

Elektronisch gesteuerte Expansionsventile, TQ, PHTQ

Elektronisch gesteuerte Expansionsventile, typ TQ, PHTQ

Einführung

TQ und PHTQ sind elektronisch betriebene Expansionsventile für Kälteanlagen.
Normalerweise werden die TQ/PHTQ-Ventile durch Regler des Danfoss ADAP-KOOL®-Programms angesteuert.

Das Ventil besteht aus 4 Hauptkomponenten:

- Düseneinsatz
- Ventilgehäuse
- Stellantrieb
- Flansche

Die individuellen Leistungen werden durch eine in der Typenbezeichnung enthaltenen Zahl angegeben. Die Zahl entspricht der Düsengröße des betreffenden Ventils. Ein Ventil mit Düse 3 wird beispielsweise mit TQ 5-3 gekennzeichnet. Der Düseneinsatz ist austauschbar.

Die TQ/PHTQ-Ventile decken einen Leistungsbereich von 15 kW bis 2200 kW (R22) je Verdampfer.

TQ/PHTQ ist besonders für Lamellenverdampfer und Flüssigkeitskühler geeignet, sofern sie für trockene Verdampfung konzipiert wurden.

Die Hauptfunktion ist die Regelung der Flüssigkeitszufuhr zu Verdampfern mit trockener Verdampfung in z.B.

- Luftkühlern
- Flüssigkeitskühlern
- Wärmepumpenanlagen
- Klimaanlagen
- Schiffskälteanlagen

Vorteile

- Das System ist quasi unabhängig von Änderungen des Verflüssigungsdruckes
- Das System gleicht Änderungen der Unterkühlung vor dem Expansionsventil aus
- Das System regelt schnell und präzise selbst bei großen Belastungsänderungen
- Geringe Überhitzung ergibt maximalen Wirkungsgrad des Verdampfers

Elektronisch gesteuerte Expansionsventile, typ TQ, PHTQ

Technische Daten

Expansionsventil Typ TQ/PHTQ

Kältemittel	R22, R134a, R404A/R507 ¹⁾				
Bereich	-40 bis +10°C ²⁾				
Prüfdruck	Max. 26,5 bar				
Zuläss. Betriebsüberdruck	PS = 22 bar				
Umgebungstemperatur	Betrieb max. 50°C Versand: max. 70°C				

- 1) Andere Kältemittel, Bitte bei Danfoss anfragen.
- 2) Andere Bereichel, Bitte bei Danfoss anfragen.

Stellantrieb

Umgebungstemperatur	Bei Betrieb: Bei Versand:	-30 bis +60°C -30 bis +70°C		
Leistungszufuhr	24 V pulsierende Wechsels Leistungsaufnahme - Im Betrieb - beim Anlaufen	spannung. 50 VA 75 VA		
Schutzart	IP 55 nach IEC 529, wenn die Schutzkappe aufgesetzt ist			
Kabelverschraubung	Pg 13.5			

Beispiel für die Dimensionierung und Bestellung

Kältemittel: R22

 $\begin{array}{ll} \mbox{Ventilanschluß:} & \mbox{L\"{o}t, Durchgang} \\ \mbox{Verdampferleistung:} & \mbox{Q}_{_0} = 50 \mbox{ kW} \\ \mbox{Verdampfungstemperatur:} & \mbox{t}_{_0} = -10 \mbox{°C} \\ \end{array}$

Unterkühlung = 10 K
Der Verdampfer ist 6 m höher als der Sammler

Kondensationsdruck \boldsymbol{p}_k abzüglich Verdampfungsdruck \boldsymbol{p}_n

$$p_k - p_0 = 14,1 - 3,6 = 10,5 \text{ bar}$$

montiert.

Für die Ermittlung des wirklichen Druckabfalls durch das Expansionsventil müssen von dem Wert ($p_k - p_0$) eine Reihe anderer Druckabfälle Abzug gebracht werden:

- 1. Der Druckabfall Δp_1 in der Flüssigkeitsleitung: $\Delta p_1 \approx 0,1$ bar
- 2. Der geschätzte Druckfall Δp_2 im Filtertrockner, Schauglas, Handabsperrventil und Rohrbiegungen: $\Delta p_2 \approx 0.2$ bar.
- 3. Der Druckabfall Δp_3 in der senkrecht verlaufenden Flüssigkeitsleitung (Höhenunterschied 6 m) geht aus der nachstehenden Tabelle hervor: $\Delta p_3 = 0.7$ bar

Kältemittel	Statischer Druckabfall, ∆p₃ bar beim Höhenunterschied h zwischen Verdampfer und Sammler							
	6 m	12 m	18 m	24 m	30 m			
R22	0.7	1.4	2.1	2.8	3.5			
R134a	0.7	1.4	2.1	2.8	3.6			
R404A	0.6	1.3	1.9	2.5	3.2			
R507	0.6	1.3	1.9	2.5	3.2			

- 4. Druckabfall im Flüssigkeitsverteiler: $\Delta p_4 \approx$ 0,5 bar
- 5. Druckabfall in den Verteilerrohren: $\Delta p_{_{5}}\approx 0\text{,}5$ bar

Gesamter Druckabfall durch das Expansionsventil:

$$\Delta p = (p_k - p_0) - (\Delta p_1 + \Delta p_2 + \Delta p_3 + \Delta p_4 + \Delta p_5)$$

$$\Delta p \approx 10.5 - (0.1 + 0.2 + 0.7 + 0.5 + 0.5)$$

$$\Delta p \approx 10.5 - (0.1 + 0.2 + 0.7 + 0.4)$$

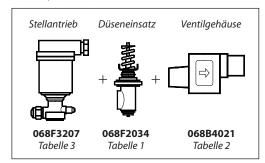
 $\Delta p \approx 8.5 \text{ bar}$

Korrekturfaktor k

Bei der Dimensionierung muß die Leistung des Verdampfers mit einem Korrekturfaktor k, der von der Unterkühlung $\Delta t_{\rm u}$ des Kältemittels vor dem Expansionsventil abhängig ist, multipliziert werden.

$\Delta t_{_{u}}K$	0	4	10	20	30	40
k	1.11	1.00	0.91	0.80	0.74	0.69

Korrekturfaktor für 10 K Unterkühlung = 0,91.

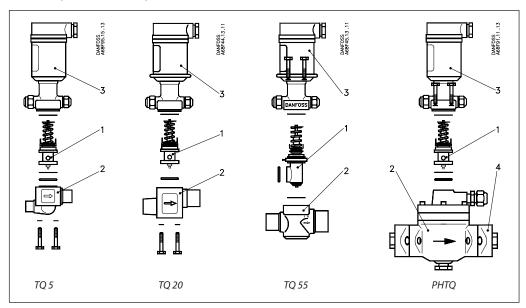

Korrigierte Verdampferleistung = $50 \times 0.91 = 45.5 \text{ kW}$

Nach der Leistungstabelle paßt ein TQ 20-2 in der Leistung.

Bestellung

Düseneinsatz = **068F2034** Ventilgehäuse = **068B4021** Stellantrieb = **068F3207**

TQ 20-3, $\frac{7}{8} \times 1^{\frac{1}{8}}$ in. Lötanschlüsse



Elektronisch gesteuerte Expansionsventile, typ TQ, PHTQ

Bestellung

Das Ventil besteht aus 4 Komponenten, die separat zu bestellen sind:

- 1. Düseneinsatz
- 2. Ventilgehäuse
- 3. Stellantrieb
- 4. Flansche (TQ 20 ist mit montierten Flanschen lieferbar, siehe Bestell-Nr.)

1. Düseneinsatz 1)

				Leist	ung ²⁾				
Symbol	Ventiltyp		Tons (TR)			kW		Düsen-	Düseneinsatz
Symbol	venturyp	R22	R134a	R404A/ R507	R22	R134a	R404A/ R507	Nr.	Bestell-Nr.
	TQ 5-1	4.1	3.1	3.1	14.5	10.8	11	1	068F2041
	TQ 5-2	6.8	5.1	4.9	24	18.0	17.6	2	068F2042
*	TQ 5-3	8.5	7.4	7.4	30	26.4	26.4	3	068F2043
	TQ 20-1	10.8	7.9	8.3	38	27.6	29.7	1	068F2033
	TQ 20-2	17.3	12.6	13.3	61	44.4	47.3	2	068F2034
₩	TQ 20-3	25.3	18.3	19.6	89	64.8	68.2	3	068F2035
	TQ 20-4	33.9	23.8	25.4	119	84.0	89.1	4	068F2036
	TQ 20-5	37.9	27.2	29.1	133	96.0	102	5	068F2037
all.	TQ 55-0.3	23.4	15.1	18.0	82	63.0	63.6	0.3	068F2045
	TQ 55-0.5	39-0	25.3	30.1	137	106	106	0.5	068F2046
$\frac{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline}}}}}}}{\overline{\overline{\overline{\overline{\overline{\overline}}}}}}$	TQ 55-0.7	54.6	35.4	42.1	192	149	148	0.7	068F2047
	TQ 55-1	78.1	60.7	60.2	275	213	212	1	068F2048
	TQ 55-2	114.7	87.9	87.8	404	309	310	2	068F2049

			-	Leist	ung ²⁾			
Symbol	Ventiltyp		Tons (TR)			kW	Steuerdüse	
	ventilityp	R22	R134a	R404A/ R507	R22	R134a	R404A/ R507	Bestell-Nr.
	PHTQ 85-1	41.1	32	31.5	145	112	111	068F2041
<u>_</u>	PHTQ 85-2	61.3	47.7	47.3	216	168	167	068F2041
畫	PHTQ 85-3	100.8	76.6	77.6	355	270	273	068F2041
- Magas-	PHTQ 85-4	173.8	132	133	612	465	469	068F2041
T	PHTQ 125-1	243.4	185	186	857	654	657	068F2041
	PHTQ 300-1	399.3	304	306	1406	1071	1079	068F2041
	PHTQ 300-2	618.7	468	474	2179	1650	1669	068F2041

¹⁾ Korrekte Zufuhr von Kältemittel mittels einem äußeren Druckausgleich vom Stellantrieb zum Ventilausgang gewährleisten.

gewährleisten.

2) Die Leistung gilt für Verdampfungstemperatur t_v = 5°C, Verflüssigungstemperatur t_k = 32°C und Flüssigkeitstemperatur vor dem Ventil t_v = 28°C.

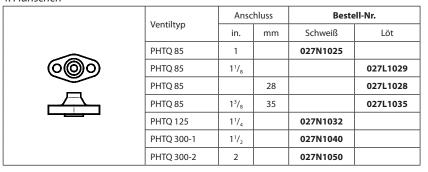
Bestellung, **Expansionsventil Typ** TQ / PHTQ

(Fortsetzung)


2. Ventilgehäuse

		Düsen-	Ansch	nluss			Bestell.Nr.		
Symbol	Ventiltyp	einsatz Nr.	in.	mm	Eckventil Bördel x Bördel	Vinkelløb ODF x ODF	Ligeløb ODF x ODF	Flange ODF x ODF	PHT
		1.0	1/ ₂ × 5/ ₈		068B4013	068B4009	068B4007		
		1-2		12 x 16	068B4013	068B4004	068B4002		
	TQ 5		$^{1/}_{2} \times ^{5/}_{8}$		068B4013				
Ħ	IQ 5	1-3		12 x 16	068B4013				
		1-5	$^{1}/_{2} \times ^{7}/_{8}$			068B4010	068B4008		
				12 x 22		068B4005	068B4003		
			$^{5}/_{8} \times ^{7}/_{8}$			068B4022	068B4020	068B4025 ³)	
		1-2		16 x 22			068B4018	068B4027 ³)	
	TQ 20	1-2	⁷ / ₈ × 1					068B4026 3)	
	10 20			22 x 25				068B4015 3)	
		1-5		22 x 28		068B4017 1)	068B4016 1)		
		1-5	$^{7}/_{8} \times 1^{1}/_{8}$			068B4023 1)	068B4021 1)		
	TQ 55	0.3-2	$1^{1}/_{8} \times 1^{3}/_{8}$			068G4004 ²)	068G4003 ²)		
	10 33	0.5-2		28 x 35		068G4002 ²)	068G4001 ²)		
		1	4)						026H1160
H	PHTQ 85	2	4)						026H1161
	רחועסס	3	4)						026H1162
		4	4)						026H1163
	PHTQ 125	1	4)						026H1164
	DUTO 200	1	4)						026H0165
	PHTQ 300	2	4)						026H0166

 $\mathsf{ODF} = \mathsf{Innendurchmesser}$ $\mathsf{ODM} = \mathsf{Au} \mathcal{B} endurchmesser$


3. Stellantrieb

¹) Wird ein Lötanschluß gewünscht, ist außerdem ein Adapter, **Bestell-Nr. 068B0170**, zu bestellen.

4. Flanschen

¹⁾ ODF x ODM 2) ODM x ODM 3) Ventilgehäuse einschl. Flansche 4) Flansche

Leistung in kW

Bereich $-40 \rightarrow 10^{\circ}$ C

T			Leistung	in kW bei Druc	kabfall im Ven	til ∆p bar		,
Тур	2	4	6	8	10	12	14	16
TQ 5-1	10	13	14	16	16	17	17	18
TQ 5-2	16	20	23	25	26	27	28	28
TQ 5-3	23	28	32	35	37	38	39	40
TQ 20-1	24	32	37	40	43	44	45	46
TQ 20-2	39	52	59	64	68	70	72	73
TQ 20-3	58	76	86	93	98	102	104	106
TQ 20-4	75	99	113	122	128	133	136	138
TQ 20-5	88	114	129	139	146	152	155	158
TQ 55-0,3	55	70	80	87	92	95	98	98
TQ 55-0,5	92	117	133	145	153	159	163	164
TQ 55-0,7	128	164	187	203	215	223	228	230
TQ 55-1	183	235	267	290	307	318	325	328
TQ 55-2	269	340	386	419	443	460	465	467
PHTQ 85-1	96	125	143	155	164	170	174	176
PHTQ 85-2	144	185	210	229	242	251	256	259
PHTQ 85-3	237	301	341	371	392	407	415	419
PHTQ 85-4	408	510	577	627	663	689	703	709
PHTQ 125-1	571	718	813	884	934	970	991	1000
PHTQ 300-1	937	1177	1332	1448	1531	1589	1623	1638
PHTQ 300-2	1455	1812	2049	2228	2356	2446	2497	2517

Bereich −30 \rightarrow 25 $^{\circ}$ C

R134a

T			Leistung	in kW bei Drud	kabfall im Ven	til ∆p bar		
Тур	2	4	6	8	10	12	14	16
TQ 5-1	8	11	12	12	13	13	12	12
TQ 5-2	13	17	19	19	20	20	19	19
TQ 5-3	19	24	26	28	28	28	28	28
TQ 20-1	22	28	31	32	34	34	34	32
TQ 20-2	35	43	48	50	53	53	53	53
TQ 20-3	52	64	71	74	77	78	77	76
TQ 20-4	67	82	91	91	100	101	100	98
TQ 20-5	76	94	104	109	113	114	114	112
TQ 55-0,3	47	59	66	70	71	70	70	69
TQ 55-0,5	78	99	110	116	117	117	117	115
TQ 55-0,7	110	139	155	162	165	164	163	161
TQ 55-1	157	198	221	232	235	234	233	230
TQ 55-2	228	284	317	332	332	329	325	322
PHTQ 85-1	84	107	119	125	127	126	126	125
PHTQ 85-2	124	156	174	184	186	185	184	182
PHTQ 85-3	202	252	281	294	299	298	295	293
PHTQ 85-4	341	425	472	493	498	496	494	492
PHTQ 125-1	480	599	666	698	707	704	700	695
PHTQ 300-1	786	980	1091	1142	1157	1153	1145	1138
PHTQ 300-2	1208	1505	1672	1746	1764	1758	1750	1744

Korrekturfaktor

Bei der Dimensionierung muß die Leistung des Verdampfers mit einem Korrekturfaktor k, der von der Unterkühlung $\Delta t_{\rm u}$ des Kältemittels vor dem Expansionsventil abhängig ist, multipliziert werden.

Korrekturfaktoren für Unterkühlung $\Delta t_{_{u}}$

Δt _u K	4	10	20	30	40	
R22, R134a	1.00	0.95	0.83	0.77	0.71	

Leistung in kW

Bereich −40 \rightarrow 10°C

R404A/R507

T	Leistung in kW bei Druckabfall im Ventil ∆p bar											
Тур	2	4	6	8	10	12	14	16				
TQ 5-1	8	10	11	12	12	12	13	12				
TQ 5-2	13	16	17	18	19	19	19	19				
TQ 5-3	18	23	25	27	27	28	28	27				
TQ 20-1	18	24	28	29	30	31	31	30				
TQ 20-2	30	39	43	46	47	49	49	47				
TQ 20-3	44	57	64	68	70	72	72	70				
TQ 20-4	58	76	85	90	93	94	94	93				
TQ 20-5	68	88	98	103	106	108	108	106				
TQ 55-0,3	45	57	63	67	68	70	70	69				
TQ 55-0,5	75	95	105	111	114	116	116	115				
TQ 55-0,7	105	136	147	155	160	162	163	161				
TQ 55-1	150	190	210	222	228	232	233	230				
TQ 55-2	222	277	305	320	330	335	332	325				
PHTQ 85-1	78	101	112	118	122	124	125	123				
PHTQ 85-2	117	149	165	175	180	183	184	182				
PHTQ 85-3	195	245	269	283	292	296	297	293				
PHTQ 85-4	340	416	454	476	490	500	502	495				
PHTQ 125-1	473	586	642	673	693	705	708	699				
PHTQ 300-1	777	961	1050	1101	1134	1155	1160	1145				
PHTQ 300-2	1213	1480	1611	1688	1740	1773	1783	1760				

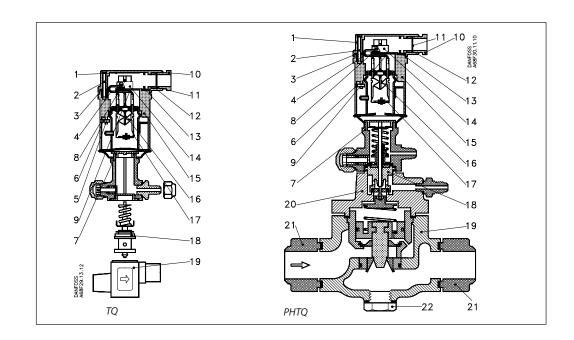
Bereich −40 \rightarrow +10 $^{\circ}$ C

R407C

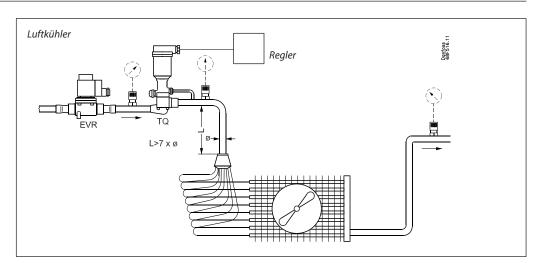
T			Leistung	in kW bei Drud	kabfall im Ven	til ∆p bar		
Тур	2	4	6	8	10	12	14	16
TQ 5-1	11	14	15	16	16	17	17	17
TQ 5-2	17	21	24	26	27	27	28	27
TQ 5-3	24	29	33	36	38	38	39	39
TQ 20-1	25	34	38	41	44	44	45	45
TQ 20-2	41	55	61	66	69	70	71	71
TQ 20-3	61	80	89	96	100	102	103	103
TQ 20-4	80	104	118	126	131	133	135	134
TQ 20-5	93	120	134	143	149	152	153	153
TQ 55-0.3	58	74	83	90	94	95	97	95
TQ 55-0.5	98	123	138	149	156	159	161	159
TQ 55-0.7	136	172	194	209	219	223	226	223
TQ 55-1	194	247	278	299	313	318	322	318
TQ 55-2	285	357	401	432	452	460	460	453
PHTQ 85-1	102	131	149	160	167	170	172	171
PHTQ 85-2	153	194	218	236	247	251	253	251
PHTQ 85-3	251	316	355	382	400	407	411	406
PHTQ 85-4	432	536	600	646	676	689	696	688
PHTQ 125-1	605	754	846	911	953	970	981	970
PHTQ 300-1	993	1236	1385	1491	1562	1589	1607	1589
PHTQ 300-2	1542	1903	2131	2295	2403	2446	2472	2441

Korrekturfaktor

Bei der Dimensionierung muß die Leistung des Verdampfers mit einem Korrekturfaktor k, der von der Unterkühlung $\Delta t_{\rm u}$ des Kältemittels vor dem Expansionsventil abhängig ist, multipliziert werden.

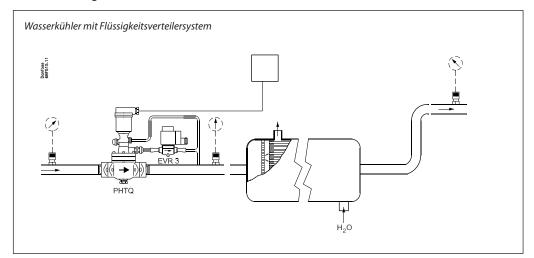

Korrekturfaktoren für Unterkühlung $\Delta t_{_{II}}$

$\Delta t_{_{u}}K$	4	10	20	30	40
R404A / R507, R407	1.00	0.95	0.83	0.77	0.71


Elektronisch gesteuerte Expansionsventile, typ TQ, PHTQ

Konstruktion **Funktion**

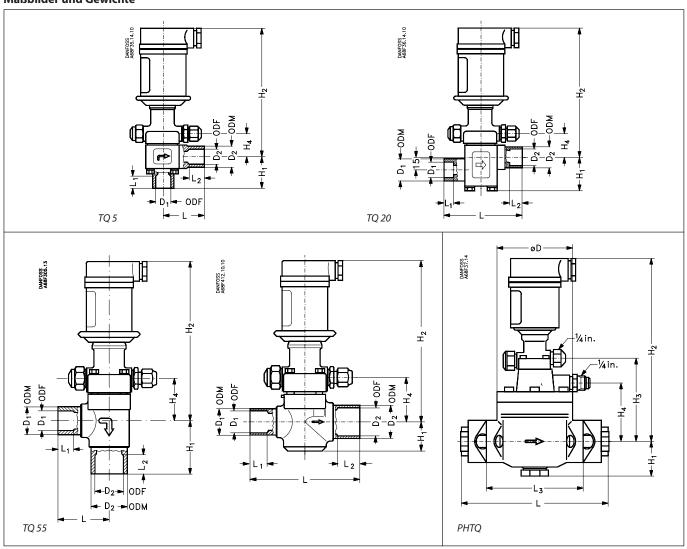
- 1. Deckel
- Schraube
- 3. Dichtung
- Leitung O-Ring
- 4. 5.
- 6. 7. Verschlußschraube
- Ventiloberteil
- Schraube
- 9. Kabelschuh
- 10. Kabelverschraubung Pg 13,5
- 11. Dichtungsring
- 12. Dichtung
- 13. Dichtung
- 14. Klemmreihe
- 15. Kappe NTC-Fühler 16.
- 17. PTC-Heizelement Düseneinsatz Ventilgehäuse 18.
- 19.
- 20. Deckel
- 21. Flanche
- Blendstopfen



Anwendungsbeispiele

Die Montage eines Magnetventils EVR vor dem Ventil TQ wird empfohlen, um höhere Dichtheit im Stillstand zu gewährleisten.

Die Druckausgleichleitung unmittelbar nach dem TQ / PHTQ-Ventil, zwischen Ventil und Verteiler anschliessen.



Die Druckausgleichsleitung wird gleich hinter dem Expansionsventil an die Flüssigkeitsleitung angeschlossen.

Die Entlastungsleitung (nur für PHTQ) wird hinter dem PHTQ-Ventil angeschlossen.

Maßbilder und Gewichte

	Eintritt		Austritt		
Тур	D ₁	L ₁ mm	D ₂	L ₂ mm	
TO F	¹/₂ in./12 mm ODF	10	5/8 in./16 mm ODF	12	
TQ 5	¹/₂ in./16 mm ODF	10	⁷ / ₈ in./22 mm ODF	17	
TO 20	⁵/ ₈ in./16 mm ODF	12	⁷ / ₈ in./22 mm ODF	17	
TQ 20	⁷ / ₈ in./22 mm ODF	17	1 ¹ / ₈ in./28 mm ODM	25	
TO 55	⁷ / ₈ in./22 mm ODF	17	1 ¹ / ₈ in./28 mm ODF	22	
TQ 55	1 ¹ / ₈ in./28 mm ODM	25	1 ³ / ₈ in./35 mm ODM	27	

Тур	Anschluß	H ₁ mm	H ₂ mm	H ₃ mm	H₄ mm	L mm	L ₃ mm	ØD mm	Gewicht kg
	Eck, Bördel	50	156		32	55			1.1
TQ 5	Eck, Löt	28	158		32	40			1.0
	Durchgang, Löt	27	158		32	74			1.0
	Flansche, Löt	33	182		38	115			2.1
TQ 20	Durchgang, Löt	38	173		29	97			1.7
	Eck, Löt	40	173		29	52			1.5
TQ 55	Durchgang, Löt	31	184		41	109			1.7
10 33	Eck, Löt	53	184		41	51			1.6
PHTQ 85	Flansche	45	235	107	75	190	115	92	5.6
PHTQ 125	Flansche	56	245	126	94	205	144	113	9.3
PHTQ 300	Flansche	65	267	142	110	255	180	133	15.0

Die in Katalogen, Prospekten und anderen schriftlichen Unterlagen, wie z.B. Zeichnungen und Vorschlägen enthaltenen Angaben und technischen Daten sind vom Käufer vor Übernahme und Anwendung zu prüfen. Der Käufer kann aus diesen Unterlagen und zusätzlichen Diensten keinerlei Ansprüche gegenüber Danfoss oder Danfoss-Mitarbeitern ableiten, es sei denn, daß diese vorsätzlich oder grob fahrlässig gehandelt haben. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung im Rahmen des Angemessenen und Zumutbaren Änderungen an ihren Produkten – auch an bereits in Auftrag genommenen – vorzunehmen. Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum der jeweiligen Firmen. Danfoss und das Danfoss-Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.

Technische Broschüre