuum of 500 microns (0.67 mbar). Please refer to News bulletin "Vacuum pump down and dehydration procedure".
Refrigerant charging	 Air-conditioning installations exist in a multiple of designs and with many possible system components installed. The system design and the presence or absence of certain components, not only influence the system behaviour during operations; they can also be of a great influence during the refrigerant charging procedure. Improper charging procedure could cause compressor damage in several ways excessive LP/HP pressure differences, liquid slugging or vacuum operation. The below charge procedure is strongly recommended to reduce these risks. Prior to refrigerant charging a system vacuum and moisture removal procedure must have been carried out. (See previous paragraph) Always use a scale to measure actual refrigerant R410A charge quantity. Record system charge when completed. The refrigerant must be charged in the liquid phase for R410A. The refrigerant must be charged at the liquid side of the refrigeration circuit. The best charging location is the service shut-off valve at the liquid line. When a liquid line solenoid valve (LLSV) is present, it must be closed (de-energised) and the charge location must be before the LLSV. If the system is equipped with an electronic expansion valve (EXV), this valve must be fully closed (opening degree: 0%). Loosely connect the service manifold HP hose to a gauge fitting on the liquid side as described above. Connect the LP hose to a fitting on the suction line as far away as possible from the compressor. The compressor must be off and prevented from starting inadvertently/automatically. If the system is equipped with a liquid line service shut-off valve, put this valve in an intermediate position (between front seat and back seat). 	 Start the charging process: Using a charging machine the refrigerant charge specified can be achieved in one step If using a refrigerant cylinder, it can be warmed up carefully to avoid generating over pressure, but increase enough the tank pressure to allow the complete transfer. If neither EXV nor LLSV is present, take extra care not filling up the compressor sump with liquid refrigerant via the evaporator and suction line. "Crack" open the LP service gauge manifold valve. The pressure in the system LP side increase slowly until LP pressure equals HP pressure. The pressure increase at LP side shall not be faster than 0.25 bar/second. A brutal pressor can be started. Make sure the compressor is not going to run under vacuum. If this situation appears then manually stop and restart the compressor. When a EXV is used it can be prepositioned at given opening degree to avoid running at low evaporating during EXV self adjustment. Never by-pass the LP pressure switch. Allow the system to operate until the design operating temperature has been achieved before making final refrigerant charge adjustment. The additional refrigerant charge must be done on the LP side by slowly throttling through the Schrader fitting. Continue to monitor the system closely throughout the entire, initial pull-down period. Observe all operating system pressures and temperatures and make any other necessary control adjustments. During this time, the compressor oil level should be maintained within the sight glass and suction superheat measured at the

<u>Danfoss</u>

Application guidelines	Installation		
	compressor suction to ensure adequate motor cooling and no liquid refrigerant is being returned directly to the compressor.		
Commissioning	 The system must be monitored after initial start- up for a minimum of 60 minutes to ensure proper operating characteristics such as: Proper metering device operation and desired superheat readings Suction and discharge pressure are within acceptable levels Correct oil level in compressor sump indicating proper oil return Low foaming in sight glass and compressor sump temperature 18°F above saturation temperature to show that there is no refrigerant migration taking place Acceptable cycling rate of compressors, including duration of run times 	 A short cycling protection is provided in the CDS302 frequency converter. It is factory preset "enabled" with the following parameters in: 28.01 interval between 2 starts: 300 seconder 28.02 minimum run time: 12 seconds This minimum run time is set to guaranty long enough running time at start up in order to create enough refrigerant flow velocity in the system to recover the oil to the compressor sump. Current draw of compressor within acceptable values (RLA ratings) No abnormal vibrations and noise. 	
Optional relay card	In some situation, an optional relay card is needed and installed on the frequency converter. This will give access to extra parameters that will have to be set according to the application needs. These settings can be done directly to the frequency converter or downloaded to it (via a LCP for example).	Afterwards, if the relay card is removed and the frequency converter is powered-up without the relay card in place, the settings will be loosed and reset to factory settings. Therefore, during commissioning or card replacement, it is important to not power-up the frequency converter while the relay card is not in place.	
Oil level checking and top-up	In installations with good oil return and line runs up to 66 ft, no additional oil is required. If installation lines exceed 66 ft, additional oil may be needed. 1 or 2% of the total system refrigerant charge (in weight) can be used to roughly define the required oil top-up quantity but in any case the oil charge has to be adjusted based on the oil level in the compressor sight glass.	The oil level can also be checked a few minutes after the compressor stops, the level must be between ¼ and ¾ of sight glass. When the compressor is off, the level in the sight glass can be influenced by the presence of refrigerant in the oil. Always use original Danfoss POE oil 160SZ from	
	When the compressor is running under stabilized conditions the oil level must be visible in the sight glass. The presence of foam filling in the sight glass indicates large concentration of refrigerant in the oil and / or presence of liquid returning to the compressor.	new cans. Top-up the oil while the compressor is idle. Use the schrader connector or any other accessible connector on the compressor suction line and a suitable pump. See News bulletin "Lubricants filling in instructions for Danfoss Commercial Compressors".	

Dantoss

Application guidelines

Ordering information and packaging

Kit ordering and shipping

The tables on the following pages give code numbers for ordering purposes for the VSH

compressor and CDS302 frequency converter kit packed and shipped separately.

Packaging

Heia

Compressor single pack

Compressor model	Height (inch)	Width (inch)	Depth (inch)	Weight (lb)
VSH088	22.8	17.9	14.0	130
VSH117	22.8	17.9	14.0	143
VSH170	30.1	20.3	17.7	234

Frequency converter single pack

	Drive	Drive		IP20			IP55			
CD302 packaging	supply voltage	power (kW)	Height (inch)	Width (inch)	Depth (inch)	Weight (lb)	Height (inch)	Width (inch)	Depth (inch)	Weight (lb)
	T2	15	13.6	31.9	12.6	53	16.9	31.7	15.9	101
	12	18 - 22	17.2	31.7	15.9	79	17.2	31.7	15.9	101
	T4	15	13.7	19.7	13.0	29	13.6	31.9	12.6	53
	14	18 - 22	13.6	31.9	12.6	53	13.6	31.9	12.6	62
Depth	T6	15	13.7	19.7	13.0	29	13.6	31.9	12.6	53
Width		18 – 22	13.6	31.9	12.6	53	13.6	31.9	12.6	62

VSH voltage code J - 200-240 Volt

Com	oressor	Frequency converter							
Model	Code n° for ordering	Model & power	LCP	IP class	RFI class	Coating	Code n° for ordering		
			No	IP20	H2	No	131H9124		
VSH088-J	120G0004	CDS302	INO		ΠZ	Yes	131H9125		
V2H088-J		15.0kW	Vaa	IP20	H2	No	131H9132		
			Yes	IP55	H2	Yes	131H9137		
			No 02	IP20	H3	No	131H9138		
		CDS302			H2	No	131H9140		
VSH117-J	120G0005					Yes	131H9141		
VSHI17-J	12060005	18.5kW		IP20	H3	No	131F0395		
			Yes	IP20	H2	No	131H9147		
				IP55	H2	Yes	131H9152		
			Na	1020		No	131H9155		
VSH170-J	120G0006	CDS302 22.0kW	No	IP20	H2	Yes	131H9156		
			Yes	IP20	H2	No	131H9162		

Danfoss

Application guidelines Ord

Ordering information and packaging

VSH voltage code G - 380-480 Volt

Comp	ressor			Free	quency con	verter		
Model	Code n° for ordering	Model & power	LCP	IP class	RFI class	Coating	Code n° for ordering	
					H3	No	131H4380	
			No	IP20	H2	No	131H9078	
			NO		пг	Yes	131H9080	
				IP55	H2	Yes	131H9084	
VSH088-G	120G0001	CDS302			H3	No	131B8789	
A2000-G	12000001	15.0kW		IP20	П3	Yes	131H9085	
			Yes	IPZU	H2	No	131H9086	
			res		п2	Yes	131H9087	
				IP55	H3	No	131H9088	
					H2	Yes	131H9091	
		No CDS302 18.5kW Yes	Na	IP20	H3	No	131H4381	
						No	131H9093	
	120G0002		INO		H2	Yes	131H9094	
VSH117-G				IP55	H2	Yes	131H9097	
				1020	H3	No	131F5247	
			Yes	Yes IP20	H2	No	131H9100	
				IP55	H2	Yes	131H9106	
					H3	No	131H4382	
				IP20	ПЗ	Yes	131H9107	
			No	IP20	H2	No	131H9108	
			INO		нz	Yes	131H9109	
	1200000	CDS302		IDEE	H3	Yes	131H9111	
VSH170-G	120G0003	22.0 kW		IP55	H2	Yes	131H9113	
				IP20	H2	No	131H9116	
			Vaa		H3	Yes	131H9119	
			Yes	Yes	Yes IP55	H2	No	131H9120
					ΠZ	Yes	131H9121	

VSH voltage code H - 525-600 Volt

Comp	Compressor		Frequency converter				
Model	Code n° for ordering	Model & power	LCP	IP class	RFI class	Coating	Code n° for ordering
VSH088-H	120G0007	CDS302 15.0kW	No	IP20	нх	No	131N3583
VSH117-H	120G0008	CDS302 18.5kW	Yes	IP20	НХ	No	131N6989
VSH170-H	120G0009	CDS302 22.0 kW	Yes	IP20	НХ	No	131N6998

Valves, adapters, connectors & gaskets for use on suction and discharge connections

Solder sleeve adapter sets

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0125	Solder sleeve adapter set (1"3/4 Rotolock, 1"1/8 ODF), (1"1/4 Rotolock, 7/8" ODF)	VSH088	Multipack	8
	120Z0405	Solder sleeve adapter set (1"3/4 rotolock, 1"3/8 ODF), (1"1/4 rotolock, 7/8" ODF)	VSH117	Multipack	8
	7765028	Solder sleeve adapter set, (2"1/4 Rotolock, 1"5/8 ODF), (1"3/4 Rotolock, 1"1/8 ODF)	VSH170	Multipack	6

Rotolock adapter

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0367	Rotolock adapter (1"1/4" Rotolock, 7/8" ODF)	VSH 088-117 (Discharge side)	Multipack	10
	120Z0364	Rotolock adapter (1"3/4 Rotolock, 1"1/8 ODF)	VSH 088 (Suction side) VSH 170 (Discharge side)	Multipack	10
	120Z0431	Rotolock adapter (1"3/4 Rotolock, 1"3/8 ODF)	VSH 117 (Suction side)	Multipack	10
	120Z0432	Rotolock adapter (2"1/4 Rotolock, 1"5/8 ODF)	VSH 170 (Suction side)	Multipack	10

Gaskets and gasket set

Туре	Code n°	Description	Application	Packaging	Pack size
G07	8156132	Gasket, 1"3/4	Models with 1"3/4 rotolock connection	Multipack	10
G07	7956003	Gasket, 1"3/4	Models with 1"3/4 rotolock connection	Industry pack	50
G08	8156133	Gasket, 2"1/4	Models with 2"1/4 rotolock connection	Multipack	10
G08	7956004	Gasket, 2"1/4	Models with 2"1/4 rotolock connection	Industry pack	50
	8156013	Gasket set, 1"1/4, 1"3/4, 2"1/4, OSG gaskets black & white	All rotolock models	Multipack	10

Solder sleeves

Туре	Code n°	Description	Application	Packaging	Pack size
P02	8153004	Solder sleeve, P02 (1"3/4 Rotolock, 1"1/8 ODF)	Models with 1"3/4 rotolock connection	Multipack	10
P02	7953005	Solder sleeve, P02 (1"3/4 Rotolock, 1"1/8 ODF)	Models with 1"3/4 rotolock connection	Industry pack	50
P10	8153003	Solder sleeve, P10 (1"3/4 Rotolock, 1"3/8 ODF)	Models with 1"3/4 rotolock connection	Multipack	10
P03	8153006	Solder sleeve, P03 (2"1/4 Rotolock, 1"5/8 ODF)	Models with 2"1/4 rotolock connection	Multipack	10
P03	7953006	Solder sleeve, P03 (2"1/4 Rotolock, 1"5/8 ODF)	Models with 2"1/4 rotolock connection	Industry pack	50

Rotolock nuts

Туре	Code n°	Description	Application	Packaging	Pack size
	8153124	Rotolock nut, 1"3/4	Models with 1"3/4 rotolock connection	Multipack	10
	7953003	Rotolock nut, 1"3/4	Models with 1"3/4 rotolock connection	Industry pack	50
	8153126	Rotolock nut, 2"1/4	Models with 2"1/4 rotolock connection	Multipack	10
	120Z0047	Rotolock nut, 2"1/4	Models with 2"1/4 rotolock connection	Industry pack	50

Rotolock service valves and valve sets (without gasket)

Туре	Code n°	Description	Application	Packaging	Pack size
V05	8168030	Rotolock valve, V05 (1"1/4 Rotolock, 7/8" ODF)	Models with 1"1/4 rotolock connection	Multipack	6
V05	7968007	Rotolock valve, V05 (1"1/4 Rotolock, 7/8" ODF)	Models with 1"1/4 rotolock connection	Industry pack	36
V02	8168028	Rotolock valve, V02 (1"3/4 Rotolock, 1"1/8 ODF)	Models with 1"3/4 rotolock connection	Multipack	6
V02	7968009	Rotolock valve, V02 (1"3/4 Rotolock, 1"1/8 ODF)	Models with 1"3/4 rotolock connection	Industry pack	24
V10	8168022	Rotolock valve, V10 (1"3/4 Rotolock, 1"3/8 ODF)	Models with 1"3/4 rotolock connection	Single pack	1
V03	8168026	Rotolock valve, V03 (2-1/4" Rotolock, 1"5/8 ODF)	Models with 2"1/4 rotolock connection	Multipack	6
V03	7968011	Rotolock valve, V03 (2-1/4" Rotolock, 1"5/8 ODF)	Models with 2"1/4 rotolock connection	Industry pack	18
V02-V05	7703008	Valve set, V02(1"3/4~1"1/8), V05(1"1/4~7/8")	VSH088	Multipack	6
V02-V05	120Z0403	Valve set, V02(1"3/4~1"1/8), V05(1"1/4~7/8")	VSH088	Multipack	8
V10-V05	7703392	Valve set, V10 (1"3/4~1"3/8), V05 (1"1/4~7/8")	VSH117	Multipack	6
V03-V02	7703383	Valve set, V03 (2-1/4"~1"5/8), V02 (1"3/4~1"1/8)	VSH170	Multipack	4

Rotolock angle adapters and sets

Туре	Code n°	Description	Application	Packaging	Pack size
C03	8168006	Angle adapter, C04 (1"1/4 Rotolock, 3/4" ODF)	Models with 1"1/4 rotolock connection	Multipack	6
C07	8168008	Angle adapter, C07 (1"3/4 Rotolock, 7/8" ODF)	Models with 1"3/4 rotolock connection	Multipack	6
C02	8168005	Angle adapter, C02 (1"3/4 Rotolock, 1"1/8 ODF)	Models with 1"3/4 rotolock connection	Multipack	6

Crankcase heaters & thermostats

Crankcase heaters

Туре	Code n°	Description	Application	Packaging	Pack size
	7773109	Belt type crankcase heater, 65 W, 110 V, CE mark, UL		Multipack	6
	7973001	Belt type crankcase heater, 65 W, 110 V, CE mark, UL		Industry pack	50
	7773107	Belt type crankcase heater, 65 W, 230 V, CE mark, UL	VSH088-117	Multipack	6
	120Z0038	Belt type crankcase heater, 65 W, 230 V, CE mark, UL		Multipack	8
	7973002	Belt type crankcase heater, 65 W, 230 V, CE mark, UL		Industry pack	50
	7773117	Belt type crankcase heater, 65 W, 400 V, CE mark, UL		Multipack	6
	120Z0039	Belt type crankcase heater, 65 W, 400 V, CE mark, UL		Multipack	8
	120Z0466	Belt type crankcase heater, 65 W, 460 V, CE mark, UL		Multipack	6
	120Z0467	Belt type crankcase heater, 65 W, 575 V, CE mark, UL		Multipack	6
	7773110	Belt type crankcase heater, 75 W, 110 V, CE mark, UL		Multipack	6
	7773108	Belt type crankcase heater, 75 W, 230 V, CE mark, UL	VSH170	Multipack	6
	7773118	Belt type crankcase heater, 75 W, 400 V, CE mark, UL		Multipack	6

Surface sump heaters

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0388	Surface sump heater, 80 W, 24 V, CE, UL		Multipack	8
	120Z0389	Surface sump heater, 80 W, 230 V, CE, UL		Multipack	8
	120Z0390	Surface sump heater, 80 W, 400 V, CE, UL	VSH088-117	Multipack	8
	120Z0391	Surface sump heater, 80 W, 460 V,CE, UL		Multipack	8
	120Z0402	Surface sump heater, 80 W, 575 V, CE, UL		Multipack	8
	120Z0360	Surface sump heater + bottom insulation, 56 W, 24 V, CE, UL		Multipack	6
	120Z0376	Surface sump heater + bottom insulation, 56 W, 230 V, CE, UL		Multipack	6
	120Z0377	Surface sump heater + bottom insulation, 56 W, 400 V, CE, UL	VSH170	Multipack	6
	120Z0378	Surface sump heater + bottom insulation, 56 W, 460 V, CE, UL		Multipack	6
	120Z0379	Surface sump heater + bottom insulation, 56 W, 575 V, CE, UL		Multipack	6

Application	guidelines	Accessories
/ ppileation	3414411145	

Discharge thermostats and sensors

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0157	Discharge temperature sensor / converter kit	VSH all models	Single pack	1
	120Z0158	Discharge temperature sensor	VSH all models	Single pack	1
	120Z0159	Discharge temperature converter	VSH all models	Single pack	1
	7750009	Discharge thermostat kit	VSH all models	Multipack	10

Lubricant , acoustic hoods and spareparts

Acoustic hoods

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0152	Acoustic hood for VSD Scroll compressors	VSH088-G/H	Single pack	1
	120Z0153	Acoustic hood for VSD Scroll compressors	VSH117-G/H	Single pack	1
	120Z0154	Acoustic hood for VSD Scroll compressors	VSH170-G/H/J	Single pack	1
	120Z0155	Acoustic hood for VSD Scroll compressors	VSH088-J	Single pack	1
	120Z0156	Acoustic hood for VSD Scroll compressors	VSH117-J	Single pack	1

Mounting kits

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0066	Mounting kit for 1 scroll compressor including 4 grommets, 4 sleeves, 4 bolts, 4 washers	VSH088-117	Single pack	1
	8156138	Mounting kit for 1 scroll compressor including 4 grommets, 4 sleeves, 4 bolts, 4 washers	VSH170	Single pack	1

Terminal boxes, covers & T-block connectors

Туре	Code n°	Description	Application	Packaging	Pack size
	8173230	T block connector 52 x 57 mm	VSH088-G/H.VSH117-G/H	Multipack	10
	8173021	T block connector 60 x 75 mm	VSH088-J.VSH117-J.VSH170-G/H	Multipack	10
	8173331	T block connector 80 x 80 mm	VSH170-J	Multipack	10
	120Z0146	Electrical box	VSH088-G/H.VSH117-G/H	Single pack	1
	120Z0147	Electrical box	VSH170-G/H/J	Single pack	1
	120Z0148	Electrical box	VSH088-117-J	Single pack	1
	120Z0149	Electrical box cover	VSH088-G/H.VSH117-G/H	Single pack	1
	120Z0150	Electrical box cover	VSH170-G/H/J	Single pack	1
	120Z0151	Electrical box cover	VSH088-117-J	Single pack	1

Coil

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0143	Coil / 230V	VSH all models	Single pack	1
	120Z0144	Coil / 24V	VSH all models	Single pack	1

Valve Body

Туре	Code n°	Description	Application	Packaging	Pack size
	120Z0145	Valve body	VSH all models	Single pack	1

Lubricant / oils

Туре	Code n°	Description	Application	Packaging	Pack size
160SZ	7754023	POE lubricant, 160SZ, 1 litre can	VSH with R410A	Multipack	12
160SZ	7754024	POE lubricant, 160SZ, 2 litre can	VSH with R410A	Multipack	8

Miscellaneous

Туре	Code n°	Description	Application	Packaging	Pack size
	8156019	Oil sight glass with gaskets (black & white)	VSH all models	Multipack	4
	8156129	Gasket for oil sight glass (white teflon)	VSH all models	Multipack	10
	7956005	Gasket for oil sight glass (white teflon)	VSH all models	Industry pack	50
	8154001	Danfoss CC blue spray paint	VSH all models	Single pack	1

Spare parts frequency converter

LCP's

Code n°	Description	Application	Packaging	Pack size
120Z0326	LCP	Frequency converter / all models	Single pack	1
175Z0929	RS cable to LCP	Frequency converter / all models	Single pack	1
130B1077	LCP Blind cover	Frequency converter IP55/IP66	Single pack	1

Fans

Code n°	Description	Application	Packaging	Pack size
130B3406	Fan 1 (main) IP55	18,5 -22 kW	Single pack	1

Control card

Code n°	Description	Application	Packaging	Pack size
130B1109	Control card	Frequency converter / all models	Single pack	1

Accessory bags

Code n°	Description	Application	Packaging	Pack size
130B0980	Accessory bag IP20	15 - 18.5 kW	Single pack	1

Relays card

Code n°	Description	Application	Packaging	Pack size
120Z0350	Relays card	Frequency converter	Single pack	1

Danfoss

Previous version

- Page 8: Compressor nomenclature
- Page 32: Approvals and certificates
- Page 52: Accessories

Current version

- Page 8: Updated Evolution index in Compressor nomenclature
- Page 32: Updated Approvals and certificates & Added Low voltage directive
- Page 52: Updated Solder sleeve adapter sets in Accessories

Danfoss Commercial Compressors

is a worldwide manufacturer of compressors and condensing units for refrigeration and HVAC applications. With a wide range of high quality and innovative products we help your company to find the best possible energy efficient solution that respects the environment and reduces total life cycle costs.

We have 40 years of experience within the development of hermetic compressors which has brought us amongst the global leaders in our business, and positioned us as distinct variable speed technology specialists. Today we operate from engineering and manufacturing facilities spanning across three continents.

Our products can be found in a variety of applications such as rooftops, chillers, residential air conditioners, heatpumps, coldrooms, supermarkets, milk tank cooling and industrial cooling processes.

http://danfoss.us.com

Danfoss Commercial Compressors, BP 331, 01603 Trévoux Cedex, France | +334 74 00 28 29

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

SERCON