Technical Information

Orbital Motor

TMK, TMKW and TMK FL
Technical Information

TMK, TMKW and TMK FL Orbital Motors

Revision History

Table of Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Changed</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2014</td>
<td>Converted to Danoss layout - DITA CMS</td>
<td>FA</td>
</tr>
<tr>
<td>Apr 2006</td>
<td></td>
<td>EA</td>
</tr>
</tbody>
</table>
Technical Information

TMK, TMKW and TMK FL Orbital Motors

Contents

A wide range of Orbital Motors
- Characteristic, features and application areas of Orbital Motors ... 5
- Characteristic features of Danfoss Orbital Motors ... 5
- Technical features of Danfoss Orbital Motor ... 5
- The Danfoss Orbital Motors are used in the following application areas: .. 6
- Survey of literature with technical data on Danfoss Orbital Motors ... 6

Data survey
- Speed and torque ... 7

Versions
- Version ... 8
- Features available (options) ... 8

Technical data
- Technical data for parking brake motor TMK FL ... 10

Schematic diagram
- Schematic diagram .. 11

Shaft seal
- Max. permissible shaft seal pressure ... 12
- TMK, TMKW and TMK FL with use of drain connection ... 12
- TMK with check valves and without use of drain connection .. 12
- TMKW / TMK FL without check valves and without use of drain connection ... 12

Pressure drop
- Pressure drop in motor .. 13

Oil flow
- Oil flow in drain line ... 14
- Direction of shaft rotation ... 14

Shaft load
- Permissible shaft load for TMKW ... 15
- Mounting flange: Magneto, SAE-C .. 15
- Mounting flange: Wheel .. 15
- Permissible radial shaft load .. 15
- Permissible radial shaft load .. 16

Function diagrams
- Function diagrams ... 17
- TMK 160 function diagram .. 17
- TMK 200 function diagram .. 18
- TMK 250 function diagram .. 18
- TMK 315 function diagram .. 19
- TMK 400 function diagram .. 19
- TMK 470 function diagram .. 20

Shaft
- Shaft Versions ... 21

Port
- Port thread versions ... 23

Dimensions, US version, TMK with Magneto flange
- TMK with Magneto flange ... 24
- Dimensions ... 25

Dimensions, US version, TMK with SAE-C flange
- TMK with SAE-C flange ... 26
- Dimensions ... 26
Technical Information TMK, TMKW and TMK FL Orbital Motors

Contents

Dimension, US version TMKW with side port
- TMKW with side port and drain connection... 28
- Dimensions.. 29

Dimension, US version, TMKW with end port
- TMKW with end port and drain connection.. 30
- Dimensions.. 31

Dimension, US version, TMK FL with side port
- TMK FL with side port and drain connection... 32
- Dimensions.. 33

Dimension, US version, TMK FL with end port
- TMK FL with end port and drain connection... 34
- Dimensions.. 35

Weight
- Weight of Orbital Motors.. 36
A wide range of Orbital Motors

Characteristic, features and application areas of Orbital Motors

Danfoss is a world leader within production of low speed orbital motors with high torque. We can offer more than 3000 different orbital motors, categorised in types, variants and sizes (incl. different shaft versions).

The motors vary in size (rated displacement) from 8 cm³ [0.50 in³] to 800 cm³ [48.9 in³] per revolution. Speeds range up to approx. 2500 min⁻¹ (rpm) for the smallest type and up to approx. 600 min⁻¹ (rpm) for the largest type.

Maximum operating torques vary from 13 N·m [115 lbf·in] to 2700 N·m [24.000 lbf·in] (peak) and maximum outputs are from 2.0 kW [2.7 hp] to 70 kW [95 hp].

Characteristic features of Danfoss Orbital Motors

- Smooth running over the entire speed range
- Constant operating torque over a wide speed range
- High starting torque
- High return pressure without the use of drain line (High pressure shaft seal)
- High efficiency
- Long life under extreme operating conditions
- Robust and compact design
- High radial and axial bearing capacity
- For applications in both open and closed loop hydraulic systems
- Suitable for a wide variety of hydraulics fluids

Technical features of Danfoss Orbital Motor

The programme is characterised by technical features appealing to a large number of applications and a part of the programme is characterised by motors that can be adapted to a given application. Adaptions comprise the following variants among others:
A wide range of Orbital Motors

- Motors with corrosion resistant parts
- Wheel motors with recessed mounting flange
- OMP, OMR- motors with needle bearing
- OMR motor in low leakage version
- OMR motors in a super low leakage version
- Short motors without bearings
- Ultra short motors
- Motors with integrated positive holding brake
- Motors with integrated negative holding brake
- Motors with integrated flushing valve
- Motors with speed sensor
- Motors with tacho connection
- All motors are available with black finish paint

The Danfoss Orbital Motors are used in the following application areas:

- Construction equipment
- Agricultural equipment
- Material handling & Lifting equipment
- Forestry equipment
- Lawn and turf equipment
- Special purpose
- Machine tools and stationary equipment
- Marine equipment

Survey of literature with technical data on Danfoss Orbital Motors

Detailed data on all Danfoss Orbital Motors can be found in our motor catalogue, which is divided into more individual subcatalogues:

- General information on Danfoss Orbital Motors: function, use, selection of orbital motor, hydraulic systems, etc.
- Technical data on small motors: OML and OMM
- Technical data on medium sized motors: OMP, OMR, OMH
- Technical data on medium sized motors: DH and DS
- Technical data on medium sized motors: OM EW
- Technical data on medium sized motors: VMP
- Technical data on medium sized motors: VMR
- Technical data on large motors: OMS, OMT and OM V
- Technical data on large motors: TMT
- Technical data on large motors: TMV

A general survey brochure on Danfoss Orbital Motors gives a quick motor reference based on power, torque, speed and capabilities.
Data survey

Speed and torque

Max. speed / Max. torque

The bar diagrams above are useful for a quick selection of relevant motor size for the application. The final motor size can be determined by using the function diagram for each motor size.

- TMK can be found under Function diagrams.

The function diagrams are based on actual tests on a representative number of motors from our production. The diagrams apply to a return pressure between 5 and 10 bar [75 and 150 psi] when using mineral based hydraulic oil with a viscosity of 35 mm²/s [165 SUS] and a temperature of 50°C [120°F]. For further explanation concerning how to read and use the function diagrams, please consult the paragraph “Selection of motor size” in the technical information “General” DHMH.PK.100.G2.02 520L0232.
Technical Information
TMK, TMKW and TMK FL Orbital Motors

Versions

Version

Orbit motors US-versions, standard shaft seals, drain connections and painted black

<table>
<thead>
<tr>
<th>Mount. flange</th>
<th>Spigot diameter front/rear end</th>
<th>Bolt circle diameter (BC)</th>
<th>Shaft</th>
<th>Port size</th>
<th>Side port version</th>
<th>End port version</th>
<th>Check valve</th>
<th>Main type design</th>
<th>Config.- code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magneto</td>
<td>Ø 3.25 in</td>
<td>Ø 4.187 in</td>
<td>Cyl. 1.25 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td>x</td>
<td>TMK</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spl. 1.25 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tap. 1.25 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SAE-C</td>
<td>Ø 5 in</td>
<td>Ø 6.375 in</td>
<td>Cyl. 1.25 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td>x</td>
<td>TMK</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spl. 1.25 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tap. 1.25 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tap. 1.5 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tap. 1.625 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Wheel</td>
<td>Ø 4.25 in Ø 5 in (rear)</td>
<td>Ø 5.8 in</td>
<td>Tap. 1.5 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMKW</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8-14 UNF</td>
<td>x</td>
<td></td>
<td>TMKW</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Brake std.</td>
<td>Ø 5.5 in (only rear)</td>
<td>Ø 6.375 in</td>
<td>Tap. 1.5 in</td>
<td>1 1/16-12 UN</td>
<td>x</td>
<td></td>
<td>TMK-FL</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/8-14 UNF</td>
<td>x</td>
<td></td>
<td>TMK-FL</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Configuration code and code numbers

<table>
<thead>
<tr>
<th>Config.- code</th>
<th>Code number - displacement (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>151F6060</td>
</tr>
<tr>
<td>2</td>
<td>151F6050</td>
</tr>
<tr>
<td>3</td>
<td>151F6070</td>
</tr>
<tr>
<td>4</td>
<td>151F6130</td>
</tr>
<tr>
<td>5</td>
<td>151F6120</td>
</tr>
<tr>
<td>6</td>
<td>151F6140</td>
</tr>
<tr>
<td>7</td>
<td>151F6090</td>
</tr>
<tr>
<td>8</td>
<td>151F6080</td>
</tr>
<tr>
<td>9</td>
<td>151F6010</td>
</tr>
<tr>
<td>10</td>
<td>151F6030</td>
</tr>
<tr>
<td>11</td>
<td>11008903</td>
</tr>
<tr>
<td>12</td>
<td>11008909</td>
</tr>
</tbody>
</table>

Features available (options)

Shaft options:
- Splined 1.5 in shaft
- Cyl. 40 mm shaft (not brake version)

Port option:
- Side port G 3/4
- End port G 1/2

Check valves
- Flushing valves with different flushing flow

Motors are painted black
Technical data

<table>
<thead>
<tr>
<th>Type</th>
<th>TMK TMK</th>
<th>TMK TMK</th>
<th>TMK TMK</th>
<th>TMK TMK</th>
<th>TMK TMK</th>
<th>TMK TMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor size</td>
<td>160</td>
<td>200</td>
<td>250</td>
<td>315</td>
<td>400</td>
<td>470</td>
</tr>
<tr>
<td>Geometric displacement cm³</td>
<td>158.0</td>
<td>201.5</td>
<td>252.2</td>
<td>315.3</td>
<td>397.2</td>
<td>471.1</td>
</tr>
<tr>
<td></td>
<td>[9.64]</td>
<td>[12.30]</td>
<td>[15.39]</td>
<td>[19.23]</td>
<td>[24.24]</td>
<td>[28.75]</td>
</tr>
<tr>
<td>Max. speed min⁻¹ [rpm]</td>
<td>cont.</td>
<td>505</td>
<td>400</td>
<td>320</td>
<td>255</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td>630</td>
<td>500</td>
<td>400</td>
<td>315</td>
<td>250</td>
</tr>
<tr>
<td>Max. output kW [hp]</td>
<td>cont.</td>
<td>22.0 [29.5]</td>
<td>22.0 [29.5]</td>
<td>21.0 [28]</td>
<td>20.0 [27]</td>
<td>17.5 [23.5]</td>
</tr>
<tr>
<td></td>
<td>int.¹</td>
<td>27.0 [36]</td>
<td>27.0 [36]</td>
<td>25.0 [33.5]</td>
<td>23.5 [31.5]</td>
<td>22.0 [29.5]</td>
</tr>
<tr>
<td>Max. starting pressure with unloaded shaft bar [psi]</td>
<td>8 [100]</td>
<td>8 [100]</td>
<td>7 [100]</td>
<td>7 [100]</td>
<td>7 [100]</td>
<td>7 [100]</td>
</tr>
</tbody>
</table>

Technical Information

<table>
<thead>
<tr>
<th>Type</th>
<th>Max. inlet pressure</th>
<th>Max. return pressure with drain line</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMK 160 - 470 bar [psi]</td>
<td>cont. 250 [3625]</td>
<td>cont. 140 [2030]</td>
</tr>
<tr>
<td>max. 350 [5075] int.¹</td>
<td>175 [2540]</td>
<td></td>
</tr>
<tr>
<td>- - peak ²</td>
<td>210 [3045]</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1) Intermittent operation: the permissible values may occur for max. 10% of every minute

2) Peak load: the permissible values may occur for max. 1% of every minute.

For max. permissible combination of flow and pressure, see function diagram for actual motor.
Technical data for parking brake motor TMK FL

<table>
<thead>
<tr>
<th>Technical data for brake motor TMK FL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding torque 1)</td>
<td>Nm [lbf•in]</td>
<td>1050 [9295]</td>
</tr>
<tr>
<td>Min. release pressure 2)</td>
<td>bar [psi]</td>
<td>15 [215]</td>
</tr>
<tr>
<td>Max. pressure in drain/brake line</td>
<td>bar [psi]</td>
<td>30 [435]</td>
</tr>
</tbody>
</table>

1) This brake is to be used only as a passive parking brake. It may not be used for dynamic braking. When release pressure 2) is greater than zero, the holding torque depends inversely proportional on the actual release pressure.

At 0 bar - holding torque = 1050 Nm [9295 lbf•in]
At 15 bar [215 psi] or more - holding torque = 0 Nm

2) The release pressure is the difference between the pressure in the drain/brake release line and the pressure in the vent line. The vent port must always be connected to tank.

The brake will be fully released at 15 bar [215 psi].
The drain/release port on the TMK FL motor must never remain plugged or be connected to the system A or B pressures, since the brake is a low pressure device. A common solution for controlling the brake is to use a two position valve to connect the drain port to hydrostatic charge pressure (brake released), or to reservoir pressure (brake holding).

The vent port must always be connected to tank.

See the above schematic for details.
Shaft seal

Max. permissible shaft seal pressure

TMK, TMKW and TMK FL with use of drain connection

The shaft seal pressure equals the pressure in the drain line.

TMK with check valves and without use of drain connection

The pressure on the shaft seal never exceeds the pressure in the return line.

TMKW / TMK FL without check valves and without use of drain connection

The shaft seal pressure equals the average of input pressure and return pressure.

TMK FL must always have a drain line.

Max. pressure on shaft seal
Pressure drop in motor

The curve applies to an unloaded motor shaft and an oil viscosity of 35 mm2/s [165 SUS]
Oil flow

Oil flow in drain line

The table below shows the max. oil flow in the drain line at a return pressure less than 5-10 bar [75-150 psi].

<table>
<thead>
<tr>
<th>Pressure drop bar [psi]</th>
<th>Viscosity mm²/s [SUS]</th>
<th>Oil flow in drain line l/min [US gal/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 [2320]</td>
<td>20 [100]</td>
<td>1.7 [0.45]</td>
</tr>
<tr>
<td></td>
<td>35 [165]</td>
<td>1.2 [0.32]</td>
</tr>
<tr>
<td>325 [4713]</td>
<td>20 [100]</td>
<td>3.5 [0.92]</td>
</tr>
<tr>
<td></td>
<td>35 [165]</td>
<td>2.5 [0.66]</td>
</tr>
</tbody>
</table>

Direction of shaft rotation
Shaft load

Permissible shaft load for TMKW

Mounting flange: Magneto, SAE-C

Mounting flange: Wheel

Permissible radial shaft load

The output shaft runs in tapered roller bearings that permit high axial and radial forces.

The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

The curve is based on B_{10} Bearing life (2000 hours or 12 000 000 shaft revolutions at 100 min$^{-1}$) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.
Shaft load

Permissible radial shaft load

The output shaft runs in tapered roller bearings that permit high axial and radial forces.

The permissible radial load on the shaft is shown for an axial load of 0 N as a function of the distance from the mounting flange to the point of load application.

The curve is based on B_{10} Bearing life (2000 hours or 12 000 000 shaft revolutions at 100 min$^{-1}$) at rated output torque, when mineral-based hydraulic oil with a sufficient content of anti-wear additives, is used.
Function diagrams

Explanation of function diagram use, basis and conditions can be found under Speed and torque on page 7 Speed and torque

[blue] Continuous range

[pink] Intermittent range (max. 10% operation every minute)

Intermittent pressure drop and oil flow must not occur simultaneously.

TMK 160 function diagram

![TMK 160 function diagram](image)
Function diagrams

TMK 200 function diagram

TMK 250 function diagram
Function diagrams

TMK 315 function diagram

TMK 400 function diagram
Function diagrams

TMK 470 function diagram

![Diagram of TMK 470 function](image_url)
Shaft Versions

A: Cylindrical shaft 1.25 in
F: Parallel key
5/16 x 5/16 x 1 1/4 in
SAE J744

B: Involute splined shaft
ANS B92.1 - 1970 standard
Flat root side fit
Pitch 12/24
Teeth 14
Major diameter: 1.25 in
Pressure angle 30°

C: Tapered shaft 1.25 in
G: Cone 1 : 8
SAE J501
H: 1 - 20 UNEF
Across flats: 1 7/16 in
Tightening torque:
450 ± 10 Nm [3980 ± 85 lbf•in]
I: Parallel key
5/16 x 5/16 x 3/4 in
SAE J501
Shaft

D: Tapered shaft 1.5 in
J: Cone 1:8
SAE J501
K: 1-20 UNEF
Across flats: 1 7/16 in
Tightening torque: 450 ± 10 Nm [3980 ± 85 lbf-in]
L: Parallel key 3/8 x 3/8 x 1 in
B.S. 46

E: Tapered shaft 1.625 in
M: Cone 1:8
SAE J501
N: 1 1/4-18 UNEF
Across flats: 2 3/16 in
Tightening torque: 500 ± 10 Nm [4425 ± 85 lbf-in]
O: Parallel key
7/16 x 7/16 x 1 1/4 in
B.S. 46
Port

Port thread versions

A: UNF Main port
D: 7/8 - 14 UNF o-ring boss port

B: UN Main port
E: 1 1/16 – 12 UN o-ring boss port

C: UNF Drain/release port
F: 7/16 - 20 UNF o-ring boss port
Dimensions, US version, TMK with Magneto flange

TMK with Magneto flange

C: Drain connection 7/16 - 20 UNF

D: 2 x 1 1/16 - 12 UN

----Not Painted
Technical Information
TMK, TMKW and TMK FL Orbital Motors

Dimensions, US version, TMK with Magneto flange

Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>L_1 mm [in]</th>
<th>L_2 mm [in]</th>
<th>L_3 mm [in]</th>
<th>L_4 mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMK 160</td>
<td>204.6 [8.06]</td>
<td>179.6 [7.07]</td>
<td>160.8 [6.33]</td>
<td>151.4 [5.96]</td>
</tr>
<tr>
<td>TMK 250</td>
<td>217.6 [8.57]</td>
<td>192.6 [7.58]</td>
<td>176.8 [6.84]</td>
<td>164.4 [6.47]</td>
</tr>
<tr>
<td>TMK 470</td>
<td>247.8 [9.76]</td>
<td>222.8 [8.77]</td>
<td>204.0 [8.03]</td>
<td>194.6 [7.66]</td>
</tr>
</tbody>
</table>

Output shaft

<table>
<thead>
<tr>
<th>Output shaft</th>
<th>L_5 mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyl. 1.25 in</td>
<td>58.8 [2.31]</td>
</tr>
<tr>
<td>Spl. 1.25 in</td>
<td>56.0 [2.20]</td>
</tr>
<tr>
<td>Tap. 1.25 in</td>
<td>62.0 [2.44]</td>
</tr>
</tbody>
</table>

The stated dimensions are without paint.
Dimensions, US version, TMK with SAE-C flange

TMK with SAE-C flange

C: Drain connection 7/16 - 20 UNF
D: 2 x 1 1/16 - 12 UN
-------Not Painted

Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>L_1 [mm]</th>
<th>L_2 [mm]</th>
<th>L_3 [mm]</th>
<th>L_4 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMK 160</td>
<td>204.6 [8.06]</td>
<td>179.6 [7.07]</td>
<td>160.8 [6.33]</td>
<td>151.4 [5.96]</td>
</tr>
</tbody>
</table>
Technical Information
TMK, TMKW and TMK FL Orbital Motors

Dimensions, US version, TMK with SAE-C flange

<table>
<thead>
<tr>
<th>Type</th>
<th>L_1 mm [in]</th>
<th>L_2 mm [in]</th>
<th>L_3 mm [in]</th>
<th>L_4 mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMK 470</td>
<td>247.8 [9.76]</td>
<td>222.8 [8.77]</td>
<td>204.0 [8.03]</td>
<td>194.6 [7.66]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output shaft</th>
<th>L_5 mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyl. 1.25 in</td>
<td>59.0 [2.32]</td>
</tr>
<tr>
<td>Spl. 1.25 in</td>
<td>56.3 [2.22]</td>
</tr>
<tr>
<td>Tap. 1.25 in</td>
<td>62.2 [2.45]</td>
</tr>
<tr>
<td>Tap. 1.5 in</td>
<td>74.8 [2.94]</td>
</tr>
<tr>
<td>Tap. 1.625 in</td>
<td>84.3 [3.32]</td>
</tr>
</tbody>
</table>

The stated dimensions are without paint.
Dimension, US version TMKW with side port

TMKW with side port and drain connection

C: Drain connection 7/16 - 20 UNF
D: 2 x 1 1/16 - 12 UN

--------Not Painted
Dimension, US version TMKW with side port

Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>L_1 mm [in]</th>
<th>L_2 mm [in]</th>
<th>L_3 mm [in]</th>
<th>L_4 mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMKW 160</td>
<td>164.7 [6.48]</td>
<td>139.3 [5.48]</td>
<td>120.3 [4.74]</td>
<td>110.8 [4.36]</td>
</tr>
<tr>
<td>TMKW 200</td>
<td>170.7 [6.72]</td>
<td>145.3 [5.72]</td>
<td>126.3 [4.97]</td>
<td>116.8 [4.60]</td>
</tr>
<tr>
<td>TMKW 250</td>
<td>177.7 [7.00]</td>
<td>152.3 [6.00]</td>
<td>133.3 [5.25]</td>
<td>123.8 [4.87]</td>
</tr>
<tr>
<td>TMKW 315</td>
<td>186.4 [7.34]</td>
<td>161.0 [6.34]</td>
<td>142.0 [5.59]</td>
<td>132.5 [5.22]</td>
</tr>
<tr>
<td>TMKW 400</td>
<td>197.7 [7.78]</td>
<td>172.3 [6.78]</td>
<td>153.3 [6.00]</td>
<td>143.8 [5.66]</td>
</tr>
<tr>
<td>TMKW 470</td>
<td>207.9 [8.19]</td>
<td>182.5 [7.19]</td>
<td>163.5 [6.44]</td>
<td>154.0 [6.06]</td>
</tr>
</tbody>
</table>

The stated dimensions are without paint.
Dimension, US version, TMKW with end port

TMKW with end port and drain connection

C: Drain connection
7/16 - 20 UNF
D: 2 x 7/8 - 14 UNF
----- Not Painted
Dimension, US version, TMKW with end port

<table>
<thead>
<tr>
<th>Type</th>
<th>L (mm [in])</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMKW 160</td>
<td>183.5 (7.2)</td>
</tr>
<tr>
<td>TMKW 200</td>
<td>189.5 (7.46)</td>
</tr>
<tr>
<td>TMKW 250</td>
<td>196.5 (7.74)</td>
</tr>
<tr>
<td>TMKW 315</td>
<td>205.2 (8.08)</td>
</tr>
<tr>
<td>TMKW 400</td>
<td>216.5 (8.52)</td>
</tr>
<tr>
<td>TMKW 470</td>
<td>226.7 (8.93)</td>
</tr>
</tbody>
</table>

The stated dimensions are without paint.
Dimension, US version, TMK FL with side port

TMK FL with side port and drain connection

C: Drain connection and brake release port 7/16 - 20 UNF
D: 2 x 1 1/16 - 12 UN
V: Vent port 7/16 - 20 UNF
------Not Painted
Technical Information TMK, TMKW and TMK FL Orbital Motors

Dimension, US version, TMK FL with side port

Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>(L_1) mm [in]</th>
<th>(L_2) mm [in]</th>
<th>(L_3) mm [in]</th>
<th>(L_4) mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMK FL 200</td>
<td>131.2 [5.17]</td>
<td>106.2 [4.18]</td>
<td>87.2 [3.43]</td>
<td>77.7 [3.06]</td>
</tr>
<tr>
<td>TMK FL 250</td>
<td>138.2 [5.44]</td>
<td>113.2 [4.46]</td>
<td>94.2 [3.70]</td>
<td>84.7 [3.33]</td>
</tr>
<tr>
<td>TMK FL 315</td>
<td>146.9 [5.78]</td>
<td>121.9 [4.80]</td>
<td>102.9 [4.05]</td>
<td>93.4 [3.68]</td>
</tr>
<tr>
<td>TMK FL 400</td>
<td>158.2 [6.23]</td>
<td>133.2 [5.24]</td>
<td>114.2 [4.50]</td>
<td>104.7 [4.12]</td>
</tr>
<tr>
<td>TMK FL 470</td>
<td>168.4 [6.63]</td>
<td>143.4 [5.65]</td>
<td>124.4 [4.90]</td>
<td>114.9 [4.52]</td>
</tr>
</tbody>
</table>

The stated dimensions are without paint.
Dimension, US version, TMK FL with end port

TMK FL with end port and drain connection

C: Drain connection and brake release port 7/16 - 20 UNF
D: 2 x 7/8 - 14 UNF
V: Vent port 7/16 - 20 UNF

---------Not Painted
Technical Information

TMK, TMKW and TMK FL Orbital Motors

Dimension, US version, TMK FL with end port

Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>L mm [in]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMK FL 160</td>
<td>144.0 [5.67]</td>
</tr>
<tr>
<td>TMK FL 200</td>
<td>150.0 [5.91]</td>
</tr>
<tr>
<td>TMK FL 250</td>
<td>157.0 [6.18]</td>
</tr>
<tr>
<td>TMK FL 315</td>
<td>165.7 [6.52]</td>
</tr>
<tr>
<td>TMK FL 400</td>
<td>177.0 [6.97]</td>
</tr>
<tr>
<td>TMK FL 470</td>
<td>187.2 [7.37]</td>
</tr>
</tbody>
</table>

The stated dimensions are without paint.
Weight of Orbital Motors

<table>
<thead>
<tr>
<th>Code no</th>
<th>Weight kg [lb]</th>
<th>Code no</th>
<th>Weight kg [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>151F6010</td>
<td>16.0 [35.3]</td>
<td>151F6010</td>
<td>16.9 [37.2]</td>
</tr>
<tr>
<td>151F6011</td>
<td>16.5 [36.4]</td>
<td>151F6011</td>
<td>17.4 [37.5]</td>
</tr>
<tr>
<td>151F6012</td>
<td>17.0 [37.5]</td>
<td>151F6012</td>
<td>17.9 [39.4]</td>
</tr>
<tr>
<td>151F6013</td>
<td>17.5 [38.6]</td>
<td>151F6013</td>
<td>18.4 [40.5]</td>
</tr>
<tr>
<td>151F6014</td>
<td>18.0 [39.7]</td>
<td>151F6014</td>
<td>18.9 [41.6]</td>
</tr>
<tr>
<td>151F6015</td>
<td>18.5 [40.8]</td>
<td>151F6015</td>
<td>19.4 [42.7]</td>
</tr>
<tr>
<td>151F6016</td>
<td>19.0 [41.9]</td>
<td>151F6016</td>
<td>20.0 [44.1]</td>
</tr>
<tr>
<td>151F6017</td>
<td>19.5 [43.0]</td>
<td>151F6017</td>
<td>21.0 [46.3]</td>
</tr>
<tr>
<td>151F6018</td>
<td>20.0 [44.1]</td>
<td>151F6018</td>
<td>22.0 [48.5]</td>
</tr>
</tbody>
</table>
Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster.

Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.powersolutions.danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Danfoss Power Solution representative nearest you.

Products we offer:

- Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- Electrohydraulic Power Steering
- Electrohydraulics
- Hydraulic Power Steering
- Integrated Systems
- Joysticks and Control Handles
- Microcontrollers and Software
- Open Circuit Axial Piston Pumps
- Orbital Motors
- PLUS+® GUIDE
- Proportional Valves
- Sensors
- Steering
- Transit Mixer Drives

Comatrol
www.comatrol.com

Schwarzmüller-Inverter
www.schwarzmueller-inverter.com

Turolla
www.turollaocg.com

Valmova
www.valmova.com

Hydro-Gear
www.hydro-gear.com

Daikin-Sauer-Danfoss
www.daikin-sauer-danfoss.com

Local address:

Danfoss Power Solutions US Company
2800 East 13th Street
Ames, IA 50010, USA
Phone: +1 515 239 6000

Danfoss Power Solutions GmbH & Co. OHG
Krokamp 35
D-24339 Neumünster, Germany
Phone: +49 4321 871 0

Danfoss Power Solutions ApS
Nordborgvej 81
DK-6430 Nordborg, Denmark
Phone: +43 7488 2222

Danfoss Power Solutions (Shanghai) Co. Ltd.
Building #22, No. 1000 Jin Hai Rd
Jin Qiao, Pudong New District
Shanghai, China 201206
Phone: +86 21 3418 5200

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.