

Ficha técnica

Regulador bypass de gás quente Tipo KVC

KVC é uma válvula reguladora bypass de gás quente aplicada para a adaptação da capacidade do compressor à carga real do evaporador. Colocada em um bypass entre os lados de alta e baixa pressão do sistema de refrigeração, a KVC impõe um limite inferior na pressão de sucção do compressor, abastecendo o lado de baixa pressão com a capacidade de substituição na forma de gás quente / frio do lado de alta pressão.

Características

- Regulagem de pressão ajustável, precisa
- Ampla capacidade e faixa de operação
- Projeto de amortecimento de pulsação
- Fole de aço inoxidável

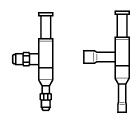
- Design de ângulo compacto para fácil instalação
- Construção brasada "hermética"
- Disponível com rosca e conexões de solda ODF
- Pode ser usado no seguinte intervalo EX: Categoria 3 (Zona 2)

Ficha técnica | Regulador bypass de gás quente, tipo KVC

Aprovações

Listada pela UL, arquivo SA7200

EAC


Dados técnicos

Refrigerantes	R22, R1270, R134a, R290, R404A, R407A, R407C, R407F, R448A, R449A, R450A, R452A, R507A, R513A, R600, R600a						
Faire de manulanam	0,2 – 6,0 bar						
Faixa de regulagem	Ajuste de fábrica = 2 bar						
Pressão máxima de trabalho	PS / MWP = 28 bar						
Pressão máxima de teste	Pe = 31 bar						
Faixa de temperatura do meio	-45 − 130 °C						
Banda P máxima	2,0 bar						
	$KVC 12 = 0.68 \text{m}^3 / \text{h}$						
k _ν valor em banda P máxima ¹)	$KVC 15 = 1.25 \text{ m}^3 / \text{ h}$						
	$KVC 20 = 1.85 \text{m}^3 / \text{h}$						

⁾ O valor k_v é o fluxo de água em [m³/h] em uma queda de pressão na válvula de 1 bar, ρ = 1000 kg/m³

Este produto é Avaliado para o R290, R600, R600a, R1270 pela fonte de ignição de avaliação em conformidade com a norma EN13463-1. Para ver a lista completa de refrigerantes aprovados, visite www.products.danfoss.com e de procure os códigos individuais, onde os refrigerantes são listados como parte dos dados técnicos.

Pedido

Modelo	С	e nominal W]	1)	Conexões de rosca 2)		Cádina	Conexão de solda		رزیانی <u>.</u>	
	R134a	R404A/ R507	R407C	[pol.]	[mm]	Código	[pol.]	[mm]	Código	
KVC 12	7,6	4,8	6,9	8,4	1/2	12	034L0141	1/2	-	034L0143
KVC 12	7,6	4,8	6,9	8,4	-	-	-	-	12	034L0146
KVC 15	14,9	9,4	13,6	16,4	5/8	16	034L0142	5/8	16	034L0147
KVC 22	19,1	12,0	17,4	21,0	-	-	-	7/8	22	034L0144

- 1) A capacidade nominal é a capacidade do regulador na:
- temperatura de evaporação t_e = -10 °C,
- temperatura de condensação t_c = 25 °C,
- offset = 0,7 bar
- ²) KVP é fornecido sem porca rosqueada. Porcas rosqueadas separadas podem ser pedidas:
- 1/2 in, / 12 mm, código, 011L1103,
- 5/8 in, / 16 mm, código, 011L1167.

As dimensões de conexão escolhidas não devem ser muito pequenas, pois velocidades do gás acima de 40 m/s na entrada do regulador podem produzir ruído de fluxo.

Se a temperatura do tubo de descarga torna-se muito elevada em relação à especificação do compressor, é recomendada a instalação de uma válvula de injeção em um bypass entre a linha de líquido e uma linha de sucção do compressor.

Requisitos da REACH

Todos os produtos da Danfoss cumprem os requisitos da norma REACH.

Uma das obrigações exigidas pela norma REACH é que os clientes sejam informados sobre a presença de substâncias químicas, presentes na lista da norma REACH, nos produtos. Sendo assim, confirmamos a presença de uma dessas substâncias:

Um anel O-ring utilizado neste produto contém Diisopentyl phthalate(NÚMERO CAS:) 605-50-5) numa concentração acima de 0,1 % w/w.

Capacidade

R22

Modelo	Offset ∆p	Q 1) [kW] 1	temperatura o	do gás de suc	ção t₅ após a re	edução de pre	essão / tempei	ratura [°C]
Modelo	[bar]	-45	-40	-30	-20	-10	0	10
	0,10	-	2,3	2,4	2,5	2,5	2,6	2,6
	0,15	-	3,5	3,6	3,7	3,8	3,9	4,0
	0,20	-	4,5	4,7	4,8	4,9	5,0	5,1
KVC 12	0,30	-	5,9	6,1	6,3	6,4	6,5	6,7
KVC 12	0,50	-	6,6	6,8	7,1	7,2	7,3	7,5
	0,70	-	7,0	7,2	7,4	7,6	7,8	7,9
	1,00	-	7,6	7,9	8,1	8,3	8,5	8,6
	1,20	-	8,2	8,5	8,7	8,9	9,1	9,3
	0,10	-	3,5	3,6	3,7	3,8	3,9	4,0
	0,15	-	4,5	4,7	4,8	4,9	5,0	5,1
	0,20	-	5,9	6,1	6,3	6,4	6,5	6,7
KVC 15	0,30	-	8,2	8,5	8,7	8,9	9,1	9,3
KVC 13	0,50	-	11,7	12,1	12,4	12,7	13,0	13,2
	0,70	-	13,7	14,2	14,6	14,9	15,2	15,5
	1,00	-	15,6	16,2	16,7	17,0	17,3	17,7
	1,20	-	16,8	17,4	17,9	18,3	18,7	19,0
	0,10	-	3,7	3,8	3,9	4,0	4,1	4,2
	0,15	-	5,1	5,2	5,4	5,5	5,6	5,7
	0,20	-	6,8	7,0	7,3	7,4	7,5	7,7
KVC 22	0,30	-	8,4	8,6	8,9	9,1	9,3	9,5
KVC ZZ	0,50	-	14,1	14,5	15,0	15,3	15,6	15,9
	0,70	-	17,6	18,1	18,7	19,1	19,5	19,9
	1,00	-	21,4	22,4	23,1	23,6	24,1	24,5
	1,20	-	23,8	24,6	25,4	25,9	26,4	26,9

¹⁾ As capacidades são baseadas na:

Fatores de correção

Ao selecionar, a capacidade exigida deve ser multiplicada por um fator de correção dependente da temperatura de condensação.

Capacidade do sistema x fator de correção = tabela de capacidade

A capacidade corrigida pode então ser encontrada a partir da tabela. Os fatores de correção para a temperatura de condensação podem ser encontrados na seção "seleção".

⁻ temperatura de condensação t_l = 25 °C.

Capacidade (continuação)

R134a

Modelo	Offset ∆p	Q 1) [kW] 1	temperatura d	do gás de sucç	ão t₅ após a re	edução de pre	ssão / tempei	atura [°C]
Modelo	[bar]	-45	-40	-30	-20	-10	0	10
	0,10	-	-	1,4	1,4	1,5	1,7	1,7
	0,15	-	-	2,1	2,3	2,4	2,5	2,6
	0,20	-	-	2,9	3,0	3,1	3,2	3,4
KVC 12	0,30	-	-	3,7	3,9	4,1	4,3	4,5
KVC 12	0,50	-	-	4,2	4,3	4,5	4,8	4,9
	0,70	-	-	4,4	4,5	4,8	5,0	5,2
	1,00	-	-	4,8	5,0	5,2	5,5	5,8
	1,20	-	-	5,1	5,4	5,6	5,8	6,1
	0,10	-	-	2,1	2,3	2,4	2,5	2,6
	0,15	-	-	2,9	3,0	3,1	3,2	3,4
	0,20	-	-	3,7	3,9	4,1	4,3	4,5
KVC 15	0,30	-	-	5,1	5,4	5,6	5,8	6,1
KVC 15	0,50	-	-	7,4	7,7	8,0	8,4	8,7
	0,70	-	-	8,7	9,1	9,4	9,9	10,2
	1,00	-	-	9,9	10,2	10,7	11,3	11,7
	1,20	-	-	10,6	11,1	11,6	12,2	12,6
	0,10	-	-	2,3	2,4	2,5	2,6	2,8
	0,15	-	-	3,2	3,3	3,5	3,6	3,7
	0,20	-	-	4,3	4,4	4,6	4,9	5,1
KVC 22	0,30	-	-	5,2	5,5	5,7	6,0	6,3
RVC 22	0,50	-	-	8,9	9,3	9,7	10,1	10,5
	0,70	-	-	11,0	11,6	12,0	12,6	13,1
	1,00	-	-	13,7	14,3	14,9	15,6	16,3
	1,20	-	-	15,0	15,7	16,3	17,2	17,8

¹⁾ As capacidades são baseadas na:

Fatores de correção

Ao selecionar, a capacidade exigida deve ser multiplicada por um fator de correção dependente da temperatura de condensação.

Capacidade do sistema x fator de correção = tabela de capacidade

A capacidade corrigida pode então ser encontrada a partir da tabela. Os fatores de correção para a temperatura de condensação podem ser encontrados na seção "seleção".

⁻ temperatura de condensação t_l = 25 °C.

Capacidade (continuação)

R404A/R507

Modelo	Offset ∆p	Q 1) [kW]	temperatura d	do gás de sucç	ão t₅ após a re	edução de pre	ssão / tempe	ratura [°C]
Modelo	[bar]	-45	-40	-30	-20	-10	0	10
	0,10	-	1,9	2,0	2,1	2,2	2,3	2,4
	0,15	-	3,0	3,1	3,3	3,4	3,5	3,6
	0,20	-	3,9	4,1	4,2	4,5	4,7	4,7
KVC 12	0,30	-	5,1	5,4	5,6	5,8	6,0	6,1
KVC 12	0,50	-	5,7	6,0	6,4	6,6	6,8	7,0
	0,70	-	6,0	6,4	6,6	6,9	7,2	7,3
	1,00	-	6,6	6,9	7,2	7,5	7,8	8,0
	1,20	-	7,0	7,4	7,7	8,0	8,4	8,5
	0,10	-	3,0	3,1	3,3	3,4	3,5	3,6
	0,15	-	3,9	4,1	4,2	4,5	4,7	4,7
	0,20	-	5,1	5,4	5,6	5,8	6,0	6,1
KVC 15	0,30	-	7,0	7,4	7,7	8,0	8,4	8,5
KVC 15	0,50	-	10,1	10,6	11,1	11,6	12,0	12,3
	0,70	-	11,8	12,5	13,0	13,6	14,1	14,4
	1,00	-	13,5	14,2	14,8	15,5	16,1	16,4
	1,20	-	14,5	15,3	16,0	16,6	17,3	17,7
	0,10	-	3,2	3,3	3,5	3,6	3,7	3,8
	0,15	-	4,3	4,6	4,8	5,0	5,2	5,3
	0,20	-	5,8	6,1	6,4	6,7	7,0	7,1
KVC 22	0,30	-	8,2	8,6	8,9	9,3	9,8	9,9
NVC 22	0,50	-	12,1	12,8	13,4	13,9	14,4	14,7
	0,70	-	15,2	16,0	16,6	17,4	18,1	18,4
	1,00	-	18,8	19,8	20,7	21,5	22,4	22,8
	1,20	-	20,5	21,6	22,6	23,5	24,5	25,0

¹⁾ As capacidades são baseadas na:

Fatores de correção

Ao selecionar, a capacidade exigida deve ser multiplicada por um fator de correção dependente da temperatura de condensação.

Capacidade do sistema x fator de correção = tabela de capacidade

A capacidade corrigida pode então ser encontrada a partir da tabela. Os fatores de correção para a temperatura de condensação podem ser encontrados na seção "seleção".

⁻ temperatura de condensação t_l = 25 °C.

Capacidade (continuação)

R407C

Modelo	Offset ∆p	Q 1) [kW] 1	temperatura o	do gás de sucç	ão t₅ após a re	edução de pre	essão / tempei	atura [°C]
Modelo	[bar]	-45	-40	-30	-20	-10	0	10
	0,10	-	2,4	2,6	2,7	2,8	2,9	3,0
	0,15	-	3,7	3,9	4,0	4,2	4,3	4,6
	0,20	-	4,8	5,0	5,2	5,4	5,6	5,8
KVC 12	0,30	-	6,3	6,5	6,9	7,0	7,2	7,6
KVC 12	0,50	-	7,0	7,3	7,7	7,9	8,1	8,6
	0,70	-	7,4	7,7	8,1	8,4	8,7	9,0
	1,00	-	8,1	8,5	8,8	9,1	9,4	9,8
	1,20	1	8,7	9,1	9,5	9,8	10,1	10,6
	0,10	-	3,7	3,9	4,0	4,2	4,3	4,6
	0,15	-	4,8	5,0	5,2	5,4	5,6	5,8
	0,20	ı	6,3	6,5	6,9	7,0	7,2	7,6
KVC 15	0,30	-	8,7	9,1	9,5	9,8	10,1	10,6
KVC 13	0,50	-	12,4	12,9	13,5	14,0	14,4	15,0
	0,70	-	14,5	15,2	15,9	16,4	16,9	17,7
	1,00	-	16,5	17,3	18,2	18,7	19,2	20,2
	1,20	-	17,8	18,6	19,5	20,1	20,8	21,7
	0,10	-	3,9	4,1	4,3	4,4	4,6	4,8
	0,15	-	5,4	5,6	5,9	6,1	6,2	6,5
	0,20	-	7,2	7,5	8,0	8,1	8,3	8,8
KVC 22	0,30	-	8,9	9,2	9,7	10,0	10,3	10,8
RVC 22	0,50	-	14,9	15,5	16,4	16,8	17,3	18,1
	0,70	-	18,7	19,4	20,4	21,0	21,6	22,7
	1,00	-	22,7	24,0	25,2	26,0	26,8	27,9
	1,20	-	25,2	26,3	27,7	28,5	29,3	30,7

Fatores de correção

Ao selecionar, a capacidade exigida deve ser multiplicada por um fator de correção dependente da temperatura de condensação.

Capacidade do sistema x fator de correção = tabela de capacidade

A capacidade corrigida pode então ser encontrada a partir da tabela. Os fatores de correção para a temperatura de condensação podem ser encontrados na seção "seleção".

¹) As capacidades são baseadas na:
temperatura de condensação t_i = 25 °C.

Dimensionamento

Para um desempenho ideal, é importante selecionar uma válvula KVC de acordo com as aplicações e condições do sistema.

Os seguintes dados devem ser usados no dimensionamento de uma válvula KVC:

- Refrigerante: HCFC, HFC e HC
- Temperatura de condensação: t₅ in [°C] / [bar]
- Carga do compressor em [kW]
- · Carga do evaporador em [kW]
- Temperatura de condensação: t₁ in [°C]
- · Tipo de conexão: rosca ou solda
- Tamanho da conexão em [pol.]

Seleção de válvula

Exemplo

Ao selecionar a válvula adequada, pode ser necessário converter a capacidade real do evaporador usando um fator de correção. Isso é necessário quando as condições do seu sistema são diferentes das condições da tabela. A seleção é também dependente da queda de pressão aceitável ao longo da válvula.

O exemplo a seguir ilustra como isso é feito:

- · Refrigerante: R134a
- Temperatura mínima de sucção: t_s = -12 °C ~ 0,9 bar
- Capacidade de compressor a -12 °C = 15,4 kW
- Carga do evaporador a -12 °C = 10 kW
- Temperatura de condensação: t_i = 35 °C
- Tipo de conexão: solda
- Tamanho da conexão: 5/8 pol.

Passo 1

Determine o fator de correção para a temperatura de condensação t_i.

A partir da tabela de fatores de correção (ver abaixo), uma temperatura de condensação de 35 °C, R134a corresponde a um fator de 1,10.

Fatores de correção para temperatura de condensação t_I

t ₁ [°C]	10	15	20	25	30	35	40	45	50
R134a	0,88	0,92	0,96	1,0	1,05	1,10	1,16	1,23	1,31
R22	0,90	0,93	0,96	1,0	1,05	1,10	1,13	1,18	1,24
R404A/R507	0,84	0,89	0,94	1,0	1,07	1,16	1,26	1,40	1,57
R407C	0,88	0,91	0,95	1,0	1,05	1,11	1,18	1,26	1,35

Passo 2

A capacidade de substituição necessária é definida como (capacidade do compressor - a carga de evaporação) dividido pelo fator de correção = (15.4-10.0) / 1.10 = 4,9 kW

Passo 3

Agora, selecione a tabela de capacidade adequada e escolha a coluna para temperatura mínima de sucção $t_s = -20\,^{\circ}\text{C}$. Usando a capacidade de substituição corrigida, selecione uma válvula que proporciona uma capacidade equivalente ou maior do que o necessário.

KVC 15 fornece 5,4 kW em um offset de 0,3 bar. Baseada no tamanho da conexão exigida de ⁵/₈ pol.

ODF, a KVP 15 é a seleção apropriada para esse exemplo.

Passo 4

Conexão de solda KVC 15, ⁵/₈ pol.: **código 034L0147**, ver Informações para Pedidos.

Design / Função

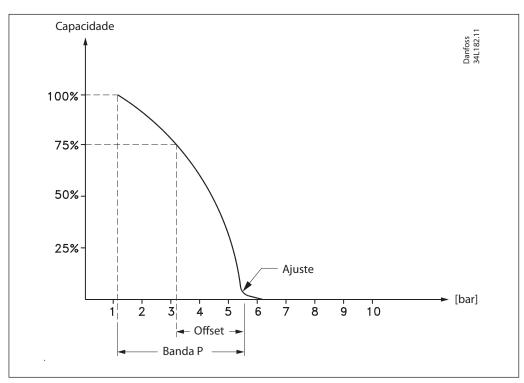
1 2 3 4 A MANAGANO 5 6 9 9 7

KVC

A KVC regula somente na dependência da pressão de saída. As variações de pressão no lado de entrada do regulador não afetam o grau de abertura visto que a KVC está equipada com foles de equalização (6).

A válvula reguladora de capacidade KVC abre-se na queda da pressão no lado de saída, por

exemplo, quando a pressão no evaporador


estiver abaixo do valor definido.

O regulador também é equipado com um dispositivo de amortecimento eficaz (9) contra as pulsações que podem ocorrer normalmente em um sistema de refrigeração.

O dispositivo amortecedor ajuda a garantir uma vida útil longa para o regulador sem prejudicar a precisão da regulação.

- 1. Tampa de proteção
- 2. Gaxeta
- 3. Parafuso de ajuste
- 4. Mola principal
- 5. Corpo da válvula
- 6. Fole de equalização
- 7. Placa de vedação da válvula
- 8. Assento da válvula
- 9. Dispositivo amortecedor

Banda P e Offset

Banda proporcional

A banda proporcional ou banda P é definida como a quantidade de pressão exigida para mover a placa de vedação da válvula a partir de uma posição fechada para uma totalmente aberta.

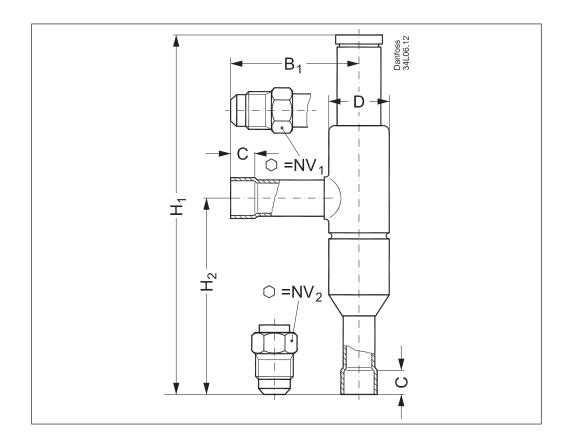
Exemplo:

Se a válvula está configurada para abrir a 4 bar e banda proporcional é 2, a válvula irá fornecer a capacidade máxima quando a pressão de descarga atingir 2 bar.

Offset

O offset é definido como a variação da pressão admissível na pressão da linha de sucção (temperatura). É calculada como a diferença entre a pressão de trabalho exigida e a pressão mínima permitida.

O offset é sempre uma parte da banda P.


Exemplo com R404A:

Uma temperatura de sucção à frente do compressor de $5\,^{\circ}$ C \sim 6 bar é exigida, e a temperatura não deve descer abaixo de $0\,^{\circ}$ C \sim 5 bar.

O offset será então de 1 bar.

Dimensões e pesos

		Con	NV ₁	NV ₂	ш		D	С	øD	Peso		
Modelo	Rosca		Solda ODF		INV ₁	14 7	H ₁	H ₂	B ₁	solda	90	líquido
	[pol.]	[mm]	[pol.]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Kg]
KVC 12	1/2	12	1/2	12	19	24	179	99	64	10	30	0,4
KVC 15	5/8	16	5/8	16	24	24	179	99	64	12	30	0,4
KVC 22	-	-	5/8	22	_	-	179	99	64	17	30	0,4

A Danfoss não aceita qualquer responsabilidade por possíveis erros constantes de catálogos, brochuras ou outros materiais impressos. A Danfoss reserva para si o direito de alterar os seus produtos sem aviso prévio. Esta determinação aplica-se também a produtos já encomendados, desde que tais alterações não impliquem mudanças às especificações acordadas. Todas as marcas registradas constantes deste material são propriedade das respectivas empresas. Danfoss e o logotipo Danfoss são marcas registradas da Danfoss A/S. Todos os direitos reservados.