

Data Sheet

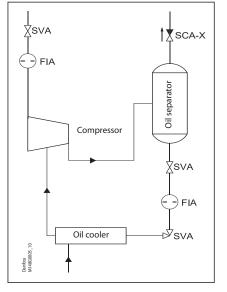
Check and stop valves **SCA-X** and **CHV-X**

Designed to open at very low differential pressures

SCA-X are check valves with a built-in stop valve function. CHV-X are check valves only. SCA-X/ CHV-X are available in angleway and straightway versions. The valves are designed to open at very low differential pressures, allow favourable flow conditions and are easy to disassemble for inspection and service.

The SCA-X is equipped with vented cap and has internal backseating enabling the spindle seal to be replaced whilst the valve still under pressure. Laser cut V-ports provide excellent opening characteristics (SCA-X/CHV-X 50-125).

The valve cone has a built-in flexibility to ensure a precise and tight closing towards the valve seat. A well balanced dampening effect between the piston and the cylinder gives an optimal protection during low loads and against pulsations.


Features

- Modular Concept:
- Each valve housing is available with DIN and ANSI butt weld connection and in several different sizes.
- Possible to convert SCA-X or CHV-X to any other product in the Flexline[™] SVL family (regulating valve, shut-off valve or strainer) just by replacing the complete top part.
- Fast and easy valve overhaul service. It is easy to replace the top part and no welding is needed.
- Designed to open at a very low differential pressure of 0.04 bar (0.58 psig).
- Designed with a built-in damping chamber preventing valve flutter in case of low refrigerant velocity and/or low density.
- Each valve is clearly marked with type, size and performance range. At replacement of the O-ring for special application, an additional ID ring is fixed to the valve.
- Easy to disassemble for inspection and service.
- Internal backseating enables replacement of the spindle seal whilst the valve is active, i.e. under pressure.
- Optimal flow characteristics ensuring quick opening to the fully open position.
- Protection against pulsation by built-in damping facility.
- Housing and bonnet material is low temperature steel according to requirements of the Pressure Equipment Directive and other international classification authorities.
- Equipped with 42CrMo4 bolts to withstand high pressure.
- Classification: DNV, CRN, BV, EAC etc. To get an updated list of certification on the products please contact your local Danfoss Sales Company.
- Service kits with replacement O-rings for R717 Heat Pump and R1270 Propylene include separate ID-ring for ID of application.

Application

Figure 1: Application

The above shows the check & stop valve SCA-X in the discharge line of a screw compressor unit. The SCA-X valve in the discharge line prevents "back condensation" in the oil separator as well as pressure equalising through the compressor.

Compared to an ordinary stop and check valve arrangement the combined stop/check valve solution, as shown, is easier to install and has lower flow resistance. **Installation of the SCA-X/CHV-X in the economizer line is not recommended.**

For horizontal installation of the function module, please contact Danfoss.

ID ring for special application

After converting a SCA or CHV valve for Heat Pump/Propylene applications (replacing O-ring) the color marked ID tag included in the service kit must be fixed to the valve as shown in figure to the right.

The ID tag indicates the special application and identifies the installed O-ring.

Media

Refrigerants

Applicable to HCFC, HFC, R717 (Ammonia), R744 (CO₂), R290 (Propane), R600 (Butane), R600a (Iso-Butane), R170(Ethane) and R1270 (Propylene).

R717 Heat Pump and R1270 Propylene applications with replaced O-ring from replacement kit.

New refrigerants

Danfoss products are continually evaluated for use with new refrigerants depending on market requirements.

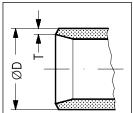
When a refrigerant is approved for use by Danfoss, it is added to the relevant portfolio, and the R number of the refrigerant (e.g. R513A) will be added to the technical data of the code number. Therefore, products for specific refrigerants are best checked at store.danfoss.com/en/, or by contacting your local Danfoss representative.

Product specification

Pressure and temperature data

Table 1: Pressure and temperature data

Features	Description
Temperature range	-60 °C/+150 °C (-76 °F/+302 °F).
Max. working pressure	65 bar (943 psig)


O NOTE:

With O-ring replaced:

- Heat pump configuration: R717 65 bar (943 psi) @ +100 °C to +150 °C (+212 °F to +302 °F) continuous
- Propylene configuration: R1270 65 bar (943 psi) @ -60 °C to 150 °C (-76 °F to 302 °F)

Connections

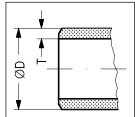

Figure 5: DIN

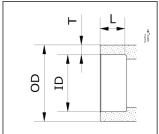
Table 2: Butt-weld DIN (EN 10220)

s	ize	ØD	т	ØD	т	k _v Angleway	C _v Angleway	k _v Straight- way	C _v Straight- way
mm	in.	mm	mm	in.	in.	m³/h	US _{gal/min}	m³/h	US _{gal/min}
15	1/2	21.3	2.3	0.839	0.091	8	9.3	4	4.6
20	3⁄4	26.9	2.3	1.059	0.091	10	11.6	7	8.1
25	1	33.7	2.6	1.327	0.102	24	27.8	16	18.6
32	11⁄4	42.4	2.6	1.669	0.102	30	34.8	21	24.4
40	11/2	48.3	2.6	1.902	0.102	30	34.8	21	24.4
50	2	60.3	2.9	2.37	0.11	45	53	28	34
65	21/2	76.1	2.9	3.00	0.11	72	85	41	48
80	3	88.9	3.2	3.50	0.13	103	129	81	94
100	4	114.3	3.6	4.50	0.14	196	232	157	182
125	5	139.7	4.0	5.50	0.16	301	356	250	290

Figure 6: ANSI

Table 3: Butt-weld ANSI (B 36.10 Schedule 80)

Si	ze	ØD	т	ØD	т	k _v Angleway C _v Angleway		k _v Straight- way	C _v Straight- way
mm	in.	mm	mm	in.	in.	m³/h	US _{gal/min}	m³/h	US _{gal/min}
15	1/2	21.3	3.7	0.839	0.146	8	9.3	4	4.6
20	3⁄4	26.9	4.0	1.059	0.158	10	11.6	7	8.1
25	1	33.7	4.6	1.327	0.181	24	27.8	16	18.6
32	11⁄4	42.4	4.9	1.669	0.193	30	34.8	21	24.4
40	1½	48.3	5.1	1.902	0.201	30	34.8	21	24.4



Check and stop valves, type SCA-X and CHV-X

Table 4: Butt-weld ANSI (B 36.10 Schedule 40)

Si	ze	ØD	т	ØD	т	k _v Angleway C _v Angleway		k _v Straight- way	C _v Straight- way
mm	in.	mm	mm	in.	in.	m³/h	US _{gal/min}	m³/h	US _{gal/min}
50	2	60.3	3.9	2.37	0.15	45	53	28	34
65	21/2	76.1	5.2	2.87	0.20	72	85	41	48
80	3	88.9	5.5	3.50	0.22	103	129	81	94
100	4	114.3	6.0	4.50	0.24	196	232	157	182
125	5	141.3	6.6	5.56	0.26	301	356	250	290

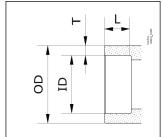

Figure 7: SD (DIN)

Table 5: Socket-Brazing DIN (EN 1254-5)

Si	ze	ID	L	ØD	Т	k _v Angleway	C _v Angleway	k _v Straightway	C _v Straightway
mm	in.	mm	mm	mm	mm	m³/h	US _{gal/min}	m³/h	US _{gal/min}
15	1/2	16	8	21.3	2.65	8	9.3	4	4.6
20	3⁄4	22	11	26.9	2.45	10	11.6	7	8.1
25	1	28	11	33.7	2.85	24	27.8	16	18.6
32	11⁄4	35	15	42.4	3.7	30	34.8	21	24.4
40	11/2	42	15	48.3	3.15	30	34.8	21	24.4
50	2	54	13.5	60.3	3.15	45	53	28	34
65	21/2	64	13.5	73	4.5	72	85	41	48
80	3	76.1	15	88.9	6.4	103	129	81	94
100	4	108	17.5	118	5	196	232	157	182
125	5	133	20	145	6	301	356	250	290

Figure 8: SA (ASME)

Table 6: Socket-Brazing ASME (ASME B16.50)

Size	ID	L	ØD	т	k _v Angleway	C _v Angleway	k _v Straightway	C _v Straightway
in.	mm	mm	mm	mm	m³/h	US _{gal/min}	m³/h	US _{gal/min}
5⁄8	15.88	8	21.3	2.71	8	9.3	4	4.6
7⁄8	22.23	11	26.9	2.34	10	11.6	7	8.1
11/8	28.58	11	33.7	2.56	24	27.8	16	18.6
13⁄8	34.93	15	42.4	3.74	30	34.8	21	24.4
15⁄8	41.28	15	48.3	3.51	30	34.8	21	24.4
21⁄8	54	13.5	60.3	3.15	45	53	28	34
25⁄8	66.7	13.5	76.1	4.70	72	85	41	48
31⁄8	79.38	15	88.9	4.76	103	129	81	94
41⁄8	104.78	17.5	114.3	4.76	196	232	157	182

<u>Design</u>

Housing

The housing is made from special, cold resistant steel.

Valve cone

Valve cone with built in metallic stop - prevents damage to teflon ring in case of overtightening. Teflon ring made of reinforced teflon

Damping chamber

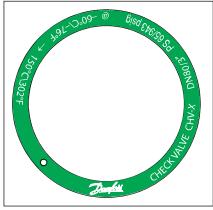
The chamber is filled with refrigerants (gas or liquid), which provides a damping effect when the valve opens and closes.

Spindle (SCA-X)

Made of polished stainless steel, which is ideal for O-ring sealing.

Packing Gland (SCA-X)

The "full temperature range" packing gland is the standard for the entire SVL platform. This ensures perfect tightness throughout the whole temperature range : -60/+150 °C (-76/+302 °F).


For special and/or high demanding applications/conditions which run with high constant temperatures, it is recommended to replace the packing gland with "HL Packing Gland" as spare part. For more information, please, contact your local Danfoss sales representative.

Installation

The valve must be mounted vertically with the cone downwards. The valve is designed to resist very high internal pressure. However, the piping system in general should be designed to avoid liquid traps and reduce the risk of hydraulic pressure caused by thermal expansion. For further information refer to installation guide for SCA-X/CHV-X.

If cold refrigeration oil having low viscosity enters and settles in the damping chamber, problems with the check valve may arise. Consequently, it may be necessary to modify the valve for more viscous liquids by enlarging the hole to the damping chamber.

Figure 9: Example of marking ring, CHV-X

Computation and selection

When dimensioning SCA-X/CHV-X, it is important to select a valve that is best suited to all operating conditions. Therefore, it is necessary to consider both the nominal and part load working conditions.

The SCA-X/CHV-X valve can be calculated in two ways:

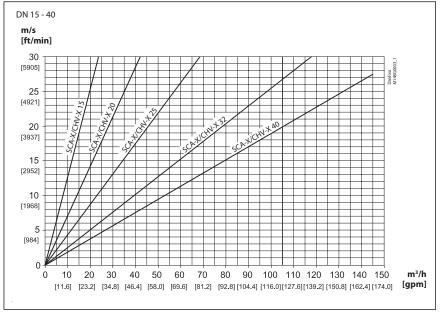
- Using the tables below.
- Using Coolselector[™]

Table 7: Example

SI-Units	US-Units
Assumed working conditions: Maximum flow V = 1000 m3/h Density ρ = 3.0 kg/m3 Minimum part load = 33%	Assumed working conditions: Maximum flow V = 1160 gpm Density ρ = 0.187 lb/feet3 Minimum part load = 33%
Used expressions: Recommended velocity - C _{rec} [m/s] Minimum recommended velocity - C _{min, rec} [m/s] Maximum velocity - C _{max} [m/s] Part load velocity - C _{part} [m/s]	Used expressions: Recommended velocity - C _{rec} [ft/min] Minimum recommended velocity - C _{min, rec} [ft/min] Maximum velocity - C _{max} [ft/min] Part load velocity - C _{part} [ft/min]
We know the density $\rho \approx 3.0$ kg/m3, consequently C _{rec} as well as C _{min, rec} can be found in the figure below (standard valve).	We know the density $\rho\approx 0.187$ lb/feet3, consequently C_{rec} as well as $C_{min,rec}$ can be found in the figure (standard valve).
$C_{rec} \approx 14 \text{ m/s}$ $C_{min, rec} \approx 3 \text{ m/s}$	$C_{rec} \approx 2756 \text{ ft/min } C_{min, rec} \approx 591 \text{ ft/min}$

Figure 10: computation and selection-example Velocity m/s [ft/min] 30 [5905] 25 Recommended [4921] velocity 20 [3937] 15 $C_{rec} = 14 \text{ m/s}$ C.... 10 [1968] 5 , _{rec} = 3 m/s = 591 ft/min 0 0,1 10 100 [0.006] [0.062] $\rho = 3.0 \text{ kg/m}^3$ [0.624] [6.243] $\rho = 0.187 \text{ lb/feet}^3$ Not Density recommended kg/m [lb/feet³]

Knowing that $V = 1000 \text{ m}^3/\text{h}$ (1160 gpm) fig. 2 gives the following choices


- For SCA-X/CHV-X in size DN 100 the maximum velocity $C_{max} \approx 31 \text{ m/s}$ (6100 ft/min)
- For SCA-X/CHV-X in size DN 125 the maximum velocity $C_{max} \approx 20$ m/s (3900 ft/min)

In conclusion SCA-X in size DN 125 is selected because $C_{max} \approx 20 \text{ m/s}$ (3900 ft/min) comes nearest to the recommended velocity $C_{rec} \approx 14 \text{ m/s}$ (2756 ft/min) and at the same time part load conditions fulfil the requirements, as described:

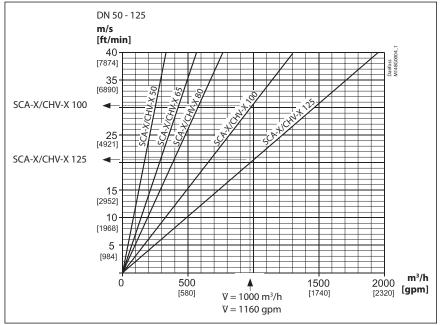
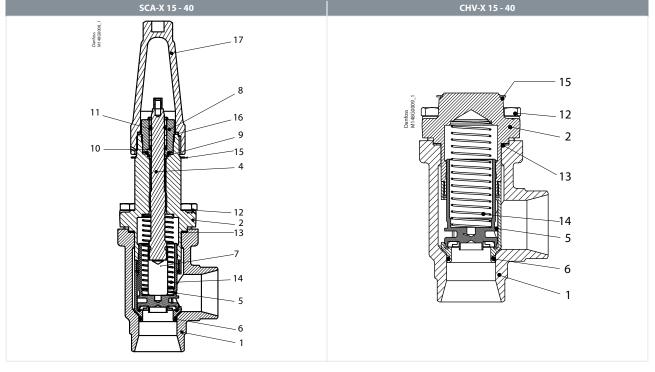
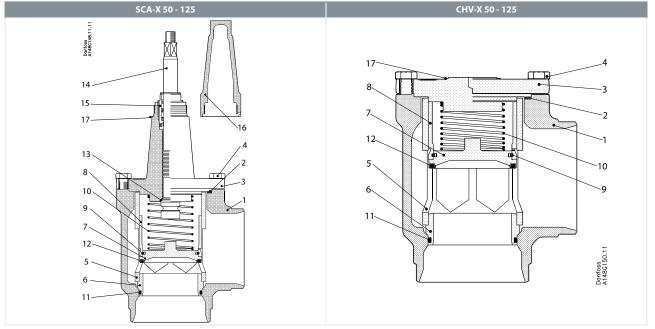

- We know that $C_{max} \approx 20 \text{ m/s}$ (3900 ft/min) and that minimum part load is 33%. It follows that $C_{part} \approx 6.5 \text{ m/s}$ (1290 ft/min). Thus, C_{part} (6.5 m/s) > $C_{min, rec}$ (3.0 m/s) and the selected SCA-X model DN125 is the perfect choice.
- If the valve in question (for instance under part load conditions) provides a velocity less than C_{min, rec} the valve might start hammering and become noisy. As a result the valve may wear prematurely.

Figure 11: DN 15 - 40


Figure 12: DN 50 - 125

Material specification

Table 8: Material specification

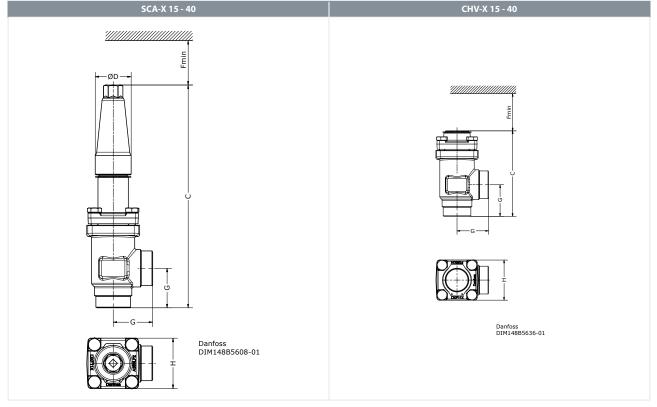

Table 9: Material specification

	terial specification				
No.	Part	Material	DIN/EN	ISO	ASTM
1	Housing	Steel	P285QH+QT, 10222-4		LF2, A350
2	Bonnet	Steel	P285QH+QT, 10222-4		LF2, A350
4	Spindle	Stainless steel	X8CrNiS18-9, EN 10088-3	Type 17 683/13	AISI 303
5	Cone	Steel			
3	Cone	Teflon (PTFE)			
6	O-ring	Chloroprene (Neoprene) ⁽¹⁾			
7	Spindle extension	Steel			
8	Packing gland	Stainless steel	X8CrNiS18-9 10088	Type 17 683/13	AISI 303
9	Packing washer	Aluminium			
10	Spring loaded seal	Teflon (PTFE)			
11	O-ring	Chloroprene (Neoprene)			
12	Bolts	High temperature steel	42CrMo4 10269		A193
13	Gasket	Fiber, non-asbestos			
14	Spring	Steel			
15	Identification ring	Stainless steel			
16	Seal cap gasket	Nylon			
17	Spindle seal cap	Aluminium			

⁽¹⁾ Replace the O-ring with the replacement kit for R717 Heat Pump and R1270 Propylene applications.

Table 10: Material specification

Table 11: Material specification


No.	Part	Material	DIN/EN	ISO	ASTM
1	Housing DN 50-65	Steel	P285QH+QT, 10222-4		LF2, A350
•	Housing DN 80-125	Steel	G20Mn5QT, 10213-3		LCC, A352
2	Gasket	Fiber, Non-asbestos			
3	SCA-X: Valve bonnet	Steel	P285QH+QT, 10222-4		LF2, A350
3	CHV-X: End cover	Steel	P275NL1 or 2 EN10028-3		LI 2, N350
4	Bolts	Stainless steel	42CrMo4 10269		A193
5	Tube	Steel			
6	Seat	Steel			
7	Valve plate	Steel			
8	Guide sleeve	Steel			
9	Spring ring	Steel			
10	Spring	Steel			
11	O-ring	Chloroprene (Neoprene) ⁽²⁾			
12	Teflon ring	Teflon (PTFE)			
13	Soft back seal	Teflon (PTFE)			
14	Spindle DN 50-65	Stainless steel	X8CrNiS18-9 17440	Type 17 R 683/13	AISI 303
	Spindle DN 80-125	Stainless steel	X5CrNi1810 17440	Type 11 683/13	AISI 304 A-276
15	Packing gland	Stainless steel	X8CrNiS18-9, EN 10088-3,	Type 17 R 683/13	AISI 303
16	Spindle seal cap and gasket	Aluminium			
17	Marking label	Stainless steel			

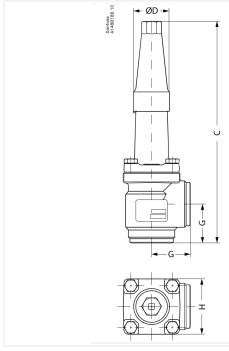
⁽²⁾ Replace the O-ring with the replacement kit for R717 Heat Pump and R1270 Propylene applications.

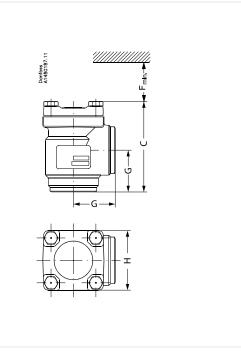
Dimensions and weights

Table 12: SCA-X/CHV-X 15 - 40 (1/2- 11/2 in.)

Table 13: SCA-X 15 - 40

Valve	Valve size		G	ØD	F _{min}	н	Weight
SCA-X 15 (½ in.)	mm	212	45	38	60	60	1.8 kg
3CA-X 15 (72 III.)	in.	8.35	1.77	1.5	2.36	2.36	4.00 lb
SCA-X 20 (¾ in.)	mm	212	45	38	60	60	1.8 kg
	in.	8.35	1.77	1.5	2.36	2.36	4.00 lb
	mm	310	55	50	85	70	3.5 kg
SCA-X 25 (1 in.)	in.	12.2	2.17	1.97	3.35	2.76	7.72 lb
SCA-X 32 (1¼ in.)	mm	310	55	50	85	70	3.5 kg
3CA-X 32 (1 % III.)	in.	12.2	2.17	1.97	3.35	2.76	7.72 lb
SCA-X 40 (1½ in.)	mm	310	55	50	85	70	3.5 kg
	in.	12.2	2.17	1.97	3.35	2.76	7.72 lb


Table 14: CHV-X 15 - 40

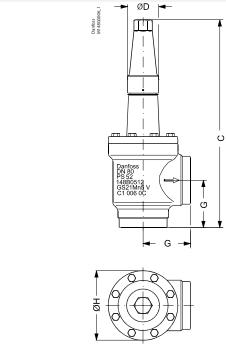

Valve	Valve size		G	F _{min}	н	Weight
CHV-X 15 (½ in.)	mm	105	45	60	60	1.4 kg
CHV-X 15 (72 III.)	in.	4.13	1.77	2.36	2.36	3.09 lb
CHV-X 20 (¾ in.)	mm	105	45	60	60	1.4 kg
CHV-X 20 (% IN.)	in.	4.13	1.77	2.36	2.36	3.09 lb
CHV-X 25 (1 in.)	mm	149	55	85	70	2.6 kg
CHV-X 25 (1 III.)	in.	5.87	2.17	3.35	2.76	5.73 lb
CHV-X 32 (1¼ in.)	mm	149	55	85	70	2.6 kg
CHV-X 32 (174 III.)	in.	5.87	2.17	3.35	2.76	5.73 lb
(H) (Y 40 (114 in))	mm	149	55	85	70	2.6 kg
CHV-X 40 (1½ in.)	in.	5.87	2.17	3.35	2.76	5.73 lb

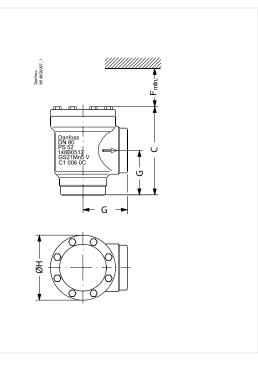
Specified weights are approximate values only.

Table 15: SCA-X/CHV-X 50 - 65 (2 - 21/2 in.)

Table 16: SCA-X

Valve size		С	G	ØD	н	Weight
SCA-X 50 SCA-X (2 in.)	mm	315	60	50	77	3.8 kg
	in.	12.4	2.36	1.97	3.03	8.40 lb
SCA-X 65	mm	335	70	50	90	5.5 kg
SCA-X (2½ in.)	in.	13.19	2.76	1.97	3.54	12.16 lb


Table 17: CHV-X


Valve size		С	G	F _{min.}	н	Weight
CHV-X 50	mm	132	60	92	77	3.2 kg
CHV-X (2 in.)	in.	5.2	2.36	3.62	3.03	7.10 lb
CHV-X 65	mm	152	70	107	90	4.5 kg
CHV-X (2½ in.)	in.	5.98	2.76	4.21	3.54	9.95 lb

Specified weights are approximate values only.

Table 18: SCA-X/CHV-X 80 - 125 (3 - 5 in.)

Table 19: SCA-X

Valve size		С	G	ØD	ØН	Weight
SCA-X 80	mm	388	90	58	129	9.7 kg
SCA-X (3 in.)	in.	15.28	3.54	2.28	5.08	21.4 lb
SCA-X 100	mm	437	106	58	156	15.3 kg
SCA-X (4 in.)	in.	17.2	4.17	2.28	6.14	33.7 lb
SCA-X 125	mm	533	128	74	193	28.1 kg
SCA-X (5 in.)	in.	20.98	5.04	2.91	7.6	61.9 lb

Table 20: CHV-X

Valve size		С	G	F _{min.}	ØН	Weight
CHV-X 80	mm	189	90	133	129	8.7 kg
CHV-X (3 in.)	in.	7.44	3.54	5.24	5.08	19.23 lb
CHV-X 100	mm	223	106	163	156	14.3 kg
CHV-X (4 in.)	in.	8.78	4.17	6.43	6.14	31.60 lb
CHV-X 125	mm	268	128	190	193	25.6 kg
CHV-X (5 in.)	in.	10.55	5.04	7.48	7.6	56.58 lb

Specified weights are approximate values only.

Ordering

Ordering SCA-X/CHV-X from the parts program

Table 21: Ordering SCA-X/CHV-X from the parts program

	Parts program											
Size	Housin					ng			Top complete		Replacement Kit ⁽¹⁾	
[DN]	ANG			STR					O-ring kit for			
	DIN	ANSI	SD	SA	DIN	ANSI	SD	SA	SCA-X	CHV-X	R717 Heat Pump	R1270 Propylene
15	148B6622	148B6612	148B6724	148B6713	148B6642	148B6632	148B6745	148B6734	148B5769	148B5776	148B6070	148B6077
20	148B6623	148B6613	148B6725	148B6714	148B6643	148B6633	148B6746	148B6735	148B5769	148B5776	14000070	14000077
25	148B6624	148B6614	148B6726	148B6715	148B6644	148B6634	148B6747	148B6736	148B5770	148B5777		
32	148B6625	148B6615	148B6727	148B6716	148B6645	148B6635	148B6748	148B6737	148B5770	148B5777	148B6071	148B6078
40	148B6626	148B6616	148B6728	148B6717	148B6646	148B6636	148B6749	148B6738	148B5770	148B5777		
50	148B6627	148B6617	148B	6718	148B6647	148B6637	148B	6739	148B5771	148B5778	148B6072	148B6079
65	148B6628	148B6618	148B6729	148B6719	148B6648	148B6638	148B6750	148B6740	148B5772	148B5779	148B6073	148B6080
80	148B6629	148B6619	148B6730	148B6720	148B6649	148B6639	148B6751	148B6741	148B5773	148B5780	148B6074	148B6081
100	148B6630	148B6620	148B6731	148B6721	148B6650	148B6640	148B6752	148B6742	148B5774	148B5781	148B6075	148B6082
125	148B6631	148B6621	148B6755		148B6651	148B6641			148B5775	148B5782	148B6076	148B6083

⁽¹⁾ Replacement kits for R717 Ammonia Heat Pump is applicable for continuous operating temperature between +100 °C to 150 °C (212 °F to 302 °F)

Certificates, declarations and approvals

The list contains all certificates, declarations, and approvals for this product type. Individual code number may have some or all of these approvals, and certain local approvals may not appear on the list.

Some approvals may change over time. You can check the most current status at danfoss.com or contact your local Danfoss representative if you have any questions.

Pressure Equipment Directive (PED)

REG valves are approved according to the European standard specified in the Pressure Equipment Directive and are CE marked.

Table 22: Pressure Equipment Directive (PED)

SCA-X and CHV-X							
Nominal bore	DN = < 25 mm (1 in.)	DN32 - 80 mm (1¼ - 3 in.)	DN100 - 125 mm (4 - 5 in.)				
Classified for	Fluid group I						
Category	Article 3, paragraph 3	П	Ш				

Online support

Danfoss offers a wide range of support along with our products, including digital product information, software, mobile apps, and expert guidance. See the possibilities below.

The Danfoss Product Store

The Danfoss Product Store is your one-stop shop for everything product related—no matter where you are in the world or what area of the cooling industry you work in. Get quick access to essential information like product specs, code numbers, technical documentation, certifications, accessories, and more.

Start browsing at store.danfoss.com.

Find technical documentation

Find the technical documentation you need to get your project up and running. Get direct access to our official collection of data sheets, certificates and declarations, manuals and guides, 3D models and drawings, case stories, brochures, and much more.

Start searching now at www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning is a free online learning platform. It features courses and materials specifically designed to help engineers, installers, service technicians, and wholesalers better understand the products, applications, industry topics, and trends that will help you do your job better.

Create your Danfoss Learning account for free at www.danfoss.com/en/service-and-support/learning.

Get local information and support

Local Danfoss websites are the main sources for help and information about our company and products. Find product availability, get the latest regional news, or connect with a nearby expert—all in your own language.

Find your local Danfoss website here: www.danfoss.com/en/choose-region.

Spare Parts

Get access to the Danfoss spare parts and service kit catalog right from your smartphone. The app contains a wide range of components for air conditioning and refrigeration applications, such as valves, strainers, pressure switches, and sensors.

Download the Spare Parts app for free at www.danfoss.com/en/service-and-support/downloads.

Coolselector[®]2 - find the best components for you HVAC/R system

Coolselector[®]2 makes it easy for engineers, consultants, and designers to find and order the best components for refrigeration and air conditioning systems. Run calculations based on your operating conditions and then choose the best setup for your system design.

Download Coolselector[®]2 for free at coolselector.danfoss.com.

Danfoss A/S Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the products. Dantoss reserves the right to after its products without indicest and a server of the product. function of the product. All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.

Danfoss

ENGINEERING TOMORROW