APP-Pumpen
APP 0,6–1,0/APP 1,5–3,5/
APP (W) 5,1–10,2/APP 11–13/
APP 16–22/APP 21–46
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Einführung ... 3</td>
</tr>
<tr>
<td>2.</td>
<td>Vorteile ... 3</td>
</tr>
<tr>
<td>3.</td>
<td>Anwendungsbeispiele .. 3</td>
</tr>
<tr>
<td>4.</td>
<td>Technische Daten .. 4</td>
</tr>
<tr>
<td>4.1</td>
<td>APP 0,6–1,0 .. 4</td>
</tr>
<tr>
<td>4.2</td>
<td>APP 1,5–3,5 ... 5</td>
</tr>
<tr>
<td>4.3</td>
<td>APP (W) 5,1–10,2 ... 6</td>
</tr>
<tr>
<td>4.4</td>
<td>APP 11–13 .. 7</td>
</tr>
<tr>
<td>4.5</td>
<td>APP 16–22 .. 8</td>
</tr>
<tr>
<td>4.6</td>
<td>APP 21–30 .. 9</td>
</tr>
<tr>
<td>4.7</td>
<td>APP 38–46 .. 10</td>
</tr>
<tr>
<td>5.</td>
<td>Durchfluss bei verschiedenen Upm ... 11</td>
</tr>
<tr>
<td>5.1</td>
<td>APP 0,6–1,0: Durchflusskennlinien bei 80 barg (1160 psig) 11</td>
</tr>
<tr>
<td>5.2</td>
<td>APP 1,5–3,5: Durchflusskennlinien bei 80 barg (1160 psig) 12</td>
</tr>
<tr>
<td>5.3</td>
<td>APP (W) 5,1–10,2: Durchflusskennlinien bei 80 barg (1160 psig) 13</td>
</tr>
<tr>
<td>5.4</td>
<td>APP 11–13: Durchflusskennlinien bei 60 barg (870 psig) 14</td>
</tr>
<tr>
<td>5.5</td>
<td>APP 16–22: Durchflusskennlinien bei 60 barg (870 psig) 15</td>
</tr>
<tr>
<td>5.6</td>
<td>APP 16–22: Durchflusskennlinien bei 60 barg (870 psig) 16</td>
</tr>
<tr>
<td>5.7</td>
<td>APP 21–30: Durchflusskennlinien bei 60 barg (870 psig) 17</td>
</tr>
<tr>
<td>5.8</td>
<td>APP 21–38: Durchflusskennlinien bei 60 barg (870 psig) 18</td>
</tr>
<tr>
<td>5.9</td>
<td>APP 46: Durchflusskennlinien bei 60 barg (870 psig) 19</td>
</tr>
<tr>
<td>6.</td>
<td>Spülventilkennlinien ... 20</td>
</tr>
<tr>
<td>6.1</td>
<td>APP 0,6–1,0 mit integriertem Spülventil 20</td>
</tr>
<tr>
<td>6.2</td>
<td>APP 1,5–3,5 mit integriertem Spülventil 20</td>
</tr>
<tr>
<td>6.3</td>
<td>APP 5,1–10,2 ohne Spülventil ... 21</td>
</tr>
<tr>
<td>6.4</td>
<td>APP 11–13 mit integriertem Spülventil 21</td>
</tr>
<tr>
<td>6.5</td>
<td>APP 16–22 mit integriertem Spülventil 21</td>
</tr>
<tr>
<td>6.6</td>
<td>APP 21–46 mit integriertem Spülventil 22</td>
</tr>
<tr>
<td>7.</td>
<td>Anforderungen an den Motor .. 23</td>
</tr>
<tr>
<td>7.1</td>
<td>Berechnungsfaktor für APP 0,6–1,0 .. 23</td>
</tr>
<tr>
<td>7.2</td>
<td>Berechnungsfaktor für APP 1,5–3,5 .. 23</td>
</tr>
<tr>
<td>7.3</td>
<td>Berechnungsfaktor für APP (W) 5,1–10,2 23</td>
</tr>
<tr>
<td>7.4</td>
<td>Berechnungsfaktor für APP 11–13 ... 23</td>
</tr>
<tr>
<td>7.5</td>
<td>Berechnungsfaktor für APP 16–22 ... 23</td>
</tr>
<tr>
<td>7.6</td>
<td>Berechnungsfaktor für APP 21–46 ... 23</td>
</tr>
<tr>
<td>8.</td>
<td>Temperatur und Korrosion .. 24</td>
</tr>
<tr>
<td>8.1</td>
<td>Betrieb ... 24</td>
</tr>
<tr>
<td>9.</td>
<td>Installation .. 24</td>
</tr>
<tr>
<td>9.1</td>
<td>Filtration ... 25</td>
</tr>
<tr>
<td>9.2</td>
<td>Umkehrosmose-Anlage mit direktem Zulauf 25</td>
</tr>
<tr>
<td>10.</td>
<td>Abmessungen und Anschlüsse .. 27</td>
</tr>
<tr>
<td>10.1</td>
<td>APP 0,6–1,0 ... 27</td>
</tr>
<tr>
<td>10.2</td>
<td>APP 1,5–3,5 ... 28</td>
</tr>
<tr>
<td>10.3</td>
<td>APP (W) 5,1–10,2 .. 29</td>
</tr>
<tr>
<td>10.4</td>
<td>APP 11–13 ... 30</td>
</tr>
<tr>
<td>10.5</td>
<td>APP 16–22 ... 31</td>
</tr>
<tr>
<td>10.6</td>
<td>APP 21–26 und APP 30/1500 .. 32</td>
</tr>
<tr>
<td>10.7</td>
<td>APP 30/1200 und APP 38–46 .. 33</td>
</tr>
<tr>
<td>11.</td>
<td>Abmessungen einschließlich Motoreinheit 34</td>
</tr>
<tr>
<td>11.1</td>
<td>APP 0,6–3,5 ... 34</td>
</tr>
<tr>
<td>11.2</td>
<td>APP (W) 5,1–10,2 .. 35</td>
</tr>
<tr>
<td>11.3</td>
<td>APP 11,0–13,0 ... 36</td>
</tr>
<tr>
<td>11.4</td>
<td>APP 16,0–22,0 ... 37</td>
</tr>
<tr>
<td>11.5</td>
<td>APP 21,0–38,0 ... 38</td>
</tr>
<tr>
<td>11.6</td>
<td>APP 46 .. 39</td>
</tr>
<tr>
<td>12.</td>
<td>Zubehör ... 40</td>
</tr>
<tr>
<td>12.1</td>
<td>Zubehör für APP (W) 5,1–10,2 ... 40</td>
</tr>
<tr>
<td>12.2</td>
<td>Zubehör für APP 11–13 .. 40</td>
</tr>
<tr>
<td>12.3</td>
<td>Zubehör für APP 16–22 .. 40</td>
</tr>
<tr>
<td>12.4</td>
<td>Zubehör für APP 21–46 .. 40</td>
</tr>
<tr>
<td>13.</td>
<td>Service .. 41</td>
</tr>
</tbody>
</table>
1. Einführung
Dieses Datenblatt gilt für APP Pumpen nicht ATEX und ATEX zertifiziert. ATEX zertifizierte Pumpen sind mit Ex in der Typenbezeichnung gekennzeichnet - Beispiel APP 0,6 Ex.

Die Produktreihe der Hochdruckpumpen APP von Danfoss ist gemäß der Norm DIN EN 809 für den Einsatz in Umkehromose-Anwendungen geeignet, die korrodierende Flüssigkeiten mit geringer Viskosität aufweisen wie z. B.:

- Meerwasser
- Brackwasser
- Abwasser (APP W)

Bei den APP-Pumpen von Danfoss handelt es sich um Verdrängerpumpen mit Axialkolben, die in jedem Arbeitszyklus eine bestimmte Wassermenge fördern. Der Durchfluss ist proportional zur Anzahl der Umdrehungen der Eingangswelle (Upm). Im Gegensatz zu Kreiselpumpen liefern Verdrängerpumpen bei einer festgelegten Drehzahl unabhängig vom Ausgangsdruck den gleichen Durchfluss.

Die Schnittzeichnung unten zeigt eine APP-Pumpe. Die Schnittzeichnungen der spezifischen Pumpengrößen sind in der Pumpenanleitung enthalten.

2. Vorteile

- Keine Verschmutzung durch Schmiermittel:
 - Schmiermittel auf Ölbasis werden durch das Fördermedium (Wasser) ersetzt, sodass seitens der Pumpe kein Verschmutzungsrisiko besteht.

- Niedrige Wartungskosten:

- Niedrige Energiekosten:
 - Die hocheffiziente Bauweise mit Axialkolben bietet im Vergleich zu ähnlichen Pumpen auf dem Markt den niedrigsten Energieverbrauch.

- Einfache Installation:
 - Es handelt sich um die kompakteste und leichteste Konstruktion, die derzeit verfügbar ist.
 - Die Pumpe kann sowohl senkrecht als auch horizontal eingebaut werden.

- Aufgrund äußerst geringer Druckschwankungen sind keine Pulsationsdämpfer erforderlich.

- Die Versorgung mit Strom erfolgt direkt über Elektro- oder Verbrennungsmotoren (mit spezieller Kupplung).

- Alle Pumpen (außer die APP (W) 5,1–10,2) weisen ein integriertes Spülvventil auf, das auch dann einen Durchfluss vom Eintritt zum Austritt sicherstellt, wenn die Pumpe nicht in Betrieb ist.

- Hohe Betriebssicherheit:
 - Alle Komponenten sind aus besonders korrosionsbeständigen Werkstoffen gefertigt wie z. B. Duplex-Stahl (EN 1.4462/UNS S31803/AISI 2205) und Super-Duplex-Stahl (EN 1.4410/UNS S32750/SAF 2207) und kohlefaserverstärktes PEEK.

- Zertifizierte Qualität:
 - Die Pumpen weisen folgende ATEX-Zertifizierungen auf: Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2.
 - Für andere Zertifizierungen siehe die Datenblätter für APP S (Super-Duplex-Stahl) und APP S 674 (API).
 - Ein PIM-Bericht (Positive Material Identification) ist auf Anfrage erhältlich.

3. Anwendungsbeispiele

APP-Pumpen von Danfoss finden weltweit in zahlreichen Umkehromose-Entsalzungsanlagen Anwendung:

- Containerlösungen für Hotels, Resorts und Eigenheime auf Inseln und in Küstenregionen
- Offshore-Plattformen für die Öl- und Gasindustrie
- Kommunale und regionale Wasserwerke

- Mobile Systeme für humanitäre und militärische Organisationen
- Bordsysteme für Schiffe und Yachten
- Kommunale und regionale Wasserwerke

© Danfoss | DCS (im) | 2019.07
Al274333290009de-000301 | 3
Technische Daten

4.1 APP 0,6–1,0

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP 0,6</th>
<th>APP 0,8</th>
<th>APP 1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>18083048</td>
<td>18083037</td>
<td>18083049</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX</td>
<td>18083148</td>
<td>18083137</td>
<td>18083149</td>
</tr>
<tr>
<td>Geometrisches Hubvolumen</td>
<td>cm³/U</td>
<td>in³/U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,07</td>
<td>5,08</td>
<td>6,30</td>
</tr>
<tr>
<td></td>
<td>0,25</td>
<td>0,31</td>
<td>0,38</td>
</tr>
<tr>
<td>Druck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. stetiger Ausgangsdruck</td>
<td>barg</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>1160</td>
<td>1160</td>
</tr>
<tr>
<td>Min. Ausgangsdruck</td>
<td>barg</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>290</td>
<td>290</td>
</tr>
<tr>
<td>Stetiger Eingangsdruck</td>
<td>barg</td>
<td>0,5–5</td>
<td>0,5–5</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>7,3–72,5</td>
<td>7,3–72,5</td>
</tr>
<tr>
<td>Max. Eingangsdruckspitze</td>
<td>barg</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>Drehzahl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. stetige Drehzahl</td>
<td>Upm</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Max. stetige Drehzahl</td>
<td>Upm</td>
<td>3450</td>
<td>3450</td>
</tr>
<tr>
<td>Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Upm bei max. Druck</td>
<td>m³/h</td>
<td>0,22</td>
<td>0,29</td>
</tr>
<tr>
<td>1500 Upm bei max. Druck</td>
<td>m³/h</td>
<td>0,34</td>
<td>0,43</td>
</tr>
<tr>
<td>1200 Upm bei max. Druck</td>
<td>gpm</td>
<td>1,18</td>
<td>1,52</td>
</tr>
<tr>
<td>1800 Upm bei max. Druck</td>
<td>gpm</td>
<td>1,78</td>
<td>2,28</td>
</tr>
<tr>
<td>Technische Spezifikationen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medientemperatur</td>
<td>°C</td>
<td>2–50</td>
<td>2–50</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>36–122</td>
<td>36–122</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>°C</td>
<td>0–50</td>
<td>0–50</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>32–122</td>
<td>32–122</td>
</tr>
<tr>
<td>Gewicht (trocken)</td>
<td>kg</td>
<td>5,2</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td>11,5</td>
<td>11,5</td>
<td>11,5</td>
</tr>
<tr>
<td>Schalldruckpegel, LpA 1 m</td>
<td>dB(A)</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>CO₂-Bilanz mit IEC-Motor</td>
<td>m²</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>ft²</td>
<td>1,08</td>
<td>1,08</td>
</tr>
<tr>
<td>Typische Motorgröße</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Drehzahl bei max. Druck</td>
<td>kW</td>
<td>2,2</td>
<td>3,0</td>
</tr>
<tr>
<td>3000 Upm bei max. Druck</td>
<td>HD</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Drehmoment bei max. Ausgangsdruck</td>
<td>Nm</td>
<td>5,8</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td>ft lbf</td>
<td>4,2</td>
<td>5,3</td>
</tr>
</tbody>
</table>

4 Wenden Sie sich für höhere und niedrigere Drucke bitte an Danfoss.
5 Bei Drehzahlen über 3000 Upm muss die Pumpe mit einem Vordruck von 2–5 barg (29–72,5 psig) betrieben werden.
6 Abhängig von der NaCl-Konzentration (siehe Kapitel 8)
7 Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
9 Maximaler von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsbereich der Pumpe)
4.2 APP 1,5–3,5

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP 1,5</th>
<th>APP 1,8</th>
<th>APP 2,2</th>
<th>APP 2,5</th>
<th>APP 3,0</th>
<th>APP 3,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>180B3043</td>
<td>180B3044</td>
<td>180B3045</td>
<td>180B3046</td>
<td>180B3030</td>
<td>180B3032</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX</td>
<td>180B3143</td>
<td>180B3144</td>
<td>180B3145</td>
<td>180B3146</td>
<td>180B3130</td>
<td>180B3132</td>
</tr>
</tbody>
</table>

| Geometrisches Hubvolumen cm³/U | 9,31 | 10,04 | 12,52 | 15,35 | 17,70 | 20,54 |
| Geometrisches Hubvolumen l/U | 0,57 | 0,61 | 0,76 | 0,94 | 1,08 | 1,25 |

Druck

- **Max. stetiger Ausgangsdruck**
 - barg: 80
 - psig: 1160
- **Min. Ausgangsdruck**
 - barg: 20
 - psig: 290
- **Stetiger Eingangsdruck**
 - barg: 0,5–5
 - psig: 7,3–72,5
- **Max. Eingangsdruckspitze**
 - barg: 10
 - psig: 145

Drehzahl

- **Min. stetige Drehzahl**
 - Upm: 700
- **Max. stetige Drehzahl**
 - Upm: 3450

Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt

1000 Upm bei max. Druck	m³/h	0,53	0,57	0,73	0,90	1,02	1,19
1500 Upm bei max. Druck	m³/h	0,79	0,86	1,09	1,34	1,54	1,79
1200 Upm bei max. Druck	gpm	2,80	3,03	3,83	4,73	5,41	6,30
1800 Upm bei max. Druck	gpm	4,19	4,55	5,75	7,09	8,12	9,46

Technische Spezifikationen

- **Medientemperatur**
 - °C: 2–50
 - °F: 36–122
- **Umgangsstemperatur**
 - °C: 0–50
 - °F: 32–122
- **Gewicht (trocken)**
 - kg: 8,6
 - lb: 17
- **Schalldruckpegel**
 - dB(A): 77
- **CO₂-Bilanz mit IEC-Motor**
 - m²: 0,15
 - ft²: 1,61

Typische Motorgröße

- **Max. Drehzahl bei max. Druck**
 - kW: 5,5
- **3000 Upm bei max. Druck**
 - HD: 7,5
- **Drehmoment bei max. Ausgangsdruck**
 - Nm: 13,0
 - ft lbf: 9,6

1) Wenden Sie sich für höhere und niedrigere Drücke bitte an Danfoss.
2) Um Drehzahlen über 3000 Upm zu erreichen, ist für die Pumpe ein Vordruck von 2–5 barg (29–72,5 psig) erforderlich.
3) Abhängig von der NaCl-Konzentration (siehe Kapitel 8)
4) Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
6) Maximaler von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsbereich der Pumpe)
4.3 APP (W) 5,1–10,2

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP (W) 5,1</th>
<th>APP (W) 6,5</th>
<th>APP (W) 7,2</th>
<th>APP (W) 8,2</th>
<th>APP (W) 10,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>180B3005</td>
<td>180B3006</td>
<td>180B3007</td>
<td>180B3008</td>
<td>180B3010</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX 4)</td>
<td>180B3105</td>
<td>180B3106</td>
<td>180B3107</td>
<td>180B3108</td>
<td>180B3110</td>
</tr>
<tr>
<td>Bestellnummer APP W</td>
<td>180B3075</td>
<td>180B3076</td>
<td>180B3077</td>
<td>180B3078</td>
<td>180B3080</td>
</tr>
<tr>
<td>Geometrisches Hubvolumen cm³/U</td>
<td>50,2</td>
<td>63,3</td>
<td>70,3</td>
<td>80,4</td>
<td>100,5</td>
</tr>
<tr>
<td>in³/U</td>
<td>3,06</td>
<td>3,86</td>
<td>4,29</td>
<td>4,91</td>
<td>6,13</td>
</tr>
</tbody>
</table>

Druck	Max. stetiger Ausgangsdruck 3)	barg	80	80	80	80	80
	psig	1160	1160	1160	1160	1160	
	Min. Ausgangsdruck 1)	barg	20	20	20	20	20
	psig	290	290	290	290	290	
	Stetiger Eingangsdruck	barg	0,5–5	0,5–5	0,5–5	0,5–5	0,5–5
	psig	7,3–72,5	7,3–72,5	7,3–72,5	7,3–72,5	7,3–72,5	
	Max. Eingangsdruckspitze	barg	5	5	5	5	5
	psig	72,5	72,5	72,5	72,5	72,5	

| Drehzahl | Min. stetige Drehzahl | Upm | 700 | 700 | 700 | 700 | 700 |
| | Max. stetige Drehzahl 2) | Upm | 1800 | 1800 | 1800 | 1800 | 1800 |

Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt

1000 Upm bei max. Druck	m³/h	2,79	3,57	4,01	4,62	5,83
1500 Upm bei max. Druck	m³/h	4,19	5,36	6,01	6,93	8,75
1200 Upm bei max. Druck	gpm	14,75	18,87	21,16	24,39	30,82
1800 Upm bei max. Druck	gpm	22,13	28,31	31,74	36,59	46,23

<table>
<thead>
<tr>
<th>Technische Spezifikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medientemperatur 11)</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
</tr>
<tr>
<td>Gewicht (trocken)</td>
</tr>
<tr>
<td>Schalldruckpegel 5)</td>
</tr>
<tr>
<td>CO₂-Bilanz mit IEC-Motor 6)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Typische Motorgröße

1200 Upm bei max. Druck	kW	15,0	18,5	22	22	30
Drehmoment bei max. Ausgangsdruck	Nm	70	81	98	112	141
	ft lbf	52	65	73	83	104

1) Wenden Sie sich für höhere und niedrigere Drücke bitte an Danfoss.
2) Bei Drehzahlen über 1500 Upm muss die Pumpe mit einem Vordruck von 2–5 barg (29–72,5 psig) betrieben werden.
3) Abhängig von der NaCl-Konzentration (siehe Kapitel 8)
4) Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
6) Maximaler von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsarbeitsbereich der Pumpe)
4.4 APP 11–13

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP 11/1200</th>
<th>APP 11/1500</th>
<th>APP 13/1200</th>
<th>APP 13/1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>180B3212</td>
<td>180B3211</td>
<td>180B3214</td>
<td>180B3213</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX</td>
<td>180B3222</td>
<td>180B3221</td>
<td>180B3224</td>
<td>180B3223</td>
</tr>
<tr>
<td>Geometrisches Hubvolumen</td>
<td>cm³/U</td>
<td>166,4</td>
<td>137,4</td>
<td>197,5</td>
</tr>
<tr>
<td>in³/U</td>
<td>10,15</td>
<td>8,38</td>
<td>12,05</td>
<td>10,15</td>
</tr>
</tbody>
</table>

Druck

<table>
<thead>
<tr>
<th></th>
<th>barg</th>
<th>psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. stetiger Ausgangsdruck</td>
<td>80</td>
<td>1160</td>
</tr>
<tr>
<td>Min. Ausgangsdruck</td>
<td>10</td>
<td>145</td>
</tr>
<tr>
<td>Stetiger Eingangsdruck</td>
<td>2–5</td>
<td>29–72,5</td>
</tr>
<tr>
<td>Max. Eingangsdruckspitze</td>
<td>10</td>
<td>145</td>
</tr>
</tbody>
</table>

Drehzahl

<table>
<thead>
<tr>
<th></th>
<th>Upm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. stetige Drehzahl</td>
<td>700</td>
</tr>
<tr>
<td>Max. stetige Drehzahl</td>
<td>1200</td>
</tr>
</tbody>
</table>

Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt

<table>
<thead>
<tr>
<th></th>
<th>m³/h</th>
<th>gpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 Upm bei max. Druck</td>
<td>9,22</td>
<td>48,71</td>
</tr>
<tr>
<td>1500 Upm bei max. Druck</td>
<td>7,50</td>
<td>39,61</td>
</tr>
<tr>
<td>1200 Upm bei max. Druck</td>
<td>11,07</td>
<td>58,51</td>
</tr>
</tbody>
</table>

Technische Spezifikationen

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
<th>°F</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medientemperatur</td>
<td>2–50</td>
<td>35,6–122</td>
<td>35,6–122</td>
<td>35,6–122</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>0–50</td>
<td>32–122</td>
<td>0–50</td>
<td>32–122</td>
</tr>
<tr>
<td>Gewicht (trocken)</td>
<td>kg</td>
<td>78</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>lb</td>
<td>172</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>Schalldruckpegel</td>
<td>dB(A)</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>CO₂-Bilanz mit IEC-Motor</td>
<td>m²</td>
<td>0,48</td>
<td>0,48</td>
<td>0,54</td>
</tr>
<tr>
<td></td>
<td>ft²</td>
<td>5,17</td>
<td>5,17</td>
<td>5,81</td>
</tr>
</tbody>
</table>

Typische Motorgröße

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Drehzahl bei max. Druck</td>
<td>30,0</td>
<td>1200 Upm bei max. Druck</td>
</tr>
<tr>
<td>Drehmoment bei max. Ausgangsdruck</td>
<td>Nm</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>ft lb</td>
<td>169</td>
</tr>
</tbody>
</table>

1) Wenden Sie sich für höhere und niedrigere Drücke bitte an Danfoss.
2) Abhängig von der NaCl-Konzentration (siehe Kapitel 8)
3) Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
5) Maximaler von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsbereich der Pumpe)
Datenblatt | Pumpen APP 0,6–46/APP (W) 5,1–10,2

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP 16/1200</th>
<th>APP 16/1500</th>
<th>APP 17/1200</th>
<th>APP 17/1500</th>
<th>APP 19/1200</th>
<th>APP 19/1500</th>
<th>APP 22/1200</th>
<th>APP 22/1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>18083254</td>
<td>18083250</td>
<td>18083255</td>
<td>18083251</td>
<td>18083256</td>
<td>18083252</td>
<td>18083257</td>
<td>18083253</td>
</tr>
<tr>
<td>Geometrisches Hubvolumen</td>
<td>cm³/U</td>
<td>234,6</td>
<td>188,3</td>
<td>253,3</td>
<td>197,5</td>
<td>272,3</td>
<td>219,7</td>
<td>310,6</td>
</tr>
<tr>
<td></td>
<td>m³/h</td>
<td>14,32</td>
<td>11,49</td>
<td>15,46</td>
<td>12,05</td>
<td>16,62</td>
<td>13,41</td>
<td>18,95</td>
</tr>
<tr>
<td>Pumpengröße</td>
<td>APP 16/1200</td>
<td>APP 16/1500</td>
<td>APP 17/1200</td>
<td>APP 17/1500</td>
<td>APP 19/1200</td>
<td>APP 19/1500</td>
<td>APP 22/1200</td>
<td>APP 22/1500</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX</td>
<td>18083264</td>
<td>18083260</td>
<td>18083265</td>
<td>18083261</td>
<td>18083266</td>
<td>18083262</td>
<td>18083267</td>
<td>18083263</td>
</tr>
<tr>
<td>Druck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. stetiger Ausgangsdruck</td>
<td>barg</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>1160</td>
<td>1015</td>
<td>1160</td>
<td>1015</td>
<td>1160</td>
<td>1015</td>
<td>1160</td>
</tr>
<tr>
<td>Min. Ausgangsdruck</td>
<td>barg</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>Stetiger Eingangsdruck</td>
<td>barg</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
</tr>
<tr>
<td>Max. Eingangsdruckspitze</td>
<td>barg</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>psig</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>Drehzahl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. stetige Drehzahl</td>
<td>Upm</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>Max. stetige Drehzahl</td>
<td>Upm</td>
<td>1200</td>
<td>1500</td>
<td>1200</td>
<td>1500</td>
<td>1200</td>
<td>1500</td>
<td>1200</td>
</tr>
<tr>
<td>Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Upm bei max. Druck</td>
<td>m³/h</td>
<td>13,38</td>
<td>10,67</td>
<td>14,57</td>
<td>11,25</td>
<td>15,71</td>
<td>12,55</td>
<td>18,06</td>
</tr>
<tr>
<td>1500 Upm bei max. Druck</td>
<td>m³/h</td>
<td>16,01</td>
<td>16,88</td>
<td></td>
<td></td>
<td>18,82</td>
<td></td>
<td>21,92</td>
</tr>
<tr>
<td>1200 Upm bei max. Druck</td>
<td>gpm</td>
<td>70,70</td>
<td>56,40</td>
<td>76,98</td>
<td>59,44</td>
<td>82,98</td>
<td>66,30</td>
<td>95,43</td>
</tr>
<tr>
<td>Technische Spezifikationen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medientemperatur</td>
<td>°C</td>
<td>2–50</td>
<td>2–50</td>
<td>2–50</td>
<td>2–50</td>
<td>2–50</td>
<td>2–50</td>
<td>2–50</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>°C</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
</tr>
<tr>
<td>Gewicht (trocken)</td>
<td>kg</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>lb</td>
<td>172</td>
<td>172</td>
<td>172</td>
<td>172</td>
<td>172</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>Schalldruckpegel</td>
<td>dB(A)</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>CO₂-Bilanz mit IEC-Motor</td>
<td>m²</td>
<td>0,54</td>
<td>0,58</td>
<td>0,59</td>
<td>0,59</td>
<td>0,76</td>
<td>0,76</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>ft²</td>
<td>5,81</td>
<td>6,26</td>
<td>6,35</td>
<td>6,35</td>
<td>8,18</td>
<td>8,18</td>
<td>8,61</td>
</tr>
<tr>
<td>Typische Motorgröße</td>
<td>Max. Drehzahl bei max. Druck</td>
<td>kW</td>
<td>37,0</td>
<td>37,0</td>
<td>45,0</td>
<td>55,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200 Upm bei max. Druck</td>
<td>HD</td>
<td>60,0</td>
<td>60,0</td>
<td>75,0</td>
<td>75,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drehmoment bei max. Ausgangsdruck</td>
<td>Nm</td>
<td>316</td>
<td>223</td>
<td>343</td>
<td>234</td>
<td>372</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ft lbf</td>
<td>233</td>
<td>165</td>
<td>253</td>
<td>173</td>
<td>275</td>
<td>194</td>
</tr>
</tbody>
</table>

1) Wenden Sie sich für höhere und niedrigere Drücke bitte an Danfoss.
2) Abhängig von der NaCl-Konzentration (siehe Kapitel III)
3) Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
5) Maximaler von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsbereich der Pumpe)
Datenblatt | Pumpen APP 0,6–46/APP (W) 5,1–10,2

4.6 APP 21–30

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP 21/1200</th>
<th>APP 21/1500</th>
<th>APP 24/1200</th>
<th>APP 24/1500</th>
<th>APP 26/1200</th>
<th>APP 26/1500</th>
<th>APP 30/1200</th>
<th>APP 30/1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>180B3051</td>
<td>180B3052</td>
<td>180B3054</td>
<td>180B3055</td>
<td>180B3056</td>
<td>180B3057</td>
<td>180B3060</td>
<td>180B3062</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX</td>
<td>180B3151</td>
<td>Auf Anfrage</td>
<td>180B3154</td>
<td>Auf Anfrage</td>
<td>180B3155</td>
<td>Auf Anfrage</td>
<td>Auf Anfrage</td>
<td>Auf Anfrage</td>
</tr>
</tbody>
</table>

Geometrisches Hubvolumen

<table>
<thead>
<tr>
<th>cm³/U</th>
<th>308,5</th>
<th>256</th>
<th>362</th>
<th>282</th>
<th>389</th>
<th>308,5</th>
<th>444</th>
<th>362</th>
</tr>
</thead>
<tbody>
<tr>
<td>in³/U</td>
<td>18,83</td>
<td>15,62</td>
<td>22,09</td>
<td>17,21</td>
<td>23,74</td>
<td>18,83</td>
<td>27,09</td>
<td>22,09</td>
</tr>
</tbody>
</table>

Druck

<table>
<thead>
<tr>
<th>Max. stetiger Ausgangsdruck</th>
<th>barg</th>
<th>80</th>
<th>80</th>
<th>80</th>
<th>80</th>
<th>80</th>
<th>80</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Ausgangsdruck</td>
<td>barg</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Stetiger Eingangsdruck</td>
<td>barg</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
<td>2–5</td>
</tr>
<tr>
<td>Max. Eingangsdruckspitze</td>
<td>barg</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
<td>29–72,5</td>
</tr>
</tbody>
</table>

Drehzahl

<table>
<thead>
<tr>
<th>Min. stetige Drehzahl</th>
<th>Upm</th>
<th>700</th>
<th>700</th>
<th>700</th>
<th>700</th>
<th>700</th>
<th>700</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. stetige Drehzahl</td>
<td>Upm</td>
<td>1200</td>
<td>1500</td>
<td>1200</td>
<td>1500</td>
<td>1200</td>
<td>1500</td>
<td>1200</td>
</tr>
</tbody>
</table>

Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt

<table>
<thead>
<tr>
<th>1000 Upm bei max. Druck</th>
<th>m³/h</th>
<th>17,80</th>
<th>14,80</th>
<th>21,02</th>
<th>16,36</th>
<th>22,47</th>
<th>17,86</th>
<th>26,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 Upm bei max. Druck</td>
<td>m³/h</td>
<td>22,20</td>
<td>24,54</td>
<td>26,79</td>
<td>31,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200 Upm bei max. Druck</td>
<td>gpm</td>
<td>94,07</td>
<td>78,18</td>
<td>111,03</td>
<td>86,43</td>
<td>118,71</td>
<td>94,37</td>
<td>137,64</td>
</tr>
</tbody>
</table>

Technische Spezifikationen

<table>
<thead>
<tr>
<th>Medientemperatur</th>
<th>°C</th>
<th>2–50</th>
<th>2–50</th>
<th>2–50</th>
<th>2–50</th>
<th>2–50</th>
<th>2–50</th>
<th>2–50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umgebungstemperatur</td>
<td>°C</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
<td>0–50</td>
</tr>
<tr>
<td>Gewicht (trocken)</td>
<td>kg</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Schalldruckpegel</td>
<td>dB(A)</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>CO₂-Bilanz mit IEC-Motor</td>
<td>m²</td>
<td>0,76</td>
<td>0,76</td>
<td>0,80</td>
<td>0,80</td>
<td>0,83</td>
<td>0,83</td>
<td>0,83</td>
</tr>
<tr>
<td>Drehzahl bei max. Druck</td>
<td>kW</td>
<td>55,0</td>
<td>75,0</td>
<td>55,0</td>
<td>75,0</td>
<td>75,0</td>
<td>75,0</td>
<td>90,0</td>
</tr>
<tr>
<td>1200 Upm bei max. Druck</td>
<td>HD</td>
<td>75,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>125,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drehmoment bei max. Ausgangsdruck</td>
<td>Nm</td>
<td>418</td>
<td>355</td>
<td>490</td>
<td>388</td>
<td>527</td>
<td>426</td>
<td>608</td>
</tr>
<tr>
<td>ft lbf</td>
<td>308</td>
<td>262</td>
<td>361</td>
<td>286</td>
<td>389</td>
<td>314</td>
<td>449</td>
<td>367,81</td>
</tr>
</tbody>
</table>

1) Wenden Sie sich für höhere und niedrigere Drücke bitte an Danfoss.
2) Abhängig von der NaCl-Konzentration (siehe Kapitel 8)
3) Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
5) Maximaler von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsbereich der Pumpe)
4.7 APP 38–46

<table>
<thead>
<tr>
<th>Pumpengröße</th>
<th>APP 38/1500</th>
<th>APP 46/1700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellnummer APP</td>
<td>180B3071</td>
<td>180B3072</td>
</tr>
<tr>
<td>Bestellnummer APP ATEX</td>
<td>Auf Anfrage</td>
<td>Nicht verfügbar</td>
</tr>
<tr>
<td>Geometrisches Hubvolumen</td>
<td>cm³/U 444</td>
<td>cm³/U 444</td>
</tr>
<tr>
<td></td>
<td>in³/U 27,09</td>
<td>in³/U 27,09</td>
</tr>
<tr>
<td>Druck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. stetiger Ausgangsdruck ¹</td>
<td>barg 80</td>
<td>barg 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Ausgangsdruck ¹</td>
<td>barg 10</td>
<td>barg 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stetiger Eingangsdruck</td>
<td>barg 2–5</td>
<td>barg 2,5/3,5–5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Eingangsdruckspitze</td>
<td>barg 10</td>
<td>barg 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drehzahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. stetige Drehzahl</td>
<td>Upm 700</td>
<td>Upm 700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. stetige Drehzahl ²</td>
<td>Upm 1500</td>
<td>1700/1780</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typischer Durchfluss – Durchflusskennlinien sind im Abschnitt 5 aufgeführt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Upm bei max. Druck</td>
<td>m³/h 26,20</td>
<td>m³/h 26,29</td>
</tr>
<tr>
<td>1500 Upm bei max. Druck</td>
<td>m³/h 39,30</td>
<td>m³/h 39,44</td>
</tr>
<tr>
<td>1200 Upm bei max. Druck</td>
<td>gpm 138,41</td>
<td>gpm 138,91</td>
</tr>
<tr>
<td>Technische Spezifikationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medientemperatur ²</td>
<td>°C 2–50</td>
<td>°C 2–50</td>
</tr>
<tr>
<td></td>
<td>°F 35,6–122</td>
<td>°F 35,6–122</td>
</tr>
<tr>
<td>Umgebungstemperatur</td>
<td>°C 0–50</td>
<td>°F 32–122</td>
</tr>
<tr>
<td></td>
<td>°F 32–122</td>
<td>°F 32–122</td>
</tr>
<tr>
<td>Gewicht (trocken)</td>
<td>kg 105</td>
<td>kg 105</td>
</tr>
<tr>
<td></td>
<td>lb 231</td>
<td>lb 231</td>
</tr>
<tr>
<td>Schalldruckpegel ⁴</td>
<td>dB(A) 85</td>
<td>dB(A) 85,3</td>
</tr>
<tr>
<td>CO₂-Bilanz mit IEC-Motor</td>
<td>m² 0,83</td>
<td>m² 1,10</td>
</tr>
<tr>
<td></td>
<td>ft² 8,93</td>
<td>ft² 11,84</td>
</tr>
<tr>
<td>Typische Motorgröße</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Drehzahl bei max. Druck</td>
<td>kW 110,0</td>
<td>kW 90,0</td>
</tr>
<tr>
<td>Drehmoment bei max. Ausgangsdruck</td>
<td>Nm 617</td>
<td>Nm 546</td>
</tr>
<tr>
<td></td>
<td>ft lb 455</td>
<td>ft lb 402</td>
</tr>
</tbody>
</table>

¹) Wenden Sie sich für höhere und niedrigere Drücke bitte an Danfoss.
²) Abhängig von der NaCl-Konzentration (siehe Kapitel 8)
³) Kategorie 2 für Zone 1 oder Kategorie 3 für Zone 2
⁵) Maximale von der empfohlenen Motorkonfiguration abgedeckter Bereich (ohne Wartungsbereich der Pumpe)
⁶) Für den Betrieb bei Drehzahl unter 1700 UPm, das min. Druck kann auf 2,5 barg reduziert werden.

[10] © Danfoss | DCS (im) | 2019.07

Al274333290009de-000301
5. Durchfluss bei verschiedenen Upm

Wenn ein bestimmter Durchfluss erforderlich und die Drehzahl (Upm) der Pumpe bekannt ist, ist es einfach, mithilfe der Diagramme unten diejenige Pumpe auszuwählen, die am besten für die Anwendung geeignet ist.

Zudem zeigen diese Diagramme, dass der Durchfluss verändert werden kann, indem die Drehzahl der Pumpe geändert wird. Der Durchfluss/das Drehzahlverhältnis ist konstant. Der erforderliche Durchfluss kann erreicht werden, indem der entsprechende Wert der Drehzahl verändert wird. Dadurch kann die erforderliche Drehzahl definiert werden als:

\[
\text{Erforderlicher Drehzahl} = \frac{\text{Erforderlicher Durchfluss} \times \text{Nenndrehzahl}}{\text{Nenndurchfluss}}
\]

5.1 APP 0,6–1,0: Durchflusskennlinien bei 80 barg (1160 psig)
5.2 APP 1,5–3,5: Durchflusskennlinien bei 80 barg (1160 psig)
5.3 APP (W) 5.1–10.2: Durchflussekennlinien bei 80 barg (1160 psig)

![Durchflussekennlinien für Pumpen APP (W) 5.1–10.2 bei 80 barg](image-url)

- APP (W) 10.2
- APP (W) 8.2
- APP (W) 7.2
- APP (W) 6.5
- APP (W) 5.1

Datenblatt | Pumpen APP 0,6–46/APP (W) 5,1–10,2
5.4 APP 11–13: Durchflusskennlinien bei 60 barg (870 psig)
5.5 APP 16–22: Durchflusskennlinien bei 60 barg (870 psig)
5.6 APP 16–22: Durchflusskennlinien bei 60 barg (870 psig)
5.7 APP 21–30: Durchflusskennlinien bei 60 barg (870 psig)

![Diagramm der Durchflusskennlinien für APP 21–30 bei 60 barg (870 psig)]
5.8 APP 21–38: Durchflusskennlinien bei 60 barg (870 psig)

![Datenblatt der Pumpen APP 0,6–46/APP (W) 5,1–10,2](image-url)
5.9 APP 46: Durchflusskennlinien bei 60 barg (870 psig)

Diagramme

- **Diagramm 1:**
 - **Y-Achse:** m³/h
 - **X-Achse:** rpm
 - Linie: APP 46/1780

- **Diagramm 2:**
 - **Y-Achse:** gpm
 - **X-Achse:** rpm
 - Linie: APP 46/1780
6 Spülventilkennlinien

Alle Pumpen (außer die APP (W) 5,1–10,2) haben ein integriertes Spülventil, das auch dann einen Durchfluss vom Eintritt zum Austritt sicherstellt, wenn die Pumpe nicht in Betrieb ist.

6.1 APP 0,6–1,0 mit integriertem Spülventil

![Graph: Pressure [barg] vs. Flow [l/min]]

6.2 APP 1,5–3,5 mit integriertem Spülventil

![Graph: Pressure [barg] vs. Flow [l/min]]
6.3 APP 5,1–10,2 ohne Spülventil

6.4 APP 11–13 mit integriertem Spülventil

6.5 APP 16–22 mit integriertem Spülventil
6.6 APP 21–46 mit integriertem Spülventil

![Diagram showing pressure vs. flow]
Die erforderliche Leistung kann mithilfe einer der folgenden Gleichungen berechnet werden:

\[
\text{Erforderliche Leistung} = \frac{l/min \times \text{ barg}}{16,7 \times m^3/h \times \text{ barg}} \times 0,35 \times \text{ gpm} \times \text{ psig}
\]

Berechnungsfaktor

<table>
<thead>
<tr>
<th>1 PS</th>
<th>= 0,75 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gpm</td>
<td>= 3,79 l/min</td>
</tr>
<tr>
<td>1 m³/h</td>
<td>= 4,40 gpm</td>
</tr>
<tr>
<td>1 kW</td>
<td>= 1,34 PS</td>
</tr>
<tr>
<td>1 l/min</td>
<td>= 0,26 gpm</td>
</tr>
<tr>
<td>1 gpm</td>
<td>= 0,23 m³/h</td>
</tr>
</tbody>
</table>

7.1 Berechnungsfaktor für APP 0,6–1,0

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Upm</th>
<th>Berechnungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 0,6</td>
<td>3450</td>
<td>496</td>
</tr>
<tr>
<td>APP 0,8</td>
<td>3450</td>
<td>509</td>
</tr>
<tr>
<td>APP 1,0</td>
<td>3450</td>
<td>512</td>
</tr>
</tbody>
</table>

7.2 Berechnungsfaktor für APP 1,5–3,5

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Upm</th>
<th>Berechnungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 1,5</td>
<td>3450</td>
<td>519</td>
</tr>
<tr>
<td>APP 1,8</td>
<td>3450</td>
<td>524</td>
</tr>
<tr>
<td>APP 2,2</td>
<td>3450</td>
<td>532</td>
</tr>
<tr>
<td>APP 2,5</td>
<td>3000</td>
<td>535</td>
</tr>
<tr>
<td>APP 3,0</td>
<td>3450</td>
<td>532</td>
</tr>
<tr>
<td>APP 3,5</td>
<td>3000</td>
<td>530</td>
</tr>
</tbody>
</table>

7.3 Berechnungsfaktor für APP (W) 5,1–10,2

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Upm</th>
<th>Berechnungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP (W) 5,1</td>
<td>1800</td>
<td>506</td>
</tr>
<tr>
<td>APP (W) 6,5</td>
<td>1800</td>
<td>514</td>
</tr>
<tr>
<td>APP (W) 7,2</td>
<td>1800</td>
<td>518</td>
</tr>
<tr>
<td>APP (W) 8,2</td>
<td>1800</td>
<td>523</td>
</tr>
<tr>
<td>APP (W) 10,2</td>
<td>1800</td>
<td>528</td>
</tr>
</tbody>
</table>

7.4 Berechnungsfaktor für APP 11–13

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Upm</th>
<th>Berechnungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 11</td>
<td>1200</td>
<td>513</td>
</tr>
<tr>
<td>APP 11</td>
<td>1500</td>
<td>502</td>
</tr>
<tr>
<td>APP 13</td>
<td>1200</td>
<td>516</td>
</tr>
<tr>
<td>APP 13</td>
<td>1500</td>
<td>505</td>
</tr>
</tbody>
</table>

7.5 Berechnungsfaktor für APP 16–22

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Upm</th>
<th>Berechnungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 16</td>
<td>1200</td>
<td>540</td>
</tr>
<tr>
<td>APP 16</td>
<td>1500</td>
<td>533</td>
</tr>
<tr>
<td>APP 17</td>
<td>1200</td>
<td>541</td>
</tr>
<tr>
<td>APP 17</td>
<td>1500</td>
<td>536</td>
</tr>
<tr>
<td>APP 19</td>
<td>1200</td>
<td>537</td>
</tr>
<tr>
<td>APP 19</td>
<td>1500</td>
<td>531</td>
</tr>
<tr>
<td>APP 22</td>
<td>1200</td>
<td>540</td>
</tr>
<tr>
<td>APP 22</td>
<td>1500</td>
<td>535</td>
</tr>
</tbody>
</table>

7.6 Berechnungsfaktor für APP 21–46

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Upm</th>
<th>Berechnungsfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 21</td>
<td>1200</td>
<td>543</td>
</tr>
<tr>
<td>APP 21</td>
<td>1500</td>
<td>531</td>
</tr>
<tr>
<td>APP 24</td>
<td>1200</td>
<td>547</td>
</tr>
<tr>
<td>APP 24</td>
<td>1500</td>
<td>537</td>
</tr>
<tr>
<td>APP 26</td>
<td>1200</td>
<td>543</td>
</tr>
<tr>
<td>APP 26</td>
<td>1500</td>
<td>534</td>
</tr>
<tr>
<td>APP 30</td>
<td>1200</td>
<td>545</td>
</tr>
<tr>
<td>APP 30</td>
<td>1500</td>
<td>540</td>
</tr>
<tr>
<td>APP 38</td>
<td>1500</td>
<td>541</td>
</tr>
<tr>
<td>APP 46</td>
<td>1780</td>
<td>537</td>
</tr>
</tbody>
</table>
8. Temperatur und Korrosion

8.1 Betrieb

Das Diagramm unten veranschaulicht die Korrosionsbeständigkeit unterschiedlicher Edelstahlsorten in Abhängigkeit der NaCl-Konzentration und der Temperatur.

Alle medienberührte Komponenten der APP-Pumpe sind aus Super-Duplex-Stahl gefertigt.

Wenn die Pumpe in Wasser mit hohem Salzgehalt betrieben wird, ist sie nach der Ausschaltung immer mit Süßwasser zu spülen, um das Risiko der Spaltkorrosion zu verringern.

9. Installation

Siehe die Abbildung unten für Informationen zum Montieren der Pumpen und zum Anschließen an einen Elektro- oder Verbrennungsmotor (spezielle Kupplung erforderlich).

Wenn eine alternative Montageart erforderlich ist, wenden Sie sich für weitere Informationen bitte an Ihren Danfoss-Vertreter.

Hinweis: Jede Axial- und Radiallast an der Pumpenwelle muss unbedingt vermieden werden.

A: Pumpe
B: Kupplungsglocke
C: Flexible Kupplung
D: Motorwelle
E: Motor
9.1 Filtration
Eine gute Filtration ist entscheidend für die Leistung, Wartung und Garantie Ihrer Pumpe. Schützen Sie Ihre Pumpe und die Anlage, in der sie installiert ist, indem Sie stets sicherstellen, dass die Filtrationspezifikationen eingehalten und die Filterpatronen gemäß dem Wartungsplan ausgetauscht werden.

Da Wasser eine geringe Viskosität aufweist, wurden die APP-Pumpen von Danfoss sehr kompakt konstruiert, um innere Leckraten zu begrenzen und die Leistung der Komponenten zu erhöhen.

Zum Geringhalten des Verschleißes an der Pumpe ist es daher besonders wichtig, dass das eintretende Wasser ordnungsgemäß gefiltert wird.

Der Hauptfilter muss mit einer Filterfeinheit von 10 µm eine Abscheideleistung von 99,98% aufweisen. Es wird nachdrücklich empfohlen, immer Präzisionstiefen-Filterpatronen einzusetzen, die über eine Filtereinheit von 10 µm abs., β₁₀ ≥ 5000 verfügen.

Beachten Sie bitte, dass BeutelfILTER oder Drahtgeflechtfilterpatronen nicht empfohlen werden, da diese in der Regel nur eine Abscheidende von 50% aufweisen. Das bedeutet, dass von 100.000 Schmutzpartikeln, die in solche Filter gelangen, 50.000 Partikel nicht herausgefiltert werden. Bei Präzisionstiefenfilterpatronen mit einer Abscheidende von 99,98% werden im Vergleich dazu nur 20 von den 100.000 Schmutzpartikeln durchgelassen.

Für weitere Informationen zur Bedeutung einer ordnungsgemäßen Filtration, einschließlich der Filtrationsverfahren, Definitionen und einer Filter-Wahlhilfe für Ihre Pumpe, ziehen Sie bitte unsere Filtrationsdokumentation und -spezifikationen zurate (Danfoss-Dokumentnummer 521B1009).

Geräuschpegel

Der Geräuschpegel wird durch folgende Faktoren beeinflusst:

- Drehzahl der Pumpe:
 Eine hohe Drehzahl führt im Vergleich zu einer niedrigeren Drehzahl aufgrund der höheren Frequenz zu mehr Flüssigkeitspulsationen, Körperschall und Vibrationen.

- Ausgangsdruck:
 Hoher Druck erzeugt mehr Geräusche als niedriger Druck.

- Pumpenmontage:
 Bei einer starren Montage werden durch die Körperschallquellen mehr Geräusche erzeugt als bei einer flexiblen Montage. Daher sind beim Montieren Dämpfer zu verwenden.

- Anschlüsse an die Pumpe:
 Durch direkten Zulauf an Rohre entstehen aufgrund der Körperschallquellen mehr Geräusche als bei flexiblen Schläuchen.

- Frequenzumrichter:
 Über Frequenzumrichter geregelte Motoren erzeugen mehr Geräusche, wenn der Frequenzumrichter nicht ordnungsgemäß eingestellt wurde.

9.2 Umkehrosmose-Anlage mit direktem Zulauf
Einlassleitung:

a) Bemessen Sie die Einlassleitung so, dass ein minimaler Druckverlust auftritt (hoher Durchfluss, minimale Rohränge, minimale Anzahl an Rohrbögen/Anschlüssen, Fittings mit geringen oder keinen Druckverlusten). Sofern erforderlich, ziehen Sie die Anleitung „Parallel gekoppelte Pumpen und iSaves“ (180R9354) zurate.

Einlassfilter:

Niederdruck-Sicherheitsventil:
c) Installieren Sie ein Niederdruck-Sicherheitsventil (9), um Beschädigungen des Systems oder der Pumpe zu vermeiden, wenn die Pumpe kurzzeitig ausgeschaltet wird oder sich rückwärts dreht.

Überwachungsdruckschalterm:

Schläuche:
Eingangsdruck:

f) Um das Risiko von Kavitation und anderen Pumpenschäden zu vermeiden, muss der Eingangsdruck der Pumpe immer den Spezifikationen in Abschnitt 4: Technische Daten entsprechen.

Spülventil:

g) Für ein einfaches Befüllen und Spülen des Systems ist in der APP-Pumpe (außer APP (W) 5,1–10,2) ein Spülventil (6) eingebaut.

Rückschlagventil:

h) Im Austritt kann ein Rückschlagventil (7) installiert werden, um ein Rückwärtslaufen der Pumpe zu vermeiden. Die Wassermenge im Membranbehälter fungiert als Akkumulator und lässt den Durchfluss zurückfließen, wenn die Pumpe kurzzeitig ausgeschaltet wird.

Hochdruck-Sicherheitsventil:

i) Da die APP-Pumpe von Danfoss unabhängig von einem Gegendruck direkt nach dem Einschalten Druck aufbaut und einen Durchfluss erzeugt, sollten Sie nach dem Rückschlagventil ein Sicherheitsventil (8) einbauen, um Beschädigungen des Systems und Hochdruckspitzen zu vermeiden.

Hinweis: Wenn ein Rückschlagventil in der Einlassleitung montiert wird, ist zwischen dem Rückschlagventil und der Pumpe auch ein Niederdruck-Sicherheitsventil als Schutz vor Hochdruckspitzen erforderlich.
10. Abmessungen und Anschlüsse

10.1 APP 0,6–1,0

Dimensions without tolerances acc. To ISO 2768–1 designation C.
10.2 APP 1,5–3,5

Beschreibung | APP 1,5–2,5
APP 3,0–3,5

Passfeder | 5 x 5 x 20 mm
0.2 x 0.2 x 0.79 inch

Entlüftung | M6 hex key 5 mm

Einlass | G 3/4"; depth 16 mm

Auslass | G 3/4"; depth 16 mm

Dimensions without tolerances acc. To ISO 2768-1 designation C.
10.3 APP (W) 5,1–10,2

Das Zubehör finden Sie im Abschnitt 12. Für weitere Informationen über das Zubehör wenden Sie sich bitte an die Vertriebsorganisation von Danfoss High Pressure Pumps.

Dimensions without tolerances acc. To ISO 2768-1 designation C.

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>APP 5,1–10,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passfeder</td>
<td>10 x 8 x 45 mm</td>
</tr>
<tr>
<td></td>
<td>0.39 x 0.31 x 1.77 inch</td>
</tr>
<tr>
<td>Entlüftung</td>
<td>M6 hex key 5 mm</td>
</tr>
<tr>
<td>Einlass</td>
<td>M42x1.5; depth 13 mm</td>
</tr>
<tr>
<td>Auslass</td>
<td>M42x1.5; depth 13 mm</td>
</tr>
<tr>
<td>Anschlussflansch</td>
<td>ISO 3019–2 125AHW</td>
</tr>
</tbody>
</table>
10.4 APP 11–13
Das Zubehör finden Sie im Abschnitt 12. Für weitere Informationen über das Zubehör wenden Sie sich bitte an die Vertriebsorganisation von Danfoss High Pressure Pumps.

Dimensions without tolerances acc. to ISO 2768–1 designation C.
10.5 APP 16–22

Das Zubehör finden Sie im Abschnitt 12. Für weitere Informationen über das Zubehör wenden Sie sich bitte an die Vertriebsorganisation von Danfoss High Pressure Pumps.

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>APP 16–22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passfeder</td>
<td>12 x 8 x 70 mm</td>
</tr>
<tr>
<td></td>
<td>0.47 x 0.31 x 2.76 inch</td>
</tr>
<tr>
<td>Entlüftung</td>
<td>G 1/4", hex key 6 mm</td>
</tr>
<tr>
<td>Einlass</td>
<td>M52x1.5; depth 21 mm</td>
</tr>
<tr>
<td>Auslass</td>
<td>M52x1.5; depth 21 mm</td>
</tr>
<tr>
<td>Erdungsverbindung</td>
<td>M6, depth 8 mm</td>
</tr>
<tr>
<td>Temperatur Sensor</td>
<td>M6, depth 8 mm</td>
</tr>
</tbody>
</table>

Dimensions without tolerances acc. to ISO 2768–1 designation C.
10.6 APP 21-26 und APP 30/1500

Das Zubehör finden Sie im Abschnitt 12. Für weitere Informationen über das Zubehör wenden Sie sich bitte an die Vertriebsorganisation von Danfoss High Pressure Pumps.

Dimensions without tolerances acc. to ISO 2768-1 designation C.
10.7 APP 30/1200 und APP 38–46

Das Zubehör finden Sie im Abschnitt 12. Für weitere Informationen über das Zubehör wenden Sie sich bitte an die Vertriebsorganisation von Danfoss High Pressure Pumps.

Dimensions without tolerances acc. to ISO 2768–1 designation C.

<table>
<thead>
<tr>
<th>Description</th>
<th>APP 38+/APP 43+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel key, DIN 6885</td>
<td>12 x 8 x 70 mm</td>
</tr>
<tr>
<td></td>
<td>0.47 x 0.31 x 2.76 inch</td>
</tr>
<tr>
<td>Bleed</td>
<td>G 1/4", hex key 6 mm</td>
</tr>
<tr>
<td>Inlet port</td>
<td>M6 x 1.5; depth 23 mm</td>
</tr>
<tr>
<td>Outlet port</td>
<td>M6 x 1.5; depth 23 mm</td>
</tr>
<tr>
<td>Grounding connection</td>
<td>M8, depth 11 mm</td>
</tr>
<tr>
<td>Thermal sensor</td>
<td>M6, depth 11 mm</td>
</tr>
</tbody>
</table>
11. Abmessungen einschließlich Motoreinheit

11.1 APP 0,6–3,5

<table>
<thead>
<tr>
<th>Pumpe</th>
<th>A mm (Zoll)</th>
<th>B mm (Zoll)</th>
<th>C mm (Zoll)</th>
<th>D mm (Zoll)</th>
<th>E mm (Zoll)</th>
<th>F mm (Zoll)</th>
<th>G mm (Zoll)</th>
<th>H mm (Zoll)</th>
<th>IEC-Elektromotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 0,6</td>
<td>200 (7,87)</td>
<td>245 (9,64)</td>
<td>90 (3,54)</td>
<td>140 (5,51)</td>
<td>100 (3,94)</td>
<td>265 (10,43)</td>
<td>100 (3,94)</td>
<td>131 (5,16)</td>
<td>1,5 kW, IEC 90S-2</td>
</tr>
<tr>
<td>APP 0,8</td>
<td>200 (7,87)</td>
<td>245 (9,64)</td>
<td>90 (3,54)</td>
<td>140 (5,51)</td>
<td>125 (4,92)</td>
<td>290 (11,42)</td>
<td>100 (3,94)</td>
<td>131 (5,16)</td>
<td>2,2 kW, IEC 90L-2</td>
</tr>
<tr>
<td>APP 1,0</td>
<td>250 (9,84)</td>
<td>260 (10,23)</td>
<td>100 (3,94)</td>
<td>160 (6,30)</td>
<td>140 (5,51)</td>
<td>325 (12,80)</td>
<td>120 (4,72)</td>
<td>131 (5,16)</td>
<td>3,0 kW, IEC 100L-2</td>
</tr>
<tr>
<td>APP 1,5</td>
<td>250 (9,84)</td>
<td>260 (10,23)</td>
<td>100 (3,94)</td>
<td>160 (6,30)</td>
<td>140 (5,51)</td>
<td>325 (12,80)</td>
<td>120 (4,72)</td>
<td>166 (6,54)</td>
<td>3,0 kW, IEC 100L-2</td>
</tr>
<tr>
<td>APP 1,8</td>
<td>250 (9,84)</td>
<td>290 (11,42)</td>
<td>112 (4,41)</td>
<td>190 (7,48)</td>
<td>140 (5,51)</td>
<td>340 (13,39)</td>
<td>120 (4,72)</td>
<td>166 (6,54)</td>
<td>4,0 kW, IEC 112M-2</td>
</tr>
<tr>
<td>APP 2,2</td>
<td>300 (11,81)</td>
<td>338 (13,31)</td>
<td>132 (5,20)</td>
<td>216 (8,50)</td>
<td>140 (5,51)</td>
<td>403 (15,87)</td>
<td>144 (5,67)</td>
<td>166 (6,54)</td>
<td>5,5 kW, IEC 132S1-2</td>
</tr>
<tr>
<td>APP 2,5</td>
<td>300 (11,81)</td>
<td>338 (13,31)</td>
<td>132 (5,20)</td>
<td>216 (8,50)</td>
<td>178 (7,01)</td>
<td>403 (15,87)</td>
<td>144 (5,67)</td>
<td>166 (6,54)</td>
<td>7,5 kW, IEC 132S2-2</td>
</tr>
<tr>
<td>APP 3,0</td>
<td>350 (13,78)</td>
<td>422 (17,40)</td>
<td>160 (6,30)</td>
<td>254 (10,00)</td>
<td>210 (8,27)</td>
<td>505 (19,88)</td>
<td>188 (7,40)</td>
<td>166 (6,54)</td>
<td>11 kW, IEC 160M1-2</td>
</tr>
<tr>
<td>APP 3,5</td>
<td>350 (13,78)</td>
<td>422 (17,40)</td>
<td>160 (6,30)</td>
<td>254 (10,00)</td>
<td>210 (8,27)</td>
<td>505 (19,88)</td>
<td>188 (7,40)</td>
<td>166 (6,54)</td>
<td>11 kW, IEC 160M1-2</td>
</tr>
</tbody>
</table>
11.2 APP (W) 5,1–10,2

<table>
<thead>
<tr>
<th>Pumpe</th>
<th>A mm (Zoll)</th>
<th>B mm (Zoll)</th>
<th>C mm (Zoll)</th>
<th>D mm (Zoll)</th>
<th>E mm (Zoll)</th>
<th>F mm (Zoll)</th>
<th>IEC-Elektromotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 5,1</td>
<td>350 (13,78)</td>
<td>437 (17,20)</td>
<td>160 (6,30)</td>
<td>254 (10,0)</td>
<td>210 (8,27)</td>
<td>498 (19,61)</td>
<td>11 kW, IEC 160 M-4</td>
</tr>
<tr>
<td>APP 6,5</td>
<td>350 (13,78)</td>
<td>437 (17,20)</td>
<td>160 (6,30)</td>
<td>254 (10,0)</td>
<td>254 (10,0)</td>
<td>542 (21,34)</td>
<td>15 kW, IEC 160 L-4</td>
</tr>
<tr>
<td>APP 7,2</td>
<td>350 (13,78)</td>
<td>437 (17,20)</td>
<td>160 (6,30)</td>
<td>254 (10,0)</td>
<td>254 (10,0)</td>
<td>542 (21,34)</td>
<td>15 kW, IEC 160 L-4</td>
</tr>
<tr>
<td>APP 8,2</td>
<td>350 (13,78)</td>
<td>473 (18,62)</td>
<td>180 (7,09)</td>
<td>279 (10,98)</td>
<td>241 (9,49)</td>
<td>578 (22,76)</td>
<td>18,5 kW, IEC 180 M-4</td>
</tr>
<tr>
<td>APP 10,2</td>
<td>350 (13,78)</td>
<td>473 (18,62)</td>
<td>180 (7,09)</td>
<td>279 (10,98)</td>
<td>279 (10,98)</td>
<td>616 (24,25)</td>
<td>22 kW, IEC 180 L-4</td>
</tr>
<tr>
<td>APP 10,2</td>
<td>400 (15,75)</td>
<td>513 (20,20)</td>
<td>200 (7,87)</td>
<td>318 (12,52)</td>
<td>305 (12,01)</td>
<td>659 (25,94)</td>
<td>30 kW, IEC 200 L-4</td>
</tr>
</tbody>
</table>
11.3 APP 11,0–13,0

<table>
<thead>
<tr>
<th>Pumpe</th>
<th>A mm (Zoll)</th>
<th>B mm (Zoll)</th>
<th>C mm (Zoll)</th>
<th>D mm (Zoll)</th>
<th>E mm (Zoll)</th>
<th>F mm (Zoll)</th>
<th>G mm (Zoll)</th>
<th>IEC-Elektromotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 10</td>
<td>350 (13,78)</td>
<td>473 (18,62)</td>
<td>180 (7,09)</td>
<td>279 (10,98)</td>
<td>241 (9,49)</td>
<td>578 (22,76)</td>
<td>204 (8,03)</td>
<td>22 kW, IEC 180L-4</td>
</tr>
<tr>
<td>APP 11</td>
<td>400 (15,75)</td>
<td>513 (20,20)</td>
<td>200 (7,87)</td>
<td>378 (12,52)</td>
<td>305 (12,01)</td>
<td>659 (25,94)</td>
<td>204 (8,03)</td>
<td>30 kW, IEC 200L-4</td>
</tr>
<tr>
<td>APP 13</td>
<td>450 (17,72)</td>
<td>561 (22,09)</td>
<td>225 (8,86)</td>
<td>356 (14,02)</td>
<td>266 (10,26)</td>
<td>667 (26,26)</td>
<td>234 (9,21)</td>
<td>37 kW, IEC 225S-4</td>
</tr>
</tbody>
</table>
11.4 APP 16,0–22,0

<table>
<thead>
<tr>
<th>Pumpe</th>
<th>A mm (Zoll) [P]</th>
<th>B mm (Zoll) [HD]</th>
<th>C mm (Zoll) [H]</th>
<th>D mm (Zoll) [A]</th>
<th>E mm (Zoll) [B]</th>
<th>F mm (Zoll) [LB]</th>
<th>G mm (Zoll)</th>
<th>IEC-Elektromotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 16</td>
<td>450 (17,72)</td>
<td>560 (22,05)</td>
<td>225 (8,86)</td>
<td>356 (14,02)</td>
<td>286 (11,26)</td>
<td>675 (26,57)</td>
<td>262 (10,31)</td>
<td>37 kW, IEC 225 S4</td>
</tr>
<tr>
<td>APP 17</td>
<td>450 (17,72)</td>
<td>560 (22,05)</td>
<td>225 (8,86)</td>
<td>356 (14,02)</td>
<td>311 (12,24)</td>
<td>705 (27,76)</td>
<td>262 (10,31)</td>
<td>45 kW, IEC 225 M4</td>
</tr>
<tr>
<td>APP 19</td>
<td>550 (21,63)</td>
<td>615 (24,22)</td>
<td>250 (9,84)</td>
<td>406 (15,98)</td>
<td>349 (13,74)</td>
<td>775 (30,51)</td>
<td>265 (10,43)</td>
<td>55 kW, IEC 250 M4</td>
</tr>
<tr>
<td>APP 22</td>
<td>550 (21,63)</td>
<td>680 (26,77)</td>
<td>280 (11,02)</td>
<td>457 (17,99)</td>
<td>368 (14,48)</td>
<td>835 (32,87)</td>
<td>265 (10,43)</td>
<td>75 kW, IEC 280 S4</td>
</tr>
</tbody>
</table>
11.5 APP 21,0–38,0

<table>
<thead>
<tr>
<th>Pumpe</th>
<th>A mm (Zoll)</th>
<th>B mm (Zoll)</th>
<th>C mm (Zoll)</th>
<th>D mm (Zoll)</th>
<th>E mm (Zoll)</th>
<th>F mm (Zoll)</th>
<th>IEC-Elektromotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP 21–24</td>
<td>550 (21,65)</td>
<td>635 (25,0)</td>
<td>250 (9,84)</td>
<td>406 (15,98)</td>
<td>349 (13,74)</td>
<td>770 (30,31)</td>
<td>55 kW, IEC 250 M-4</td>
</tr>
<tr>
<td>APP 24–26</td>
<td>550 (21,65)</td>
<td>693 (27,28)</td>
<td>280 (11,02)</td>
<td>457 (17,99)</td>
<td>368 (14,49)</td>
<td>845 (33,27)</td>
<td>75 kW, IEC 280 S-4</td>
</tr>
<tr>
<td>APP 26–38</td>
<td>550 (21,65)</td>
<td>693 (27,28)</td>
<td>280 (11,02)</td>
<td>457 (17,99)</td>
<td>419 (16,50)</td>
<td>895 (35,24)</td>
<td>90 kW, IEC 280 M-4</td>
</tr>
</tbody>
</table>
11.6 APP 46

Bedingt durch die Bauweise und die Abmessungen der Pumpe APP 46 (mit Kupplungsglocke und IEC-Motor) wird standardmäßig ein Dämpfungsflansch auf der oder an der Kupplungsglocke montiert, wenn ein Motor IEC 315 ausgewählt wird. Wenn dieser Dämpfungsflansch aus irgendeinem Grund nicht montiert ist, kann ein Adapter für das Rückschlagventil erforderlich sein, um ein Rohr oder einen Schlauch mit Victaulic-Klemmen zu befestigen. Wenden Sie sich für weitere Informationen und relevante Zubehörteile bitte an Danfoss.
12. Zubehör

12.1 Zubehör für APP (W) 5,1–10,2

<table>
<thead>
<tr>
<th>Zubehör</th>
<th>Typ</th>
<th>Bestell-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Zoll-Druckschlauch – 0,66 m (26 Zoll)</td>
<td>1 ½ Zoll Victaulic</td>
<td>180Z0228</td>
</tr>
<tr>
<td>1-Zoll-Druckschlauch – 1,16 m (45,7 Zoll)</td>
<td>1 ½ Zoll Victaulic</td>
<td>180Z0229</td>
</tr>
<tr>
<td>1 ½ Zoll Victaulic Duplex + Saugstutzen</td>
<td>M42 – 1 ½ Zoll Victaulic</td>
<td>180B3202</td>
</tr>
<tr>
<td>2-Zoll-Saugschlauchsatz – 2 m (79 Zoll)</td>
<td>2 Zoll Victaulic</td>
<td>180Z0298</td>
</tr>
<tr>
<td>2 Zoll Victaulic Super Duplex Saugstutzen</td>
<td>M42 – 2 Zoll Victaulic</td>
<td>180Z0166</td>
</tr>
<tr>
<td>Rückschlagventil (Auslass) Duplex</td>
<td>M42 – 1 ½ Zoll Victaulic</td>
<td>180H0049</td>
</tr>
</tbody>
</table>

12.2 Zubehör für APP 11–13

<table>
<thead>
<tr>
<th>Zubehör</th>
<th>Typ</th>
<th>Bestell-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Zoll-Saugschlauchsatz – 2 m (79 Zoll)</td>
<td>2 Zoll Victaulic</td>
<td>180Z0298</td>
</tr>
<tr>
<td>1-½-Zoll-Druckschlauch – 1,16 m (45,7 Zoll)</td>
<td>1 ½ Zoll Victaulic</td>
<td>180Z0167</td>
</tr>
<tr>
<td>2 Zoll Victaulic Super Duplex Saugstutzen</td>
<td>M52 – 2 Zoll Victaulic</td>
<td>180Z0165</td>
</tr>
<tr>
<td>Rückschlagventil (Auslass) Super Duplex</td>
<td>M52 – 2 Zoll Victaulic</td>
<td>180H0256</td>
</tr>
</tbody>
</table>

12.3 Zubehör für APP 16–22

<table>
<thead>
<tr>
<th>Zubehör</th>
<th>Typ</th>
<th>Bestell-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Zoll-Saugschlauchsatz – 2 m (79 Zoll)</td>
<td>2 Zoll Victaulic</td>
<td>180Z0298</td>
</tr>
<tr>
<td>2-Zoll-Druckschlauch – 1,25 m (49 Zoll)</td>
<td>2 Zoll Victaulic</td>
<td>180Z0140</td>
</tr>
<tr>
<td>2 Zoll Victaulic Super Duplex Saugstutzen</td>
<td>M52 – 2 Zoll Victaulic</td>
<td>180Z0165</td>
</tr>
<tr>
<td>Rückschlagventil (Auslass) Super Duplex</td>
<td>M52 – 2 Zoll Victaulic</td>
<td>180H0256</td>
</tr>
</tbody>
</table>

12.4 Zubehör für APP 21–46

<table>
<thead>
<tr>
<th>Zubehör</th>
<th>Typ</th>
<th>Bestell-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Zoll-Saugschlauchsatz – 2 m (79 Zoll)</td>
<td>3 Zoll Victaulic</td>
<td>180Z0144</td>
</tr>
<tr>
<td>2-Zoll-Druckschlauch für APP 21–38</td>
<td>1,78 m (70 Zoll)</td>
<td>180Z0263</td>
</tr>
<tr>
<td></td>
<td>1 m (39,4 Zoll)</td>
<td>180Z0280</td>
</tr>
<tr>
<td>2-½-Zoll-Druckschlauch für APP 46</td>
<td>1 m (39,4 Zoll)</td>
<td>180Z0618</td>
</tr>
<tr>
<td></td>
<td>1,78 m (70 Zoll)</td>
<td>180Z0619</td>
</tr>
<tr>
<td>2-½-Zoll-Eingangsanschluss für APP 21–24</td>
<td>M60 – 2 ½ Zoll Victaulic</td>
<td>180B3206</td>
</tr>
<tr>
<td>3-Zoll-Eingangsanschluss für APP 21–46</td>
<td>M60 – 3 Zoll Victaulic</td>
<td>180B3208</td>
</tr>
<tr>
<td>Rückschlagventil (Auslass) Super Duplex für APP 21–46</td>
<td>M60 – 2 ½ Zoll Victaulic</td>
<td>180H0059</td>
</tr>
</tbody>
</table>
13. Service

Garantie

Die Pumpen APP von Danfoss sind für eine lange Betriebsdauer sowie für niedrige Wartungs- und Lebenszykluskosten ausgelegt.

Unter der Voraussetzung, dass die Pumpe gemäß den Spezifikationen von Danfoss betrieben wird, garantiert Danfoss einen 8.000-stündigen wartungsfreien Betrieb für maximal 18 Monate ab dem Produktionsdatum.

Wenn die Empfehlungen von Danfoss in Bezug auf die Systemkonstruktion nicht befolgt werden, wird die Lebensdauer der APP-Pumpen erheblich beeinträchtigt. Die folgenden weiteren Faktoren beeinflussen ebenfalls die Leistung und Lebensdauer der Pumpe:

- Betrieb der Pumpe mit Drehzahl außerhalb der Spezifikationen
- Versorgung der Pumpe mit Wasser, das eine höhere Temperatur aufweist als empfohlen
- Betrieb der Pumpe mit Eingangsdruck außerhalb der Spezifikationen
- Betrieb der Pumpe mit Ausgangsdruck außerhalb der Spezifikationen

Wartungsinspektionen

Regelmäßige Inspektionen sind erforderlich, um sicherzustellen, dass verschlissene Komponenten (sofern vorhanden) rechtzeitig ausgetauscht werden. Beim Bestimmen der Häufigkeit der Inspektionen sollten Betriebsbedingungen wie z. B. die Wasserqualität berücksichtigt werden. Danfoss empfiehlt, jedes Jahr eine Inspektion durchzuführen.

Zudem wird empfohlen, den auf diesen Zweck abgestimmten Werkzeugsatz zu erwerben.

Pumpenausschaltung

Die APP-Pumpen werden aus Duplex-/Super-Duplex-Stahl mit hervorragenden Korrosionseigenschaften gefertigt. Es wird jedoch empfohlen, die Pumpe immer mit Süßwasser zu spülen, wenn sie ausgeschaltet wird.

Wenn die Pumpe länger als 1 Tag angehalten wird, spülen Sie die Pumpe mit Permeat, indem Sie sie 10 Sekunden lang drehen. Das Spülen durch das Spülventil der Pumpe, ohne die Pumpe zu drehen, ist nicht ausreichend, um das Innere der Pumpe zu reinigen. Die Pumpe kann wie die Membranen mit Biozid gespült werden. Das Biozid muss mit den in unseren Pumpen verwendeten Materialien verträglich sein.

Reparaturservice

Wenden Sie sich bei einem ungleichmäßigen Betrieb der APP-Pumpe bitte an Danfoss High Pressure Pumps.