テクニカルインフォメーション
H1アキシャルピストン シングルポンプ
サイズ 060/068
改訂履歴

<table>
<thead>
<tr>
<th>日付</th>
<th>変更内容</th>
<th>改訂</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2017</td>
<td>NFPE 関連で 3 か所の変更</td>
<td>0701</td>
</tr>
<tr>
<td>November 2015</td>
<td>マスターモデルコード変更。</td>
<td>0600</td>
</tr>
<tr>
<td>September 2014</td>
<td>MDC、CCO、斜角度センサのオプションを追加</td>
<td>FA</td>
</tr>
<tr>
<td>May 2014</td>
<td>ダンフォス社のレイアウト仕様に変換 - DITA CMS</td>
<td>EA</td>
</tr>
<tr>
<td>April 2013</td>
<td>FDC オプションの追加</td>
<td>DA</td>
</tr>
<tr>
<td>May 2013</td>
<td>AC セクションの更新</td>
<td>CA</td>
</tr>
<tr>
<td>December 2012</td>
<td>AC が追加される</td>
<td>BA</td>
</tr>
<tr>
<td>November 2010</td>
<td>初版</td>
<td>AA</td>
</tr>
</tbody>
</table>
目次

テクニカルデータ

H1 ボンプ一般仕様...5
テクニカルデータ H1P 060/068..5
オペレーティング仕様 H1P 060/068...6
作動油仕様..7
外部ラジアル軸荷重...7
ベアリング寿命 H1P 060/068...8
取付フランジ負荷 H1P 060/068...8
チャージポンプ..9
チャージポンプの選択...9
チャージポンプ流量と動力カーブ、14/17 cm³...9

マスターモデルコード

コントロールオプション

電気容量コントロール（EDC）..17
EDC コントロール入力信号条件..17
EDC ソレノイドデータ..18
コントロール応答..18
応答時間、EDC 060/068...19
マニュアル容量コントロール（MDC）..20
MDC 入力軸トルク..21
MDC 一般情報..21
MDC 輪回転...21
コントロール応答...22
応答時間、MDC 060/068...22
ニュートラルスタートスイッチ（NSS）..22
ケースゲージポート M14..23
レバー...23

3 ポジション電気コントロール（FNR）、オプション：A9 (12 V) と B1 (24 V)..24
コントロール応答...25
FNR 広範囲 060/068..25
ノンフィードバック電気比例コントロール（NFPE）..26
制御信号要件、NFPE 060/068..27
コントロール応答...28
応答時間、NFPE 060/068...28
オートモーティブコントロール（AC）..29
モードの種類..29
基本機能..29
特性機能..30
保護と安全性機能...30
エンジン制御と保護..30
インストール機能..30
ファンドライブコントロール（FDC）...31
コントロール応答...32
応答時間、FDC..32
マニュアルオーバーライド（MOR）...33
NFPE および AC-2 コントロール向け斜板角度センサ..34
斜角センサパラメータ...34
斜板角度センサデータ..35
ECU とのインターフェイス..35
コントロールカットオフ弁（CCO 弁）..36
CCO ソレノイドデータ...36
MDC とのブレーキゲージポート...37
最大容量制御..38

BC00000074ja-JP • Rev 0701 • May 2017
目次
（およそ）容量変化 H1P060/068..38
寸法
入力軸 - オプション G1 (SAE C、14 歯) ..39
入力軸 - オプション F1（SAE C、21 歯） 045/053..39
H1P 補助取付、オプション H2 (SAE A、9 歯) ...41
H1P 補助取付、オプション H1 (SAE A、11 歯) ...42
H1P 補助取付、オプション H3 (SAE B、13 歯) ...43
H1P 補助取付、オプション H5 (SAE B-B、15 歯) ..44
H1P 補助取付、オプション H6 (SAE C、14 歯) ...45
H1P 060/068 最大容量調整、オプション B ..45
外形図
ポート説明 H1P 060/068...46
外形寸法 H1P 060/068...48
コントロール
電気容量コントロール (EDC)、オプション： A2 (12 V) / A3 (24 V)...51
電気容量コントロール (EDC)、MOR 付き A4 (12 V) / A5 (24 V)...51
H1P 060/068 マニュアル容量コントロール (MDC)、オプション M1..52
H1P 060/068 マニュアル容量コントロール (MDC)、NSS 付き、オプション M2..53
H1P 060/068 マニュアル容量コントロール (MDC)、CCO 付き、オプション M3、M4..54
H1P 060/068 マニュアル容量コントロール (MDC)、NSS と CCO 付き、オプション M5、M6...55
3 ポジション電気コントロール (FNR)、オプション： A9 (12 V) / B1 (24 V)...56
ノンフィードバック電気比例コントロール (NFPE)、MOR 付き、オプション A8 (12 V) / B8 (24 V).....................57
オートモーティブコントロール (AC) 寸法 AC I - オプション A7 (12V) / C2 (24V)、 AC II - オプション A7 (12V) / C2 (24V)..58
ファンドライブコントロール (FDC)、オプション F1 (12 V) / F2 (24 V)..59
フィルトレーション
H1P 060/068 サクションフィルトレーション、オプション L...60
リモートフルチャージ流量フィルトレーション P、エンドキャップオプション F (SAE-C pad)............................61
フィルター付フルチャージ流量フィルトレーション M、フィルターバイパスセンサ付き、オプション D3、F4...62
外部フルチャージ流量フィルトレーション E、エンドキャップオプション D8、F5..64
テクニカルデータ

H1 ポンプ一般仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>設計</th>
<th>設計</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転方向</td>
<td>時計回り、反時計回り</td>
<td></td>
</tr>
<tr>
<td>配管接続</td>
<td>メイン圧力ポート：ISO 規格スプリットフランジボス</td>
<td>残りのポート：SAE 規格 ストレートネジ O リングボス</td>
</tr>
<tr>
<td>推奨する取付位置</td>
<td>ポンプ取付位置は任意です。しかし、推奨されるコントロールバルブの位置は上部または上部側面を推奨します。 コントロールバルブが一番下にポンプが取付される場合、EDC、FNR、NFPE 制御バルブの M14 ボートからフラッシング流量を提供する必要があります。 入力軸の垂直取付は可能です。 入力軸が上部にある場合、1 bar のケース圧力が動作時に維持されなければなりません。 ケースは常に作動油で満たしてください。 複数のポンプを取付る場合は、出力流量の大きいものから入力ソースに向かって配置することを推奨します。 これらのガイドラインに適合していない場合は、弊社にご相談ください。</td>
<td></td>
</tr>
<tr>
<td>補助ポンプ取付部の空洞圧力</td>
<td>内蔵チャージポンプで吸い込み圧力になります。次のページの 動作パラメータを参照ください。 外部チャージ供給でケース圧になります。炭化ポンプ軸シール能力を確認してください。</td>
<td></td>
</tr>
</tbody>
</table>

テクニカルデータ H1P 060/068

<table>
<thead>
<tr>
<th>仕様</th>
<th>サイズ 060</th>
<th>サイズ 068</th>
</tr>
</thead>
<tbody>
<tr>
<td>押しのけ容積</td>
<td>60.4 cm³ [3.69 in³]</td>
<td>68.0 cm³ [4.15 in³]</td>
</tr>
<tr>
<td>定格（連続）回転数での流量</td>
<td>210 l/min [55.5 US gal/min]</td>
<td>238 l/min [62.8 US gal/min]</td>
</tr>
<tr>
<td>最大押しのけ容積でのトルク（理論値）</td>
<td>0.96 N-m/bar [590 lbf•in/1000psi]</td>
<td>1.08 N-m/bar [610 lbf•in/1000psi]</td>
</tr>
<tr>
<td>回転部品の質量慣性モーメント</td>
<td>0.00709 kg•m² [0.00523 slug•ft²]</td>
<td>0.00707 kg•m² [0.00522 slug•ft²]</td>
</tr>
<tr>
<td>乾燥質量（重量）</td>
<td>50 kg [110 lb] （チャージポンプまたは補助取り付けフランジなし）</td>
<td></td>
</tr>
<tr>
<td>作動油量</td>
<td>2.1 l [0.55 US gal]</td>
<td></td>
</tr>
<tr>
<td>取り付けフランジ</td>
<td>ISO 3019-1 フランジ 127-4 (SAE C)</td>
<td></td>
</tr>
<tr>
<td>入力軸外径</td>
<td>ISO 3019-1, 外径 32 mm - 4 (SAE C, 14 齒)</td>
<td>ISO 3019-1, 外径 35 mm - 4 (SAE C, 21 齒)</td>
</tr>
<tr>
<td>補助取付フランジメトリック締結</td>
<td>ISO 3019-1, フランジ 82-2, 外径 16 mm - 4 (SAE A, 9 齒)</td>
<td>ISO 3019-1, フランジ 82-2, 外径 19 mm - 4 (SAE A, 11 齒)</td>
</tr>
<tr>
<td>外径シャフトとスプライン</td>
<td>ISO 3019-1, フランジ 101-2, 外径 22 mm - 4 (SAE B, 13 齒)</td>
<td>ISO 3019-1, フランジ 101-2, 外径 25 mm - 4 (SAE B-B, 15 齒)</td>
</tr>
<tr>
<td>サクションポート</td>
<td>ISO 11926-1 - 1½-12 (SAE O リングボス)</td>
<td></td>
</tr>
<tr>
<td>ケースドレンポート L2, L4</td>
<td>ISO 11926-1 - 1½-12 (SAE O リングボス)</td>
<td></td>
</tr>
<tr>
<td>メインポート形状</td>
<td>ISO 6162 Ø25.4 - 450 bar スプリットフランジボス, M12x1.75</td>
<td></td>
</tr>
<tr>
<td>その他のポート</td>
<td>SAE O リングボス 外形図 (46 ページ) を参照してください。</td>
<td></td>
</tr>
<tr>
<td>顧客取り付け部ネジ</td>
<td>メトリック締結</td>
<td></td>
</tr>
</tbody>
</table>

BC00000074ja-JP • Rev 0701 • May 2017 5
テクニカルデータ

オペレーティング仕様 H1P 060/068

<table>
<thead>
<tr>
<th>仕様</th>
<th>サイズ 060</th>
<th>サイズ 068</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力回転数 (最小チャージ/コントロール圧力条件で)</td>
<td>500 min⁻¹ (rpm)</td>
<td>500 min⁻¹ (rpm)</td>
</tr>
<tr>
<td>内部チャージ 1)と外部チャージ 2) 供給の最小値</td>
<td></td>
<td></td>
</tr>
<tr>
<td>内部チャージ供給のフル性能のための最小、定格、最大</td>
<td>1200 min⁻¹ (rpm)</td>
<td>1200 min⁻¹ (rpm)</td>
</tr>
<tr>
<td>システム圧力</td>
<td>4000 min⁻¹ (rpm)</td>
<td>4000 min⁻¹ (rpm)</td>
</tr>
<tr>
<td>推奨最高使用圧力</td>
<td>420 bar [6090 psi]</td>
<td>380 bar [5510 psi]</td>
</tr>
<tr>
<td>許容最高圧力</td>
<td>450 bar [6527 psi]</td>
<td>400 bar [5800 psi]</td>
</tr>
<tr>
<td>最低低圧側・圧力</td>
<td>45 bar [650 psi]</td>
<td>45 bar [650 psi]</td>
</tr>
<tr>
<td>最低圧力 (NFPE のコーナーパワー)</td>
<td>10 bar [145 psi]</td>
<td>10 bar [145 psi]</td>
</tr>
<tr>
<td>チャージ圧力</td>
<td>最低値</td>
<td>14.5 bar [210 psi]</td>
</tr>
<tr>
<td></td>
<td>最高値</td>
<td>34 bar [493 psi]</td>
</tr>
<tr>
<td>コントロール圧力</td>
<td>最低値 (EDC、MDC、FNR のコーナーパワー)</td>
<td>18.5 bar [270 psi]</td>
</tr>
<tr>
<td></td>
<td>最低値 (NFPE のコーナーパワー)</td>
<td>26 bar [377 psi]</td>
</tr>
<tr>
<td></td>
<td>最高値</td>
<td>40 bar [580 psi]</td>
</tr>
<tr>
<td>チャージポンプ 吸込口圧力</td>
<td>定格</td>
<td>0.7 bar (absolute) [9 in Hg vacuum]</td>
</tr>
<tr>
<td></td>
<td>最低 (コールドスタート)</td>
<td>0.2 bar (absolute) [24 in Hg vacuum]</td>
</tr>
<tr>
<td></td>
<td>最高</td>
<td>4 bar [58 psi]</td>
</tr>
<tr>
<td>ケース圧力</td>
<td>定格</td>
<td>3 bar [44 psi]</td>
</tr>
<tr>
<td></td>
<td>最高</td>
<td>5 bar [73 psi]</td>
</tr>
<tr>
<td>シャフトシール外部最高圧力</td>
<td></td>
<td>0.4 bar [5.8 psi]</td>
</tr>
</tbody>
</table>

1) 性能（圧力と押しのけ容積）はコントロール圧力により制限されるかもしれません。

2) フル性能（圧力と押しのけ容積）は最低チャージとコントロール圧力で可能です。
テクニカルデータ

作動油仕様

<table>
<thead>
<tr>
<th>仕様</th>
<th>ユニット</th>
<th>データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘度</td>
<td>月初</td>
<td>5 [42]</td>
</tr>
<tr>
<td>流量</td>
<td>最低</td>
<td>7 [49]</td>
</tr>
<tr>
<td>推奨範囲</td>
<td>12 – 80 [66 – 370]</td>
<td></td>
</tr>
<tr>
<td>最高</td>
<td>1600 [7500]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>仕様</th>
<th>ユニット</th>
<th>データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度範囲</td>
<td>最低 3)</td>
<td>-40 [-40]</td>
</tr>
<tr>
<td>推奨範囲</td>
<td>60 – 85 [140 – 185]</td>
<td></td>
</tr>
<tr>
<td>定格</td>
<td>104 [220]</td>
<td></td>
</tr>
<tr>
<td>前最高 1)</td>
<td>115 [240]</td>
<td></td>
</tr>
</tbody>
</table>

1) 瞬間 = 1 回あたり 1 分未満の短い時間で、デューティーサイクルに基づく負荷寿命の 2%を超えないもの
2) 最高油温ポイント、通常はケースドレンポート
3) コールドスタート = 3 分以内の短時間、p ≤ 50bar [725 psi]、n ≤ 1000min⁻¹ (rpm)

フィルトレーション; 清浄度レベルおよび比βₚ-r-ろ過比率 (最低推奨)

<table>
<thead>
<tr>
<th>ISO 4406 による清浄度</th>
<th>22/18/13</th>
</tr>
</thead>
<tbody>
<tr>
<td>βₚ 比 (チャージプレッシャ・フィルトレーション)</td>
<td>β₁₅.₂₀ = 75 (β₁₀ ≥ 10)</td>
</tr>
<tr>
<td>βₚ 比 (サクション/リターンラインフィルトレーション)</td>
<td>β₃₅.₄₅ = 75 (β₁₀ ≥ 2)</td>
</tr>
<tr>
<td>推奨 吸入スクリーンメッシュサイズ</td>
<td>100 – 125 µm</td>
</tr>
</tbody>
</table>

外部ラジアル軸荷重

ポンプは、多少の外部ラジアル荷重を許容できるベアリングで設計されています。外部ラジアル荷重限度は、荷重位置、方向、ユニットの作動条件に依存します。外部ラジアルシャフト荷重は寿命に影響します。寿命の計算は、弊社にお問い合わせください。

最大許容ラジアル荷重(Rₑ)は、最大外部モーメント(Mₑ)と取り付けフランジから負荷への距離(Lₑ)に基づいています。以下の式を使用して決定できます。

\[Rₑ = \frac{Mₑ}{Lₑ} \]

ラジアル荷重位置

Mₑ = 軸モーメント
Lₑ = フランジ距離
ベアリング寿命 H1P 060/068

軸のたわみに基づく最大外部軸負荷

<table>
<thead>
<tr>
<th>外部半径方向モーメント</th>
<th>ユニット</th>
<th>サイズ 060 / 068</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_e</td>
<td>N•m [lb•in]</td>
<td>104 [920]</td>
</tr>
</tbody>
</table>

すべての外部軸負荷は、ベアリング寿命に影響を与えます。外部シャフト荷重が働くアプリケーションでは、図に示すように0°または180°に負荷を配置することで、影響を最小化します。

ラジアル軸荷重の働くアプリケーションの場合、弊社はクランプタイプの継手を推奨します。

連続的に最大許容ラジアル負荷(R_e)の25%超過した外部負荷が適用されたり、または、ほとんどの時間ポンプ斜板が片側に位置する場合のユニットベアリング寿命の評価については弊社にお問い合わせください。

取付フランジ負荷 H1P 060/068

下図のモーメントは、上または横のコントロール方向に適用されます。

取付フランジ負荷、サイズ 060/068

定格モーメント: $M_R = 2110$ N•m [18 680 lb•in]

衝撃荷重モーメント: $M_S = 5275$ N•m [46 690 lb•in]

より詳細的情報については、H1 Axial Piston Pumps, Basic Information, BC00000057, the section 「Mounting flange loads」の項を参照ください。
チャージポンプの選択
ほとんどのアプリケーションで、一般的なガイドラインではチャージポンプの吐出量はシステムの全コンポーネントの合計容量の最低10%が必要とされています。特別なアプリケーション条件では、必要チャージ流量のより詳細な検討が必要になることがあります。以下のシステム機能と条件では、10%ガイドラインを適用できないことがあります。（ただしこの限りではありません）
• 1500 min⁻¹（rpm）未満の低入力速度での連続運転
• 高い衝撃負荷および/または長いループライン
• 高フラッシング流量要件
• 複数の低速高トルクモータ
• 高入力軸速度
お使いのアプリケーションにこれらの条件が含まれている場合には、アプリケーションの支援のために弊社にお問い合わせください。

チャージポンプ流量と動力カーブ、14/17 cm³
チャージ圧力：20bar [290 psi] 粘度：11 mm²/s [63 SUS]
温度：80°C [176°F]

チャージポンプ流量

チャージポンプ流量
マスターモデルコード

<table>
<thead>
<tr>
<th>H1P</th>
<th>A</th>
<th>B</th>
<th>Z</th>
<th>D</th>
<th>F</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
</table>

押しのけ容積

<table>
<thead>
<tr>
<th>060</th>
<th>60.4 cm³ [3.69 in³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>068</td>
<td>68.0 cm³ [4.15 in³]</td>
</tr>
</tbody>
</table>

A - 回転方向

<table>
<thead>
<tr>
<th>L</th>
<th>左（反時計回り）</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>右（時計回り）</td>
</tr>
</tbody>
</table>

B - 製品バージョン

<table>
<thead>
<tr>
<th>C</th>
<th>リビジョンコード</th>
</tr>
</thead>
</table>

Z - ポート形状

<table>
<thead>
<tr>
<th>A</th>
<th>インチ、顧客のOリングポートシーリングISO 11926-1準拠</th>
</tr>
</thead>
</table>

D - コントロール - 電気容量コントロール（EDC）

<table>
<thead>
<tr>
<th>コード</th>
<th>コントロールタイプ</th>
<th>電圧</th>
<th>MOR</th>
<th>CCOキーキー付</th>
<th>DEUTSCH コネクタ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>EDC</td>
<td>12 V</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>A3</td>
<td>EDC</td>
<td>24 V</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>A4</td>
<td>EDC</td>
<td>12 V</td>
<td>●</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>A5</td>
<td>EDC</td>
<td>24 V</td>
<td>●</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>E7</td>
<td>EDC</td>
<td>12 V</td>
<td>—</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>E8</td>
<td>EDC</td>
<td>24 V</td>
<td>—</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

● - コントロールで使用 — コントロールには使用しない

D - コントロール - ノンフィードバック電気比例コントロール（NFPE）

<table>
<thead>
<tr>
<th>コード</th>
<th>コントロールタイプ</th>
<th>電圧</th>
<th>MOR</th>
<th>CCOキーキー付</th>
<th>角度センサー</th>
<th>DEUTSCH コネクタ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>NFPE</td>
<td>12 V</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>N2</td>
<td>NFPE</td>
<td>24 V</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>N3</td>
<td>NFPE</td>
<td>12 V</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>N4</td>
<td>NFPE</td>
<td>24 V</td>
<td>—</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>N5</td>
<td>NFPE</td>
<td>12 V</td>
<td>●</td>
<td>—</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>N6</td>
<td>NFPE</td>
<td>24 V</td>
<td>●</td>
<td>—</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>N7</td>
<td>NFPE</td>
<td>12 V</td>
<td>—</td>
<td>●</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>N8</td>
<td>NFPE</td>
<td>24 V</td>
<td>—</td>
<td>●</td>
<td>—</td>
<td>●</td>
</tr>
</tbody>
</table>

オプションと調整 E: 最大容量調整 W: 特別なハードウェア。
マスターモデルコード

<table>
<thead>
<tr>
<th>コード</th>
<th>ACタイプ</th>
<th>電圧</th>
<th>MOR</th>
<th>速度センサ</th>
<th>ワイヤーネス</th>
<th>角度センサ</th>
<th>DEUTSCHコネクタ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>AC-1</td>
<td>12 V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>P7</td>
<td>AC-1</td>
<td>24 V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P8</td>
<td>AC-2</td>
<td>12 V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>P9</td>
<td>AC-2</td>
<td>24 V</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>P5</td>
<td>AC-1</td>
<td>12 V</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>R3</td>
<td>AC-1</td>
<td>24 V</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>●</td>
</tr>
<tr>
<td>R4</td>
<td>AC-2</td>
<td>12 V</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>R5</td>
<td>AC-2</td>
<td>24 V</td>
<td>●</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

- コントロールで使用
- コントロールには使用しない

D - コントロール - オートモーティブコントロール（AC）

D - コントロール - マニュアル容量コントロール（MDC）

D - コントロール - ファン駆動コントロール（FDC）

<table>
<thead>
<tr>
<th>コード</th>
<th>コントロールタイプ</th>
<th>電圧</th>
<th>DEUTSCHコネクタ</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>FDC</td>
<td>12 V</td>
<td>●</td>
</tr>
<tr>
<td>F2</td>
<td>FDC</td>
<td>24 V</td>
<td>●</td>
</tr>
</tbody>
</table>
マスターモデルコード

F - オリフィス

<table>
<thead>
<tr>
<th>コード</th>
<th>オリフィス</th>
<th>コントロール: 使用する (●) / 使用しない (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>タンク (A +B)</td>
<td>P</td>
<td>A / B</td>
</tr>
<tr>
<td>C3</td>
<td>オリフィスなし</td>
<td>●</td>
</tr>
<tr>
<td>C1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C6</td>
<td>1.0 mm</td>
<td>-</td>
</tr>
<tr>
<td>C7</td>
<td>1.3 mm</td>
<td>-</td>
</tr>
<tr>
<td>C8</td>
<td>0.6 mm</td>
<td>0.8 mm</td>
</tr>
<tr>
<td>C9</td>
<td>0.6 mm</td>
<td>1.0 mm</td>
</tr>
<tr>
<td>D1</td>
<td>0.8 mm</td>
<td>1.0 mm</td>
</tr>
<tr>
<td>D2</td>
<td>0.8 mm</td>
<td>1.3 mm</td>
</tr>
<tr>
<td>D3</td>
<td>1.0 mm</td>
<td>1.3 mm</td>
</tr>
<tr>
<td>D4</td>
<td>1.0 mm</td>
<td>1.3 mm</td>
</tr>
<tr>
<td>D5</td>
<td>0.6 mm</td>
<td>0.6 mm</td>
</tr>
<tr>
<td>D8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

E - 最大容量調整

<table>
<thead>
<tr>
<th></th>
<th>なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>二重バネ、容量制限なし、NFPE / AC / FDC *</td>
</tr>
<tr>
<td>B</td>
<td>外部から調整可能</td>
</tr>
<tr>
<td>D</td>
<td>二重バネ、外部から調整可能、NFPE、AC、FDC</td>
</tr>
</tbody>
</table>

* オプションと選択Y：特殊設定（該当する場合）
マスターモデルコード

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>T</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1P</td>
<td></td>
</tr>
</tbody>
</table>

G – エンドキャップオプション（ツインポート、ISO 6162 スプリットフランジポート）

オプションと連携 T – フィルトレーション (below) および K – 補助取付パッド：

- ISO 3019-1、フランジ 82 - 2 (SAE A、9 T と 11 T)
- ISO 3019-1、フランジ 101 - 2 (SAE B、13 T)
- ISO 3019-1、フランジ 101 - 2 (SAE B-B、15 T) またはなし

<table>
<thead>
<tr>
<th>コード</th>
<th>サクションフィルトレーション</th>
<th>内部フルチャージ流圧フィルトレーション</th>
<th>リモートまたは外部、フルチャージ流圧フィルトレーション</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>-</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>D6</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D8</td>
<td>-</td>
<td>-</td>
<td>●</td>
</tr>
</tbody>
</table>

オプションと連携 K – 補助取付パッド: ISO 3019-1、フランジ 127 - 4 (SAE C、14T)

<table>
<thead>
<tr>
<th>コード</th>
<th>サクションフィルトレーション</th>
<th>内部フルチャージ流圧フィルトレーション</th>
<th>リモートまたは外部、フルチャージ流圧フィルトレーション</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>-</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>F5</td>
<td>-</td>
<td>-</td>
<td>●</td>
</tr>
<tr>
<td>F6</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

H – 取付フランジ

- ISO 3019-1 フランジ 127-4 (SAE C)
- ISO 3019-1、フランジ 127 - 4 (SAE C)、4 本ボルトと速度センサ

J – 入力シャフト

- ISO 3019-1、外径 32 mm - 4 (SAE C、14T スプライン軸 12/24 ピッチ)
- ISO 3019-1、外径 35 mm - 4 (SAE C、21T スプライン軸 16/32 ピッチ)

K – ISO 3019-1 補助取付パッド（オプション G：エンドキャップの選択と連携）

<table>
<thead>
<tr>
<th>NN</th>
<th>なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>フランジ 82 - 2、外径 19 mm - 4 (SAE A、11T 16/32 カップリング)</td>
</tr>
<tr>
<td>H2</td>
<td>フランジ 82 - 2、外径 16 mm - 4 (SAE A、9T 16/32 カップリング)</td>
</tr>
<tr>
<td>H3</td>
<td>フランジ 101 - 2、外径 22 mm - 4 (SAE B、13T 16/32 ピッチ)</td>
</tr>
<tr>
<td>H5</td>
<td>フランジ 101 - 2、外径 25 mm - 4 (SAE B-B、15T 16/32 ピッチ)</td>
</tr>
<tr>
<td>H6</td>
<td>フランジ 127 - 4、外径 32 mm - 4 (SAE C、14T 12/24 ピッチカップリング)</td>
</tr>
</tbody>
</table>

輸送カバー
マスターモデルコード

<table>
<thead>
<tr>
<th>A B Z D F G H J K M N S T V W X Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1P</td>
</tr>
</tbody>
</table>

M – 壓力保護タイプ、サイド「A」/N – 壓力保護タイプ、サイド「B」

バイパス付きの圧力リミッタと高圧リリーフバルブ(HPRV)、圧力保護タイプはサイド「A」とサイド「B」で同一であることが必要です

<table>
<thead>
<tr>
<th>L1）</th>
<th>壓力リミッタ設定</th>
<th>HPRV 設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>L15</td>
<td>150 bar [2900 psi]</td>
<td>200 bar [2900 psi]</td>
</tr>
<tr>
<td>L18</td>
<td>180 bar [2610 psi]</td>
<td>250 bar [3630 psi]</td>
</tr>
<tr>
<td>L20</td>
<td>200 bar [2900 psi]</td>
<td>250 bar [3630 psi]</td>
</tr>
<tr>
<td>L23</td>
<td>230 bar [3336 psi]</td>
<td>280 bar [4061 psi]</td>
</tr>
<tr>
<td>L25</td>
<td>250 bar [3630 psi]</td>
<td>300 bar [4350 psi]</td>
</tr>
<tr>
<td>L28</td>
<td>280 bar [4061 psi]</td>
<td>330 bar [4786 psi]</td>
</tr>
<tr>
<td>L30</td>
<td>300 bar [4350 psi]</td>
<td>350 bar [5080 psi]</td>
</tr>
<tr>
<td>L33</td>
<td>330 bar [4786 psi]</td>
<td>380 bar [5510 psi]</td>
</tr>
<tr>
<td>L35</td>
<td>350 bar [5080 psi]</td>
<td>400 bar [5800 psi]</td>
</tr>
<tr>
<td>L38</td>
<td>380 bar [5510 psi]</td>
<td>420 bar [6090 psi]</td>
</tr>
<tr>
<td>L40</td>
<td>400 bar [5800 psi]; (060 のみで利用可)</td>
<td>450 bar [6526 psi]</td>
</tr>
<tr>
<td>L42</td>
<td>420 bar [5090 psi]; (060 のみで利用可)</td>
<td>450 bar [6526 psi]</td>
</tr>
</tbody>
</table>

FDC (ファンドライブコントロール) 用の圧力保護タイプの種類と設定

<table>
<thead>
<tr>
<th>FDC</th>
<th>壓力保護タイプの種類と設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>F01</td>
<td>150 bar [2175 psi]</td>
</tr>
<tr>
<td>F02</td>
<td>150 bar [2175 psi]</td>
</tr>
<tr>
<td>F03</td>
<td>150 bar [2175 psi]</td>
</tr>
</tbody>
</table>

バイパス付きの高圧リリーフ弁、サイド「A」と「B」用のオーバー圧保護タイプは同一であることが必要

<table>
<thead>
<tr>
<th>K1）</th>
<th>壓力設定 2）</th>
</tr>
</thead>
<tbody>
<tr>
<td>K18</td>
<td>180 bar [2610 psi]</td>
</tr>
<tr>
<td>K20</td>
<td>200 bar [2900 psi]</td>
</tr>
<tr>
<td>K23</td>
<td>230 bar [3336 psi]</td>
</tr>
<tr>
<td>K25</td>
<td>250 bar [3630 psi]</td>
</tr>
<tr>
<td>K28</td>
<td>280 bar [4061 psi]</td>
</tr>
<tr>
<td>K30</td>
<td>300 bar [4350 psi]</td>
</tr>
<tr>
<td>K33</td>
<td>330 bar [4786 psi]</td>
</tr>
<tr>
<td>K35</td>
<td>350 bar [5080 psi]</td>
</tr>
<tr>
<td>K38</td>
<td>380 bar [5510 psi]</td>
</tr>
<tr>
<td>K40</td>
<td>400 bar [5800 psi]; (060 のみで利用可)</td>
</tr>
<tr>
<td>K42</td>
<td>420 bar [6090 psi]; (060 のみで利用可)</td>
</tr>
</tbody>
</table>

1）L, F – 壓力リミッター 搭載; K – 壓力リミッター なし

2）最高使用圧力以上の圧力設定については、弊社にお問い合わせください。
マスターモデルコード

| A | B | C | D | E | F | G | H | J | K | M | N | S | T | V | W | X | Y |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H1P | | | | | | | | | | | | | | | | | |

S – チャージポンプ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>14 cm³/rev [0.85 in³/rev]</td>
</tr>
<tr>
<td>C</td>
<td>17 cm³/rev [1.03 in³/rev]</td>
</tr>
<tr>
<td>N</td>
<td>チャージポンプなし、外部チャージ供給（オプションと連携EおよびT）</td>
</tr>
</tbody>
</table>

T – フィルとレシオント（オプションと連携G: エンドキャップの選択）

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>サクションフィルトレーション（H1P060/068 サクションフィルトレーション、オプションL（60ページ）参照）</td>
</tr>
<tr>
<td>M</td>
<td>内部フルチャージ流量フィルトレーション、バイパスあり、バイパスセンサ付き、中フィルター長カトリッジ11004918</td>
</tr>
<tr>
<td>P</td>
<td>リモートフルチャージ流量フィルトレーション</td>
</tr>
<tr>
<td>E</td>
<td>外部チャージ流量フィルトレーション（オプションと連携：NおよびS）</td>
</tr>
</tbody>
</table>

V – チャージ圧力設定

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>18 bar [261 psi]</td>
</tr>
<tr>
<td>20</td>
<td>20 bar [290 psi]</td>
</tr>
<tr>
<td>22</td>
<td>22 bar [319 psi]</td>
</tr>
<tr>
<td>24</td>
<td>24 bar [348 psi]</td>
</tr>
<tr>
<td>26</td>
<td>26 bar [377 psi]</td>
</tr>
<tr>
<td>28</td>
<td>28 bar [406 psi]</td>
</tr>
<tr>
<td>30</td>
<td>30 bar [435 psi]</td>
</tr>
<tr>
<td>32</td>
<td>32 bar [464 psi]</td>
</tr>
<tr>
<td>34</td>
<td>34 bar [493 psi]</td>
</tr>
</tbody>
</table>

W – 特別なハードウェア機能

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>EDC / FNR / MDCパルブプレート</td>
</tr>
<tr>
<td>P1</td>
<td>NFPEパルブプレート（オプション：DおよびEと連携）</td>
</tr>
<tr>
<td>P2</td>
<td>NFPE / FDC / ACパルブプレート及びシリンダーブロック速度リング付</td>
</tr>
<tr>
<td>P4</td>
<td>シリンダーブロックに速度リング付のEDC / FNR / MDC（DおよびEオプションと連携：）</td>
</tr>
<tr>
<td>H1</td>
<td>MDC / EDC / FNRパルブプレートMDCハンドル付</td>
</tr>
</tbody>
</table>

X – 塗装とネームタグ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NNN</td>
<td>黒色塗装とダンフォスネームタグ</td>
</tr>
</tbody>
</table>
マスターモデルコード

Y – 特殊設定（SIL-2 証明無、顧客ファイル無）

<table>
<thead>
<tr>
<th>コード</th>
<th>CAN J1939</th>
<th>ECO 燃料節約モード</th>
<th>オプションパッケージ</th>
<th>クルーズコントロール</th>
<th>コントロール</th>
<th>AC タイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3E</td>
<td>in/out</td>
<td>●</td>
<td>E</td>
<td></td>
<td>P6</td>
<td></td>
</tr>
<tr>
<td>D3F</td>
<td>in/out</td>
<td></td>
<td>F</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D4E</td>
<td>in/out</td>
<td>●</td>
<td>E</td>
<td></td>
<td>P7</td>
<td></td>
</tr>
<tr>
<td>D4F</td>
<td>in/out</td>
<td></td>
<td>F</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D5F</td>
<td>in/out</td>
<td></td>
<td>F</td>
<td></td>
<td>P8</td>
<td></td>
</tr>
<tr>
<td>D5J</td>
<td>in/out</td>
<td>●</td>
<td>J</td>
<td>●</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>D6F</td>
<td>in/out</td>
<td></td>
<td>F</td>
<td></td>
<td>P9</td>
<td></td>
</tr>
<tr>
<td>D6J</td>
<td>in/out</td>
<td>●</td>
<td>J</td>
<td>●</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>M00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

● = 利用可能なオプション - = 使用できないオプション
コントロールオプション

電気容量コントロール（EDC）

電気容量コントロール（EDC）は3位置4方向タイプのスプールとその両側にペアの比例ソレノイドが取り付けられています。比例ソレノイドはスプールに入力をかけ、スプールは油圧を複動式サーボピストンのどちらか片側に送ります。

サーボピストンの差圧を斜板を回転させ、ポンプの容量を一方向の最大容量から反対方向の最大容量まで変えることができます。

コンタミネーションなどにより、ある環境では、コントロールスプールが固着し、ポンプがある容量で停止することがあります。実用的な125μmスクリーンフィルタがコントロールスプールの直前の供給ラインに置かれています。

EDCコントロール入力信号条件

ポンプをストロークするためのコントロール入力電流

<table>
<thead>
<tr>
<th>電圧</th>
<th>a（mA）</th>
<th>b（mA）</th>
<th>ピン接続</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V</td>
<td>640</td>
<td>1640</td>
<td>任意の順番</td>
</tr>
<tr>
<td>24V</td>
<td>330</td>
<td>820</td>
<td></td>
</tr>
</tbody>
</table>

*工場テスト電流値。車両の移動やアプリケーション作動のためにより高いまたは低い値が必要な場合があります。
コントロールオプション

![コントロールオプションの図](image)

コネクタ注文データ

<table>
<thead>
<tr>
<th>説明</th>
<th>数量</th>
<th>注文データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>相手側コネクタ</td>
<td>(1)</td>
<td>DEUTSCH DT06-2S</td>
</tr>
<tr>
<td>ウェッジロック</td>
<td>(1)</td>
<td>DEUTSCH W2S</td>
</tr>
<tr>
<td>ソケット接触子（16 および18 AWG）</td>
<td>(2)</td>
<td>DEUTSCH 0462-201-16141</td>
</tr>
<tr>
<td>弊社相手側コネクタキット</td>
<td>1</td>
<td>K29657</td>
</tr>
</tbody>
</table>

EDC ソレノイドデータ

<table>
<thead>
<tr>
<th>説明</th>
<th>12 V</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大電流</td>
<td>1800 mA</td>
<td>920 mA</td>
</tr>
<tr>
<td>公称コイル抵抗</td>
<td>@ 20 °C [68 °F] 3.66 Ω</td>
<td>14.20 Ω</td>
</tr>
<tr>
<td></td>
<td>@ 80 °C [176 °F] 4.52 Ω</td>
<td>17.52 Ω</td>
</tr>
<tr>
<td>インダクタンス</td>
<td>33 mH</td>
<td>140 mH</td>
</tr>
<tr>
<td>PWM信号周波数</td>
<td>範囲 70 – 200 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>周波数(推奨)* 200 Hz</td>
<td></td>
</tr>
<tr>
<td>IP保護等級</td>
<td>IEC 60 529</td>
<td>IP 67</td>
</tr>
<tr>
<td></td>
<td>DIN 40 050、Part 9</td>
<td>IP 69K (相手側コネクタ付き)</td>
</tr>
<tr>
<td>コネクタの色</td>
<td>黒色</td>
<td></td>
</tr>
</tbody>
</table>

*制御性能を最適にするためには推奨のPWM信号が必要です。

ポンプ出力流量方向 vs. 制御信号

<table>
<thead>
<tr>
<th>軸回転</th>
<th>CW</th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>コイル通電側*</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>ポート A</td>
<td>out</td>
<td>in</td>
</tr>
<tr>
<td>ポート B</td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>サーボポート加圧ポート</td>
<td>M4</td>
<td>M5</td>
</tr>
</tbody>
</table>

*コイルの場所は取付図を参照してください。

コントロール応答

H1 ポンプコントロールは、アプリケーションの要求に斜板の応答性が合うように、任意の通路オリフィスを利用できます。ポンプ出力流量がゼロからフル流量（加速）またはフル流量からゼロ（減速）に変わるのに要する時間は、主にスプール形状、オリフィスそしてチャージ圧に依存します。斜板応答は、それぞれのフレームサイズに対しての斜板応答時間表を参照して下さい。望ましい応答を得るため、適切なオリフィスが選択されているかテストで確認して下さい。

H1 ポンプの機械的オリフィスには制限があります。メカニカルサーボオリフィスは、電気系統不具合時、ニュートラルにフェイルセーフ復帰させる場合にのみ使用してください。

以下の条件での代表的な応答時間:

<table>
<thead>
<tr>
<th>∆P</th>
<th>250 bar [3626 psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘度と温度</td>
<td>30 mm²/s [141 SUS] および 50 °C [122 °F]</td>
</tr>
</tbody>
</table>
以下の条件での代表的な応答時間：（続き）

<table>
<thead>
<tr>
<th>チャージ圧力</th>
<th>20 bar [290 psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>回転数</td>
<td>1800 min⁻¹ (rpm)</td>
</tr>
</tbody>
</table>

応答時間、EDC 060/068

<table>
<thead>
<tr>
<th>ストローケ方向</th>
<th>0.8 mm [0.03 in]オリフィスC1</th>
<th>1.3 mm [0.05 in]オリフィスC2</th>
<th>オリフィスなしC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニュートラルからフル流量</td>
<td>2.6 s</td>
<td>1.2 s</td>
<td>0.8 s</td>
</tr>
<tr>
<td>フル流量からニュートラル</td>
<td>1.7 s</td>
<td>0.8 s</td>
<td>0.4 s</td>
</tr>
</tbody>
</table>
マニュアル容量コントロール(MDC)

マニュアル容量コントロール（MDC）は回転するコントロール入力軸の上にハンドルが取付けられます。この軸はフィードバックリンクに偏心して接続されています。リンクは一方の端をコントロールスプールに接続されています。このリンクの他方の端は、ポンプの斜板に接続されています。この設計により、パネラしで移動フィードバック機構を実現できます。この軸を回転させると、スプールの移動により、油圧をポンプの複動式サーボピストンの片側に導きます。

サーボピストンに働く差圧が、斜板を回転させ、ポンプの容量を変化させます。同時に、斜板の移動がコントロールスプールにフィードバックされ、コントロールバルブの軸回転と斜板傾転を釣り合わせます。

MDC はゼロ流量と最大容量の間で両方向へポンプ容量を変化させます。コンタミネーション等の環境によっては、コントロールスプールが固着し、ポンプがある容量で停止する可能性があります。

実用的な 125μm スクリーンフィルタがコントロールボーティングスプールの直前にある供給ラインに置かれています。

MDC はコントロール軸アッセイとコントロールブロック間で静的 O リングによってシールされています。軸は低摩擦の特殊な O リングによってシールされています。この特殊な O リングは特殊リップシールによって埃、水、活性の高い流体や気体から保護されています。

ボンプ容量とコントロールレバー回転

説明
B 側のデッドバンド - a = 3°±1°
最大ポンプストローク - b = 30°+2/-1°
顧客にて必要なストップエンド - c = 36°±3°
内部のストップエンド - d = 40°
コントロールオプション

MDC 入力軸トルク

<table>
<thead>
<tr>
<th>説明</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大容量ヘンドルを動かすのに必要なトルク</td>
<td>1.4 N•m [12.39 lbf•in]</td>
</tr>
<tr>
<td>所定の容量にヘンドルを保持するために必要なトルク</td>
<td>0.6 N•m [5.31 lbf•in]</td>
</tr>
<tr>
<td>最大許容入力トルク</td>
<td>20 N•m [177 lbf•in]</td>
</tr>
</tbody>
</table>

注意
システムの容量効率は、入力コマンドの開始と終了に影響します。

MDC 一般情報

他のコントロールとは異なり、MDC は機械的なデッドバンドがあります。これは機械的な機能で許容誤差を克服するために必要です。

MDC のオーバーアクションを防止するための内部にエンドストップがあります。その復帰モーメントは、MDC 入力軸をニュートラルに戻すことのみを考慮して設定されています。リンクとかケーブルは、MDC がニュートラルに戻るためのトルクがあります。

MDC は最大ケース圧力 5bar と定格ケース圧力 3bar に対して設計されています。5bar を超えるケース圧力の場合、十分な復帰モーメントが無くなる可能性があります。さらに、高ケース圧力は、コントロールのニュートラルスタートスイッチの不具合の原因となることがあります。高いケース圧力は、過度の摩耗を引き起こす原因となります。

顧客は独自のハンドル設計を適用できますが、ハンドルとコントロール軸の間のしっかりとクラフ接続に十分に注意し、コントロール軸の過負荷を避けるようにしてください。

顧客は操作コントロールから第 2 のコントロールに作動力が伝達されるようにタンデムユニット上で 2 つの MDC を接続できます。しかし、そのリンクの連鎖は、両方のコントロール軸が過負荷トルクが発生しないようにする必要があります。MDC 入力軸の過負荷を避けるために、顧客はワイヤーケーブルの設定範囲を制限するためのサポートを選択する必要があります。

注意
入力軸部の内部パネルは、顧客の接続リンクシステムをニュートラルに戻すための十分な力はありません。

MDC 軸回転

MDC 軸回転データ

<table>
<thead>
<tr>
<th>*ポンプ軸回転</th>
<th>時計回り(CW)</th>
<th>反時計回り(CCW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDC 軸回転</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ポート A</td>
<td>in (low)</td>
<td>out (high)</td>
</tr>
<tr>
<td>ポート B</td>
<td>out (high)</td>
<td>in (low)</td>
</tr>
<tr>
<td>加圧側サポート</td>
<td>M5</td>
<td>M4</td>
</tr>
</tbody>
</table>

* 軸側から見た
コントロールオプション

H1ポンプコントロールは、アプリケーションの要求に斜板の応答性が合うように、任意の通路オリフィスを利用できます。ポンプ出力流量がゼロからフル流量（加速）またはフル流量からゼロ（減速）に変わるために要求される時間は、主にスプール形状、オリフィスそしてチャージ圧に依存します。斜板応答は、それぞれのフレームサイズに対しての斜板応答時間表を参照して下さい。望ましい応答を得るため、適切なオリフィスが選択されているかテストで確認して下さい。

H1ポンプの機械的オリフィスには制限があります。メカニカルサーボオリフィスは、電気系統不具合時、ニュートラルにフェイルセーフ復帰させる場合にのみ使用してください。

以下の条件での代表的な応答時間:

<table>
<thead>
<tr>
<th>∆P</th>
<th>250 bar [3626 psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘度と温度</td>
<td>30 mm²/s [141 SUS] および 50 °C [122 °F]</td>
</tr>
<tr>
<td>チャージ圧力</td>
<td>20 bar [290 psi]</td>
</tr>
<tr>
<td>回転数</td>
<td>1800 min⁻¹ (rpm)</td>
</tr>
</tbody>
</table>

応答時間、MDC 060/068

<table>
<thead>
<tr>
<th>コード</th>
<th>オリフィスの種類 (mm)</th>
<th>ストローク方向 (秒)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P A B</td>
<td>タンク (A+B)ポート</td>
</tr>
<tr>
<td>C3</td>
<td>- - -</td>
<td>-</td>
</tr>
<tr>
<td>C6</td>
<td>- - -</td>
<td>1</td>
</tr>
<tr>
<td>C7</td>
<td>- - -</td>
<td>1.3</td>
</tr>
<tr>
<td>C8</td>
<td>0.8 - -</td>
<td>0.6</td>
</tr>
<tr>
<td>C9</td>
<td>1 - -</td>
<td>0.6</td>
</tr>
<tr>
<td>D1</td>
<td>1 - -</td>
<td>0.8</td>
</tr>
<tr>
<td>D2</td>
<td>1.3 - -</td>
<td>0.8</td>
</tr>
<tr>
<td>D3</td>
<td>1.3 - -</td>
<td>1</td>
</tr>
<tr>
<td>D4</td>
<td>1.3 1.3 1.3</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>0.6 0.8 0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

ニュートラルスタートスイッチ(NSS)

ニュートラルスタートスイッチ (NSS) には、コントロールがニュートラルかどうかを示す信号を提供する電気スイッチが含まれています。ニュートラルの信号は通常はクローズドです (NC)。

ニュートラルスタートスイッチの回路図
コントロールオプション

ニュートラルスタートスイッチデータ

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>スイッチ時の最大連続電流</td>
<td>8.4 A</td>
</tr>
<tr>
<td>スイッチなしの最大連続電流</td>
<td>20 A</td>
</tr>
<tr>
<td>最大電圧</td>
<td>36 VDC</td>
</tr>
<tr>
<td>IP 保護等級</td>
<td>IP67 / IP69K with mating connector</td>
</tr>
</tbody>
</table>

ケースゲージポート M14

コントロールをユニットの下部に設置し、コントロールから残留するコンタミネーションを取り除くため、このドレンポートを使用してください。

MDC の回路図

レバー

MDC コントロールはレバー付が利用可能です。
コントロールオプション

3 ポジション電気コントロール(FNR)、オプション: A9 (12 V)と B1 (24 V)

3 位置の FNR コントロールは、ポンプをフルストローク位置に切り替える電気入力信号を使用します。コンタミネーションなどにより、ある環境では、コントロールスプールが固着し、ポンプがある容量で停止することがあります。実用的な 125μm スクリーンフィルタがコントロールスプールの直前の供給ラインに置かれています。

制御電流

<table>
<thead>
<tr>
<th>電圧</th>
<th>ポンプをストロークするための最小電流</th>
<th>ピン接続</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 V</td>
<td>750 mA</td>
<td>任意の順番</td>
</tr>
<tr>
<td>24 V</td>
<td>380 mA</td>
<td></td>
</tr>
</tbody>
</table>

コネクタ注文データ

<table>
<thead>
<tr>
<th>説明</th>
<th>数量</th>
<th>注文データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>相手側コネクタ</td>
<td>(1)</td>
<td>DEUTSCH DT06-2S</td>
</tr>
<tr>
<td>ウェッジロック</td>
<td>(1)</td>
<td>DEUTSCH W25</td>
</tr>
<tr>
<td>ソケット接触子（16 および18 AWG）</td>
<td>(2)</td>
<td>DEUTSCH 0462-201-16141</td>
</tr>
<tr>
<td>弊社相手側コネクタキット</td>
<td>1</td>
<td>K29657</td>
</tr>
</tbody>
</table>
コントロールオプション

ソレノイドデータ

<table>
<thead>
<tr>
<th></th>
<th>12 V</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>12 V</td>
<td>24 V</td>
</tr>
<tr>
<td>最小供給電圧</td>
<td>9.5 VDC</td>
<td>19 VDC</td>
</tr>
<tr>
<td>最大供給電圧（連続）</td>
<td>14.6 VDC</td>
<td>29 VDC</td>
</tr>
<tr>
<td>最大電流</td>
<td>1050 mA</td>
<td>500 mA</td>
</tr>
<tr>
<td>公称コイル抵抗@ 20 ℃ [70 ℉]</td>
<td>8.4 Ω</td>
<td>34.5 Ω</td>
</tr>
<tr>
<td>PWM 規格</td>
<td>70-200 Hz</td>
<td></td>
</tr>
<tr>
<td>PWM 周波数（推奨） *</td>
<td>100 Hz</td>
<td></td>
</tr>
<tr>
<td>IP 等級（IEC 60 529）+ DIN 40 050、Part 9</td>
<td>IP 67 / IP 69K (相手側コネクタとで)</td>
<td></td>
</tr>
<tr>
<td>双方向ダイオード遮断電圧</td>
<td>28 VDC</td>
<td>53 VDC</td>
</tr>
</tbody>
</table>

* PWM 信号は最適な制御性能のために必要。

ポンプ出力流量方向と制御信号

<table>
<thead>
<tr>
<th>管路</th>
<th>CW</th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポート A</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>ポート B</td>
<td>out</td>
<td>in</td>
</tr>
<tr>
<td>加圧側サポーティング</td>
<td>M5</td>
<td>M4</td>
</tr>
</tbody>
</table>

* コイルの場所は、外観図（46 ページ）を参照。

コントロール応答

H1 ポンプコンテロールは、アプリケーションの要求に斜板の応答性があるように、任意の通路オリフィスを利用できます。ポンプ出力流量がゼロからフル流量（加速）またはフル流量からゼロ（減速）に変わる主にスプール形状、オリフィスそしてチャージ圧に依存します。斜板応答は、それぞれのフレームサイズに対する斜板応答時間表を参照して下さい。望む応答を得るため、適切なオリフィスが選択されているかテストで確認して下さい。

H1 ポンプの機械的オリフィスには制限があります。メカニカルサーボオリフィスは、電気系不具合時、ニュートラルにフェイルセーフ復帰させる場合にのみ使用してください。

以下の条件での代表的な応答時間：

<table>
<thead>
<tr>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆P</td>
</tr>
<tr>
<td>粘度と温度</td>
</tr>
<tr>
<td>チャージ圧力</td>
</tr>
<tr>
<td>回転数</td>
</tr>
</tbody>
</table>

FNR 応答時間 060/068

<table>
<thead>
<tr>
<th>ストローグ方向</th>
<th>0.8 mm [0.03 in] オリフィス C1</th>
<th>1.3 mm [0.05 in] オリフィス C2</th>
<th>オリフィスなし C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニュートラルからフル流量</td>
<td>2.2 s</td>
<td>1.1 s</td>
<td>1.0 s</td>
</tr>
<tr>
<td>フル流量からニュートラル</td>
<td>2.0 s</td>
<td>0.9 s</td>
<td>0.8 s</td>
</tr>
</tbody>
</table>
コントロールオプション

ノンフィードバック 電気比例 コントロール（NFPE）は、電気的オートモーティブ コントロールであり、ポンプのサーボシリンダの片側にチャージ減圧力を送り込むため、電気入力信号により2つのソレノイドの1つを作動させます。NFPE コントロールは機械的な斜板フィードバック機構を持ちません。

実用的な170μm スクリーンフィルタが コントロールポーティングスプールの直前にある供給ラインに置かれています。

ノンフィードバック電気比例コントロール

ポンプ容量はソレノイド信号電流に比例しますが、ポンプ入力速度とシステム圧力にも依存します。この特性は、システム圧力が増加するにつれてポンプ斜板角度を減らすことで、動力制限機能としても働きます。典型的な応答特性を、付随のグラフに示します。コンタミネーションなどの環境によっては、コントロールスプールが固着し、ポンプがある容量で停止することがあります。
コントロールオプション

ポンプ容量対入力信号

制御信号要件、NFPE 060/068

制御電流

<table>
<thead>
<tr>
<th>電圧</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>ピン接続</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 V</td>
<td>694 mA</td>
<td>1114 mA</td>
<td>1490 mA</td>
<td>任意の順番</td>
</tr>
<tr>
<td>24 V</td>
<td>347 mA</td>
<td>583 mA</td>
<td>745 mA</td>
<td>任意の順番</td>
</tr>
</tbody>
</table>

*工場テスト電流値。車両の移動やアプリケーション作動のためにはより高い値またはより低い値が必要な場合があります。

コネクタ注文データ

<table>
<thead>
<tr>
<th>説明</th>
<th>数量</th>
<th>注文データ</th>
</tr>
</thead>
<tbody>
<tr>
<td>相手側コネクタ</td>
<td>(1)</td>
<td>DEUTSCH DT06-2S</td>
</tr>
<tr>
<td>ウェッジロック</td>
<td>(1)</td>
<td>DEUTSCH W25</td>
</tr>
<tr>
<td>ソケット接触子（16および18 AWG）</td>
<td>(2)</td>
<td>DEUTSCH 0462-201-16141</td>
</tr>
<tr>
<td>異社相手側コネクタキット</td>
<td>1</td>
<td>K29657</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>説明</th>
<th>12 V</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大電流</td>
<td>1800 mA</td>
<td>920 mA</td>
</tr>
<tr>
<td>公称コイル抵抗</td>
<td>@ 20 °C [68 °F] 3.66 Ω</td>
<td>@ 80 °C [176 °F] 4.52 Ω</td>
</tr>
<tr>
<td>インダクタンス</td>
<td>33 mH</td>
<td>140 mH</td>
</tr>
<tr>
<td>PWM信号周波数</td>
<td>範囲 70 – 200 Hz</td>
<td>周波数(推奨)* 200 Hz</td>
</tr>
<tr>
<td>IP保護等級</td>
<td>IEC 60529 IP 67</td>
<td>DIN 40 050、Part 9 IP 69K (相手側コネクタ付き)</td>
</tr>
</tbody>
</table>

*制御性能を最適にするためには推奨のPWM信号が必要です。
コントロールオプション

ポンプ出力流量方向 vs. 制御信号

<table>
<thead>
<tr>
<th>軸回転</th>
<th>CW</th>
<th>CCW</th>
<th>CW</th>
<th>CCW</th>
</tr>
</thead>
<tbody>
<tr>
<td>コイル直通電流</td>
<td>C1</td>
<td>C2</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>ポート A</td>
<td>in</td>
<td>out</td>
<td>out</td>
<td>in</td>
</tr>
<tr>
<td>ポート B</td>
<td>out</td>
<td>in</td>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>加圧機能サポート</td>
<td>M5</td>
<td>M4</td>
<td>M5</td>
<td>M4</td>
</tr>
</tbody>
</table>

*コイルの場所は取付け図を参照してください。

コントロール応答

H1 ポンプコントロールは、アプリケーションの要求に斜板の応答性が合うように、任意の通路オリフィスを利用できます。ポンプ出力流量がゼロからフル流量（加速）またはフル流量からゼロ（減速）に変わるのに要求される時間は、主にスプール形状、オリフィスそしてチャージ圧に依存します。斜板応答は、それぞれのフレームサイズに対しての斜板応答時間表を参照して下さい。望ましい応答を得るため、適切なオリフィスが選択されているかテストで確認して下さい。

H1 ポンプの機械的オリフィスには制限があります。メカニカルサーボオリフィスは、電気絶縁不具合時、ニュートラルにフェイルセーフ復帰させる場合にのみ使用してください。

以下の条件での代表的な応答時間：

<table>
<thead>
<tr>
<th>ΔP</th>
<th>250 bar [3626 psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘度と温度</td>
<td>30 mm²/s [141 SUS] および 50 °C [122 °F]</td>
</tr>
<tr>
<td>チャージ圧力</td>
<td>20 bar [290 psi]</td>
</tr>
<tr>
<td>回転数</td>
<td>1800 min⁻¹ (rpm)</td>
</tr>
</tbody>
</table>

応答時間、NFPE 060/068

<table>
<thead>
<tr>
<th>ストローク方向</th>
<th>0.8 mm [0.03 in] オリフィス C1</th>
<th>1.3 mm [0.05 in] オリフィス C2</th>
<th>2.3 mm [0.09 in] オリフィス D8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニュートラルからフル流量</td>
<td>2.5 s</td>
<td>1.1 s</td>
<td>0.6 s</td>
</tr>
<tr>
<td>フル流量からニュートラル</td>
<td>1.9 s</td>
<td>0.6 s</td>
<td>0.3 s</td>
</tr>
</tbody>
</table>
H1 オートモーティブコントロール(AC)は、ポンプに組み込まれた一体型マイクロコントローラ付の電子NFPEコントロールです。このマイクロコントローラは全シングルパスプロペルトランスミッションに対して柔軟で設定可能な制御性能を高めます。これは固定容量と可変容量油圧モータを組み合わせて使用できます。プリインストールされたアプリケーションソフトウェアと、簡単に変更可能な制御パラメータによって、顧客の個別要件に合わせた車両の運転動作を調整することが可能です。

H1 オートモーティブコントロールは次の2つのシステムに分けられます。

- AC-1
- AC-2

AC-2 はAC-1の拡張型で、斜板制御と流量制限のような機能を、内蔵されたポンプの斜板角度センサとソフトウェアで制御します。

モードの種類
アプリケーションソフトウェアは、モード種類として定義された個別に使用できる3つの異なるハイドロスタティックプロペル手法を提供します。

- オートモーティブ負荷依存（トルク制御）運転モード。駆動力カーブの設定値はエンジン回転数です。
- ノンオートモーティブ負荷非依存（回転数制御）運転モード。駆動力カーブの設定値は、エンジン回転数とは無関係のジョイスティックや運転ペダル信号です。最適な性能は、AC-2斜板角度センサによって達成されます。
- クリープオートモーティブ負荷依存（トルク制御）運転モード（オートモーティブ同様）。駆動力カーブの設定値はエンジン回転数です。高エンジン回転数と低い車両速度の組み合わせが必要な場合には、クリープ電位差計によって設定値を低減することができます。

基本機能

- 4つの選択可能なシステムモード、スイッチで選択可能。
- 前後進運転方向に対して個別設定（4x2カーブ）。
- 個別のポンプと油圧モータの各モードに対するプロファイリングとランピング
- 電気的な駆動ペダル接続
- 別の制御弁なしの電気的インチング機能
- クリープモード電位差計
コントロールオプション

- 設定可能システムモードと方向変更
- 負荷依存のポンプ容量制御と内蔵斜板角度センサを搭載（AC-2）
- ブレーキ圧力デフィート機能を含む油圧モータ容量制御

特性機能

- 移動時のエンジン速度の自動削減での ECO 燃料節約モード（クルーズ制御）
- 車両の一定速度駆動制御
- 車両の速度制限
- ダイナミックブレーキライト、自動バックブレーキ、リバースブザー、ステータス LED 出力
- 車両速度制御出力機能。
- 予測可能な性能のための温度補償
- 車両制御システムとの情報交換のための高度な CAN J1939 インターフェイス

保護と安全性機能

- エンジン回転数チェック、バッテリーチェック、FNR においてニュートラルであるなど、安全性制御された車両始動保護。
- オペレータ存在検出
- 油圧システム過熱と低温保護
- 油圧モータ過速度保護
- SAE J1472 / ENS500-4 を満たすローラーアプリケーション用のパークブレーキテストモード。
- SIL2 準拠

エンジン制御と保護

- CAN J1939 エンジンインターフェイス
- 安全性制御監視機能付きのドライバペダルによるエンジン速度
- エンジンアンチインストール保護
- インチング中のエンジン過速度保護
- エンジン速度依存リターダ制御
- エンジンコールドスタート保護

インストール機能

- ヒステリシス補償のための工場出荷時正.
- 工場でのスタート電流調整
- プリインストールされたアプリケーションソフトウェアとパラメータファイル

詳細については H1 シングルポンプの Automotive Control 技術情報、BC00000213 を参照してください。
ファンドライブコントロール（FDC）

ファンドライブコントロール（FDC）は、電気入力信号で比例ソレノイド作動させ、ポンプサーボリ
ンダの片側にチャージ減圧力を送り込むノンフィードバックコントロールです。単一の比例ソレノイド
が、正/逆方向にポンプ容量を制御するために使用されます。電気入力信号が存在しない場合には、最
大の正方向ポンプ容量になるように、制御スプールにはバネ力が作用します。スプールに働くバネ力に
基づいて、CW 入力回転ポンプの初期設定の流量はポート B から吐出、右回転ポンプの初期設定の流量
はポート A から吐出されます。

ポンプ容量はソレノイド信号電流に比例しますが、ポンプ入力回転数とシステム圧力にも依存します。
この特徴は、システム圧力が増加するにつれてポンプ斜板角度を減らすことで、動力制限機能も提供し
ます。ポンプは最も違い応答と最大のシステム安定性を提供するために、2 個の 0.8mm の制御オリフ
ィスで構成されなければなりません。さらに、圧力リミッタ(PL)弁は、(正/逆)両方向で、最大ファント
リム速度を制限するために使用されます。

FDC コントロール

FDC 油圧回路図

FDC 付きの H1 ポンプは、150bar[2175 psi]の一般圧力リミッタ設定で工場出荷されます。ファンがシス
テム冷却に必要なファン速度を満たすためには、PL は再調整が必要です。HPRV 設定は PL 設定よりも
最低 30bar(435 psi)高くなる必要があります。

コンタミネーションなどにより、ある環境では、コントロールスプールが固着し、ポンプがある容量で
停止することがあります。

油圧ファン駆動システムのサイズと構成決定に必要な情報は Hydrauric Fan Drive Design
GuidelinesAB00000019 をご覧ください。

FDC はファン駆動システム専用です。他のシステムでの使用は、機械やその要素の予期せぬ動きに繋が
ることがあります。コントロールへの入力信号が喪失すると、ポンプの流量が最大になります。
The FDC is for Fan Drive systems only!
コントロールオプション

ポンプ容量と制御電流

コントロール応答

H1 ポンプコントロールは、アプリケーションの要求に斜板の応答性が合うように、任意の通路オリフィスを利用できます。ポンプ出力流量がゼロからフル流量（加速）またはフル流量からゼロ（減速）に変わるのに要求される時間は、主にスプール形状、オリフィスそしてチャージ圧に依存します。斜板応答は、それぞれのフレームサイズに対しての斜板応答時間表を参照して下さい。望ましい応答を得るため、適切なオリフィスが選択されているかテストで確認して下さい。

H1 ポンプの機械的オリフィスには制限があります。メカニカルサーボオリフィスは、電気系統不具合時、ニュートラルにフェイルセーフ復帰させる場合にのみ使用してください。

以下の条件での代表的な応答時間:

ΔP	250 bar [3626 psi]
枠度と温度	30 mm²/s [141 SUS] および 50 °C [122 °F]
チャージ圧力	20 bar [290 psi]
回転数	1800 min⁻¹（rpm）

応答時間、FDC

<table>
<thead>
<tr>
<th>ストローク方向</th>
<th>0.8 mm [0.03 in] オリフィス</th>
</tr>
</thead>
<tbody>
<tr>
<td>フル流量からニュートラル</td>
<td>2.6 s</td>
</tr>
<tr>
<td>フル順方向フローからフル逆方向フロー</td>
<td>3.7 s</td>
</tr>
</tbody>
</table>
コントロールオプション

マニュアルオーバーライド(MOR)

すべての電気コントロールは、診断を補助するためコントロールの一時的な作動用として、標準またはオプションのマニュアルオーバーライド(MOR)を利用できます。

3ポジション(FNR)コントロールとノンフィードバック電気比例(NFPE)コントロールは常にMOR機能が設置されています。

MOR操作はポンプをストロークに作動させますので注意ください。MOR機能を使用する際は、車輌または機器は必ず「安全」な状態（車輌が地面から持ち上げられているなど）になければなりません。MORブランジャーは4mmの直径で、手動で押してください。ブランジャーを押すことで、制御スプールが機械的に移動し、ポンプがストロークを開始することを可能にします。MORポンプのフルストローク応答を作動させます。

警告

ブランジャーのシールにはOリングが使われていて、ブランジャーの初期起動には45Nの力を要します。その後の作動は一般的には、MORブランジャーにかかる必要な力はより小さくなります。MORを作動によるポンプの比例制御は期待できません。

ソレノイドとフローの方向の関係については、コントロールフローの表を参照ください。
コントロールオプション

NFPE および AC-2 コントロール向け斜板角度センサ

角度センサは、ゼロ位置からの斜板角度位置と回転方向を検出します。斜板角度センサは AMR センシング技術（異方性磁気抵抗技術）で作動します。飽和磁場では、特定方向からの磁界的強さに応じて磁気抵抗値が変化します。出力信号は、検出範囲内のさまざまな磁石位置に対して線形出力電圧を与えます。斜板角度センサはすべての NFPE コントロールと AC2 コントロールで利用可能です。

斜板角度センサパラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>最小値</th>
<th>通常</th>
<th>最大値</th>
</tr>
</thead>
<tbody>
<tr>
<td>供給電圧範囲</td>
<td>4.75 V</td>
<td>5 V</td>
<td>5.25 V</td>
</tr>
<tr>
<td>電源保護</td>
<td>–</td>
<td>–</td>
<td>28 V</td>
</tr>
<tr>
<td>供給電流</td>
<td>22 mA</td>
<td>25 mA</td>
<td></td>
</tr>
<tr>
<td>出力電流（信号 1、2）</td>
<td>0.1 mA</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>供給または GND へのショート回路出力電流 1）</td>
<td>–</td>
<td>–</td>
<td>7.5 mA</td>
</tr>
<tr>
<td>感度</td>
<td>70.0 mV/deg</td>
<td>78.0 mV/deg</td>
<td>85.8 mV/deg</td>
</tr>
<tr>
<td>動作範囲（斜板角）</td>
<td>–18°C</td>
<td>0°C</td>
<td>18°C</td>
</tr>
<tr>
<td>信号 1 と 2 の間の相関 2）</td>
<td>475 mV</td>
<td>500 mV</td>
<td>525 mV</td>
</tr>
</tbody>
</table>

1）最大持続時間 2.5 秒、25°C
2）信号 1（通常）は信号 2（冗長）よりも低い
コントロールオプション

斜角板センサコネクタ

Pinの割り当て

1. アース接地（GND）
2. 出力信号2（SIG2）- セカンダリ（冗長）
3. 出力信号1（SIG1）- プライマリ（通常）
4. 供給電圧（V+）

斜板角センサコネクタ注文番号

<table>
<thead>
<tr>
<th>種類</th>
<th>数量</th>
<th>注文番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>相手側コネクタ DEUTSCH DTM06-4S-E004</td>
<td>(1)</td>
<td>11105824</td>
</tr>
<tr>
<td>ウェッジロック DEUTSCHW45</td>
<td>(1)</td>
<td>11105826</td>
</tr>
<tr>
<td>ソケット接触子（16〜18 AWG）DEUTSCH 0462-201-16141</td>
<td>(4)</td>
<td>10100942</td>
</tr>
<tr>
<td>コネクターキット</td>
<td>1</td>
<td>11104715</td>
</tr>
</tbody>
</table>

ECUとのインターフェイス

最小推奨負荷抵抗は100 kΩです。
コントロールオプション

コントロールカットオフ弁(CCO弁)

H1ポンプは、コンロールに内蔵されたオプションのコントロールカットオフ弁を提供します。この弁はコントロールへのチャージ圧力を受け取り、ポンプの一次制御入力に関係なくサーボバネにより両方のポンプのストロークを下げるためのサーボバネを可能にします。論理油圧ポートX7も利用でき、これによりブレーキ圧力解放のバネなどの他の機構を制御するためにも利用できます。X7の圧力は、カットオフソレノイドで制御します。X7ポートは必要ない場合、プラグされたままです。

ソレノイドの通常の(非励磁)状態は、チャージ流量がコントロールに到達することを防止しています。同時に、コントロール道路とX7論理ポートはポンプケースに接続され、排出されます。ポンプはコントロール入力信号とは関係なく、ニュートラルを維持するか、またはニュートラルに戻ります。ニュートラルに戻る時間はオイル粘度、ポンプ速度、斜板の角度、システム圧力に依存します。

ソレノイドを励磁すると、チャージ流量と圧力によりポンプ制御が可能になります。X7論理ポートもチャージ圧力に接続されます。

ソレノイド制御はコントロール圧力をカットすることにより一次ポンプ制御とは無関係に優先制御することを目的としています。しかしカットオフ弁が非励磁になるときは一次ポンプ制御をまた利用できないようにすることを推奨します。その他のコントロール論理条件も検討が必要になることがあります。

すべてのEDCとMDCコントロールはカットオフ弁を利用できます。カットオフ弁は12Vまたは24Vソレノイドが利用できます。

ユニットの応答時間はコントロールタイプと使用する制御オリフィスに依存します。

CCOの回路図(MDCを示す)

CCOコネクタ(EDCキーC付)

コネクタ注文データ

<table>
<thead>
<tr>
<th>説明</th>
<th>数量</th>
<th>注文番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>相手側コネクタ</td>
<td>1</td>
<td>DEUTSCH DT06-2SC</td>
</tr>
<tr>
<td>ウェッジロック</td>
<td>1</td>
<td>DEUTSCH W2SC</td>
</tr>
<tr>
<td>ソケット接触子(16および18AWG)</td>
<td>2</td>
<td>DEUTSCH 0462-201-16141</td>
</tr>
</tbody>
</table>

CCOソレノイドデータ

<table>
<thead>
<tr>
<th>公称供給電圧</th>
<th>12V</th>
<th>24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>供給電圧</td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大値</td>
<td>14.6V</td>
<td>29V</td>
</tr>
<tr>
<td>最小値</td>
<td>9.5V</td>
<td>19V</td>
</tr>
</tbody>
</table>

BC00000074ja-JP • Rev 0701 • May 2017
コントロールオプション

<table>
<thead>
<tr>
<th></th>
<th>12 V</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>公称供給電圧</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20℃での公称コイル抵抗</td>
<td>10.7Ω</td>
<td>41.7Ω</td>
</tr>
<tr>
<td>供給電流</td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大値</td>
<td>850 mA</td>
<td>430 mA</td>
</tr>
<tr>
<td>最小値</td>
<td>580 mA</td>
<td>300 mA</td>
</tr>
<tr>
<td>PWM 周波数</td>
<td></td>
<td></td>
</tr>
<tr>
<td>範囲</td>
<td>50-200 Hz</td>
<td>50-200 Hz</td>
</tr>
<tr>
<td>優先</td>
<td>100 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>電気保護等級</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP67 / IP69K (相手側コネクタとで)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>双方向ダイオード遮断電圧</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 V</td>
<td>53 V</td>
</tr>
</tbody>
</table>

MDC とのブレーキゲージポート

注意

CCO 機能の誤作動を避けるために、外部の消費流量にブレーキポートを使用することは推奨されません。
コントロールオプション

最大容量制御

H1 ポンプはオプションとして工場出荷時に最大容量を調整する機構を持っています。ポンプの最大容量は、正逆を個別に設定できるよう2つの調整ネジを使用して、機械的にサーボピストンの移動を制限することで、50%容量まで低下することができます。

動作時の調整は油漏れの原因となります。遠くへバックアウトする場合、調整ネジはネジ穴から完全に取り外すことができます。

(およその)容量変化 H1P060/068

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>サイズ 060</th>
<th>サイズ 068</th>
</tr>
</thead>
<tbody>
<tr>
<td>変位リミッターネジの1回転</td>
<td>5.9 cm³ [0.36 in³]</td>
<td>6.6 cm³ [0.40 in³]</td>
</tr>
<tr>
<td>内部レンチサイズ</td>
<td>4 mm</td>
<td></td>
</tr>
<tr>
<td>外部レンチサイズ</td>
<td>13 mm</td>
<td></td>
</tr>
<tr>
<td>外部六角シールロックナット用のトルク</td>
<td>23 N-m [204 lbf-in]</td>
<td></td>
</tr>
</tbody>
</table>

より詳細の情報については、H1 Axial Piston Pumps, Service Manual, AX00000087, the section 「Displacement Limiter Adjustment」の項を参照ください。
寸法

入力軸 - オプション G1（SAE C、14 歯）

オプション G1、ISO 3019-1、外径 32 mm-4（SAE C、14 歯） 060/068

<table>
<thead>
<tr>
<th>スプライン</th>
<th>G1</th>
</tr>
</thead>
<tbody>
<tr>
<td>数目</td>
<td>14 歯、12/24 ピッチ</td>
</tr>
<tr>
<td>最小アクティブスプライン長</td>
<td>31.45 mm [1.238 in]</td>
</tr>
<tr>
<td>トルク定格</td>
<td>定格</td>
</tr>
<tr>
<td></td>
<td>534 N•m [4720 lbf•in]</td>
</tr>
<tr>
<td></td>
<td>最大</td>
</tr>
<tr>
<td></td>
<td>592 N•m [5240 lbf•in]</td>
</tr>
</tbody>
</table>

1) 規定トルク定格の最小アクティブスプライン長。
2) 最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、基本情報 11062168 を参照ください。

入力軸 - オプション F1（SAE C、21 歯） 045/053

オプション F1、ISO 3019-1、外径 35 mm-4（SAE C、21 歯）
寸法

<table>
<thead>
<tr>
<th>オプション</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>スプライン</td>
<td>21 個、16/32 ピッチ</td>
</tr>
<tr>
<td>最小アクティブスプライン長 1)</td>
<td>34.5 mm [1.358 in]</td>
</tr>
<tr>
<td>トルク定格 2)</td>
<td>定格: 760 N•m [6730 lbf•in]</td>
</tr>
<tr>
<td></td>
<td>最大: 1137 N•m [10 060 lbf•in]</td>
</tr>
</tbody>
</table>

1) 規定トルク定格の最小アクティブスプライン長。
2) 最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、基本情報11062168を参照ください。
寸法

H1P 補助取付、オプション H2（SAE A、9 齒）

オプション H2、ISO 3019-1、フランジ 82-2（SAE A、9 齒）

<table>
<thead>
<tr>
<th>仕様</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>スプライン</td>
<td>9 齒、16/32 ピッチ</td>
</tr>
<tr>
<td>最大トルク 1)</td>
<td>162 N・m [1430 lbf・in]</td>
</tr>
</tbody>
</table>

1) 最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、Basic Information 11062168 を参照ください。

注意

標準パッドカバーは、輸送時における結合部分の固定のみを目的に取付けられています。補助ポンプまたはランニングカバーが取付けられていない状態でポンプを操作しないで下さい。
寸法

H1P 補助取付、オプション H1 （SAE A、11 歯）

オプション H1、ISO 3019-1、フランジ82-2（SAE A、11 歯）

仕様

<table>
<thead>
<tr>
<th>オプション</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>スプライン</td>
<td>11 歯、16/32 ピッチ</td>
</tr>
<tr>
<td>最大トルク 1)</td>
<td>296 N·m [2620 lbf·in]</td>
</tr>
</tbody>
</table>

1) 最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、Basic Information 11062168 を参照ください。

注意

標準パッドカバーは、輸送時における結合部分の固定のみを目的に取付けられています。補助ポンプまたはランニングカバーが取付けられていない状態でポンプを操作しないで下さい。
寸法

H1P 補助取付、オプション H3（SAE B、13 歯）

オプション H3、ISO 3019-1、フランジ 101-2（SAE B、13 歯）

仕様

<table>
<thead>
<tr>
<th>オプション</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>スプライン</td>
<td>13 歯、16/32 ピッチ</td>
</tr>
<tr>
<td>最大トルク</td>
<td>395 N-m [3500 lbf•in]</td>
</tr>
</tbody>
</table>

1) 最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、Basic Information 11062168 を参照ください。

注意

標準パッドカバーは、輸送時における結合部分の固定のみを目的に取付けられています。補助ポンプまたはランニングカバーが取付けられていない状態でポンプを操作しないで下さい。
寸法

H1P 補助取付、オプション H5（SAE B-B、15 歯）

オプション H5、ISO 3019-1、フランジ101-2（SAE B-B、15 歯）

仕様

<table>
<thead>
<tr>
<th>オプション</th>
<th>H5</th>
</tr>
</thead>
<tbody>
<tr>
<td>スプライン 1)</td>
<td>15 歯、16/32 ピッチ</td>
</tr>
<tr>
<td>最大トルク 1)</td>
<td>693 N-m [6130 lbf-in]</td>
</tr>
</tbody>
</table>

1) 最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、Basic Information 11062168 を参照ください。

注意

標準パッドカバーは、輸送時における結合部分の固定のみを目的に取付けられています。補助ポンプまたはランニングカバーが取付けられていない状態でポンプを操作しないで下さい。
寸法

H1P 補助取付、オプション H6（SAE C、14 歯）

オプション H6、ISO 3019-1、フランジ 127-4（SAE C、14 歯）

仕様

オプション | H6
スプライン | 14 歯、12/24 ピッチ
最大トルク | 816 N-m [7220 lbf-in]

1）最大と定格トルク値の定義については、軸トルク定格とスプライン潤滑の章、Basic Information 11062168 を参照ください。

注意

標準バッドカバーは、輸送時における結合部分の固定のみを目的に取付けられています。補助ポンプまたはランニングカバーが取付けられていない状態でポンプを操作しないで下さい。

H1P 060/068 最大容量調整、オプション B

詳細な外形図については、弊社にお問い合わせ下さい。
ポート説明

H1P 060/068

ポート説明

ポート ISO 11926-1 - 1 1/16-12

ポートL4: ケースドレインポート

ポート ISO 11926-1 - 7/16-20

ポートM4: サーボゲージポート

システムポート "B"

Port ISO 11926-1 - 1 5/16-12

システムポート "A"

Port ISO 11926-1 - 9/16-18

システムAゲージポート "MA"

ポート S: 充填入口ポート

システム "B" のスプリットフランジボス
Per ISO 6162
M12x1.75
20 min full THD depth

システム "A" のスプリットフランジボス
Per ISO 6162
M12x1.75
20 min full THD depth

コントロールソレノイドコネクター "C1" & "C2"

OR アサインメント

<table>
<thead>
<tr>
<th>電流</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY</td>
<td>OR</td>
</tr>
<tr>
<td>GROUND</td>
<td>SUPPLY</td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。
Charge gauge port "M3"
Port ISO 11926-1 - 9/16-18

System B gauge port "MB"
Port ISO 11926-1 - 9/16-18

Charge filtration port "F"
Port ISO 11926-1 - 7/8-14
to filter

Charge filtration port "E"
Port ISO 11926-1 - 7/8-14
from filter

Case gauge port "M14"
Port ISO 11926-1 - 7/16-20
Except spot face depth: 5 max
∅21.5 max clearance dia for fitting
(EDC, FNR, NFPE)

Servo gauge port "M5"
Port ISO 11926-1 - 7/16-20

Control splined connector "C1"
deutsch DT04-2P
to be paint free

Case drain port "L2"
Port ISO 11926-1 - 1 1/16-12

詳細な外形図については、弊社にお問い合わせ下さい。
Case drain port "L2"
Port ISO 11926-1 - 1 1/16-12
Control solenoid connector "C1"
Deutsch DT04-2P to be paint free
see view W for pin out.

Approximate center of gravity

Servo gauge port "M5"
Port ISO 11926-1 - 7/16-20
∅29 max clearance dia for fitting

Charge gauge port "M3"
Port ISO 11926-1 - 9/16-18
∅21 max clearance dia for fitting

Shaft 206 ±2.5

Charge filtration port "F"
Port ISO 11926-1 - 7/8-14
to filter

Charge filtration port "E"
Port ISO 11926-1 - 7/8-14
from filter

詳細な外形図については、弊社にお問い合わせ下さい。
詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

電気容量コントロール(EDC)、オプション：A2（12 V）/ A3（24 V）

詳細な外形図については、弊社にお問い合わせ下さい。

テクニカルインフォメーション H1 アキシャルピストンシングルポンプ、サイズ060/068

電気容量コントロール(EDC)、MOR 付き A4（12 V）/ A5（24 V）

詳細な外形図については、弊社にお問い合わせ下さい。
H1P 060/068 マニュアル容量コントロール(MDC)、オプション M1

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

H1P 060/068 マニュアル容量コントロール(MDC)、NSS 付き、オプション M2

ニュートラルスタートスイッチコネクタ：

<table>
<thead>
<tr>
<th>ピン</th>
<th>割り当て</th>
<th>ピン</th>
<th>割り当て</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>供給電圧</td>
<td>OR 1</td>
<td>接地</td>
</tr>
<tr>
<td>2</td>
<td>接地</td>
<td>2</td>
<td>供給電圧</td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

H1P 060/068 マニュアル容量コントロール(MDC)、CCO 付き、オプション M3、M4

<table>
<thead>
<tr>
<th>ピン</th>
<th>割り当て</th>
<th></th>
<th>ピン</th>
<th>割り当て</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>供給電圧</td>
<td>OR</td>
<td>1</td>
<td>接地</td>
</tr>
<tr>
<td>2</td>
<td>接地</td>
<td></td>
<td>2</td>
<td>供給電圧</td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

H1P 060/068 マニュアル容量コントロール(MDC)、NSS と CCO 付き、オプション M5、M6

NSS コネクタ/CCO コネクタ C4:

<table>
<thead>
<tr>
<th>ピン</th>
<th>割り当て</th>
<th>ビン</th>
<th>割り当て</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>供給電圧</td>
<td>OR</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>接地</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

3 ポジション電気コントロール(FNR)、オプション： A9 (12 V) / B1 (24 V)

Control manual override "C1"
Depressing the plunger mechanically moves the control spool. Actuation allows full stroke pump response as per coil and rotation dependent control logic

Control manual override "C2"
Depressing the plunger mechanically moves the control spool. Actuation allows full stroke pump response as per coil and rotation dependent control logic

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

ノンフィードバック電気比例コントロール(NFPE)、MOR 付き、オプション A8 (12 V)/B8 (24 V)

Control manual override “C1”
Depressing the plunger mechanically moves the control spool. Actuation allows full stroke pump response as per coil and rotation dependent control logic.

Control manual override “C2”
Depressing the plunger mechanically moves the control spool. Actuation allows full stroke pump response as per coil and rotation dependent control logic.

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

オートモーティブコントロール（AC）寸法AC I – オプション A7 (12V) / C2 (24V), AC II – オプション B7 (12V) / C3 (24V)

<table>
<thead>
<tr>
<th>指定</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>208.9 ± 2.5</td>
</tr>
<tr>
<td>AB</td>
<td>190.5 ± 1.2</td>
</tr>
<tr>
<td>AC</td>
<td>2x 187.1 ± 1.2</td>
</tr>
<tr>
<td>AD</td>
<td>89.2 ± 1.2</td>
</tr>
</tbody>
</table>

コネクタの説明

<table>
<thead>
<tr>
<th>ポート</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1，C2</td>
<td>制御 MOR; プランジャーを機械的に押し下げると、コントロールスプールが移動します。作動すると、制御論理によるコイルと回転によりフルストロークのポンプ反応が生じます。</td>
</tr>
<tr>
<td>CC1</td>
<td>制御コネクタ Deutsch DTM04-12P-A; 塗料なし</td>
</tr>
<tr>
<td>CC2</td>
<td>制御コネクタ Deutsch DTM04-12P-B; 塗料なし</td>
</tr>
<tr>
<td>CCC3</td>
<td>制御コネクタ Deutsch® DT 06-25; 塗料なし コネクタを使用するためにプラグを外すこともできます。</td>
</tr>
<tr>
<td>CAN</td>
<td>制御コネクタ Deutsch DTM04-3P; 塗料なし コネクタを使用するためにプラグを外すこともできます。</td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。
コントロール

ファンドライブコントロール (FDC)、オプション F1 (12 V) / F2 (24 V)

ソレノイドコネクタ C1:

<table>
<thead>
<tr>
<th>ピン</th>
<th>割り当て</th>
<th>代替手段</th>
<th>ピン</th>
<th>割り当て</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>供給電圧</td>
<td>または</td>
<td>1</td>
<td>接地</td>
</tr>
<tr>
<td>2</td>
<td>接地</td>
<td></td>
<td>2</td>
<td>供給電圧</td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。

This control is for Fan Drive systems only! Use in other systems could result in unintended movement of the machine or its elements. Loss of the input signal to this control will cause the pump to produce maximum flow. Contact Danfoss or an authorized distributor with questions regarding the use of this product.
フィルトレーション

H1P 060/068 サクションフィルトレーション、オプション L

詳細な外形図については、弊社にお問い合わせ下さい。
フィルトレーション
リモートフルチャージ流量フィルトレーション P、エンドキャップオプション F (SAE-C pad)

詳細な外形図については、弊社にお問い合わせ下さい。
フィルタ付フルチャージ流量フィルトレーション M、フィルターバイパスセンサ付き、オプション D3, F4

エンドキャップオプション

詳細な外形図については、弊社にお問い合わせ下さい。
フィルトレーション

エンドキャップオプション E4 用 (SAE-C PTO)

<table>
<thead>
<tr>
<th>ユニット</th>
<th>記号</th>
<th>記号</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

詳細な外形図については、弊社にお問い合わせ下さい。
フィルトレーション
外部フルチャージ流量フィルトレーション E、エンドキャップオプション D8, F5

エンドキャップオプション D8

詳細な外形図については、弊社にお問い合わせ下さい。
フィルトレーション

エンドキャップオプションF5

詳細な外形図については、弊社にお問い合わせ下さい。
ダイキン・ザウアーダンフォスは、世界各地に製造拠点と販売拠点を展開し、世界の車輌市場にシステムソリューションを提供する総合油圧機器メーカーのダンフォスグループとともに、車両用油圧システムの専門メーカーとして皆様のベストパートナーを目指しています。

閉回路用ポンプ・モータ、開回路用ポンプ、オービタルモータ、バルブ、ステアリングコンポーネント、電子油圧制御機器など、豊富で広範囲にわたる製品群とシステムを取り揃え、農業・建設・物流・芝刈道路・建設・林業・オフハイウェイ環境での特殊車両など、様々な分野で幅広く使用されています。

また豊富な販売代理店網および認定サービスセンターのネットワークを通じて、グローバルなサービスを提供できる国際企業として高い評価をいただいています。

ダイキン・ザウアーダンフォス株式会社

主な取扱い製品：
- 斜軸モータ
- 開回路アキシャルピストンポンプとモータ
- ディスプレイ
- 電子油圧ステアリング
- 電子油圧
- 油圧ステアリング
- 統合システム
- ジョイスティックとフットペダル
- マイクロコントローラとソフトウェア
- 開回路アキシャルピストンポンプ
- オービタルモータ
- PLUS+1® GUIDE
- 比例弁
- センサ
- ステアリング
- トラックミキサー用駆動装置