About this Manual

Organization and Headings
To help you quickly find information in this manual, the material is divided into sections, topics, subtopics, and details, with descriptive headings set in red type. Section titles appear at the top of every page in large red type.

In the PDF version of this document, clicking an item underlined in blue italic type jumps you to the referenced page in the document.

Special Text Formatting
Controls and indicators are set in bold black type.

Table of Contents
A Table of Contents (TOC) appears on the next page. In the PDF version of this document, the TOC entries are hyperlinked.

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev A</td>
<td>April 2007</td>
<td></td>
</tr>
<tr>
<td>Rev AB</td>
<td>May 2010</td>
<td></td>
</tr>
</tbody>
</table>

©2010 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications.

All trademarks in this material are properties of their respective owners.

PLUS+1, GUIDE, and Sauer-Danfoss are trademarks of the Sauer-Danfoss Group. The PLUS+1 GUIDE, PLUS+1 Compliant, and Sauer-Danfoss logotypes are trademarks of the Sauer-Danfoss Group.
Contents

SASA Function Block .. 4
Overview ... 4
Inputs ... 4
Outputs .. 5
Connections and Signals Overview ... 5
Status and Fault Logic ... 6
Overview

The output of an **SASA** (Steering Angle Sensor Absolute) function block indicates the steering angle of a Sauer-Danfoss Steering Angle Sensor, and the amount that angle has changed since angle information was last received through a CAN message.

See [Connections and Signals Overview](#) on page 5 for an overview of the **SASA** function block’s connections and signals.

Inputs

SASA Function Block Inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>—</td>
<td>—</td>
<td>The CAN bus in the GUIDE template reports the output of a Sauer-Danfoss Steering Angle Sensor. Route a bus from the GUIDE template’s CAN input.</td>
</tr>
<tr>
<td>RxRate</td>
<td>U8</td>
<td>5 to 20</td>
<td>The RxRate (Prescribed Rate) signal specifies the frequency that messages are received from the angle sensor. There is the option of specifying once every 5, 10, or 20 ms.</td>
</tr>
<tr>
<td>Set_0</td>
<td>Bool</td>
<td>—</td>
<td>The Set_0 (Set-to-zero) signal specifies that the current steering angle is to now be set at 0 degrees. A set-to-zero command is transmitted to the sensor during an F to T transition of Set_0.</td>
</tr>
<tr>
<td>FltTim</td>
<td>—</td>
<td>LoopTime to 65535</td>
<td>The FltTim (Fault Time) signal specifies how long to wait before the CAN bus signal is considered lost and a fault is declared.</td>
</tr>
</tbody>
</table>
Outputs

SASA Function Block Outputs

<table>
<thead>
<tr>
<th>Output</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>U16</td>
<td>———</td>
<td>The Status signal reports the function block’s status conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Status signal does not use a standard bitwise scheme.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For more information about status logic, see Status and Fault Logic on page 6.</td>
</tr>
<tr>
<td>Fault</td>
<td>U16</td>
<td>———</td>
<td>The Fault signal reports the function block’s fault conditions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Fault signal does not use a standard bitwise scheme.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For more information about fault logic, see Status and Fault Logic on page 6.</td>
</tr>
<tr>
<td>Diag</td>
<td>Bus</td>
<td>———</td>
<td>Use these signals for troubleshooting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Diag (Diagnostic) bus contains the CRC_Value (Cyclic Redundancy Check Value) and the Msg_Counts (Message Counts) signals.</td>
</tr>
<tr>
<td>CRC_Value</td>
<td>U16</td>
<td>0-65535</td>
<td>CRC_Value is a checksum value that is received with the CAN message from the sensor. The value is used inside the block to determine if valid data is received.</td>
</tr>
<tr>
<td>Msg_Counts</td>
<td>U8</td>
<td>0-255</td>
<td>Msg_Counts is a fault-detection value. Every message from the sensor is given a running number that is increased by 1 every time a message is sent. Used to determine if messages have been lost, and how many have been lost.</td>
</tr>
<tr>
<td>Output</td>
<td>Bus</td>
<td>———</td>
<td>The Output bus contains the Angle Change and Steering Angle signals:</td>
</tr>
<tr>
<td>Angle Change</td>
<td>S32</td>
<td>-35991 to 35991</td>
<td>The angle between two CAN measurements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1° = 100</td>
<td></td>
</tr>
<tr>
<td>Steering Angle</td>
<td>U16</td>
<td>0 to 35991</td>
<td>The absolute angle relative to the 0-index point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1° = 100</td>
<td></td>
</tr>
</tbody>
</table>

Connections and Signals Overview
Status and Fault Logic

The SASA function block does not use standard status and fault codes. The status codes indicate the calibration state of the function block.

Status Logic

<table>
<thead>
<tr>
<th>Status</th>
<th>Bit*</th>
<th>Reported While</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Pending</td>
<td>1</td>
<td>The SASA is writing a parameter to memory.</td>
</tr>
</tbody>
</table>

*Position of set bit in a 16 bit status code. Bit 1 is the least significant bit.

Fault Logic

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Bit*</th>
<th>Response</th>
<th>Delay</th>
<th>Latch</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC error</td>
<td>A CRC Value checksum value from the CAN message indicates that an error occurred during the transmission of that message.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>There is a physical layer problem. Ensure the CAN bus integrity.</td>
</tr>
<tr>
<td>Count error</td>
<td>When comparing the number of messages received with a Msg_Counts fault-detection value, it was found that two or more messages in a row had not been received.</td>
<td>2</td>
<td>Data freezes</td>
<td>No</td>
<td>No</td>
<td>Check that the controller’s OS.ExecTime is less than RxRate. (OS.ExecTime is a global parameter on all devices.)</td>
</tr>
<tr>
<td>Timeout on CAN</td>
<td>The delay in receiving CAN signals exceeds the FltTim setting.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>There is a physical layer problem. Ensure the CAN bus integrity.</td>
</tr>
<tr>
<td>Programming error</td>
<td></td>
<td>4</td>
<td>Old settings are used</td>
<td></td>
<td></td>
<td>Check that the correct RxRate is applied.</td>
</tr>
</tbody>
</table>

*Position of set bit in a 16 bit fault code. Bit 1 is the least significant bit.
PLUS+1 Compliant SASA Function Block
User Manual

(This page is intentionally blank.)
OUR PRODUCTS

Hydrostatic transmissions
Hydraulic power steering
Electric power steering
Electrohydraulic power steering
Closed and open circuit axial piston pumps and motors
Gear pumps and motors
Bent axis motors
Orbital motors
Transit mixer drives
Planetary compact gears
Proportional valves
Directional spool valves
Cartridge valves
Hydraulic integrated circuits
Hydrostatic transaxles
Integrated systems
Fan drive systems
Electrohydraulics
Microcontrollers and software
Electric motors and inverters
Joysticks and control handles
Displays
Sensors

Sauer-Danfoss Hydraulic Power Systems
- Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Global Service Partners strategically located in all parts of the world.

Local address:
Sauer-Danfoss Inc.
3500 Annapolis Lane North
Minneapolis, MN 55447, USA
Phone: +1 763 509-2000
Fax: +1 763 559-5769

Sauer-Danfoss (US) Company
2800 East 13th Street
Ames, IA 50010, USA
Phone: +1 515 239-6000
Fax: +1 515 239-6618

Sauer-Danfoss GmbH & Co. OHG
Postfach 2460, D-24531 Neumünster
Krokamp 35, D-24539 Neumünster, Germany
Phone: +49 4321 871-0
Fax: +49 4321 871 122

Sauer-Danfoss ApS
DK-6430 Nordborg, Denmark
Phone: +45 7488 4444
Fax: +45 7488 4400

Sauer-Danfoss-Daikin LTD
Shin-Osaka TERASAKI 3rd Bldg. 6F
1-5-28 Nishimiyahara, Yodogawa-ku
Osaka 532-0004, Japan
Phone: +81 6 6395 6066
Fax: +81 6 6395 8585

www.sauer-danfoss.com