Technical Information

Series 90

Axial Piston Pumps
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Changed</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2016</td>
<td>Minor edit</td>
<td>0804</td>
</tr>
<tr>
<td>January 2015</td>
<td>correction to O-ring sizing - page 77</td>
<td>HC</td>
</tr>
<tr>
<td>May 2014</td>
<td>corrections to pin assignments - page 48</td>
<td>HB</td>
</tr>
<tr>
<td>February 2014</td>
<td>Danfoss Layout</td>
<td>HA</td>
</tr>
</tbody>
</table>
Technical Information Series 90 Axial Piston Pumps

Contents

General Description
Series 90 Family of Pumps and Motors...5
PLUS+1 Compliant Controls and Sensors..5
Design..6
Pictorial Circuit Diagram...6
System schematic..7

Technical Specifications
General Specifications..8
Features and Options..8
Operating Parameters..9
Fluid Specifications..9

Operating Parameters
Overview...10
Input Speed...10
Independant Braking System..10
System Pressure...10
Servo Pressure..11
Charge Pressure..11
Case Pressure..11
External Shaft Seal Pressure..12
Temperature and Viscosity..12

System Design Parameters
Filtration System..13
Filtration Options..13
Suction filtration – Option S..13
Charge pressure filtration (partial charge pump flow)..14
Remote charge pressure filtration...14
Fluid Selection..15
Reservoir..15
Case Drain..15
Pump Life...16
Charge Pump..16
Charge pump sizing/selection..16
Bearing Loads and Life..16
Applications with external shaft loads..17
Understanding and Minimizing System Noise...17
Sizing Equations..18
Mounting Flange Loads...18

Master Model Code
Series 90 Master Model Code...21

Control Options
3-Position (FNR) Electric Control - DC, DD..26
Response time..27
Electric Displacement Control (EDC), Options KA, KP, KT...............................27
Features and Benefits..28
Response time..31
Pump output flow direction vs. control current...31
Manual Over Ride (MOR),..31
Hydraulic Displacement Control (HDC), Option HF...32
Operation..32
Features and Benefits..32
Response time..33
Pump output flow direction vs. control pressure..34
Manual Displacement Control (MDC), Options MA, MB....................................34
Features and benefits..34
External control handle requirements...35
Technical Information Series 90 Axial Piston Pumps

Contents

Response Time..36
Pump output flow direction vs. control handle rotation...36
MDC with Neutral Start Switch (NSS)..37
Non Feedback Proportional Electric Control (NFPE)..37
Control response...37
NFPE control used with a Danfoss microcontroller..38
Input signal requirements...39

Features and Options

Multi-Function Valves..40
Overpressure protection..40
Pressure limiting function..40
Bypass Function..41
Auxiliary Mounting Pads..41
Mating pump requirements...41
Displacement Limiter..42
Shaft Torque...43
Shaft torque and spline lubrication...43
Shaft torque for tapered shafts...44
Shaft Availability and Torque Ratings...44
Tapered Shaft Customer Acknowledgement..45
Charge Pump...46
Charge pump sizing/selection..46
Charge pump flow and power curves...46
Speed Sensor..47
Connector Pin Assignments..47

Installation Drawings

Frame Size 042..50
Frame Size 055..53
Frame Size 075..57
Frame Size 075 NFPE Options FK, FL, FM, FN..60
Frame Size 100..65
Frame Size 130..70
Frame Size 180..74
Frame Size 250..78
Cover Plate...82
3-Position (F-N-R) Electric Control..82
Electric Displacement Control (EDC) with MS-Connector or Packard® connector...83
Hydraulic Displacement Control (HDC)..84
Manual Displacement Control (MDC) with neutral start switch...84
Electrohydraulic Displacement Control (NFPE)(except 075 NFPE)...85
Integral Pressure Filter..86
Remote pressure – without filter...86

March 2016
Series 90 Family of Pumps and Motors

Series 90 hydrostatic pumps and motors can be applied together or combined with other products in a system to transfer and control hydraulic power. They are intended for closed circuit applications.

- Series 90 – advanced technology
- Seven sizes of variable displacement pumps
- Proven reliability and performance
- Compact, lightweight
- Worldwide sales and service
- PLUS+1™ compliant controls and sensors

Series 90 variable displacement pumps are compact, high power density units. All models utilize the parallel axial piston/slipper concept in conjunction with a tiltable swashplate to vary the pump’s displacement. Reversing the angle of the swashplate reverses the flow of oil from the pump and thus reverses the direction of rotation of the motor output.

Series 90 pumps include an integral charge pump to provide system replenishing and cooling oil flow, as well as control fluid flow. They also feature a range of auxiliary mounting pads to accept auxiliary hydraulic pumps for use in complementary hydraulic systems. A complete family of control options is available to suit a variety of control systems (mechanical, hydraulic, electric).

Series 90 motors also use the parallel axial piston/slipper design in conjunction with a fixed or tiltable swashplate. They can intake/discharge fluid through either port; they are bidirectional. They also include an optional loop flushing feature that provides additional cooling and cleaning of fluid in the working loop. For more information on Series 90 motors, refer to Series 90 Motors Technical Information 520L0604.

PLUS+1 Compliant Controls and Sensors

A wide range of Series 90 controls and sensors are PLUS+1™ compliant. PLUS+1 compliance means our controls and sensors are directly compatible with the PLUS+1 machine control architecture. Adding Series 90 pumps to your application using PLUS+1 GUIDE software is as easy as drag-and-drop. Software development that used to take months can now be done in just a few hours. For more information on PLUS+1 GUIDE, visit www.sauer-danfoss.com/plus1.

Series 90 pumps can be used together in combination with other Danfoss pumps and motors in the overall hydraulic system. Danfoss hydrostatic products are designed with many different displacement, pressure and load-life capabilities.

Go to the Danfoss website or applicable product catalog to choose the components that are right for your complete closed circuit hydraulic system.
General Description

Design

Series 90 pump cross-section

Series 90 pumps are also manufactured in Europe and China. Place of manufacture shown on nameplate will correspond with the actual place of manufacture.

Pictorial Circuit Diagram

This configuration shows a hydrostatic transmission using a Series 90 axial piston variable displacement pump and a Series 90 fixed displacement motor.
General Description

System schematic
Technical Specifications

General Specifications

<table>
<thead>
<tr>
<th>Design</th>
<th>Axial piston pump of cradle swashplate design with variable displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Clockwise, counterclockwise</td>
</tr>
<tr>
<td>Pipe connections</td>
<td>Main pressure ports: ISO split flange boss</td>
</tr>
<tr>
<td></td>
<td>Remaining ports: SAE straight thread O-ring boss</td>
</tr>
<tr>
<td>Recommended installation position</td>
<td>Pump installation position is discretionary, however the recommended control position is on the top or at the side, with the top position preferred. Vertical input shaft installation is acceptable. If input shaft is at the top 1 bar case pressure must be maintained during operation. The pump housing must be filled with hydraulic fluid under all conditions; including after a long period of shutdown. Before operating the machine, ensure the pump housing and case drain lines are free of air. Recommended mounting for a multiple pump stack is to arrange the highest power flow towards the input source. Consult Danfoss for nonconformance to these guidelines.</td>
</tr>
<tr>
<td>Auxiliary cavity pressure</td>
<td>Will be inlet pressure with internal charge pump. For reference see Operating Parameters. Will be case pressure with external charge supply. Please verify mating pump shaft seal capability.</td>
</tr>
</tbody>
</table>

Features and Options

<table>
<thead>
<tr>
<th>Feature</th>
<th>Unit</th>
<th>Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>cm³/rev.</td>
<td>042</td>
</tr>
<tr>
<td></td>
<td>[in³]/rev.</td>
<td>42</td>
</tr>
<tr>
<td>Flow at rated speed (theoretical)</td>
<td>l/min. [US gal/min.]</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>[lbf•in/1000 psi]</td>
<td>[46]</td>
</tr>
<tr>
<td>Torque at maximum displacement (theoretical)</td>
<td>Nm/bar [lbf•in]</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>[psi]</td>
<td>[410]</td>
</tr>
<tr>
<td>Mass moment of inertia of rotating components</td>
<td>kg•m² [slug•ft²]</td>
<td>0.0023</td>
</tr>
<tr>
<td>Mounting (per ISO 3019-1)</td>
<td>Flange</td>
<td>102-2 (SAE B)</td>
</tr>
<tr>
<td>Rotation</td>
<td>Right hand or Left hand rotation</td>
<td></td>
</tr>
<tr>
<td>Main port configuration</td>
<td>Twin port</td>
<td>Twin port</td>
</tr>
<tr>
<td>Case drain ports (SAE O-ring boss)</td>
<td>UNF thread</td>
<td>0.875–14</td>
</tr>
<tr>
<td>Other ports</td>
<td>SAE O-ring boss</td>
<td></td>
</tr>
<tr>
<td>Shafts</td>
<td>Splined, and tapered shafts available</td>
<td></td>
</tr>
<tr>
<td>Auxiliary mounting</td>
<td>SAE-A, B, C</td>
<td>SAE-A, B, C, D</td>
</tr>
</tbody>
</table>
Technical Specifications

Operating Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Frame 042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>min-1(rpm)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Rated Speed</td>
<td></td>
<td>4200</td>
<td>3900</td>
<td>3600</td>
<td>3300</td>
<td>3100</td>
<td>2600</td>
<td>2300</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>4600</td>
<td>4250</td>
<td>3950</td>
<td>3650</td>
<td>3400</td>
<td>2850</td>
<td>2500</td>
</tr>
</tbody>
</table>

Operating parameters

<table>
<thead>
<tr>
<th>System pressure</th>
<th>Maximum working pressure</th>
<th>bar [psi]</th>
<th>450 [6525]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum</td>
<td></td>
<td>480 [6960]</td>
</tr>
<tr>
<td></td>
<td>Maximum low loop</td>
<td></td>
<td>45 [650]</td>
</tr>
<tr>
<td></td>
<td>Minimum low loop pressure</td>
<td></td>
<td>10 [145]</td>
</tr>
<tr>
<td>Charge pressure</td>
<td>Minimum</td>
<td>bar [psi]</td>
<td>18 [261]</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td></td>
<td>34 [493]</td>
</tr>
<tr>
<td>Control pressure</td>
<td>Minimum (at corner power for EDC and FNR)</td>
<td>bar [psi]</td>
<td>14 [203]</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td></td>
<td>22 [319]</td>
</tr>
<tr>
<td></td>
<td>Minimum (at corner power for NFPE)</td>
<td>bar [psi]</td>
<td>40 [580]</td>
</tr>
<tr>
<td>Charge pump inlet pressure</td>
<td>Rated</td>
<td>bar (absolute) [in Hg vacuum]</td>
<td>0.7 [9]</td>
</tr>
<tr>
<td></td>
<td>Minimum (cold start)</td>
<td></td>
<td>0.2 [24]</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td></td>
<td>4.0 [58]</td>
</tr>
<tr>
<td>Case pressure</td>
<td>Rated</td>
<td>bar [psi]</td>
<td>3.0 [44]</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td></td>
<td>5.0 [73]</td>
</tr>
<tr>
<td>Lip seal external pressure</td>
<td>Maximum</td>
<td>bar [psi]</td>
<td>0.4 [5.8]</td>
</tr>
</tbody>
</table>

Fluid Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>mm²/s [SUS]</td>
</tr>
<tr>
<td>Intermittent ¹)</td>
<td>5 [42]</td>
</tr>
<tr>
<td>Minimum</td>
<td>7 [49]</td>
</tr>
<tr>
<td>Recommended range</td>
<td>12-80 [66-370]</td>
</tr>
<tr>
<td>Maximum</td>
<td>1600 [7500]</td>
</tr>
<tr>
<td>Temperature range ²)</td>
<td>°C [°F]</td>
</tr>
<tr>
<td>Minimum (cold start) ³)</td>
<td>-40 [-40]</td>
</tr>
<tr>
<td>Recommended range</td>
<td>60-85 [140-185]</td>
</tr>
<tr>
<td>Rated</td>
<td>104 [220]</td>
</tr>
<tr>
<td>Maximum intermittent ¹)</td>
<td>115 [240]</td>
</tr>
<tr>
<td>Filtration (recommended minimum)</td>
<td></td>
</tr>
<tr>
<td>Cleanliness per ISO 4406-1999</td>
<td>22/18/13</td>
</tr>
<tr>
<td>Efficiency (charge pressure filtration)</td>
<td>β-ratio</td>
</tr>
<tr>
<td>Efficiency (suction and return line filtration)</td>
<td></td>
</tr>
<tr>
<td>Recommended inlet screen mesh size</td>
<td>μm</td>
</tr>
</tbody>
</table>

¹) Intermittent = Short term t < 1min per incident and not exceeding 2 % of duty cycle based load-life
²) At the hottest point, normally case drain port
³) Cold start = Short term t < 3min, p ≤ 50 bar [725 psi], n ≤ 1000 min-1(rpm)
Overview

This section defines the operating parameters and limitations for Series 90 pumps with regard to input speeds and pressures. For actual parameters, refer to the Operating parameters for each displacement.

Input Speed

Minimum speed is the lowest input speed recommended during engine idle condition. Operating below minimum speed limits the pump’s ability to maintain adequate flow for lubrication and power transmission.

Rated speed is the highest input speed recommended at full power condition. Operating at or below this speed should yield satisfactory product life.

Maximum speed is the highest operating speed permitted. Exceeding maximum speed reduces product life and can cause loss of hydrostatic power and braking capacity. Never exceed the maximum speed limit under any operating conditions.

Operating conditions between Rated speed and Maximum speed should be restricted to less than full power and to limited periods of time. For most drive systems, maximum unit speed occurs during downhill braking or negative power conditions.

For more information consult *Pressure and Speed Limits, BLN-9884*, when determining speed limits for a particular application.

During hydraulic braking and downhill conditions, the prime mover must be capable of providing sufficient braking torque in order to avoid pump over speed. This is especially important to consider for turbocharged and Tier 4 engines.

Independant Braking System

⚠️ **Warning**

Unintended vehicle or machine movement hazard

Exceeding maximum speed may cause a loss of hydrostatic drive line power and braking capacity. You must provide an independant braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss. The braking system must also be sufficient to hold the machine in place when full power is applied.

System Pressure

System pressure is the differential pressure between high pressure system ports. It is the dominant operating variable affecting hydraulic unit life. High system pressure, which results from high load, reduces expected life. Hydraulic unit life depends on the speed and normal operating, or weighted average, pressure that can only be determined from a duty cycle analysis.

Application pressure is the high pressure relief or pressure limiter setting normally defined within the order code of the pump. This is the applied system pressure at which the drive-line generates the maximum calculated pull or torque in the application.

Maximum working pressure is the highest recommended Application pressure. Maximum working pressure is not intended to be a continuous pressure. Propel systems with application pressures at, or below, this pressure should yield satisfactory unit life given proper component sizing.

Maximum pressure is the highest allowable Application pressure under any circumstance. Application pressures above maximum working Pressure will only be considered with duty cycle analysis and factory approval.

Pressure spikes are normal and must be considered when reviewing maximum working pressure.
Minimum low loop pressure must be maintained under all operating conditions to avoid cavitation. All pressure limits are differential pressures referenced to low loop (charge) pressure. Subtract low loop pressure from gauge readings to compute the differential.

Servo Pressure

Servo pressure is the pressure in the Servo-system needed to position and hold the pump on stroke. It depends on system pressure and speed.

At minimum servo pressure the pump will run at reduced stroke depending on speed and pressure.

Minimum servo pressure at corner power holds the pump on full stroke at max speed and max pressure.

Maximum servo pressure is the highest pressure typically given by the charge pressure setting.

Charge Pressure

An internal charge relief valve regulates charge pressure. Charge pressure supplies the control with pressure to operate the swashplate and to maintain a minimum pressure in the low side of the transmission loop. The charge pressure setting listed in the order code is the set pressure of the charge relief valve with the pump in neutral, operating at 1800 min⁻¹ [rpm], and with a fluid viscosity of 32 mm²/s [150 SUS]. Pumps configured with no charge pump (external charge supply) are set with a charge flow of 30 l/min [7.93 US gal/min.] and a fluid viscosity of 32 mm²/s [150 SUS].

The charge pressure setting is referenced to case pressure. Charge pressure is the differential pressure above case pressure.

Minimum charge pressure is the lowest pressure allowed to maintain a safe working condition in the low side of the loop. Minimum control pressure requirements are a function of speed, pressure, and swashplate angle, and may be higher than the minimum charge pressure shown in the Operating parameters tables.

Maximum charge pressure is the highest charge pressure allowed by the charge relief adjustment, and which provides normal component life. Elevated charge pressure can be used as a secondary means to reduce the swashplate response time.

At normal operating temperature charge inlet pressure must not fall below rated charge inlet pressure (vacuum).

Minimum charge inlet pressure is only allowed at cold start conditions. In some applications it is recommended to warm up the fluid (e.g. in the tank) before starting the engine and then run the engine at limited speed.

Maximum charge pump inlet pressure may be applied continuously.

Case Pressure

Under normal operating conditions, the rated case pressure must not be exceeded. During cold start case pressure must be kept below maximum intermittent case pressure. Size drain plumbing accordingly.

Auxiliary Pad Mounted Pumps. The auxiliary pad cavity of S90 pumps configured without integral charge pumps is referenced to case pressure. Units with integral charge pumps have auxiliary mounting pad cavities referenced to charge inlet (vacuum).

Caution

Possible component damage or leakage

Operation with case pressure in excess of stated limits may damage seals, gaskets, and/or housings, causing external leakage. Performance may also be affected since charge and system pressure are additive to case pressure.
External Shaft Seal Pressure

In certain applications the input shaft seal may be exposed to external pressure. In order to prevent damage to the shaft seal the maximum differential pressure from external sources must not exceed 0.4 bar (5.8 psi) over pump case pressure. The case pressure limits of the pump must also be followed to ensure the shaft seal is not damaged.

Caution

Regardless of the differential pressure across the shaft seal, the shaft seal has been known to pump oil from the external source (e.g. gear box) into the pump case.

Temperature and Viscosity

Temperature

The high temperature limits apply at the hottest point in the transmission, which is normally the motor case drain. The system should generally be run at or below the quoted rated temperature. The maximum intermittent temperature is based on material properties and should never be exceeded.

Cold oil will generally not affect the durability of the transmission components, but it may affect the ability of oil to flow and transmit power; therefore temperatures should remain 16 °C [30 °F] above the pour point of the hydraulic fluid.

The minimum temperature relates to the physical properties of component materials.

Size heat exchangers to keep the fluid within these limits. Danfoss recommends testing to verify that these temperature limits are not exceeded.

Viscosity

For maximum efficiency and bearing life, ensure the fluid viscosity remains in the recommended range.

The minimum viscosity should be encountered only during brief occasions of maximum ambient temperature and severe duty cycle operation.

The maximum viscosity should be encountered only at cold start.
Filtration System

To prevent premature wear, ensure only clean fluid enters the hydrostatic transmission circuit. A filter capable of controlling the fluid cleanliness to ISO 4406 class 22/18/13 (SAE J1165) or better, under normal operating conditions, is recommended.

These cleanliness levels can not be applied for hydraulic fluid residing in the component housing/case or any other cavity after transport.

The filter may be located on the pump (integral) or in another location (remote).

The integral filter has a filter bypass sensor to signal the machine operator when the filter requires changing. Filtration strategies include suction or pressure filtration. The selection of a filter depends on a number of factors including the contaminant ingress rate, the generation of contaminants in the system, the required fluid cleanliness, and the desired maintenance interval. Filters are selected to meet the above requirements using rating parameters of efficiency and capacity.

Filter efficiency can be measured with a Beta ratio¹ (βX). For simple suction-filtered closed circuit transmissions and open circuit transmissions with return line filtration, a filter with a β-ratio within the range of $\beta_{35-45} = 75$ ($\beta_{10} \geq 2$) or better has been found to be satisfactory. For some open circuit systems, and closed circuits with cylinders being supplied from the same reservoir, a considerably higher filter efficiency is recommended. This also applies to systems with gears or clutches using a common reservoir.

For these systems, a charge pressure or return filtration system with a filter β-ratio in the range of $\beta_{15-20} = 75$ ($\beta_{10} \geq 10$) or better is typically required.

Because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. Please see Design Guidelines for Hydraulic Fluid Cleanliness Technical Information, 520L0467 for more information.

¹ Filter β_X-ratio is a measure of filter efficiency defined by ISO 4572. It is defined as the ratio of the number of particles greater than a given diameter (“x” in microns) upstream of the filter to the number of these particles downstream of the filter.

Warning

Clogged filters can cause cavitation, which damages the charge pump. We recommend a filter bypass with a filter bypass sensor to prevent damage due to blocked suction filters.

Filtration Options

Suction filtration – Option S

Suction filtration is the only option available for concrete pumps.

The suction filter is placed in the circuit between the reservoir and the inlet to the charge pump, as shown below.

The use of a filter contamination monitor is recommended.
System Design Parameters

Suction filtration

Caution

Clogged filters can cause cavitation, which damages the charge pump. We recommend a filter bypass with a filter bypass sensor to prevent damage due to blocked suction filters.

Charge pressure filtration (partial charge pump flow)

Two types of pressure filtration exist for most Series 90 pumps. The two types are: remote pressure filtration (filter remotely mounted on vehicle) and integral pressure filtration (filter mounted to the endcap). Verify option availability in the size specific technical information.

In either case the filtration circuit is the same with the filter element situated in the circuit downstream the charge pump and upstream of the charge relief valve such that full charge flow is continuously filtered, as shown in the accompanying illustrations. Charge pressure filtration can mitigate high inlet vacuum in cold start-ups and provides fluid filtration immediately prior to entrance to the loop and the control system. Pressure filtration provides a higher level of filtering efficiency than suction filtration.

Filters used in charge pressure filtration circuits must be rated to at least 35 bar [508 psi] pressure. A 100 – 125 μm screen located in the reservoir or in the charge inlet line is recommended when using charge pressure filtration.

Technical data according to ISO 16889

<table>
<thead>
<tr>
<th>Nominal flow at 30mm2/s and ΔP 0.5 bar[7.3 psi] (clean filter element only)</th>
<th>Minimum β-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>60 l/min</td>
</tr>
<tr>
<td>Long</td>
<td>105 l/min</td>
</tr>
</tbody>
</table>

Remote charge pressure filtration

A special adapter head is available to allow for the charge filter to be located conveniently for easy service and replacement. Care should be taken to minimize the hydraulic pressure drops associated with long connecting lines, small diameter hoses, or restrictive port adaptors at the filter head or endcap. Ensure the normal operating pressure drop across the remote filtration in and out ports is sufficiently below the crack pressure setting of the recommended filter bypass valve.
System Design Parameters

Charge pressure filtration

Warning

Remote filter heads without bypass and poor plumbing design can encounter excessive pressure drops that can lead to charge pump damage in addition to contaminants being forced through the filter media and into the transmission loop.

Fluid Selection

Ratings and performance data are based on operating with hydraulic fluids containing oxidation, rust and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of pump components.

Never mix hydraulic fluids of different types.

Reservoir

The hydrostatic system reservoir should accommodate maximum volume changes during all system operating modes and promote de-aeration of the fluid as it passes through the tank. A suggested minimum total reservoir volume is 5/8 of the maximum charge pump flow per minute with a minimum fluid volume equal to 1/3 of the maximum charge pump flow per minute. This allows 30 seconds fluid dwell for removing entrained air at the maximum return flow. This is usually adequate to allow for a closed reservoir (no breather) in most applications.

Locate the reservoir outlet (charge pump inlet) above the bottom of the reservoir to take advantage of gravity separation and prevent large foreign particles from entering the charge inlet line. A 100-125 μm screen over the outlet port is recommended. Position the reservoir inlet (fluid return) to discharge below the normal fluid level, toward the interior of the tank. A baffle (or baffles) will further promote de-aeration and reduce surging of the fluid.

Case Drain

All single S90 pumps are equipped with multiple drain ports. Port selection and case drain routing must enable the pump housing to maintain a volume of oil not less than half full and normal operating case pressure limits of the unit are maintained. Case drain routing and design must consider unit case pressure ratings.

A case drain line must be connected to one of the case outlets to return internal leakage to the system reservoir.
System Design Parameters

Do not over torque the fitting on case drain port L2 (located on the side cover). The proper torque is 100 N•m [74 lbf•ft] maximum. Over torquing the fitting may change the neutral position of the swashplate.

Pump Life

Pump life depends on several factors, such as speed, pressure, and swashplate angle. For detailed product life calculation, please contact your Danfoss representative.

Charge Pump

Charge flow is required on all Series 90 pumps applied in closed circuit installations. The charge pump provides flow to make up internal leakage, maintain a positive pressure in the main circuit, provide flow for cooling and filtration, replace any leakage losses from external valving or auxiliary systems, and to provide flow and pressure for the control system.

Many factors influence the charge flow requirements and the resulting charge pump size selection. These factors include system pressure, pump speed, pump swashplate angle, type of fluid, temperature, size of heat exchanger, length and size of hydraulic lines, control response characteristics, auxiliary flow requirements, hydrostatic motor type, etc. When initially sizing and selecting hydrostatic units for an application, it is frequently not possible to have all the information necessary to accurately evaluate all aspects of charge pump size selection.

Unusual application conditions may require a more detailed review of charge pump sizing. Charge pressure must be maintained at a specified level under all operating conditions to prevent damage to the transmission. Danfoss recommends testing under actual operating conditions to verify this.

Charge pump sizing/selection

In most applications a general guideline is that the charge pump displacement should be at least 10 % of the total displacement of all components in the system. Unusual application conditions may require a more detailed review of charge flow requirements. Refer to *Selection of Drive line Components*, BLN-9885, for a detailed procedure.

System features and conditions which may invalidate the 10 % guideline include (but are not limited to):

- Continuous operation at low input speeds (< 1500 min⁻¹ (rpm))
- High shock loading and/or long loop lines
- High flushing flow requirements
- Multiple Low Speed High Torque motors
- High input shaft speeds

Bearing Loads and Life

In vehicle propel drives with no external shaft loads, and where the system pressure and swashplate angle are changing direction and magnitude regularly, the normal L20 bearing life (80% survival) will exceed the hydraulic life of the unit.

In non-propel drives, such as vibratory drives, conveyor drives and fan drives, the operating speed and pressure are often nearly constant and the swashplate angle is predominantly at maximum. These drives have a distinct duty cycle compared to a propulsion drive. In these types of applications, a bearing life review is recommended.

For bearing life, speed, pressure, swashplate angle, plus external loads will be considered. Other factors that affect bearing life include fluid type, viscosity, and cleanliness.
Applications with external shaft loads

External loads are found in applications where the pump is driven with a side/thrust load (belt drive or gear drive) as well as in installations with misalignment and improper concentricity between the pump and drive coupling. All external loads act to reduce bearing life.

In applications where you cannot avoid external radial shaft loads, orient the load to 0° or 180° position. Use tapered output shafts or clamp-type couplings where radial shaft loads are present.

In addition, external thrust loads can reduce bearing life in systems with low delta pressure or in combination with external radial loads/bending moments.

\[Re = \frac{Me}{L} \]

- \(Me \): Shaft moment
- \(L \): Flange distance
- \(Re \): External force

Radial load position

Maximum allowable external shaft load

<table>
<thead>
<tr>
<th>Parameter</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>External moment (Me) N•m [lbf•in]</td>
<td>126 [1114]</td>
<td>101 [893]</td>
<td>118 [1043]</td>
<td>126 [1114]</td>
<td>140 [1238]</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* no tapered shaft available

If continuous applied external radial loads are 25% of the maximum allowable or more or thrust loads/bending moments known to occur, contact your Danfoss representative for an evolution of bearing life.

Avoid external thrust loads in either direction.

Understanding and Minimizing System Noise

Noise is transmitted in fluid power systems in two ways: as fluid borne noise, and structure borne noise.

Fluid-borne noise (pressure ripple or pulsation) is created as pumping elements discharge oil into the pump outlet. It is affected by the compressibility of the oil, and the pump’s ability to transition pumping elements from high to low pressure. Pulsations travel through the hydraulic lines at the speed of sound (about 1400 m/s [4600 ft/sec] in oil) until there is a change (such as an elbow) in the line. Thus, amplitude varies with overall line length and position.

Structure born noise is transmitted wherever the pump casing connects to the rest of the system. The way system components respond to excitation depends on their size, form, material, and mounting.

System lines and pump mounting can amplify pump noise.

Follow these suggestions to help minimize noise in your application:
System Design Parameters

- Use flexible hoses.
- Limit system line length.
- If possible, optimize system line position to minimize noise.
- If you must use steel plumbing, clamp the lines.
- If you add additional support, use rubber mounts.
- Test for resonants in the operating range; if possible avoid them.

Sizing Equations

The following equations are helpful when sizing hydraulic pumps. Generally, the sizing process is initiated by an evaluation of the machine system to determine the required motor speed and torque to perform the necessary work function. Refer to Selection of drive line components, BLN-9885, for a more complete description of hydrostatic drive line sizing. First, the motor is sized to transmit the maximum required torque. The pump is then selected as a flow source to achieve the maximum motor speed.

SI units

Output flow \(Q = \frac{V_g \cdot n \cdot \eta_v}{1000} \) (l/min)

Input torque \(M = \frac{V_g \cdot \Delta p}{20 \times \pi \cdot \eta_m} \) (Nm)

Input power \(P = \frac{M \cdot n}{30 \times 10^3} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} \) (kW)

US units

Output flow \(Q = \frac{V_g \cdot n \cdot \eta_v}{231} \) (US gal/min)

Input torque \(M = \frac{V_g \cdot \Delta p}{2 \times \pi \cdot \eta_m} \) (lb•in)

Input power \(P = \frac{M \cdot n}{198 \times 10^3} = \frac{Q \cdot \Delta p}{1714 \cdot \eta_t} \) (hp)

Mounting Flange Loads

Adding tandem mounted auxiliary pumps and/or subjecting pumps to high shock loads may result in excessive loading of the mounting flange.

Applications which experience extreme resonant vibrations or shock may require additional pump support. The overhung load moment for multiple pump mounting may be estimated using the formula below.
System Design Parameters

Overhung load example

Estimated maximum and rated acceleration factors for some typical applications are shown in the table below.

Estimating overhung load moments

Based on SI units

\[M_R = g \cdot G_R (W_1 L_1 + W_2 L_2 + \ldots + W_n L_n) \]
\[M_S = g \cdot G_S (W_1 L_1 + W_2 L_2 + \ldots + W_n L_n) \]

Where:

- \(M_R \) = Rated load moment N\(\cdot \)m
- \(M_S \) = Shock load moment N\(\cdot \)m
- \(g \) = Gravity 9.81 m/s\(^2\)
- \(G_R \) = Calculation factor for rated (vibratory) acceleration (G\(\cdot \)s)*
- \(G_S \) = Calculation factor for maximum shock acceleration (G\(\cdot \)s)*

*This factor depends on the application (see next page).

Use these values for a rough load estimation in the absence of specific data.

Typical G loads for various applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Calculation factor</th>
<th>Rated (vibratory) acceleration (G_R)</th>
<th>Maximum (shock) acceleration (G_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skid Steer Loader</td>
<td>8</td>
<td>15-20</td>
<td></td>
</tr>
<tr>
<td>Trencher (rubber tires)</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Asphalt Paver</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Windrower</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Aerial Lift</td>
<td>1.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Turf Care Vehicle</td>
<td>1.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Vibratory Roller</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>T000 165E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Design Parameters

Allowable overhung load moment values are shown in the following table.

Allowable overhung load moments

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Rated moment (MR)</th>
<th>Shock load moment (MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>lbf·in</td>
</tr>
<tr>
<td>042</td>
<td>860</td>
<td>7600</td>
</tr>
<tr>
<td>055</td>
<td>1580</td>
<td>14 000</td>
</tr>
<tr>
<td>075</td>
<td>1580</td>
<td>14 000</td>
</tr>
<tr>
<td>100</td>
<td>1580</td>
<td>14 000</td>
</tr>
<tr>
<td>130</td>
<td>3160</td>
<td>28 000</td>
</tr>
<tr>
<td>180</td>
<td>6070</td>
<td>54 000</td>
</tr>
<tr>
<td>250</td>
<td>6070</td>
<td>54 000</td>
</tr>
</tbody>
</table>
Master Model Code

Series 90 Master Model Code

| Series 90 Master Model Code | R | M | P | J | G | N | F | L | H | T | W | Y | Z | K |
|-----------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| **R** Type and Rotation | 042| 055| 075| 100| 130| 180| 250|
| R Right Hand [CW] | O | O | O | O | O | O | O |
| L Left Hand [CCW] | O | O | O | O | O | O | O |

<table>
<thead>
<tr>
<th>Size</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>42 cc [2.56 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>55 cc [3.36 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>075</td>
<td>75 cc [4.58 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100 cc [6.10 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>130 cc [7.93 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>180 cc [10.98 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>250 cc [15.26 in³] max. displacement per revolution</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M Controls</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA cover plate without feedback link, no control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>DC 3 positon F-N-R solenoid control (12 V, DC) DIN-connector</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>DD 3 positon F-N-R solenoid control (24 V, DC) DIN-connector</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>HF EDC, MS connector, std. porting, double coil (14 - 85 mA)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>KA EDC, MS connector, std. porting, single coil (4 - 20 mA)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>KN EDC, Deutsch connector, std. porting, single coil (14 - 85 mA)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>KT EDC, Weatherpack connector, std. porting, dual coil (14 - 85 mA)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>MA MDC</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>MB MDC with neutral start switch</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>FA Electrohydraulic displacement control without feedback link, 12V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (25 bar) NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB Electrohydraulic displacement control without feedback link, 24V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (25 bar) NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC Electrohydraulic displacement control without feedback link, 12V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (32 bar) NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD Electrohydraulic displacement control without feedback link, 24V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (32 bar) NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FG Electrohydraulic displacement control without feedback link, 12V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (32 bar) fast response NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH Electrohydraulic displacement control without feedback link, 24V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (32 bar) fast response NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FK Electrohydraulic displacement control without feedback link, 12V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (25 bar) NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL Electrohydraulic displacement control without feedback link, 24V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (25 bar) NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM Electrohydraulic displacement control without feedback link, 12V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (32 bar) fast response NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN Electrohydraulic displacement control without feedback link, 24V with AMP Minitimer connector, proportional solenoid with pressure reducing valve (32 bar) fast response NFPE control</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Information

Series 90 Axial Piston Pumps

Master Model Code

<table>
<thead>
<tr>
<th>Series 90 Master Model Code (continued)</th>
<th>R</th>
<th>Size</th>
<th>M</th>
<th>P</th>
<th>J</th>
<th>G</th>
<th>N</th>
<th>F</th>
<th>L</th>
<th>H</th>
<th>T</th>
<th>W</th>
<th>Y</th>
<th>Z</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>S90</td>
<td></td>
</tr>
</tbody>
</table>

High Pressure Regulation

<table>
<thead>
<tr>
<th>P</th>
<th>High Pressure Regulation</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pressure limiter for port A and B (140-450 bar)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>high pressure relief valves for port A and B (90-450 bar)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Auxiliary Mounting Pad

<table>
<thead>
<tr>
<th>J</th>
<th>Auxiliary Mounting Pad</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>SAE-A with sealed cover, 9 teeth coupling</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BB</td>
<td>SAE-B with sealed cover, 15 teeth coupling</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>BC</td>
<td>SAE-B with sealed cover, 13 teeth coupling</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>CD</td>
<td>SAE-C with sealed cover, 4 bolt adapter, 14 teeth coupling, (2) ½-13 UNC</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>DE</td>
<td>SAE-D with sealed cover, 13 teeth coupling</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>EF</td>
<td>SAE-E with sealed cover, 13 teeth coupling</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>NN</td>
<td>no auxiliary mounting pad</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Endcap Ports

<table>
<thead>
<tr>
<th>G</th>
<th>Endcap Ports</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Side Ports</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>60</td>
<td>Twin Ports</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Filtration

<table>
<thead>
<tr>
<th>N</th>
<th>Filtration</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>external charge pump</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>L</td>
<td>pressure integral (long filter)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>pressure integral (short filter)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>R</td>
<td>remote pressure</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>T</td>
<td>remote pressure with SAE 1 1/16 thread ports for high flow</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>S</td>
<td>suction filtration</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Displacement Limitation

<table>
<thead>
<tr>
<th>F</th>
<th>Displacement Limitation</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>no limiters, only for 180 cc</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>M</td>
<td>limitation both sides, only for 180 cc</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>no limiters</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>limitation both sides</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>no limiters, spec. servo cylinder at side 1 with hard spring (only for pumps with NFPE-controls)</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Master Model Code

<table>
<thead>
<tr>
<th>L Shaft Options</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 splined shaft, 15 teeth, pitch = 16 / 32</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6 splined shaft, 21 teeth, pitch = 16 / 32</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7 splined shaft, 23 teeth, pitch = 16 / 32</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8 splined shaft, 27 teeth, pitch = 16 / 32</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 splined shaft, 13 teeth, pitch = 8 / 16</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1 splined shaft, 14 teeth, pitch = 12 / 24</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1 splined shaft, 25 teeth, pitch = 20 / 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 tapered shaft diameter = 34,925 MM</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T6 tapered shaft diameter = 38,100 MM</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8 tapered shaft diameter = 25,400 MM</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4 tapered shaft diameter = 44,450 MM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

Charging System

<table>
<thead>
<tr>
<th>H Charging System</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>B nominal flow = 11 cc / rev</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C nominal flow = 14 cc / rev</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D nominal flow = 17 cc / rev</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E nominal flow = 20 cc / rev</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F nominal flow = 26 cc / rev</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H nominal flow = 34 cc / rev</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J nominal flow = 47 cc / rev</td>
<td></td>
<td></td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K nominal flow = 65 cc / rev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>L external charge pump with internal charge pressure relief valve for units with auxiliary mounting pad</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>N external charge pump with internal charge pressure relief valve for units with no auxiliary mounting pad</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>
Master Model Code

Series 90 Master Model Code (continued)

<table>
<thead>
<tr>
<th>R</th>
<th>Size</th>
<th>M</th>
<th>P</th>
<th>J</th>
<th>G</th>
<th>N</th>
<th>F</th>
<th>L</th>
<th>H</th>
<th>T</th>
<th>W</th>
<th>Y</th>
<th>Z</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>590</td>
<td></td>
</tr>
</tbody>
</table>

T Control Orifice Options

MDC

<table>
<thead>
<tr>
<th></th>
<th>inlet P</th>
<th>drain TA</th>
<th>drain TB</th>
<th>servo A</th>
<th>servo B</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>n/o</td>
<td>1.6 *)</td>
<td>1.6 *)</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>0.81</td>
<td>1.6 *)</td>
<td>1.6 *)</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05</td>
<td>1.37</td>
<td>1.6 *)</td>
<td>1.6 *)</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C5</td>
<td>0.81</td>
<td>1.4</td>
<td>1.4</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C6</td>
<td>1.02</td>
<td>1.4</td>
<td>1.4</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*) No orifice installed in control, orifice hole in control spool

If further orifice options are needed, please contact your Danfoss representative

EDC

<table>
<thead>
<tr>
<th></th>
<th>inlet P</th>
<th>drain TA</th>
<th>drain TB</th>
<th>servo A</th>
<th>servo B</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 (1)</td>
<td>n/o</td>
<td>1.3</td>
<td>1.3</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03 (1)</td>
<td>0.81</td>
<td>1.3</td>
<td>1.3</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05 (1)</td>
<td>1.37</td>
<td>1.3</td>
<td>1.3</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0.81</td>
<td>n/o</td>
<td>n/o</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FNR

<table>
<thead>
<tr>
<th></th>
<th>inlet P</th>
<th>drain T</th>
<th>servo A</th>
<th>servo B</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>n/o</td>
<td>1.2</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>0.46</td>
<td>1.2</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GB</td>
<td>0.66</td>
<td>1.2</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GB</td>
<td>0.81</td>
<td>1.2</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GD</td>
<td>1.57</td>
<td>1.2</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

HDC

<table>
<thead>
<tr>
<th></th>
<th>inlet P</th>
<th>drain TA</th>
<th>drain TB</th>
<th>servo A</th>
<th>servo B</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 (1)</td>
<td>n/o</td>
<td>1.3</td>
<td>1.3</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03 (1)</td>
<td>0.81</td>
<td>1.3</td>
<td>1.3</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05 (1)</td>
<td>1.37</td>
<td>1.3</td>
<td>1.3</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NFPE

<table>
<thead>
<tr>
<th></th>
<th>inlet P</th>
<th>drain T</th>
<th>servo A</th>
<th>servo B</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>n/o</td>
<td>1.5</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B2</td>
<td>n/o</td>
<td>n/o</td>
<td>1.2</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B6</td>
<td>n/o</td>
<td>n/o</td>
<td>n/o</td>
<td>n/o</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Master Model Code

Series 90 Master Model Code (continued)

<table>
<thead>
<tr>
<th>W</th>
<th>Special Hardware Features</th>
<th>R</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>speeding, no sensor, CP30 +4,3” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EFC</td>
<td>speed sensing, Turck connector (KPPx156), CP15*+0,5” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EFI</td>
<td>speed sensing, Turck connector (KPPx156), CP30*+4,3” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FAC</td>
<td>nested T-bar springs, CP15 +1,5” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FAD</td>
<td>nested T-bar springs, CP15 +0,5” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GBA</td>
<td>CP15 +0,5” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GCA</td>
<td>CP15 +1,5” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GLA</td>
<td>CP30 +4,3” valve plate, CP30 valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NNN</td>
<td>180cc: CP15 +0,5” valve plate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>250cc: CP15 +1,5” valve plate, nested T-bar springs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>High Pressure Setting A</th>
<th>R</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>260 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>320 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>350 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>380 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>400 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>420 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z</th>
<th>High Pressure Setting B</th>
<th>R</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>260 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>320 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>350 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>380 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>400 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>420 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>Charge Pressure Setting</th>
<th>R</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>22 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>24 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>26 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>28 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>30 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>32 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>34 bar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Control Options

3-Position (FNR) Electric Control - DC, DD

The 3-Position (FNR) control uses an electric input signal to switch the pump to a full stroke position. To use the FNR control in a PLUS+1 Guide application, download HWD file 10106826 from www.Danfoss.com/PLUS+1.

⚠️ Warning
Avoid designing a system which places the swashplate into full stroke when control operation is blocked by contamination.

Solenoid connector

Solenoid plug face for DIN 43650 connector

DANFOSS
mating parts kit
Part No. K09129

Voltage between terminals 1 and 2

P102 022

Pump displacement vs. electrical signal

3-position electric control hydraulic schematic
Control Options

![Diagram of control options]

Solenoid Data

<table>
<thead>
<tr>
<th>Code</th>
<th>Voltage</th>
<th>Current</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>12 Vdc</td>
<td>340 mA</td>
<td>DIN 46350</td>
</tr>
<tr>
<td>DD</td>
<td>24 Vdc</td>
<td>170 mA</td>
<td>DIN 46350</td>
</tr>
</tbody>
</table>

Response time

The time required for the pump to change from zero to full flow (acceleration), or full flow to zero (deceleration), is a function of the size of the orifice, the charge pressure, valve plates and other vehicle dynamics.

A range of orifice sizes are available for the Series 90 FNR Control to assist in matching the rate of swashplate response to the acceleration and deceleration requirements of the application. Testing should be carried out to determine the proper orifice selection for the desired response. For more information regarding response time for individual orifices, please contact your Danfoss representative.

Pump output flow direction vs. control signal

<table>
<thead>
<tr>
<th>Input shaft rotation</th>
<th>CW</th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal at solenoid</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Port A flow (M1)</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>Port B flow (M2)</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Servo cylinder (side)</td>
<td>M5 (2)</td>
<td>M4 (1)</td>
</tr>
</tbody>
</table>

⚠️ Warning

Avoid designing a system which puts the swashplate into full stroke when control operation is blocked by contamination.

Electric Displacement Control (EDC), Options KA, KP, KT

The electric displacement control uses an electrohydraulic Pressure Control Pilot (PCP) valve to control the pilot pressure. The PCP converts an electrical input signal to a hydraulic input signal to operate a 4-way servo valve, which ports hydraulic pressure to either side of a double acting servo piston. The servo
piston tilts the cradle swashplate, thus varying the pump’s displacement from full displacement in one direction to full displacement in the opposite direction.

The control has a mechanical feedback mechanism which moves the servo valve in relation to the input signal and the angular position of the swashplate. The electrical displacement control is designed so the angular rotation of the swashplate (pump displacement) is proportional to the electrical input signal. Due to normal operating force changes, the swashplate tends to drift from the position preset by the machine operator. Drift, sensed by feedback linkage system connecting the swashplate to the control valve, will activate the valve and supply pressure to the servo piston, maintaining the swashplate in its preset position.

Features and Benefits

• The electric displacement control is a high gain control: With only a small change of the input current, the servo valve moves to a full open position thus porting maximum flow to the servo cylinder.
• Oil filled PCP case lengthens control life by preventing moisture ingress and dampening component vibrations.
• All electrical displacement controls are equipped with dual coil PCPs. The user has the option of using a single coil or both coils (in series or parallel).
• Internal mechanical stops on the servo valve allow rapid changes in input signal voltages without damaging the control mechanism.
• Precision parts provide repeatable accurate displacement settings.
• The swashplate is coupled to a feedback mechanism. The control valve drains the ends of the servo piston when an electric input signal is not present.

Benefits

• Pump returns to neutral after prime mover shuts down
• Pump returns to neutral if external electrical input signal fails or if there is a loss of charge pressure

Electric displacement control schematic
Control Options

To use the EDC control in a PLUS+1 Guide application, download HWD file 10106626 from www.Danfoss.com/Plus1.

Electrical Characteristics

<table>
<thead>
<tr>
<th>PUMP SHAFT ROTATION</th>
<th>One of Dual Coils</th>
<th>Dual Coils in Parallel</th>
<th>Dual Coils in Series</th>
<th>Produces Flow Out of Pump Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clockwise</td>
<td>A or C</td>
<td>A and C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Counterclockwise</td>
<td>A or C</td>
<td>B or D</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Electrical Requirements</td>
<td>A or C</td>
<td>B or D</td>
<td>A and C</td>
<td>B</td>
</tr>
</tbody>
</table>

Start Current: A/B 14 mA ± 3 mA with 0.3 Vdc 7 mA with 0.25 Vdc
Full Stroke Current: A/B 85 mA ± 11 mA with 1.7 Vdc 43 mA with 1.55 Vdc
Start Current: C/D 14 mA ± 3 mA with 0.23 Vdc
Full Stroke Current: C/D 85 mA ± 11 mA with 1.36 Vdc

The EDC is designed to be controlled from a DC current source or voltage source. Pulse width modulation (PWM) is not required. If a PWM signal is used to carry frequency greater than 200 Hz, do not use a pulse current of more than 120% of that required for full output.

Control signal requirements

Recommended PWM signal is 200 Hz, avoid exceeding 440 Hz.

⚠️ Warning

Maximum input current under any condition: 250 mA
PWM frequency: 200 Hz
Coil resistance at 24°C (75°F):
A-B coil 20 Ω
C-D coil 16 Ω
Control Options

MS connector (option KA) MS 3102C-14S-2P

Danfoss mating parts kit
Part no. K01588
Ident No. 615062
P102 027E

Packard® Weather-Pack (option KP) 4-way shroud connector

Danfoss mating parts kit
Part no. K03384 (female terminals)
P102 028E

Pump displacement vs. control current

Deutsch DT Series connector (option KT)

4 pin Deutsch® Plug DT Series Connector
Control Options

Response time

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a function of the size of the orifice in the control flow passage, charge pressure, valve plate and other vehicle dynamics.

A range of orifice sizes is available for the Series 90 Electric Displacement Control to assist in matching the rate of swashplate response to the acceleration and deceleration requirements of the application. Testing should be carried out to determine the proper orifice selection for the desired response.

For more information regarding response times for individual orifices, contact your Danfoss representative.

Pump output flow direction vs. control current

EDC using a single coil or dual coils in parallel (A and C common, B and D common)

<table>
<thead>
<tr>
<th>Positive current to term</th>
<th>Port A flow (M1)</th>
<th>Port B flow (M2)</th>
<th>Servo cylinder (side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or C</td>
<td>Out</td>
<td>In</td>
<td>M5 (2)</td>
</tr>
<tr>
<td>B or D</td>
<td>In</td>
<td>Out</td>
<td>M4 (1)</td>
</tr>
</tbody>
</table>

EDC using a dual coil in series (B and C common)

<table>
<thead>
<tr>
<th>Positive current to term</th>
<th>Port A flow (M1)</th>
<th>Port B flow (M2)</th>
<th>Servo cylinder (side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Out</td>
<td>In</td>
<td>M5 (2)</td>
</tr>
<tr>
<td>D</td>
<td>In</td>
<td>Out</td>
<td>M4 (1)</td>
</tr>
</tbody>
</table>

Refer to Installation Drawings on page 50 for port locations.

For further information on EDC controls, refer to Electrical Displacement Control For Series 90 Pumps, BLN-95-9060.

Manual Over Ride (MOR)

EDC controls are available with a Manual Over Ride (MOR) which is intended for temporary actuation of the control to aid in pump diagnostics.

⚠️ Warning

Using the MOR to control the pump will not result in proportional control.

Refer to the control flow table in the size specific technical information manual for the relationship of solenoid to direction of flow.

⚠️ Warning

The vehicle must always be in a safe condition (i.e. vehicle lifted off the ground) when using the MOR function. The MOR lever has a must be manually actuated to be engaged. Moving the plunger mechanically moves the pilot stage armature which allows the pump to go on stroke. The MOR should be engaged anticipating a full stroke response from the pump.
Control Options

<table>
<thead>
<tr>
<th>Pump Phasing With EDC Manual Operator (MOR)</th>
<th>MOR Rotation</th>
<th>Pump Flow Out Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Rotation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Towards Connector</td>
<td>B</td>
</tr>
<tr>
<td>CCW</td>
<td>Towards Connector</td>
<td>A</td>
</tr>
</tbody>
</table>

⚠️ **Warning**

Unintended MOR operation will cause the pump to go into stroke.

Hydraulic Displacement Control (HDC), Option HF

⚠️ **Warning**

Avoid designing a system which puts swashplate into full stroke when control operation is blocked by contamination.

Operation

The hydraulic displacement control uses a hydraulic input signal to operate a 4-way servo valve, which ports hydraulic pressure to either side of a double acting servo piston. The servo piston tilts the cradle swashplate, thus varying the pump's displacement from full displacement in one direction to full displacement in the opposite direction.

The control has a mechanical feedback mechanism which moves the servo valve in relation to the input signal and the angular rotation of the swashplate. The hydraulic displacement control is designed so the angular position of the swashplate (pump displacement) is proportional to the hydraulic input signal pressure. Due to normal operating force changes, the swashplate tends to drift from the position preset by the machine operator. Drift, sensed by feedback linkage system connecting the swashplate to the control valve, activates the valve to supply pressure to the servo piston, maintaining the swashplate in its preset position.

Features and Benefits

- The hydraulic displacement control is a high gain control: With only small change of the input signal, the servo valve moves to a full open position porting maximum flow to the servo cylinder.
Internal mechanical stops on the servo valve allow rapid changes in input signal pressure without damaging the control mechanism.

Precision parts provide repeatable, accurate displacement settings with a given input signal.

The swashplate is coupled to a feedback mechanism. The control valve drains the ends of the servo piston when an input signal is not present.

Benefits:
- Simple - low cost design.
- Pump returns to neutral after prime mover shuts down.
- Pump returns to neutral if there is a loss of input signal pressure or if there is a loss of charge pressure.

Hydraulic displacement control schematic

![Hydraulic displacement control schematic](image)

Cross-section

![Cross-section](image)

Warning

Maximum allowable signal pressure is 60 bar [870 psi]. Exceeding allowable signal pressure will cause damage to the control.

Response time

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a function of the size of the orifice in the control flow passage, charge pressure, valve plates and other vehicle dynamics.

A range of orifice sizes are available for the Series 90 hydraulic displacement control to assist in matching the rate of swashplate response to the acceleration and deceleration requirements of the application. Testing should be carried out to determine the proper orifice selection for the desired response.

For more information regarding response time for individual orifices, please contact your Danfoss representative.
Control Options

Pump displacement vs. signal pressure

Hydraulic signal pressure range*

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3 ± 0.5 bar</td>
<td>[43 ± 6 psi]</td>
</tr>
<tr>
<td>b</td>
<td>11 ± 0.5 bar</td>
<td>[160 ± 6 psi]</td>
</tr>
</tbody>
</table>

Pump output flow direction vs. control pressure

<table>
<thead>
<tr>
<th>Input shaft rotation</th>
<th>CW</th>
<th></th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control pressure to port</td>
<td>X1</td>
<td>X2</td>
<td>X1</td>
</tr>
<tr>
<td>Port A flow (M1)</td>
<td>Out</td>
<td>In</td>
<td>In</td>
</tr>
<tr>
<td>Port B flow (M2)</td>
<td>In</td>
<td>Out</td>
<td>Out</td>
</tr>
<tr>
<td>Servo cylinder (side)</td>
<td>M5 (2)</td>
<td>M4 (1)</td>
<td>M5 (2)</td>
</tr>
</tbody>
</table>

Refer to Installation Drawings on page 50, for port locations.

Manual Displacement Control (MDC), Options MA, MB

⚠️ Warning

Avoid designing a system which puts swashplate into full stroke when control operation is blocked by contamination.

The manual displacement control converts a mechanical input signal to a hydraulic signal that tilts the cradle swashplate through an angular rotation varying the pump's displacement from full displacement in one direction to full displacement in the opposite direction.

The manual displacement control has a mechanical feedback mechanism which moves a servo valve in the proper relationship to the input signal and the angular position of the swashplate. The control is designed so that the angular rotation of the swashplate is proportional to the mechanical input signal. The control is designed with an internal override mechanism which allows the mechanical input to be moved at a faster rate than the movement of the swashplate without damage to the control.

Features and benefits

- Precision parts provide repeatable, accurate displacement settings with a given input signal.
Control Options

- The manual displacement control is a high gain control: With only small movement of the control handle (input signal), the servo valve moves to full open position porting maximum flow to the servo cylinder. This is a high response system with low input force.
- The integral override mechanism allows rapid changes in input signal without damaging the control mechanism.
- Precision parts provide repeatable, accurate displacement settings with a given input signal.
- The double-acting servo piston is coupled to a spring centering mechanism. The servo control valve is spring centered such that with no input signal the servo valve is open centered and thus no fluid is ported to the servo cylinder.

Benefits:
- Pump returns to neutral after prime mover shuts down.
- Pump returns to neutral if external control linkage fails at the control handle or if there is a loss of charge pressure.

Manual displacement control schematic

![Manual Displacement Control Schematic](image)

Cross-section

Control handle input signal

![Cross-section of Control Handle Input Signal](image)

External control handle requirements

- Torque required to move handle to maximum displacement is 0.68 to 0.9 N·m [6 to 8 lbf·in].
- Torque required to hold handle at given displacement is 0.34 to 0.57 N·m [3 to 5 lbf·in].
- Torque required to overcome the override mechanism is 1.1 to 2.3 N·m [10 to 20 lbf·in] with the maximum torque required for full forward to full reverse movement.
- Maximum allowable input torque is 17 N·m [150 lbf·in].

Pump displacement vs. control lever rotation
Control Options

Control lever rotation range

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.5° - 4.5°</td>
</tr>
<tr>
<td>b</td>
<td>24° - 30°</td>
</tr>
</tbody>
</table>

Volumetric efficiencies of the system will have impacts on the start- and end input- commands.

Response Time

The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a function of the size of the orifice and charge pressure in the control, charge pressure, valve plates and other vehicle dynamics.

A range of orifice sizes is available for the Series 90 manual displacement control to assist in matching the rate of swashplate response to the acceleration and deceleration requirements of the application. Testing should be carried out to determine the proper orifice selection for the desired response. For more information regarding response time for individual orifices, please contact your Danfoss representative.

Pump output flow direction vs. control handle rotation

MDC handle rotation parameters

Maximum displacement

"B"

Neutral position

"A"

Maximum displacement
Control Options

Pump output flow direction vs. control handle rotation

<table>
<thead>
<tr>
<th>Input shaft rotation</th>
<th>CW</th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handle rotation</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Port A flow (M1)</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>Port B flow (M2)</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Servo cylinder (side)</td>
<td>M5 (2)</td>
<td>M4 (1)</td>
</tr>
</tbody>
</table>

Refer to Installation Drawings on page 50 for handle connection requirements

MDC with Neutral Start Switch (NSS)

The neutral start switch (NSS) stops the prime mover from starting unless the pump is in neutral. When the control is not in neutral position, the switch is disengaged, and the prime mover will not start. When the control is in neutral position, the switch is engaged, allowing the prime mover to start.

Non Feedback Proportional Electric Control (NFPE)

The Non Feedback Proportional Electric (NFPE) control is an electrical automotive control in which an electrical input signal activates one of two proportional solenoids that port charge pressure to either side of the pump servo cylinder. The NFPE control has no mechanical feedback mechanism.

The pump displacement is proportional to the solenoid signal current, but it also depends upon pump input speed and system pressure. This characteristic also provides a power limiting function by reducing the pump swashplate angle as system pressure increases.

Control response

Series 90 controls are available with optional control passage orifices to assist in matching the rate of swashplate response to the application requirements (e.g. in the event of electrical failure). Software ramp or rate limiting should be used to control vehicle response in normal operation. The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, charge pressure, valve plates and other vehicle dynamics. A swashplate response table is available for each frame indicating available swashplate response times. Testing a prototype system to verify the software and orifice selection provide the desired response.

Series 90 pumps have many orificing combinations, however, software is the best means of controlling the swashplate response in normal operating conditions. Mechanical servo orifices should be used only for fail-safe return to neutral in the event of an electrical failure.
Control Options

Pump Displacement vs. Input Signal

NFPE control

NFPE Schematic

NFPE control used with a Danfoss microcontroller

- Creep mode
- Two automotive control ramps via mode switch
- Engine overspeed protection
- Electric control
- Anti-stall function
- Smooth operation
Control Options

- Electronic ramp control is superior to hydraulic control with orifices

Input signal requirements

The NFPE control requires a pulse-width-modulated (PWM) input current to optimize performance. The recommended PWM frequency is 100 Hz. The minimum PWM frequency is 80 Hz.

Solenoid data

<table>
<thead>
<tr>
<th>Option</th>
<th>FA</th>
<th>FB</th>
<th>FC</th>
<th>FD</th>
<th>FK</th>
<th>FL</th>
<th>FM</th>
<th>FN</th>
<th>FG</th>
<th>FH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Size</td>
<td>42cc, 55cc, 100cc</td>
<td>75cc</td>
<td>75cc, 100cc, 130cc, 180cc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage [V]</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Maximum Current [mA]</td>
<td>1500</td>
<td>750</td>
<td>1500</td>
<td>750</td>
<td>1500</td>
<td>750</td>
<td>1500</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Current [mA]</td>
<td>440</td>
<td>220</td>
<td>440</td>
<td>220</td>
<td>440</td>
<td>220</td>
<td>440</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Current [mA]</td>
<td>1290</td>
<td>645</td>
<td>1290</td>
<td>645</td>
<td>1290</td>
<td>645</td>
<td>1290</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coil Resistance [Ohm]</td>
<td>4.72±5%</td>
<td>20.8±5%</td>
<td>5.3±5%</td>
<td>21.2±5%</td>
<td>4.72±5%</td>
<td>4.72±5%</td>
<td>4.72±5%</td>
<td>4.98±3%</td>
<td>20.6±3%</td>
<td></td>
</tr>
<tr>
<td>PWM Range [Hz]</td>
<td>70-200</td>
<td>70-200</td>
<td>70-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Preferred [Hz]</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection Class</td>
<td>up to IP6K6/IPX7/IPX9K</td>
<td>up to IP6K6/IPX7/IPX9K</td>
<td>IP65 DIN 40050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>Amp Junior Timer</td>
<td>AMP Junior Timer</td>
<td>Amp Junior Timer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* PWM Signal Required for Optimum Control Performance.

To use the NFPE control in a PLUS+1 application, download the appropriate file from www.Danfoss.com/PLUS+1.

NFPE pump displacement vs. input signal

<table>
<thead>
<tr>
<th>Shaft rotation</th>
<th>CW</th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active solenoid</td>
<td>1 and A</td>
<td>2 and B</td>
</tr>
<tr>
<td>Port A flow</td>
<td>Out</td>
<td>In</td>
</tr>
<tr>
<td>Port B flow</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Servo cylinder</td>
<td>M5</td>
<td>M4</td>
</tr>
</tbody>
</table>

The NFPE control uses an AMP® Junior Power Timer connector. The solenoids are compatible with Danfoss microcontrollers and joysticks.

Mating Connector: Danfoss Identification Number 10102040

Amp Junior Power Timer 2 Pin Connector (Male Terminal)
Multi-Function Valves

Overpressure protection

The Series 90 pumps are designed with a sequenced pressure limiting system and high pressure relief valves. When the preset pressure is reached, the pressure limiter system acts to rapidly de-stroke the pump to limit the system pressure. For unusually rapid load application, the high pressure relief valve is also available to limit the pressure level. The pressure limiter sensing valve acts as the pilot for the relief valve spool, such that the relief valve is sequenced to operate above the pressure limiter level.

Both the pressure limiter sensing valves and relief valves are built into the multi-function valves located in the pump endcap. The sequenced pressure limiter/high pressure relief valve system in the Series 90 provides an advanced design of overpressure protection.

The pressure limiter avoids system overheating associated with relief valves and the sequenced relief valves are available to limit pressure spikes which exist in severe operating conditions.

Because the relief valves open only during extremely fast pressure spike conditions, heat generation is minimized during the short time that they might be open. For some applications, such as dual path vehicles, the pressure limiter function may be defeated such that only the relief valve function remains. The relief response is approximately 20 ms whether used with or without the pressure limiter function.

Pressure limiting function

When set pressure is exceeded, the pressure sensing valve (A) flows oil through passage (B) and across an orifice in the control spool raising pressure on the servo which was at low pressure. Servo pressure relief valves (C) limit servo pressure to appropriate levels. The pressure limiter action cancels the input command of the displacement control and tends to equalize servo pressure. Swashplate moments assist to change the displacement as required to maintain system pressure at the set point. The HPRV is always set 30 bar above the pressure limiter setting.

HPRVs are factory set at a low flow condition. Any application or operating condition which leads to elevated HPRV flow will cause a pressure rise with flow above a valve setting. Consult factory for application review. Excessive operation of the HPRV will generate heat in the closed loop and may cause damage to the internal components of the pump.

Multifunction valve, pressure limiter, pressure regulation, option 1
Features and Options

Bypass Function

In some applications it is desirable to bypass fluid around the variable displacement pump when pump shaft rotation is either not possible or not desired. For example, an inoperable vehicle may be moved to a service or repair location or winched onto a trailer without operating the prime mover. To provide for this, Series 90 pumps are designed with a bypass function.

The bypass is operated by mechanically rotating the bypass hex on both multifunction valves three (3) turns counterclockwise (CCW). This connects working loop A and B and allows fluid to circulate without rotating the pump and prime mover.

⚠️ Warning

Excessive speeds and extended load/vehicle movement must be avoided while moving in bypass function. The load or vehicle should be moved not more than 20% of maximum speed and for a duration not exceeding 3 minutes. Damage to drive motor(s) is possible. When the bypass function is no longer needed care should be taken to re-seat the HPRV hex plugs to the normal operating position.

⚠️ Warning

Possible pump and/or motor damage.

Bypass valves are intended for moving a machine or vehicle for very short distances at very slow speeds. They are NOT intended as tow valves.

Auxiliary Mounting Pads

Auxiliary mounting pad specifications

<table>
<thead>
<tr>
<th>Mounting pad</th>
<th>Option code</th>
<th>Spline coupling</th>
<th>Frame size/Maximum torque N-m [lbf-ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>042</td>
</tr>
<tr>
<td>SAE D</td>
<td>DE</td>
<td>13T 8/16</td>
<td>n/a</td>
</tr>
<tr>
<td>SAE E</td>
<td>EF</td>
<td>13T 8/16</td>
<td>n/a</td>
</tr>
<tr>
<td>SAE E</td>
<td>EG</td>
<td>27T 16/32</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Mating pump requirements

The accompanying drawing provides the dimensions for the auxiliary pump mounting flange and shaft.

Pump mounting flanges and shafts with the dimensions noted below are compatible with the auxiliary mounting pads on the Series 90 pumps. An O-ring is required when a pump is bolted to an aux pad. Refer to outline drawings for more details and O-ring dimensions.
Features and Options

Auxiliary pump mounting flange and shaft

![Diagram of auxiliary pump mounting flange and shaft]

Auxiliary pump dimensions

<table>
<thead>
<tr>
<th>Flange size</th>
<th>Units</th>
<th>P diameter</th>
<th>B maximum</th>
<th>D</th>
<th>F minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE A</td>
<td>mm [in]</td>
<td>82.55 [3.25]</td>
<td>7.4 [0.29]</td>
<td>32</td>
<td>13.5 [0.53]</td>
</tr>
<tr>
<td>SAE B</td>
<td></td>
<td>101.6 [4.00]</td>
<td>10.7 [0.42]</td>
<td>41</td>
<td>14.2 [0.56]</td>
</tr>
<tr>
<td>SAE B-B</td>
<td></td>
<td>101.6 [4.00]</td>
<td>10.7 [0.42]</td>
<td>46</td>
<td>16.1 [0.63]</td>
</tr>
<tr>
<td>SAE C</td>
<td></td>
<td>127.0 [5.00]</td>
<td>14.3 [0.56]</td>
<td>56</td>
<td>18.3 [0.72]</td>
</tr>
<tr>
<td>SAE D</td>
<td></td>
<td>152.4 [6.00]</td>
<td>14.3 [0.56]</td>
<td>75</td>
<td>20.8 [0.82]</td>
</tr>
<tr>
<td>SAE E 13 teeth</td>
<td></td>
<td>165.1 [6.50]</td>
<td>18.0 [0.71]</td>
<td>75</td>
<td>20.8 [0.82]</td>
</tr>
<tr>
<td>SAE E 27 teeth</td>
<td></td>
<td>165.1 [6.50]</td>
<td>18.0 [0.71]</td>
<td>75</td>
<td>27.0 [1.06]</td>
</tr>
</tbody>
</table>

Displacement Limiter

All Series 90 pumps are designed with optional mechanical displacement (stroke) limiters.

The maximum displacement of the pump can be set independently for forward and reverse using the two adjustment screws.

⚠️ **Warning**

Adjusting the displacement limiter with the machine running may result in leakage. If backed out too far, the adjustment screw will come completely out of its threaded bore.
Features and Options

Displacement limiter location

<table>
<thead>
<tr>
<th>Pump rotation</th>
<th>Displacement limiter mounted on servo side</th>
<th>Displacement limitation at high pressure side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right [CW]</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>Left [CCW]</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>A</td>
</tr>
</tbody>
</table>

Displacement limiter

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Lock nut wrench size and torque</th>
<th>Adjusting screw wrench size internal hex</th>
<th>Approximate displacement change per revolution of adjusting screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>13 mm 24 N-m [18 lbf-ft]</td>
<td>4 mm</td>
<td>3.5 cm³/(rev) [0.21 in³/rev]</td>
</tr>
<tr>
<td>055</td>
<td>13 mm 24 N-m [18 lbf-ft]</td>
<td>4 mm</td>
<td>4.2 cm³/rev [0.26 in³/rev]</td>
</tr>
<tr>
<td>075</td>
<td>13 mm 24 N-m [18 lbf-ft]</td>
<td>4 mm</td>
<td>5.1 cm³/rev [0.31 in³/rev]</td>
</tr>
<tr>
<td>100</td>
<td>13 mm 24 N-m [18 lbf-ft]</td>
<td>4 mm</td>
<td>6.2 cm³/rev [0.38 in³/rev]</td>
</tr>
<tr>
<td>130</td>
<td>17 mm 48 N-m [35 lbf-ft]</td>
<td>5 mm</td>
<td>8.8 cm³/rev [0.53 in³/rev]</td>
</tr>
<tr>
<td>180</td>
<td>19 mm 125 N-m [92 lbf-ft]</td>
<td>6 mm</td>
<td>12.5 cm³/rev [0.76 in³/rev]</td>
</tr>
<tr>
<td>250</td>
<td>19 mm 125 N-m [92 lbf-ft]</td>
<td>6 mm</td>
<td>17.3 cm³/rev [1.06 in³/rev]</td>
</tr>
</tbody>
</table>

The servo cylinders are equipped with gage port X11 and X12. These ports provide the possibility to connect the servo system of the pump to the system loop. This feature connects the high pressure lines with the servo system over check valves and provides a smooth concrete flow.

Shaft Torque

Shaft torque and spline lubrication

The rated torque is a measure of tooth wear and is the torque level at which a normal spline life of 2x10^9 shaft revolutions can be expected. The rated torque presumes a regularly maintained minimum level of lubrication via a moly-disulfide grease in order to reduce the coefficient of friction and to restrict the presence of oxygen at the spline interface. It is also assumed that the mating spline has a minimum hardness of Rc 55 and full spline depth. The rated torque is proportional to the minimum active spline length.

Maximum torque ratings are based on torsional fatigue strength considering 100,000 full load reversing cycles. However, a spline running in oil-flooded environment provides superior oxygen restriction in addition to contaminant flushing. The rated torque of a flooded spline can increase to that of the
Features and Options

maximum published rating. A flooded spline would be indicative of a pump driven by a pump drive or plugged into an auxiliary pad of a pump.

Maintaining a spline engagement at least equal to the Pitch Diameter will also maximize spline life. Spline engagements of less than ¾ Pitch Diameter are subject to high contact stress and spline fretting.

Shaft torque for tapered shafts

The rated torque is based on the contact pressure between the shaft and hub surfaces with poor surface contact areas. With an increased quality of the contact areas, the contact pressure between the shaft and hub is increased and allows higher torque to be transmitted.

When a key is used for orientation of the hub on the shaft in conjunction with poor quality contact surfaces, the transmitted torque will drop significantly. This is due to the key carrying the torque, which limits the shaft torque carrying capability.

Maximum torque rating is based on an ideal contact area of 100 % and the retaining nut properly torqued. This allows for the highest contact pressure between the shaft and the hub.

Shaft Availability and Torque Ratings

Alignment between the mating spline’s pitch diameters is another critical feature in determining the operating life of a splined drive connection. Plug-in, or rigid spline drive installations can impose severe radial loads on the shafts. The radial load is a function of the transmitted torque and shaft eccentricity. Increased spline clearance will not totally alleviate this condition; but, increased spline clearance will prevent mechanical interference due to misalignment or radial eccentricity between the pitch diameters of the mating splines. Spline life can be maximized if an intermediate coupling is introduced between the bearing supported splined shafts.

For multiple pump installations, consider load of the entire pump stack. All torques are additive. Include charge pumps loads when calculating torques.

Through torque diagram

Refer to the outline drawings for shaft dimensions.

Torque required by auxiliary pumps is additive. Ensure requirements don’t exceed shaft torque ratings.

Shaft availability and maximum input torque - splined shafts

<table>
<thead>
<tr>
<th>Option code</th>
<th>Customer end</th>
<th>Frame size/Maximum torque N-m [lb-ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>042</td>
</tr>
<tr>
<td>C3</td>
<td>1ST 16/32</td>
<td>548 [404]</td>
</tr>
<tr>
<td>C6</td>
<td>21T 16/32</td>
<td>n/a</td>
</tr>
<tr>
<td>C7</td>
<td>23T 16/32</td>
<td>n/a</td>
</tr>
<tr>
<td>C8</td>
<td>27T 16/32</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Shaft availability and maximum input torque - splined shafts (continued)

<table>
<thead>
<tr>
<th>Option code</th>
<th>Customer end</th>
<th>Frame size/Maximum torque N•m [lbf•ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>042</td>
</tr>
<tr>
<td>G1</td>
<td>25T 20/40</td>
<td>n/a</td>
</tr>
<tr>
<td>F1</td>
<td>13T 8/16</td>
<td>n/a</td>
</tr>
<tr>
<td>S1</td>
<td>14T 12/24</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Shaft availability and maximum input torque - splined shafts

<table>
<thead>
<tr>
<th>Option code</th>
<th>Customer end</th>
<th>Frame size/Maximum torque N•m [lbf•ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>C8</td>
<td>27T 16/32</td>
<td>2693 [1986]</td>
</tr>
<tr>
<td>F1</td>
<td>13T 8/16</td>
<td>2303 [1700]</td>
</tr>
<tr>
<td>D5</td>
<td>W50x2x30x24x9g</td>
<td>-</td>
</tr>
</tbody>
</table>

Shaft availability and maximum input torque - tapered shafts

<table>
<thead>
<tr>
<th>Option code</th>
<th>Customer end</th>
<th>Maximum Torque transmitted through joint</th>
<th>Frame size/Maximum shaft torque N•m [lbf•ft]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SD supplied nut</td>
<td>customer supplied nut</td>
</tr>
<tr>
<td>T8</td>
<td>Taper 1" - lock nut*</td>
<td>190 [140]</td>
<td>357 [263]</td>
</tr>
<tr>
<td>T1</td>
<td>Taper 1.375" - crowned nut**</td>
<td>210 [155]</td>
<td>704 [519]</td>
</tr>
<tr>
<td>T6</td>
<td>Taper 1.5" - lock nut*</td>
<td>525 [390]</td>
<td>882 [650]</td>
</tr>
<tr>
<td>T4</td>
<td>Taper 1.75" - crowned nut**</td>
<td>400 [295]</td>
<td>1391 [1026]</td>
</tr>
</tbody>
</table>

* without key
** with woodruff key

** Warning

1Exceeding the maximum torque value for SD supplied nut may result in nut failure.

** Warning

2Customer may supply a stronger nut. Exceeding the maximum torque value for customer supplied nut may result in shaft failure.

** Tapered Shaft Customer Acknowledgement

** Warning

The customer is responsible for proper analysis, design, and quality of the mating female coupling, key, and applied torque on the nut. Torque must be transmitted by the taper fit between the shaft and mating coupling, not the key. Failure to properly analyze the nut torque required to create a robust joint could result in transmitting torque through the key which may lead to premature shaft failure.
Features and Options

The specified torque rating of the tapered shaft is based on the cross-sectional diameter of the shaft through the keyway and assumes proper clamp and fit between shaft and coupling. Danfoss guarantees the design and manufactured quality of the tapered shaft.

Danfoss has made provisions for the key in accordance to the ISO specification with the understanding that the key is solely to assist in the installation of the mating coupling.

Charge Pump

Charge flow is required on all Series 90 pumps applied in closed circuit installations. The charge pump provides flow to make up internal leakage, maintain a positive pressure in the main circuit, provide flow for cooling and filtration, replace any leakage losses from external valving or auxiliary systems, and to provide flow and pressure for the control system.

Many factors influence the charge flow requirements. These factors include system pressure, pump speed, pump swashplate angle, type of fluid, temperature, size of heat exchanger, length and size of hydraulic lines, control response characteristics, auxiliary flow requirements, hydrostatic motor type, etc.

Unusual application conditions may require a more detailed review of charge pump sizing. Charge pressure must be maintained at a specified level under all operating conditions to prevent damage to the transmission. Danfoss recommends testing under actual operating conditions to verify this.

Charge pump sizing/selection

In most applications a general guideline is that the charge pump displacement should be at least 10% of the total displacement of all components in the system. Unusual application conditions may require a more detailed review of charge flow requirements. Refer to Selection of Drive line Components BLN-9885, for a detailed procedure.

System features and conditions which may invalidate the 10% guideline include (but are not limited to):
• Continuous operation at low input speeds (< 1500 min⁻¹ (rpm))
• High shock loading
• Excessively long system lines (> 3m [9.8 ft])
• Auxiliary flow requirements
• Use of low speed high torque motors
• High flushing flow

Contact your Danfoss representative for application assistance if your application includes any of these conditions.

Available charge pump sizes and speed limits

<table>
<thead>
<tr>
<th>Code</th>
<th>Charge pump size cm³ [in³]</th>
<th>Rated speed min⁻¹ (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>11 [0.69]</td>
<td>4200</td>
</tr>
<tr>
<td>C</td>
<td>14 [0.86]</td>
<td>4200</td>
</tr>
<tr>
<td>D</td>
<td>17 [1.03]</td>
<td>3900</td>
</tr>
<tr>
<td>E</td>
<td>20 [1.20]</td>
<td>3600</td>
</tr>
<tr>
<td>F</td>
<td>26 [1.60] (only for 130cc)</td>
<td>3300</td>
</tr>
<tr>
<td>H</td>
<td>34 [2.07]</td>
<td>3100</td>
</tr>
<tr>
<td>J</td>
<td>47 [2.82] (only for 180cc)</td>
<td>2600</td>
</tr>
<tr>
<td>K</td>
<td>65 [3.90]</td>
<td>2300</td>
</tr>
</tbody>
</table>

Charge pump flow and power curves

Charge pressure: 20 bar [350 psi]
Features and Options

Case drain: 80 °C (8.2 cSt) 180 °F (53 SUS)
Reservoir temperature: 70 °C (11 cSt) 160 °F (63 SUS)

Charge pump output flow

Charge pump power requirements

Speed Sensor

An optional speed sensor for direct measurement of speed is available.
A special magnetic ring is pressed onto the outside diameter of the cylinder block and a Hall effect sensor is located in the housing. The sensor accepts supply voltage and outputs a digital pulse signal in response to the speed of the ring. The output changes its high/low state as the north and south poles of the permanently magnetized speed ring pass by the face of the sensor. The digital signal is generated at frequencies suitable for microprocessor based controls. The sensor is available with different connectors.
Features and Options

To use the speed sensor in a PLUS+1 Guide application, download HWD file 10106825 from www.Danfoss.com/Plus1. To identify the sensors that are PLUS+1 compliant, please contact your Danfoss representative.

Electrical data

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage (two ranges)</td>
<td>4.5 to 8.5 Vdc Regulated</td>
</tr>
<tr>
<td>Maximum operating current</td>
<td>20 mA at 1 Hz and 5 Vdc supply</td>
</tr>
<tr>
<td>Required current</td>
<td>12 mA at 5 Vdc (no load)</td>
</tr>
<tr>
<td>Output voltage</td>
<td></td>
</tr>
<tr>
<td>High state</td>
<td>Supply voltage minus 0.5 Vdc minimum (no load)</td>
</tr>
<tr>
<td>Low state</td>
<td>0.5 Vdc, maximum (no load)</td>
</tr>
<tr>
<td>Maximum frequency</td>
<td>15 kHz</td>
</tr>
<tr>
<td>Load</td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>15 kHz</td>
</tr>
<tr>
<td>Supply</td>
<td>15 kHz</td>
</tr>
<tr>
<td>Peak transient voltage</td>
<td></td>
</tr>
<tr>
<td>4.5 to 8.5 Vdc</td>
<td>80 Vdc for 2 milliseconds</td>
</tr>
<tr>
<td>7 to 32 Vdc</td>
<td>300 Vdc for 2 milliseconds</td>
</tr>
<tr>
<td></td>
<td>200 Vdc for 100 milliseconds</td>
</tr>
<tr>
<td>Peak reverse voltage</td>
<td></td>
</tr>
<tr>
<td>4.5 to 8.5 Vdc</td>
<td>-15 Vdc continuous</td>
</tr>
<tr>
<td>7 to 32 Vdc</td>
<td>-32 Vdc continuous</td>
</tr>
</tbody>
</table>

Environmental data

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating and storage temperature</td>
<td>-40° to 110° C [-40° to 230° F]</td>
</tr>
</tbody>
</table>

For more information on the speed sensor, refer to KPP Pulse Pickup (PPU) Technical Information 11029257.

⚠️ **Warning**

Do not energize the 4.5 to 8.5 Vdc sensor with 12 Vdc battery voltage. Use a regulated power supply. If you need to energize the sensor with battery voltage, contact your Danfoss representative for a special sensor.

Pulse frequency

<table>
<thead>
<tr>
<th>Pulse per revolution</th>
<th>042</th>
<th>055</th>
<th>075</th>
<th>100</th>
<th>130</th>
<th>180</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48</td>
<td>52</td>
<td>58</td>
<td>63</td>
<td>69</td>
<td>77</td>
<td>85</td>
</tr>
</tbody>
</table>
Features and Options

Connector Pin Assignments

3 pin Deutsch Plug DT Series connector

4 pin Deutsch® Plug DT Series Connector

3 or 4 pin Delphi Connector

Packard Weather-Pack 4 pin
(Supplied Connector)
Mating Connector
No.: K03379

4 pin Turck Eurofast connector

Turck Eurofast Connector 4 pin
(Supplied Connector)
Mating Connector straight right angle
No.: K14956 No.: K14957

12.7 [0.50] Flats
Frame Size 042

Manual displacement control (MDC), endcap twin ports, option 80

Control MDC, option MA

View "Z"

View "Y"

View "X"

Approximate center of gravity

Approximate center of gravity

Technical Information
Series 90 Axial Piston Pumps

Installation Drawings

Torque applied to control handle shaft not to exceed 17 Nm [150 lb-in]

Maximum displacement

Neutral position

Maximum displacement

Manual displacement control handle dimensions

Port S: Charge pump inlet
1/16-12 UNF-2B

Gauge port M2:
System pressure B
9/16-18UNF-2B

Gauge port M2:
System pressure A
9/16-18UNF-2B

Gauge port M3:
Charge pressure
9/16-18UNF-2B

Gauge port M4:
Servo pressure
9/16-18UNF-2B

Gauge port M5:
Servo pressure
9/16-18UNF-2B

Port L1:
Case drain
7/8-14UNF-2B

Port L2:
Case drain
7/8-14UNF-2B

External charge plug
1 1/16-12 UNF

Multifunction valve

Multifunction relief valve

Charge pressure relief valve

Multifunction valve
Installation Drawings

Auxiliary mounting pad – options AB, BC, BB

Coupling spline data:
- Pitch diameter = 14.288 [0.5625]
- Pressure angle = 30°
- Number of teeth = 9
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 33.5 [1.32]

For O-ring
Ø94.92 x 2.62
[Ø3.737 x 0.103]

View “X”

SAE A, option AB

Coupling spline data:
- Pitch diameter = 20.638 [0.8125]
- Pressure angle = 30°
- Number of teeth = 13
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 25.5 [1.0]

for O-ring
Ø94.92 x 2.62
[Ø3.737 x 0.103]

View “X”

SAE B, option BC

Coupling spline data:
- Pitch diameter = 23.8125 [0.9375]
- Pressure angle = 30°
- Number of teeth = 15
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 33.5 [1.32]

for O-ring
Ø94.92 x 2.62
[Ø3.737 x 0.103]

View “X”

SAE B-B, option BB

Coupling spline data:
- Pitch diameter = 14.288 [0.5625]
- Pressure angle = 30°
- Number of teeth = 9
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 15.2 [0.598]

for O-ring
Ø94.92 x 2.62
[Ø3.737 x 0.103]

View “X”

SAE B-B, option BB

Technical Information Series 90 Axial Piston Pumps
Installation Drawings

Shaft dimensions

Option T8

- 71 [2.8]
- 8 [0.32]
- 28.1 [1.106]
- M18 x 1.5 [0.709]
- 108.6 [4.28]

- Cone flange must not protrude beyond this point
- Self-lock nut (DIN 985)
- Washer
 - DIN EN ISO 7089-300
- Cone 1:8 per SAE J501

Refer to (torque - tapered shafts) table page 42 for torque information

Option C3 ISO 3019-1 Flange Outer

- Diameter 25mm -4mm (SAE B-B, 15 tooth)
- 7.9 [0.311]
- 38 [1.515]
- 25.4 [1.00]
- 108.6 [4.28]

- Coupling must not protrude beyond this surface
- * Minimum active spline length for the specified torque ratings

*Minimum active spline length for the specified torque ratings
Installation Drawings

Frame Size 055

Manual displacement control (MDC), endcap side ports, option 60

Manual Displacement Control Handle

Dimensions

Torque applied to control handle shaft not to exceed 17 N•m [150 lbf•in]

Maximum displacement

Neutral position

Maximum displacement

Gauge port M1

System pressure A

9/16-18UNF-2B

Approximate center of gravity

243.7 [9.60]

Port S

288.8

(11.37)

Gauge port M2

System pressure B

9/16-18UNF-2B

Port L1

Charge pressure relief valve

Multifunction valve

External charge plug

Port S: Charge pump inlet

7/16-20UNF-2B

Gauge port M3

Charge pressure

9/16-18UNF-2B

Multifunction valve

Gauge port M4

Servo pressure

7/16-20UNF-2B

Gauge port M5

Servo pressure

7/16-20UNF-2B

Approximate center of gravity

12.45 ±0.25

[0.49 ±0.01]

Port L2

Case drain

1-1/16-12UN-2B

Port L2

Case drain

1-1/16-12UN-2B

Use highest port as outlet

1.00 - 6000 psi

Split flange boss per SAE J518

(Code 62)

7/16-14UNC-2B

except 21 [0.83]

Minimum full thread

Approximate center of gravity

Gauge port M2

System pressure B

9/16-18UNF-2B

Control MDC, option MA

View "Z"

View "Y"

View "X"

Technical Information

Series 90 Axial Piston Pumps

Installation Drawings

520L0603 • Rev 0804 • March 2016
Installation Drawings

Manual displacement control (MDC) endcap twin ports, option 80

Control MDC, option MA

Ports A and B
1 – 6000 psi
split flange boss
per SAE J518
(Code 62)
7/16-14UNC-2B
21 [0.83]
minimum full thread

Gauge port M2
system pressure B
9/16-18UNF-2B

Port S: charge
pump inlet
1-5/16-12UN-2B

Gauge port M1: system pressure A
9/16-18UNF-2B

View "Y"
Auxiliary mounting pad – options AB, BC, CD, BB

SAE A, option AB

Coupling spline data:
- Pitch diameter = 14.288 [0.5625]
- Pressure angle = 30°
- Number of teeth = 9
- Pitch = 16/24
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 37.13 [1.46]

View "X"

For O-ring
- Ø 82.22 x 2.62
 [Ø 3.237 x 0.103]

SAE B, option BC

Coupling spline data:
- Pitch diameter = 20.6375 [0.8125]
- Pressure angle = 30°
- Number of teeth = 13
- Pitch = 16/24
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 29.51 [1.16]

View "X"

For O-ring
- Ø 94.92 x 2.62
 [Ø 3.737 x 0.103]

SAE C, option CD

Coupling spline data:
- Pitch diameter = 29.6333 [1.167]
- Pressure angle = 30°
- Number of teeth = 14
- Pitch = 12/24
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 18.97 [0.747]

View "X"

For O-ring
- Ø 120.32 x 2.62
 [Ø 4.737 x 0.103]
Installation Drawings

Auxiliary mounting pad – options AB, BC, CD, BB

Coupling spline data:
- Pitch diameter = 23.8125 [0.9375]
- Pressure angle = 30°
- Number of teeth = 15
- Pitch = 16/32
- ANSI B92.1-1970, class 6
- Fillet root side fit
- Length of spline = 24.43 [0.96]

Shaft dimensions

Option S1 ISO 3019-1
Flange Outer Diameter 32mm -4mm (SAE C, 14 tooth)

Shaft spline data:
- Pitch diameter = 29.6333 [1.167]
- Pressure angle = 30°
- Number of teeth = 14
- Pitch = 12/24
- ANSI B92.1
- Fillet root side fit

* Minimum active spline length for the specified torque ratings

Option C6 ISO 3019-1
Flange Outer Diameter 32mm -4mm (SAE C, 21 tooth)

Shaft spline data:
- Pitch diameter = 33.338 [1.3125]
- Pressure angle = 30°
- Number of teeth = 21
- Pitch = 16/32
- ANSI B92.1
- Fillet root side fit

Option T1 ISO 38.3
Diameter 34.9 mm Taper 1:8

Cone flange must not protrude beyond this point

Woodruff key [0.375 x 1.5]

Wrench size 38 mm
- Refer to (torque - tapered shafts) table page 42 for torque information

Shaft/cone 1:8 SAE standard J501
Installation Drawings

Frame Size 075

Manual Displacement Control (MDC) Endcap Side Ports, Option 60

Port L1
Case drain use highest port as outlet
1-1/16-12UN-2B

Gauge port M1
System pressure A 9/16-18UNF-2B

Gauge port M2
System pressure B 9/16-18UNF-2B

Gauge port M3
Charge pressure 9/16-18UNF-2B

Gauge port M4
Servo pressure 9/16-18UNF-2B

Gauge port M5
Servo pressure 9/16-18UNF-2B

View "Y"

Approximate center of gravity

Ports A and B
1 – 6000 psi split flange boss per SAE J518
7/16-14UNC-2B
minimum full thread

External charge plug 1-5/16-12UNF

View "Z"

Approximate center of gravity

Multifunction valve

Gauge port M3
Charge pressure 9/16-18UNF-2B

Multifunction valve

Port S: charge pump inlet 1-5/16-12UNF

Manual displacement control handle dimensions

Torque applied to control handle shaft not to exceed 17 Nm [150 lbf•in]

Maximum displacement 28° minimum
Neutral position
Maximum displacement

Maximum displacement

R 50.8 ±0.3
R 25.4 ±0.3
R 8.6 ±0.13
R 4.78 ±0.188

R 6.33 ±0.249
R 12.70 ±0.50

P102 046
Installation Drawings

Manual Displacement Control (MDC), endcap twin ports, option 80

Gauge port M2: system pressure B
9/16-18UNF-2B

Port S: charge
pump inlet
1-5/16-12UN-2B

Gauge port M1: system pressure A
9/16-18UNF-2B

Ports A and B
1-5/800 psi
split flange boss
per SAE J518
(Code 62)
3/16-14UNC-2B
except 20.8 [0.82]
minimum full thread

View “Y”
Installation Drawings

Auxiliary mounting pad – Options AB, BC, CD, BB

Coupling spline data:
- Pitch diameter = 14.288 [0.5625]
- Pressure angle = 30°
- Number of teeth = 9
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 37.13 [1.46]

SAE A, option AB

For O-ring
- Ø 82.22 x 2.62
- [Ø 3.237 x 0.103]

View “X”
- 4 threads
- 3/8-16UNC-2B
- 22 [0.87] deep

SAE B, option BC

For O-ring
- Ø 94.92 x 2.62
- [Ø 3.737 x 0.103]

View “X”
- 4 threads
- 1/2-13UNC-2B
- 22 [0.87] deep

SAE C, option CD

For O-ring
- Ø 120.32 x 2.62
- [Ø 4.737 x 0.103]

View “X”
- 6 threads
- 1/2-13UNC-2B
- 22 [0.87] deep
Installation Drawings

Auxiliary mounting pad – options AB, BC, CD, BB

Coupling spline data:
- Pitch diameter = 23.8125 \((0.9375) \)
- Pressure angle = 30°
- Number of teeth = 15
- Pitch = 16/32
- ANSI B92.1-1970, class 6, filler root side fit
- Length of spline = 24.43 \((0.96) \)

Frame Size 075 NFPE Options FK, FL, FM, FN

Integrated NFPE control, endcap side ports

- System pressure B
 - Gage port M3
 - Case drain L1
 - 1-1/16-12UNF-2B
- System pressure A
 - Gage port M1
 - 9/16-18UNF-2B
 - Charge pump inlet M10
 - 9/16-18UNF-2B
 - Approx center of gravity
- Case drain L1
 - 1-1/16-12UNF-2B
 - Gage port M3
- Connector
 - AMP Junior Typ A
- Approx center of gravity
Integrated NFPE control, endcap side ports (continued)

View "C"

View "A"

View "D"

Technical Information
Series 90 Axial Piston Pumps

Installation Drawings
Integrated NFPE control, endcap twin ports
Installation Drawings

View "C"

Gage port M4
Servo pressure
9/16-18UNF-2B

Connector
Deutsch: DTM 06-3 S

Gage port M5
Servo pressure
9/16-18UNF-2B

Shaft dimensions

7.9
[0.311]

Coupling must not protrude beyond this surface

P104 329E

P108 504E

Technical Information
Series 90 Axial Piston Pumps

Installation Drawings
Installation Drawings

(EIF) 89 [3.504]

Cone flange must not protrude beyond this point

(EIF) 38.1 [1.5]

Wrench size 36 mm

Refer to (torque - tapered shafts) table page 42 for torque information

Shaft dimensions

<table>
<thead>
<tr>
<th>Shaft Option</th>
<th>Undercut Diameter</th>
<th>Full Spline Diameter</th>
<th>Major Diameter</th>
<th>Pitch Diameter</th>
<th>Length</th>
<th>Number of Teeth</th>
<th>Pitch</th>
<th>Pressure Angle</th>
<th>Spline</th>
</tr>
</thead>
</table>

* Minimum active spline length for the specified torque ratings
Manual Displacement Control (MDC), endcap side ports, option 60

- **Control MDC, option MA**
- **Coupling may not protrude beyond this surface**
- **Approximate center of gravity**
- **View “Z”**
- **View “X”**
- **Charge pressure relief valve**
- **Multifunction valve**
- **Ports A and B**
 - 1.00 - 6000 psi
 - Split flange boss per SAE J518 (Code 62)
 - 7/16-14UNC-2B except 21 [0.83] minimum full thread
- **Gauge port M2**
 - System pressure B
 - 9/16-18UNF-2B
- **Gauge port M1**
 - System pressure A
 - 9/16-18UNF-2B
- **Gauge port M4**
 - Serve pressure
 - 9/16-18UNF-2B
- **Gauge port M5**
 - Serve pressure
 - 9/16-18UNF-2B
- **Port L1**
 - Case drain
 - Use highest port as outlet
 - 1-1/16-12UN-2B
- **Port S**
 - Charge pump inlet
 - 1-5/16-12UN-2B
- **Gauge port M3**
 - Charge pressure
 - 9/16-18UNF-2B
- **External charge plug**
 - 1 5/16-12 UNF
- **Maximum displacement control handle dimensions**
- **Torque applied to control handle shaft not to exceed 17 Nm [150 lbf•in]**
- **Neutral position**
- **Maximum displacement**
Installation Drawings

Manual Displacement Control (MDC), endcap twin ports, option 80

Gauge port M2
system pressure B
9/16-18UNF-2B

Gauge port M1: system pressure A
9/16-18UNF-2B

Port S: charge
pump inlet
1-5/8-12UN-2B

Ports A and B
1 - 6000 psi
split flange boss
per SAE J518
(Code 62)
7/16-14UNC-2B
21 [0.83]
minimum full thread

View "Y"
Installation Drawings

Auxiliary mounting pads, SAE AB, SAE BC, SAE CD

SAE A, Option AB

COUPLING SPINE DATA:
- Pitch Dia = 14.286 (0.562) mm
- Pressure Angle = 30°
- Number of teeth = 9
- Pitch = 16/32
- ANSI B92.1-1970, Class 6, Fillet Root Side Fit
- Length of spline = 37.13 (1.46)

View “X”
- for O-Ring ø82.22 x 2.62
 (3.237 Dia x 0.103)
- 4 Threads M3
- 1/2-13 UNC-2B
- 17.66 (0.67) deep

SAE B, Option BC

COUPLING SPINE DATA:
- Pitch Dia = 20.638 (0.812) mm
- Pressure Angle = 30°
- Number of teeth = 14
- Pitch = 16/32
- ANSI B92.1-1970, Class 6, Fillet Root Side Fit
- Length of spline = 29.51 (1.16)

View “X”
- for O-Ring ø94.92 x 2.62
 (3.737 Dia x 0.103)
- 4 Threads M3
- 3/8-16 UNC-2B
- 17 (0.67) deep

SAE C, Option CD

COUPLING SPINE DATA:
- Pitch Dia = 14.286 (0.562) mm
- Pressure Angle = 30°
- Number of teeth = 9
- Pitch = 16/32
- ANSI B92.1-1970, Class 6, Fillet Root Side Fit
- Length of spline = 37.13 (1.46)

View “X”
- for O-Ring ø120.32 x 2.62
 (4.737 Dia x 0.103)
- 6 Threads M3
- 1/2-13 UNC-2B
- 22 (0.87) deep
Installation Drawings

Auxiliary mounting pad, SAE BB

COUPLING SPiNE DATA:
Pitch Dia = 23.8125 (9375)
Pressure Angle = 30
Number of teeth = 15
Pitch = 16/32
 ANSI B92.1-1970, Class 6,
Fillet Root Side Fit
Length of spline = 24.43 (.96)

Shaft dimensions

7.9 [0.311]
Coupling must not protrude beyond this surface

P106 646E
Installation Drawings

Option T6

Cone flange must not protrude beyond this point

Wrench size 36 mm
Refer to (torque - tapered shafts) table page 42 for torque information

Self lock nut DIN 985

Shaft/cone 1:8 SAE standard JS01

Shaft dimensions

<table>
<thead>
<tr>
<th>Shaft Option</th>
<th>Undercut Diameter</th>
<th>Full Spline Diameter</th>
<th>Major Diameter</th>
<th>Pitch Diameter</th>
<th>Length</th>
<th>Number of Teeth</th>
<th>Pitch Angle</th>
<th>Pressure Angle</th>
<th>Spline</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7</td>
<td>32.3 [1.27]</td>
<td>38.9 [1.53]</td>
<td>37.59 [1.48]</td>
<td>36.513 [1.4375]</td>
<td>47.6 [1.875]</td>
<td>23</td>
<td>16/3</td>
<td>30 Degrees</td>
<td>ANSI B92.1 Side fit, Fillet Root</td>
</tr>
<tr>
<td>F1</td>
<td>34.5 [1.36]</td>
<td>49.5 [1.95]</td>
<td>43.94 [1.73]</td>
<td>41.275 [1.625]</td>
<td>66.7 [2.625]</td>
<td>13</td>
<td>8/16</td>
<td>30 Degrees</td>
<td>ANSI B92.1 Side fit, Fillet Root</td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 Degrees</td>
<td>ANSI B92.1 Side fit, Fillet Root</td>
</tr>
</tbody>
</table>

* Minimum active spline length for the specified torque ratings
Installation Drawings

Frame Size 130

Manual Displacement Control (MDC), end cap twin ports, option 80

Manual displacement control handle dimensions

- Torque applied to control handle shaft not to exceed 17 N•m (150 lbf•in)
- Maximum displacement
 - "B" R 50.8 [R 2.00]
 - Neutral position "A" R 25.4 [R 1.00]
 - Maximum displacement Ø 6.73 [Ø 0.263] 2x

Gauge port M1
- System pressure A
- 9/16-18UNF-2B
- Approximate center of gravity
- Port S: charge pump inlet
- 1-5/8-12UN-2B
- Case drain use highest port as outlet
- 1-5/16-12UN-2B

Gauge port M2
- System pressure B
- 9/16-18UNF-2B
- Approximate center of gravity
- Port L1
- Case drain use highest port as outlet
- 1-5/16-12UN-2B

Gauge port M3
- System pressure A
- 9/16-18UNF-2B
- Charge pressure relief valve

Gauge port M4
- Servo pressure
- 9/16-18UNF-2B
- Multi function valve

Gauge port M5
- Servo pressure
- 9/16-18UNF-2B
- Multi function valve

P102 052
Installation Drawings

Auxiliary mounting pad - options AB, BC, CD, DE, BB

Coupling spline data:
- Pitch diameter = 14.288 [0.5625]
- Pressure angle = 30°
- Number of teeth = 9
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 22.4 [0.88]

For O-ring
Ø 82.22 x 2.62
(3.237 diameter x 0.103)

SAE A, option AB

View "X"

SAE B, option BC

View "X"

SAE C, option CD

View "X"

Coupling spline data:
- Pitch diameter = 20.6375 [0.8125]
- Pressure angle = 30°
- Number of teeth = 13
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 28.77 [1.1]

For O-ring
Ø 94.92 x 2.62
(3.737 diameter x 0.103)

14 threads
3/8-16UNC-2B
17.8 [0.70] deep

Coupling spline data:
- Pitch diameter = 29.6333 [1.167]
- Pressure Angle = 30°
- Number of teeth = 14
- Pitch = 12/24
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 29.97 [1.18]

For O-ring
Ø120.32 x 2.62
(4.737 diameter x 0.103)

6 threads
1/2-13UNC-2B
22 [0.87] deep
Installation Drawings

Auxiliary mounting pad - options AB, BC, CD, DE, BB

Coupling spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 15
- M1

ANSI B92.1-1970, class 6,
- fillet root side fit
- Length of spline = 25.22 [0.993]

For O-ring
- Ø 94.92 x 2.62
 [Ø 3.73 x 0.103]

View “X”

SAE B-B, option BB

Coupling spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 15
- M1

ANSI B92.1-1970, class 6,
- fillet root side fit
- Length of spline = 24.59 [0.96]

For O-ring
- Ø 153 x 3.0
 [Ø 6.02 x 0.118]
Installation Drawings

Shaft dimensions

Option C8 ISO 3019-1 (27 tooth)

- Shaft dimensions:
 - Pitch diameter = 42.862 [1.687]
 - Pressure angle = 30°
 - Number of teeth = 27
 - Pitch = 16/32
 - ANSI B92.1
 - Fillet root side fit

Option F1 ISO 3019-1 (13 tooth)

- Shaft dimensions:
 - Pitch diameter = 41.275 [1.625]
 - Pressure angle = 30°
 - Number of teeth = 13
 - Pitch = 8/16
 - ANSI B92.1
 - Fillet root side fit

Minimum active spline length for the specified torque ratings

Shaft spline data

- Pitch diameter = [1.687]
- Pressure angle = 30°
- Number of teeth = 27
- ANSI B92.1
- Fillet root side fit

Cone flange must not protrude beyond this surface

- Wrench size 46 mm
- Refer to (torque - tapered shafts) table page 42 for torque information
Installation Drawings

Frame Size 180

Manual Displacement Control (MDC), end cap twin ports, option 80

Gauge port M2
System pressure B
9/16-18UNF-2B

Port 5 charge pump inlet
1-5/8-12UN-2B

Approximate center of gravity

Gauge port M4
Crossover pressure
9/16-18UNF-2B

Gauge port M5
Crossover pressure
9/16-18UNF-2B

External charge plug
1-5/8-12 UNF

Multifunction valve

Multifunction valve

CPRV

Gauge port M3
Charge pressure
9/16-18UNF-2B

External charge plug
1-5/8-12 UNF

Multifunction valve

Port S: charge
pump inlet
1-5/8-12UN-2B

1-1/4 -6000 psi
split flange boss
per SAE J518
(Code 62)
23 [0.906]
imimum full thread

System pressure A
9/16-18UNF-2B

Gauge port M1
System pressure A
9/16-18UNF-2B

Gauge port M3
Charge pressure
9/16-18UNF-2B

Multifunction valve

Multifunction valve

External charge plug
1-5/8-12 UNF

Multifunction valve

Port S: charge
pump inlet
1-5/8-12UN-2B

1-1/4 -6000 psi
split flange boss
per SAE J518
(Code 62)
23 [0.906]
imimum full thread

Port L1
Case drain
use highest port as outlet
1-5/8-12UN-2B

Approximate center of gravity

Port L2
Case drain
1-5/8-12UN-2B

Approximate center of gravity

Manual displacement control handle dimensions

Torque applied to control handle shaft
not to exceed 17 Nm [150 lbf•in]

Maximum displacement

Null position

Maximum displacement

Port H (optional, speed
pick-up 9/16-18UNF-2B

Technical Information • Series 90 Axial Piston Pumps
Installation Drawings

Auxiliary mounting pad - options AB, BC, CD, DE, EF, EG, BB

Coupling spline data:
- **Pitch diameter**: 14.288 [0.5625]
- **Pressure angle**: 30°
- **Number of teeth**: 9
- **Pitch**: 16/32
- **ANSI B92.1-1970, class 6, fillet root side fit**
- **Length of spline**: 17.8 [0.70]

For O-ring Ø 82.22 x 2.62 [Ø 3.237 x 0.103]

SAE A, option AB

Coupling spline data:
- **Pitch diameter**: 20.6375 [0.8125]
- **Pressure angle**: 30°
- **Number of teeth**: 13
- **Pitch**: 16/32
- **ANSI B92.1-1970, class 6, fillet root side fit**
- **Length of spline**: 29.5 [1.16]

For O-ring Ø 94.92 x 2.62 [Ø 3.737 x 0.103]

SAE B, option BC

Coupling spline data:
- **Pitch diameter**: 29.6333 [1.167]
- **Pressure angle**: 30°
- **Number of teeth**: 14
- **Pitch**: 12/24
- **ANSI B92.1-1970, class 6, fillet root side fit**
- **Length of spline**: 22.1 [0.87]

For O-ring Ø 120.32 x 2.62 [Ø 4.737 x 0.103]

SAE C, option CD
Installation Drawings

Auxiliary mounting pad - options AB, BC, CD, DE, EF, EG, BB

Coupling spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 13
- Pitch = 8/16
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 25.9 [1.02]

For O-ring
- Ø 153 x 3.0
 - Ø 6.02 x 0.118

View "X"

Coupling spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 13
- Pitch = 8/16
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 25.9 [1.02]

For O-ring
- Ø 158.42 x 2.62
 - Ø 6.24 x 0.10

View "X"

Coupling spline data:
- Pitch diameter = 42.862 [1.687]
- Pressure angle = 30°
- Number of teeth = 27
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 28.5 [1.12]

For O-ring
- Ø 164.77 x 2.62
 - Ø 6.48 x 0.10

View "X"
Installation Drawings

Auxiliary mounting pad - options AB, BC, CD, DE, EF, EG, BB

Coupling spline data:
- Pitch diameter = 23.8125 [0.9375]
- Pressure angle = 30°
- Number of teeth = 15
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 24.49 [0.96]

View “X”

4 threads
1/2-13UNC-2B
22 [0.87] deep

Shaft dimensions

<table>
<thead>
<tr>
<th>Shaft Option</th>
<th>Undercut Diameter</th>
<th>Full Spline</th>
<th>Major Diameter</th>
<th>Pitch Diameter</th>
<th>Number of Teeth</th>
<th>Pitch</th>
<th>Pressure Angle</th>
<th>Spline</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8</td>
<td>39 [1.54]</td>
<td>42.5 [1.67]</td>
<td>44.35 [1.75]</td>
<td>42.8625 [1.6850]</td>
<td>27</td>
<td>16/32</td>
<td>30 Degrees</td>
<td>ANSI B92.1 Side fit, Fillet Root</td>
</tr>
<tr>
<td>F1</td>
<td>34.04 [1.34]</td>
<td>42.5 [1.67]</td>
<td>43.94 [1.73]</td>
<td>41.275 [1.625]</td>
<td>13</td>
<td>8/16</td>
<td>30 Degrees</td>
<td>ANSI B92.1 Side fit, Fillet Root</td>
</tr>
</tbody>
</table>

* Minimum active spline length for the specified torque ratings
Installation Drawings

Frame Size 250

Manual Displacement Control (MDC), end cap twin ports, option 80

- Torque applied to control handle shaft not to exceed 17 Nm (150 lbf•in)
- Maximum displacement control handle dimensions
- View “Z”
- View “W”
- View “Y”
- View “X”

Technical Information
Series 90 Axial Piston Pumps

Installation Drawings

Frame Size 250

Manual Displacement Control (MDC), end cap twin ports, option 80
Coupling spline data:
- **Pitch diameter**: 29.6333 [1.167]
- **Pressure angle**: 30°
- **Number of teeth**: 14
- **Pitch**: 12.24
- **ANSI B92.1-1970, class 6, fillet root side fit**
- **Length of spline**: 17.8 [0.70]

For O-ring
- Ø 120.32 x 2.62
- {Ø 4.737 x 0.103}

SAE C, option CD
- 6 threads
- 1/2-13UNC-2B
- 22 [0.87] deep

View “X”

SAE A, option AB
- 4 threads
- 3/8-16UNC-2B
- 17.8 [0.70] deep

View “X”

SAE B, option BC
- 4 threads
- 1/2-13UNC-2B
- 22 [0.87] deep

View “X”

SAE C, option CD
- 6 threads
- 1/2-13UNC-2B
- 22 [0.87] deep

View “X”

Technical Information

Series 90 Axial Piston Pumps

Installation Drawings

Auxiliary mounting pad - options AB, BC, CD, DE, EF, EG, BB

Coupling spline data:
- **Pitch diameter**: 14.288 [0.5625]
- **Pressure angle**: 30°
- **Number of teeth**: 9
- **Pitch**: 10.52
- **ANSI B92.1-1970, class 6, fillet root side fit**
- **Length of spline**: 17.8 [0.70]

For O-ring
- Ø 120.32 x 2.62
- {Ø 4.737 x 0.103}
Installation Drawings

Auxiliary mounting pad – options AB, BC, CD, DE EF, EG, BB

Coupling spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 13
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 25.9 [1.02]

For O-ring
- Ø 153 x 3.0
- [Ø 6.02 x 0.118]

Coupling spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 13
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 25.9 [1.02]

For O-ring
- Ø 158.42 x 2.62
- [Ø 6.24 x 0.10]

Coupling spline data:
- Pitch diameter = 42.862 [1.687]
- Pressure angle = 30°
- Number of teeth = 27
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 28.5 [1.12]

For O-ring
- Ø 164.77 x 2.62
- [Ø 6.48 x 0.10]
Technical Information

Series 90 Axial Piston Pumps

Installation Drawings

Auxiliary mounting pad – options AB, BC, CD, DE, EF, EG, BB

Coupling spline data:
- Pitch diameter = 23.8125 [0.9375]
- Pressure angle = 30°
- Number of teeth = 15
- Pitch = 16/32
- ANSI B92.1-1970, class 6, fillet root side fit
- Length of spline = 24.49 [0.96]

Shaft dimensions

Option F1
- ANSI B92.1 1970 KL.5 (13 tooth)
- Coupling must not protrude beyond this surface

Option C8
- ANSI B92.1 1970 KL.5 (27 tooth)
- Coupling must not protrude beyond this surface

Shaft spline data:
- Pitch diameter = 41.275 [1.625]
- Pressure angle = 30°
- Number of teeth = 13
- Pitch = 8/16
- ANSI B92.1
- Fillet root side fit

Shaft spline data:
- Pitch diameter = 42.8625 [1.6875]
- Pressure angle = 30°
- Number of teeth = 27
- Pitch = 16/32
- ANSI B92.1
- Fillet root side fit

* Minimum active spline length for the specified torque ratings
Installation Drawings

Cover Plate

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4 maximum (option 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>055</td>
<td>69.2 [2.72]</td>
<td>179.4 [7.06]</td>
<td>103.6 [4.08]</td>
<td>114 [4.48]</td>
</tr>
<tr>
<td>075</td>
<td>74.2 [2.92]</td>
<td>185.7 [7.31]</td>
<td>109.4 [4.31]</td>
<td>118 [4.65]</td>
</tr>
<tr>
<td>100</td>
<td>83.3 [3.28]</td>
<td>183.3 [7.22]</td>
<td>118.3 [4.66]</td>
<td>136 [5.35]</td>
</tr>
<tr>
<td>130</td>
<td>86.6 [3.41]</td>
<td>209.3 [8.24]</td>
<td>137.2 [5.40]</td>
<td>141 [5.55]</td>
</tr>
<tr>
<td>180</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>184 [7.24]</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>184 [7.24]</td>
</tr>
</tbody>
</table>

3-Position (F-N-R) Electric Control

Technical Information

Series 90 Axial Piston Pumps

Installation Drawings

82 520L0603 • Rev 0804 • March 2016
Installation Drawings

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>C5 maximum</th>
<th>C5.1</th>
<th>C5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>196.5 [7.74]</td>
<td>108.8 [4.28]</td>
<td>106.2 [4.18]</td>
</tr>
<tr>
<td>055</td>
<td>200.6 [7.90]</td>
<td>108.8 [4.28]</td>
<td>106.2 [4.18]</td>
</tr>
<tr>
<td>075</td>
<td>207.9 [8.19]</td>
<td>108.8 [4.28]</td>
<td>106.2 [4.18]</td>
</tr>
<tr>
<td>100</td>
<td>216.8 [8.54]</td>
<td>117.4 [4.62]</td>
<td>97.6 [3.84]</td>
</tr>
<tr>
<td>130</td>
<td>235.7 [9.28]</td>
<td>102.4 [4.03]</td>
<td>112.6 [4.43]</td>
</tr>
<tr>
<td>180</td>
<td>252.4 [9.94]</td>
<td>94.6 [3.72]</td>
<td>120.4 [4.74]</td>
</tr>
<tr>
<td>250 [option DD only]</td>
<td>210.4 [8.28]</td>
<td>94.6 [3.72]</td>
<td>120.4 [4.74]</td>
</tr>
</tbody>
</table>

Electric Displacement Control (EDC) with MS-Connector or Packard® connector

![Diagram of Electric Displacement Control (EDC) with MS-Connector or Packard® connector]

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>C6</th>
<th>C7</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>95.3 [3.75]</td>
<td>168.6 [6.64]</td>
</tr>
<tr>
<td>055</td>
<td>95.3 [3.75]</td>
<td>141.2 [5.56]</td>
</tr>
<tr>
<td>075</td>
<td>105.2 [4.14]</td>
<td>144.8 [5.70]</td>
</tr>
<tr>
<td>100</td>
<td>114.0 [4.49]</td>
<td>153.7 [6.05]</td>
</tr>
<tr>
<td>130</td>
<td>99.1 [3.90]</td>
<td>172.7 [6.80]</td>
</tr>
<tr>
<td>180</td>
<td>93.4 [3.68]</td>
<td>190.0 [7.48]</td>
</tr>
<tr>
<td>250</td>
<td>93.4 [3.68]</td>
<td>226.2 [8.91]</td>
</tr>
</tbody>
</table>
Hydraulic Displacement Control (HDC)

Option HF
View "W"

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>C8.1</th>
<th>C8.2</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>143.5 [5.65]</td>
<td>135.0 [5.31]</td>
<td>71.0 [2.79]</td>
<td>75.7 [2.98]</td>
<td>89.6 [3.52]</td>
<td>99.2 [3.90]</td>
</tr>
<tr>
<td>055</td>
<td>150.8 [5.94]</td>
<td>139.0 [5.47]</td>
<td>71.0 [2.79]</td>
<td>75.7 [2.98]</td>
<td>105.6 [4.15]</td>
<td>115.2 [4.53]</td>
</tr>
<tr>
<td>100</td>
<td>158.0 [6.22]</td>
<td>149.0 [5.86]</td>
<td>76.8 [3.02]</td>
<td>67.0 [2.63]</td>
<td>127.9 [5.03]</td>
<td>131.4 [5.17]</td>
</tr>
</tbody>
</table>

Manual Displacement Control (MDC) with neutral start switch

Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>C13</th>
<th>C14</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>0.35 [0.014]</td>
<td>96.0 [3.78]</td>
</tr>
<tr>
<td>055</td>
<td>18.0 [0.71]</td>
<td>100.0 [3.94]</td>
</tr>
</tbody>
</table>
Installation Drawings

Dimensions (continued)

<table>
<thead>
<tr>
<th>Frame size</th>
<th>C13</th>
<th>C14</th>
</tr>
</thead>
<tbody>
<tr>
<td>075</td>
<td>25.0 [0.98]</td>
<td>106.9 [4.21]</td>
</tr>
<tr>
<td>100</td>
<td>31.3 [1.23]</td>
<td>115.8 [4.56]</td>
</tr>
<tr>
<td>130</td>
<td>46.0 [1.81]</td>
<td>134.5 [5.29]</td>
</tr>
<tr>
<td>180</td>
<td>52.0 [2.04]</td>
<td>151.8 [5.97]</td>
</tr>
<tr>
<td>250</td>
<td>52.0 [2.04]</td>
<td>151.8 [5.97]</td>
</tr>
</tbody>
</table>

Electrohydraulic Displacement Control (NFPE)(except 075 NFPE)

Dimensions

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Option</th>
<th>“X”</th>
<th>“Y”</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>FA, FB, FC, FD</td>
<td>169.30 [6.67]</td>
<td>140.00 [5.51]</td>
</tr>
<tr>
<td>055</td>
<td>FA, FB, FC, FD</td>
<td>207.00 [8.15]</td>
<td>145.00 [5.71]</td>
</tr>
<tr>
<td>075</td>
<td>Special version see Frame Size 075 NFPE Options FK, FL, FM, FN on page 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integral Pressure Filter

```
Frame size 042 – 130 = option P
Frame size 042 – 250 = option L
```

Remote pressure – without filter

```
Frame size 042 – 130 = option R
Frame size 180 – 250 = option T
```
Dimensions

<table>
<thead>
<tr>
<th>Frame size</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4 maximum</th>
<th>F5 maximum</th>
<th>F6 maximum</th>
<th>F7 maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>042</td>
<td>174.5</td>
<td>262.6</td>
<td>201.4</td>
<td>207.7 [8.12]</td>
<td>112.7 [4.44]</td>
<td>152.7 [6.01]</td>
<td>168.0 [6.61]</td>
</tr>
<tr>
<td>055</td>
<td>174.5</td>
<td>262.6</td>
<td>240.9</td>
<td>209.6 [8.25]</td>
<td>114.3 [4.50]</td>
<td>154.3 [6.07]</td>
<td>169.6 [6.68]</td>
</tr>
<tr>
<td>100</td>
<td>174.5</td>
<td>262.6</td>
<td>280.7</td>
<td>223.0 [8.78]</td>
<td>127.7 [5.03]</td>
<td>167.7 [6.60]</td>
<td>183.0 [7.20]</td>
</tr>
<tr>
<td>130</td>
<td>174.5</td>
<td>262.6</td>
<td>299.9</td>
<td>223.0 [9.17]</td>
<td>137.7 [5.03]</td>
<td>177.7 [6.99]</td>
<td>193.0 [7.60]</td>
</tr>
<tr>
<td>180</td>
<td>-</td>
<td>-</td>
<td>327.8</td>
<td>-</td>
<td>182.0 [7.16]</td>
<td>236.8 [9.32]</td>
<td>259.2 [10.2]</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>-</td>
<td>342.8</td>
<td>-</td>
<td>182.0 [7.16]</td>
<td>236.8 [9.32]</td>
<td>259.2 [10.2]</td>
</tr>
</tbody>
</table>
Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.powersolutions.danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Danfoss. We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Danfoss Power Solution representative nearest you.

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.