

Save energy and protect the environment with our CO₂ solutions

Experience the Danfoss CO₂ expertise in Food Retail, Commercial and Industrial Refrigeration

www.danfoss.com/co2

CO₂ info

In recent years, CO_2 has become an increasingly important refrigerant in a number of applications. Most important to this development, is that from an environmental and safety perspective, CO_2 is one of the few sustainable refrigerants for supermarket systems. However, CO_2 is not a drop-in replacement for all existing refrigerants, and its suitability for each application should be evaluated against TEWI (Total Equivalent Warming Impact) and life-time cost.

Danfoss considers CO_2 to be among the most attractive refrigerants in industrial refrigeration and food retail applications. This is also confirmed by developments seen in the refrigeration market-place. Danfoss offers a variety of products for all CO_2 applications, in-cluding subcritical, transcritical, pump-circulated and hybrid systems.

Why CO₂

A sustainable choice

- Environmentally exceptional
- CO₂ does not effect the ozone layer and compared with traditional HFC refrigerants has up to 4000 times less impact on global warming
- A refrigerant that won't be phased out. Therefore no need to worry about pending legislation for HFC reduction and phase out, costly refrigerant management schemes, or increasing refrigerant cost and taxation
- It's the easiest way to shrink your carbon footprint and supermarkets report carbon footprint reductions of more than 30% taking all sources into account such as administration, distribution and lighting, by simply switching to CO₂ refrigeration

An efficient choice

- Superior thermophysical properties
- High volumetric efficiency translates into smaller pipes, insulation and compressors
- High heat transfer efficiency translates into greater capacities with smaller footprints
- Proven savings End users, both industrial and commercial are beginning to report results. CO₂ reduces operating costs
- Cascade systems with CO₂ provide high efficiency in all climates
- Transcritical systems provide an efficient, simple and cost effective solution in milder climates
- In secondary sytems CO₂ will save up to 90% on pumping power vs. traditional brines

Customer benefits

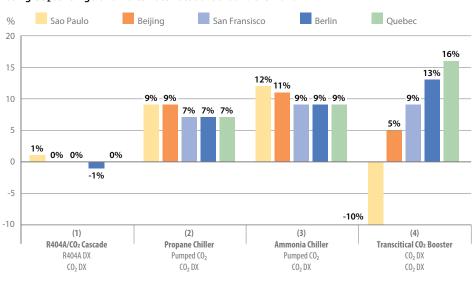
Danfoss offers complete CO₂ system solutions including:

ADAP-KOOL® control and monitoring systems, regulating and injection valves, sensors (temperature, pressure, gas detectors), filter driers and line components.

Danfoss components provide the lowest total cost of ownership, while also reducing the total carbon footprint of supermarket refrigeration systems; both direct and indirect. With the experience from thousands of both transcritical and cascade installations, Danfoss is a reliable partner. All components released for CO₂ have been thoroughly tested to ensure that they can withstand the impact of CO₂. Danfoss can offer support as well as monitoring services for CO₂ systems.

Energy Savings

Energy Savings/environmentally sustainable


As a refrigerant CO_2 has beneficial thermo-physical properties that translate into reduced line losses, smaller dimensions, and supreme heat transfer. The newest systems take full advantage of the high quality heat rejected from the refrigeration system by recovering it for space and process heating purposes. The new AHR award winning pack controller from Danfoss, is saving retailers 30% on the combined energy required for heating and cooling; extreme operating cost savings!

If all supermarkets worldwide were to switch to CO_2 , over 50 million tons of CO_2 equivalent emisions could be saved annually.

Expert in CO₂ refrigeration

Danfoss is an experienced and reliable partner

- with over 2500 CO₂ transcritical systems installed globally
- with more than a decade with CO₂ valves in the field
- with 10+ years of extensive experience within CO₂ system design in all areas (control, valves and compressors)

Energy savings compared to state of the industry reference of different configurations using CO_2 as refrigerant in alternate locations around the world

CO₂ Applications and environmental impact

Broad application range

Due to factors such as the efficiency, safety, toxicity and global climate impact of a refrigerant, it is clear that no single refrigerant is ideal for every application. Danfoss believes that CO_2 as a refrigerant is beneficial in a broad variety of applications for different reasons. The primary applications where the use of CO_2 can provide most advantage include the following; food retail, industrial, heat pumps, transport refrigeration, server cooling and electronic cabinet cooling. The main reasons for each are listed. **Food retail:** The leakage of high GWP (Global Warming Potential) refrigerants from food retail installations make this a natural target for environmental legislation. Non-toxic and non-flammable, CO₂ lends itself well to this segment.

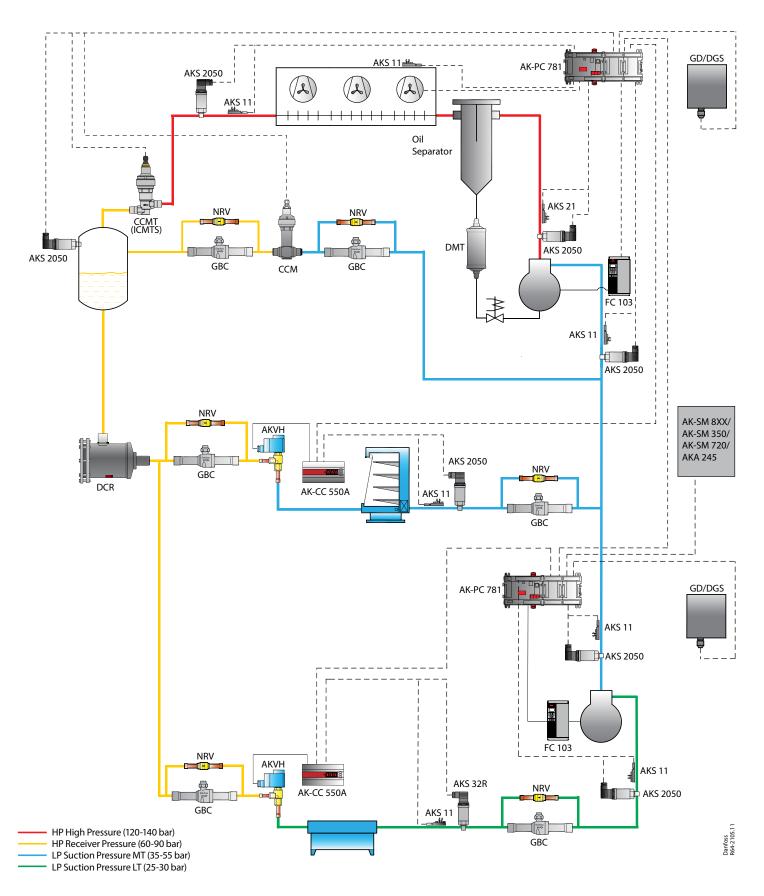
Industrial: CO₂ is extremely efficient as a secondary fluid for medium temperature applications. As a refrigerant it is most efficient at low temperatures. As it also has excellent heat transfer properties and high volumetric efficiency, many products can be frozen in small footprints.

Transport: This is an application where refrigerant leakage rates can cause significant environmental impact. Nontoxic and non-flammable, CO_2 can be applied here to reduce the overall carbon footprint within the sector.

Heat pumps: Where hot water is needed, CO₂ is the perfect solution. Transcritical CO₂ cycles reject a large proportion of the cycle heat at high temperatures. This also makes CO₂ an efficient choice in applications where both heating and cooling is required.

cooling

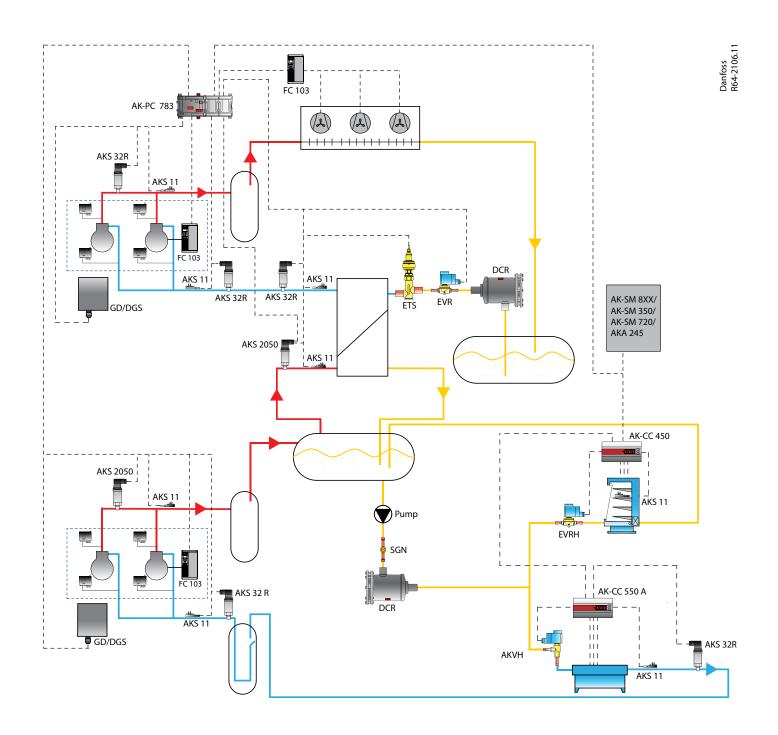
Server and electronic cabinet cooling:


Non-flammability and high heat transfer efficiency within small footprints is key when dealing with electronic applications. CO₂ may also be used in free-cooling circuits where minimal power is needed to circulate the media.

Danfoss is joining customers in celebrating the successes of implementing CO_2 systems. The following pages highlight two key applications and just a few of these success stories.

30.000 km is how far you can drive a Volkswagen Golf 2.0 TDI to emit an amount of CO_2 equivalent to leaking 1kg of R404A.

Food retail transcritical booster system


The transcritical booster system enables high efficient heat reclaim and is one of the most promising systems in cold to mild climate areas. The reason for this is that the energy consumption is on the same level or better than R404A systems or better and the design is relatively simple. A typical CO₂ transcritical booster system is divided in to three pressure sections; high pressure section, intermediate pressure section and low pressure section. Controls for a transcritical system can be divided into four groups; gas cooler controls, receiver controls, injection controls and compressor capacity controls.

Food retail cascade HC/HFC-CO₂ system

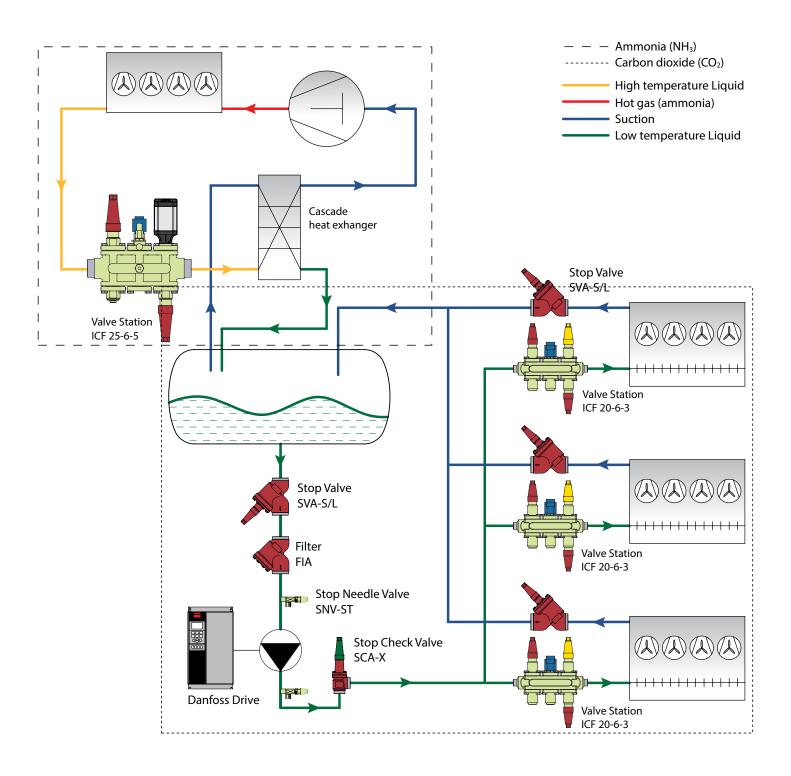
- Applying CO_2 in cascade systems gives a number of advantages:
- Efficiency of the system is high even in the hot climates
- Only a small amount of refrigerant is needed for high temperature stage
- Temperature difference for cascade heat exchanger is relatively low
- On the high side various refrigerants can be used e.g. ${\rm HC/HFC}$ or ${\rm NH}_3$

Control of cascade systems can be divided into condenser capacity control, compressor capacity control, cascade injection control, MT evaporator CO_2 flow control and LT evaporator injection control.

HP vapour refrigerant
HP liquid refrigerant
LP vapour refrigerant

Industrial refrigeration CO₂ secondary cooling system

Research has shown that installation of a refrigeration system using CO_2 as a fluid is no more expensive than a system installed using a water-based brine/glycol while providing energy savings of up to 20%.


For an experienced installation company it can be cheaper to install a 500 kW

refrigeration installation for cold storage using CO_2 than a water-based secondary cooling system. Examples have shown that savings on the installation can be up to 12%, using a CO_2 based refrigeration system.

Systems using CO_2 as a fluid are relatively simple. The main difference when com-

pared to a water-based brine/glycol system is that the piping and component size on a CO_2 system is considerably smaller for the same capacity.

Visit www.danfoss.com/COtoo and calculate your own savings.

CO₂ myths & facts - how much can you save?

Check out the myths and facts about CO₂ on <u>http://co2facts.danfoss.com/</u>

You can find more detailed information about the benefits of using CO_2 , and besides the myths and facts you can: calculate your savings, explore which technology is optimal for your system; see different application examples; get an overview of Danfoss CO_2 products for both food retail applications and industrial refrigeration applications; go through cases and learn how Danfoss customers benefit from our extensive CO_2 and refrigeration knowledge; download material covering benefits of using CO_2 as refrigerant.

The CO₂ calculator gives you a very good indication on how much you can save by choosing CO₂ instead of traditional refrigerants in brine systems, cascade systems and transcritical systems. You can also calculate how much you can reduce your carbon footprint.

Our Myths & Facts site makes it easier for you to see the obvious benefits of replacing traditional refrigerants with CO₂.

We kill the CO₂ myths and highlight the facts with concrete examples of the benefits.

Check out the myths Myth Myth Maria Mari

In the CO₂ savings calculator you only need to type in three parameters: air temperature, cooling capacity and electricity costs.

You see an indication of your energy savings in % or in Euro (total or annual). The calculator also provides savings in ton or savings converted into kilometers or trees. Finally, you see a summary of your indicated savings and contact information to order the detailed version of the calculation tool.

Contact us to get a more detailed version of the CO₂ calculator which you can fine-tune to suit your exact conditions.

Contact us at cotoo@danfoss.com

100% natural

Optimum temperature control and energy efficiency in ammonia/CO2 sytems.

Industrial refrigeration – Dual temperature ammonia/CO₂ fluid system

Flanagan Foodservice is a leading distribution service company located in Kitchener, Ontario – Canada. To keep up with growing demand, a new 6,000m² addition doubles the size of the current facility, featuring state-of-the-art CO₂ refrigeration technology, and creating the first facility in Canada to implement this technology.

A dual temperature ammonia / CO_2 fluid refrigeration package system refrigerates the 360 kW at -15°C of 4,200 m² of freezer space and 120 kW at -28°C of 450 m² of Ice Cream freezer supplied by Mayekawa Canada. A cross-divisional effort within Danfoss supplied the well known ICF valve stations feeding CO_2 to the evaporators, flooded shell and tube NH_3 / CO_2 exchangers as well as variable frequency drives and pressure transmitters which run the NH_3 screw compressors and CO_2 pumps. The use of ICM motorized valves in the ICF assembly played a key role in maintaining a stable liquid supply.

The Danfoss frequency converters allow for full balance in the load control of the NH_3/CO_2 system, meeting the challenges of the flow and the thermal dynamics of CO_2 . Flanagan describes the project as "exciting", as innovative technology will help to drive the performance of the plant. The system utilises only natural refrigerants; ammonia and carbon dioxide that have minimal (0 and 1, respectively) global warming potential. Besides that, it is more energy efficient than corresponding systems using traditional fluids like propylene glycol.

100% Green supermarket based on CO₂

The REMA 1000 supermarket in Trondheim in Norway looks like a regular supermarket but then the resemblance stops: the store features green grass on the roof, air curtains at the entrance, four 170 meter-deep energy wells, and special panels mounted on the outside of the building to capture the most efficient use of natural light within the building.

The store is 100% green and equipped with an innovative solution from Danfoss that will help the store obtain energy savings of 30%.

A brand new heat recovery system based on CO₂ secures that the staff is enjoying a comfortable working environment and satisfied employees in turn benefit customers.

The AK-SM 850, the new smart front-end controller by Danfoss, secures full energy control of the total store:

"For the first time in the history of refrigeration, we have implemented a 100% green heat recovery solution, and it is based on Danfoss knowhow and controllers from Danfoss Electronic Controllers and Services. It is an extremely high-tech and integrated CO₂ and heat recovery solution where the refrigeration system also serves as a heat pump in winter and provides cooling for the air handling unit in the summer. The surplus heat from the refrigeration system is applied for floor heating, heating up the supply air of the ventilation unit and keeping the pavements snow-and ice-free during the cold Norwegian winters," Dr. and Senior Research Scientist, Armin Hafner from SINTEF Energy Research, says. "The team from Danfoss has done a great job. They are effective and constructive, and everyone who sees the store is impressed by the efforts and the high quality," Armin Hafner concludes.

Facts about the solution

- Danfoss has collaborated closely with SINTEF Energy Research, the Norwegian government, and supermarket chain REMA 1000 to provide 30% energy reduction in Norwegian supermarkets by 2020
- The store makes considerable use of floor heating, ventilation, air conditioning, snow melting and storage of thermal energy
- The solution combines refrigeration and heat pump functions, as well as the control of the air handling unit and the various heat storage devices
- Energy wells of 170 meters depth have been used to obtain free cooling during the summer and as a heat source for the heat pump in the winter
- The building solution features a new light function with special panels mounted on the outside of the building instead of windows, to obtain efficient use of natural light within the building
- The AK-SM 850, the new smart front-end controller by Danfoss, secures full energy control of the total store

Cutting CO₂ emissions into the atmosphere with Danfoss solutions

Alcampo, a Spanish supermarket chain, has reduced the environmental impact of its refrigeration installations after deciding to install an R134a/CO₂ food retail cascade refrigeration system with support from Danfoss in its new hypermarket in Toledo.

Alcampo wished to cut the CO₂ emissions into the atmosphere and Danfoss was a natural partner with experience from thousands of subcritical and transcritical installations around the world. From the outset, Danfoss took part in designing the solution. Cascade R134a/CO₂ system was chosen as the best fit.

• R134a cools the refrigerated services (refrigerator cabinets and cold storage rooms), expanding directly via AKV electronic valves. In the same way, the CO₂ cools the freezer services (freezer units and walk-in freezers), expanding directly via AKV electronic valves. R134a is used to condense the CO₂ with an exchanger in which the expansion is carried out directly via ETS electronic valves.

"CO₂ refrigeration systems provide an optimum solution to the challenges of reducing our carbon footprint and increasing energy efficiency, which form part of the Alcampo environmental responsibility pledge", states Antonio Chicón, Alcampo Director of CSR and External Communication, adding, "whilst the system is very similar to a traditional refrigeration system, it would also appear that it is just as easy to maintain".

Danfoss has supplied ADAP-KOOL®

components to Alcampo's new system. The AK-PC series controllers and AKD variable speed drives control the two central refrigeration units, and the AK-CC series controllers govern the AKV electronic expansion valves for both the refrigeration (R134a) and freezing (CO₂) services.

Danfoss CO₂ product range

Product Grouping	Product	Product Description	
Franscritical expansion valves	ICMTS	Motorized transcritical control valves	
	CCMT	Electrically operated high pressure expansion valves	
Pressure regulating & gas-bypass valves	ICS with CVP-HP/XP	Mechanical backpressure regulators	
	CCM/CCMT	Standstill capable electronic backpressure regulators	
Electronic expansion valves	AKVH	Standstill capable pulse width modulating expansion valves	
·	AKV	Pulse width modulating expansion valves	
	AKVA	Industrial pulse width modulating expansion valves	
	ICM	Industrial motorized expansion valves	
	CCM/CCMT	Standstill capable motorized expansion valves	
/alve stations	ICF	Industrial valve stations	
Solenoid valves	EVR 2-8	Small solenoids	
	EVRH 10-40	Large solenoids	
	EVRS	Industrial solenoids	
	EVRST	Industrial solenoids capable of opening at 0 differential	
	EVUL	Standstill capable NC solenoid valves	
	ICLX	Industrial solenoid valves, one - or two step, on/off	
	ICS + EVM	Industrial solenoid valves, one of two step, on on	
Shut-off valves	SVA-S and SVA-L	Flexline™ stop valves	
	GBC	Ball valves	
Check valves	SCA-X and CHV-X	Elexline TM check valves	
	NRV	Check valves	
Saura valvor	SNV-ST and SNV-SS	Industrial stop needle valves	
Gauge valves	SGP		
Sight Glasses		Sight glasses - solder, flare and socket versions	
Filter & Driers	DCRH	Exchangeable core filter driers	
	DML	Liquid line filter driers	
	DMT	Transcritical oil and refrigerant driers	
	FIA	Flexline™ filters	
Regulating valves	REG-SA and REG-SB	Flexline™ regulating valves	
iquid level controls	AKS 4100	Liquid level transducers	
	EKC 347	Pl controllers	
Safety valves	SFA 15	Safety relief valves	
	DSV	Industrial double safety relief valve manifolds	
Pressure switches	RT	Differential pressure switches	
	KP 6	Pressure switches	
Pressure sensors	AKS 2050	Radiometric transcritical pressure transmitters	
	AKS 32	Pressure transmitters (0-5V signal)	
	AKS 32R	Radiometric pressure transmitters	
	AKS 33	Pressure transmitters (4-20mA signal)	
Temperature sensors	AKS 11	Suction side sensors	
	AKS 21A	Discharge side sensors	
Gas detection	GD/DGS	Gas detectors	
Electronic HP controls	EKC326A	Controllers for transcritical operation and gas bypass	
Electronic evaporator controllers	AK-CC 450	CO ₂ "brine" case controllers	
	AK-CC 550A	Single case controllers	
	AK-CC 750	Multi-case controllers	
Cascade HX controllers	EKC 313	X-refrigerant/CO ₂ cascade heat exchanger controllers	
	EKC 326A	Transcritical controllers	
Pack controllers	AK-PC 772	Transcritical pack controller (up to 5 compressors), 3 MT 2 LT, TC control	
	AK-PC 781	Transcritical pack controller (up to 8 compressors), integrated TC control	
	AV/ D.C. 700	Cascade pack controller (up to 8 compressors), 5 MT 3 LT	
	AK-PC 783		
System manager	AK-PC 783 AK-SC 255/355	CO ₂ supermarket system manager	
System manager		CO ₂ supermarket system manager	
System manager Service tool	AK-SC 255/355		

	APPLICATION			
Maximum working pressure (bar)	Commercial Refrigeration incl. Food Retail	Industrial Refrigeration		
140		•		
140	•			
52 (65)*	•	•		
90	•	•		
90	•			
46	•			
42		•		
52 (65)*	•	•		
90	•	•		
52		•		
46	•	•		
46	•	•		
50		•		
50		•		
90	•			
52		•		
52 (65)*		•		
52 (65)*		•		
90	•			
52 (65)*		•		
90	•			
52		•		
52	•			
46	•	•		
46	•			
140	•			
52 (65)*		•		
52 (65)*	•	•		
100	•	•		
	•	•		
40	•	•		
40	•	•		
47	•	•		
46	•	•		
250	•	•		
55	•	•		
55	•	•		
55	•	•		
	•	•		
	•	•		
	•	•		
	•			
	•			
	•			
	•			
	•			
	•	•		
	•			
	•			
	•			
	•			
	•			
	•			
	•			

ENGINEERING TOMORROW

Danfoss. Your expert in CO₂

> For more information please visit us at danfoss.com/co2

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed materials. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.