Revision history

Table of revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Changed</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2020</td>
<td>Added adjustment details for threshold settings and changed document number from AX00000025</td>
<td>0607</td>
</tr>
<tr>
<td>August 2019</td>
<td>Added caution for servo piston removal</td>
<td>0505</td>
</tr>
<tr>
<td>August 2018</td>
<td>update adjustment chapter</td>
<td>0504</td>
</tr>
<tr>
<td>April 2018</td>
<td>Major layout update, QF080 to QM050 updates</td>
<td>0503</td>
</tr>
<tr>
<td>January 2018</td>
<td>update pressure compensator torque values</td>
<td>0502</td>
</tr>
<tr>
<td>July 2016</td>
<td>Add G1, G2 controls</td>
<td>0501</td>
</tr>
<tr>
<td>December 2015</td>
<td>Add 210 frame size</td>
<td>0500</td>
</tr>
<tr>
<td>November 2015</td>
<td>Model code change</td>
<td>0400</td>
</tr>
<tr>
<td>July 2015</td>
<td>correct torque values, pages 61, 62</td>
<td>0301</td>
</tr>
<tr>
<td>June 2015</td>
<td>add hydraulic controls THHA, THHB</td>
<td>0300</td>
</tr>
<tr>
<td>2008-2015</td>
<td>First edition - and next various changes.</td>
<td>AA-CB</td>
</tr>
</tbody>
</table>
Contents

Introduction
- About this manual ... 5
- Warranty .. 5
- General Instructions ... 5
- Safety precautions .. 5
- Symbols used in Danfoss literature .. 7

H1 general information
- Design of H1 bent axis motor ... 8
- General description .. 10
- H1 pictorial diagram ... 11
- H1 system schematic ... 12

Technical specifications
- General specifications .. 13
- Physical properties .. 13
- Operating Parameters ... 14
- H1B speed range diagrams for open and closed circuit .. 15
- Required inlet pressure diagrams (for cylinder block filling) .. 16
- Open circuit requirements .. 17
- Fluid specifications .. 18
- Determination of nominal motor size .. 18

Operation
- Shaft rotation direction ... 19
- Loop flushing shuttle spool ... 21
- Loop flushing relief valve .. 22
- Speed sensor .. 23
- Displacement limiter .. 23

Operating parameters
- Output speed .. 24
- System pressure ... 24
- Case pressure .. 25
- External shaft seal pressure .. 25
- Temperature ... 25

Fluid and filter maintenance
- Fluid and filter recommendations .. 26

Pressure measurements
- Ports and Gauge Information ... 27

Initial startup procedures
- Procedure ... 29

Troubleshooting
- Overview ... 31
- Electrical troubleshooting .. 31
- Sluggish operation ... 31
- System operating hot ... 31
- Excessive noise or vibration ... 32
- Motor operates normally in one direction only .. 32
- Improper output speed .. 32
- Low output torque ... 33

Required tools and standard procedures

Adjustments
- Optional threshold adjustment – Electric proportional controls 36
- Optional threshold adjustment – Hydraulic proportional controls 37
- Pressure Compensator OverRide (PCOR) adjustment .. 38

Minor repair
Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft seal</td>
</tr>
<tr>
<td>Electric proportional solenoid replacement</td>
</tr>
<tr>
<td>Hydraulic proportional actuator replacement</td>
</tr>
<tr>
<td>Control module replacement</td>
</tr>
<tr>
<td>Electric proportional control module</td>
</tr>
<tr>
<td>Hydraulic proportional control module</td>
</tr>
<tr>
<td>Electric two-position control module</td>
</tr>
<tr>
<td>Hydraulic two-position control module</td>
</tr>
<tr>
<td>Hydraulic two-position control module with PCOR</td>
</tr>
<tr>
<td>Hydraulic two-position control module with PCOR and hydraulic BPD</td>
</tr>
<tr>
<td>Maximum displacement limiter two-position controls</td>
</tr>
<tr>
<td>Servo piston cover – proportional control</td>
</tr>
<tr>
<td>Replace speed sensor</td>
</tr>
<tr>
<td>Loop flushing spool</td>
</tr>
<tr>
<td>Loop flushing charge relief valve</td>
</tr>
<tr>
<td>Minimum Displacement limiter</td>
</tr>
<tr>
<td>Torque chart</td>
</tr>
</tbody>
</table>

Torque chart

Fasteners, plugs with torque chart...
Introduction

About this manual

This manual includes information for the installation, maintenance, and minor repair procedures for H1 bent axis motors. It includes a description of the unit and its individual components, troubleshooting information, and minor repair procedures.

Performing minor repairs may require removal from the vehicle/machine. Thoroughly clean the unit before beginning maintenance or repair activities. Since dirt and contamination are the greatest enemies of any type of hydraulic equipment, follow cleanliness requirements strictly. This is especially important when changing the system filter and when removing hoses or plumbing.

Only Danfoss global service partners (GSPs) are authorized to perform major repairs. Danfoss trains Global Service Partners and certifies their facilities on a regular basis. You can locate your nearest service partner at www.danfoss.com > Contact us > Danfoss sales and services > Distributor and service partners

Warranty

Performing installation, maintenance, and minor repairs according to the procedures in this manual will not affect your warranty. Major repairs requiring the removal of a unit’s rear cover voids the warranty unless done by a Danfoss Global Service Partner.

General Instructions

When repairing H1 variable displacement closed circuit motors follow these general procedures:

- **Remove the unit**: Chock the wheels on the vehicle or lock the mechanism to inhibit movement. Prior to performing repairs, remove the unit from the vehicle/machine. Be aware that hydraulic fluid may be under high pressure and/or hot. Inspect the outside of the motor and fittings for damage. Cap hoses after removal to prevent contamination.

- **Keep it clean**: Cleanliness is a primary means of assuring satisfactory motor life, on either new or repaired units. Clean the outside of the motor thoroughly before disassembly. Take care to avoid contamination of the system ports. Cleaning parts with a clean solvent wash and air drying is usually adequate. Keep all parts free of foreign materials and chemicals. Protect all exposed sealing surfaces and open cavities from damage and foreign material.

- **Lubricate moving parts**: During assembly, coat all moving parts with a film of clean hydraulic oil. This assures that these parts are lubricated during start-up.

- **Replace all O-rings and gaskets**: Danfoss recommends you replace all O-rings and gaskets during repair. Lightly lubricate O-rings with clean petroleum jelly prior to assembly.

- **Secure the unit**: For repair, place the unit in a stable position with the shaft pointing downward. Secure the motor while removing and torquing components and fasteners.

Safety precautions

Always consider safety precautions before beginning a service procedure. Protect yourself and others from injury. Take the following general precautions whenever servicing a hydraulic system.
Introduction

Unintended machine movement

⚠️ Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/disconnect the mechanism while servicing.

Flammable cleaning solvents

⚠️ Warning

Some cleaning solvents are flammable. To avoid possible fire, do not use cleaning solvents in an area where a source of ignition may be present.

Fluid under pressure

⚠️ Warning

Escaping hydraulic fluid under pressure can have sufficient force to penetrate your skin causing serious injury and/or infection. This fluid may also be hot enough to cause burns. Use caution when dealing with hydraulic fluid under pressure. Relieve pressure in the system before removing hoses, fittings, gauges, or components. Never use your hand or any other body part to check for leaks in a pressurized line. Seek medical attention immediately if you are cut by hydraulic fluid.

Personal safety

⚠️ Warning

Protect yourself from injury. Use proper safety equipment, including safety glasses, at all times.

Hazardous material

⚠️ Warning

Hydraulic fluid contains hazardous material. Avoid prolonged contact with hydraulic fluid. Always dispose of used hydraulic fluid according to environmental regulations.
Introduction

Symbols used in Danfoss literature

- **WARNING** may result in injury
- **CAUTION** may result in damage to product or property
- Reusable part
- Non-reusable part, use a new part
- Non-removable item
- Option - either part may exist
- Superseded - parts are not interchangeable
- Measurement required
- Flatness specification
- Parallelism specification
- External hex head
- Internal hex head
- Torx head
- O-ring boss port
- Tip, helpful suggestion
- Lubricate with hydraulic fluid
- Apply grease / petroleum jelly
- Apply locking compound
- Inspect for wear or damage
- Clean area or part
- Be careful not to scratch or damage
- Note correct orientation
- Mark orientation for reinstallation
- Torque specification
- Press in - press fit
- Pull out with tool – press fit
- Cover splines with installation sleeve
- Pressure measurement/gauge location or specification

The symbols above appear in the illustrations and text of this manual. They are intended to communicate helpful information at the point where it is most useful to the reader. In most instances, the appearance of the symbol itself denotes its meaning. The legend above defines each symbol and explains its purpose.
H1 general information

Design of H1 bent axis motor

Cross-section of H1 motor with electric proportional control

1. Differential servo piston
2. Valve segment
3. Bearing plate
4. Tapered roller bearing
5. Loop flushing relief valve
6. Ramp spring
7. Loop flushing shuttle spool
8. Electric proportional control
9. Minimum displacement limiter
10. Speed ring (optional)
H1 general information

Cross-section of H1 motor with electric two-position control

1. Differential servo piston
2. Valve segment
3. Bearing plate
4. Tapered roller bearing
5. Loop flushing relief valve
6. Loop flushing shuttle spool
7. Electric two-position control
8. Minimum displacement limiter
9. Speed ring (optional)
H1 general information

General description

Series H1 variable displacement motors are bent axis design, incorporating spherical pistons. These motors are designed primarily to be combined with other products in closed circuit systems to transfer and control hydraulic power. Series H1 motors have a large maximum/minimum displacement ratio of 5:1 and high output speed capabilities.

The expanded function of zero degree capability, coupled with a high performance 32 degree maximum angle, creates opportunities to easily improve the machine performance for:

- Wheel assist on the steering axle of high inertia machines (i.e. combines) and could include Anti Slip Control
- Off-highway machines requiring Anti Slip Control (i.e. Ag. sprayer)
- Multi-motor applications requiring optimized work and transport modes (i.e. wheel loader, Ag sprayer) utilizing the zero degree position for maximum transport speed
- Improved machine (i.e. single drum roller) gradeability through precise Anti Slip Control

The Anti Slip Control reduces ground damage, increases traction control and improves machine controllability for the operator.

SAE, Cartridge (not available for 210 cm3 and 250 cm3) and DIN flange with radial or axial high pressure port configurations are available including the loop flushing device.

A complete family of controls and regulators are available to fulfill the requirements of a wide range of applications.

Motors normally start at maximum displacement. This provides maximum starting torque for high acceleration.

All controls utilize internally supplied servo pressure. This may be overridden by a pressure compensator which functions when the motor is operating in motor and pump modes. A defeat option is available to disable the pressure compensator override when the motor is running in pump mode during deceleration/braking.

The pressure compensator option features a low pressure rise to ensure optimal power utilization throughout the entire displacement range of the motor.

Speed sensor options are available to cover all frame sizes and flange styles.

They are capable of sensing the following, all in one package:

- Speed
- Direction (only group “J”, option “S”)
- Temperature (only group “J”, option “S”)

The electric controls are specifically designed for the Danfoss family of PLUS+1® microcontrollers for easy “Plug and Perform” installation.
H1 general information

H1 pictorial diagram

1. Bent Axis Variable Displacement Motor
2. Axial Piston Variable Displacement Pump
3. Electric Displacement Control (EDC)
4. Charge Pump
5. Charge Check / High Pressure Relief Valve
6. Loop Flushing Valve
7. Pressure Limiter Valve
8. Charge Pressure Relief Valve
9. Servo Cylinder
10. Charge Pressure Filter
11. Heat Exchanger
12. Heat Exchanger Bypass Valve
13. Valve Segment
14. Pump Swashplate
15. Input Shaft
16. Output Shaft
17. Reservoir
18. to Motor Case

Working loop A (Low pressure) and charge pressure
Working loop B (High pressure)
Servo pressure
Case drain
Suction
H1 general information

H1 system schematic

System schematic H1 pump and H1 motor with EDC

The schematic above shows the function of a hydrostatic transmission using an H1 axial variable displacement pump with electric proportional displacement control (EDC) and an H1 bent axis variable displacement motor with electric proportional control (L*) and integrated loop flushing device.
General specifications

Design
Piston motor with variable displacement bent axis design

Direction of rotation
Bi-directional

Pipe connections
Main pressure ports: ISO split flange boss
Remaining ports: SAE straight thread O-ring boss

Recommended installation
Discretionary, the housing must always be filled with hydraulic fluid

Physical properties

Features

<table>
<thead>
<tr>
<th>Unit</th>
<th>060</th>
<th>080</th>
<th>110</th>
<th>160</th>
<th>210</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum cm³ [in³]</td>
<td>12 [0.73]</td>
<td>16 [0.98]</td>
<td>22 [1.34]</td>
<td>32 [1.95]</td>
<td>42 [2.56]</td>
<td>50 [3.05]</td>
</tr>
<tr>
<td>Theoretical flow at max. displ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical torque at max. displacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nm/bar [lb•in/1000 psi]</td>
<td>0.96 [583]</td>
<td>1.27 [777]</td>
<td>1.75 [1069]</td>
<td>2.55 [1555]</td>
<td>3.34 [2038]</td>
<td>3.98 [2426]</td>
</tr>
<tr>
<td>Theor. corner power at rated speed and max. working pressure (Δp = 450 bar [6527 psi])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass moment of inertia of rotating components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg•m² [slug•ft²]</td>
<td>0.0038 [0.0028]</td>
<td>0.0062 [0.0046]</td>
<td>0.0108 [0.0080]</td>
<td>0.0211 [0.0156]</td>
<td>0.0306 [0.0226]</td>
<td>0.0402 [0.0296]</td>
</tr>
<tr>
<td>Case volume</td>
<td>l [US gal]</td>
<td>0.9 [0.24]</td>
<td>1.0 [0.26]</td>
<td>1.4 [0.37]</td>
<td>2.7 [0.71]</td>
<td>2.8 [0.74]</td>
</tr>
</tbody>
</table>

Weight dry (Electric proportional control)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Size</th>
<th>060</th>
<th>080</th>
<th>110</th>
<th>160</th>
<th>210</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE</td>
<td></td>
<td>29.8 kg [65.7 lb]</td>
<td>34.8 kg [76.7 lb]</td>
<td>48.8 kg [107.6 lb]</td>
<td>61.9 kg [136.5 lb]</td>
<td>81.0 kg [179 lb]</td>
<td>87.0 kg [196.2 lb]</td>
</tr>
<tr>
<td>DIN</td>
<td></td>
<td>28.3 kg [62.4 lb]</td>
<td>34.4 kg [75.8 lb]</td>
<td>45.0 kg [99.2 lb]</td>
<td>59.3 kg [130.7 lb]</td>
<td>75.0 kg [165 lb]</td>
<td>79.6 kg [175.5 lb]</td>
</tr>
<tr>
<td>Cartridge</td>
<td></td>
<td>26.9 kg [59.3 lb]</td>
<td>33.0 kg [72.6 lb]</td>
<td>41.8 kg [92.2 lb]</td>
<td>54.7 kg [120.6 lb]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Mounting flange

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Size</th>
<th>060</th>
<th>080</th>
<th>110</th>
<th>160</th>
<th>210</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE ISO 3019/1</td>
<td></td>
<td>127-4 (SAE C) 4-bolt</td>
<td>152-4 (SAE-D) 4-bolt</td>
<td>165-4 (SAE E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN ISO 3019/2, B4</td>
<td></td>
<td>125 HL 4-bolt</td>
<td>140 HL 4-bolt</td>
<td>160 HL 4-bolt</td>
<td>180 HL 4-bolt</td>
<td>200 HL 4-bolt</td>
<td>200 HL 4-bolt</td>
</tr>
<tr>
<td>Cartridge</td>
<td></td>
<td>Pilot Ø160 mm 2-bolt (200 dist.) M16</td>
<td>Pilot Ø190 mm 2-bolt (224 dist.) M20</td>
<td>Pilot Ø200 mm 2-bolt (250 dist.) M20</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
Technical specifications

Customer ports

<table>
<thead>
<tr>
<th>Size</th>
<th>060</th>
<th>080</th>
<th>110</th>
<th>160</th>
<th>210</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial and radial<sup>1</sup></td>
<td>DN19 typ 1</td>
<td>DN25 typ 1</td>
<td>DN25 typ 1</td>
<td>DN32 typ 1</td>
<td>DN32 typ 1</td>
<td>DN32 typ 1</td>
</tr>
<tr>
<td>Case drain ports<sup>2</sup></td>
<td>0.875 [7/8]–14UN-2B</td>
<td>1.0625 [1 1/16]–12UN-2B</td>
<td>1.313 [1 5/16]–12UN-2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial gauge ports<sup>2,3</sup></td>
<td>0.875 [7/8]–14UN-2B</td>
<td></td>
<td>1.0625 [1 1/16]–12UN-2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial gauge port<sup>2,3</sup></td>
<td></td>
<td></td>
<td>0.5625 [9/16]–18UNF-2B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Split flange Boss per ISO6162, 40 MPa series

² SAE O-ring boss

³ Countersink may be deeper that specified in the standard.

Operating Parameters

Output Speed

<table>
<thead>
<tr>
<th>Output Speed</th>
<th>Displacement</th>
<th>Unit</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated</td>
<td>Maximum 32°</td>
<td>min<sup>-1</sup> (rpm)</td>
<td>060</td>
</tr>
<tr>
<td></td>
<td>Minimum 6°</td>
<td></td>
<td>080</td>
</tr>
<tr>
<td></td>
<td>Zero 0°</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum 32°</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Minimum 6°</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Zero 0°</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

System and Case Pressure, Ambient Temperature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>System pressure</td>
<td>Maximum working</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td>Minimum<sup>1</sup></td>
</tr>
<tr>
<td>Case pressure</td>
<td>Rated</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>Ambient temperature<sup>3</sup></td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
</tr>
</tbody>
</table>

¹ Minimum above case pressure (open and closed circuit)

² See the graphs Required inlet pressure diagrams (for cylinder block filling) on page 16.

³ Air temperature close to the unit.
Technical specifications

H1B speed range diagrams for open and closed circuit

Speed (rpm) versus Displacement (%), Intermittent operation (grey area)

⚠️ **Warning**

Zero degree capability results in a high risk of overspeed and drops in efficiency if the motor operates between 0–20% displacement.

For **open circuit** applications it is not allowed to operate in the intermittent area.

For **closed circuit** applications operating in the intermittent area, please contact your local Danfoss Power Solutions representative.
Technical specifications

Required inlet pressure diagrams (for cylinder block filling)

Speed (rpm) and Pressure (bar) versus Displacement (%)

Bold dashed line: Maximum speed

Bold solid line: Rated speed

This pressure ensures that the cylinder block will be properly filled and that there is no pulling between piston and shaft.

The required pressure is 0 bar at 0 rpm and increases with rpm.

For **open circuit** applications it is not allowed to operate above rated speed. For **closed circuit** applications operating between rated and max. speed, please contact your local Danfoss Power Solutions representative.
Technical specifications

Open circuit requirements

H1 Bent Axis Motors may be used in Open Circuit (OC) applications.

Since loop flushing is typically not used in OC-applications it is essential to provide sufficient cooling capacity. This can be done by motor case cross flushing.

The flow rate needs to be adjusted to the cooling demand.

The highest case drain outlet port must always be used for the return flow to the cooler or tank.

The motor case, the control system and the working lines connected to Port A and B must be kept full of oil at all times, whether in a dynamic or static condition.

The plumbing must not allow the oil to drain down and be replaced with air in the control or rotating group.

The minimum pressure in the inlet port and the outlet port, measured at gage ports MA and MB, must be equal or higher as shown in the graphs Required inlet pressure diagrams (for cylinder block filling) on page 16.

Counter balance valves may be used to maintain the minimum pressure requirements. Also the Danfoss Power Solutions Meter-in / Meter-out PVG technology may be used.

Check valves and sufficient charge pressure supply are also possible.

At no time shall the motor be allowed to operate above the rated speed limits. If flow limiter valves are used, they must be selected accordingly. Select Motor controls which use the high loop system pressure to shift the servo piston. This will ensure proper function under all conditions.

Valve blocks, such as counter balance valves attached to the inlet and/or outlet ports, must not interfere with any part of the motor. A review of the outline drawings or appropriate 3D models must be completed.
Technical specifications

Fluid specifications

<table>
<thead>
<tr>
<th>Features</th>
<th>Unit</th>
<th>All sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>Minimum</td>
<td>mm²/s [SUS]</td>
</tr>
<tr>
<td></td>
<td>intermittent</td>
<td>7 [49]</td>
</tr>
<tr>
<td></td>
<td>Recommended</td>
<td>12-80 [66-366]</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>1600 [7416]</td>
</tr>
<tr>
<td>Maximum intermittent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range¹(²)</td>
<td>°C [°F]</td>
<td>-40 [-40]</td>
</tr>
<tr>
<td></td>
<td>Rated</td>
<td>104 [220]</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>115 [240]</td>
</tr>
<tr>
<td></td>
<td>intermittent</td>
<td></td>
</tr>
<tr>
<td>Cleanliness and Filtration</td>
<td>Required</td>
<td>22/18/13</td>
</tr>
<tr>
<td></td>
<td>cleanliness</td>
<td>per ISO 4406</td>
</tr>
<tr>
<td></td>
<td>efficiency</td>
<td>β-ratio</td>
</tr>
<tr>
<td>Efficiency (charge pressure</td>
<td>β¹₅-2₀ = 75</td>
<td>(β₁₀ ≥ 10)</td>
</tr>
<tr>
<td>filtration)</td>
<td>efficiency</td>
<td>β₃₅-₄₅ = 75</td>
</tr>
<tr>
<td></td>
<td>suction /</td>
<td></td>
</tr>
<tr>
<td></td>
<td>return line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>filtration</td>
<td></td>
</tr>
<tr>
<td>Recommended inlet screen mesh</td>
<td>µm</td>
<td>100 – 125</td>
</tr>
<tr>
<td>size</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ At the hottest point, normally case drain port.
² Minimum: cold start, short term t<3 min, p<50 bar, n<1000 rpm.

Determiniation of nominal motor size

Based on SI units

\[
Q_e = \frac{V_g \cdot n}{1000 \cdot \eta_v}
\]

\[
M_e = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{2 \cdot \pi}
\]

\[
P_e = \frac{M_e \cdot n}{9550} = \frac{Q_e \cdot \Delta p \cdot \eta_{vh}}{600}
\]

\[
n = \frac{Q_e \cdot 1000 \cdot \eta_v}{V_g}
\]

Where:

- \(Q_e \): Input flow (l/min)
- \(M_e \): Output torque (N•m)
- \(P_e \): Output power (kW)
- \(n \): Speed (min⁻¹)
- \(V_g \): Motor displacement per rev. (cm³/rev)
- \(\eta_{vh} \): Motor volumetric efficiency
- \(\eta_{mh} \): Mechanical-hydraulic efficiency
- \(\eta_t \): Motor total efficiency (\(\eta_v \cdot \eta_{mh} \))

Based on US units

\[
Q_e = \frac{V_g \cdot n}{231 \cdot \eta_v}
\]

\[
M_e = \frac{V_g \cdot \Delta p \cdot \eta_{mh}}{2 \cdot \pi}
\]

\[
P_e = \frac{V_g \cdot n \cdot \Delta p \cdot \eta_{vh}}{396000}
\]

\[
n = \frac{Q_e \cdot 231 \cdot \eta_v}{V_g}
\]

Where:

- \(Q_e \): Input flow [US gal/min]
- \(M_e \): Output torque [lb•in]
- \(P_e \): Output power [hp]
- \(n \): Speed [rpm]
- \(V_g \): Motor displacement per rev. [in³/rev]
- \(\eta_{vh} \): High pressure [psi]
- \(\eta_{mh} \): Motor volumetric efficiency
- \(\eta_t \): Mechanical-hydraulic efficiency
- \(\eta_{mv} \): Mechanical-hydraulic efficiency
- \(\eta_t \): Motor total efficiency (\(\eta_v \cdot \eta_{mh} \))
Shaft rotation direction

Shaft rotation direction is determined with a view from the shaft end.

Rotation direction of the motor will be dependent on the control option used as illustrated below.

In the second number or letter of the control code, 1 means 12 V\text{DC}, 2 means 24 V\text{DC}, and H means hydraulic.

Controls L1, L2, D1, D2, LH, DH

![Diagram of L1, L2, D1, D2, LH, DH controls]

- **Flow into port A**: Clockwise
- **Flow into port B**: Counterclockwise

Controls M1, M2, K1, K2, KH, MH

![Diagram of M1, M2, K1, K2, KH, MH controls]

- **Flow into port A**: Counterclockwise
- **Flow into port B**: Clockwise
Operation

Controls E1, E2, F1, F2, P1, P2, T1, T2, TA, TH, HE, HF

Flow into port A
Counterclockwise

Flow into port B
Clockwise
Operation

Loop flushing shuttle spool

An integral loop flushing shuttle spool is used to separate system A and system B pressures. System delta pressure will cause the shuttle spool to shift, allowing the low side system pressure to flow to the loop flushing relief valve.

Legend:

A System loop A
B System loop B
LFRV to Loop flushing relief valve

⚠️ Warning

Unintended vehicle or machine movement hazard.

Excessive motor loop flushing flow may result in the inability to build required system pressure in some conditions. Maintain correct charge pressure under all conditions of operation to maintain pump control performance in hydrostatic systems.
Operation

Loop flushing relief valve

The loop flushing relief valve is incorporated into all H1 motors and uses the loop flushing option in installations that require fluid to be removed from the low pressure side of the system circuit due to cooling requirements.

The loop flushing relief valve is also used to facilitate the removal of contaminants from the loop.

The loop flushing valve is equipped with an orificed charge pressure relief valve designed with a cracking pressure of 16 bar [232 psi].

Valves are available with several orifice sizes to meet the flushing flow requirements of all system operating conditions.

Loop flushing relief valve (cross section) Loop flushing relief valve schematic

Loop flushing relief valve sizes

<table>
<thead>
<tr>
<th>X</th>
<th>Loop flushing flow (l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Low system pressure minus case pressure (bar)</td>
</tr>
</tbody>
</table>
Operation

Speed sensor

The speed sensor is designed for rugged outdoor, mobile or heavy industrial speed sensing applications. The detection of the speed is contactless and does not need any calibration or adjustments.

For more information, see *Speed and Temperature Sensor, Technical Information, 11046759*.

Sensor position

Sensor position in SAE, DIN and Cartridge housing.

- **SAE and DIN housing**
- **Cartridge housing**

Target Ring

Speed (target) rings vary according to the diameter of the cylinder block or shaft on which they are installed. The number of teeth is shown in the table below.

The number of speed (target) ring teeth

<table>
<thead>
<tr>
<th>H1B size</th>
<th>060</th>
<th>080</th>
<th>110</th>
<th>160</th>
<th>210</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teeth</td>
<td>71</td>
<td>78</td>
<td>86</td>
<td>95</td>
<td>104</td>
<td>108</td>
</tr>
</tbody>
</table>

Excessive axial shaft loading during installation of motors with speed sensors and cartridge housings must be avoided. High axial shaft loads during installation of motors can lead to a movement of the shaft and damage the speed sensor.

Displacement limiter

All Series H1 motors incorporate mechanical displacement limiters.

The minimum displacement of the motor is preset at the factory with a set screw in the motor housing. A tamper-proof cap is provided.

For 0° motors, the minimum displacement screw can be substituted with a plug that uses less space.
Operating parameters

Output speed

Start and low speed stability. The motor produces maximum starting torque at maximum displacement. Stable operation can be achieved at 15–34 rpm, ± 5%, depending on system pressure, in applications that require low speed stability. Motor output speed becomes more stable as speed increases.

Rated speed is the highest output speed recommended at full power condition. Operating at, or below this speed will yield satisfactory product life.

Maximum speed is the highest operating speed permitted. Exceeding maximum speed reduces the product life and can cause loss of hydrostatic power and dynamic braking capacity. Never exceed the maximum speed limit under any operating conditions.

Operation between rated and maximum speed is reserved for intermittent operation (see H1B speed range diagrams for open and closed circuit on page 15) not to exceed 10 minutes durations, 2% of duty cycle based load-life, and 310 bar system delta pressure. Speed above rated are anticipated to occur during downhill braking (negative power). Contact factory for any operation above Rated speed when negative power is not involved.

During hydraulic braking and downhill conditions, the prime mover must be capable of providing sufficient braking torque in order to avoid pump over speed. This is especially important to consider for turbocharged and Tier 4 engines.

Warning

Unintended vehicle or machine movement hazard.
Exceeding maximum speed may cause a loss of hydrostatic drive line power and braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss. The braking system must also be sufficient to hold the machine in place when full power is applied.

System pressure

System pressure is the differential pressure between high pressure system ports. It is the dominant operating variable affecting hydraulic unit life. High system pressure, which results from high load, reduces expected life. Hydraulic unit life depends on the speed and normal operating, or weighted average, pressure that can only be determined from a duty cycle analysis.

Application pressure is the high pressure relief or pressure limiter setting normally defined within the order code of the pump. This is the applied system pressure at which the driveline generates the maximum calculated pull or torque in the application.

Maximum working pressure is the highest recommended application pressure. Maximum working pressure is not intended to be a continuous pressure. Propel systems with application pressures at, or below, this pressure should yield satisfactory unit life given proper component sizing.

Maximum pressure is the highest allowable application pressure under any circumstance. For applications which are above the maximum working pressure, please contact Danfoss

Minimum pressure must be maintained under all operating conditions to avoid cavitation.

All pressure limits are differential pressures referenced to low loop (charge) pressure. Subtract the low loop gauge pressure from the high loop gauge pressure readings to compute the differential.

Summing pressure is the sum of both the low and high loop pressures. Summing pressure above 30 bar [435 psi] guarantees reliable use within the rated speed.

Servo pressure is the pressure in the servo system and is supplied from the high side of the loop to keep the motor at the required displacement.
Operating parameters

Case pressure

Under normal operating conditions, the rated case pressure must not be exceeded. During cold start, case pressure must be kept below maximum intermittent case pressure. Size drain plumbing accordingly.

⚠️ Caution

Possible component damage or leakage.
Operation with case pressure in excess of stated limits may damage seals, gaskets, and/or housings, causing external leakage. Performance may also be affected since charge and system pressures are referenced to case pressure.

External shaft seal pressure

In certain applications, the output shaft seal may be exposed to external pressures. The shaft seal is designed to withstand an external pressure up to 0.25 bar [3.6 psi] above the case pressure. The case pressure limits must also be followed to ensure the shaft seal is not damaged.

Temperature

The high temperature limits apply at the hottest point in the transmission, which is normally the motor case drain. The system should generally be run at or below the published rated temperature.

The maximum intermittent temperature is based on material properties and should never be exceeded.

Cold oil will generally not affect the durability of the transmission components, but it may affect the ability of oil to flow and transmit power. Therefore, temperatures should remain 16 °C [30 °F] above the pour point of the hydraulic fluid.

The minimum temperature relates to the physical properties of component materials.

Size heat exchangers too keep the fluid within these limits. Danfoss recommends testing to verify that these temperature limits are not exceeded.
Fluid and filter maintenance

Fluid and filter recommendations

To ensure optimum life, perform regular maintenance of the fluid and filter. Contaminated fluid is the main cause of unit failure. Take care to maintain fluid cleanliness when servicing.

Check the reservoir daily for proper fluid level, the presence of water, and rancid fluid odor. Fluid contaminated by water may appear cloudy or milky or free water may settle in the bottom of the reservoir. Rancid odor indicates the fluid has been exposed to excessive heat. Change the fluid immediately if these conditions occur. Correct the problem immediately.

Inspect vehicle for leaks daily.

Change the fluid and filter per the vehicle/machine manufacturer’s recommendations or at these intervals. We recommend first fluid change occur at 500 hours of operation. Change the fluid more frequently if it becomes contaminated with foreign matter (dirt, water, grease, etc) or if the fluid is subjected to temperature levels greater than the recommended maximum.

Fluid and filter change interval

<table>
<thead>
<tr>
<th>Reservoir type</th>
<th>Max oil change interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealed</td>
<td>2000 hours</td>
</tr>
<tr>
<td>Breather</td>
<td>500 hours</td>
</tr>
</tbody>
</table>

⚠️ Caution

High temperatures and pressures accelerate fluid aging. This may require more frequent fluid changes.

Change filters when changing fluid or when the filter indicator directs. Replace all fluid lost during filter change.

⚠️ Warning

Hydraulic fluid contains hazardous material. Avoid contact with hydraulic fluid. Always dispose of used hydraulic fluid according to state, and federal environmental regulations. Never reuse hydraulic fluid.
Pressure measurements

Ports and Gauge Information

The following drawing with accompanying table show the port locations and gauge sizes needed for installation.

Ports locations (proportional control)

<table>
<thead>
<tr>
<th>Port</th>
<th>Size 060</th>
<th>Size 080, 110</th>
<th>Size 160, 210, 250</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>3/4 in; Thread: M10 x 1.5</td>
<td>1 in; Thread: M12 x 1.75</td>
<td>1 1/4 in; Thread: M12 x 1.75</td>
</tr>
<tr>
<td></td>
<td>min. 18 mm [0.71 in]</td>
<td>min. 23 mm [0.91 in]</td>
<td>min. 23 mm [0.91 in]</td>
</tr>
</tbody>
</table>

Radial/Axial end-cap ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Size 060</th>
<th>Size 080, 110, 160, 210, 250</th>
<th>System pressure obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA, MB (Radial)</td>
<td>7/8-14 UNF Wrench (int. hex): 3/8 in</td>
<td>1 1/16-12UN Wrench (int. hex): 9/16 in</td>
<td>600 bar [8702 psi]</td>
</tr>
</tbody>
</table>
Pressure measurements

Ports and gauge Information

<table>
<thead>
<tr>
<th>Port</th>
<th>Size 060/080</th>
<th>Size 110/160</th>
<th>Size 210/250</th>
<th>Pressure obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1, L2</td>
<td>7/8-14 UNF</td>
<td>1 1/16-12UN</td>
<td>1 5/16-12UN</td>
<td>10 bar [145 psi]</td>
</tr>
<tr>
<td>M4, M5</td>
<td>9/16-18 UNF; Wrench (int. hex): 1/4 in</td>
<td>600 bar [8700 psi]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1, XA, XB</td>
<td>9/16-18 UNF; Wrench (int. hex): 1/4 in</td>
<td>100 bar [1450 psi]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Servo pressure rod end.
2) X1 – Control pressure supply, hydraulic actuator. XA/XB – BPD, PCOR inactive at A/B.

Port locations (hydraulic 2-position controls with PCOR; control specific ports only)

![Port Diagram]

X1 – Control pressure supply, hydraulic actuator. XA/XB – BPD, PCOR inactive at A/B.
Initial startup procedures

Procedure

⚠️ Warning

This service procedure may require disabling the vehicle / machine (raising the wheels off the ground, disconnecting work function) while performing, to prevent injury to the technician and bystanders. Take the necessary safety precautions.

Always follow this procedure when starting-up a new H1 installation or when the motor has been removed.

1. Before installing the motor, inspect the units for possible damage incurred during shipping and handling.
2. Make certain all system components (reservoir, hoses, valves, fittings, heat exchanger, and so forth) are clean before filling with fluid.
3. Fill the reservoir with recommended hydraulic fluid. Pass this fluid through a 10 micron (nominal, no bypass) filter before it enters the reservoir.
4. Fill the inlet line leading from the reservoir to the pump.
5. Check inlet line for properly tightened fittings. Make sure the inlet line is free of restrictions and air leaks.
6. Fill the motor and pump housings with clean hydraulic fluid before start up. Fill by pouring filtered oil into the upper case drain port.

⚠️ Caution

Never start the prime mover unless the motor and pump housings are filled completely with clean hydraulic fluid.

7. For closed loop systems, install a 0-60 bar [0-1000 psi] pressure gauge in the charge pressure gauge port of the pump to monitor the charge pressure during start-up.

For open circuit systems, use gauges in system ports.

8. Disconnect any external control input signal from the pump control until after initial start-up. This ensures that the pump remains in its neutral position.
9. Jog (slowly rotate) prime mover until charge pressure starts to rise.
10. Start the prime mover and run at the lowest possible speed until charge pressure builds.

⚠️ Warning

Do not start the prime mover unless the pump is in neutral position (swash plate at 0° angle). Take necessary precautions to prevent machine movement in case pump is actuated (in stroke) during initial start-up.

If necessary, bleed excess air from the high pressure lines through the high pressure system gauge ports.

11. Once charge pressure is established, increase to normal operating speed. Charge pressure should be as indicated in the pump model code. If charge pressure is low, shut down and determine cause.

⚠️ Caution

Low charge pressure may affect ability to control the machine.

12. Shut down the prime mover.
13. Connect the external control input signal.
14. Reconnect the machine function if disconnected earlier.
15. Start the prime mover, checking to ensure the pump remains in neutral.
Initial startup procedures

16. Check for forward and reverse machine operation, with the prime mover at normal operating speed.

 Charge pressure may decrease slightly during forward or reverse operation.

17. Continue to cycle slowly between forward and reverse for at least five minutes.
19. Remove gauges. Replace plugs at the gauge ports.
20. Check reservoir level. Add filtered fluid if needed.

The motor/transmission is now ready for operation.
Troubleshooting

Overview

This section provides general steps to follow if you observe undesirable system conditions. Follow the steps until you solve the problem. Some of the items are system specific. Always observe the safety precautions in the Introduction section.

⚠️ Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/disconnect the mechanism while servicing.

Electrical troubleshooting

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motor operates at one displacement only.</td>
<td>Control coil failure</td>
<td>Measure resistance at coil pins. Resistance at 20°C (70°F) should be: • Proportional controls: 14.20 Ω (24V) or 3.66 Ω (12V) • Two-position controls: 8.4 Ω (24V) or 34.5 Ω (12V) Replace coil if necessary.</td>
</tr>
<tr>
<td>2. Erratic motor function</td>
<td>Electrical connection to motor is intermittent.</td>
<td>Disconnect connector, check wires and terminals, reconnect wires. Check terminals for corrosion and correct position.</td>
</tr>
</tbody>
</table>

Sluggish operation

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Control orifices</td>
<td>Blocked or restricted orifice may cause sluggish response. Orifices installed in the wrong locations may cause PCOR control to be sluggish.</td>
<td>Remove, inspect and clean all orifices. Ensure the appropriate orifices are installed and in the correct location.</td>
</tr>
<tr>
<td>2. Threshold setting (proportional controls)</td>
<td>Inappropriately high or low threshold setting may shift the motor at the wrong time.</td>
<td>Check threshold setting. Adjust if necessary.</td>
</tr>
<tr>
<td>3. Control spool</td>
<td>A sticky control may cause sluggish response or no response.</td>
<td>Clean and inspect the control spool. Replace if necessary.</td>
</tr>
<tr>
<td>4. Pressure compensator setting</td>
<td>Low pressure compensator setting may shift motor to maximum displacement at lower pressure.</td>
<td>Check pressure compensator setting. Adjust if necessary.</td>
</tr>
<tr>
<td>5. Control input signal</td>
<td>An improper or erratic input signal to the control may cause sluggish response.</td>
<td>Check input signal and correct if necessary.</td>
</tr>
<tr>
<td>6. Internal leakage</td>
<td>Excessive leakage will cause lower charge pressure and affect performance.</td>
<td>Install loop flushing defeat option and measure case flow. If case flow is excessive, motor may require major repair. Contact your Danfoss authorized service center.</td>
</tr>
</tbody>
</table>

System operating hot

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oil level</td>
<td>Insufficient hydraulic fluid may cause overheating.</td>
<td>Fill reservoir to proper level.</td>
</tr>
<tr>
<td>2. Heat exchanger</td>
<td>Blocked heat exchanger or low air flow may cause system overheating.</td>
<td>Check temperature upstream and downstream of heat exchanger. Clean, repair, or replace heat exchanger if necessary.</td>
</tr>
<tr>
<td>4. Loop flushing shuttle</td>
<td>Loop flushing shuttle may be sticking in one direction.</td>
<td>Ensure shuttle moves freely in its bore.</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Air in system</td>
<td>Entrained air generates heat under pressure</td>
<td>Look for foam or bubbles in reservoir. Check for leaks on inlet side of charge pump.</td>
</tr>
<tr>
<td>6. Internal leakage</td>
<td>Excessive internal leakage may overheat the system.</td>
<td>Install loop flushing defeat option and monitor case flow. If case flow is excessive, motor may require major repair. Contact your Danfoss authorized service center.</td>
</tr>
</tbody>
</table>

Excessive noise or vibration

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oil level in reservoir</td>
<td>Insufficient hydraulic fluid may cause cavitation.</td>
<td>Fill reservoir to proper level.</td>
</tr>
<tr>
<td>2. Air in system</td>
<td>Air bubbles may lead to cavitation.</td>
<td>Look for foam or bubbles in reservoir. Check for leaks on inlet side of charge pump.</td>
</tr>
<tr>
<td>3. Shaft coupling</td>
<td>Loose shaft coupling may create excess noise.</td>
<td>Replace loose shaft coupling. Replace or repair motor if shaft splines show excessive wear.</td>
</tr>
<tr>
<td>4. Shaft alignment</td>
<td>Misaligned shafts may create excessive noise and vibration and can damage motor.</td>
<td>Correct shaft misalignment.</td>
</tr>
</tbody>
</table>

Motor operates normally in one direction only

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Charge pressure</td>
<td>If charge pressure is low in one direction, the loop flushing shuttle spool may be sticking to one side.</td>
<td>Measure charge pressure in forward and reverse. If pressure drops significantly lower in one direction, inspect and repair loop flushing shuttle spool.</td>
</tr>
<tr>
<td>2. Pressure compensator control</td>
<td>If pressure compensator operates in one direction only, the motor may stay at minimum displacement in the opposite direction.</td>
<td>Check brake pressure defeat spool. It may be sticking or receiving an improper signal. Repair spool or correct input signal.</td>
</tr>
</tbody>
</table>

Improper output speed

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oil level in reservoir</td>
<td>Insufficient hydraulic fluid may reduce system efficiency.</td>
<td>Fill reservoir to proper level.</td>
</tr>
<tr>
<td>2. Threshold setting</td>
<td>Improper threshold setting may cause motor to have wrong displacement for given signal.</td>
<td>Check threshold setting. Refer to Control Service Manual for adjustment procedure.</td>
</tr>
<tr>
<td>3. Pressure compensator setting</td>
<td>Improper pressure compensator setting may shift motor displacement at wrong pressure.</td>
<td>Check pressure compensator setting. Adjust if necessary. Refer to Control Service Manual for adjustment procedure.</td>
</tr>
<tr>
<td>4. PC spool</td>
<td>Pressure compensator spool sticking may shift motor to improper displacement.</td>
<td>Check pressure compensator spool. Repair or replace if needed. Refer to Control Service Manual for adjustment procedure.</td>
</tr>
<tr>
<td>5. Control orifices</td>
<td>Blocked or restricted orifice may cause motor to shift improperly.</td>
<td>Remove, inspect and clean all orifices.</td>
</tr>
<tr>
<td>6. Control spool</td>
<td>Sticky proportional control spool may cause motor to shift improperly.</td>
<td>Check control spool for proper operation. Repair if necessary. Refer to control adjustment procedure.</td>
</tr>
<tr>
<td>7. Control input signal</td>
<td>Improper input signal may cause motor to shift improperly.</td>
<td>Correct control input signal.</td>
</tr>
<tr>
<td>8. Internal leakage</td>
<td>Excess internal leakage may cause lower charge pressure and affect motor performance including output speed.</td>
<td>Install loop flushing defeat option and measure case flow. If case flow is excessive, motor may require major repair. Contact your Danfoss authorized service center.</td>
</tr>
</tbody>
</table>
Troubleshooting

Low output torque

<table>
<thead>
<tr>
<th>Check</th>
<th>Cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pressure compensator setting</td>
<td>High pressure compensator setting may cause improper motor displacement for torque required.</td>
<td>Check and adjust pressure compensator setting.</td>
</tr>
<tr>
<td>2. Control orifices</td>
<td>Blocked or restricted orifice may cause motor to shift improperly.</td>
<td>Remove, inspect and clean all orifices.</td>
</tr>
<tr>
<td>3. Pressure compensator spool</td>
<td>Sticking pressure compensator spool may cause control to hold motor at minimum displacement.</td>
<td>Remove and inspect pressure compensating spool. Repair or replace control if necessary.</td>
</tr>
<tr>
<td>4. Control spool</td>
<td>Sticking control spool may cause motor to shift improperly.</td>
<td>Remove and inspect control spool. Repair or replace control if necessary.</td>
</tr>
<tr>
<td>5. Two position solenoid</td>
<td>Two position control not shifting motor to maximum displacement.</td>
<td>Inspect solenoid valve for bent stem or damaged coil. Repair or replace if necessary.</td>
</tr>
<tr>
<td>6. Control input signal</td>
<td>Improper control input signal may cause motor to stay at minimum displacement.</td>
<td>Correct control input signal.</td>
</tr>
<tr>
<td>7. Threshold setting (proportional control)</td>
<td>Improper threshold setting may cause improper motor displacement for torque required.</td>
<td>Check and adjust threshold setting.</td>
</tr>
<tr>
<td>8. Internal leakage</td>
<td>Excess internal leakage may cause charge pressure to decay, reducing output torque.</td>
<td>Install loop flushing defeat option and monitor case flow. If case flow is excessive, motor may require major repair. Contact your Danfoss authorized service center.</td>
</tr>
</tbody>
</table>
Required tools and standard procedures

Required tools

The service procedures described in this manual can be performed using common mechanic’s hand tools. Special tools, if required, are shown. When testing system pressures, calibrate pressure gauges frequently to ensure accuracy. Use snubbers to protect gauges.

Standard procedures

Caution

Contamination can damage internal components and void the manufacturer’s warranty. Take precautions to ensure system cleanliness when removing and reinstalling system lines.

1. With the prime mover off, thoroughly clean all dirt and grime from the outside of the motor. Ensure the surrounding areas are clean and free of contaminants such as dirt and grime.

2. If removing the motor, tag each hydraulic line connected to the motor. If you disconnect hydraulic lines, plug each open port to keep dirt and contamination out of the motor.

3. Inspect the system for contamination. Look at the hydraulic fluid for signs of system contamination, such as oil discoloration, foam in the oil, sludge, or small metal particles.

4. Remove the motor as a single unit.

Caution

Be careful not to damage solenoids and electrical connections when using straps or chains to remove motor from machine.

5. Perform motor function test.

6. Before re-installing the motor on the machine, drain the system, flush all lines, replace all filters, and fill with new hydraulic fluid.
Adjustments

Adjusting the minimum displacement limiter

Minimum displacement limiter

1. Remove cap (N0120).

Removing the cap destroys the caps locking mechanism. Replace with a new cap.

2. Using a 6 mm internal hex wrench, hold adjusting screw (N0010) in place.

3. Using a 19 mm hex wrench, loosen seal locknut (N0020).

4. Turn adjusting screw clockwise to increase minimum displacement or counterclockwise to decrease minimum displacement.

Minimum displacement is inversely related to maximum shaft speed. To increase maximum speed, decrease minimum displacement. Adjusting displacement limits also affects output torque. Refer to the table below for displacement change per turn.

<table>
<thead>
<tr>
<th>Size</th>
<th>060</th>
<th>080</th>
<th>110</th>
<th>160</th>
<th>210</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement change</td>
<td>2.1 cm3 [0.13 in3]</td>
<td>2.6 cm3 [0.16 in3]</td>
<td>3.2 cm3 [0.20 in3]</td>
<td>4.1 cm3 [0.25 in3]</td>
<td>5.1 cm3 [0.31 in3]</td>
<td>5.5 cm3 [0.34 in3]</td>
</tr>
</tbody>
</table>

5. When properly adjusted, hold adjusting screw in place and torque seal lock-nut to 45 N•m [32 lbf•ft].

6. With motor on machine or test stand, verify correct motor function. Refer to Ports and Gauge Information on page 27 for location of gauge ports and suggested gauge sizes.

7. Install new cap (N0120).
Adjustments

Optional threshold adjustment – Electric proportional controls

Adjusting threshold on test stand

1. Connect flow meter to A or B system port. Refer to Ports and Gauge Information on page 27 for port locations.
2. Connect solenoid to PWM signal generator at 150 Hz.

 Threshold is the electric signal when the motor starts to change from maximum to minimum displacement.
3. Run prime mover at operating speed.

 Threshold adjustment

5. If adjustment is necessary, remove cap (B0040). Using a 3mm internal hex wrench, turn adjusting screw clockwise or counterclockwise until flow starts to change from maximum. One full turn of the adjusting screw changes the threshold by approximately 60 mA for 12V controls and 30mA for 24V controls. CW turn decreases the setting and CCW turn increases the setting. Test your adjustment by lowering the current, then increasing the current until the displacement starts to change. Readjust the setting if necessary.
6. When threshold is adjusted correctly, stop prime mover, install cap (B0040), and install motor on vehicle. Run vehicle and test for proper motor operation.

Adjusting threshold on a machine or test stand without flow meter

1. Install 600 bar [10,000 psi] gauges to ports M5 and M4. Connect solenoid to PWM signal.
2. Raise wheels off ground, or disconnect the work function.

 Warning

 Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/disconnect the mechanism while servicing.
3. Run prime mover at operating speed. Stroke the pump to get some rotation of motor shaft.
4. Increase signal current until M4 pressure becomes 1/2 of the M5 pressure. Check the signal current at this point.
5. If adjustment is necessary, remove cap (B0040). Turn the adjusting screw until the signal current matches the model code setting.
6. When threshold is adjusted correctly, stop prime mover, install cap. Run vehicle and test for proper motor operation.
7. Remove from test stand.
Adjustments

Optional threshold adjustment – Hydraulic proportional controls

Adjusting threshold on test stand

1. Connect flow meter to A or B system port. Refer to Ports and Gauge Information on page 27 for port locations.

2. Connect a variable pressure supply to X1 port (0-50 bar).

 Threshold is the pressure at which the motor starts to change from maximum to minimum displacement.

3. Run prime mover at operating speed.

 Threshold adjustment

4. Adjust control pressure to pressure listed in model code. Note flow reading.

5. If adjustment is necessary, remove nut (B0180). Using a 6mm internal hex wrench, turn adjusting screw clockwise or counterclockwise until flow starts to change from maximum.

 One full turn of the adjusting screw changes the threshold by approximately 2.3 bar. CW turn increases the setting and CCW turn decreases the setting. Test your adjustment by lowering the control pressure, then increasing the control pressure until the displacement starts to change. Readjust the setting if necessary.

6. When threshold is adjusted correctly, stop prime mover, install nut (B0180), and install motor on vehicle. Run vehicle and test for proper motor operation.

Adjusting threshold on a machine or test stand without flow meter

1. Install 600 bar [10,000 psi] gauges to ports M5 and M4. Connect a variable pressure supply to X1 port (0-50 bar).

2. Raise wheels off ground, or disconnect the work function.

 Warning

 Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/disconnect the mechanism while servicing.

3. Run prime mover at operating speed. Stroke the pump to get some rotation of motor shaft.

4. Increase X1 pressure until M4 pressure becomes 1/2 of the M5 pressure. Check the X1 pressure at this point.
Adjustments

5. If adjustment is necessary, remove nut (B0180). Turn the adjusting screw until the X1 pressure matches the model code setting.

6. When threshold is adjusted correctly, stop prime mover, install nut (B0180). Run vehicle and test for proper motor operation.

7. Remove from test stand.

Pressure Compensator OverRide (PCOR) adjustment

PCOR adjustment for all controls except P1/P2 controls is described below. PCOR adjustment for P1/P2 controls is electrically adjusted using a proportional solenoid.

Nominal settings 240 bar [3500 psi] at 800 mA (12 V), 400 mA (24 V) or per model code.

No adjustment is available for the Brake Pressure Defeat (BPD) option. Coil is either energized or de-energized, if coil is used.

Warning

Unintended movement of the machine or mechanism may cause injury to the technician or bystanders. To protect against unintended movement, secure the machine or disable/disconnect the mechanism while servicing.

Setup

1. Install motor in machine.

2. Install 600 bar pressure gauge at system port MA or MB (whichever side is regulated by the PCOR). Optionally, the gauge can be installed in the system gauge port M5.

3. Install sensor to read engine speed.

4. Install sensor to read wheel speed.

5. Install data acquisition device which is able to record data over time using the sensors installed in steps 2 – 4 above.

6. Deactivate any inching systems connected to the brakes if applicable.

7. Prepare site for testing (two options are available).
 a) Lift machine so wheels are no longer engaging the ground, or
 b) Use a straight, flat surface to drive machine during testing.

Testing

1. Start machine engine.

2. Set engine to high idle (rated speed) and maintain for the duration of the testing.

3. Turn the machine wheels at a constant speed (motor will be at minimum displacement).
 a) Allow wheels to turn at constant speed if using setup 7a.
 b) Drive machine at constant speed if using setup 7b.

4. Begin data acquisition (system pressure, engine speed, and wheel speed).

5. Slowly apply the service brake to continuously increase the load on the system until the wheel speed (setup 7a) or driving speed (setup 7b) decreases by approximately 1/3.

6. Stop machine and turn off engine.

7. Stop data acquisition.
Adjustments

Analysis

1. Using appropriate software for the data acquisition device, plot the system pressure, wheel speed and engine speed versus time.
2. As the system pressure increases (from applying the brakes), the engine speed and wheel speed will start decreasing.
3. When the system pressure stops rising and remains constant, that pressure will be the PCOR setting. The engine speed should remain constant during this period while the wheel speed continues to decrease. See Graph below.

Adjustment

1. If adjustment is required, use a 3mm internal hex to hold the PCOR adjusting screw in place and use a 10mm wrench to loosen the PCOR lock nut. One full turn of the adjusting screw changes the PCOR setting by approximately 90 Bar.
 a) Turn adjusting screw clockwise to increase the PCOR setting.
 b) Turn adjusting screw counterclockwise to decrease the PCOR setting.
2. Use a 3mm internal hex to hold the PCOR adjusting screw in place and use a 10mm wrench to tighten the lock nut to 8 N-m [6 lbf-ft].
3. Repeat Testing, Analysis, and Adjustment steps as necessary to reach the desired PCOR setting.
Minor repair

Shaft seal

Removal

1. 1. Using snap ring pliers, remove retaining ring (G0030).
2. 2. Use a slide-hammer style puller to remove seal (G0020). Be careful not to damage the shaft or seal bore when removing. Discard seal.

Inspection

Inspect retaining ring for wear or damage. Replace if necessary. Inspect shaft for wear or groove at seal area.

Assembly

1. Lubricate inside diameter of new seal. Cover the shaft splines with shaft cover or packing tape to avoid damaging the seal during installation.
2. Using seal installation tool, press seal into housing bore.
3. Using a snap ring pliers, install retaining ring (G0030).
4. Use seal installation tool to press seal and retaining ring into housing until retaining ring snaps into its groove.

If not using seal installation tool: Do not press seal beyond snap-ring groove. Stop pressing just when you have room to install the retaining ring into the bore. Pressing the seal and snap-ring together ensures proper installation depth. Using the seal installation tool prevents pressing the seal too deeply.

Shaft seal
Minor repair

110/160/210/250 - Seal installation tool dimensions, 060/080 - Seal installation tool dimensions
Minor repair

Electric proportional solenoid replacement

Removal
1. Disconnect electrical connection and remove three cap screws (B0050) using a 4 mm internal hex wrench.
2. Remove the solenoid (B0010) and O-ring (B0035A). Discard the O-ring.
3. Remove valve spool (C0100).

Inspection
Clean and inspect valve spool and all machined surfaces for damage or wear. Replace parts if necessary.

Assembly
1. Lubricate and install valve spool (C0100).
2. Using petroleum jelly, lubricate and install new O-ring (B0035A).
3. Install cap screws (B0050) using a 4 mm internal hex wrench. Torque screws to 6 N-m [4 lbf-ft].
4. Reconnect electrical connections and test the motor for proper operation.

Replacing solenoid
Minor repair

Hydraulic proportional actuator replacement

Removal

1. Remove three cap screws (B0050) using a 4 mm internal hex wrench.
2. Remove the actuator (B0010).

Inspection

Clean and inspect all machined surfaces for damage or wear. Replace parts if necessary.

Assembly

Replacing actuator

1. Install cap screws (B0050) using a 4 mm internal hex wrench and torque screws to 6 N-m [4 lbf-ft].
2. Test the motor for proper operation.
Minor repair

Control module replacement

Removal

1. Remove four cap screws (C0110 and/or C0120). Refer to table for wrench sizes.
2. Remove control (C0010) from motor. Remove and discard gasket (C0130).
3. Proportional control only - using a magnet, remove spring seat (F0030) and spring (F0040).

Inspection

Clean and inspect the machined surfaces on the control and the endcap. If you find any nicks or scratches, replace control or endcap. Inspect valve spool, washer, and spring. Replace if necessary.

Assembly

Control module removal/installation
Minor repair

1. Lubricate and install spring (F0040) and spring seat (F0030) into servo.
2. Install a new gasket (C0130).
4. Install four cap screws (C0110 and/or C0120).

C0110 and C0120 Wrench Size

<table>
<thead>
<tr>
<th>Screw</th>
<th>Control</th>
<th>Torque</th>
<th>Internal Hex Wrench</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0110</td>
<td>Electric / Hydraulic proportional</td>
<td>37 N-m [27 lbf-ft]</td>
<td>6 mm</td>
</tr>
<tr>
<td>C0110, C0120</td>
<td>Two-position</td>
<td>115 N-m [85 lbf-ft]</td>
<td>10 mm</td>
</tr>
</tbody>
</table>
Minor repair

Electric proportional control module

Coil O-rings are not included in the overhaul seal kit. They may be purchased as a separate kit.

Disassembly

1. Remove the plastic cap (B0040) and O-ring (B0029). Discard the O-ring.
2. Remove the solenoid nut (B0027) using a 26mm 12-point socket. Remove and discard the O-ring (B0028).
3. Remove the coil (B0020A). Remove and discard the O-ring (B0025).
4. Use a 4 mm internal hex wrench to remove screws (B0050). Remove solenoid (B0010).
5. Remove and discard O-ring (B0035A).
6. Remove spool (C0100).
7. Using a 1/4 in internal hex wrench remove plug (C0050) and discard O-ring (C0050A).
8. Use a 5 mm internal hex to remove shuttle valve (C0025).
9. Using a 1/8 in internal hex wrench, remove 3 plugs (C0060) and discard O-rings (C0060A).
10. Using a 3 mm internal hex, remove 2 orifices (E00T3 and E00T2).

Inspection

Inspect the machined surfaces on the control and the endcap. If you find any nicks or scratches, replace the control or endcap assembly. Check that shuttle ball moves freely in housing (C0025).
Minor repair

Assembly

Proportional control block assembly

1. Install orifices (E00T3 and E00T2) with torque to 6 N-m [4 lbf-ft].
2. Lubricate and install new O-rings (C0060A).
3. Install and torque plugs (C0060) to 8 N-m [6 lbf-ft] using a 1/8 inch internal hex wrench.
4. Lubricate and install spool (C0025) into control block using a 5 mm internal hex wrench, torque to 14 N-m [11 lbf-ft]
5. Install new O-ring (C0050A).
6. Install and torque plug (C0050) to 40 N-m [30 lbf-ft] using a 1/4 inch internal hex wrench.
7. Lubricate and install spool (C0100).
8. Lubricate and install new O-ring (B035A).
9. Install solenoid (B0010) using a 4 mm internal hex wrench.
10. Install screws (B0050) with torque to 6 N-m [4 lbf-ft].
11. Lubricate and install new O-ring (B0025) onto solenoid.
12. Install coil (B0020A).
Minor repair

13. Lubricate and install new O-ring (B0028) onto solenoid.
14. Install coil nut (B0027) and torque to 3.5 N-m [2.6 lbf-ft] using a 26 mm 12-point socket.
 Do not over torque.
15. Install new O-ring (B0029) and plastic cap (B0040) to solenoid.
Minor repair

Hydraulic proportional control module

Disassembly
1. Use a 4 mm internal hex wrench to remove screws (B0050). Remove actuator (B0010).
2. Remove and discard O-ring (B0035A).
3. Using a 1/4 in internal hex wrench remove plug (C0050) and discard O-ring (C0050A).
4. Use a 5 mm internal hex to remove shuttle valve (C0025).
5. Using a 1/8 in internal hex wrench, remove 3 plugs (C0060) and discard O-rings (C0060A).
6. Using a 3 mm internal hex, remove 2 orifices (E00T3 and E00T2).

Inspection
Inspect the machined surfaces on the control and the endcap. If you find any nicks or scratches, replace the control or endcap assembly. Check that shuttle ball moves freely in housing (C0025).

Assembly
1. Install orifices (E00T3 and E00T2) with torque to 6 N·m [4 lbf·ft].
2. Lubricate and install new O-rings (C0060A).
3. Install and torque plugs (C0060) to 8 N·m [6 lbf·ft] using a 1/8 inch internal hex wrench.
4. Lubricate and install spool (C0025) into control block using a 5 mm internal hex wrench, torque to 14 N·m [11 lbf·ft]
5. Install new O-ring (C0050A).
Minor repair

6. Install and torque plug (C0050) to 40 N•m [30 lbf•ft] using a 1/4 inch internal hex wrench.
7. Install actuator (B0010) using a 4 mm internal hex wrench.
8. Install screws (B0050) with torque to 6 N•m [4 lbf•ft].

If replacing the hydraulic actuator, set the threshold pressure to the proper setting. Refer to *Adjusting threshold on test stand* on page 37.
Minor repair

Electric two-position control module

Coil O-rings are not included in the overhaul seal kit. They are included with the purchase of a new coil.

Disassembly

1. Use a 26 mm 12-point socket to remove coil nuts (B0026) and O-ring (B0028).
2. Remove coils (B0022) and O-rings (B0024). Discard O-rings.
3. Using a 17 mm open-end wrench on the flats provided, remove solenoid assemblies (B0032).
4. Remove and discard O-rings (B0034).
5. Using a 1/8 inch internal hex wrench, remove four plugs (C0060). Remove and discard O-rings (C0060A).
6. Using a 1/4 inch internal hex wrench, remove two plugs (C0050). Remove and discard O-rings (C0050A).
7. Using a 17 mm hex wrench, remove pressure compensator adjusting plug (C0090). Remove and discard O-ring (M223).
8. Remove springs (C0030) and (C0080). Remove spools (C0020) and (C0070).
9. If necessary, use a 3 mm internal hex wrench to remove orifices (E00T2) and (E00T3).

Inspection

Clean and inspect the machined surfaces on the control and the endcap. If any nicks or scratches are found, replace the control/endcap assembly.
Minor repair

Assembly

Two-position control assembly

T*D* and P*D*

T*G* and P*G*

© Danfoss | March 2020 AX152886484369en-000607 | 53
Minor repair

1. If previously removed, install orifices (E00T3 and E00T2) using a 3 mm internal hex wrench. Torque to 6 N-m [4 lbf-ft].
2. Lubricate and install spools (C0020) and (C0070) and springs (C0080) and (C0030).
3. Lubricate and install O-ring (M223). Install pressure compensator adjusting plug (C0090). Torque to 25 N-m [18 lbf-ft].
4. Lubricate and install two O-rings (C0050A). Using a 1/4 inch internal hex wrench, install plugs (C0050). Torque to 25 N-m [19 lbf-ft].
5. Lubricate and install four O-rings (C0060A). Using a 1/8 inch internal hex wrench, install plugs (C0060). Torque to 8 N-m [6 lbf-ft].
6. Lubricate and install O-rings (B0034).
7. Install solenoids (B0032) using a 17 mm open-end wrench on the flats provided. Torque to 25 N-m [19 lbf-ft].
8. Lubricate and install new O-rings (B0024) on solenoids.
9. Install coils (B0022).
10. Lubricate and install new O-rings (B0028).
11. Install coil nuts (B0026) using a 26 mm 12-point socket. Torque to 3.5 N-m [2.6 lbf-ft].

Do not over torque.
Minor repair

Hydraulic two-position control module

Disassembly
1. Using a 1/8 inch internal hex wrench, remove plug (C0160). Remove and discard O-ring (C0160A).
2. Using a 1/8 inch internal hex wrench, remove three plugs (C0060). Remove and discard O-rings (C0060A).
3. Using a 1/4 inch internal hex wrench, remove two plugs (C0050). Remove and discard O-rings (C0050A).
4. Use a 5mm internal hex wrench to remove the shuttle valve (C0025).
5. Using a 3/8 internal hex wrench, remove plug (C0140). Remove and discard O-ring (C0140A).
6. Remove spring (C0080). Remove spool (C0150).
7. If necessary, use a 3 mm internal hex wrench to remove orifices (E00T2) and (E00T3).

Inspection
Clean and inspect the machined surfaces on the control and the endcap. If any nicks or scratches are found, replace the control/endcap assembly.

Assembly

Hydraulic two-position control assembly (HEHE, HFHF)

1. Lubricate and install spool (C0150) and spring (C0080).
2. Using a 3/8 inch internal hex wrench, install plug (C0140). Torque to 25 N-m [18 lbf-ft].
3. Lubricate and install spool (C0025).
4. Using a 1/4 inch internal hex wrench, install two plugs (C0050). Torque to 40 N-m [30 lbf-ft].
5. Using a 1/8 inch internal hex wrench, install four plugs (C0060). Torque to 8 N-m [6 lbf-ft].
6. Using a 1/8 inch internal hex wrench, install plug (C0160). Torque to 25 N-m [18 lbf-ft].
Hydraulic two-position control module with PCOR

Disassembly
1. Using a 1/8 inch internal hex wrench, remove two plugs (C0060). Remove and discard O-rings (C0060A).
2. Using a 1/4 inch internal hex wrench, remove three plugs (C0050). Remove and discard Orings (C0050A).
3. Use a 5mm internal hex wrench to remove the shuttle valve (C0025).
4. Using a 22 mm hex wrench, remove adapter (B0300). Remove and discard O-ring (QB0300).
5. Using a 17 mm hex wrench, remove pressure compensator adjusting plug (C0090). Remove and discard O-ring (M223).
6. Remove spring (C0080). Remove spool (C0070).
7. If necessary, use a 3 mm internal hex wrench to remove orifices (E00T2) and (E00T3).

Inspection
Clean and inspect the machined surfaces on the control and the endcap. If any nicks or scratches are found, replace the control/endcap assembly.

Assembly

Two-position control assembly (THHA)

1. If previously removed, install orifices (E00T3 and E00T2) using a 3 mm internal hex wrench with torque to 6 N-m [4 lbf-ft].
2. Lubricate and install spool and (C0070) and spring (C0080).
3. Lubricate and install O-ring (M223).
4. Install pressure compensator adjusting plug (C0090) with torque to 25 N-m [15 lbf-ft].
5. Lubricate and install O-ring (QB0300).
6. Install adapter (B0300) with torque to 67 N-m [49 lbf-ft].
7. Lubricate and install spool (C0025).
8. Install three plugs (C0050) using a 1/4 inch internal hex wrench, with torque to 40 N-m [30 lbf-ft].
9. Install two plugs (C0060) using a 1/8 inch internal hex wrench, with torque to 8 N-m [6 lbf-ft].
Minor repair

Hydraulic two-position control module with PCOR and hydraulic BPD

Disassembly

1. Using a 1/8 inch internal hex wrench, remove three plugs (C0060). Remove and discard O-rings (C0060A).
2. Using a 1/4 inch internal hex wrench, remove four plugs (C0050). Remove and discard O-rings (C0050A).
3. Using a 1/4 inch internal hex, remove plug (C0140). Remove spool (C0020).
4. Use a 5mm internal hex wrench to remove the shuttle valve (C0025).
5. Using a 22 mm hex wrench, remove adapter (B0300). Remove and discard O-ring (QB0300).
6. Using a 17 mm hex wrench, remove pressure compensator adjusting plug (C0090). Remove and discard O-ring (M223).
7. Remove spring (C0080). Remove spool (C0070).
8. If necessary, use a 3 mm internal hex wrench to remove orifices (E00T2) and (E00T3).

Inspection
Clean and inspect the machined surfaces on the control and the endcap. If any nicks or scratches are found, replace the control/endcap assembly.

Assembly

Two-position control assembly (THHB)

1. If previously removed, install orifices (E00T3 and E00T2) using a 3mm internal hex wrench. Torque to 6 N-m [4 lbf-ft].
2. Lubricate and install spools and (C0070) and spring (C0080).
3. Lubricate and install O-ring (M223).
4. Install pressure compensator adjusting plug (C0090). Torque to 25 N-m [18 lbf-ft].
5. Lubricate and install O-ring (QB0300).
6. Install adapter (B0300). Torque to 67 N-m [49 lbf-ft].
7. Lubricate and install spool (C0020).
8. Using a 1/4 inch internal hex wrench, install plug (C0140). Torque to 14 N-m [10 lbf-ft].
Minor repair

9. Lubricate and install shuttle (C0025).
10. Using a 1/4 inch internal hex wrench, install four plugs (C0050). Torque to 40 N•m [30 lbf•ft].
11. Using a 1/8 inch internal hex wrench, install three plugs (C0060). Torque to 8 N•m [6 lbf•ft].
Minor repair

Maximum displacement limiter two-position controls

It is not necessary to remove the maximum displacement limiter unless it is being replaced.

Disassembly
Models with maximum displacement limiter: Remove screw (P0100) using a 6 mm internal hex, and spacer (P0200).

Assembly

Maximum displacement limiter assembly

1. Install spacer (P0200) and screw (P0100) using a 6 mm internal hex.
2. Torque screw to 37 N-m [28 lbf-ft].
Minor repair

Servo piston cover – proportional control

Removal

1. Remove four screws (P0020) using a 10 mm internal hex wrench.
2. Remove servo piston cover (P0010).
3. Remove and discard O-ring (P0030).
4. Remove screw (P0050).

Caution

For the safe removal of end cap and servo piston, please refer to the H1B Bent Axis Variable Motor Repair Instructions available to Authorized Service Centers.
5. Using expanding pliers, remove piston head (P0040).

6. Remove and discard seal ring (P0044) and O-ring (P0043).

Inspection

Clean and inspect bushings and machined surfaces for wear or damage. If wear or damage are found, replace component in question.

Assembly

1. Lubricate and install new O-ring (P0043) and seal ring (P0044) on piston (P0041).

 ![Diagram showing O-ring and seal ring installation](image)

 Allow seals time to relax before installing piston.

2. Install piston and install screw (P0050).

 See the table for wrench size below:

 Wrench size (internal hex)

<table>
<thead>
<tr>
<th>Size</th>
<th>060/080</th>
<th>110</th>
<th>160/210/250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrench size</td>
<td>8 mm</td>
<td>10 mm</td>
<td>12 mm</td>
</tr>
</tbody>
</table>
Minor repair

<table>
<thead>
<tr>
<th>Size</th>
<th>060/080</th>
<th>110</th>
<th>160/210/250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
<td>66 N·m [49 lbf·ft]</td>
<td>115 N·m [85 lbf·ft]</td>
<td>213 N·m [157 lbf·ft]</td>
</tr>
</tbody>
</table>

3. Lubricate and install new O-ring (P0030) and install servo piston cover (P0010).
4. Using a 8 mm or 10 mm internal hex install screws (P0020). Torque to 115 N·m [85 lbf·ft].

Refer to the H1B Bent Axis Variable Motor Repair Instructions (available to Authorized Service Centers) if further motor disassembly is needed.
Minor repair

Replace speed sensor

Removal

1. Using a 5 mm internal hex wrench, remove screw (J0020).
2. Remove speed sensor (J0010).

Assembly

1. Lubricate and install new O-ring (J0010A).
2. Install speed sensor (J0010).
3. Install screw (J0020) using a 5 mm internal hex wrench with torque to 8 N·m [6 lbf·ft].
Minor repair

Loop flushing spool

Removal
1. Remove plugs (K0030) using a 24 mm hex wrench.
2. Remove and discard O-rings (K0030A).
3. Use a magnet to remove springs (K0020) and spool (K0010).

Inspection
Clean and inspect spool (K0010). If spool is damaged or worn replace it. Replace springs if they are cracked or bent.

Reassembly

Loop flushing reassembly

1. Lubricate and install spool (K0010).
2. Lubricate and install springs (K0020).
3. Lubricate and install new O-rings (K0030A).
4. Install plugs (K0030) using a 24 mm hex wrench with torque to 67 N•m [49 lbf•ft].
Minor repair

Loop flushing charge relief valve

Removal

1. Using a 24 mm hex wrench remove valve (L00**).
2. Remove and discard O-ring (L0050).

Do not disassemble valve. If you suspect malfunction, replace valve.

Assembly

1. Install new O-ring (L0050).
2. Using a 24 mm hex wrench, install valve (L00**). Torque to 67 N•m [49 lbf-ft].

Loop flushing charge relief valve replacement
Minor repair

Minimum Displacement limiter

Removal

1. Remove cap (N0120).

 Removing the cap destroys the caps locking mechanism. Replace with a new cap.

2. While holding the position of the adjustment screw, remove the seal locknut (N0020) using a 19mm hex wrench. Discard the locknut. After removing the locknut, mark the position of the limiter screw for reassembly.

3. Using a 6 mm internal hex, remove displacement limiter screw (N0010).

Inspection

Inspect set screw for wear or damage. Replace set screw if necessary.

Assembly

1. Using a 6 mm internal hex wrench, install adjustment screw (N0010) to original position.

2. Using a 6 mm internal hex wrench, to hold the position of the adjustment screw, install a new seal locknut (N0020) using a 19mm hex wrench. Torque to 45 N-m [32 lbf-ft].

3. Install new cap (N0120).

 Displacement limiter assembly
Torque chart

Fasteners, plugs with torque chart

Proportional controls port, plug and fasteners (with radial ported endcap)

Two-position controls port, plug and fasteners (with radial ported endcap)

Fastener size and torque chart

<table>
<thead>
<tr>
<th>Item</th>
<th>Fastener</th>
<th>Wrench size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0050</td>
<td>Solenoid screws</td>
<td>4 mm internal hex</td>
<td>6 N•m [4 lbf•ft]</td>
</tr>
<tr>
<td>C0110</td>
<td>Control (proportional) assembly screws</td>
<td>6 mm internal hex</td>
<td>37 N•m [28 lbf•ft]</td>
</tr>
<tr>
<td>C0110, C0120</td>
<td>Control (two-position) assembly screws</td>
<td>10 mm internal hex</td>
<td>115 N•m [85 lbf•ft]</td>
</tr>
<tr>
<td>L00**</td>
<td>Speed sensor screw</td>
<td>5 mm internal hex</td>
<td>8 N•m [6 lbf•ft]</td>
</tr>
<tr>
<td>M4</td>
<td>Displacement limiter screw</td>
<td>6 mm internal hex</td>
<td>N/A</td>
</tr>
<tr>
<td>M4</td>
<td>Displacement limiter lock-nut</td>
<td>19 mm</td>
<td>45 N•m [32 lbf•ft]</td>
</tr>
<tr>
<td>M4</td>
<td>Servo piston cover screws</td>
<td>10 mm internal hex</td>
<td>115 N•m [85 lbf•ft]</td>
</tr>
</tbody>
</table>

Plug size and torque chart

<table>
<thead>
<tr>
<th>Item</th>
<th>O-ring plug</th>
<th>Wrench size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0060</td>
<td>9/16 - 18UNF</td>
<td>1/4 internal hex</td>
<td>40 N•m [30 lbf•ft]</td>
</tr>
<tr>
<td>C0050</td>
<td>9/16-18 UNF (not shown)</td>
<td>1/4 internal hex</td>
<td>40 N•m [30 lbf•ft]</td>
</tr>
<tr>
<td>C0060</td>
<td>5/16 - 24UNF</td>
<td>3/8 internal hex</td>
<td>8 N•m [5 lbf•ft]</td>
</tr>
</tbody>
</table>
Torque chart

Plug size and torque chart (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>O-ring plug</th>
<th>Wrench size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0100</td>
<td>9/16 - 18UNF</td>
<td>1/4 internal hex</td>
<td>40 N•m [30 lbf•ft]</td>
</tr>
<tr>
<td>F0150 (060)</td>
<td>1-1/16 - 12 UN (Radial endcap)</td>
<td>9/16 internal hex</td>
<td>95 N•m [70 lbf•ft]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115 N•m [85 lbf•ft]</td>
</tr>
<tr>
<td>F0150 (080, 110, 160, 210, 250)</td>
<td>1-1/16 - 12 UN (Radial endcap)</td>
<td>9/16 internal hex</td>
<td>95 N•m [70 lbf•ft]</td>
</tr>
<tr>
<td>G0050</td>
<td>5/16 - 24UNF (SAE and DIN flange)</td>
<td>1/8 internal hex</td>
<td>8 N•m [5 lbf•ft]</td>
</tr>
<tr>
<td>G0055</td>
<td>7/16 - 20UNF (Cartridge only/not shown)</td>
<td>3/16 internal hex</td>
<td>8 N•m [5 lbf•ft]</td>
</tr>
<tr>
<td>G0060 (060, 080)</td>
<td>7/8 - 14UN</td>
<td>3/8 internal hex</td>
<td>70 N•m [52 lbf•lb]</td>
</tr>
<tr>
<td>G0060 (110, 160)</td>
<td>1-1/16 - 12UN</td>
<td>9/16 internal hex</td>
<td>70 N•m [52 lbf•lb]</td>
</tr>
<tr>
<td>G0060 (210, 250)</td>
<td>1-5/16 - 12UN</td>
<td>5/8 internal hex</td>
<td>70 N•m [52 lbf•lb]</td>
</tr>
<tr>
<td>K0030</td>
<td>M18 - 1.5</td>
<td>24 mm hex</td>
<td>67 N•m [49 lbf•ft]</td>
</tr>
<tr>
<td>L00**</td>
<td>M18 - 1.5</td>
<td>24 mm hex</td>
<td>67 N•m [49 lbf•ft]</td>
</tr>
<tr>
<td>F0160</td>
<td>9/16-18 UNF (Axial endcap, not shown)</td>
<td>1/4 internal hex</td>
<td>40 N•m [30 lbf•ft]</td>
</tr>
</tbody>
</table>
Danfoss Power Solutions is a global manufacturer and supplier of high-quality hydraulic and electric components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market as well as the marine sector. Building on our extensive applications expertise, we work closely with you to ensure exceptional performance for a broad range of applications. We help you and other customers around the world speed up system development, reduce costs and bring vehicles and vessels to market faster.

Danfoss Power Solutions – your strongest partner in mobile hydraulics and mobile electrification.

Go to www.danfoss.com for further product information.

We offer you expert worldwide support for ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide you with comprehensive global service for all of our components.

Products we offer:
- DCV directional control valves
- Electric converters
- Electric machines
- Electric motors
- Gear motors
- Gear pumps
- Hydrostatic motors
- Hydrostatic pumps
- Orbital motors
- PLUS+1™ controllers
- PLUS+1™ displays
- PLUS+1™ joysticks and pedals
- PLUS+1™ operator interfaces
- PLUS+1™ sensors
- PLUS+1™ software
- PLUS+1™ software services, support and training
- Position controls and sensors
- PVG proportional valves
- Steering components and systems
- Telematics

Hydro-Gear
www.hydro-gear.com

Daikin-Sauer-Danfoss
www.daikin-sauer-danfoss.com