Inhaltsverzeichnis

1. Allgemeine Informationen
 1.1. Copyright ... 4
 1.2. Verwendungszweck des Handbuchs 4
 1.3. Namenskonvention des Produkts 4
 1.4. Einhaltung geltender Normen 6
 1.5. Garantie ... 6
 1.6. Begriffe und Abkürzungen 7
 1.7. Marken ... 7
 1.8. Verantwortung des Herstellers 8

2. Sicherheitshinweise
 2.1. Allgemeine Sicherheitserklärung 9
 2.2. Signalwörter bei Sicherheitshinweisen 9
 2.3. Sicherheitssymbole .. 9
 2.4. Persönliche Schutzausrüstung 10
 2.5. Sicherheitsfunktionen .. 10
 2.6. Elektromagnetische Verträglichkeit (EMV) 11

3. Produktübersicht
 3.1. Bestimmungsgemäße Verwendung der elektrischen Maschine .. 13
 3.2. Verwendete Technologie .. 15
 3.3. Einführung in das System 16
 3.4. Anschlüsse und Schnittstellen 17
 3.5. Typenschild ... 19
 3.6. Anzugsmomente ... 20

4. Gestaltungsleitsätze
 4.1. Systemauslegung .. 21
 4.1.1. Kühlung und Temperaturmessung 21
 4.1.2. Wechselrichter .. 21
 4.2. Montageaufbau .. 23
 4.2.1. Anforderungen an die Tragkonstruktion 23
 4.2.2. Wellenausrichtung und -last 24
 4.3. Topic (De) .. 25

5. Transport und Lagerung
 5.1. Transport ... 26
 5.2. Erhalt und Auspacken .. 26
 5.3. Heben ... 26
 5.4. Lagerung ... 28
 5.4.1. Verlängerte Lagerung 28

6. Installation
 6.1. Erforderliche Werkzeuge .. 29
 6.2. Prüfung des Isolationswiderstands 30
 6.3. Mechanische Installation 30
 6.3.1. Zulässige Montagepositionen 30
 6.3.2. Montage der elektrischen Maschine 31
 6.3.3. Topic (De) ... 33
 6.3.4. Kühlmittelanschlüsse 33
 6.4. Elektrische Installation .. 34
Inhaltsverzeichnis

6.4.1. Stromanschlüsse ... 34
6.4.1.1. Hochspannungsanschluss .. 34
6.4.1.2. Anschlussplan ... 36
6.4.1.3. Montage der Kabelverschraubungen und Netzanschluss .. 37
6.4.2. Niederspannungsanschlüsse .. 42
6.4.3. Erdanschlüsse ... 44
6.4.4. Anschlüsse der Stillstandsheizung .. 47

7. Betrieb
7.1. Betriebsbedingungen .. 48
7.2. Topic (De) ... 49
7.3. Zustandsüberwachung während des Betriebs .. 49
7.4. Empfohlene Schmiermittel .. 49
7.5. Empfohlene Kühlmittel .. 50
7.6. Notbetrieb .. 50

8. Wartung
8.1. Regelmäßige Wartung ... 52
8.2. Reinigung ... 53
8.3. Lager und Schmierung .. 54
8.4. Wartung des Kühlsystems ... 57

9. Demontage

10. Fehlerbehebung

11. Kundendienst
11.1. Servicerichtlinie .. 61
11.2. Ersatzteile .. 61

12. Entsorgung

13. Checklisten für Lagerung, Installation und Wartung
<table>
<thead>
<tr>
<th>Überarbeitung</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
1. Allgemeine Informationen

Copyright

Danfoss Oy. Alle Rechte vorbehalten.

Kein Teil dieses Handbuchs darf ohne ausdrückliche schriftliche Zustimmung des Herausgebers in irgendeiner Form oder mit irgendwelchen Mitteln, ob elektrisch oder mechanisch einschließlich durch Fotokopieren, Aufzeichnen oder durch ein Informationsspeicherungssystem oder Datenerfassungssystem reproduziert oder übertragen werden.

Alle Spezifikationen und Inhalte dieses Handbuchs können ohne vorherige Ankündigung geändert werden.

Verwendungszweck des Handbuchs

Dieses Handbuch enthält Anweisungen, die für die sichere und bestimmungsgemäße Handhabung, Installation, Bedienung und Wartung der elektrischen Maschine erforderlich sind. Personen, die die Maschine oder zugehörige Geräte installieren, bedienen oder warten, sind gehalten, diese Anweisungen sorgfältig zu lesen.

Dieses Handbuch muss für zur späteren Verwendung bei Installation, Betrieb und Wartung aufbewahrt werden.

Namenskonvention des Produkts

In diesem Benutzerhandbuch werden die Permanentmagnetmotoren und Generatoren der Produktreihe EM-PMI als „elektrische Maschine“ bezeichnet.

Das Baugrößenmodell gibt die Maße und elektrischen Merkmale der elektrischen Maschine an. Die folgende Namenskonvention dient zur Kennzeichnung des Baugrößenmodells der elektrischen Maschine:

- EM-PMI540-T2000-XXXX+XX

Tabelle 1. Die Namenscodes der elektrischen Maschine

<table>
<thead>
<tr>
<th>Teil des Namen</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>Elektrische Maschine</td>
</tr>
<tr>
<td>PMIXXX oder PMEXXX</td>
<td>Permanentmagnet Intern und eine Nummer mit Bezug zum Durchmesser der elektrischen Maschine oder Permanentmagnet Extern und eine Nummer mit Bezug zum Durchmesser der elektrischen Maschine</td>
</tr>
<tr>
<td>TXXXX</td>
<td>Das durchschnittliche dauerhafte Drehmoment des Motors, relativ zur Länge der Maschine</td>
</tr>
<tr>
<td>XXXX</td>
<td>Nenndrehzahl</td>
</tr>
<tr>
<td>+XX</td>
<td>Die Optionen sind der nachfolgenden Tabelle der Optionen zu entnehmen.</td>
</tr>
</tbody>
</table>

- Beispiel: EM-PMI540-T2000-1300-DUAL

Tabelle 2. Optionen EM-PMI540-T2000

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Option</th>
<th>Serienmäßige Option</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochspannungsanschlüsse</td>
<td>-DUAL</td>
<td>x</td>
<td>2 Verteilerboxen mit jeweils einem 3-Phasen-System mit einer Kabelverschraubung M32 pro Phase</td>
</tr>
<tr>
<td>Anschlusserweiterung</td>
<td>*</td>
<td>x</td>
<td>Keine</td>
</tr>
<tr>
<td></td>
<td>+CE1</td>
<td></td>
<td>2 Verteilerboxen mit jeweils einem 3-Phasen-System mit zwei Kabelverschraubungen M32 pro Phase.</td>
</tr>
<tr>
<td>Befestigung Nicht-Antriebsseite</td>
<td>*</td>
<td>x</td>
<td>Die Maschine kann nicht von der Nicht-Antriebsseite aus befestigt werden</td>
</tr>
<tr>
<td></td>
<td>+NE4</td>
<td></td>
<td>Stecker Welle, kein Flansch: DIN5480 W55x2x30x26x8a</td>
</tr>
<tr>
<td>Lagerisolierung</td>
<td>*</td>
<td>x</td>
<td>Lagertypen gemäß BHS</td>
</tr>
<tr>
<td></td>
<td>+BIN</td>
<td></td>
<td>SKF 6214 isoliertes Lager Nicht-Antriebsseite</td>
</tr>
<tr>
<td></td>
<td>+BIA</td>
<td></td>
<td>SKF 6214 isoliertes Lager an beiden Seiten</td>
</tr>
<tr>
<td>Wellenerdung</td>
<td>*</td>
<td>x</td>
<td>Keine Wellenerdung</td>
</tr>
<tr>
<td></td>
<td>+SG1</td>
<td></td>
<td>Integrierter Erdungsring</td>
</tr>
<tr>
<td>Rotationssensor (Resolver)</td>
<td>*</td>
<td>x</td>
<td>Kein Rotationssensor</td>
</tr>
<tr>
<td></td>
<td>+RES1</td>
<td></td>
<td>Integrierter berührungsloser Resolver, 8-Pol-Paar</td>
</tr>
<tr>
<td>Wicklungstemperaturfühler</td>
<td>*</td>
<td>x</td>
<td>3 x PT100 in den Wicklungen</td>
</tr>
<tr>
<td></td>
<td>+TEMP4</td>
<td></td>
<td>6 x PT100 in den Wicklungen</td>
</tr>
<tr>
<td>Lagertemperaturfühler</td>
<td>*</td>
<td>x</td>
<td>Keine Temperaturfühler</td>
</tr>
<tr>
<td></td>
<td>+BTMP1</td>
<td></td>
<td>PT-100 in Lagern mit Steckverbinder</td>
</tr>
<tr>
<td>Stillstandsheizungen</td>
<td>*</td>
<td>x</td>
<td>Keine</td>
</tr>
<tr>
<td></td>
<td>+HEAT1</td>
<td></td>
<td>1 x 230V AC/50W</td>
</tr>
</tbody>
</table>
1. Allgemeine Informationen

Einhaltung geltender Normen

Die elektrische Maschine wurde in Übereinstimmung mit den folgenden Richtlinien und entsprechend den Anforderungen der folgenden Normen entwickelt:

Tabelle 3. Geltende Richtlinien und Normen

<table>
<thead>
<tr>
<th>Norm</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenrichtlinie 2006/42/EG</td>
<td>Diese elektrische Maschine unterliegt teilweise der Maschinenrichtlinie 2006/42/EG und wird als unvollständige Maschine als Teil der vollständigen Maschine betrachtet.</td>
</tr>
<tr>
<td>IEC 60034-1:2010</td>
<td>Drehende elektrische Maschinen – Teil 1: Bemessung und Betriebsverhalten</td>
</tr>
</tbody>
</table>

Garantie

Danfoss gewährt für die eigenen Produkte eine Garantie bei Mängeln, die auf Herstellungs- oder Materialfehler zurückzuführen sind. Diese Garantie gilt über einen Zeitraum von zwölf (12) Monaten ab Inbetriebnahme oder von achtzehn (18) Monaten ab Lieferung (Incoterms-EXW), je nachdem, was zuerst eintritt.

Die Garantie ist nur gültig, solange der Kunde die Anforderungen in dieser und zugehöriger Dokumentation, insbesondere die Anforderungen in Bezug auf die Produktinstallation und -wartung, sowie die im jeweiligen Land geltenden Normen und Vorschriften erfüllt.

Die Garantie gilt nicht für Mängel, die aufgrund von falscher Anwendung oder Nachlässigkeit bei Verwendung, Betrieb und/oder Installation der Geräte oder aufgrund unterlassener vorbeugender Wartungsmaßnahmen auftreten, ebenso wenig für Mängel infolge externer Faktoren oder Zubehör und Bauteilen, die nicht von Danfoss geliefert/empfohlen werden.

Die Garantie gilt nicht, wenn der Kunde auf eigene Verantwortung Reparaturen und/oder Veränderungen an der Ausrüstung vornimmt, ohne im Vorwege die Genehmigung von Danfoss einzuholen.
1. Allgemeine Informationen

Begriffe und Abkürzungen

Die Symbole, Begriffe und Abkürzungen in den nachfolgenden Tabellen werden ggf. in diesem Handbuch verwendet.

Tabelle 4. Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Variabel</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Nennspannung (verkettete Wechselspannung)</td>
<td>Vrms</td>
</tr>
<tr>
<td>I</td>
<td>Nennstrom (AC)</td>
<td>Arms</td>
</tr>
<tr>
<td>P</td>
<td>Nennleistung (S9)</td>
<td>kW</td>
</tr>
<tr>
<td>T</td>
<td>Nenndrehmoment (S9) bei Nenndrehzahl</td>
<td>Nm</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximales Drehmoment</td>
<td>Nm</td>
</tr>
<tr>
<td>n</td>
<td>Nenndrehzahl</td>
<td>UPM</td>
</tr>
<tr>
<td>Max n</td>
<td>Maximaldrehzahl</td>
<td>UPM</td>
</tr>
<tr>
<td>f</td>
<td>Nenn-Netzfrequenz bei Nenndrehzahl</td>
<td>Hz</td>
</tr>
<tr>
<td>PF</td>
<td>Leistungsfaktor (cos (\phi))</td>
<td></td>
</tr>
<tr>
<td>Q_c</td>
<td>Nenndurchfluss Kühlflüssigkeit</td>
<td>l/min</td>
</tr>
<tr>
<td>T_c</td>
<td>Nenn-Eingangstemperatur Kühlflüssigkeit</td>
<td>°C</td>
</tr>
<tr>
<td>T_{amb}</td>
<td>Nennwert der Umgebungstemperatur</td>
<td>°C</td>
</tr>
<tr>
<td>RES_COS</td>
<td>Cosinusförmiges Signal vom Resolver</td>
<td>Grad</td>
</tr>
<tr>
<td>RES_SIN</td>
<td>Sinusförmiges Signal vom Maschinen-Resolver</td>
<td>Grad</td>
</tr>
<tr>
<td>GND</td>
<td>Elektrische Erdanschlüsse</td>
<td></td>
</tr>
<tr>
<td>(\Omega) (Ohm)</td>
<td>Widerstand</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

Tabelle 5. Begriff/Abkürzung

<table>
<thead>
<tr>
<th>Begriff/Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolver</td>
<td>Rotationsmessgerät in elektrischen Maschinen zur Messung des Drehwinkels</td>
</tr>
<tr>
<td>AC</td>
<td>Wechselstrom</td>
</tr>
<tr>
<td>DC</td>
<td>Gleichstrom</td>
</tr>
<tr>
<td>PMSM</td>
<td>Permanentmagnet-Synchronmotor</td>
</tr>
<tr>
<td>SRPM</td>
<td>Synchron-Reluktanz-unterstützter Permanentmagnet</td>
</tr>
<tr>
<td>S1</td>
<td>Betriebsart gemäß IEC60034; Dauerbetrieb</td>
</tr>
<tr>
<td>S9</td>
<td>Betriebsart gemäß IEC60034; Betrieb mit nicht-periodischen Last- und Drehzahlsschwankungen</td>
</tr>
</tbody>
</table>

Marken

1. Allgemeine Informationen

Verantwortung des Herstellers

Danfoss ist nur dann für die Sicherheit, Zuverlässigkeit und Leistung der elektrischen Maschine verantwortlich, wenn

- Handhabung, Montage, Installation, Betrieb und Wartung durch qualifiziertes und autorisiertes Personal erfolgt;
- die Installation der Anlage den Anforderungen der geltenden Vorgaben entspricht;
- die elektrische Maschine in Übereinstimmung mit den Anweisungen in diesem Handbuch verwendet wird;
- die elektrische Maschine in Übereinstimmung mit den Anweisungen in diesem Handbuch installiert, gewartet und instand gehalten wird.
2. Sicherheitshinweise

Allgemeine Sicherheitserklärung

- Die elektrische Maschine ist für die Verwendung als Bestandteil industrieller und gewerblicher Anlagen vorgesehen. Das Endprodukt, das diese elektrische Maschine enthält, muss alle diesbezüglichen Vorgaben einhalten.
- Der Einsatz der elektrischen Maschine in gefährlichen Bereichen ist nicht zulässig, sofern die Maschine nicht explizit für diese Verwendung vorgesehen wurde.
- Diese Anweisungen sind zu befolgen, um die Sicherheit und Richtigkeit von Installation, Betrieb und Wartung der elektrischen Maschinen sicherzustellen. Personen, die die elektrische Maschine oder zugehörige Geräte installieren, bedienen oder warten, sind gehalten, diese Anweisungen sorgfältig zu lesen.
- Hochspannung und rotierende Teile können schwere oder tödliche Verletzungen verursachen. Für die in diesem Handbuch behandelte elektrische Maschine sind unbedingt die erforderlichen Sicherheitsvorkehrungen zu treffen, um das Personal vor möglichen Verletzungen zu schützen.

Signalwörter bei Sicherheitshinweisen

Signalwörter bei Sicherheitshinweisen weisen auf den Schweregrad einer potenziellen Gefahr hin.

Gefahr kennzeichnet eine gefährliche Situation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führen wird.

Warnung kennzeichnet eine potenziell gefährliche Situation, die zum Tod oder zu schweren Verletzungen führen kann.

Achtung kennzeichnet eine potenziell gefährliche Situation, die leichte Verletzungen zur Folge haben kann. Die Kennzeichnung ACHTUNG kann ebenfalls als Warnung vor unsicheren Verfahren dienen.

Hinweis kennzeichnet eine potenziell gefährliche Situation, die zu Sachschäden führen kann.

Sicherheitssymbole

Die folgenden Sicherheits- und Informationssymbole finden sich in diesem Handbuch und an der elektrischen Maschine.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschriftung</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚫 STOP</td>
<td>Gefahr</td>
</tr>
<tr>
<td>🚫 Allgemeine Warnung</td>
<td>Dieses Symbol besteht aus einem gelben Hintergrund, einem roten achteckigen Rand und dem schwarzen Text „STOP“. Es weist auf eine gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt. Handlungen, die durch dieses Symbol gekennzeichnet sind, dürfen nicht ausgeführt werden.</td>
</tr>
<tr>
<td>🚫 Warnung vor Stromschlag</td>
<td>Dieses Symbol besteht aus einem gelben Hintergrund, einem schwarzen dreieckigen Rand und einer schwarzen Pfeilspitze. Es weist auf gefährliche elektrische Spannung hin, die einen Stromschlag verursachen kann.</td>
</tr>
<tr>
<td>🚫 Warnung vor heißer Oberfläche</td>
<td>Dieses Symbol besteht aus einem gelben Hintergrund, einem schwarzen dreieckigen Rand und schwarzen Wellenlinien. Es weist auf heiße Geräte hin, die Verbrennungen verursachen können.</td>
</tr>
</tbody>
</table>
2. Sicherheitshinweise

Warnung vor einem magnetischen Feld
Dieses Symbol besteht aus einem gelben Hintergrund, einem schwarzen dreieckigen Rand und einem schwarzen Magnetsymbol. Es weist auf ein starkes Magnetfeld hin, das zu Verletzungen oder Sachschäden führen kann.

Warnung vor rotierender Welle
Dieses Symbol besteht aus einem gelben Hintergrund, einem schwarzen dreieckigen Rand und einer rotierenden Welle. Es weist auf eine starke rotierende Welle hin, die Verletzungen oder Sachschäden verursachen kann.

Allgemeine Informationen

Lesen Sie die Anweisungen in diesem Handbuch.

Persönliche Schutzausrüstung
Um Verletzungen zu vermeiden, ist bei Bedarf während der Handhabung, Installation und Wartung der elektrischen Maschine persönliche Schutzausrüstung zu verwenden.

Schützen Sie bei Arbeiten an der elektrischen Maschine die Augen mittels Sicherheitsbrillen oder -masken. Die Augen können dauerhaft geschädigt werden, wenn Lagerschmiermittel, geschmolzenes Nitrilgummi (radiale Lippendichtung), Glykol- oder Flüssigkeitsspritzer ins Auge eindringen.

Tragen Sie bei Arbeiten an der elektrischen Maschine Gehörschutz. Zu laute Geräusche (Schallpegel über 85 dBA) können das Hörvermögen schädigen.

Tragen Sie beim Anheben der elektrischen Maschine einen Kopfschutz, beispielsweise einen Helm! Herabfallende Gegenstände können Kopfverletzungen verursachen.

Tragen Sie bei der Handhabung und Wartung der elektrischen Maschine Schnittschutzhandschuhe. Es besteht die Gefahr von Schnittverletzungen.

Tragen Sie beim Anheben oder Transportieren der elektrischen Maschine Sicherheitsschuhe! Wenn Hebevorrichtungen oder Halterungen versagen, kann es zu Verletzungen der Füße kommen.

Sicherheitsfunktionen

Die elektrische Maschine ist mit Leckagesensoren (2 Stück) im unteren Bereich der Maschine ausgestattet. Diese Funktion ist bei feuchten Bedingungen hilfreich, um eventuell überschüssiges Wasser im Kontakt mit der elektrischen Maschine festzustellen. Für beide Leckagesignale gibt es separate Stecker.
Elektromagnetische Verträglichkeit (EMV)

Beim Anschluss weiterer Ausrüstung dürfen nur Geräte verbunden werden, die als Teil der Anlage definiert und kompatibel sind.

Magnetische und elektromagnetische Felder, die nahe den stromführenden Leitern und Permanentmagneten in den elektrischen Maschinen erzeugt werden, stellen für Personen mit Herzschrittmachern, Metallimplantaten und Hörgeräten ein Gesundheitsrisiko dar. Personen mit Herzschrittmachern, Metallimplantaten und Hörgeräten müssen einen Arzt konsultieren, bevor sie folgende Bereiche betreten:

- Bereiche, in denen elektrische Geräte und Teile betrieben werden
- Bereiche, in denen elektrische Geräte mit Permanentmagneten gelagert, montiert, bedient oder repariert werden

Überprüfen Sie bei Bedarf die elektromagnetische Verträglichkeit (EMV) der Anlage.

Der Monteur muss sicherstellen, dass die Geräte oder Anlagen, in die das Produkt integriert wird, den EMV-Gesetzen des jeweiligen Landes entsprechen. In der Europäischen Union müssen Geräte, in die dieses Produkt integriert werden soll, die Vorgaben der EMV-Richtlinie 2004/108/EG erfüllen.
3. Produktübersicht

Die elektrischen Maschinen wurden speziell für Schwerlast-, Schiffs- und Transportanwendungen entwickelt. Sie sind zuverlässiger, kleiner, leichter und effizienter als herkömmliche Produkte auf dem Markt.

Typische Anwendungen der elektrischen Maschinen sind:

- Motoren (Elektroantrieb) und Generatoren für Hybridschiffe oder mobile Arbeitsmaschinen sowie Parallelhybridanwendungen für Busse.
- Traktionsmotoren und Generatoren für elektrische oder hybrid-elektrische mobile Arbeitsmaschinen oder Busse.

Die elektrischen Maschinen verfügen über Synchron-Reluktanz-Unterstützte Permanentmagnet-Motortechnologie (SRPM) und bieten verschiedene erweiterte Funktionen:

- Extrem kompakte und robuste Konstruktion.
- Hoher Wirkungsgrad über den gesamten Betriebsbereich.
- Flüssigkeitskühlung mit einem Wasser-Glykol-Gemisch.
- Niedriger erforderlicher Kühlmitteldurchfluss.
- Hohe zulässige Kühlmitteltemperatur.
- Schutzart IP65 für erhöhte Zuverlässigkeit.
- Verschiedene Montagemöglichkeiten.
- Erweiterte Drehzahl- und Drehmomentfähigkeit im Vergleich zu PM-Standardmaschinen.
- Die Bauweise der Maschine ist so konzipiert, dass sie in der Lage ist, hohe Anlaufmomente (sofortiges Drehmoment auf stillstehende Räder) zu erzeugen.
- Optimierter Drehzahlbereich zur Erfüllung der gängigsten Getriebeübersetzungen von mobilen Schwerlast-Arbeitsmaschinen.
3. Produktübersicht

Abbildung 1. Die elektrische Maschine

Bestimmungsgemäße Verwendung der elektrischen Maschine

Diese elektrische Maschine ist für die Verwendung als Motor oder Generator und als Teil einer Anlage vorgesehen, beispielsweise:

- im Antriebsstrang eines Schiffs, Transportfahrzeugs oder einer Schwerlast-Arbeitsmaschine.
- in Stromerzeugungsgeräten.

Die elektrische Maschine ist für die Versorgung und Steuerung durch einen oder mehrere für die Versorgung mit dreiphasigem Wechselstrom geeignete Wechselrichter vorgesehen, die in der Lage sind, die elektrische Maschine zu steuern. Die elektrische Maschine ist nicht für den direkten Netzanschluss geeignet.

Bei Stromerzeugungsgeräten sind die elektrischen Maschinen für die Stromversorgung durch eine Zugmaschine, z. B. einen eingebauten Verbrennungsmotor, und die Steuerung durch die oben genannten Elektrowechselrichter vorgesehen.

Die elektrische Maschine ist ausschließlich für die professionelle Nutzung vorgesehen und darf nur durch geschulte Fachkräfte betrieben werden. Die Wartung der elektrischen Maschine darf ausschließlich durch geschultes Fachpersonal erfolgen.

Nicht bestimmungsgemäße Verwendung der elektrischen Maschine

Es ist verboten, die Maschine in folgender Weise zu nutzen, zu bedienen und zu warten (einschließlich, aber nicht beschränkt auf):

©Danfoss | Erstellt von: Danfoss Power Solutions | April 2019 | 13
3. Produktübersicht

- Nutzung der elektrischen Maschine zu anderen Zwecken als in diesem Handbuch beschrieben.
- Missachten der Verpflichtung zur Einhaltung der Vorgaben im Handbuch, auf Sicherheitsschildern und Typenschild der elektrischen Maschine.
- Nutzen, Modifizieren und Warten der elektrischen Maschine, ohne zuvor dieses Handbuch zu lesen.
- Überschreiten der festgelegten Grenzwerte während des Betriebs der elektrischen Maschine.
- Verwenden von Nicht-Originalersatzteilen oder falschen Materialien, die im Laufe der Zeit zu Korrosionsproblemen und mechanischen Ausfällen führen.
- Betrieb und Wartung der elektrischen Maschine ohne die vorgeschriebene persönliche Schutzausrüstung.
- Verwendung von Teilen der elektrischen Maschine, wie Rahmen, Wellenende oder Klemmenkasten zum Heraussteigen oder zum Abstützen anderer Konstruktionen.
- Verursachen von Stoßkräften auf die elektrische Maschine (z. B. Schlagen, Hämmern oder Fallenlassen von Gegenständen).
- Betrieb der elektrischen Maschine mit anderen Elektroanschlüssen als im Handbuch und/oder anderen Dokumenten beschrieben.
- Betrieb der elektrischen Maschine mit unzureichend angezogenen Anschlüssen oder Kabelverschraubungen.
- Betrieb der elektrischen Maschine mit Leistungskabeln, die nicht gemäß den Anweisungen verlegt wurden.
- Betrieb der elektrischen Maschine ohne korrekt dimensioniertes und einwandfrei funktionierendes Kühlsystem.
- Betrieb der elektrischen Maschine ohne Einhaltung der Anweisungen zur Schmierung der Lager.
- Zugreifen auf die Verteilerboxen der elektrischen Maschine oder Wartungsmaßnahmen und Einstellungsarbeiten an der elektrischen Maschine ohne Unterbrechung der Stromversorgung.
- Zugreifen auf die Verteilerboxen, während die Welle durch eine externe Zugmaschine gedreht werden kann.
- Anheben der elektrischen Maschine an falschen Hebepunkten und ohne korrekte Hebeausrüstung.
- Anheben zusätzlicher Lasten mit der Maschine.
- Lagern der elektrischen Maschine im Außenbereich unter bei nassen oder staubigen Bedingungen.
- Lagern der elektrischen Maschine ohne korrekte Abstützung, die das Rollen oder Fallen der Maschine verhindert.
- Nutzen der elektrischen Maschine in explosionsgefährdeten Umgebungen.
- Zulassen, dass Schmutz oder Flüssigkeiten in die elektrische Maschinen oder die Verteilerbox eindringen.
- Verwenden von Kabeln, die den maximalen Stromstärken der elektrischen Maschine nicht standhalten.
Verwendete Technologie

Die Stromversorgung der Statorwicklungen der Maschine erzeugt ein rotierendes Magnetfeld, welches wiederum den Rotor mit den Permanentmagneten rotiert. Die Synchron-Permanentmagnet-Maschine synchronisiert die Rotation des Rotors (der Welle) mit der Frequenz der Netzstromversorgung. Die Reluktanztechnologie maximiert das Kippmoment der Maschine.

Die Permanentmagnete des Rotors sind als Schenkelpoleinheiten konzipiert, wobei die Permanentmagnete in die Rotorstruktur integriert sind. Dank dieser Konstruktion ist die elektrische Maschine mechanisch stabiler und besser für höhere Drehzahlen geeignet. Die nachfolgende Abbildung zeigt die Magnet-Topologie der elektrischen Maschine. Es handelt sich dabei lediglich um eine prinzipielle Darstellung und keine genaue Wiedergabe der Konstruktion.

Abbildung 2. Topologie der Maschine

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stator und Statorwicklungen der elektrischen Maschine</td>
</tr>
<tr>
<td>2</td>
<td>Rotor der elektrischen Maschine</td>
</tr>
<tr>
<td>3</td>
<td>Permanentmagnete im Rotor</td>
</tr>
</tbody>
</table>
3. Produktübersicht

Einführung in das System

Abbildung 3. Übersicht über das Danfoss-Antriebsstrangsystem

Abbildung 4. Übersicht über das elektrische Maschinenystem
Anschlüsse und Schnittstellen

Die elektrischen Maschinen werden als Teil einer Anlage oder einer Stromerzeugungsanlage mechanisch und elektrisch angeschlossen.

Mechanische Schnittstellen:
- Hebepunkte.
- Flanschmontage (Antriebsseite).
- Montage der Fußschienen.
- Wellenanschluss.
- Anschlüsse des Kühlsystems (Bohrungen).
- Anschlüsse für den Austritt/das Befüllen von Schmiermittel; je nach Option (+BHS): nur zu Wartungszwecken.
- Entlüftungsstopfen.
- Vibrationssensor-Anschlusspunkte.

Elektrische Schnittstellen:
- Leistungsanschlüsse über Verteilerbox.
- Stecker für Messungen (Anschluss über Verteilerbox).
- Anschluss für Stillstandsheizung (Option +HEAT1) (über Verteilerbox).
- Stecker für Lagertemperatur (Option +BTMP1).
- Stecker für Leckagesensoren.

Abbildung 5. Anschlüsse und Schnittstellen
3. Produktübersicht

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anschluss für das Befüllen von Schmiermittel (Schmiernippel), Antriebseite (Option +BHS).</td>
</tr>
<tr>
<td>2</td>
<td>Stecker für Lagertemperaturmessung, Antriebseite (Option +BTMP1). Typ: 4-poliger M12 A-kodierter Stecker.</td>
</tr>
<tr>
<td>4</td>
<td>Hebepunkte. Das reguläre Anheben erfolgt an den beiden äußeren Punkten.</td>
</tr>
<tr>
<td>5</td>
<td>Innerer Hebepunkt. Verwendbar als zusätzlicher Hebeösenanschluss und als Erdanschlusspunkt (Stromversorgung) des Maschinengehäuses bei der Montage.</td>
</tr>
<tr>
<td>6</td>
<td>Anschluss für das Befüllen von Schmiermittel (Schmiernippel), Nicht-Antriebseite (Option +BHS).</td>
</tr>
<tr>
<td>7</td>
<td>Anschlüsse des Kühlsystems (Bohrungen).</td>
</tr>
<tr>
<td>8</td>
<td>Montage der Fußschienen. Vier kreisförmig im 90°-Winkel um den Rahmen angeordnete Schienen.</td>
</tr>
<tr>
<td>9</td>
<td>Entlüftungsstopfen.</td>
</tr>
<tr>
<td>10</td>
<td>Verteilerboxen (zwei Boxen bei Option -DUAL).</td>
</tr>
<tr>
<td>11</td>
<td>Stromanschluss; Kabelverschraubung (sechs Verschraubungen bei Option -DUAL).</td>
</tr>
<tr>
<td>13</td>
<td>Kabelverschraubung für die Anschlusskabel der Stillstandsheizung. Anschluss der Stillstandsheizung in der Verteilerbox.</td>
</tr>
<tr>
<td>14</td>
<td>Niederspannungsstecker (Stecker für Messungen), Niederspannungserdanschluss über Metallgehäuse des Steckers.</td>
</tr>
<tr>
<td>16</td>
<td>Stecker für Leckagemessungen. Jeweils ein Stecker für Leckagemessungen an jeder Seite.</td>
</tr>
<tr>
<td>17</td>
<td>Anschlüsse für Austritt überschüssigen Schmiermittels, Antriebsseite (abhängig von Option +BHS). Ein axialer und vier radiale Stecker in 90°-Winkeln um den Flansch an der Antriebsseite.</td>
</tr>
<tr>
<td>18</td>
<td>Flanschmontage Antriebsseite (12 Anschlussohrungen um den Flansch).</td>
</tr>
<tr>
<td>19</td>
<td>Wellenanschluss.</td>
</tr>
</tbody>
</table>
3. Produktübersicht

Typenschild

Abbildung 6. Typenschild

Tabelle 6. Felder auf dem Typenschild

<table>
<thead>
<tr>
<th>Feld</th>
<th>Erläuterung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Produktfamilie der elektrischen Maschine: EM-PMI oder EM-PME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typencode der elektrischen Maschine</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Typencode und Optionen der elektrischen Maschine</td>
<td></td>
</tr>
<tr>
<td>Serienr.</td>
<td>Seriennummer</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Nennspannung (verkettete Wechselspannung)</td>
<td>V_{rms}</td>
</tr>
<tr>
<td>I</td>
<td>Nennstrom (AC)</td>
<td>I_{rms}</td>
</tr>
<tr>
<td>P</td>
<td>Nennleistung (S9) gemäß IEC60034-1</td>
<td>kW</td>
</tr>
<tr>
<td>n</td>
<td>Nenndrehzahl</td>
<td>UPM</td>
</tr>
<tr>
<td>T</td>
<td>Nenndrehmoment (S9) bei Nenndrehzahl</td>
<td>Nm</td>
</tr>
<tr>
<td>PF</td>
<td>Leistungsfaktor</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Nenn-Netzfrequenz bei Nenndrehzahl</td>
<td>Hz</td>
</tr>
<tr>
<td>Q_c</td>
<td>Nenndurchfluss Kühlflüssigkeit</td>
<td>l/min</td>
</tr>
<tr>
<td>Polpaare</td>
<td>Anzahl der magnetischen Polpaare der Maschine</td>
<td></td>
</tr>
</tbody>
</table>
3. Produktübersicht

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_c</td>
<td>Nenn-Eingangstemperatur Kühlflüssigkeit</td>
<td>°C</td>
</tr>
<tr>
<td>Montage</td>
<td>Zulässige Montageposition gemäß IEC60034-7</td>
<td></td>
</tr>
<tr>
<td>Masse</td>
<td>Masse der elektrischen Maschine</td>
<td>kg</td>
</tr>
<tr>
<td>Arbeit</td>
<td>Definierte Arbeitszyklen rotierender Maschinen gemäß Norm IEC60034-1</td>
<td></td>
</tr>
<tr>
<td>T_{amb}</td>
<td>Nennwert der Umgebungstemperatur</td>
<td>°C</td>
</tr>
<tr>
<td>Schutzart</td>
<td>Gehäuse-Schutzart gemäß IEC60034-5</td>
<td></td>
</tr>
<tr>
<td>Kühlung</td>
<td>Kühlungsverfahren gemäß IEC60034-6</td>
<td></td>
</tr>
<tr>
<td>Drehung</td>
<td>Rotationssrichtung des Rotors bei Standardphasenfolge. Drehrichtung bei Blick auf die Antriebsseite.</td>
<td></td>
</tr>
<tr>
<td>Max n</td>
<td>Maximale Drehzahl</td>
<td>UPM</td>
</tr>
<tr>
<td>Isolationsklasse</td>
<td>Temparaturnennwert (Klasse) der Isolierung der Maschine gemäß IEC60034-1</td>
<td></td>
</tr>
<tr>
<td>Temperaturklasse</td>
<td>Temperaturnennwert (Klasse) der Materialien der Isolierung gemäß IEC60034-1</td>
<td></td>
</tr>
<tr>
<td>Lager/Antriebsseite</td>
<td>Art des Lagers an der Antriebsseite der Maschine</td>
<td></td>
</tr>
<tr>
<td>Lager/Nicht-Antriebsseite</td>
<td>Art des Lagers an der Nicht-Antriebsseite der Maschine</td>
<td></td>
</tr>
<tr>
<td>Max. Druck</td>
<td>Max. Druck Kühlflüssigkeit</td>
<td></td>
</tr>
</tbody>
</table>

Anzugsmomente

<table>
<thead>
<tr>
<th>Anschluss</th>
<th>Drehmoment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montageschrauben zur Befestigung an der Antriebsseite</td>
<td>69 Nm</td>
</tr>
<tr>
<td>Befestigungsschrauben für Verteilerbox</td>
<td>7 Nm</td>
</tr>
<tr>
<td>Schrauben für Abdeckplatte der Verteilerboxen</td>
<td>4 Nm</td>
</tr>
<tr>
<td>Kabelverschraubung (von der Kappe der Verschraubung anziehen)</td>
<td>15 Nm</td>
</tr>
<tr>
<td>Kabelschuh</td>
<td>15 Nm</td>
</tr>
</tbody>
</table>
4. Gestaltungsleitsätze

Dieses Kapitel beschreibt die Gestaltungsleitsätze, die bei der Planung des Systems mithilfe der elektrischen Maschine zu berücksichtigen sind.

Systemauslegung

Kühlung und Temperaturmessung

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Leitsatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Betreiben Sie die Maschine niemals ohne korrekt dimensioniertes und einwandfrei funktionierendes Kühlssystem.</td>
</tr>
<tr>
<td>!</td>
<td>Montieren Sie die elektrische Maschine in der korrekten Position, siehe Kapitel Zulässige Montageposition.</td>
</tr>
<tr>
<td>!</td>
<td>Stellen Sie beim Anschließen des Kühlssystems sicher, dass die Kühlflüssigkeit ungehindert durch die elektrische Maschine fließen kann, wobei der Kühlmitteldurchfluss den Nennwert erreicht oder übersteigt.</td>
</tr>
<tr>
<td>!</td>
<td>Die Kühlmitteltemperatur am Einlass der elektrischen Maschine muss kleiner oder gleich der Nenntemperatur sein.</td>
</tr>
</tbody>
</table>

Detaillierte Angaben zu den Bohrungen für die Kühlflüssigkeitsanschlüsse, zum erforderlichen Kühlmitteldurchfluss und andere technische Daten finden Sie im Produktdatenblatt. Die Nennwerte sind dem Typenschild der Maschine zu entnehmen.

Sie können ein Temperatursignal an den Temperaturüberwachungskontakt am Wechselrichter (EC-C1200) anschließen. Stellen Sie sicher, dass die Maschinentemperatschutzaufung am Wechselrichter aktiviert ist.

Die maximal zulässige Wicklungstemperatur der elektrischen Maschine beträgt 150 °C.

Merkmale des PT100-Temperaturfühlers: Widerstand 100 Ω bei einer Temperatur von 0 °C; der Widerstand steigt um 0,385 Ω pro 1 °C Temperaturanstieg.

Wechselrichter

Die elektrische Maschine ist für die Versorgung und Steuerung durch einen für die Versorgung mit dreiphasigem Wechselstrom geeigneten Wechselrichter vorgesehen, der in der Lage ist, die elektrische Maschine zu steuern. Die elektrische Maschine ist nicht für den direkten Netzanschluss geeignet.

Wenn die Maschine mit einem Wechselrichter eines anderen Lieferanten als Danfoss Editron betrieben wird, kann die Leistung der elektrischen Maschine von den Nennwerten abweichen. Die optimale Leistung erreicht die elektrische Maschine mit Wechselrichter von Danfoss Editron. Diese Wechselrichter sind:

- Kompakt und leicht.
- Flüssigkühl.
- Tolerant gegenüber hohen mechanischen Vibrationen (10 G) und Erschütterungen (50 G).
- Effizient, Wirkungsgrad >98 %.
- Zuverlässig, keine beweglichen Komponenten.
Überschreiten Sie nicht die maximale Drehzahl der Maschine.

Abbildung 7. EC-C1200

Abbildung 8. Schematische Darstellung der Wechselrichter-Leistungsstufe

Die wichtigsten Leistungsantriebsparameter der Maschine sind auf dem Typenschild der Maschine angegeben. Wenn Sie weitere Informationen benötigen, wenden Sie sich bitte an Ihren Danfoss-Ansprachpartner.

Sie können eines der Temperatursignale (vom Niederspannungssteckverbinder) an den Temperaturüberwachungskontakt am Wechselrichter (EC-C) anschließen. Stellen Sie sicher, dass die Maschinentemperatur-schutzfunktion am Wechselrichter aktiviert ist.
4. Gestaltungsleitsätze

Montageaufbau

Anforderungen an die Tragkonstruktion

Installieren Sie die elektrische Maschine nicht in der Nähe von oder im direkten Kontakt mit leicht entzündlichen Stoffen. Die Oberfläche der elektrischen Maschine kann heiß sein.

Die anliegenden Gehäusevorrichtungen der elektrischen Maschine müssen sicher und ausreichend starr sein, um Vibrationen und mechanische Ausfälle zu vermeiden. Erforderliche Maßnahmen sind zu ergreifen, um Korrosion an der anliegenden Gehäusevorrichtung zu verhindern.

Die Tragkonstruktion der elektrischen Maschine muss es ermöglichen, die Maschine in einer zulässigen Montageposition zu montieren, siehe Kapitel Zulässige Montagepositionen.

Der Montageplatz muss ausreichen, um die Maschine und eventuelle Zusatzeiteile zu montieren. Angaben zur Länge und zum Durchmesser der elektrischen Maschine sind der Produktzeichnung zu entnehmen. Die wichtigsten Abmessungen der elektrischen Maschine sind in der nachfolgenden Abbildung angegeben (die Darstellung kann von der tatsächlichen elektrischen Maschine abweichen).

Abbildung 9. Wichtigste Abmessungen der Maschine
4. Gestaltungsleitsätze

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_L</td>
<td>Länge des Maschinenrahmens (einschließlich Verteilerbox(en)).</td>
</tr>
<tr>
<td>L_S</td>
<td>Länge der Welle (vom Ende der Welle bis zur Montageschulter der Maschine an der Antriebsseite).</td>
</tr>
<tr>
<td>D_M</td>
<td>Durchmesser der kreisförmig angeordneten Bohrungen für die Flanschmontage.</td>
</tr>
<tr>
<td>D_S</td>
<td>Durchmesser der Montageschulter.</td>
</tr>
</tbody>
</table>

Alle anderen Abmessungen der elektrischen Maschine sind der Produktzeichnung zu entnehmen.

Wellenausrichtung und -last

Eine fehlerhafte Ausrichtung (Fehlausrichtung) kann zu einer Überlastung der Lager, vorzeitigem Verschleiß, Vibrationen und dem Ausfall der Welle führen. Eine flexible Kupplung kann übermäßige Fehlausrichtungen nicht kompensieren.

Die Welle der elektrischen Maschine ist vom Typ cylindrical shaft with diameter of 70 mm h7 and contact length of 130 mm. Der Flanschtyp ist ein SAE-1/2-Getriebegehäuse.

Die Ausrichtung zwischen Welle und Anschlusskonstruktion muss präzise erfolgen.

Abbildung 10. Parallele Ausrichtung von Welle und Anschlusskonstruktion

Abbildung 11. Winklige Ausrichtung von Welle und Anschlusskonstruktion
Die maximale Kraft, die von außen axial oder radial auf die Welle wirkt, darf die für die Maschine geltenden Werte nicht überschreiten. Berechnen Sie diese Wert mithilfe des Dokuments DOC-000454.

Abbildung 12. Äußere Wellenkräfte der Maschine
5. Transport und Lagerung

Transport

![Warnsymbol]

Schwere Geräte. Beim Transport ist Vorsicht geboten.

Das Gewicht der elektrischen Maschine ist dem Typenschild der Maschine sowie dem Produktdatenblatt zu entnehmen.

Erhalt und Auspacken

![Warnsymbol]

Berühren Sie die elektrische Maschine nicht während der Prüfung des Isolationswiderstands. Entladen Sie die elektrische Maschine anschließend.

![Warnsymbol]

Berühren Sie keine elektrischen Klemmen, während der Rotor dreht. Die elektrischen Klemmen führen während der Rotation gefährliche Spannung. Wenn sich der Rotor nicht drehen lässt, wenden Sie sich an Ihren Danfoss-Anspruchspartner.

Prüfungen bei Erhalt und Auspacken

- Es empfiehlt sich, den Isolationswiderstand der Maschine bei Erhalt oder vor ihrer Installation zu messen. Der Referenzwert von $150 \, \Omega$ muss bei Raumtemperatur überschritten werden, anderenfalls kontaktieren Sie Ihren Danfoss-Anspruchspartner.
- Entfernen Sie sämtliche Wellenretentionen und drehen Sie die Welle von Hand. Es ist normal, dass sich die Welle nur schwer drehen lässt.

Heben

![Warnsymbol]

Verwenden Sie korrekte, ausreichend dimensionierte Hebevorrichtungen und prüfen Sie diese vor dem Anheben.

![Warnsymbol]

Heben Sie die elektrische Maschine nicht an der Welle an!

![Warnsymbol]

Belasten Sie die elektrische Maschine beim Anheben nicht durch zusätzliches Gewicht.

![Warnsymbol]

Verwenden Sie die richtigen Hebegurte. Achten Sie beim Anheben auf die richtige Position und den richtigen Winkel. Der zulässige Hebewinkel liegt zwischen 0° und 30°.
5. Transport und Lagerung

| Gewichtsinformationen sind dem Typenschild der elektrischen Maschine und den Datenblättern zu entnehmen. |
| Heben Sie die elektrische Maschine ausschließlich an den dafür vorgesehenen Hebeösen an. |
| Es dürfen keine Personen den Bereich unter angehobenen Lasten betreten. |

Abbildung 13. Hebeösen für Hebegurte und Hebeposition der elektrischen Maschine

Horizontales Anheben

Bringen Sie zwei Hebeösen an den Hebebohrungen am Rahmen der elektrischen Maschine an. Die Hebeösen sind über die gesamte Gewindelänge zu befestigen.

Vertikales Anheben

Bringen Sie vier Hebeösen an den Hebebohrungen (M12x1,75) am Lagerschild an der Nicht-Antriebsseite an. Die Hebeösen sind über die gesamte Gewindelänge zu befestigen.
5. Transport und Lagerung

Lagerung

Berühren Sie keine elektrischen Klemmen, während die Welle sich dreht. Die elektrischen Klemmen führen während der Rotation gefährliche Spannung.

- Lagern Sie die Maschine immer im Innenbereich bei einer Lagertemperatur über -20 °C und einer relativen Feuchte unter 60 %.
- Der Lagerraum muss trocken sowie staub- und vibrationsfrei sein.
- Behandeln Sie nicht geschützte Oberflächen der elektrischen Maschine, z. B. die Flansche an den Wellenenden mit Korrosionsschutz. Verschließen Sie die Kabelauslässe und Kühlungsbohrungen vor dem Einlagern.
- Um Schäden an den Lagern zu vermeiden, darf die elektrische Maschine während der Lagerung keinen äußeren Vibrationen ausgesetzt sein.
- Es empfiehlt sich, sofern vorhanden, Stillstandsheizungen oder Wicklungsheizungen zu verwenden, um ein Kondensieren von Wasser in der elektrischen Maschine zu verhindern.
- Drehen Sie die Welle der elektrischen Maschine jeden Monat um mindestens zehn Umdrehungen, um eine Verlagerung des Schmierfetts zu verhindern.

Verlängerte Lagerung

Elektrische Maschinen mit nachschmierbaren Lagern (Option +BHS): Tragen Sie vor und nach längeren Lagerungszeiten Fett auf.

Es empfiehlt sich, eingelagerte elektrische Maschinen in regelmäßigen Abständen zu überprüfen. Verwenden Sie die angefügte Lagerungscheckliste.
6. Installation

<table>
<thead>
<tr>
<th>Gefahr eines Stromschlags, wenn die Verteilerbox geöffnet ist. Stellen Sie bei Arbeiten mit Stromanschlüssen sicher, dass die Stromversorgung unterbrochen ist und der Rotor sich nicht drehen kann.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetische und elektromagnetische Felder, die nahe den stromführenden Leitern und Permanentmagneten in den elektrischen Maschinen erzeugt werden, stellen für Personen mit Herzschrittmachern, Metallimplantaten und Hörgeräten ein Gesundheitsrisiko dar. Personen mit Herzschrittmachern, Metallimplantaten und Hörgeräten müssen einen Arzt konsultieren, bevor sie folgende Bereiche betreten:</td>
</tr>
<tr>
<td>- Bereiche, in denen elektrische Geräte und Teile betrieben werden.</td>
</tr>
<tr>
<td>- Bereiche, in denen elektrische Geräte mit Permanentmagneten gelagert, montiert, bedient oder repariert werden.</td>
</tr>
<tr>
<td>Beim Arbeiten an der elektrischen Maschine besteht die Gefahr eines Stromschlags. Verwenden Sie isolierte elektrische Werkzeuge.</td>
</tr>
<tr>
<td>Nur geschultes und qualifiziertes Personal, das mit den entsprechenden Sicherheitsanforderungen vertraut ist, darf Arbeiten an der elektrischen Maschine ausführen.</td>
</tr>
<tr>
<td>Tragen Sie in der Nähe der elektrischen Maschine die erforderliche persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td>Lesen Sie die Anweisungen in diesem Handbuch durch, bevor Sie die elektrische Maschine installieren.</td>
</tr>
</tbody>
</table>

Erforderliche Werkzeuge

Die folgenden Werkzeuge sind für die Installation der elektrischen Maschine erforderlich:

- Fettpumpe.
- Ratschen-Drehmomentschlüssel.
- Sechskant-Schraubenschlüsselsatz in verschiedenen metrischen Größen.
- Steckschlüsselsatz in verschiedenen metrischen Größen.
- Abisolierzange.
- Crimpwerkzeug für Kabelschuhe. Die richtige Größe erfragen Sie beim Kabelschuhhersteller.
- Hebegurte mit einer ausreichenden Nennkapazität.
6. Installation

Prüfung des Isolationswiderstands

Berühren Sie die elektrische Maschine nicht während der Prüfung des Isolationswiderstands. Entladen Sie die Maschine anschließend.

Mechanische Installation

Zulässige Montagepositionen

Abbildung 14. Zulässige horizontale Montageposition der elektrischen Maschine, Montageoption 2

Die elektrische Maschine mit Option MDV ist für die vertikale Montage vorgesehen, eine horizontale Montage ist nicht zulässig. Der zulässige vertikale Montagewinkel beträgt +/-30°, siehe Abbildung Vertikale Montage der Maschine.
6. Installation

Montage der elektrischen Maschine

2. Die elektrische Maschine wird von ihrem antriebsseitigen Flansch (SAE-1/2-Getriebegehäuseflansch) aus montiert. Das SAE-1/2-Schwungradgehäuse ist als Gegenflansch erforderlich. Die Montagefußschiene an der Seite der elektrischen Maschine (vier Stück) lassen sich ebenfalls für die Montage nutzen.

4. Verbinden Sie die Welle der elektrischen Maschine, achten Sie darauf, dass die Zähne vollständig eingreifen. Schmieren Sie die Verzahnung.

Die in Dokument DOC-000454 für die Welle berechneten maximalen Axial- und Radialkräfte sind keinesfalls zu überschreiten.

Die elektrische Maschine darf nicht an der Nicht-Antriebsseite montiert werden.

Informationen zu den korrekten Montagepositionen der elektrischen Maschine sind dem Kapitel Zulässige Montagepositionen zu entnehmen.

6. Installation

5. Bringen Sie die Montageschrauben an. Für Stahlgehäuse beträgt die minimale Schraubenlänge 40 mm und für Aluminiumgehäuse 45 mm.

Für Schrauben an der Antriebseite beträgt das Anzugsmoment 69 Nm. Die Nicht-Antriebseite der elektrischen Maschine ist nicht für die Montage vorgesehen.

Abbildung 16. Mechanische Montageverbindungen der elektrischen Maschine (horizontale Montage)

Vertikale Montage

Für die vertikale Montage führen Sie die Schritte aus dem vorangehenden Kapitel „Horizontale Montage“ aus.
Abbildung 17. Mechanische Montageverbindungen der elektrischen Maschine (vertikale Montage)

1 Montage der Fußschiene(n) (4 im 90°-Winkel kreisförmig um den Rahmen angeordnete Schienen).
2 Bohrungen für Hebeösen, Nicht-Antriebsseite.
3 Antriebsseitiger Flansch (SAE 1/2) und Schraubenbohrungen für die Montage der Maschine (12 Stück).
4 Welle der Maschine; Verzahnungsstruktur der Welle (DIN5480 W55x2x30x26x8a).
5 Montageschrauben (12 Stk DIN912 M12, Innensechskantschraube). Nicht im Lieferumfang enthalten.

Kühlmittelanschlüsse

Stellen Sie sicher, dass die Kühlflüssigkeit ungehindert durch die Maschine fließen kann.

6. Installation

Es empfiehlt sich, einen Kühlmittelstecker mit O-Ring-Dichtung oder eine Dichtungsscheibe (z. B. Usit- oder Bonded-Dichtungen) in der Verbindung zu verwenden. Zusätzlich empfiehlt es sich, Gewindedichtmittel (Loctite 577 oder ein vergleichbares Produkt) an den Kühlmittelanschlüssen aufzutragen, um ein Lockern der Verbindungen zu verhindern. Ursachen für das Lockern der Verbindungen können Vibrationen oder Temperaturschwankungen sein.

Sie können das Temperatursignal an den Temperaturüberwachungskontakt am Wechselrichter (EC-C) anschließen. Stellen Sie sicher, dass die Maschinentemperaturschutzfunktion am Wechselrichter aktiviert ist.

Elektrische Installation

Stromanschlüsse

Hochspannungsanschluss

Gefahr eines Stromschlags, wenn die Verteilerbox geöffnet ist. Stellen Sie bei Arbeiten mit Stromanschlüssen sicher, dass die Stromversorgung unterbrochen ist und die Welle sich nicht drehen kann.

Die Hochspannungskabel der elektrischen Maschine werden an die Verteilerbox(en) der Maschine angeschlossen. Die nachfolgende Abbildung zeigt die Bauteile der Hochspannungsverteilerbox.

1. Entfernen Sie die Abdeckung des Klemmenkastens.
2. Schließen Sie die Leistungskabel gemäß Schaltplan an.
Abbildung 18. Konstruktion der Hochspannungsverteilungsbaugruppe

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Montageschrauben (7 Stück) für die Abdeckung</td>
</tr>
<tr>
<td>2</td>
<td>Abdeckplatte der Verteilerbox</td>
</tr>
<tr>
<td>3</td>
<td>Dichtung der Abdeckplatte der Verteilerbox</td>
</tr>
<tr>
<td>4</td>
<td>Montageschrauben (4 Stück) für Verteilerbox</td>
</tr>
<tr>
<td>5</td>
<td>Verteilerboxrahmen</td>
</tr>
<tr>
<td>6</td>
<td>Kabelverschraubungen (3 Stück/Verteilerbox)</td>
</tr>
<tr>
<td>7</td>
<td>Isolierungsplatte</td>
</tr>
<tr>
<td>8</td>
<td>Phasenanschlusspunkte (L1, L2, L3) für eine Phase</td>
</tr>
<tr>
<td>9</td>
<td>Anschlussteil für Niederspannung (Messung) und Stillstandsheizung (siehe Kapitel „Niederspannungsanschlüsse (Messsignal) und Anschlüsse der Stillstandsheizung“)</td>
</tr>
<tr>
<td>10</td>
<td>Verteilerboxdichtung</td>
</tr>
</tbody>
</table>

Abbildung 19. Innenansicht der Maschinenverteilerbox

Die Positionen der Verteilerboxen der elektrischen Maschine sind vorgegeben; die Verteilerboxen können nicht gedreht oder untereinander ausgetauscht werden.

Lassen Sie die Abdeckplatte der Verteilerbox geöffnet, um mit der elektrischen Montage gemäß Kapitel Montage der Kabelverschraubungen und Netzanschluss fortzufahren.

Anschlussplan

Die elektrischen Maschinen sind für eine Stromversorgung und Steuerung durch dreiphasigen Wechselstrom vorgesehen, den ein oder mehrere Wechselrichter bereitstellen. Die elektrische Maschine ist nicht für den direkten Netzanschluss geeignet.

Die nachfolgende Abbildung zeigt das elektrische Anschlussdiagramm der Wechselrichter für eine elektrische Maschine mit Option DUAL (zwei dreiphasige Systeme).

Montage der Kabelverschraubungen und Netzanschluss

Verwenden Sie den richtigen Kabelverschraubungstyp für die verschiedenen Kabeldurchmesser. Diese sind der nachfolgenden Tabelle zu entnehmen.

<table>
<thead>
<tr>
<th>Kabelverschraubung</th>
<th>Kabeldurchmesser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35 mm²</td>
</tr>
<tr>
<td>Pflitsch blueglobe mstr225</td>
<td>x</td>
</tr>
<tr>
<td>Pflitsch blueglobe mstr232</td>
<td>x</td>
</tr>
</tbody>
</table>

1. Entfernen Sie das kleine hexagonale Stück vom blueglobe-Dichteinsatz, wie in der nachfolgenden Abbildung dargestellt.
6. Installation

Entfemem Sie den Kabelschirm noch nicht vollständig, und schneiden Sie nicht den Geflechtschirm des Kabels durch!

6. Installation

Abbildung 23. Kabel in die Verschraubungsbau gruppe

4. Wenn die Kabelverschraubung montiert ist, entfernen Sie das Schirmstück mit Länge A und schneiden Sie den Geflechtschirm (Abdeckung) 10 mm (Abstand C) vom unteren Ende der Verschraubung, wie in der Abbildung dargestellt.

Stellen Sie sicher, dass die Feder der Kabelverschraubung am Kabelschirm anliegt, bevor Sie den Geflechtschirm abschneiden.

Abbildung 24. Geflechtschirm abschneiden

6. Installation

Abbildung 25. Inneren Schirm schneiden

6. Führen Sie das Kabel in das Kabelschuhgehäuse und crimpen Sie den Kabelschuh zweimal an verschiedenen Stellen. Siehe nachfolgende Abbildung.

Abbildung 26. Kabelschuh verbinden

Der Schrumpfschlauch muss für einen Betriebstemperaturbereich von -40 °C bis 150 °C ausgelegt sein. Es empfiehlt sich selbstklebender Schrumpfschlauch.
6. Installation

Stellen Sie sicher, dass zwischen Kabelschuh und anderen metallischen Bauteilen, einschließlich des Kabelschirms, ein Luftspalt von mindestens 10 mm besteht. Wenn der Luftspalt kleiner ist, schützen Sie den Kabelschuh mit zusätzlicher Isolierungsschumpefschlauch.

Abbildung 27. Schrumpfschlauch

Abbildung 28. Kabelschuhanschluss an der Verteilerbox (dies ist lediglich ein Beispiel, die Verteilerbox kann anders aussehen)
6. Installation

Drehen Sie nicht das Gehäuse der Verschraubung! Indem Sie von der Kappe der Verschraubung aus anziehen, wird das Kabel in der Kabelverschraubung abgedichtet, und gleichzeitig wird die Kabelverschraubung mit dem richtigen Drehmoment an der Verteilerbox befestigt.

10. Ziehen Sie den Kabelschuh fest. Das Anzugsmoment beträgt 15 Nm.

11. Wiederholen Sie das Verfahren für die anderen Kabel und die andere Verteilerbox.

12. Stellen Sie sicher, dass die Reihenfolge der Phasenanschlüsse in der Verteilerbox korrekt ist, d. h., dass die zugehörigen Phasen zwischen Wechselrichter und Maschine verbunden sind (U, V, W entsprechen den Phasen L1, L2, L3).

Wenn Sie eine Stillstandsheizung anschließen müssen, können Sie die Verteilerbox geöffnet lassen. Siehe Kapitel „Stillstandsheizung“.

Prüfen Sie die Erdung der Abschirmung des Leistungskabels, siehe Kapitel Erdanschlüsse.

Niederspannungsanschlüsse

Verschließen Sie die nicht verwendeten Buchsen der Niederspannungssteckverbindung mit geeigneten Blindstopfen.

- DEUTSCH 0413-003-1605 (Größe 16)
- DEUTSCH 0413-204-2005 (Größe 20)

Abbildung 29. Position der Niederspannungssteckverbindungen in der Verteilerbox (Nicht-Antriebsseite der Maschine)
6. Installation

Abbildung 30. Pol-Konfiguration des Steckers Deutsch HD34-24-47PE

Tabelle 8. Pol-Konfiguration des Steckers Deutsch HD34-24-47PE

<table>
<thead>
<tr>
<th>Messung</th>
<th>Beschreibung</th>
<th>POL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 1</td>
<td>Temperatur 1, PT100 (P), Wicklungen</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Temperatur 1, PT100 (N), Wicklungen</td>
<td>46</td>
</tr>
<tr>
<td>Temperatur 2</td>
<td>Temperatur 2, PT100 (P), Wicklungen</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Temperatur 2, PT100 (N), Wicklungen</td>
<td>32</td>
</tr>
<tr>
<td>Temperatur 3</td>
<td>Temperatur 3, PT100 (P), Wicklungen</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Temperatur 3, PT100 (N), Wicklungen</td>
<td>31</td>
</tr>
<tr>
<td>Temperatur 4</td>
<td>Temperatur 4, PT100 (P), Wicklungen, Option TEMP4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Temperatur 4, PT100 (N), Wicklungen, Option TEMP4</td>
<td>29</td>
</tr>
<tr>
<td>Temperatur 5</td>
<td>Temperatur 5, PT100 (P), Wicklungen, Option TEMP4</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Temperatur 5, PT100 (N), Wicklungen, Option TEMP4</td>
<td>43</td>
</tr>
<tr>
<td>Temperatur 6</td>
<td>Temperatur 6, PT100 (P), Wicklungen, Option TEMP4</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Temperatur 6, PT100 (N), Wicklungen, Option TEMP4</td>
<td>16</td>
</tr>
<tr>
<td>Resolver COS_N</td>
<td>Resolver, RES_COS_N, integriert, berührungslos</td>
<td>35</td>
</tr>
</tbody>
</table>
6. Installation

Resolver COS_P	Resolver, RES_COS_P, integriert, berührungslos	20
Resolver SIN_N	Resolver, RES_SIN_N, integriert, berührungslos	36
Resolver SIN_P	Resolver, RES_SIN_P, integriert, berührungslos	21
Resolver EXCN	Resolver, EXCN, integriert, berührungslos	22
Resolver EXCP	Resolver, EXCP, integriert, berührungslos	10
Resolver-Schirmgefecht	Resolver, SHIELD/GROUND, integriert, berührungslos	34

Abbildung 31. Stecker für Lagertemperaturmessung (optional)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PT-100-Pol.</td>
</tr>
<tr>
<td>2</td>
<td>PT-100-Pol.</td>
</tr>
<tr>
<td>3</td>
<td>PT-100 Erdanschluss-Pol.</td>
</tr>
<tr>
<td>4</td>
<td>PT-100 Erdanschluss-Pol.</td>
</tr>
</tbody>
</table>

Erdanschlüsse

Die Erdanschlüsse am Rahmen der elektrischen Maschinen dienen der Schutzerdung; Signalkabel und Leistungskabelschirme verfügen über eigene Erdanschlüsse.

Für einen ordnungsgemäßen und sicheren Betrieb ist es wichtig, eine korrekte Erdung der Maschine und der damit verbundenen Kabelschirme zu gewährleisten. Die mittlere Hebebohrung der elektrischen Maschine lässt sich als Anschlusspunkt für die Erdung des Maschinengehäuses verwenden. Die Erdung des Niederspannungs(mess)signalkabels erfolgt über die Erdungs-/Schirmkontakte des Niederspannungssteckverbinders (Kontakte 1, 4, 5, 6 und 34), und die Erdung der Leistungskabel erfolgt über die Kabelverschraubungen in der Verteilerbox.
6. Installation

Abbildung 32. Erdanschluss des Maschinengehäuses, Schutzerdung

Abbildung 33. Erdanschlüsse für Niederspannungskabel
6. Installation

Abbildung 34. Leistungskabelerdung über Kabelverschraubung

Überprüfung der Erdung des Leistungskabelschirms

Die Erdung der Leistungskabelschirme erfolgt über die Kabelverschraubungen zur Verteilerbox und weiter zum Gehäuse der elektrischen Maschine. Vergewissern Sie sich nach der Montage der Kabelverschraubung und der Installation der Leistungskabel sowie jederzeit bei Bedarf, dass die Erdanschlüsse korrekt sind.

1. Schließen Sie eine Klemme des Messgeräts an den Kabelschirm eines Leistungskabels an (an der Wechselrichter-Seite des Kabels).
2. Schließen Sie die andere Klemme des Messgeräts am Kabelschirm eines anderen Leistungskabels an. Sie können auch den Erdanschluss des Maschinengehäuses für die Messung verwenden.
4. Schließen Sie die Messgeräteklemmen an den Schirm eines anderen Leistungskabels an und wiederholen Sie die Messung, bis Sie alle Kabel gemessen haben.

Prüfen der Erdung des Niederspannungskabelschirms (Messsignal)

Der Niederspannungskabelschirm (Messsignal) ist über den Erdanschluss/die Erdungskontakte geerdet, siehe Abbildung Erdung des Niederspannungskabelschirms. Vergewissern Sie sich nach der Installation sowie jederzeit bei Bedarf, dass die Erdanschlüsse korrekt sind.

2. Schließen Sie die andere Klemme des Messgeräts am Erdanschluss des Maschinengehäuses an.
Anschlüsse der Stillstandsheizung

Schalten Sie die elektrische Maschine nicht während des Betriebs der Stillstandsheizung ein.

Wasser, das im Gehäuse der elektrischen Maschine kondensiert, kann zum Ausfall oder zur Korrosion der Maschine führen. Dies ist häufig bei kühleren Temperaturen oder in Bereichen mit hoher Luftfeuchtigkeit der Fall, typischerweise in Meeresnähe, wenn die Maschine nicht verwendet wird.

Die elektrische Maschine lässt sich mit einer Stillstandsheizung ausstatten, um Kondensationsprobleme zu vermeiden. Das Heizgerät (+HEAT1) oder die Heizgeräte (+HEAT2) sind werkseitig montiert, siehe Abbildung Positionen der Heizgerätestecker. Das installierte Heizgerät darf nicht verwendet werden, wenn der Hauptschalter der Maschine eingeschaltet ist und die Maschine läuft.

Abbildung 35. Stecker der Stillstandsheizung

1. Stecker der Stillstandsheizung (in der Verteilerbox).
2. Eingang und Kabelverschraubung des Kabels der Stillstandsheizung.

Wenn die elektrische Maschine mit einer Stillstandsheizung ausgestattet ist, bei der Sie einen Fehler vermuten, wenden Sie sich an Ihren Danfoss-Ansprechpartner.
7. Betrieb

Nur geschultes und qualifiziertes Personal, das mit den entsprechenden Sicherheitsanforderungen vertraut ist, darf die elektrische Maschine bedienen.

Verwenden Sie die elektrische Maschine niemals ohne korrekt dimensioniertes und einwandfrei funktionierendes Kühlsystem. Um dauerhafte Schäden zu vermeiden, dürfen die maximale Betriebstemperatur, Stromstärke und Drehzahl der elektrischen Maschine nicht überschritten werden.

Die Oberfläche der elektrischen Maschine kann heiß werden. Berühren Sie die elektrische Maschine nicht während des Betriebs.

Einzugsgefahr! Berühren Sie die elektrische Maschine nicht während des Betriebs.

Schalten Sie die elektrische Maschine nicht während des Betriebs des Heizgeräts ein.

Tragen Sie in der Nähe der elektrischen Maschine die erforderliche persönliche Schutzausrüstung.

Lesen Sie die Anweisungen in diesem Handbuch durch, bevor Sie die elektrische Maschine installieren.

Betriebsbedingungen

Die elektrische Maschine muss bestimmungsgemäß und innerhalb der folgenden vom Hersteller angegebenen Grenzwerte betrieben werden:

- Belastung.
- Kühlung.
- Drehzahlbereich.
- Service-Intervall.
- Umgebungsbedingungen wie Temperatur und Feuchtigkeit.

Die elektrische Maschine ist für folgende Bedingungen ausgelegt:
7. Betrieb

- Grenzwerte für die Umgebungstemperatur: -40 °C bis +40 °C.
- Max. Höhe über dem Meeresspiegel: 2.000 m
- Maximale Kühlflüssigkeitstemperatur am Einlass des Kühlmittelkreises, siehe Produktionsblatt.
- Bei der Kühlflüssigkeit muss es sich um ein Wasser-Glykol-Gemisch mit einem Glykolanteil von maximal 50 % handeln. Siehe Kapitel Empfohlene Kühlmittel.

Wenn die Betriebsgrenzwerte der elektrischen Anlage überschritten werden, kontaktieren Sie bitte Ihren Danfoss-Ansprechpartner.

Zustandsüberwachung während des Betriebs

<table>
<thead>
<tr>
<th>Warnung</th>
<th>Die korrekte Überwachung der elektrischen Maschine während des Betriebs gewährleistet zuverlässigen Betrieb und die vorgesehene Lebensdauer.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wenn Sie Abweichungen vom Normalbetrieb feststellen, z. B. erhöhte Temperaturen, Geräusche oder Vibrationen, stoppen Sie die elektrische Maschine. Ermitteln Sie die Ursache der Abweichung und reparieren Sie die elektrische Maschine. Siehe auch Kapitel Fehlersuche.</td>
</tr>
<tr>
<td>Info</td>
<td>Die maximale Temperatur der Lager der elektrischen Maschine beträgt: 120 °C.</td>
</tr>
<tr>
<td>Info</td>
<td>Die maximale Temperatur der Wicklungen der elektrischen Maschine beträgt 150 °C.</td>
</tr>
</tbody>
</table>

Empfohlene Schmiermittel

| Warnung | Unterschiedlichen Schmierfette nicht mischen! Bezüglich anderer Schmierfette wenden Sie sich an SKF. |

Für jede elektrische Maschine bestehen eigene Empfehlungen zum Schmieren. Siehe dazu die Anweisungen auf dem Aufkleber auf der elektrischen Maschine oder wenden Sie sich an Danfoss.
7. Betrieb

Empfohlene Kühlmittel

<table>
<thead>
<tr>
<th>Tragen Sie bei Arbeiten mit Kühlmittel die erforderliche persönliche Schutzausrüstung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylenglykol ist ein toxisches Mittel. Vermeiden Sie Kontakt mit dem Kühlmittel.</td>
</tr>
</tbody>
</table>

Die elektrischen Maschinen sind für den Betrieb mit einem wasserbasierten Kühlmittel vorgesehen. Gewöhnliches Wasser mit einem geeigneten Korrosionsinhibitor ist zulässig, beispielsweise 50 % Wasser und 50 % Glykol-Kühlmittel.

Weitere Optionen:
- Propylenglykol-basierte Kühlmittel, wie Splash* RV&Marine Antifreeze.
- Ethylenglykol-basiertes Glysantin® G48® (enthält auch Korrosionsinhibitoren).

Notbetrieb

Die elektrische Maschine muss innerhalb der Betriebsgrenzwerte und unter den vom Hersteller angegebenen Bedingungen betrieben werden. Sie lässt sich jedoch in folgenden Fehler-/Notfallsituationen eingeschränkt nutzen.

Ausfall der Kühlung der elektrischen Maschine

Das Kühlssystem kann aufgrund von Ablagerungen (Sedimenten) ausfallen, die sich in den Leitungen des Kühlssystems ansammeln. Versuchen Sie, eventuelle Verstopfungen zu beseitigen, indem Sie die Richtung des Kühlmitteldurchflusses ändern. Siehe Kapitel Wartung des Kühlssystems.

Wenn die Kühlung der elektrischen Maschine ausfällt, ist ein eingeschränkter Betrieb auch ohne Kühlmitteldurchfluss weiterhin möglich. Die Betriebsdrehzahl ist auf die Hälfte (1/2) der Nenndrehzahl zu begrenzen und es dürfen maximal 20 % des Nenndrehmoments verwendet werden. In einem solchen Fall darf die elektrische Maschine maximal eine Stunde lang weiter betrieben werden. Reparieren Sie das Kühlssystem so schnell wie möglich. Wenn Sie weitere Informationen benötigen, wenden Sie sich bitte an Ihren Danfoss-Ansprechpartner.

Ausfall der Temperaturmessung der elektrischen Maschine

Die PT100-Fühler in den Wicklungen der Maschine messen die Betriebstemperatur der elektrischen Maschine. Die Temperatursignale lassen sich über den Messanschluss der elektrischen Maschine auslesen und beispielsweise mit den Temperaturüberwachungskontakt des Wechselrichters verbinden. Fällt ein Fühler für die Temperaturmessung in der elektrischen Maschine aus, kann ein zusätzlicher Fühler PT100 nahe dem Ende der Wicklungen an der Öffnung des Niederspannungssteckers (Messsignal) im Inneren der Verteilerbox angebracht werden.
7. Betrieb

1. Entfernen Sie die Abdeckung der Verteilerbox.

2. Befestigen Sie einen zusätzlichen Temperaturfühler PT100 (mit Klebstoff) nahe am Ende der Wicklungen an der Öffnung, durch welche die Signalkabel in das Gehäuse der elektrischen Maschine geführt werden (im unteren Teil der Verteilerbox). Verwenden Sie Kunstharz/Klebstoff, der für die entsprechenden Temperaturen geeignet ist (Temperaturklasse auf dem Typenschild, Klasse F/155 °C).

3. Schließen Sie den Fühler PT100 an den Niederspannungsstecker an (ersetzen Sie den Anschluss des ausgefallenen Fühlers durch den neuen Anschluss).

4. Bringen Sie die Abdeckung der Verteilerbox wieder an.

Beim Ablesen der Temperaturwerte (Widerstand) des zusätzlichen Fühlers addieren Sie +15 °C zum gemessenen Wert. Dies ergibt eine präzisere Schätzung der Innentemperatur der Maschine. Im Fall eines Ausfalls der Temperaturmessung und der Verwendung eines zusätzlichen Temperaturfühlers tauschen Sie die elektrische Maschine so schnell wie möglich, aber nicht später als nach zwei Monaten, aus.

Wenden Sie sich an den Danfoss-Service.
8. Wartung

Dieses Kapitel enthält notwendige Informationen für das qualifizierte und geschulte Personal, um regelmäßige Wartungsarbeiten durchzuführen.

<table>
<thead>
<tr>
<th>Warnung</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Demontieren Sie die Maschine nicht. Ausschließlich die in diesem Handbuch beschriebenen Verfahren sind zulässig.</td>
</tr>
<tr>
<td>!</td>
<td>Nur geschultes und qualifiziertes Personal, das mit den entsprechenden Sicherheitsanforderungen vertraut ist, darf Wartungsarbeiten an der elektrischen Maschine ausführen.</td>
</tr>
<tr>
<td>!</td>
<td>Gefahr eines Stromschlags, wenn die Verteilerbox geöffnet ist. Die Stillstandsheizung kann mit der Spannungsversorgung verbunden sein.</td>
</tr>
<tr>
<td></td>
<td>Tragen Sie in der Nähe der elektrischen Maschine die erforderliche persönliche Schutzausrüstung.</td>
</tr>
<tr>
<td></td>
<td>Lesen Sie die Anweisungen in diesem Handbuch, bevor Sie mit den Arbeiten an der elektrischen Maschine beginnen. Um einen sicheren und zuverlässigen Betrieb der Maschine sicherzustellen, sind die Wartungsanweisungen genau zu befolgen.</td>
</tr>
</tbody>
</table>

Regelmäßige Wartung

<table>
<thead>
<tr>
<th>Hinweis</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Überprüfen Sie die Maschine in regelmäßigen Abständen. Nehmen Sie dazu die Checklisten für die regelmäßige Wartung zu Hilfe.</td>
</tr>
<tr>
<td></td>
<td>Versuchen Sie niemals, Bolzen oder Schrauben anzuziehen, die nicht in diesem Handbuch behandelt werden und die für die regulären Installations- und Wartungsverfahren nicht erforderlich sind. Die Dichtung der Schrauben und Bolzen kann brechen.</td>
</tr>
</tbody>
</table>

Eine korrekte Überwachung und Wartung der elektrischen Maschine gewährleistet den zuverlässigen Betrieb und die vorgesehene Lebensdauer.
8. Wartung

Tabelle 9. Wartungszeitplan

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Prüfung/Aufgabe</th>
<th>Wöchentlich</th>
<th>Monatlich</th>
<th>Jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Konstruktion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betrieb</td>
<td>Geräusche, Vibrationen. Bei einem deutlichen Anstieg wenden Sie sich an Danfoss.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lager</td>
<td>Prüfen Sie, ob ungewöhnliche Geräusche oder Vibrationen zu hören sind. Ist dies der Fall, wenden Sie sich an Danfoss.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wellendichtungen</td>
<td>Auf Verschleiß prüfen. Falls notwendig, austauschen.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kabel</td>
<td>Verschleiß der Kabel. Falls notwendig, austauschen.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrische Anschlüsse</td>
<td>Anschlüsse prüfen. Stellen Sie sicher, dass die Kabelverschraubungen mit dem erforderlichen Anzugsmoment angezogen sind. Siehe Kapitel Anzugsmomente.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Erdungen</td>
<td>Erdungen prüfen. Stellen Sie sicher, dass ein zulässiger Anschlusswiderstand besteht. Falls notwendig, neu anschließen.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stillstandsheizung</td>
<td>Prüfen Sie Anschlüsse und Widerstand der Stillstandsheizung, wenn diese Option installiert ist. Bei Bedarf wenden Sie sich an Danfoss.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühlsystem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betrieb</td>
<td>Funktionsfähigkeit. Das Kühlsystem funktioniert wie vorgesehen.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichtheit von Rohrleitungen und Anschlüssen</td>
<td>Keine Leckagen erkennbar. Im Fall von Leckagen die Anschlüsse sorgfältig anziehen oder Teile austauschen.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kühlmitteldurchfluss</td>
<td>Durchflussrichtung des Kühlmittels. Andern Sie die Richtung, indem Sie die Anschlüsse oder die Flussrichtung der Pumpe ändern. Siehe Kapitel Wartung des Kühlsystems.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schmierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachschmierung (Option BHS)</td>
<td>Je nach Nutzung nachschmieren (siehe Kapitel Lager und Schmierung), wenn die Option installiert ist. Das maximale Nachschmierintervall beträgt sechs Monate.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reinigung

Halten Sie die elektrische Maschine sauber. Verwenden Sie zur Reinigung ein nicht scheuerndes und nicht korrosives Reinigungsprodukt. Stellen Sie sicher, dass das Reinigungsmittel für Aluminium verwendet werden darf.

Wenn Sie die Maschine mit einem Hochdruckreiniger reinigen, achten Sie darauf, den Sprühstrahl nicht direkt auf die Dichtungen zu richten.

Beim Reinigen der Entlüftungsstopfen dürfen die Stopfen nicht geöffnet/entfernt werden. Reinigen Sie den Stecker nur von außen.
8. Wartung

Lager und Schmierung

Nachschmierbare Lager (Option BHS)

Die mechanische Lagerlebensdauer (nachschmierbare Lager) der Maschine ist unten dargestellt. Diese hängt von der Betriebstemperatur der Lager und der Drehzahl ab.

Der Ausdruck L_{10} bei den Angaben zur Lagerlebensdauer ist die Standardbezeichnung für die Lebensdauer und gibt den Zeitraum an, nach dessen Ablauf 90% der Lager weiterhin zuverlässig funktionieren. Nachschmierbare Lager (Option BHS) erfordern regelmäßige Schmierung. Dies beruht auf der begrenzten Lebensdauer des Schmiermittels (Schmierfett) unter Betriebsbedingungen; dieser Zeitraum ist kürzer als die eigentliche Lebensdauer der Lager.

Der Lagertyp für die elektrische Maschine mit Option BHS ist SKF 6214 C3 (nicht isolierte Lager) oder SKF 6214 C3 HC5 (isoliertes Lager). Zu den empfohlenen Schmiermitteln siehe Kapitel Empfohlene Schmiermittel.

Option dauerischmierte Lager (BGL)

Dauergeschmierte Lager (Option BGL) benötigen während ihrer Lebensdauer keine Nachschmierung.

Die Angaben zur Lagerlebensdauer und zur Lebensdauer des Lagerschmiermittels sind lediglich Näherungswerte. Die Lagerlebensdauer und die Lebensdauer des Lagerschmiermittels in den Anwendungen der Kunden können abweichen. Danfoss ist für die tatsächliche Lagerlebensdauer im praktischen Einsatz nicht verantwortlich. Falls Sie weitere Informationen erfordern, wenden Sie sich bitte an Danfoss.

Nachschmieren von Lagern

- **Achten Sie auf rotierende Teile. Berühren Sie die elektrische Maschine nicht während des Betriebs.**
- **Die Oberfläche der elektrischen Maschine kann heiß werden. Tragen Sie bei Arbeiten an der elektrischen Maschine Schutzausrüstung (hitzebeständige Handschuhe).**
- **Die Angaben zur Lagerlebensdauer und zur Lebensdauer des Lagerschmiermittels sind lediglich Schätzungen, um eine ungefähre Vorstellung zu geben. Die Lagerlebensdauer und die Lebensdauer des Lagerschmiermittels in den Anwendungen der Kunden können abweichen. Danfoss ist für die tatsächliche Lagerlebensdauer im praktischen Einsatz nicht verantwortlich. Wenn Sie weitere Informationen benötigen, wenden Sie sich bitte an Ihren Danfoss-Ansprechpartner.**
- **Das maximale Nachschmierintervall im Betrieb beträgt sechs Monate. Die Menge an Schmierfett beträgt pro Nachschmierung 20 g.**

Das Nachschmierintervall hängt von der verwendeten Drehzahl und der Lagertemperatur ab. Sie finden die Intervalle in der nachfolgenden Abbildung. Die unterschiedlichen Kurven stehen für die verschiedenen Lagertemperaturen. Je höher die Temperatur und je höher die Drehzahl, desto kürzer ist das Nachschmierintervall.
8. Wartung

Abbildung 36. Nachschmierintervall der Maschine (Option BHS) im Verhältnis zu Drehzahl und Lagertemperatur
8. Wartung

Abbildung 37. Nachschmierintervall der Maschine (Option BHS) im Verhältnis zu Drehzahl und Lagertemperatur, vertikale Montage

Weitere Informationen zur Position der Schmiernippel und der Austrittsöffnungen für das Schmierfett sind dem Kapitel Anschlüsse und Schnittstellen zu entnehmen.

Nachschmieren von Lagern:

1. Stellen Sie sicher, dass die Maschine ihre Betriebstemperatur erreicht hat.
2. Entfernen Sie die Stopfen von den Austrittsöffnungen des Schmierfetts.
3. Öffnen Sie die Stopfen der Schmiernippel.
4. Verwenden Sie einen Schmierkolben, um die angegebene Menge Schmierfett in den Schmiernippel einzubringen.
5. Lassen Sie die Maschine nach Möglichkeit eine Stunde laufen, bis das alte Fett ausgetreten ist. HINWEIS! Es ist normal, wenn kein Fett aus der elektrischen Maschine austritt. Dies liegt daran, dass die Hohlräume in der elektrischen Maschine eine große Menge Schmierfett aufnehmen können.
8. Wartung

Wartung des Kühl systems

Das Kühl system der elektrischen Maschine erfordert bestimmte regelmäßige Wartungsmaßnahmen.

9. Demontage

Stellen Sie sicher, dass die Anschlusskonstruktion nicht beschädigt ist. Reißen Sie nicht an Bohrungen und verwenden Sie keine Flachkopfschrauben oder Stangen, um die elektrische Maschine von der Anschlusskonstruktion zu trennen.

Zur Demontage der elektrischen Maschine führen Sie folgende Schritte aus:

3. Wenn Axialkraft erforderlich ist, verwenden Sie die Bohrungen an der Antriebsseite, um die elektrische Maschine von der Anschlusskonstruktion zu lösen.

Tabelle 10. Diagramm zur Fehlersuche und -behebung

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Mögliche Ursache</th>
<th>Abhilfemaßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übermäßige Vibrationen, Geräusche</td>
<td>Asymmetrie bei der angeschlossenen Maschine oder den Antriebsstrangkomponenten.</td>
<td>Prüfen Sie, ob Stellglied und Antriebsstrangkomponenten ausbalanciert und korrekt installiert sind.</td>
</tr>
<tr>
<td></td>
<td>Fehlausrichtung zwischen elektrischer Maschine und verwendetem Gerät.</td>
<td>Prüfen Sie Anschlüsse und Kupplungen.</td>
</tr>
<tr>
<td></td>
<td>Befestigungsschrauben sind locker.</td>
<td>Schrauben ersetzen oder anziehen.</td>
</tr>
<tr>
<td></td>
<td>Abstand bei der Verzahnung.</td>
<td>Verzahnung überprüfen.</td>
</tr>
<tr>
<td></td>
<td>Asymmetrie bei der elektrischen Maschine.</td>
<td>Danfoss kontaktieren.</td>
</tr>
<tr>
<td></td>
<td>Lagerschaden.</td>
<td>Zu viel Fett am Lagergehäuse (elektrische Maschine mit Option BHS).</td>
</tr>
<tr>
<td></td>
<td>Falsches Lagerschmierfett.</td>
<td>Sicherstellen, dass der richtige Schmierfett-Typ verwendet wurde.</td>
</tr>
<tr>
<td></td>
<td>Falsche radiale Lippendichtung.</td>
<td>Sicherstellen, dass der richtige Typ der radialen Lippendichtung verwendet wurde.</td>
</tr>
<tr>
<td></td>
<td>Überlastete Lager.</td>
<td>Sicherstellen, dass das System keine übermäßige Kraft oder Vibrationen auf die Maschinenlager ausübt.</td>
</tr>
<tr>
<td></td>
<td>Lagerschaden.</td>
<td>Wenden Sie sich für weitere Informationen an Danfoss.</td>
</tr>
</tbody>
</table>
10. Fehlerbehebung

<table>
<thead>
<tr>
<th>Überhitzung der elektrischen Maschine</th>
<th>Überlastung.</th>
<th>Last reduzieren. Modellbeschreibung und Typenschild der elektrischen Maschine überprüfen; Grenzwerte des Wechselrichters überprüfen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhebliche Schmiermittelleckage</td>
<td>Verschlissene radiale Lippendichtung.</td>
<td>Danfoss kontaktieren.</td>
</tr>
<tr>
<td>Elektrische Maschine funktioniert nicht korrekt oder die Leistung ist schlecht</td>
<td>Falsche Parameter der elektrischen Maschine im Wechselrichter.</td>
<td>Parameter der elektrischen Maschine des Wechselrichters prüfen und ggf. korrigieren.</td>
</tr>
<tr>
<td>Ausfall der Stillstands heizung</td>
<td>Das Heizgerät ist defekt.</td>
<td>Widerstand des Heizelements messen, siehe Kapitel „Anschlüsse der Stillstandsheizung“. Wenn das Heizgerät fehlerhaft ist, Danfoss kontaktieren.</td>
</tr>
</tbody>
</table>
11. Kundendienst

Servicerichtlinie

Wartung und Service der elektrischen Maschine beschränken sich auf die in diesem Handbuch beschriebenen Verfahren. Eine Liste der verfügbaren Ersatzteile finden Sie im nachfolgenden Kapitel Ersatzteile. Falls Sie weitere Informationen erfordern, wenden Sie sich bitte an Danfoss.

Ersatzteile

Abbildung 38. Empfohlene Ersatzteile
11. Kundendienst

<table>
<thead>
<tr>
<th>Teilenummer</th>
<th>Artikelnummer (Bestellnr.)</th>
<th>Menge</th>
<th>Beschreibung</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10945</td>
<td>1</td>
<td>Dichtung, O-Ring</td>
<td>208 X 4 NBR70</td>
</tr>
<tr>
<td>2</td>
<td>10974</td>
<td>1</td>
<td>Radiale Lippendichtung, Antriebseite</td>
<td>65 X 90 X 10 FKM, TRELLEBORG, TREB00650-VCBVR</td>
</tr>
<tr>
<td>3</td>
<td>10935</td>
<td>1</td>
<td>Lagers Anttriebseite, Rillenkugellager (nicht isoliert an Anttriebseite, Optionen B0 und B1)</td>
<td>SKF 6214 C3</td>
</tr>
<tr>
<td>3</td>
<td>11093</td>
<td>1</td>
<td>Lagers Anttriebseite, Rillenkugellager (isoliert an Anttriebseite, Optionen BID und BIA)</td>
<td>SKF 6214 C3 HCS (Hybridlager)</td>
</tr>
<tr>
<td>4</td>
<td>10242</td>
<td>1</td>
<td>Dichtung, O-Ring</td>
<td>T24,5 X 3 NBR70</td>
</tr>
<tr>
<td>5</td>
<td>10546</td>
<td>2</td>
<td>Schmierkopf (Antrieb- und Nicht-Antriebseite)</td>
<td>DIN 71412, M10 x 1</td>
</tr>
<tr>
<td>6</td>
<td>10473</td>
<td>6</td>
<td>Kabelverschraubung (Leistungsanschlüsse), DUAL (zwei Verteilerboxen)</td>
<td>MB2 X 1,5, BG PFLITSCH</td>
</tr>
<tr>
<td>7</td>
<td>10935</td>
<td>1</td>
<td>Lagers Nicht-Antriebseite, Rillenkugellager (nicht isoliert an Nicht-Antriebseite, Optionen B10 und B1)</td>
<td>SKF 6214 C3</td>
</tr>
<tr>
<td>7</td>
<td>11093</td>
<td>1</td>
<td>Lagers Nicht-Antriebseite, Rillenkugellager (isoliert an Nicht-Antriebseite, Optionen B10 und B1)</td>
<td>SKF 6214 C3 HCS (Hybridlager)</td>
</tr>
<tr>
<td>8</td>
<td>10451</td>
<td>1</td>
<td>Dichtung, O-Ring</td>
<td>T24,5 X 3 NBR70</td>
</tr>
<tr>
<td>9</td>
<td>10242</td>
<td>1</td>
<td>Dichtung, O-Ring</td>
<td>T24,5 X 3 NBR70</td>
</tr>
<tr>
<td>10</td>
<td>10349</td>
<td>7</td>
<td>Stopfen für Schmierfett-Auslassöffnung (Antrieb- und Nicht-Antriebseite) (horizontale und radiale Öffnungen)</td>
<td>M16 x 1,5, VST16X1.5 SED71</td>
</tr>
<tr>
<td>11</td>
<td>10358</td>
<td>1</td>
<td>Entlüftungsstopfen</td>
<td>PMF 100444 Metal Vent</td>
</tr>
</tbody>
</table>

Der Lagertyp hängt von der gewählten Lagerisolierungs-option ab.
12. Entsorgung

Entsorgen Sie die elektrische Maschine und alle zugehörigen Bauteile entsprechend den vor Ort geltenden Bestimmungen und Vorschriften.
13. Checklisten für Lagerung, Installation und Wartung

Checklisten für die Installation der elektrischen Maschine

Datum:

Tabelle 11. Maschinen- und Kundeninformationen

<table>
<thead>
<tr>
<th>Kunden*:</th>
<th>Maschinentyp (vom Typenschild):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kundenreferenz:</td>
<td>Seriennummer der Maschine:</td>
</tr>
<tr>
<td>Servicereferenz:</td>
<td>Datum der Installation:</td>
</tr>
</tbody>
</table>

N/A = Verfahren nicht anwendbar PASS = Verfahren erfolgreich FAIL = Verfahren fehlgeschlagen

Tabelle 12. Checkliste vor der Installation

<table>
<thead>
<tr>
<th>Allgemeines</th>
<th>Genehmigung</th>
<th>N/A</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinentyp ist korrekt</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Maschine ist unbeschädigt</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Prüfung des Isolationswiderstands</td>
<td>>150 MΩ</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Umgebungsbedingungen entsprechen den Vorgaben (siehe Datenblatt)</td>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Mechanische Installation

Tragkonstruktion wie erforderlich	☐	☐	☐	
Wellenausrichtung entspricht den Vorgaben (siehe Kapitel „Wellenausrichtung und -last“.)	☐	☐	☐	
Schraubenanzugsmoment für Befestigung an Antriebsseite	40 Nm	☐	☐	☐
Schraubenanzugsmoment für Befestigung an Nicht-Antriebsseite	30 Nm	☐	☐	☐
Kühlkreislauf angeschlossen, Kühlmittel flißt		☐	☐	☐
Verwendetes Kühlmittel:				

Stromanschlüsse

Kabelverschraubungsmontage entspricht den Vorgaben (Kabelverschraubung zu Kabeln), mit korrektem Kabeldurchmesser	☐	☐	☐	
Kabelschuh-Luftkappe (an metallische Strukturen)	≥10 mm	☐	☐	☐
Anzugsmoment Kabelverschraubung (zur Verteilerbox)	15 Nm	☐	☐	☐
Anzugsmoment Kabelschuh (zur Sammelschiene)	13 Nm	☐	☐	☐
Die Reihenfolge der Phasenanschlüsse ist korrekt (U, V, W -> L1, L2, L3)		☐	☐	☐
Anzugsmoment Schrauben Verteilerboxabdeckung	4 Nm	☐	☐	☐
13. Checklisten für Lagerung, Installation und Wartung

<table>
<thead>
<tr>
<th>Erfüllt</th>
<th>Zustimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Versuchen Sie niemals, Bolzen oder Schrauben anzuziehen, die nicht im Produkthandbuch behandelt werden und die für die regulären Installationsverfahren nicht erforderlich sind. Die Dichtung der Schrauben kann brechen.

Hinweise:
-
-
-
-
-
-
-
-
-
-

Unterschrift: Datum:
13. Checklisten für Lagerung, Installation und Wartung

Checklisten für die wöchentliche Wartung der elektrischen Maschine

Datum:

Tabelle 13. Maschinen- und Kundeninformationen

<table>
<thead>
<tr>
<th>Kunde:</th>
<th>Maschinentyp (vom Typenschild):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kundenreferenz:</td>
<td>Seriennummer der Maschine:</td>
</tr>
<tr>
<td>Servicereferenz:</td>
<td>Datum der Installation:</td>
</tr>
</tbody>
</table>

N/A = Verfahren nicht anwendbar PASS = Verfahren erfolgreich FAIL = Verfahren fehlgeschlagen

Tabelle 14. Checklisten für die wöchentliche Wartung der elektrischen Maschine

<table>
<thead>
<tr>
<th>Allgemeine Konstruktion</th>
<th>N/A</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geräusche oder Vibrationen während des Betriebs im Allgemeinen</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kühl��統</th>
<th>N/A</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion des KühlSYSTEMS im Allgemeinen</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Hinweise:
- -
- -
- -
13. Checklisten für Lagerung, Installation und Wartung

Checklisten für die monatliche Wartung der elektrischen Maschine

PWM:

Tabelle 15. Maschinen- und Kundeninformationen

<table>
<thead>
<tr>
<th>Kunde:</th>
<th>Maschinentyp (vom Typenschild):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kundenreferenz:</td>
<td>Seriennummer der Maschine:</td>
</tr>
<tr>
<td>Servicereferenz:</td>
<td>Datum der Installation:</td>
</tr>
</tbody>
</table>

N/A = Verfahren nicht anwendbar PASS = Verfahren erfolgreich FAIL = Verfahren fehlgeschlagen

Tabelle 16. Checklisten für die monatliche Wartung der elektrischen Maschine

<table>
<thead>
<tr>
<th>Allgemeine Konstruktion</th>
<th>N/A</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geräusche oder Vibrationen während des Betriebs im Allgemeinen</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Sauberkeit des Gehäuses und der angeschlossenen Teile</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elektrik</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschleiß der Kabel</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kühlsystem</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktion des Kühlsystems im Allgemeinen</td>
<td>☐</td>
</tr>
<tr>
<td>Dichtheit des Entlüftungsstopfens</td>
<td>☐</td>
</tr>
<tr>
<td>Sauberkeit des Entlüftungsstopfens</td>
<td>☐</td>
</tr>
</tbody>
</table>

Hinweise:

-
-
-
-
-
-
-
-
-
-
13. Checklisten für Lagerung, Installation und Wartung

Checklisten für die jährliche Wartung der elektrischen Maschine

Datum:

Tabelle 17. Maschinen- und Kundeninformationen

<table>
<thead>
<tr>
<th>Kunde:</th>
<th>Maschinentyp (vom Typenschild):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kundenreferenz:</td>
<td>Seriennummer der Maschine:</td>
</tr>
<tr>
<td>Servicerreferenz:</td>
<td>Datum der Installation:</td>
</tr>
</tbody>
</table>

N/A = Verfahren nicht anwendbar PASS = Verfahren erfolgreich FAIL = Verfahren fehlgeschlagen

Tabelle 18. Checklisten für die jährliche Wartung

<table>
<thead>
<tr>
<th>Allgemeine Konstruktion</th>
<th>Abnahme</th>
<th>N/A</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geräusche oder Vibrationen während des Betriebs im Allgemeinen</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Anzugsmoment der Montageschrauben</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schraubenanzugsmoment für Befestigung an Antriebseite</td>
<td>40 Nm</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Schraubenanzugsmoment für Befestigung an Nicht-Antriebseite</td>
<td>30 Nm</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Sauberkeit des Gehäuses und der angeschlossenen Teile</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elektrik</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschleiß der Kabel</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Elektrische Anschlüsse im Allgemeinen</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Anzugsmoment Kabelverschraubung (zur Verteilerbox)</td>
<td>15 Nm</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Anzugsmoment Kabelschuh (zur Sammelschiene)</td>
<td>13 Nm</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Anzugsmoment Schrauben Verteilerboxabdeckung</td>
<td>4 Nm</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kühlsystem</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Richtung des Kühlmitteldurchflusses geändert und Anschlüsse geprüft</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Kühlmittelqualität entspricht den Vorgaben</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Verwendetes Kühlmittel:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktion des Kühlsystems im Allgemeinen</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Dichtheit von Rohrleitungen und Anschlüssen (keine Leckagen)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Sauberkeit des Entlüftungsstopfens</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erdung</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Widerstände des Leistungskabelschirmanschlusses an Masse (Maschinengehäuse) geprüft</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Widerstände der Erdung des Niederspannungskabelschirms geprüft</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
13. Checklisten für Lagerung, Installation und Wartung

Versuchen Sie niemals, Bolzen oder Schrauben anzuziehen, die nicht im Produkthandbuch behandelt werden und die für die regulären Installationsverfahren nicht erforderlich sind. Die Dichtung der Schrauben kann brechen.

Eine Anleitung zur Reinigung finden Sie im Kapitel Reinigung.

Hinweise:

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
13. Checklisten für Lagerung, Installation und Wartung

Verwendete Ersatzteile

Tabelle 19.

<table>
<thead>
<tr>
<th>Beschreibung des Ersatzteils</th>
<th>Art des Ersatzteils</th>
<th>Menge</th>
<th>Artikelnr. (Bestellnr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hinweise:

-
-
-
-
-
-
-
-
-
-

Unterschrift:
Datum:

EM-PMI540-T2000
13. Checklisten für Lagerung, Installation und Wartung

Checklisten für die Lagerung der elektrischen Maschine

Datum:

Tabelle 20. Maschinen- und Kundeninformationen

<table>
<thead>
<tr>
<th>Kunde:</th>
<th>Maschinentyp (vom Typenschild):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kundenreferenz:</td>
<td>Seriennummer der Maschine:</td>
</tr>
<tr>
<td>Servicereferenz:</td>
<td>Datum der Installation:</td>
</tr>
</tbody>
</table>

Diese Checkliste zur Lagerung wird verwendet, wenn die elektrische Maschine eingelagert wird. Eine regelmäßige Überprüfung ist erforderlich. Angaben zur Lagerung finden Sie in diesem Benutzerhandbuch oder im Datenblatt.

Tragen Sie das Datum jeder Überprüfung in die nachfolgende Tabelle ein.

Tabelle 21. Checkliste für die Lagerung

<table>
<thead>
<tr>
<th>Vorgehensweise</th>
<th>Datum</th>
<th>Datum</th>
<th>Datum</th>
<th>Datum</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagerungsuntergrund entspricht den Vorgaben (keine Vibrationen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagertemperatur und -feuchte entsprechen den Vorgaben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maschinentyp und Seriennummer sind korrekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maschine ist korrekt abgestützt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welle wird gemäß den Vorgaben gedreht (10 Drehungen pro Monat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Produktangebot:

- Wegeventile (DCV)
- Elektrische Umrücker
- Elektrische Anlagen
- Elektromotoren
- Hydrostatische Motoren
- Hydrostatische Pumpen
- Orbitalmotoren
- PLUS+1®-Steuergeräte
- PLUS+1®-Bildschirme
- PLUS+1®-Joysticks und Fußhebel
- PLUS+1®-Bedienoberflächen
- PLUS+1®-Sensoren
- PLUS+1®-Software
- PLUS+1®-Software, Services, Support und Training
- Positionsregler und Sensoren
- PVG-Proportionalventile
- Lenkkomponenten und -systeme
- Telematik

Danfoss Power Solutions – Ihr stärkster Partner auf den Gebieten der Mobihydraulik und der mobilen Elektrifizierung.

Comatrol
www.comatrol.com

Turolla
www.turollaocg.com

Hydro-Gear
www.hydro-gear.com

Daikin-Sauer-Danfoss
www.daikin-sauer-danfoss.com

Adresse vor Ort:

Danfoss Power Solutions (US) Company
2800 East 13th Street
Aimes, IA 50010, USA
Phone: +1 515 239 6000

Danfoss Power Solutions GmbH & Co. OHG
Krokamp 25
D-24539 Neumünster, Germany
Phone: +49 4321 871 0

Danfoss Power Solutions ApS
Nordborgvej 61
DK-6430 Nordborg, Denmark
Phone: +45 7488 2222

Danfoss Power Solutions Trading (Shanghai) Co. Ltd.
Building #22, No. 1000 Jin Hai Rd
Jin Qiao, Pudong New District
Shanghai, China 201206
Phone: +86 21 3418 5200

© Danfoss