

Guía de diseño VLT[®] Midi Drive FC 280

Índice

Introducción	5
1.1 Propósito de la Guía de diseño	5
1.2 Recursos adicionales	5
1.3 Definiciones	5
1.4 Versión del documento y del software	8
1.5 Homologaciones y certificados	8
1.6 Seguridad	g
2 Vista general de producto	10
2.1 Descripción general del tipo de envolvente	10
2.2 Instalación eléctrica	13
2.2.1 Conexión del motor	15
2.2.2 Conexión de red de CA	16
2.2.3 Tipos de terminal de control	17
2.2.4 Cableado a los terminales de control	18
2.3 Estructuras de control	18
2.3.1 Modos de control	18
2.3.2 Principio de control	20
2.3.3 Estructura de control en el VVC+	20
2.3.4 Control de corriente interna en modo VVC+	21
2.3.5 Control Local (Hand On) y Remoto (Auto On)	21
2.4 Manejo de referencias	22
2.4.1 Límites referencia	23
2.4.2 Escalado de referencias internas y referencias de bus	24
2.4.3 Escalado de referencias de pulsos y analógicas y realimentación	24
2.4.4 Zona muerta alrededor de cero	25
2.5 Control de PID	28
2.5.1 Control de PID de velocidad	28
2.5.2 Control de PID de procesos	31
2.5.3 Parámetros relevantes de control de proceso	32
2.5.4 Ejemplo de un control de PID de procesos	33
2.5.5 Optimización del controlador de proceso	35
2.5.6 Método de ajuste Ziegler-Nichols	36
2.6 Inmunidad y emisión CEM	36
2.6.1 Aspectos generales de la emisión CEM	36
2.6.2 Emisión CEM	38
2.6.3 Inmunidad CEM	39
2.7 Aislamiento galvánico	41
2.8 Corriente de fuga a tierra	41

	2.9 Funciones de freno	43
	2.9.1 Freno de retención mecánico	43
	2.9.2 Frenado dinámico	43
	2.9.3 Selección de resistencias de frenado	43
	2.10 Aislamiento del motor	45
	2.10.1 Filtros senoidales	45
	2.10.2 Filtros dU/dt	45
	2.11 Controlador Smart Logic	45
	2.12 Condiciones de funcionamiento extremas	46
	2.12.1 Protección térmica motor	47
3	Ejemplos de aplicaciones	48
	3.1 Introducción	48
	3.1.1 Conexión del encoder	48
	3.1.2 Dirección de encoder	48
	3.1.3 Sistema de convertidor de lazo cerrado	48
	3.2 Ejemplos de aplicaciones	49
	3.2.1 AMA	49
	3.2.2 Velocidad	49
	3.2.3 Arranque/parada	50
	3.2.4 Reinicio de alarma externa	51
	3.2.5 Termistor motor	51
	3.2.6 SLC	51
4	Safe Torque Off (STO)	53
5	Instalación y ajuste de RS485	54
	5.1 Introducción	54
	5.1.1 Descripción general	54
	5.1.2 Conexión de red	55
	5.1.3 Ajuste de hardware	55
	5.1.4 Ajustes de parámetros para la comunicación Modbus	55
	5.1.5 Precauciones de compatibilidad electromagnética (CEM)	55
	5.2 Protocolo FC	55
	5.2.1 Descripción general	55
	5.2.2 FC con Modbus RTU	56
	5.3 Configuración de red	56
	5.4 Estructura de formato de mensaje del protocolo FC	56
	5.4.1 Contenido de un carácter (byte)	56
	5.4.2 Estructura de telegramas	56
	5.4.3 Longitud del telegrama (LGE)	57

Índice Guía de diseño

5.4.4 Di	rección del convertidor de frecuencia (ADR)	57
5.4.5 By	te de control de datos (BCC)	57
5.4.6 El	campo de datos	57
5.4.7 El	campo PKE	57
5.4.8 Nú	imero de parámetro (PNU)	58
5.4.9 ĺno	dice (IND)	58
5.4.10 V	alor de parámetro (PWE)	58
5.4.11 T	ipos de datos admitidos por el convertidor de frecuencia	59
5.4.12 C	onversión	59
5.4.13 C	ódigos de proceso (PCD)	59
5.5 Ejemplos		59
5.5.1 Es	critura del valor de un parámetro.	59
5.5.2 Le	ctura del valor de un parámetro	60
5.6 Modbus R	TU	60
5.6.1 Co	nocimiento supuesto	60
5.6.2 De	scripción general	60
5.6.3 Co	nvertidor de frecuencia con Modbus RTU	61
5.7 Configura	ción de red	61
5.8 Estructura	de formato de mensaje de Modbus RTU	61
5.8.1 Int	roducción	61
5.8.2 Es	tructura de telegrama Modbus RTU	61
5.8.3 Ca	mpo de arranque/parada	62
5.8.4 Ca	mpo de dirección	62
5.8.5 Ca	mpo de función	62
5.8.6 Ca	mpo de datos	62
5.8.7 Ca	mpo de comprobación CRC	62
5.8.8 Di	reccionamiento de bobinas	63
5.8.9 Co	ntrol del convertidor de frecuencia	64
5.8.10 C	ódigos de función admitidos por Modbus RTU	64
5.8.11 (ódigos de excepción Modbus	65
5.9 Cómo acc	eder a los parámetros	65
5.9.1 Ge	estión de parámetros	65
5.9.2 Al	macenamiento de datos	65
5.9.3 IN	D (índice)	66
5.9.4 Blo	oques de texto	66
5.9.5 Fa	ctor de conversión	66
5.9.6 Va	lores de parámetros	66
5.10 Ejemplo	5	66
5.10.1 L	ectura de estado de la bobina (01 hex)	66
5.10.2 F	orzar/escribir una sola bobina (05 hex)	67

	5.10.3 Forzar/escribir multiples bobinas (OF nex)	6/
	5.10.4 Lectura de registros de retención (03 hex)	68
	5.10.5 Preajuste de un solo registro (06 hex)	68
	5.10.6 Preajuste de múltiples registros (10 hex)	69
	5.11 Perfil de control FC de Danfoss	69
	5.11.1 Código de control conforme al perfil FC (Protocolo 8-10 = perfil FC)	69
	5.11.2 Código de estado según el perfil FC (STW)	71
	5.11.3 Valor de referencia de velocidad de bus	72
6	Código descriptivo y selección	73
	6.1 Código descriptivo	73
	6.2 Números de pedido: Opciones, accesorios y repuestos	73
	6.3 Números de pedido: Resistencias de freno	74
	6.3.1 Números de pedido: resistencias de frenado 10 %	75
	6.3.2 Números de pedido: resistencias de frenado 40 %	77
	6.4 Números de pedido: Filtros senoidales	78
	6.5 Números de pedido: Filtros dU/dt	79
	6.6 Números de pedido: filtros de CEM externos	79
_	F	
<i>.</i>	Especificaciones	82
	7.1 Datos eléctricos	82
	7.2 Fuente de alimentación de red	84
	7.3 Salida del motor y datos del motor	85
	7.4 Condiciones ambientales	85
	7.5 Especificaciones del cable	86
	7.6 Entrada/salida de control y datos de control	86
	7.7 Pares de apriete de conexión	89
	7.8 Fusibles y magnetotérmicos	89
	7.9 Rendimiento	90
	7.10 Ruido acústico	91
	7.11 Condiciones dU/dt	91
	7.12 Condiciones especiales	92
	7.12.1 Reducción de potencia manual	92
	7.12.2 Reducción de potencia automática	95
	7.13 Tamaños de los alojamientos, potencias de salida y dimensiones	96
ĺr	dice	99

1 Introducción

1.1 Propósito de la Guía de diseño

La presente Guía de diseño ha sido confeccionada para ingenieros de proyectos y sistemas, asesores de diseño y especialistas en aplicaciones y productos. Se facilita información técnica para entender la capacidad del convertidor de frecuencia e integrarlo en los sistemas de control y seguimiento del motor. Se ofrecen detalles sobre el funcionamiento, los requisitos y las recomendaciones para la integración en el sistema. Se facilita información sobre las características de potencia de entrada, de salida para el control del motor y las condiciones ambientales de funcionamiento del convertidor de frecuencia.

También se incluyen:

- Funciones de seguridad.
- Control de situaciones de fallo.
- Información del estado operativo.
- Capacidades de comunicación serie.
- Opciones y funciones programables.

Se facilitan, asimismo, detalles del diseño como las necesidades de las instalaciones, los cables, los fusibles, el cableado de control, el tamaño y el peso de las unidades y otra información fundamental para planificar la integración del sistema.

Revisar la información detallada del producto en la fase de diseño permite el desarrollo de un sistema bien concebido, con una funcionalidad y un rendimiento óptimos.

VLT® es una marca registrada.

1.2 Recursos adicionales

Tiene a su disposición los siguientes recursos para comprender el funcionamiento y la programación del convertidor de frecuencia:

- Guía de funcionamiento del VLT® Midi Drive FC 280, que proporciona información sobre la instalación, la puesta en servicio, la aplicación y el mantenimiento del convertidor de frecuencia.
- Guía de programación del VLT[®] Midi Drive FC 280, que proporciona información acerca de cómo programar el equipo e incluye descripciones completas de los parámetros.

Danfoss proporciona publicaciones y manuales complementarios. Consulte *drives.danfoss.com/knowledge-center/technical-documentation/* para ver un listado.

1.3 Definiciones

1.3.1 Convertidor de frecuencia

Inercia

El eje del motor se encuentra en modo libre. Sin par en el motor.

IVLT, MÁX.

Intensidad de salida máxima.

IVLT.N

Corriente nominal de salida suministrada por el convertidor de frecuencia.

UVLT, MÁX.

Tensión de salida máxima.

1.3.2 Entrada

Comandos de control

Inicie y detenga el funcionamiento del motor conectado mediante el LCP y las entradas digitales.

Las funciones se dividen en dos grupos.

Las funciones del grupo 1 tienen mayor prioridad que las funciones del grupo 2.

Grupo 1	Parada precisa, parada por inercia y reset, parada			
	precisa e inercia, parada rápida, frenado de CC,			
	parada y [OFF].			
Grupo 2	Arranque, Arranque de pulsos, Cambio de sentido,			
	Arranque e inversión, Velocidad fija y Mantener			
	salida.			

Tabla 1.1 Grupos de funciones

1.3.3 Motor

Motor en funcionamiento

Par generado en la salida del eje motor y velocidad desde 0 r/min hasta la velocidad máxima del motor.

fvelocidad fija

La frecuencia del motor cuando se activa la función de velocidad fija (mediante bus o terminales digitales).

fΜ

Frecuencia del motor.

f_{MÁX.}

Frecuencia máxima del motor.

f_{MÍN}.

Frecuencia mínima del motor.

fm,N

Frecuencia nominal del motor (datos de la placa de características).

lм

Intensidad del motor (real).

IM.N

Corriente nominal del motor (datos de la placa de características).

n_M,N

Velocidad nominal del motor (datos de la placa de características).

n،

Velocidad del motor síncrono.

$$n_s = \frac{2 \times Par\'{a}metro~1-23 \times 60~s}{Par\'{a}metro~1-39}$$

Ndeslizamiento

Deslizamiento del motor.

P_M,N

Potencia nominal del motor (datos de la placa de características en kW o CV).

T_M N

Par nominal (motor).

Uм

Tensión instantánea del motor.

U_M,N

Tensión nominal del motor (datos de la placa de características).

Par de arranque

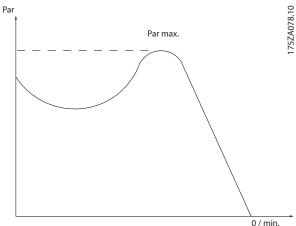


Ilustración 1.1 Par de arranque

η_{VLT}

El rendimiento del convertidor de frecuencia se define como la relación entre la potencia de salida y la potencia de entrada.

Orden de desactivación de arranque

Una orden de desactivación de arranque que pertenece a las órdenes de control del grupo 1. Consulte la *Tabla 1.1* para ver más detalles.

Orden de parada

Una orden de parada que pertenece a las órdenes de control del grupo 1. Consulte la *Tabla 1.1* para ver más detalles.

1.3.4 Referencias

Referencia analógica

Una señal transmitida a las entradas analógicas 53 o 54 puede ser tensión o corriente.

Referencia binaria

Una señal transmitida a través del puerto de comunicación serie.

Referencia interna

Una referencia interna definida que puede ajustarse a un valor comprendido entre el –100 % y el +100 % del intervalo de referencias. Pueden seleccionarse ocho referencias internas mediante los terminales digitales. Pueden seleccionarse cuatro referencias internas mediante el bus.

Referencia de pulsos

Señal de frecuencia de pulsos transmitida a las entradas digitales (terminal 29 o 33).

Refmáx

Determina la relación entre la entrada de referencia a un 100 % de escala completa (normalmente, 10 V y 20 mA) y la referencia resultante. El valor de referencia máximo se ajusta en el *parámetro 3-03 Referencia máxima*.

Refmin

Determina la relación entre la entrada de referencia a un valor del 0 % (normalmente, 0 V, 0 mA y 4 mA) y la referencia resultante. El valor de referencia mínimo se ajusta en el *parámetro 3-02 Referencia mínima*.

1.3.5 Varios

Entradas analógicas

Las entradas analógicas se utilizan para controlar varias funciones del convertidor de frecuencia.

Hay dos tipos de entradas analógicas:

- Entrada de corriente: 0-20 mA y 4-20 mA.
- Entrada de tensión: 0-10 V CC.

Salidas analógicas

Las salidas analógicas pueden proporcionar una señal de 0-20 mA o 4-20 mA.

Adaptación automática del motor (AMA)

El algoritmo AMA determina los parámetros eléctricos para el motor conectado cuando se encuentra parado.

Resistencia de frenado

La resistencia de frenado es un módulo capaz de absorber la potencia de frenado generada durante el frenado regenerativo. Esta potencia de frenado regenerativo aumenta la tensión del enlace de CC y un chopper de

frenado garantiza que la potencia se transmita a la resistencia de frenado.

Características de par constante (CT)

Características de par constante utilizadas para todas las aplicaciones, como cintas transportadoras, bombas de desplazamiento y grúas.

Entradas digitales

Las entradas digitales pueden utilizarse para controlar distintas funciones del convertidor de frecuencia.

Salidas digitales

El convertidor de frecuencia dispone de dos salidas de estado sólido que pueden proporcionar una señal de 24 V CC (máximo 40 mA).

DSP

Procesador digital de señal.

ETF

El relé termoelectrónico es un cálculo de carga térmica basado en la carga presente y el tiempo transcurrido. Su finalidad es calcular la temperatura del motor.

Bus estándar FC

Incluye el bus RS485 bus con el protocolo FC o el protocolo MC. Consulte el *parámetro 8-30 Protocol*.

Inicialización

Si se lleva a cabo una inicialización (parámetro 14-22 Operation Mode), el convertidor de frecuencia vuelve a los ajustes predeterminados.

Ciclo de trabajo intermitente

Una clasificación de trabajo intermitente es una secuencia de ciclos de trabajo. Cada ciclo está formado por un periodo en carga y un periodo sin carga. El funcionamiento puede ser de trabajo periódico o de trabajo no periódico.

LCF

El panel de control local constituye una completa interfaz para el control y la programación del convertidor de frecuencia. El LCP es extraíble. Con la opción de kit de instalación, el LCP puede instalarse a un máximo de 3 m (9,8 ft) del convertidor de frecuencia en un panel frontal.

NLCP

Interfaz de panel de control local numérico para el control y la programación del convertidor de frecuencia. La pantalla es numérica y el panel se utiliza para mostrar los valores de proceso. El NLCP tiene funciones de almacenamiento y copia.

GLCP

Interfaz de panel de control local gráfico para el control y la programación del convertidor de frecuencia. La pantalla es gráfica y el panel se utiliza para mostrar los valores de proceso. El GLCP tiene funciones de almacenamiento y copia.

Isb

Bit menos significativo.

msb

Bit más significativo.

MCM

Sigla en inglés de Mille Circular Mil, una unidad norteamericana de sección transversal de cables. 1 MCM = 0,5067 mm^2 .

Parámetros en línea / en estado de desconexión

Los cambios realizados en los parámetros en línea se activan inmediatamente después de cambiar el valor de dato. Para activar los cambios en los parámetros en estado de desconexión, pulse [OK].

PID de proceso

El control de PID mantiene la velocidad, la presión y la temperatura mediante el ajuste de la frecuencia de salida para adaptarla a la carga variable.

PCD

Datos de control de proceso.

PFC

Corrección del factor de potencia.

Ciclo de potencia

Desactive la red hasta que la pantalla (LCP) se quede oscura. A continuación, conecte de nuevo la alimentación.

Factor de potencia

El factor de potencia es la relación entre I₁ e I_{RMS}.

$$Potencia\ potencia\ =\ \frac{\sqrt{3}\ x\ U\ x\ I_1\ cos\varphi 1}{\sqrt{3}\ x\ U\ x\ I_{RMS}}$$

En los convertidores de frecuencia FC 280, $cos\phi1$ = 1; por lo tanto:

$$Potencia\ potencia\ =\ \frac{I1\ x\ cos\varphi1}{I_{RMS}}\ =\ \frac{I_1}{I_{RMS}}$$

El factor de potencia indica hasta qué punto el convertidor de frecuencia impone una carga a la alimentación de red. Cuanto menor es el factor de potencia, mayor es I_{RMS} para el mismo rendimiento en kW.

$$I_{RMS} = \sqrt{I_1^2 + I_5^2 + I_7^2 + ... + I_n^2}$$

Además, un factor de potencia elevado indica que las distintas corrientes armónicas son bajas.

Las bobinas de CC integradas (T2/T4) y PFC (S2) producen un alto factor de potencia, lo cual minimiza la carga impuesta a la alimentación de red.

Entrada de pulsos / codificador incremental

Un transmisor externo de pulsos digitales utilizado para proporcionar información sobre la velocidad del motor. El encoder se utiliza para aplicaciones donde se necesita una gran precisión en el control de velocidad.

RCD

Dispositivo de corriente diferencial.

Ajuste

Guarde ajustes de parámetros en cuatro configuraciones distintas. Alterne entre las cuatro configuraciones de ajustes de parámetros y edite un ajuste mientras está inactivo.

SFAVM

Acrónimo que describe el patrón de conmutación denominado «modulación asíncrona de vectores orientada al flujo del estátor».

Compensación de deslizamiento

El convertidor de frecuencia compensa el deslizamiento del motor añadiendo un suplemento a la frecuencia que sigue a la carga medida del motor, manteniendo la velocidad del mismo casi constante.

Smart logic control (SLC)

El SLC es una secuencia de acciones definidas por el usuario que se ejecuta cuando el controlador Smart Logic evalúa como verdaderos los eventos asociados definidos por el usuario (*grupo de parámetros 13-** Smart Logic*).

STW

Código de estado.

THO

Distorsión total de armónicos; indica la contribución total de la distorsión armónica.

Termistor

Resistencia que depende de la temperatura y que se coloca en el punto donde se controla la temperatura (convertidor de frecuencia o motor).

Desconexión

En las situaciones de fallo se pasa a estado de desconexión. Ejemplos de situaciones de fallo:

- El convertidor de frecuencia está sujeto a sobretensión.
- El convertidor de frecuencia protege el motor, el proceso o el mecanismo.

Se impide el rearranque hasta que desaparece la causa del fallo y se anula el estado de desconexión mediante la activación del reinicio o, en algunos casos, mediante la programación de un reinicio automático. La desconexión no debe utilizarse para la seguridad personal.

Bloqueo por alarma

El bloqueo por alarma es un estado al que se pasa en situaciones de fallo cuando el convertidor de frecuencia se protege a sí mismo y requiere una intervención física. Por ejemplo, un cortocircuito en la salida causará un bloqueo por alarma. Un bloqueo por alarma solo puede cancelarse cortando la alimentación, eliminando la causa del fallo y volviendo a conectar el convertidor de frecuencia. Se impide el rearranque hasta que se cancela el estado de desconexión mediante la activación del reinicio o, en algunos casos, mediante la programación del reinicio automático. El bloqueo por alarma no debe utilizarse para la seguridad personal.

Características VT

Características de par variable utilizadas en bombas y ventiladores.

VVC+

Comparado con el control estándar de la proporción de tensión/frecuencia, el control vectorial de la tensión (VVC+) mejora la dinámica y la estabilidad, tanto cuando se cambia la velocidad de referencia como en relación con el par de carga.

60° AVM

Hace referencia al patrón de conmutación denominado «modulación asíncrona de vectores de 60 °».

1.4 Versión del documento y del software

Este manual se revisa y se actualiza de forma periódica. Le agradecemos cualquier sugerencia de mejoras. La *Tabla 1.2* muestra las versiones de documento y software.

Edición	Comentarios	Versión de software
MG07B3	Más información sobre POWERLINK y la actualización del software.	1.3

Tabla 1.2 Versión del documento y del software

1.5 Homologaciones y certificados

Los convertidores de frecuencia están diseñados conforme a las directivas descritas en este apartado.

1.5.1 Marca CE

La marca CE (Comunidad Europea) indica que el fabricante del producto cumple todas las directivas aplicables de la UF.

Las directivas europeas aplicables al diseño y a la fabricación de convertidores de frecuencia son:

- Directiva de tensión baja.
- Directiva CEM.
- Directiva de máquinas (para unidades que posean una función de seguridad integrada).

El propósito de la marca CE es el de eliminar las barreras técnicas para el comercio libre entre los países de la CE y la EFTA, dentro de la ECU. La marca CE no regula la calidad del producto. Las especificaciones técnicas no pueden deducirse de la marca CE.

1.5.2 Directiva de tensión baja

Los convertidores de frecuencia están clasificados como componentes electrónicos y deben contar con la marca CE conforme a la Directiva de tensión baja. Esta directiva se aplica a todos los equipos eléctricos en el rango de tensión de 50-1000 V CA y 75-1500 V CC.

La directiva exige que el diseño del equipo garantice la seguridad y la salud de las personas y del ganado y que el

material se conserve garantizando una instalación y un mantenimiento correctos y un uso conforme a lo previsto. Danfoss atribuye marcas CE que cumplen con la Directiva de tensión baja y Danfoss facilita una declaración de conformidad si así se solicita.

1.5.3 Directiva CEM

La compatibilidad electromagnética (CEM) significa que las interferencias electromagnéticas entre equipos no afectan a su rendimiento. Los requisitos de protección básicos de la Directiva CEM 2014/30/UE indican que los dispositivos que generan interferencias electromagnéticas (EMI) o los dispositivos cuyo funcionamiento pueda verse afectado por las EMI deben diseñarse para limitar la generación de interferencias electromagnéticas y deben tener un grado adecuado de inmunidad a las EMI cuando se instalan correctamente, se mantienen y se usan conforme a lo previsto.

Un convertidor de frecuencia se puede utilizar como dispositivo independiente o como parte de una instalación más compleja. En ambos casos, los dispositivos deben contar con la marca CE. Los sistemas no deben tener la marca CE pero deben cumplir con los requisitos de protección básicos de la Directiva CEM.

1.5.4 Conformidad con UL

Listado como UL

Ilustración 1.2 UL

Normas aplicadas y conformidad para STO

El uso de la STO en los terminales 37 y 38 conlleva el cumplimiento de todas las disposiciones de seguridad, incluidas las normas, los reglamentos y las directrices pertinentes. La función STO integrada cumple las siguientes normas:

- CEI/EN 61508:2010, SIL2
- CEI/EN 61800-5-2:2007, SIL2
- CEI/EN 62061:2015, SILCL de SIL2
- EN ISO 13849-1:2015 Categoría 3 PL d

Los convertidores de frecuencia pueden estar sujetos a normativas regionales y/o nacionales de control de exportaciones.

Aquellos convertidores de frecuencia sujetos a normativas de control de exportaciones se clasificarán con un código ECCN.

El código ECCN se incluye en los documentos adjuntos al convertidor de frecuencia.

En caso de reexportación, recaerá en el exportador la responsabilidad de garantizar la conformidad con las normativas pertinentes de control de exportaciones.

1.6 Seguridad

Los convertidores de frecuencia contienen componentes de alta tensión y pueden ser mortales si se utilizan incorrectamente. Los equipos únicamente pueden ser instalados y manejados por personal cualificado. No intente realizar trabajos de reparación sin desconectar primero la alimentación del convertidor de frecuencia y esperar el tiempo necesario para que la energía eléctrica almacenada se disipe.

Consulte el manual de funcionamiento suministrado con la unidad y disponible en línea para informarse sobre:

- Tiempo de descarga.
- Instrucciones detalladas de seguridad y advertencias.

Es obligatorio seguir estrictamente las precauciones y avisos para que el convertidor de frecuencia tenga un funcionamiento seguro.

2 Vista general de producto

2.1 Descripción general del tipo de envolvente

El tamaño del alojamiento depende del intervalo de potencia. Para obtener más información sobre las dimensiones, consulte el capétulo 7.13 Tamaños de los alojamientos, potencias de salida y dimensiones.

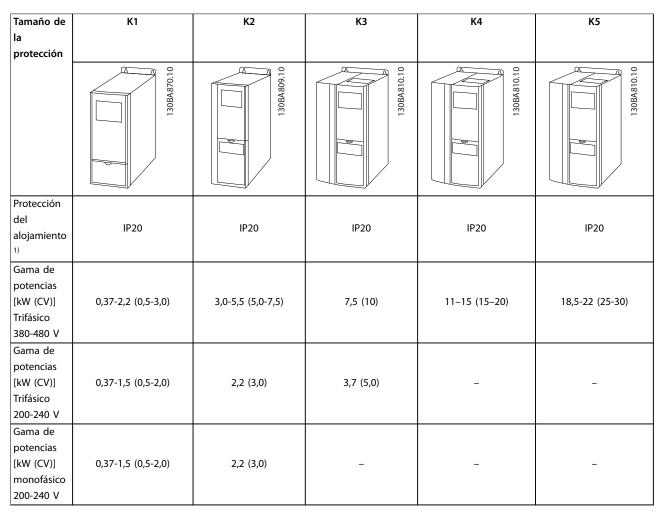
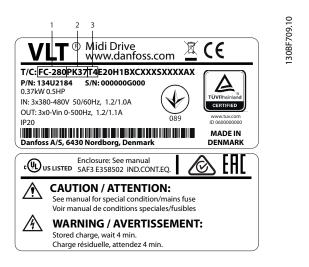


Tabla 2.1 Tamaños de los alojamientos

1) El grado de protección IP21 está disponible para algunos modelos del VLT[®] Midi Drive FC 280. Si se montan las opciones de kit IP21, todas las gamas de potencia pueden ser IP21.


A lo largo de esta guía, se utiliza el tamaño del alojamiento siempre que los procedimientos o componentes varíen entre convertidores de frecuencia en función de sus dimensiones físicas.

Danfoss

Busque el tamaño del alojamiento siguiendo los pasos indicados a continuación:

- 1. Obtenga la siguiente información a partir del código descriptivo incluido en la placa de características. Consulte la *Ilustración 2.1*.
 - 1a Grupo de producto y serie del convertidor de frecuencia (caracteres 1-6); por ejemplo, FC 280
 - 1b Potencia de salida (caracteres 7-10); por ejemplo, PK37.
 - 1c Clasificación de tensión (fases y alimentación) (caracteres 11-12); por ejemplo, T4.
- 2. En la Tabla 2.2, busque la potencia y la tensión de salida, así como el tamaño del alojamiento del FC 280.

1	Grupo de producto y serie del convertidor de frecuencia		
2	Potencia de salida		
3	Clasificación de tensión (fases y alimentación)		

Ilustración 2.1 Uso de la placa de características para averiguar el tamaño del alojamiento

Potencia de salida en la placa de características	Potencia (kW [CV])	Tensión de salida en la placa de características	Fases y tensión de red	Tamaño de la protección	Convertidor de frecuencia
PK37	0,37 (0,5)				
PK55	0,55 (0,75)				
PK75	0,75 (1,0)	7		K1	K1T4
P1K1	1,1 (1,5)	7		NI NI	KII4
P1K5	1,5 (2,0)				
P2K2	2,2 (3,0)	7	T4 Trifásico 380-480 V		
P3K0	3 (4,0)	T			
P4K0	4 (5,0)	7 14		K2	K2T4
P5K5	5,5 (7,5)	7			
P7K5	7,5 (10)	7		K3	K3T4
P11K	11 (15)	7		1/4	V ATA
P15K	15 (20)	7		K4	K4T4
P18K	18,5 (25)	7		VE	VET4
P22K	22 (30)	1		K5	K5T4

Potencia de salida en la placa de características	Potencia (kW [CV])	Tensión de salida en la placa de características	Fases y tensión de red	Tamaño de la protección	Convertidor de frecuencia
PK37	0,37 (0,5)				
PK55	0,55 (0,75)]			
PK75	0,75 (1,0)]		K1	K1T2
P1K1	1,1 (1,5)	T2	Trifásico 200-240 V		
P1K5	1,5 (2,0)]			
P2K2	2,2 (3,0)]		K2	K2T2
P3K7	3,7 (5,0)]		K3	K3T2
PK37	0,37 (0,5)				
PK55	0,55 (0,75)				
PK75	0,75 (1,0)	S ₂	Monofásico 200-240 V	K1	K1S2
P1K1	1,1 (1,5)] 32	Monorasico 200-240 V		
P1K5	1,5 (2,0)]			
P2K2	2,2 (3,0)]		K2	K2S2

Tabla 2.2 Tamaño del alojamiento del FC 280

130BE202.18

2.2 Instalación eléctrica

En esta sección se describe cómo cablear el convertidor de frecuencia.

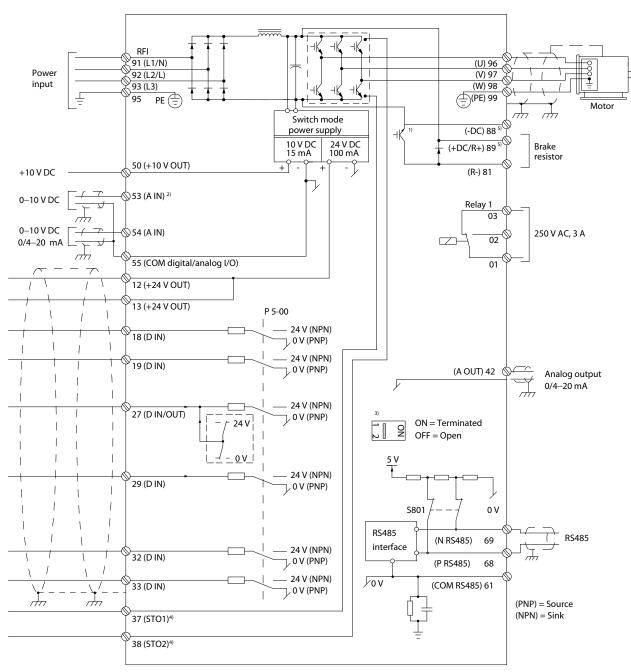
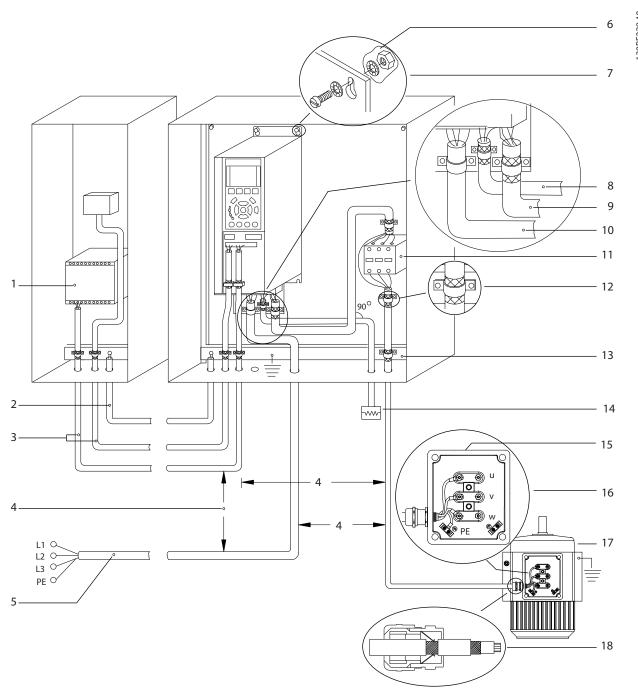



Ilustración 2.2 Dibujo esquemático del cableado básico

A = analógico, D = digital

- 1) El chopper de frenado integrado solo está disponible en las unidades trifásicas.
- 2) El terminal 53 también puede utilizarse como entrada digital.
- 3) El conmutador S801 (terminal de bus) se puede utilizar para activar la terminación del puerto RS485 (terminales 68 y 69).
- 4) Consulte el capétulo 4 Safe Torque Off (STO) para comprobar el cableado correcto de la desconexión segura de par.
- 5) El convertidor de frecuencia S2 (monofásico, 200-240 V) no admite la aplicación de carga compartida.

1	PLC	10	Cable de red (no apantallado)
2	Cable de ecualizador de un mínimo de 16 mm² (6 AWG).	11	Contactor de salida, y así sucesivamente.
3	Los cables de control	12	Aislamiento de cable pelado
4	Espacio mínimo de 200 mm (0,656 ft) entre los cables de	13	Barra conductora de tierra a común. Siga las normativas
	control, de motor y de red.		locales y nacionales para la conexión a tierra de alojamientos.
5	Fuente de alimentación de red	14	Resistencia de frenado
6	Superficie no aislada (sin pintar)	15	Caja metálica
7	Arandelas de estrella	16	Conexión al motor
8	Cable de freno (apantallado)	17	Motor
9	Cable de motor (apantallado)	18	Prensacables CEM

Ilustración 2.3 Conexión eléctrica típica

2.2.1 Conexión del motor

▲ADVERTENCIA

TENSIÓN INDUCIDA

La tensión inducida desde los cables de motor de salida que están juntos puede cargar los condensadores del equipo, incluso si este está apagado y bloqueado. No colocar los cables del motor de salida separados o no utilizar cables apantallados puede provocar lesiones graves o incluso la muerte.

- Coloque los cables de motor de salida por separado.
- Utilice cables apantallados.
- Cumpla los códigos eléctricos locales y nacionales en las dimensiones de los cables. Consulte las dimensiones máximas del cable en el capétulo 7.1 Datos eléctricos.
- Observe los requisitos de cableado del fabricante del motor.
- En la base de las unidades IP21 (NEMA tipo 1) se suministran troqueles o paneles de acceso para el cableado del motor.
- No conecte un dispositivo de arranque o de cambio de polaridad (por ejemplo, un motor Dahlander o un motor de inducción de anillo colector) entre el convertidor de frecuencia y el motor.

Procedimiento

- Pele una sección del aislamiento del cable exterior. La longitud recomendada es de 10 a 15 mm (0,4-0,6 in).
- Coloque el cable pelado bajo la abrazadera de cables para establecer una fijación mecánica y un contacto eléctrico entre los cables apantallados y la conexión toma a tierra.
- 3. Conecte el cable de toma a tierra al terminal de conexión a tierra más cercano, según las instrucciones de conexión a tierra que aparecen en el capítulo «Conexión a tierra» de la Guía de funcionamiento del VLT® Midi Drive FC 280. Consulte el Ilustración 2.4.
- Conecte el cableado del motor trifásico a los 4. terminales 96 (U), 97 (V) y 98 (W), como se muestra en la Ilustración 2.4.
- Apriete los terminales conforme a la información suministrada en el capétulo 7.7 Pares de apriete de conexión.

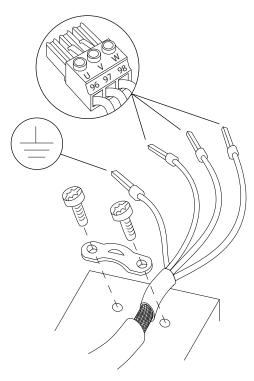


Ilustración 2.4 Conexión del motor

La alimentación, el motor y la conexión a tierra para convertidores de frecuencia trifásicos y monofásicos se muestran en la Ilustración 2.5, la Ilustración 2.6 y la *llustración 2.7*, respectivamente. Las configuraciones reales pueden variar según los tipos de unidades y el equipo opcional.

AVISO!

Para los motores sin papel de aislamiento de fase o cualquier otro refuerzo de aislamiento adecuado para su funcionamiento con suministro de tensión, utilice un filtro senoidal en la salida del convertidor de frecuencia.

MG07B305 Danfoss A/S © 05/2017 Reservados todos los derechos.

15

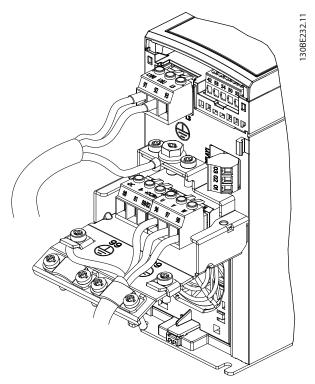
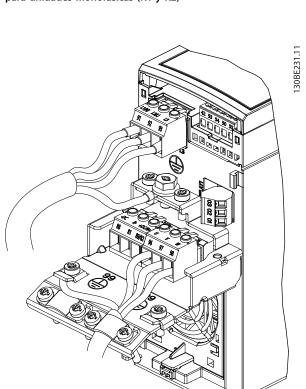



Ilustración 2.5 La alimentación, el motor y la conexión a tierra para unidades monofásicas (K1 y K2)

llustración 2.6 La alimentación, el motor y la conexión a tierra para unidades trifásicas (K1, K2 y K3)

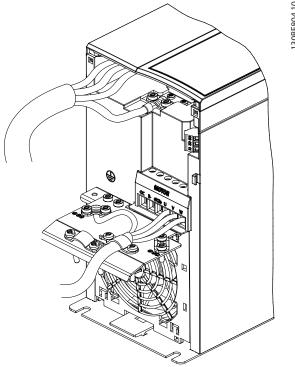


Ilustración 2.7 La alimentación, el motor y la conexión a tierra para unidades trifásicas (K4 y K5)

2.2.2 Conexión de red de CA

- Calcule el tamaño del cableado a partir de la intensidad de entrada del convertidor de frecuencia. Consulte los tamaños máximos de cable en el capétulo 7.1 Datos eléctricos.
- Cumpla los códigos eléctricos locales y nacionales en las dimensiones de los cables.

Procedimiento

- Conecte los cables de alimentación de entrada de CA a los terminales N y L en unidades monofásicas (consulte la *llustración 2.5*) o a los terminales L1, L2 y L3 en unidades trifásicas (consulte la *llustración 2.6* y la *llustración 2.7*).
- 2. En función de la configuración del equipo, conecte la alimentación de entrada a los terminales de entrada de alimentación o al dispositivo de desconexión de entrada.
- Conecte el cable a tierra conforme a las instrucciones de conexión a tierra que aparecen en el capítulo «Conexión a tierra» de la Guía de funcionamiento del VLT® Midi Drive FC 280.
- Si la alimentación proviene de una fuente de red aislada (red eléctrica IT o en triángulo) o de redes TT/TN-S con toma de tierra (triángulo conectado a tierra), asegúrese de que se haya retirado el tornillo del filtro RFI. Retirando dicho tornillo, se

evitarán daños en el enlace de CC y se reducirá la corriente capacitiva a tierra según la norma CEI 61800-3 (consulte la *llustración 7.13*; el tornillo de RFI está ubicado en la pared lateral del convertidor de frecuencia).

2.2.3 Tipos de terminal de control

La *llustración 2.8* muestra los terminales extraíbles del convertidor de frecuencia. Las funciones de los terminales y los ajustes predeterminados están resumidos en la *Tabla 2.3* y en la *Tabla 2.4*.

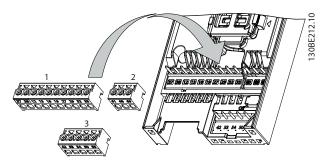


Ilustración 2.8 Ubicación de los terminales de control

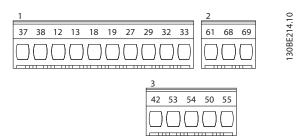


Ilustración 2.9 Números de los terminales

Consulte el *capétulo 7.6 Entrada/salida de control y datos de control* para obtener mas información sobre la clasificación de los terminales.

Terminal	Parámetro	Ajustes predeter- minados	Descripción
	I/O digitales, I/O	de pulsos, en	coder
12, 13	-	+24 V CC	Suministro externo de 24 V CC. La intensidad de salida máxima es de 100 mA para todas las cargas de 24 V.

		Ajustes		
Terminal	Parámetro	predeter-	Descripción	
		minados		
	Parámetro 5-10			
18	Terminal 18	[8] Arranque		
	Entrada digital		Entradas digitales.	
	Parámetro 5-11	[10] Cambio	Littiadas digitales.	
19	Terminal 19	[10] Cambio de sentido		
	entrada digital	de seritido		
	Parámetro 5-01		Se puede	
	Terminal 27		seleccionar como	
	modo E/S		entrada digital,	
	Parámetro 5-12	Entrada	salida digital o	
27	Terminal 27	digital [2]	salida de impulsos.	
	Entrada digital	Inercia	El ajuste predeter-	
	Parámetro 5-30	Salida digital	minado es entrada	
	Terminal 27	[0] Sin función	digital.	
	salida digital		Financial alimital	
29	Parámetro 5-13 Terminal 29	[14] Velocidad fija	Entrada digital.	
29	Entrada digital	veiocidad iija		
22	Parámetro 5-14	[0] Sin	Entrada digital,	
32	Terminal 32	función	encoder de 24 V.	
	entrada digital		El terminal 33	
	Parámetro 5-15	[0] Sin	puede usarse como entrada de	
33	Terminal 33	función	pulsos.	
	entrada digital		•	
27 20		STO seg	Entradas de	
37, 38	- S		seguridad funcional.	
Entradas/salidas analógicas				
	Liiti adas/sai	iluas alialogica	Salida analógica	
			programable. La	
			señal analógica es	
	Parámetro 6-91		de 0-20 mA o 4-20	
42	Terminal 42	[0] Sin	mA a un máximo	
	salida analógica	función	de 500 Ω.	
			También puede	
			configurarse como	
			salida digital.	
			Tensión de alimen-	
			tación analógica	
			de 10 V CC. Se	
			utiliza	
50	_	+10 V CC	normalmente un	
			máximo de 15 mA	
			para un	
			potenciómetro o	
53			termistor.	
			Entrada analógica. Solo el modo	
	Grupo de		tensión es	
	parámetros 6-1*	_	compatible.	
	Entrada		También puede	
	analógica 53		utilizarse como	
			entrada digital.	

Terminal	Parámetro	Ajustes predeter- minados	Descripción
54	Grupo de parámetros 6-2* Entrada analógica 54	-	Entrada analógica. Seleccionable entre el modo tensión o el modo intensidad.
55	-	-	Común para entradas digitales y analógicas.

Tabla 2.3 Descripciones de los terminales: entradas/salidas digitales, entradas/salidas analógicas

		Ajustes	
Terminal	Parámetro	predeter-	Descripción
		minados	
	Comuni	cación serie	•
61	-	-	Filtro RC integrado para el apantalla- miento de cables. SOLO para conectar el apantallamiento cuando se produzcan problemas de CEM.
68 (+)	Grupo de parámetros 8-3* FC port settings	-	Interfaz RS485. El conmutador de la tarjeta de control
69 (-)	Grupo de parámetros 8-3* FC port settings	-	se suministra para la resistencia de terminación.
	, F	Relés	•
01, 02, 03	Parámetro 5-40 Relé de función	[1] Ctrl prep.	Salida de relé en forma de C. Estos relés se encuentran en diferentes ubicaciones en función de la configuración y el tamaño del convertidor de frecuencia. Se utiliza para tensión de CA o CC y cargas resistivas o inductivas.

Tabla 2.4 Descripciones de terminales: comunicación serie

2.2.4 Cableado a los terminales de control

Los prensacables del terminal de control pueden desconectarse del convertidor de frecuencia para facilitar la instalación, tal y como se muestra en la *llustración 2.8*.

Para obtener detalles sobre el cableado de STO, consulte el capétulo 4 Safe Torque Off (STO).

AVISO!

Mantenga los cables de control tan cortos como sea posible y sepárelos de los cables de alimentación de alta potencia para reducir al mínimo las interferencias.

- 1. Afloje los tornillos de los terminales.
- 2. Inserte cables de control encamisados en las ranuras.
- 3. Apriete los tornillos de los terminales.
- Asegúrese de que el contacto esté bien sujeto y no esté suelto. Un cableado de control suelto puede ser la causa de fallos en el equipo o de un funcionamiento deficiente.

Consulte el capétulo 7.5 Especificaciones del cable para conocer las dimensiones de los cables de los terminales de control y el capétulo 3 Ejemplos de aplicaciones para conocer las conexiones habituales de los cables de control.

2.3 Estructuras de control

Un convertidor de frecuencia transforma la tensión de CA de la red en tensión de CC. A continuación, esta tensión de CC se convierte en CA con amplitud y frecuencia variables.

El motor recibe una tensión/intensidad y frecuencia variables, lo que permite un control de velocidad variable en motores estándar de CA trifásicos y en motores síncronos de magnetización permanente.

2.3.1 Modos de control

El convertidor de frecuencia controla tanto la velocidad como el par en el eje del motor. Asimismo, también controla el proceso en algunas aplicaciones que utilizan datos de proceso como referencia o realimentación, por ejemplo, la temperatura y la presión. El ajuste de parámetro 1-00 Configuration Mode determina el tipo de control.

Control de velocidad

Hay dos tipos de control de velocidad:

- El control de lazo abierto de velocidad, que no requiere realimentación del motor (sensorless).
- El control de PID de lazo cerrado de velocidad, que requiere una realimentación de velocidad hacia una entrada. Un control de lazo cerrado de velocidad, debidamente optimizado, tiene una precisión mayor que un control de lazo abierto.

Seleccione qué entrada se utilizará como realimentación PID de velocidad en el *parámetro 7-00 Speed PID Feedback Source*.

Control de par

La función de control de par se utiliza en aplicaciones en las que el par de salida de eje motor controla la aplicación como el control de la tensión. Seleccione [2] Par Lazo Cerrado o [4] Lazo abierto de par en el parámetro 1-00 Configuration Mode. El ajuste de par se realiza mediante la configuración de una referencia analógica, digital o controlada mediante bus. Al efectuar el control de par, se recomienda llevar a cabo un procedimiento AMA completo, ya que los datos correctos del motor son importantes para obtener un rendimiento óptimo.

- Modo de lazo cerrado en VVC⁺. Esta función se utiliza en aplicaciones que tienen una variación dinámica del eje entre baja y media y ofrece un rendimiento excelente en los cuatro cuadrantes y a todas las velocidades del motor. La señal de realimentación de velocidad es obligatoria. Asegúrese de que la resolución del encoder sea de al menos 1024 PPR y de que el cable apantallado del encoder este correctamente conectado a tierra, ya que la precisión de la señal de realimentación de velocidad resulta importante. Ajuste el parámetro 7-06 Speed PID Lowpass Filter Time para obtener la mejor señal de realimentación de velocidad posible.
- Modo lazo abierto en VVC⁺. Esta función se utiliza en aplicaciones mecánicamente robustas, pero su precisión es limitada. La función de par de lazo abierto funciona en dos sentidos. El par se calcula a partir de la medición interna de intensidad del convertidor de frecuencia.

Referencia de velocidad / par

La referencia a estos controles puede ser una referencia única o la suma de varias, incluidas referencias de escalado relativo. El manejo de referencias se explica con mayor detalle en el *capétulo 2.4 Manejo de referencias*.

Control de proceso

Hay dos tipos de control de procesos:

- El control de proceso de lazo cerrado, que funciona en lazo abierto de velocidad para controlar internamente el motor, es un controlador del PID de proceso básico.
- El control de velocidad de lazo abierto de PID ampliado, que también funciona en lazo abierto de velocidad para controlar internamente el motor, amplía las funciones del controlador del PID de proceso básico. Por ejemplo, incluye control del factor directo de alimentación, sujeción, filtro de realimentación/referencia y escalado de ganancia.

2

2.3.2 Principio de control

El VLT[®] Midi Drive FC 280 es un convertidor de frecuencia de uso general para aplicaciones de velocidad variable. Su principio de control se basa en el VVC⁺.

Los convertidores de frecuencia FC 280 pueden controlar motores asíncronos y motores síncronos de magnetización permanente de hasta 22 kW (30 CV).

El criterio de detección de corriente de los convertidores de frecuencia FC 280 se basa en la medición de la intensidad mediante una resistencia en el enlace de CC. La misma resistencia gestiona la protección de fallo de conexión a tierra y el comportamiento en cortocircuito.

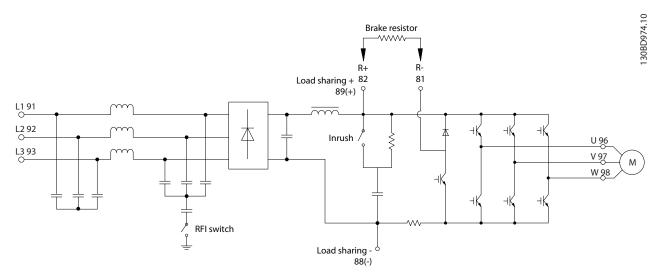


Ilustración 2.10 Diagrama de control

2.3.3 Estructura de control en el VVC+

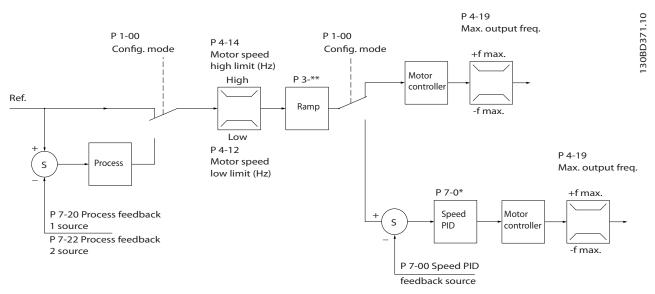


Ilustración 2.11 Estructura de control en configuraciones de lazo abierto y cerrado VVC+

En la configuración mostrada en *llustración 2.11*, parámetro 1-01 Motor Control Principle se ajusta a [1] VVC+ y parámetro 1-00 Configuration Mode se ajusta a [0] Veloc. lazo abierto. Se recibe la referencia resultante del sistema de manejo de referencias y se transfiere a la limitación de rampa y de velocidad antes de enviarse al control del motor. La salida del control del motor se limita entonces según el límite de frecuencia máxima.

Si parámetro 1-00 Configuration Mode se ajusta a [1] Veloc. Lazo Cerrado, la referencia resultante pasará desde la limitación de rampa y limitación de velocidad a un control de PID de velocidad. Los parámetros del control de PID de velocidad se encuentran en el grupo de parámetros 7-0* Speed PID Ctrl. La referencia resultante del control de PID de velocidad se envía al control de motor limitado por el límite de frecuencia.

Seleccione [3] Proceso en el parámetro 1-00 Configuration Mode para utilizar el control de PID de procesos para el control de lazo cerrado de la velocidad o la presión en la aplicación controlada. Los parámetros del PID de proceso se encuentran en los grupos de parámetros 7-2* Ctrl. realim. proc. y 7-3* Ctrl. PID proceso.

2.3.4 Control de corriente interna en modo VVC+

El convertidor de frecuencia dispone de un control integral del límite de intensidad. Esta función se activa cuando la intensidad del motor y, en consecuencia, el par, es superior a los límites de par ajustados en el parámetro 4-16 Torque Limit Motor Mode, el parámetro 4-17 Torque Limit Generator Mode y el parámetro 4-18 Current Limit.

Cuando el convertidor de frecuencia está en el límite de intensidad durante el funcionamiento del motor o el funcionamiento regenerativo, intenta situarse lo más rápidamente posible por debajo de los límites de par predeterminados sin perder el control del motor.

2.3.5 Control Local (Hand On) y Remoto (Auto On)

Accione el convertidor de frecuencia manualmente a través del panel de control local (LCP gráfico o LCP numérico) o de forma remota mediante entradas analógicas y digitales o un fieldbus.

Arranque y detenga el convertidor de frecuencia pulsando las teclas [Hand On] y [Reset] en el LCP. Se requiere la configuración mediante los siguientes parámetros:

- Parámetro 0-40 Botón (Hand on) en LCP.
- Parámetro 0-44 Tecla [Off/Reset] en LCP.
- Parámetro 0-42 [Auto activ.] llave en LCP.

Reinicie las alarmas con la tecla [Reset] o mediante una entrada digital, cuando el terminal se programe para el Reinicio.

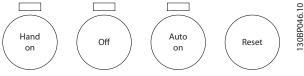


Ilustración 2.12 Teclas de control del GLCP

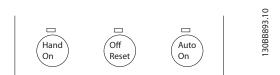


Ilustración 2.13 Teclas de control del NLCP

La referencia local hace que el modo de configuración se ajuste a lazo abierto, independientemente del ajuste del parámetro 1-00 Modo Configuración. La referencia local se restaura al apagarse el convertidor de frecuencia.

2.4 Manejo de referencias

Referencia local

La referencia local está activada cuando el convertidor de frecuencia se acciona con [Hand On] activo. Ajuste la referencia mediante $[\begin{subarray}{c} \blacktriangle]/[\begin{subarray}{c} \intercal] / [\begin{subarray}{c} \intercal]/[\begin{subarray}{c} \intercal]/[\begin{subar$

Referencia remota

El sistema de manejo de referencias para el cálculo de la referencia remota se muestra en la llustración 2.14.

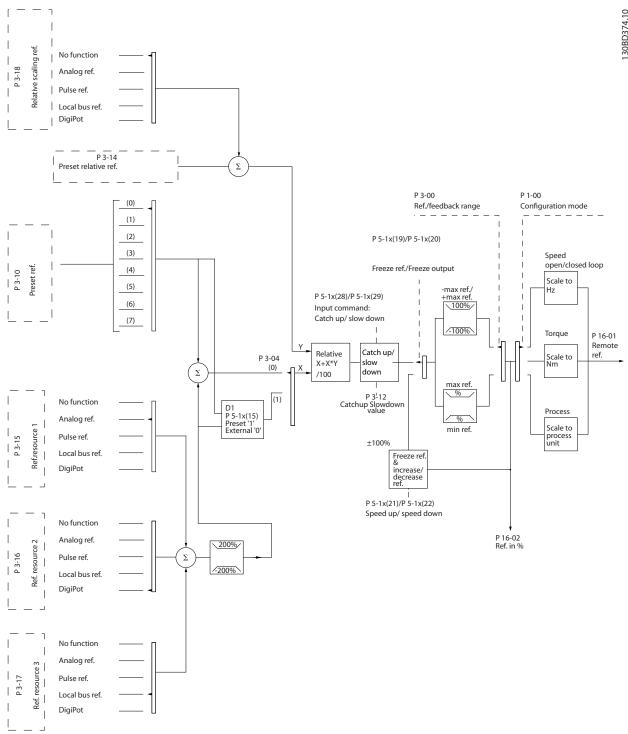


Ilustración 2.14 Referencia remota

La referencia remota se calcula una vez en cada intervalo de exploración y consta inicialmente de dos tipos de entradas de referencia:

- 1. X (la referencia externa): una suma (consulte el parámetro 3-04 Reference Function) de hasta cuatro referencias seleccionadas de forma externa, que comprenden cualquier combinación (determinada por el ajuste del parámetro 3-15 Reference 1 Source, el parámetro 3-16 Reference 2 Source y el parámetro 3-17 Reference 3 Source) de una referencia interna fija (parámetro 3-10 Preset Reference), referencias analógicas variables, referencias digitales variables de pulsos y varias referencias del fieldbus en cualquier unidad que controle el convertidor de frecuencia ([Hz], [RPM], [Nm], etc.).
- Y (la referencia relativa): una suma de una referencia interna fija (parámetro 3-14 Preset Relative Reference) y una referencia analógica variable (parámetro 3-18 Relative Scaling Reference Resource) en [%].

Los dos tipos de entradas de referencia se combinan en la siguiente fórmula:

Referencia remota = X+X*Y/100 %.

Si no se utiliza la referencia relativa, ajuste el parámetro 3-18 Relative Scaling Reference Resource a [0] Sin función y el parámetro 3-14 Preset Relative Reference al 0 %. Las entradas digitales del convertidor de frecuencia pueden activar tanto la función de enganche arriba y abajo como la función mantener referencia. Las funciones y parámetros se describen en la Guía de programación del VLT® Midi Drive FC 280.

El escalado de las referencias analógicas se describe en los grupos de parámetros 6-1* Entrada analógica 53 y 6-2* Entrada analógica 54, mientras que el escalado de referencias de pulsos digitales se describe en el grupo de parámetros 5-5* Entrada de pulsos.

Los límites e intervalos de referencias se ajustan en el grupo de parámetros 3-0* Límites referencia.

2.4.1 Límites referencia

El Parámetro 3-00 Rango de referencia, el parámetro 3-02 Referencia mínima y el parámetro 3-03 Referencia máxima definen el rango permitido para la suma de todas las referencias. Cuando es necesario, la suma de todas las referencias se bloquea. La relación entre la referencia resultante (tras el bloqueo) y la suma de todas las referencias se indica en la *llustración 2.15* y la *llustración 2.16*.

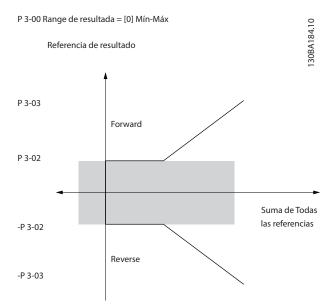


Ilustración 2.15 Suma de todas las referencias cuando el intervalo de referencias se ajusta en 0

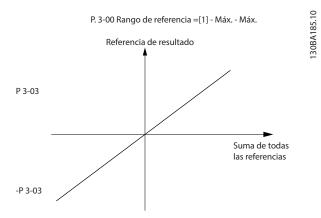


Ilustración 2.16 Suma de todas las referencias cuando el intervalo de referencias se ajusta en 1

El valor de parámetro 3-02 Referencia mínima no puede ajustarse por debajo de 0, a menos que parámetro 1-00 Modo Configuración esté ajustado a [3] Proceso. En ese caso, las siguientes relaciones entre la referencia resultante (tras el bloqueo) y la suma de todas las referencias son las indicadas en la Ilustración 2.17.

P 3-00 Rango de resultada= [0] Mín.-Máx.

Referencia de resultado

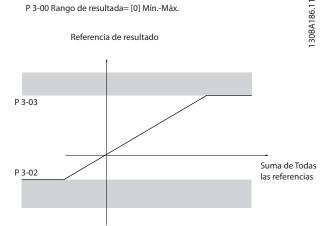


Ilustración 2.17 Suma de todas las referencias cuando la referencia mínima se ajusta en un valor negativo

2.4.2 Escalado de referencias internas y referencias de bus

Las referencias internas se escalan según estas reglas:

- Cuando el parámetro 3-00 Reference Range se ajusta en [0] Mín - Máx, el 0 % de la referencia es igual a 0 [unidad], donde la unidad puede ser cualquiera, por ejemplo r/min, m/s o bar. El 100 % de la referencia es igual al máximo (valor absoluto del parámetro 3-03 Maximum Reference y valor absoluto del parámetro 3-02 Referencia mínima).
- Cuando el parámetro 3-00 Reference Range se ajusta en $[1] = -M \acute{a}x - +M \acute{a}x$, el 0 % de la referencia es igual a 0 [unidad] y el 100 % de la referencia es igual a la referencia máxima.

Las referencias de bus se escalan según estas reglas:

- Cuando el parámetro 3-00 Reference Range se ajusta en [0] Mín - Máx, el 0 % de la referencia es igual a la referencia mínima y el 100 % de la referencia es igual a la referencia máxima.
- Cuando el parámetro 3-00 Reference Range se ajusta en $[1] = -M\acute{a}x - +M\acute{a}x$, -100 % de la referencia es igual a -referencia máxima y el 100 % de la referencia es igual a la referencia máxima.

2.4.3 Escalado de referencias de pulsos y analógicas y realimentación

Las referencias y la realimentación se escalan de la misma manera a partir de entradas analógicas y de pulsos. La única diferencia es que una referencia superior o inferior a los puntos finales mínimo y máximo especificados (P1 y P2 en la Ilustración 2.18) se bloquea, mientras que las realimentaciones superiores o inferiores a dichos puntos no se bloquean.

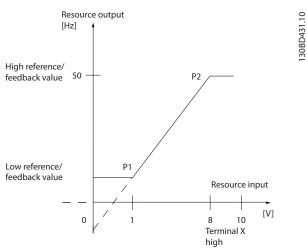


Ilustración 2.18 Puntos finales mínimo y máximo

Los puntos finales P1 y P2 se definen en la Tabla 2.5 en función de la entrada que se utilice.

Entrada	Analógica 53	Analógica 54	Analógica 54	Entrada de pulsos	Entrada de pulsos 33
	modo de tensión	modo de tensión	modo de corriente	29	
P1 = (valor de entrada mínimo, va	lor de referencia m	ínimo)		-	
Valor de referencia mínimo	Parámetro 6-14 Te	Parámetro 6-24 Te	Parámetro 6-24 Ter	Parámetro 5-52 Ter	Parámetro 5-57 Term. 33
	rm. 53 valor bajo	rm. 54 valor bajo	m. 54 valor bajo	m. 29 valor bajo	valor bajo ref./realim
	ref./realim	ref./realim	ref./realim	ref./realim	
Valor de entrada mínimo	Parámetro 6-10 Te	Parámetro 6-20 Te	Parámetro 6-22 Ter	Parámetro 5-50 Ter	Parámetro 5-55 Term. 33
	rminal 53 escala	rminal 54 escala	minal 54 escala	m. 29 baja	baja frecuencia [Hz]
	baja V [V]	baja V [V]	baja mA [mA]	frecuencia [Hz]	
P2 = (valor de entrada máximo, va	alor de referencia m	náximo)			
Valor de referencia máximo	Parámetro 6-15 Te	Parámetro 6-25 Te	Parámetro 6-25 Ter	Parámetro 5-53 Ter	Parámetro 5-58 Term. 33
	rm. 53 valor alto	rm. 54 valor alto	m. 54 valor alto ref./	m. 29 valor alto	valor alto ref./realim
	ref./realim	ref./realim	realim	ref./realim	
Valor de entrada máximo	Parámetro 6-11 Te	Parámetro 6-21 Te	Parámetro 6-23 Ter	Parámetro 5-51 Ter	Parámetro 5-56 Term. 33
	rminal 53 escala	rminal 54 escala	minal 54 escala alta	m. 29 alta	alta frecuencia [Hz]
	alta V [V]	alta V [V]	mA [mA]	frecuencia [Hz]	

Tabla 2.5 Puntos finales P1 y P2

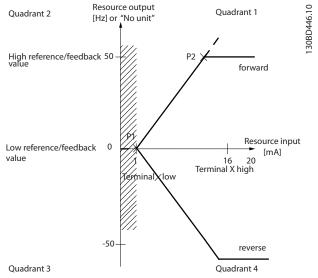
2.4.4 Zona muerta alrededor de cero

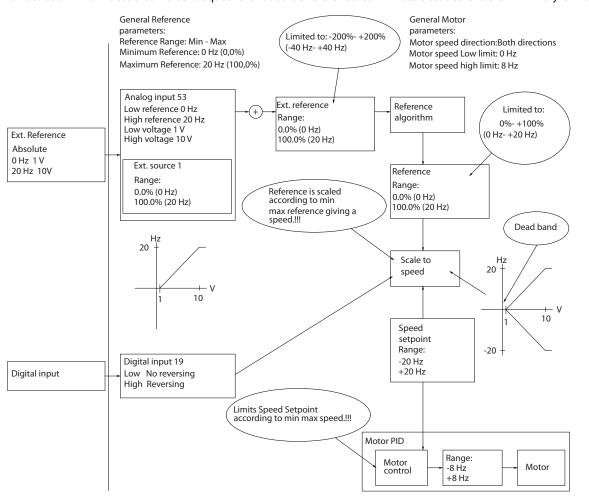
A veces, la referencia (y también la realimentación, en raras ocasiones) deberá tener una zona muerta alrededor de cero para asegurar que la máquina se detenga cuando la referencia se aproxime a cero.

Para activar la zona muerta y ajustar su valor, haga lo siguiente:

- Ajuste en cero el valor de referencia mínimo (consulte la *Tabla 2.5* para conocer el parámetro apropiado) o bien el valor de referencia máximo. En otras palabras, P1 o P2 deberán estar en el eje X de la *llustración 2.19*.
- Asegúrese de que los dos puntos que definen la gráfica de escalado estén en el mismo cuadrante.

P1 o P2 definen el tamaño de la zona muerta, tal como se indica en la *llustración 2.19*.

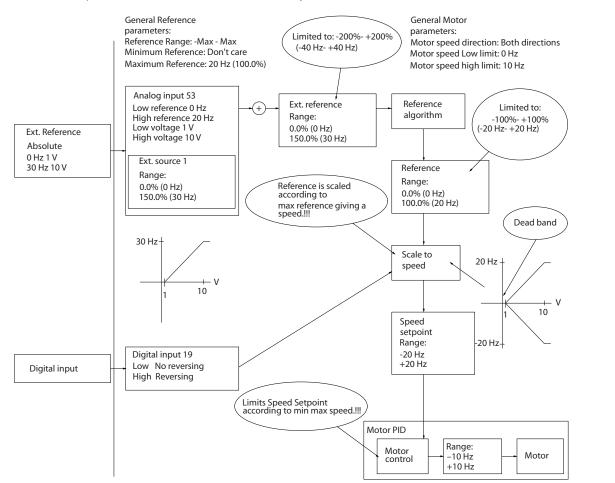



Ilustración 2.19 Tamaño de la zona muerta

2

Caso 1: referencia positiva con zona muerta, entrada digital para trigger inverso, parte I

La llustración 2.20 muestra cómo se bloquea la entrada de referencia con límites situados entre el mínimo y el máximo.


llustración 2.20 Bloqueo de la entrada de referencia con límites situados entre el mínimo y el máximo

130BD433.11

Caso 2: referencia positiva con zona muerta, entrada digital para trigger inverso, parte II

La *llustración 2.21* muestra cómo se bloquea la entrada de referencia con límites fuera del rango –máximo a +máximo en los límites inferior y superior de las entradas antes de añadirse a la referencia externa, así como el modo en el que el algoritmo de referencia bloquea la referencia externa entre –máximo y +máximo.

llustración 2.21 Bloqueo de la entrada de referencia con límites situados fuera del rango de -máximo a +máximo

2.5 Control de PID

2.5.1 Control de PID de velocidad

Parámetro 1-00 Modo Configuración	Parámetro 1-01 Principio control motor		
Farametro 1-00 Modo Comigaración	U/f	VVC+	
[1] Veloc. Lazo Cerrado	No disponible ¹⁾	Activo	

Tabla 2.6 Configuraciones de control, control de velocidad activo

1) «No disponible» indica que el modo especificado no está disponible en absoluto.

Parámetro	Descripción de la función		
Parámetro 7-00 Fuente de realim. PID de veloc.	Seleccione desde qué entrada obtiene la realimentación el PID de velocidad.		
Parámetro 7-02 Speed PID Proportional Gain	Cuanto mayor sea este valor, más rápido será el control. Sin embargo, un valor demasiad		
	elevado puede producir oscilaciones.		
Parámetro 7-03 Tiempo integral PID veloc.	Elimina el error de velocidad de estado establ	le. Unos valores inferiores implican una	
	reacción más rápida. Sin embargo, un valor de	emasiado bajo puede producir oscilaciones.	
Parámetro 7-04 Tiempo diferencial PID veloc.	Proporciona una ganancia proporcional al índ	ice de cambio de la realimentación. El ajuste	
	a cero desactiva el diferenciador.		
Parámetro 7-05 Límite ganancia dif. PID veloc.	Si hay cambios rápidos en la referencia o la re	ealimentación de alguna aplicación, lo que	
	significa que el error cambia rápidamente, el e	diferenciador puede volverse enseguida	
	demasiado dominante. Esto se debe a que rea	acciona a cambios en el error. Cuanto más	
	rápido cambia el error, más alta es la ganancia del diferenciador. Por ello, esta ganancia se		
	puede limitar para permitir el ajuste de un tiempo diferencial razonable para cambios		
	lentos, y una ganancia rápida adecuada para cambios rápidos.		
Parámetro 7-06 Tiempo filtro paso bajo PID	El filtro de paso bajo amortigua las oscilaciones de la señal de realimentación y mejora el		
veloc.	rendimiento de estado estable. Sin embargo,	un tiempo de filtro demasiado largo deteriora	
el rendimiento dinámico del control de PID de velocidad.		e velocidad.	
	Ajustes prácticos del parámetro 7-06 Speed PIE	D Lowpass Filter Time tomados del número de	
	pulsos por revolución del encoder (PPR):		
	PPR del encoder	Parámetro 7-06 Tiempo filtro paso bajo PID	
		veloc.	
	512	10 ms	
	1024	5 ms	
	2048	2 ms	
	4096	1 ms	

Tabla 2.7 Parámetros de control de velocidad

Ejemplo de programación del control de velocidad

En este ejemplo, el control de PID de velocidad se usa para mantener una velocidad de motor constante independientemente de la modificación de carga del motor. La velocidad del motor requerida se ajusta mediante un potenciómetro conectado al terminal 53. El rango de velocidad es 0-1500 r/min y corresponde a 0-10 V en el potenciómetro. Un conmutador conectado al terminal 18 controla el arranque y la parada. El PID de velocidad monitoriza las r/min reales del motor usando un codificador incremental de 24 V (HTL) como realimentación. El sensor de realimentación es un encoder (1024 pulsos por revolución) conectado a los terminales 32 y 33. El rango de frecuencia de pulsos a los terminales 32 y 33 es 4 Hz-32 kHz.

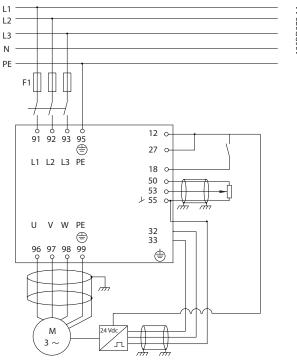


Ilustración 2.22 Programación de control de velocidad

Siga los pasos de la *Tabla 2.8* para programar el control de velocidad (consulte la explicación de los ajustes en la *Guía de programación*)

En la Tabla 2.8 se presupone que todos los demás parámetros y conmutadores permanecen en sus ajustes predeterminados.

Función	Número de parámetro	Ajuste			
1) Asegúrese de que el motor funciona correctamente. Haga lo siguiente:					
Ajuste los parámetros del motor usando los datos de la	Grupo de parámetros 1-2*	En función de las especificaciones de la placa de			
placa de características.	Motor Data	características del motor.			
Realice un AMA.	Parámetro 1-29 Automatic	[1] Act. AMA completo			
	Motor Adaption (AMA)				
2) Compruebe que el motor está en marcha y que el encod	er está conectado correctam	nente. Haga lo siguiente:			
Pulse [Hand On]. Compruebe que el motor esté en marcha		Ajuste una referencia positiva.			
y fíjese en la dirección de rotación (que denominaremos					
«dirección positiva»).					
3) Asegúrese de que los límites del convertidor de frecuenc	ia estén ajustados en valores	s seguros:			
Ajuste unos límites aceptables para las referencias.	Parámetro 3-02 Minimum	0			
	Reference				
	Parámetro 3-03 Maximum	50			
	Reference				
Compruebe que los ajustes de rampa estén dentro de las	Parámetro 3-41 Ramp 1	Ajustes predeterminados			
posibilidades del convertidor de frecuencia y cumplan las	Ramp Up Time				
especificaciones de funcionamiento de la aplicación.	Parámetro 3-42 Ramp 1	Ajustes predeterminados			
	Ramp Down Time				
Ajuste unos límites aceptables para la frecuencia y la	Parámetro 4-12 Motor	0 Hz			
velocidad del motor.	Speed Low Limit [Hz]				
	Parámetro 4-14 Motor	50 Hz			
	Speed High Limit [Hz]				
	Parámetro 4-19 Max	60 Hz			
	Output Frequency				
4) Configure el control de velocidad y seleccione el principio	de control del motor:				

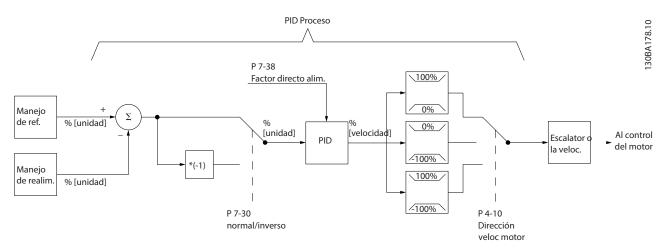
2

Parámetro 1-00 Configu-	[1] Veloc. Lazo Cerrado	
ration Mode		
Parámetro 1-01 Motor	[1] VVC ⁺	
Control Principle		
Parámetro 3-15 Reference 1	No necesario (predeterminado)	
Source		
Grupo de parámetros 6-1*	No necesario (predeterminado)	
Entrada analógica 1		
6) Configure la señal del encoder HTL de 24 V como realimentación para el control del motor y de la velocidad:		
Parámetro 5-14 Terminal	[82] Encoder input B	
32 Digital Input		
Parámetro 5-15 Terminal	[83] Encoder input A	
33 Digital Input		
Parámetro 7-00 Speed PID	[1] Encoder 24 V	
Feedback Source		
Grupo de parámetros 7-0*		
Speed PID Ctrl.		
Parámetro 0-50 Copia con	[1] Trans. LCP tod. par.	
LCP		
	ration Mode Parámetro 1-01 Motor Control Principle Parámetro 3-15 Reference 1 Source Grupo de parámetros 6-1* Entrada analógica 1 Intación para el control del 1 Parámetro 5-14 Terminal 32 Digital Input Parámetro 5-15 Terminal 33 Digital Input Parámetro 7-00 Speed PID Feedback Source Grupo de parámetros 7-0* Speed PID Ctrl. Parámetro 0-50 Copia con	

Tabla 2.8 Orden de programación del control de PID de velocidad

2.5.2 Control de PID de procesos

El control de PID de procesos puede emplearse para controlar parámetros de aplicación que puedan medirse mediante un sensor (por ejemplo, la presión, la temperatura y el flujo) y que puedan verse afectados por el motor conectado a través de una bomba, de un ventilador o de otros dispositivos conectados.


La *Tabla 2.9* muestra las configuraciones de control que permiten usar el control de proceso. Consulte el *capétulo 2.3 Estructuras de control* para saber dónde está activado el control de velocidad.

Parámetro 1-00 Configuration Mode	Parámetro 1-01 Motor Control Principle	
	U/f	VVC+
[3] Proceso	Proceso	Proceso

Tabla 2.9 Configuración de control

AVISO!

El PID de control de procesos funciona usando el ajuste de parámetros predeterminado, pero es recomendable ajustar los parámetros para optimizar el rendimiento del control de la aplicación.

llustración 2.23 Diagrama del control de PID de procesos

2.5.3 Parámetros relevantes de control de proceso

Parámetro	Descripción de la función
Parámetro 7-20 Process CL Feedback 1 Resource	Seleccione de qué fuente (entrada analógica o de pulsos) obtendrá su realimentación el
	PID de proceso.
Parámetro 7-22 Process CL Feedback 2 Resource	Opcional: determina si (y desde dónde) el PID de procesos debe obtener una señal de
	realimentación adicional. Si se selecciona una fuente de realimentación adicional, las dos
	señales de realimentación se añaden antes de ser utilizadas en el control de PID de
	procesos.
Parámetro 7-30 Process PID Normal/ Inverse	En funcionamiento [0] Normal, el control de proceso responde con un incremento de la
Control	velocidad del motor si la realimentación es inferior a la referencia. En funcionamiento en
	[1] Inversa, el control de proceso responde, al contrario, con una velocidad de motor
	decreciente.
Parámetro 7-31 Process PID Anti Windup	La función de saturación garantiza que cuando se alcanza un límite de frecuencia o de
	par, el integrador se ajusta en una ganancia que corresponda a la frecuencia real. Esto
	evita la integración de errores incompensables con un cambio de velocidad. Pulse [0]
	Desactivado para desactivar esta función.
Parámetro 7-32 Process PID Start Speed	En algunas aplicaciones, alcanzar el punto de velocidad / valor de consigna necesario
	puede tomar mucho tiempo. En tales aplicaciones, podría resultar útil ajustar una
	velocidad fija del motor desde el convertidor de frecuencia antes de activar el control de
	proceso. Configure una velocidad del motor fija mediante el ajuste de un valor de
	arranque para PID de procesos (velocidad) en el <i>parámetro 7-32 Process PID Start Speed</i> .
Parámetro 7-33 Process PID Proportional Gain	Cuanto mayor sea este valor, más rápido será el control. Sin embargo, un valor demasiado
	elevado puede crear oscilaciones.
Parámetro 7-34 Process PID Integral Time	Elimina el error de velocidad de estado estable. Cuanto menor es el valor, más rápida es la
	reacción. Sin embargo, un valor demasiado bajo puede crear oscilaciones.
Parámetro 7-35 Process PID Differentiation Time	Proporciona una ganancia proporcional al índice de cambio de la realimentación. El ajuste
	a cero desactiva el diferenciador.
Parámetro 7-36 Process PID Diff. Gain Limit	Si hay cambios rápidos en la referencia o la realimentación de alguna aplicación (lo que
	significa que el error cambia rápidamente), el diferenciador puede volverse enseguida
	demasiado dominante. Esto se debe a que reacciona a cambios en el error. Cuanto más
	rápido cambia el error, más alta es la ganancia del diferenciador. Por ello, esta ganancia se
	puede limitar para permitir el ajuste de un tiempo diferencial razonable para cambios
	lentos.
Parámetro 7-38 Process PID Feed Forward	En aplicaciones con una correlación buena (y aproximadamente lineal) entre la referencia
Factor	del proceso y la velocidad del motor necesaria para obtener dicha referencia, utilice el
	factor de acercamiento para alcanzar un mejor rendimiento dinámico del control de PID
	de procesos.
Parámetro 5-54 Pulse Filter Time Constant	Si existen oscilaciones de la señal de realimentación de intensidad/tensión, se pueden
#29 (Term. de pulsos 29)	reducir mediante un filtro de paso bajo. La constante de tiempo del filtro de impulsos
Parámetro 5-59 Pulse Filter Time Constant	representa el límite de velocidad de los rizados que se producen en la señal de realimen-
#33 (Term. de pulsos 33)	tación.
Parámetro 6-16 Terminal 53 Filter Time	Ejemplo: Si el filtro de paso bajo se ha ajustado a 0,1 s, la velocidad límite es 10 RAD/s (el
Constant (Term. analógico 53)	recíproco de 0,1 s), que corresponde a $(10/2 \times \pi) = 1,6$ Hz. Esto significa que el filtro
	amortigua todas las intensidades/tensiones que varían en más de 1,6 oscilaciones por
Parámetro 6-26 Terminal 54 Filter Time Constant (Torres analázios 54)	segundo. El control solo se efectúa en una señal de realimentación que varía en una
Constant (Term. analógico 54)	frecuencia (velocidad) de menos de 1,6 Hz.
	El filtro de paso bajo mejora el rendimiento de estado estable, pero, si se selecciona un
	tiempo de filtro demasiado largo, el rendimiento dinámico del control de PID de procesos
	disminuye.

Tabla 2.10 Parámetros de control de proceso

2.5.4 Ejemplo de un control de PID de procesos

La *llustración 2.24* es un ejemplo de un control de PID de procesos utilizado en un sistema de ventilación:

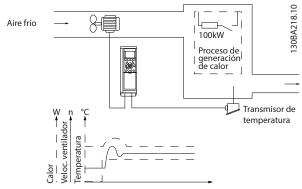


Ilustración 2.24 Sistema de ventilación del control de PID de procesos

En un sistema de ventilación, la temperatura puede ajustarse a entre –5 y 35 °C (23-95 °F) con un potenciómetro de 0 a 10 V. Para mantener constante la temperatura ajustada, utilice el control de proceso.

El control es inverso, lo que significa que cuando se incrementa la temperatura, también lo hace la velocidad de ventilación, con el fin de generar más aire. Cuando cae la temperatura, se reduce también la velocidad. El transmisor empleado es un sensor de temperatura con un rango de funcionamiento situado entre –10 y 40 °C (14-104 °F), de 4 a 20 mA.

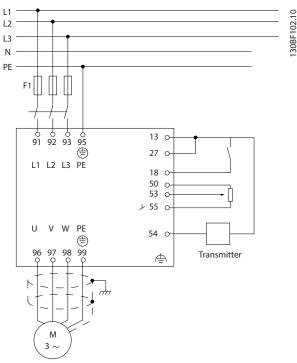


Ilustración 2.25 Transmisor de dos hilos

- Arranque/parada mediante el conmutador conectado al terminal 18.
- 2. Referencia de temperatura a través del potenciómetro (de –5 a 35 °C [23-95 °F], de 0 a 10 V CC) conectado al terminal 53.
- 3. Realimentación de temperatura a través de un transmisor (de –10 a 40 °C [14-104 °F], de 4 a 20 mA) conectado al terminal 54.

Función	Número de	Ajuste
	parámetro	
Inicialice el convertidor de frecuencia.	Parámetro 14-2	[2] Inicialización: apague y encienda la alimentación, pulse el botón
	2 Modo funcio-	de reinicio.
	namiento	
1) Ajuste los parámetros del motor:	•	
Ajuste los parámetros del motor conforme a los	Grupo de	En función de las especificaciones de la placa de características del
datos de la placa de características.	parámetros	motor.
	1-2* Motor	
	Data	
Realice un AMA completo.	Parámetro 1-29	[1] Act. AMA completo.
	Adaptación	
	automática del	
	motor (AMA)	
2) Compruebe que el motor funcione en el sentido	correcto.	
Cuando el motor está conectado al convertidor de	frecuencia con la	as fases ordenadas como U-U; V-V; W-W, el eje del motor normalmente
gira en sentido horario visto hacia el extremo del e	eje.	
Pulse [Hand On]. Compruebe la dirección del eje		
aplicando una referencia manual.		

Función	Número de	Ajuste
	parámetro	
Si el motor gira en el sentido opuesto al requerido: 1. Cambie la dirección del motor en el parámetro 4-10 Motor Speed Direction.	Parámetro 4-10 Dirección veloc. motor	Seleccione el sentido correcto del eje del motor.
Desconecte la alimentación y espere a que se descargue el enlace de CC.		
3. Cambie dos de las fases del motor.		
Ajuste el modo de configuración.	Parámetro 1-00 Modo Configuración	
	r, el rango para e	el manejo de referencias. Ajuste el escalado de la entrada analógica en
el grupo de parámetros 6-** Analog In/Out.		
Ajuste las unidades de referencia/realimentación. Ajuste la referencia mínima (10 °C [50 °F]). Ajuste la referencia máxima (80 °C [176 °F]). Si el valor ajustado viene determinado por un valor predeterminado (parámetro de matrices), ajuste las demás fuentes de referencia en [0] Sin función. 4) Ajuste los límites del convertidor de frecuencia: Ajuste los tiempos de rampa a un valor apropiado como 20 s.	Parámetro 3-01 Reference/ Feedback Unit Parámetro 3-02 Minimum Reference Parámetro 3-03 Maximum Reference Parámetro 3-10 Preset Reference Parámetro 3-41 Ramp 1 Ramp Up Time Parámetro 3-42 Ramp 1 Ramp	$Ref = \frac{Par. \ 3-10_{(0)}}{100} \times ((Par. \ 3-03)-(par. \ 3-02)) = 24,5^{\circ} C$ Del Parámetro 3-14 Referencia interna relativa al parámetro 3-18 Recurso refer. escalado relativo $[0] = Sin$ función.
Ajuste los límites mínimos de velocidad. Ajuste el límite máximo de velocidad del motor. Ajuste la frecuencia de salida máxima.	Parámetro 4-14 Motor Speed High Limit [Hz] Parámetro 4-19 Max Output	50 Hz 60 Hz
Aiusta al navématra 6 10 Tarminal 52 mada : al maré	Frequency	ingl E4 made on al made de tanción e el made de intermidad
		inal 54 mode en el modo de tensión o el modo de intensidad.
5) Escale las entradas analógicas empleadas como r	eierencia y realir	mentacion:

Función	Número de	Ajuste
	parámetro	
Ajuste el terminal 53 a baja tensión.	Parámetro 6-10	0 V
Ajuste el terminal 53 a tensión alta.	Terminal 53	10 V
Ajuste el valor bajo de realimentación del terminal	Low Voltage	–5 °C (23 °F)
54.	Parámetro 6-11	35 °C (95 °F)
Ajuste el valor alto de realimentación del terminal	Terminal 53	[2] Entrada analógica 54
54.	High Voltage	
Ajuste la fuente de realimentación.	Parámetro 6-24	
	Terminal 54	
	Low Ref./Feedb.	
	Value	
	Parámetro 6-25	
	Terminal 54	
	High Ref./	
	Feedb. Value	
	Parámetro 7-20	
	Process CL	
	Feedback 1	
	Resource	
6) Ajustes básicos PID:		
PID de procesos normal / inverso.	Parámetro 7-30	[0] Normal
	Process PID	
	Normal/	
	Inverse Control	
Saturación de PID de proceso.	Parámetro 7-31	[1] Activado
	Process PID	
	Anti Windup	
Velocidad de arranque de PID del proceso	Parámetro 7-32	300 r/min
	Valor arran.	
	para ctrldor.	
	PID proceso.	
Guarde los parámetros en el LCP.	Parámetro 0-50	[1] Trans. LCP tod. par.
	Copia con LCP	

Tabla 2.11 Ejemplo de ajuste del control de PID de procesos

2.5.5 Optimización del controlador de proceso

Una vez realizados los ajustes básicos como se describen en el *capétulo 2.5.5 Orden de programación*, optimice la ganancia proporcional, el tiempo de integración y el tiempo diferencial (*parámetro 7-33 Process PID Proportional Gain*, *parámetro 7-34 Process PID Integral Time* y *parámetro 7-35 Process PID Differentiation Time*). En la mayoría de los procesos, siga el siguiente procedimiento:

- 1. Ponga en marcha el motor.
- Ajuste el parámetro 7-33 Process PID Proportional Gain a 0,3 e increméntelo hasta que la señal de realimentación empiece a variar constantemente. Reduzca el valor hasta que la señal de realimentación se haya estabilizado. Reduzca la ganancia proporcional en un 40-60 %.

- Ajuste parámetro 7-34 Process PID Integral Time a 20 s y reduzca el valor hasta que la señal de realimentación empiece a variar constantemente. Aumente el tiempo de integración hasta que la señal de realimentación se estabilice, seguido de un incremento del 15-50 %.
- 4. Utilice el parámetro 7-35 Process PID Differentiation Time únicamente para sistemas de actuación muy rápida (tiempo diferencial). El valor normal es cuatro veces el tiempo de integración definido. El diferenciador solo debe emplearse cuando el ajuste de la ganancia proporcional y del tiempo de integración se hayan optimizado por completo. Compruebe que el filtro de paso bajo amortigüe suficientemente las oscilaciones de la señal de realimentación.

AVISO!

Si es necesario, puede activarse el arranque / la parada una serie de veces para provocar una variación de la señal de realimentación.

2.5.6 Método de ajuste Ziegler-Nichols

Para ajustar los controles de PID del convertidor de frecuencia, Danfoss recomienda el método de ajuste Ziegler-Nichols.

AVISO!

No utilice el método de ajuste Ziegler-Nichols en aplicaciones que puedan resultar dañadas por las oscilaciones creadas por ajustes de control marginalmente estables.

Los criterios de ajuste de los parámetros están basados en la evaluación del sistema en el límite de estabilidad en lugar de estarlo en la obtención de una respuesta de paso. Incremente la ganancia proporcional hasta observar oscilaciones continuas (medidas en la realimentación), es decir, hasta que el sistema se vuelve marginalmente estable. La ganancia correspondiente (Ku) se denomina ganancia máxima y se trata de la ganancia a la cual se obtiene la oscilación. El periodo de la oscilación (Pu) (Ilamado periodo máximo) se determina como se muestra en la *Ilustración 2.26* y debe medirse cuando la amplitud de la oscilación es pequeña.

- Seleccione solo el control proporcional: el tiempo integral se ajusta en el valor máximo y el tiempo diferencial se ajusta en cero.
- Aumente el valor de la ganancia proporcional hasta llegar al punto de inestabilidad (oscilaciones sostenidas) y se alcance el valor crítico de ganancia, Ku.
- 3. Mida el periodo de oscilación para obtener la constante de tiempo crítico, P_u .

2.6 Inmunidad y emisión CEM

2.6.1 Aspectos generales de la emisión CEM

tienen su origen en el inversor, el cable del motor y el motor.

El transitorio de ráfagas es conducido a frecuencias comprendidas en el intervalo de 150 kHz a 30 MHz. Las interferencias generadas por el convertidor de frecuencia y transmitidas por el aire, con frecuencias en el rango de 30 MHz a 1 GHz,

Las intensidades capacitivas en el cable del motor, junto con una alta dU/dt de la tensión del motor, generan corrientes de fuga.

La utilización de un cable de motor apantallado aumenta la corriente de fuga (consulte la *llustración 2.27*), porque los cables apantallados tienen una mayor capacitancia a tierra que los cables no apantallados. Si la corriente de fuga no se filtra, provoca una mayor interferencia en la alimentación de red, en el rango de radiofrecuencia inferior a 5 MHz. Puesto que la corriente de fuga (I₁) se reconduce a la unidad a través del apantallamiento (I₃), solo habrá un pequeño campo electromagnético (I₄) desde el cable apantallado del motor.

4. Use *Tabla 2.12* para calcular los parámetros del control de PID necesarios.

Danfoss

El operador del proceso puede realizar el ajuste final del control de forma iterativa para alcanzar un control satisfactorio.

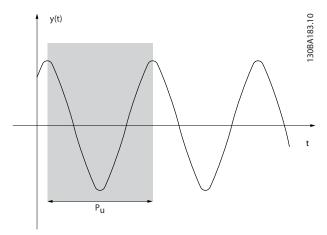
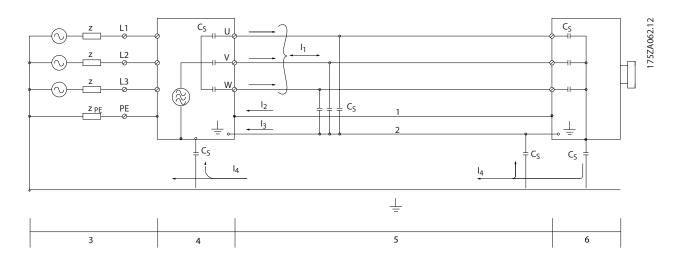


Ilustración 2.26 Sistema marginalmente estable

Tipo de control	Ganancia proporcional	Tiempo integral	Tiempo diferencial de PID de velocidad
Control PI	$0,45 \times K_u$	$0,833 \times P_{u}$	-
Control de PID estricto	0,6 × K _u	$0.5 \times P_u$	$0,125 \times P_u$
PID con cierta sobremodu- lación	0,33 × K _u	0,5 × <i>Pu</i>	0,33 × Pu


Tabla 2.12 Ajuste Ziegler-Nichols para controlador

El apantallamiento reduce la interferencia radiada, aunque incrementa la interferencia de baja frecuencia en la alimentación. Conecte el apantallamiento de cables de motor al alojamiento del convertidor de frecuencia y al alojamiento del motor. El mejor procedimiento consiste en utilizar abrazaderas de apantallamiento integradas para evitar extremos de apantallamiento en espiral (cables de pantalla retorcidos y embornados). Las abrazaderas de apantallamiento aumentan la impedancia de la pantalla a las frecuencias superiores, lo que reduce el efecto de pantalla y aumenta la corriente de fuga (l4). Monte la pantalla en ambos extremos del alojamiento si se emplea un cable apantallado para los siguientes fines:

- Fieldbus
- Red
- Relay
- Cable de control
- Interfaz de señales
- Freno

En algunas situaciones, sin embargo, es necesario romper el apantallamiento para evitar lazos de intensidad.

1	Cable de conexión a toma de tierra
2	Pantalla
3	Fuente de alimentación de red de CA
4	Convertidor de frecuencia
5	Cable de motor apantallado
6	Motor

Ilustración 2.27 Emisión CEM

Si coloca la pantalla en una placa de montaje para el convertidor de frecuencia, utilice un placa de montaje metálica para conducir las intensidades de la pantalla de vuelta a la unidad. Asegúrese de que la placa de montaje y el chasis del convertidor de frecuencia hacen buen contacto eléctrico a través de los tornillos de montaje.

Si se utilizan cables no apantallados, no se cumplirán algunos de los requisitos de emisiones, aunque sí se respetarán los requisitos de inmunidad.

Para reducir el nivel de interferencia del sistema completo (convertidor de frecuencia e instalación), haga que los cables de motor y de freno sean lo más cortos posibles. Evite colocar cables que tengan un nivel de señal sensible junto a los cables de red, de motor y de freno. La radiointerferencia superior a 50 MHz (transmitida por el aire) es generada especialmente por los elementos electrónicos de control.

2

2.6.2 Emisión CEM

Los resultados de las pruebas de la *Tabla 2.13* se obtuvieron utilizando un sistema con un convertidor de frecuencia (con su placa de montaje), un motor y cables de motor apantallados.

Tipo de filtro (interno)	Tensión de alimentación / potencia nominal		Clase A2 / Norma EN 55011		Clase A1 / Norma EN 55011		Clase B / Norma EN 55011		
	3 × 380-480 V	3 × 200-240 V	1 × 200-240 V	Conducida	Radiada	Conducida	Radiada	Conducida	Radiada
	0,37-22 kW (0,5-30 CV)	-	-	25 m (82 ft)	Sí ¹⁾	-	-	-	-
Filtro A2	-	0,37-4 kW (0,5-5,4 CV)	-	25 m (82 ft)	Sí ¹⁾	-	-	-	-
			0,37-2,2 kW (0,5-3 CV)	-	-	-	-	-	-
	0,37-7,5 kW (0,5-10 CV)	-	-	25 m (82 ft)	Sí ¹⁾	25 m (82 ft)	Sí	-	-
Filtro A1	11-22 kW (15-30 CV)	-	-	50 m (164 ft)	Sí ¹⁾	50 m (164 ft)	Sí	-	-
	-	-	0,37-2,2 kW (0,5-3 CV)	40 m (131 ft)	Sí ¹⁾	40 m (131 ft)	Sí	15 m (49,2 ft)	-
Filtro A2	0,37-22 kW (0,5-30 CV)	-	-	-	-	-	-	-	-
Tornillo CEM	-	0,37-4 kW (0,5-5,4 CV)	-	-	-	-	-	-	-
retirado ²⁾	-	-	0,37-2,2 kW (0,5-3 CV)	-	-	-	-	-	-
Filtro A1	0,37-7,5 kW (0,5-10 CV)	-	-	5 m (16,4 ft)	Sí ¹⁾	-	-	-	-
Tornillo CEM	11-22 kW (15-30 CV)	-	-	5 m (16,4 ft)	Sí ¹⁾	-	-	-	-
retirado ²⁾	-	-	0,37-2,2 kW (0,5-3 CV)	5 m (16,4 ft)	Sí ¹⁾	-	-	-	-

Tabla 2.13 Emisión CEM (tipo de filtro: interno)

Los resultados de las pruebas de la *Tabla 2.14* se obtuvieron utilizando un sistema con un convertidor de frecuencia (con placa de montaje), un filtro externo, un motor y cables de motor apantallados. El convertidor de frecuencia trifásico de 380-480 V debe incluir un filtro A1 interno.

¹⁾ El rango de frecuencia de 150 kHz a 30 MHz no está armonizado entre la norma CEI/EN 61800-3 y la norma EN 55011 y no se incluye obligatoriamente.

²⁾ Baja corriente de fuga a tierra. Compatible para funcionar en redes ELCB/IT.

Tipo de filtro (externo)				Clase A2 / Norma EN 55011		Clase A1 / Norma EN 55011		Clase B / Norma EN 55011	
	3 × 380-480 V	3 × 200-240 V	1 × 200-240 V	Conducida	Radiada	Conducida	Radiada	Conducida	Radiada
	0,37-22 kW (0,5-30 CV)	-	-	100 m (328 ft)	Sí ¹⁾	100 m (328 ft)	Sí	25 m (82 ft)	-
Filtro de CEM	-	0,37-4 kW (0,5-5,4 CV)	-	-	-	-	-	-	-
	-	_	0,37-2,2 kW (0,5-3 CV)	100 m (328 ft)	Sí ¹⁾	100 m (328 ft)	Sí	40 m (131 ft)	-
	0,37-7,5 kW (0,5-10 CV)	_	-	-	-	-	-	-	-
Filtro	11-22 kW (15-30 CV)	_	-	150 m (492 ft)	Sí ¹⁾	40 m (131 ft)	Sí	-	-
dU/dt	-	0,37-4 kW (0,5-5,4 CV)	-	-	-	-	-	-	-
	-	-	0,37-2,2 kW (0,5-3 CV)	-	_	-	-	-	-
	0,37-7,5 kW (0,5-10 CV)	_	-	50 m (164 ft)	Sí ¹⁾	50 m (164 ft)	Sí	-	-
	11-15 kW (15-20 CV)	-	-	150 m (492 ft)	Sí ¹⁾	50 m (164 ft)	Sí	-	-
Filtro senoidal	18,5-22 kW (25-30 CV)	-	-	150 m (492 ft)	Sí ¹⁾	100 m (328 ft)	Sí	-	-
	-	0,37-4 kW (0,5-5,4 CV)	-	-	-	-	-	-	-
	-	-	0,37-2,2 kW (0,5-3 CV)	50 m (164 ft)	Sí ¹⁾	50 m (164 ft)	Sí	-	-
	0,37-15 kW (0,5-20 CV)	-	-	150 m (492 ft)	Sí ¹⁾	100 m (328 ft)	Sí	_	-
Filtro de CEM+	18,5-22 kW (25-30 CV)	_	-	-	-	-	-	_	-
filtro senoidal	-	0,37-4 kW (0,5-5,4 CV)	-	-	-	-	-	_	-
	-	-	0,37-2,2 kW (0,5-3 CV)	150 m (492 ft)	Sí ¹⁾	100 m (328 ft)	Sí	-	-

Tabla 2.14 Emisión CEM (tipo de filtro: externo)

1) El rango de frecuencia de 150 kHz a 30 MHz no está armonizado entre la norma CEI/EN 61800-3 y la norma EN 55011 y no se incluye obligatoriamente.

2.6.3 Inmunidad CEM

El VLT[®] Midi Drive FC 280 cumple con los requisitos del entorno industrial, que son más exigentes que los del entorno doméstico y de oficina. Por consiguiente, el FC 280 también cumple los requisitos mínimos de los entornos domésticos y de oficina, con un amplio margen de seguridad.

Para documentar la inmunidad ante transitorios de ráfagas provocados por fenómenos eléctricos, se han realizado las siguientes pruebas de inmunidad en un sistema compuesto por:

- Un convertidor de frecuencia (con opciones cuando corresponda).
- Un cable de control apantallado.
- Un cuadro de mandos con potenciómetro, cable de motor y motor.

Las pruebas se realizaron de acuerdo con las siguientes normas básicas:

- EN 61000-4-2 (CEI 61000-4-2) Descargas electrostáticas (ESD): simulación de descargas electrostáticas de seres humanos.
- EN 61000-4-3 (CEI 61000-4-3) Inmunidad radiada: simulación modulada en amplitud de los efectos producidos por equipos de radar y de comunicación por radio, así como por equipos de comunicaciones móviles.
- EN 61000-4-4 (CEI 61000-4-4) Transitorios de conexión/desconexión: simulación de la interferencia causada por el acoplamiento de un contactor, un relé o un dispositivo similar.
- EN 61000-4-5 (CEI 61000-4-5) Transitorios de sobretensión: simulación de transitorios causados, por ejemplo, por la caída de rayos cerca de las instalaciones.
- EN 61000-4-6 (CEI 61000-4-6) Inmunidad conducida: simulación del efecto del equipo transmisor de radio conectado a cables de conexión.

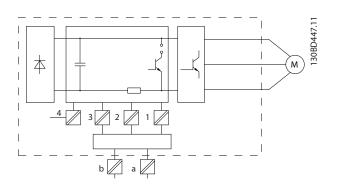
El FC 280 cumple la norma CEI 61800-3. Consulte Tabla 2.15 para obtener más información.

Norma de producto	61800-3								
Prueba	ESD	Inmunidad radiada	Ráfaga	Sobretensión	Inmunidad conducida				
Criterios de aceptación	В	В	В	A	Α				
Cable de red –		- 2 kV CN		2 kV/2 Ω DM (modo diferencial, MD) 2 kV/12 Ω CM (modo común: MC)	10 V _{RMS}				
Cable de motor	-	-	4 kV CCC	-	10 V _{RMS}				
Cable de freno	-	-	4 kV CCC	-	10 V _{RMS}				
Cable de carga compartida	_	-	4 kV CCC	-	10 V _{RMS}				
Cable de relé	_	-	4 kV CCC	-	10 V _{RMS}				
Cable de control	-	-	Longitud >2 m (6,6 ft) 1 kV CCC	Sin apantallar: 1 kV/42 Ω CM (modo común: MC)	10 V _{RMS}				
Cable estándar/de fieldbus	-	-	Longitud >2 m (6,6 ft) 1 kV CCC	Sin apantallar: 1 kV/42 Ω CM (modo común: MC)	10 V _{RMS}				
Cable del LCP	-	-	Longitud >2 m (6,6 ft) 1 kV CCC	-	10 V _{RMS}				
Protección 4 kV CD 8 kV AD		10 V/m	-	-	-				
Definiciones									
CD: descarga por contacto AD: Descarga por el aire		DM: Modo difer	(- /	CN: inyección directa mediante red de acoplamiento CCC: inyección mediante abrazadera de acoplamiento capacitivo					

Tabla 2.15 Inmunidad CEM

2.7 Aislamiento galvánico

La PELV ofrece protección mediante una tensión muy baja. Se considera garantizada la protección contra descargas eléctricas cuando la fuente de alimentación eléctrica es de tipo PELV y la instalación se realiza de acuerdo con las reglamentaciones locales o nacionales sobre equipos PELV.


Todos los terminales de control y de relé 01-03 cumplen con los requisitos de PELV (protección de muy baja tensión). Esto no se aplica a la conexión a tierra en triángulo por encima de 400 V.

El aislamiento galvánico (garantizado) se consigue cumpliendo los requisitos relativos a un mayor aislamiento y proporcionando las distancias necesarias en los circuitos. Estos requisitos se describen en la norma EN 61800-5-1.

Los componentes que constituyen el aislamiento eléctrico, como se muestra en la *llustración 2.28*, también se ajustan a los requisitos de aislamiento superior y a las pruebas descritas en la norma EN 61800-5-1.

El aislamiento galvánico PELV puede mostrarse en 3 ubicaciones (consulte la *llustración 2.28*):

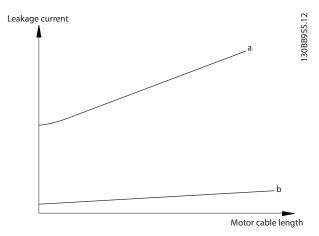
Para mantener el estado PELV, todas las conexiones realizadas con los terminales de control deben ser PELV; por ejemplo, el termistor debe disponer de un aislamiento reforzado/doble.

- 1 Fuente de alimentación (SMPS) para cartucho de control
- 2 Comunicación entre tarjeta de potencia y cartucho de control
- 3 Aislamiento entre las entradas STO y el circuito IGBT
- 4 Relé del cliente

Ilustración 2.28 Aislamiento galvánico

El aislamiento galvánico funcional (a y b en la *llustración 2.28*) funciona como opción de copia de seguridad de 24 V y para la interfaz del bus estándar RS485.

AADVERTENCIA


Antes de tocar cualquiera de los componentes eléctricos, asegúrese de que se hayan desconectado las demás entradas de tensión, como la carga compartida (enlace del circuito intermedio de CC) y la conexión del motor para energía regenerativa. Respete el tiempo de descarga indicado en el capítulo «Seguridad» de la Guía de funcionamiento del VLT® Midi Drive FC 280. Si no se siguen estas recomendaciones, se puede producir la muerte o lesiones graves.

2.8 Corriente de fuga a tierra

Siga las normas locales y nacionales sobre la conexión protectora a tierra de equipos con una corriente de fuga >3.5 mA.

La tecnología del convertidor de frecuencia implica una conmutación de alta frecuencia con alta potencia. Esta conmutación genera una corriente de fuga en la conexión a tierra. Es posible que una intensidad a tierra en los terminales de potencia de salida del convertidor de frecuencia contenga un componente de CC que pueda cargar los condensadores de filtro y provocar una intensidad a tierra transitoria.

La corriente de fuga a tierra está compuesta por varias contribuciones y depende de las diversas configuraciones del sistema, incluidos el filtro RFI, los cables del motor apantallados y la potencia del convertidor de frecuencia.

llustración 2.29 Influencia de la longitud del cable y la magnitud de la potencia en la corriente de fuga, $P_a > P_b$.

La corriente de fuga también depende de la distorsión de la línea.

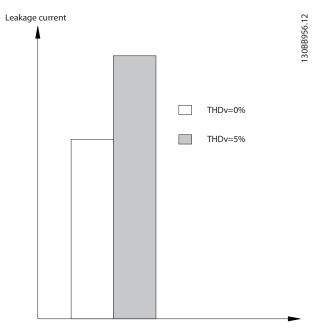


Ilustración 2.30 Influencia de la distorsión de la línea en la corriente de fuga

AVISO!

Una corriente de fuga alta puede hacer que los RCD se desconecten. Para evitar este problema, retire el tornillo RFI cuando se esté cargado un filtro.

La norma EN/CEI 61800-5-1 (estándar de producto de sistemas Power Drive) requiere una atención especial si la corriente de fuga supera los 3,5 mA. La conexión a tierra debe reforzarse de una de las siguientes maneras:

- Cable de conexión a toma de tierra (terminal 95) de 10 mm² (8 AWG), como mínimo.
- Dos cables de conexión a tierra independientes que cumplan con las normas de dimensionamiento.

Consulte la norma EN/CEI 61800-5-1 para obtener más información.

Uso de RCD

En caso de que se usen dispositivos de corriente diferencial (RCD), llamados también disyuntores de fuga a tierra (ELCB), habrá que cumplir las siguientes indicaciones:

- Solo deben utilizarse RCD de tipo B capaces de detectar corrientes de CA y de CC.
- Utilice RCD con demora del arranque para evitar fallos causados por las intensidades a tierra de los transitorios.

 La dimensión de los RCD debe ser conforme a la configuración de sistema y las consideraciones medioambientales.

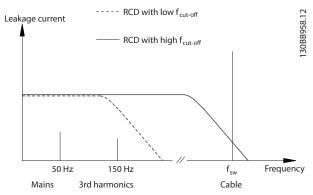


Ilustración 2.31 Contribuciones principales a la corriente de fuga

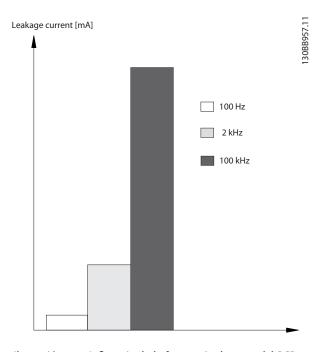


Ilustración 2.32 Influencia de la frecuencia de corte del RCD en la respuesta/medición

Para obtener más detalles, consulte la *Nota sobre la aplicación RCD*.

2.9 Funciones de freno

2.9.1 Freno de retención mecánico

Un freno de retención mecánico montado directamente en el eje del motor realiza generalmente un frenado estático.

AVISO!

Cuando el freno de retención se incluye en una cadena de seguridad, un convertidor de frecuencia no puede proporcionar un control seguro de un freno mecánico. Incluya un sistema de circuitos redundante para el control de freno en la instalación general.

2.9.2 Frenado dinámico

El frenado dinámico se establece por:

- Resistencia de frenado: un IGBT del freno mantiene la sobretensión bajo un umbral determinado dirigiendo la energía del freno desde el motor a la resistencia de frenado conectada (parámetro 2-10 Brake Function = [1] Freno con resistencia).
 Ajuste el umbral definido en el parámetro 2-14 Brake voltage reduce, con un intervalo de 70 V para 3 x 380-480 V.
- Freno de CA: La energía del freno se distribuye en el motor mediante la modificación de las condiciones de pérdida del motor. La función de freno de CA no puede utilizarse en aplicaciones con alta frecuencia de reseteo, ya que esto sobrecalienta el motor (parámetro 2-10 Brake Function = [2] Frenado de CA).
- Freno de CC: una intensidad de CC sobremodulada añadida a la intensidad de CA funciona como un freno de corriente parásita (parámetro 2-02 DC Braking Time±0 s).

2.9.3 Selección de resistencias de frenado

Para gestionar mayores demandas debidas a un frenado generador, es necesaria una resistencia de frenado. El uso de una resistencia de frenado garantiza que el calor sea absorbido por esta y no por el convertidor de frecuencia. Para obtener más información, consulte la *Guía de diseño de VLT® Brake Resistor MCE 101*.

Si no se conoce la cantidad de energía cinética transferida a la resistencia en cada periodo de frenado, calcule la potencia media a partir del tiempo de ciclo y del tiempo de frenado. El ciclo de trabajo intermitente de la resistencia es un indicador del ciclo de trabajo con el que funciona la misma. *llustración 2.33* muestra un ciclo de frenado típico.

El ciclo de trabajo intermitente de la resistencia se calcula como se indica a continuación:

Ciclo de trabajo = t_b/T

t_b es el tiempo de frenado en segundos.T = tiempo de ciclo en segundos.

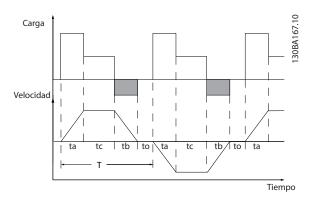


Ilustración 2.33 Ciclo de frenado típico

Gama de potencias: 0,37-22 kW (0,5-30 CV) 3 × 380-480 V						
0,37-3,7 kW (0,5-5 CV) 3 × 200-240 V						
Tiempo de ciclo (s)	120					
Ciclo de trabajo de frenado al 100 % del par	Continua					
Ciclo de trabajo de frenado con exceso de par (150/160 %)	40%					

Tabla 2.16 Frenado en nivel alto de par de sobrecarga

Danfoss ofrece resistencias de frenado con ciclos de trabajo del 10 % y del 40 %. Si se aplica un ciclo de trabajo del 10 %, las resistencias de frenado son capaces de absorber potencia de frenado durante un 10 % del tiempo de ciclo. El restante 90 % del tiempo de ciclo se utiliza para disipar el exceso de calor.

AVISO!

Asegúrese de que la resistencia esté diseñada para manejar el tiempo de frenado requerido.

La carga máxima admisible en la resistencia de frenado se establece como una potencia pico en un determinado ciclo de trabajo intermitente, y puede calcularse como:

Cálculo de la resistencia de frenado

$$R_{\rm br}\left[\Omega\right] = \frac{U_{\rm cc, \, br}^2 \times 0.83}{P_{\rm cc, \, br}}$$

donde

 $P_{pico} = P_{motor} \times M_{br} \text{ [\%]} \times \eta_{motor} \times \eta_{VLT}[W]$

2

Como se muestra, la resistencia de frenado depende de la tensión del enlace de CC (U_{cc}).

Tamaño	Freno activo	Advertencia	Desconexión
	U _{cc, br}	antes de	
		desconexión	
FC 280	770 V	800 V	800 V
3 × 380-480 V	770 V	800 V	800 V
FC 280	390 V	410 V	410 V
3 × 200-240 V	390 V	410 V	410 V

Tabla 2.17 Umbral de la resistencia de frenado

El umbral puede ajustarse en el *parámetro 2-14 Brake* voltage reduce, en un intervalo de 70 V.

AVISO!

Cuanto mayor sea el valor de reducción, más rápida será la reacción a una sobrecarga del generador. Solo deberá utilizarse si hay algún problema de sobretensión en la tensión del enlace de CC.

AVISO!

Asegúrese de que la resistencia de frenado pueda admitir una tensión de 410 V u 800 V.

Danfoss recomienda calcular la resistencia de frenado R_{rec} conforme a la siguiente fórmula. La resistencia de frenado recomendada garantiza que el convertidor de frecuencia sea capaz de frenar con el par máximo de frenado ($M_{br[\%]}$) del 160 %.

$$R_{rec}\left[\Omega\right] = \; \frac{U_{cc}^2 \, x \, 100x \, 0.83}{P_{motor} \, x \, M_{br\left(\frac{9}{10}\right)} \, x \eta_{vLT} \, x \, \eta_{motor}} \label{eq:rec}$$

η_{motor} se encuentra normalmente en 0,80 (≤7,5 kW [10 CV]); 0,85 (11-22 kW [15-30 CV])

ηνιτ se encuentra normalmente en 0,97

Para el FC 280, la R_{rec} a un par de frenado del 160 % se escribe de la siguiente manera:

$$480V: R_{rec} = \ \frac{396349}{P_{motor}} \left[\Omega\right]^{1)}$$

$$480V: R_{rec} = \frac{397903}{P_{motor}} \left[\Omega \right]^{2)}$$

1) Para convertidores de frecuencia con salida de eje \leq 7,5 kW (10 CV).

2) En convertidores de frecuencia con salida de eje de 11-22 kW (15-30 CV).

AVISO!

La resistencia de frenado no debería ser superior al valor recomendado por Danfoss. En resistencias de frenado con un valor en ohmios más alto, tal vez no se consiga el par de frenado del 160 % porque el convertidor de frecuencia podría desconectarse por motivos de seguridad.

La resistencia debe ser mayor que Rmín.

AVISO!

De producirse un cortocircuito en el transistor de freno, evite la disipación de potencia en la resistencia de frenado utilizando un contactor o conmutador de alimentación para desconectar de la red el convertidor de frecuencia. El contactor se puede controlar con el convertidor de frecuencia.

AVISO!

No toque nunca la resistencia de frenado, ya que puede calentarse durante el frenado. Para evitar el riesgo de incendio, coloque la resistencia de frenado en un entorno seguro.

2.9.4 Control con Función de freno

El freno está protegido contra cortocircuitos en la resistencia de frenado y el transistor de freno está controlado para garantizar la detección de cortocircuitos en el transistor. Puede utilizarse una salida digital / de relé para proteger la resistencia de frenado de sobrecargas causadas por fallos en el convertidor de frecuencia. Además, el freno permite leer la potencia instantánea y la potencia media de los últimos 120 segundos. El freno también puede controlar la potencia y asegurar que no se supera el límite seleccionado en el *parámetro 2-12 Brake Power Limit (kW)*.

AVISO!

El control de la potencia de frenado no es una función de seguridad; Se necesita un conmutador térmico para evitar que la potencia de frenado supere el límite. El circuito de resistencia de frenado no tiene protección de fuga a tierra.

El control de sobretensión (OVC) (resistencia de frenado exclusiva) puede seleccionarse como función de freno alternativa en el *parámetro 2-17 Over-voltage Control*. Esta función está activada para todas las unidades. La función asegura que se pueda evitar una desconexión si aumenta la tensión del enlace de CC. Esto se realiza incrementando la frecuencia de salida para limitar la tensión del enlace de CC. Es una función útil, por ejemplo, si el tiempo de deceleración es demasiado corto para evitar la desconexión del convertidor de frecuencia. En esta situación, se amplía el tiempo de deceleración.

AVISO!

El OVC puede activarse cuando está funcionando un motor PM (cuando el *parámetro 1-10 Motor Construction* está ajustado en [1] PM non-salient SPM).

2.10 Aislamiento del motor

El diseño moderno de los motores para su uso con convertidores de frecuencia presenta un elevado grado de aislamiento para responder a la nueva generación de IGBT de gran eficacia con una dU/dt elevada. Para actualizar motores antiguos, es necesario confirmar el aislamiento del motor o mitigarlo con un filtro dU/dt o incluso un filtro senoidal, si fuera necesario.

2.10.1 Filtros senoidales

Cuando un convertidor de frecuencia controla un motor, se oyen ruidos de resonancias procedentes del motor. Este ruido, resultado del diseño del motor, aparece cada vez que se activa uno de los conmutadores del inversor en el convertidor de frecuencia. En este aspecto, la frecuencia del ruido de resonancia corresponde a la frecuencia de conmutación del convertidor de frecuencia.

Danfoss suministra un filtro senoidal para amortiguar el ruido acústico del motor.

El filtro reduce el tiempo de aceleración de la tensión, la tensión pico de carga U_{PICO} y la corriente de rizado ΔI al motor, lo que significa que la corriente y la tensión se vuelven casi senoidales. Por ello, el ruido acústico del motor se reduce al mínimo.

La corriente de rizado en las bobinas del filtro senoidal también produce algo de ruido. Resuelva este problema integrando el filtro en un alojamiento o similar.

2.10.2 Filtros dU/dt

Danfoss suministra filtros dU/dt, que son filtros de paso bajo de modo diferencial que reducen las tensiones pico entre fases en el terminal del motor y reducen el tiempo de subida a un nivel que rebaja la presión sobre el aislamiento de los bobinados del motor. Esto es un problema, especialmente en cables de motor cortos.

En comparación con los filtros senoidales (consulte el *capétulo 2.10.1 Filtros senoidales*), los filtros dU/dt tienen una frecuencia de corte por encima de la frecuencia de conmutación.

2.11 Controlador Smart Logic

El Smart Logic Control (SLC) es una secuencia de acciones definidas por el usuario (consulte el *parámetro 13-52 Acción Controlador SL* [x]) y ejecutadas por el SLC cuando el evento asociado definido por el usuario (consulte el *parámetro 13-51 Evento Controlador SL* [x]) es evaluado como verdadero por el SLC.

La condición para que se produzca un evento puede ser un estado determinado o que la salida de una regla lógica o un operando comparador pase a ser verdadero. Esto da lugar a una acción asociada, como se muestra en la *llustración 2.34*.

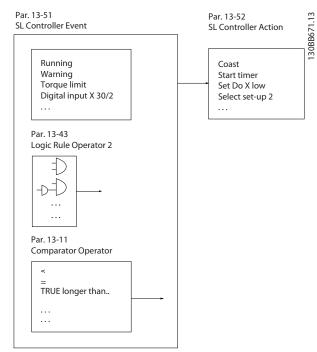


Ilustración 2.34 Acción asociada

Los eventos y las acciones están numerados y vinculados en parejas (estados). Esto significa que cuando se complete el evento [0] (cuando alcance el valor verdadero), se ejecutará la acción [0]. Después de esto, se evaluarán las condiciones del evento [1], y si se consideran verdaderas, se ejecutará la acción [1], y así sucesivamente. En cada momento solo se evalúa un evento. Si un evento se evalúa como falso, no sucede nada (en el SLC) durante el intervalo de exploración actual y no se evalúan otros eventos. Cuando el SLC se inicia, evalúa el evento [0] (y solo el evento [0]) en cada intervalo de exploración. El SLC ejecuta una acción [0] e inicia la evaluación de otro evento [1] solo si el evento [0] se considera verdadero. Se pueden programar de 1 a 20 eventos y acciones.

Cuando se haya ejecutado el último evento o acción, la secuencia volverá a comenzar desde el evento o acción [0]. En la *llustración 2.35* se muestra un ejemplo con tres eventos o acciones:

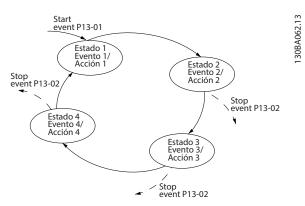


Ilustración 2.35 Secuencia con tres eventos o acciones

Comparadores

Los comparadores se usan para comparar variables continuas (por ejemplo, la frecuencia o intensidad de salida y la entrada analógica) con valores fijos predeterminados.

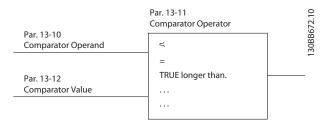


Ilustración 2.36 Comparadores

Reglas lógicas

Se pueden combinar hasta tres entradas booleanas (entradas verdadero/falso) de temporizadores, comparadores, entradas digitales, bits de estado y eventos mediante los operadores lógicos Y, O y NO.

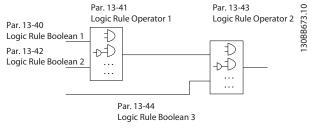


Ilustración 2.37 Reglas lógicas

2.12 Condiciones de funcionamiento extremas

Cortocircuito (entre fases del motor)

El convertidor de frecuencia está protegido contra cortocircuitos mediante la medición de la intensidad en cada una de las tres fases del motor o en el enlace de CC. Un cortocircuito entre dos fases de salida provoca una sobreintensidad en el convertidor de frecuencia. El convertidor de frecuencia se desconecta individualmente

cuando la corriente de cortocircuito sobrepasa el valor permitido (*alarma 16, Trip lock*).

Conmutación en la salida

La conmutación a la salida entre el motor y el convertidor de frecuencia está totalmente permitida y no dañará el convertidor de frecuencia. Sin embargo, es posible que aparezcan mensajes de fallo.

Sobretensión generada por el motor

La tensión del enlace de CC aumenta cuando el motor actúa como generador. Esto ocurre en los siguientes casos:

- La carga acciona al motor (a una frecuencia de salida constante del convertidor de frecuencia).
- Si el momento de inercia es alto durante la desaceleración (rampa de deceleración), la fricción es baja y el tiempo de deceleración es demasiado corto para que la energía sea disipada como una pérdida en el convertidor de frecuencia, el motor y la instalación.
- Un ajuste de compensación de deslizamiento incorrecto puede provocar una tensión de enlace de CC más elevada.

La unidad de control intenta corregir la rampa, si es posible (parámetro 2-17 Control de sobretensión.
El convertidor de frecuencia se apaga para proteger los transistores y los condensadores del enlace de CC cuando se alcanza un determinado nivel de tensión.
Para seleccionar el método utilizado para controlar el nivel de tensión del enlace de CC, consulte el parámetro 2-10 Función de freno y el parámetro 2-17 Control

Corte de red

de sobretensión.

Durante un corte de red, el convertidor de frecuencia sigue funcionando hasta que la tensión del enlace del bus de CC desciende por debajo del nivel mínimo de parada, que es:

- 314 V para 3 × 380-480 V.
- 202 V para 3 × 200-240 V.
- 225 V para 1 × 200-240 V.

La tensión de red antes del corte y la carga del motor determinan el tiempo necesario para la parada de inercia del inversor.

Sobrecarga estática en modo VVC+

Cuando el convertidor de frecuencia está sobrecargado, se alcanza el límite de par del *parámetro 4-16 Torque Limit Motor Mode* o del *parámetro 4-17 Torque Limit Generator Mode* y la unidad de control reduce la frecuencia de salida para reducir la carga.

Si la sobrecarga es excesiva, puede producirse una sobrecorriente que provoque una desconexión del convertidor de frecuencia después de unos 5-10 segundos.

El tiempo de funcionamiento dentro del límite de par se limita (0-60 s) en el *parámetro 14-25 Trip Delay at Torque Limit*.

2.12.1 Protección térmica motor

Para proteger la aplicación de daños graves, el VLT® Midi Drive FC 280 presenta varias funciones específicas.

Límite de par

El límite de par protege el motor de sobrecargas, independientemente de la velocidad. El límite de par se controla en el parámetro 4-16 Torque Limit Motor Mode y el parámetro 4-17 Torque Limit Generator Mode. El Parámetro 14-25 Trip Delay at Torque Limit controla el intervalo de tiempo anterior a la emisión de la advertencia de límite de par.

Límite intensidad

El *Parámetro 4-18 Current Limit* controla el límite de intensidad y el *parámetro 14-24 Trip Delay at Current Limit* controla el intervalo de tiempo anterior a la emisión de la advertencia de límite de intensidad.

Límite de velocidad mínima

El *Parámetro 4-12 Motor Speed Low Limit [Hz]* establece la velocidad de salida mínima que puede suministrar el convertidor de frecuencia.

Límite máximo de velocidad

El Parámetro 4-14 Motor Speed High Limit [Hz] o el parámetro 4-19 Max Output Frequency establecen la velocidad de salida máxima que puede suministrar el convertidor de frecuencia.

ETR (relé termoelectrónico)

La función ETR del convertidor de frecuencia mide la intensidad, la velocidad y el tiempo reales para calcular la temperatura del motor. Esta función también protege al motor de sobrecalentamientos (advertencia o desconexión). También hay disponible una entrada externa de termistor. ETR es un dispositivo electrónico que simula un relé bimetal basado en mediciones internas. Las características se muestran en la *llustración 2.38*.



Ilustración 2.38 ETR

el eje X muestra la relación entre los valores I_{motor} e I_{motor} nominal. El eje Y muestra el intervalo en segundos que transcurre antes de que el ETR se corte y desconecte el convertidor de frecuencia. Las curvas muestran la velocidad nominal característica, al doble de la velocidad nominal y al 0,2 x de la velocidad nominal.

A una velocidad inferior, el ETR se desconecta con un calentamiento inferior debido a una menor refrigeración del motor. De ese modo, el motor queda protegido frente a un posible sobrecalentamiento, incluso a baja velocidad. La función ETR calcula la temperatura del motor en función de la intensidad y la velocidad reales. La temperatura calculada puede verse como un parámetro de

lectura de datos en el parámetro 16-18 Motor Thermal.

3 Ejemplos de aplicaciones

3.1 Introducción

3.1.1 Conexión del encoder

El objetivo de esta guía es facilitar la configuración de la conexión del encoder al convertidor de frecuencia. Antes de configurar el encoder, se muestran los ajustes básicos para un sistema de control de velocidad de lazo cerrado.

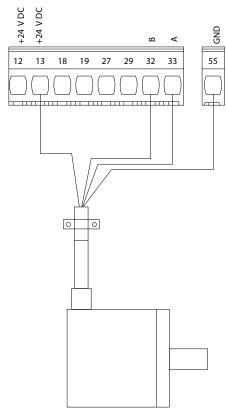
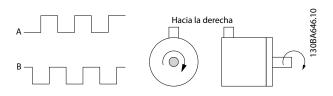



Ilustración 3.1 Encoder 24 V

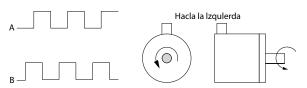


Ilustración 3.2 Codificador incremental de 24 V con una longitud máxima del cable de 5 m (16,4 ft)

3.1.2 Dirección de encoder

El orden de entrada de los pulsos en el convertidor de frecuencia determina el sentido del encoder.

El sentido horario significa que el canal A se encuentra 90 grados eléctricos antes que el canal B.

El sentido antihorario significa que el canal B se encuentra 90 grados eléctricos antes que el A.

El sentido se determina mirando hacia el extremo del eje.

3.1.3 Sistema de convertidor de lazo cerrado

Un sistema de convertidor consta normalmente de más elementos, como:

- Motor.
- Freno (caja de engranajes, freno mecánico).
- Convertidor de frecuencia.
- Encoder como sistema de realimentación.
- Resistencia de frenado para frenado dinámico.
- Transmisión.
- Carga.

Las aplicaciones que necesitan un control de freno mecánico suelen requerir una resistencia de frenado.

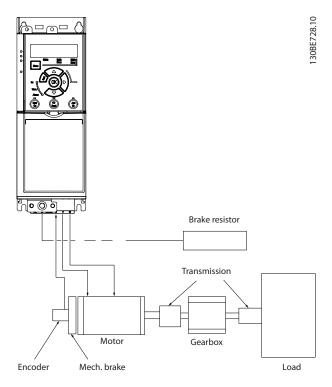


Ilustración 3.3 Configuración básica para el control de velocidad de lazo cerrado

3.2 Ejemplos de aplicaciones

3.2.1 AMA

				Parámetros		
			10	Función	Ajuste	
FC			30BF096.10	Parámetro 1-29		
+24 V	12 🗘)BFC	Adaptación	[1] Act. AMA	
+24 V	13 👇		130	automática del	completo	
DIN	18 👇			motor (AMA)	Completo	
DIN	19 👇			` ,		
DIN	27 0		J	Parámetro 5-12		
DIN	29 🖒			Terminal 27	*[2] Inercia	
DIN	32 0			Entrada digital		
DIN	33 🖯			* = Valor por de	fecto	
				Notas/comentar	ios: ajuste el	
				grupo de paráme	etros 1-2* Motor	
+10 V	50 0			Data conforme a	las especifica-	
A IN	53 👇			ciones del moto	r.	
A IN	54 👇			AVISO!		
СОМ	55 🖯			Si los terminal	es 13 y 27	
A OUT	42 🗘			no están cone	ctados,	
				ajuste el		
				parámetro 5-1.	2 Terminal 27	
				Digital Input c		
				función.		

Tabla 3.1 AMA con T27 conectado

3.2.2 Velocidad

			Parámetros		
		11	Función	Ajuste	
FC		130BE204.11	Parámetro 6-10		
+24 V	12¢		Terminal 53	0,07 V*	
+24 V	13 0	13	escala baja V		
DIN	18¢		Parámetro 6-11		
DIN	19¢		Terminal 53	10 V*	
DIN	27¢		escala alta V		
DIN	290		Parámetro 6-14		
D IN	32¢		Term. 53 valor	0	
II D IN	330		bajo ref./realim		
			Parámetro 6-15		
 +10 V	50 C		Term. 53 valor	50	
AIN	530	+	alto ref./realim		
A IN	540		Parámetro 6-19		
СОМ	55 Ç		Terminal 53	[1] Tensión	
A OUT	42	0~10 V	mode		
		010 V	* = Valor por de	fecto	
			Notas/comentar	ios:	
	7				
			l		

Tabla 3.2 Referencia analógica de velocidad (tensión)

			Parám	etros
		10	Función	Ajuste
FC] 308F097.10	Parámetro 6-22	
+24 V	120	085	Terminal 54	4 mA*
+24 V	13 -		escala baja mA	
DIN	180		Parámetro 6-23	
DIN	190		Terminal 54	20 mA*
DIN	27 0		escala alta mA	
DIN	290		Parámetro 6-24	
DIN	320		Term. 54 valor	0
DIN	33 🗘		bajo ref./realim	
			Parámetro 6-25	
+10 V A IN	50 ¢	+,	Term. 54 valor alto ref./realim	50
A IN	540	,	Parámetro 6-29	
сом	55 🗘		Modo terminal	[0] Intensidad
A OUT	420	4 - 20mA	54	
		4 201170	* = Valor por de	fecto
			Notas/comentar	ios:

Tabla 3.3 Referencia analógica de velocidad (corriente)

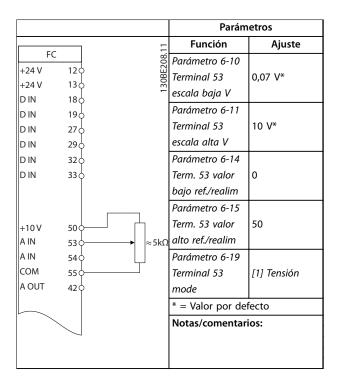


Tabla 3.4 Velocidad de referencia (con un potenciómetro manual)

			Parámetros		
FC		10	Función	Ajuste	
+24 V	120	30BF100.10	Parámetro 5-10		
+24 V	130	30BF	Terminal 18	*[8] Arranque	
DIN	180	,,,	Entrada digital		
DIN	190		Parámetro 5-12	[19] Mantener	
DIN	27 0		Terminal 27	referencia	
DIN	29		Entrada digital		
DIN	320		Parámetro 5-13	[21]	
DIN	33 🖯		Terminal 29	Aceleración	
			Entrada digital		
			Parámetro 5-14	[22] Decele-	
+10 V	50 🗘		Terminal 32	ración	
A IN	53 🗘		entrada digital		
A IN	54 0		* = Valor por de	fecto	
СОМ	55 0		Notas/comentar	ios:	
A OUT	42 0				
	7				

Tabla 3.5 Aceleración/desaceleración

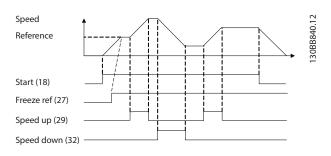


Ilustración 3.4 Aceleración/desaceleración

3.2.3 Arranque/parada

			Parám	etros
FC		10	Función	Ajuste
+24 V +24 V D IN	12¢ 13¢— 18¢—	130BF098.1	Parámetro 5-10 Terminal 18 Entrada digital	[8] Arranque
D IN D IN D IN	19 \(,	Parámetro 5-11 Terminal 19 entrada digital	*[10] Cambio de sentido
DIN	33 0-		Parámetro 5-12 Terminal 27 Entrada digital	[0] Sin función
+10 V A IN A IN COM A OUT	50 0 53 0 54 0 55 0 42 0		Parámetro 5-14 Terminal 32 entrada digital Parámetro 5-15 Terminal 33	[16] Ref. interna bit 0 [17] Ref. interna bit 1
			entrada digital Parámetro 3-10 Referencia interna Ref. interna 0	25%
			Ref. interna 1 Ref. interna 2 Ref. interna 3 * = Valor por de Notas/comentar	

Tabla 3.6 Arranque/parada con cambio de sentido y cuatro velocidades predeterminadas

3.2.4 Reinicio de alarma externa

Parámetros Función Ajuste Parámetro 5-11 +24 V 120 [1] Reinicio Terminal 19 +24 V 13 entrada digital DIN 180 * = Valor por defecto DIN 19 Notas/comentarios: D IN 27 DIN 290 D IN 320 D IN 33 0 +10 V 500 A IN 53 0 A IN СОМ 55 0 A OUT 42

Tabla 3.7 Reinicio de alarma externa

3.2.5 Termistor motor

AVISO!

Para cumplir los requisitos de aislamiento PELV, utilice aislamiento reforzado o doble en los termistores.

			Parám	etros
		=======================================	Función	Ajuste
FC		30BE210.11	Parámetro 1-90	[2] Descon.
+24 V	120)BE	Protección	termistor
+24 V	130	13.	térmica motor	
DIN	180		Parámetro 1-93	[1] Entrada
DIN	190		Fuente de	analógica 53
DIN	27 🖒			anaiogica 55
DIN	290		termistor	
DIN	32 👇		Parámetro 6-19	
DIN	33 👇		Terminal 53	[1] Tensión
			mode	
			* = Valor por det	fecto
+10 V	50 -	,		
A IN	53 -		Notas/comentari	ios:
A IN	540	_	si solo se necesit	a una
СОМ	55 👇		advertencia, ajus	te el
A OUT	420		parámetro 1-90 P	rotección
			<i>térmica motor</i> en	[1] Advert.
			termistor.	
	7			

Tabla 3.8 Termistor motor

3.2.6 SLC

			Parám	etros
	_	1	Función	Ajuste
FC		11.1	Parámetro 4-30	-
+24 V	120	30BE21	Función de	
+24 V	130	30E	pérdida de	[1] Advertencia
DIN	180	1	realim. del	
DIN	190		motor	
DIN	270		Parámetro 4-31	
DIN	290		Error de	50
			velocidad en	50
D IN	320		realim. del motor	
DIN	330		Parámetro 4-32	
			Tiempo lím.	
			pérdida realim.	5 s
+10 V	500		del motor	
A IN	530		Parámetro 7-00	
A IN	540		Fuente de	[1] Encoder 24
COM	550		realim. PID de	V
A OUT			veloc.	
A 001	420		Parámetro 5-70	
			Term. 32/33	1024*
			resolución	
	010		encoder Parámetro 13-0	
	02♦		0 Modo	[1] Activado
	03♦——▶		Controlador SL	[1] Activado
			Parámetro 13-0	
			1 Evento	[19]
			arranque	Advertencia
			Parámetro 13-0	[44] Botón
			2 Evento parada	Reset
			Parámetro 13-1	[21] Número
			0 Operando	advert.
			comparador	daver.
			Parámetro 13-1	
			1 Operador	*[1] ≈
			comparador	
			Parámetro 13-1 2 Valor	61
			comparador	01
			Parámetro 13-5	
			1 Evento	[22]
			Controlador SL	Comparador 0
			Parámetro 13-5	
			2 Acción	[32] Aj. sal. dig.
			Controlador SL	A baja
			Controlador SL	н ойји

Paráme	tros
Función	Ajuste
Parámetro 5-40 R	[80] Salida
elé de función	digital SL A
* = Valor por defe	ecto
Notas/comentario	os:
si se supera el lím	ite del
monitor de realim	entación, se
emite la <i>adverten</i>	,
feedback monitor.	
supervisa la <i>adver</i>	·
feedback monitor.	
advertencia 61, fe	
monitor, se evalúa	
verdadera, se acti	
A continuación, lo	
externos pueden	•
necesario realizar	
reparación. Si el v	
de realimentación	
inferior al límite e	
de 5 s, el converti	
frecuencia continu	
funcionando y la	
desaparece. El rele	é 1 persiste
hasta que se puls	a [Off/Reset].

Tabla 3.9 Uso de SLC para configurar un relé

4 Safe Torque Off (STO)

La función Safe Torque Off (STO) es uno de los componentes de un sistema de control de seguridad. La STO evita que la unidad genere la energía necesaria para girar el motor, garantizando así la seguridad en situaciones de emergencia.

La función STO está diseñada y homologada conforme a estos requisitos:

CEI/EN 61508: SIL2

CEI/EN 61800-5-2: SIL2

• CEI/EN 62061: SILCL de SIL2

EN ISO 13849-1: categoría 3 PL d

Para conseguir el nivel deseado de seguridad operativa, seleccione y aplique de forma adecuada los componentes del sistema de control de seguridad. Antes de utilizar la STO, realice un análisis completo de los riesgos de dicha instalación para determinar si la función STO y los niveles de seguridad son apropiados y suficientes.

Para obtener más información sobre la función de Safe Torque Off (STO), consulte el capítulo 6, «Safe Torque Off (STO)», en el *Manual de funcionamiento del VLT® Midi Drive FC 280*.

5 Instalación y ajuste de RS485

5.1 Introducción

5.1.1 Descripción general

RS485 es una interfaz de bus de dos cables compatible con la topología de red multipunto. Los nodos se pueden conectar como bus o mediante cables de derivación desde una línea de tronco común. Se pueden conectar un total de 32 nodos a un único segmento de red.

Los repetidores dividen los segmentos de la red, consulte la *llustración 5.1*.

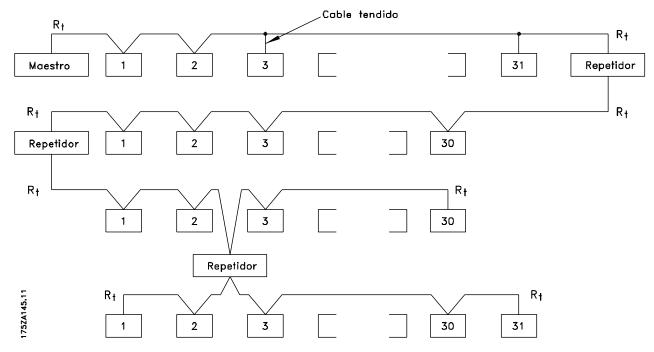


Ilustración 5.1 Interfaz de bus RS485

AVISO!

Cada repetidor funciona como un nodo dentro del segmento en el que está instalado. Cada nodo conectado en una red determinada debe tener una dirección de nodo única en todos los segmentos.

Cada segmento debe terminarse en ambos extremos, utilizando bien el conmutador de terminación (S801) del convertidor de frecuencia, o bien una red predispuesta de resistencias de terminación. Utilice siempre cable de par trenzado y apantallado (STP) para el cableado del bus y siga unas buenas prácticas de instalación.

Es importante disponer de una conexión a tierra de baja impedancia para el apantallamiento de cada nodo, incluso a frecuencias altas. De este modo, conecte una gran superficie del apantallamiento a la toma de tierra, por ejemplo, mediante una abrazadera o un prensacables

conductor. En ocasiones, será necesario utilizar cables ecualizadores de potencial para mantener el mismo potencial de masa en toda la red, especialmente en instalaciones que incluyan cables largos.

Para evitar diferencias de impedancia, utilice el mismo tipo de cable en toda la red. Cuando conecte un motor al convertidor de frecuencia, utilice siempre cable de motor apantallado.

Cable	Par trenzado apantallado (STP)
Impedancia [Ω]	120
Longitud del cable [m (ft)]	Máximo 1200 (3937) (incluidos los ramales conectables). Máximo 500 (1640) entre estaciones.

Tabla 5.1 Especificaciones del cable

5.1.2 Conexión de red

Conecte el convertidor de frecuencia a la red RS485 de la siguiente forma (consulte también la *llustración 5.2*):

- Conecte los cables de señal al terminal 68 (P+) y al terminal 69 (N-) en la placa de control principal del convertidor de frecuencia.
- Conecte el apantallamiento de cables a las abrazaderas.

AVISO!

Para reducir el ruido entre los conductores, utilice cables de par trenzado apantallados.

Ilustración 5.2 Conexión de red

5.1.3 Ajuste de hardware

Para terminar el bus RS485, utilice el interruptor terminador de la placa de control principal del convertidor de frecuencia.

Los ajustes de fábrica del interruptor están en OFF (desactivados).

5.1.4 Ajustes de parámetros para la comunicación Modbus

Parámetro	Función
Parámetro 8-30 Pro	Seleccionar el protocolo de aplicación que
tocolo	se ejecute para la interfaz RS485.
Parámetro 8-31 Dir	Ajustar la dirección del nodo.
ección	AVISO!
	El intervalo de direcciones depende
	del protocolo seleccionado en el
	parámetro 8-30 Protocolo.
Parámetro 8-32 Vel	Ajustar la velocidad en baudios.
ocidad en baudios	AVISO!
	La velocidad en baudios predeter-
	minada depende del protocolo
	seleccionado en el
	parámetro 8-30 Protocolo.

Parámetro	Función
Parámetro 8-33 Pari	Ajustar la paridad y el número de bits de
dad / Bits de	parada.
parada	AVISO!
	La selección predeterminada depende
	del protocolo seleccionado en el
	parámetro 8-30 Protocolo.
Parámetro 8-35 Ret	Especificar un tiempo mínimo de retardo
ardo respuesta mín.	entre la recepción de una petición y la
	transmisión de la respuesta. Esta función se
	utiliza para reducir el retardo de procesa-
	miento del módem.
Parámetro 8-36 Ret	Especificar un tiempo de retardo máximo
ardo respuesta	entre la transmisión de una petición y la
máx.	recepción de una respuesta.

Tabla 5.2 Ajustes de los parámetros de comunicación Modbus

5.1.5 Precauciones de compatibilidad electromagnética (CEM)

Danfoss recomienda adoptar las siguientes precauciones de compatibilidad electromagnética (CEM) para que la red RS485 funcione sin interferencias.

AVISO!

Cumpla las disposiciones nacionales y locales pertinentes, por ejemplo, las relativas a la conexión a tierra de protección. Para evitar el acoplamiento de ruido de alta frecuencia entre cables, mantenga el cable de comunicación RS485 alejado de los cables de la resistencia de frenado y del motor. Normalmente, una distancia de 200 mm (8 in) será suficiente. Mantenga la mayor distancia posible entre los cables, especialmente cuando los cables se instalen en paralelo y cubran largas distancias. Si el cruce es inevitable, el cable RS485 debe cruzar los cables de motor o de resistencia de frenado en un ángulo de 90 °.

5.2 Protocolo FC

5.2.1 Descripción general

El protocolo FC, también conocido como bus FC o bus estándar, es el fieldbus estándar de Danfoss. Define una técnica de acceso conforme al principio maestro/esclavo para las comunicaciones a través de un fieldbus. Pueden conectarse al bus un maestro y un máximo de 126 esclavos. El maestro selecciona individualmente los esclavos mediante un carácter de dirección incluido en el telegrama. Un esclavo no puede transmitir por sí mismo sin recibir previamente una petición para hacerlo, y tampoco es posible la transmisión directa de telegramas

entre esclavos. Las comunicaciones se producen en modo semidúplex.

La función de maestro no se puede transmitir a otro nodo (sistema de maestro único).

La capa física es RS485, de manera que se utiliza el puerto RS485 integrado en el convertidor de frecuencia. El protocolo FC admite varios formatos de telegrama:

- un formato breve de 8 bytes para datos de proceso,
- un formato largo de 16 bytes, que también incluye un canal de parámetros,
- un formato para textos.

5.2.2 FC con Modbus RTU

El protocolo FC proporciona acceso al código de control y a la referencia del bus del convertidor de frecuencia.

El código de control permite al maestro del Modbus controlar varias funciones importantes del convertidor de frecuencia:

- Arranque.
- Detener el convertidor de frecuencia de diversas formas:
 - Paro por inercia.
 - Parada rápida.
 - Parada por freno de CC.
 - Parada (de rampa) normal.
- Reinicio tras desconexión por avería.
- Funcionamiento a diferentes velocidades predeterminadas.
- Funcionamiento en sentido inverso.
- Cambio del ajuste activo.
- Control de los dos relés integrados en el convertidor de frecuencia.

La referencia de bus se utiliza, normalmente, para el control de velocidad. También es posible acceder a los parámetros, leer sus valores y, donde es posible, escribir valores en ellos. El acceso a los parámetros ofrece una amplia variedad de opciones de control, incluido el control del valor de consigna del convertidor de frecuencia cuando se utiliza el controlador Pl interno.

5.3 Configuración de red

Para activar el protocolo FC en el convertidor de frecuencia, ajuste los siguientes parámetros.

Parámetro	Ajuste
Parámetro 8-30 Protocolo	FC
Parámetro 8-31 Dirección	1–126
Parámetro 8-32 Velocidad en baudios	2400–115200
	Paridad par, 1 bit de
Parámetro 8-33 Paridad / Bits de parada	parada (predeter-
	minado)

Tabla 5.3 Parámetros para activar el protocolo

5.4 Estructura de formato de mensaje del protocolo FC

5.4.1 Contenido de un carácter (byte)

La transferencia de cada carácter comienza con un bit de inicio. Entonces se transfieren 8 bits de datos, que corresponden a un byte. Cada carácter está asegurado mediante un bit de paridad. Este bit se ajusta a 1 cuando alcanza la paridad. La paridad se da cuando hay un número equivalente de unos en los 8 bits de datos y en el bit de paridad en total. Un bit de parada completa un carácter, por lo que consta de 11 bits en total.

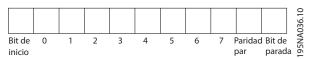


Ilustración 5.3 Contenido de un carácter

5.4.2 Estructura de telegramas

Cada telegrama tiene la siguiente estructura:

- Carácter de inicio (STX) = 02 hex
- Un byte que indica la longitud del telegrama (LGE).
- Un byte que indica la dirección del convertidor de frecuencia (ADR).

Después aparecen varios bytes de datos (en número variable según el tipo de telegrama).

Un byte de control de datos (BCC) completa el telegrama.

Ilustración 5.4 Estructura de telegramas

5.4.3 Longitud del telegrama (LGE)

La longitud del telegrama es el número de bytes de datos, más el byte de dirección ADR y el byte de control de datos BCC.

4 bytes de datos	LGE = 4 + 1 + 1 = 6 bytes
12 bytes de datos	LGE = 12 + 1 + 1 = 14 bytes
Telegramas que contienen texto	10 ¹⁾ +n bytes

Tabla 5.4 Longitud de los telegramas

1) El 10 representa los caracteres fijos, mientras que «n» es variable (dependiendo de la longitud del texto).

5.4.4 Dirección del convertidor de frecuencia (ADR)

Formato de dirección 1-126

- Bit 7 = 1 (formato de dirección 1-126 activado).
- Bit 0-6 = dirección del convertidor de frecuencia 1-126.
- Bit 0-6 = 0 transmisión.

El esclavo devuelve el byte de la dirección sin cambios al maestro en el telegrama de respuesta.

5.4.5 Byte de control de datos (BCC)

La suma de verificación (checksum) se calcula como una función XOR. Antes de que se reciba el primer byte del telegrama, la suma de verificación calculada es 0.

5.4.6 El campo de datos

La estructura de los bloques de datos depende del tipo de telegrama. Hay tres tipos de telegrama, y cada uno de ellos se aplica tanto a los telegramas de control (maestro⇒esclavo) como a los de respuesta (esclavo⇒maestro).

Los 3 tipos de telegrama son:

Bloque de proceso (PCD)

El PCD está formado por un bloque de datos de cuatro bytes (2 códigos) y contiene:

- Código de control y valor de referencia (de maestro a esclavo)
- Código de estado y frecuencia de salida actual (de esclavo a maestro)

Ilustración 5.5 Bloque de proceso

Bloque de parámetros

El bloque de parámetros se utiliza para transferir parámetros entre un maestro y un esclavo. El bloque de datos está formado por 12 bytes (6 códigos) y también contiene el bloque de proceso.

						130	BA271.10
STX LGE ADR	PKE	IND	PWE _{alto}	PWE _{baje}	PCD1	PCD2	всс

Ilustración 5.6 Bloque de parámetros

Bloque de texto

El bloque de texto se utiliza para leer o escribir textos mediante el bloque de datos.

Ilustración 5.7 Bloque de texto

5.4.7 El campo PKE

El campo PKE contiene dos subcampos:

- Orden de parámetro y respuesta (AK)
- Número de parámetro (PNU)

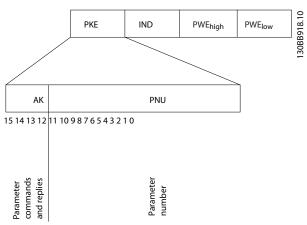


Ilustración 5.8 Campo PKE

Los bits del n.º 12 al 15 transfieren órdenes de parámetros del maestro al esclavo y devuelven las respuestas procesadas del esclavo al maestro.

	Órdenes de parámetros maestro⇒esclavo				
Νú	imero	de b	it	Orden de parámetro	
15	14	13	12		
0	0	0	0	Sin orden.	
0	0	0	1	Leer valor de parámetro.	
0	0	1	0	Escribir valor de parámetro en RAM	
		U	(código).		
0	0	1 1	0 1	1	Escribir valor de parámetro en RAM
	, 0 1 1	(doble código).			
1	1	0 1	Escribir valor de parámetro en RAM y		
'	' ' ' '		'	EEPROM (doble código).	
1	1 1 1	0	Escribir valor de parámetro en RAM y		
_ '	'	'	U	EEPROM (código).	
1	1	1	1	Leer texto.	

Tabla 5.5 Órdenes de parámetro

	Respuesta esclavo⇒maestro					
Número de bit			it	Respuesta		
15	14	13	12			
0	0	0	0	Sin respuesta.		
0	0	0	1	Valor de parámetro transferido (código).		
0	0	1	1 0	Valor de parámetro transferido (doble		
0	0	1 0		código).		
0	1	1	1	La orden no se puede ejecutar.		
1	1	1	1	Texto transferido.		

Tabla 5.6 Respuesta

Si la orden no se puede ejecutar, el esclavo envía la respuesta 0111 Orden no ejecutable y emite los siguientes informes de fallo de la *Tabla 5.7*.

Código de fallo	Especificación del convertidor		
0	Número de parámetro ilegal.		
1	El parámetro no puede modificarse		
2	Se ha superado el límite superior o inferior.		
3	Subíndice deteriorado.		
4	Sin matriz.		
5	Tipo de dato erróneo.		
6	Sin uso.		
7	Sin uso.		
9	Elemento de descripción no disponible.		
11	Sin acceso de escritura de parámetros.		
15	No hay texto disponible.		
17	No aplicable durante el funcionamiento.		
18	Otros errores.		
100	_		
>100	-		
130	No hay acceso al bus para este parámetro.		
131	No es posible escribir en el ajuste de		
131	fábrica.		
132	No hay acceso al LCP.		
252	Receptor desconocido.		
253	Solicitud no admitida.		

Código de fallo	Especificación del convertidor			
254	Atributo desconocido.			
255	Sin error.			

Tabla 5.7 Informe del esclavo

5.4.8 Número de parámetro (PNU)

Los bits 0-11 transfieren los números de parámetros. La función del parámetro correspondiente se explica en la descripción del parámetro en la *Guía de programación del VLT® Midi Drive FC 280*.

5.4.9 Índice (IND)

El índice se utiliza junto con el número de parámetro para el acceso de lectura/escritura a los parámetros con un índice, por ejemplo, *parámetro 15-30 Reg. alarma: código de fallo*. El índice consta de 2 bytes: un byte bajo y un byte alto.

Solo el byte bajo se utiliza como índice.

5.4.10 Valor de parámetro (PWE)

El bloque de valor de parámetro consta de 2 códigos (4 bytes) y el valor depende de la orden definida (AK). El maestro solicita un valor de parámetro cuando el bloque PWE no contiene ningún valor. Para cambiar el valor de un parámetro (escritura), escriba el nuevo valor en el bloque PWE y envíelo del maestro al esclavo.

Si el esclavo responde a una solicitud de parámetro (orden de lectura), se transfiere el valor de parámetro actual del bloque PWE y es devuelto al maestro. Si un parámetro contiene varias opciones de datos, por ejemplo el parámetro 0-01 ldioma, seleccione el valor de dato escribiéndolo en el bloque PWE. La comunicación serie solo es capaz de leer parámetros que tienen el tipo de dato 9 (cadena de texto).

De Parámetro 15-40 Tipo FC a parámetro 15-53 N.º serie tarjeta potencia contienen el tipo de dato 9. Por ejemplo, se puede leer el tamaño del convertidor de frecuencia y el intervalo de tensión de red en parámetro 15-40 Tipo FC. Cuando se transfiere una cadena de texto (lectura), la longitud del telegrama varía, y los textos pueden tener distinta longitud. La longitud del telegrama se define en su segundo byte (LGE). Cuando se utiliza la transferencia de texto, el carácter de índice indica si se trata de una orden de lectura o de escritura.

Para leer un texto a través del bloque PWE, ajuste la orden del parámetro (AK) a F hex. El carácter de índice de byte alto debe ser 4.

5.4.11 Tipos de datos admitidos por el convertidor de frecuencia

«Sin signo» significa que el telegrama no tiene ningún signo de funcionamiento.

Tipos de datos	Descripción
3	Entero 16
4	Entero 32
5	Sin signo 8
6	Sin signo 16
7	Sin signo 32
9	Cadena de texto

Tabla 5.8 Tipos de datos

5.4.12 Conversión

La *Guía de programación* contiene las descripciones de los atributos de cada parámetro. Los valores de parámetros que se transfieren son únicamente números enteros. Para transferir decimales se utilizan factores de conversión.

El *Parámetro 4-12 Límite bajo veloc. motor [Hz]* tiene un factor de conversión de 0,1. Para preajustar la frecuencia mínima a 10 Hz, transfiera el valor 100. Un factor de conversión de 0,1 significa que el valor transferido se multiplica por 0,1. El valor 100 se considerará, por tanto, como 10.0.

Índice de conversión	Factor de conversión
74	3600
2	100
1	10
0	1
-1	0,1
-2	0,01
-3	0,001
-4	0,0001
-5	0,00001

Tabla 5.9 Conversión

5.4.13 Códigos de proceso (PCD)

El bloque de códigos de proceso se divide en dos bloques de 16 bits, que siempre se suceden en la secuencia definida.

PCD 1	PCD 2
Telegrama de control (código de control	Valor de
maestro⇒esclavo)	referencia
Código de estado de telegrama de control	Frecuencia de
(esclavo⇒maestro)	salida actual

Tabla 5.10 Códigos de proceso (PCD)

5.5 Ejemplos

5.5.1 Escritura del valor de un parámetro.

Cambie *parámetro 4-14 Límite alto veloc. motor [Hz]* a 100 Hz.

Escriba los datos en EEPROM.

PKE=E19E hex - Escriba un único código en el parámetro 4-14 Límite alto veloc. motor [Hz]:

- IND = 0000 hex.
- PWEALTO = 0000 hex.
- PWEBAJO = 03E8 hex.

Valor de dato 1000, correspondiente a 100 Hz, consulte el *capétulo 5.4.12 Conversión*.

El telegrama tendrá el aspecto de la Ilustración 5.9.

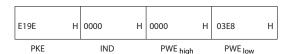


Ilustración 5.9 Telegrama

AVISO!

El Parámetro 4-14 Límite alto veloc. motor [Hz] es un único código y la orden del parámetro para grabar en la EEPROM es E. El Parámetro 4-14 Límite alto veloc. motor [Hz] es 19E en hexadecimal.

La respuesta del esclavo al maestro se muestra en la *llustración 5.10*.

llustración 5.10 Respuesta del maestro

130BA093.10

30BA092.1

30BA094.10

5.5.2 Lectura del valor de un parámetro

Lea el valor en parámetro 3-41 Rampa 1 tiempo acel. rampa.

PKE=1155 hex - Lea el valor del parámetro en el parámetro 3-41 Rampa 1 tiempo acel. rampa:

- IND = 0000 hex.
- $PWE_{ALTO} = 0000 \text{ hex.}$
- $PWE_{BAJO} = 0000 \text{ hex.}$

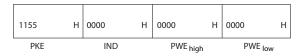


Ilustración 5.11 Telegrama

Si el valor del *parámetro 3-41 Rampa 1 tiempo acel. rampa* es 10 s, la respuesta del esclavo al maestro se indica en la *llustración 5.12*.

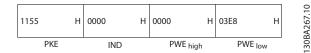


Ilustración 5.12 Respuesta

3E8 Hex corresponde a 1000 en decimal. El índice de conversión para el *parámetro 3-41 Rampa 1 tiempo acel.* rampa es –2, es decir, 0,01.

Parámetro 3-41 Rampa 1 tiempo acel. rampa es del tipo Sin signo 32.

5.6 Modbus RTU

5.6.1 Conocimiento supuesto

Danfoss da por sentado que el controlador instalado es compatible con las interfaces mencionadas en este manual y que se siguen estrictamente todos los requisitos y limitaciones estipulados tanto en el controlador como en el convertidor de frecuencia.

El Modbus RTU (remote terminal unit) integrado está diseñado para comunicarse con cualquier controlador compatible con las interfaces definidas en este manual. Se da por supuesto que el usuario tiene pleno conocimiento de las capacidades y limitaciones del controlador.

5.6.2 Descripción general

Independientemente de los tipos de redes de comunicación física, en este apartado se describe el proceso que un controlador utiliza para solicitar acceso a otro dispositivo. Esto incluye cómo el Modbus RTU responde a las solicitudes de otro dispositivo y cómo se detectarán y se informará de los errores que se produzcan. También se establece un formato común para el diseño y los contenidos de los campos de telegramas.

Durante las comunicaciones en una red Modbus RTU, el protocolo:

- Determina cómo aprende cada controlador su dirección de dispositivo.
- Reconoce un telegrama dirigido a él.
- Determina qué acciones tomar.
- Extrae cualquier dato o información incluidos en el telegrama.

Si se requiere una respuesta, el controlador construirá el telegrama de respuesta y lo enviará.

Los controladores se comunican utilizando una técnica maestro/esclavo en la que solo el maestro puede iniciar transacciones (llamadas peticiones). Los esclavos responden proporcionando los datos pedidos al maestro o realizando la acción solicitada en la petición.

El maestro puede dirigirse a un esclavo individualmente o puede iniciar la transmisión de un telegrama a todos los esclavos. Los esclavos devuelven una respuesta a las peticiones que se les dirigen individualmente. No se responde a las peticiones transmitidas por el maestro.

El protocolo Modbus RTU establece el formato de la petición del maestro suministrando la siguiente información:

- La dirección (o transmisión) del dispositivo.
- Un código de función en el que se define la acción solicitada.
- Cualquier dato que se deba enviar.
- Un campo de comprobación de errores.

El telegrama de respuesta del esclavo también se construye utilizando el protocolo Modbus. Contiene campos que confirman la acción realizada, los datos que se hayan de devolver y un campo de comprobación de errores. Si se produce un error en la recepción del telegrama o si el esclavo no puede realizar la acción solicitada, este genera y envía un mensaje de error. Si no, se produce un error de tiempo límite.

5.6.3 Convertidor de frecuencia con Modbus RTU

El convertidor de frecuencia se comunica en formato Modbus RTU a través de la interfaz RS485 integrada. Modbus RTU proporciona acceso al código de control y a la referencia de bus del convertidor de frecuencia.

El código de control permite al maestro del Modbus controlar varias funciones importantes del convertidor de frecuencia:

- Arranque.
- Varias paradas:
 - Paro por inercia.
 - Parada rápida.
 - Parada por freno de CC.
 - Parada (de rampa) normal.
- Reinicio tras desconexión por avería.
- Funcionamiento a diferentes velocidades predeterminadas.
- Funcionamiento en sentido inverso.
- Cambio del ajuste activo.
- Controlar el relé integrado del convertidor de frecuencia.

La referencia de bus se utiliza, normalmente, para el control de velocidad. También es posible acceder a los parámetros, leer sus valores y, en su caso, escribir valores en ellos. El acceso a los parámetros ofrece una amplia variedad de opciones de control, incluido el control del valor de consigna del convertidor de frecuencia cuando se utiliza el controlador PI interno.

5.7 Configuración de red

Para activar Modbus RTU en el convertidor de frecuencia, ajuste los siguientes parámetros:

Parámetro	Ajuste	
Parámetro 8-30 Protocolo	Modbus RTU	
Parámetro 8-31 Dirección	1–247	
Parámetro 8-32 Velocidad en	2400–115200	
baudios	2400-113200	
Parámetro 8-33 Paridad / Bits de	Paridad par, 1 bit de parada	
parada	(predeterminado)	

Tabla 5.11 Configuración de red

5.8 Estructura de formato de mensaje de Modbus RTU

5.8.1 Introducción

Los controladores están configurados para comunicarse en la red Modbus utilizando el modo RTU (remote terminal unit), donde cada byte de un telegrama contendrá dos caracteres hexadecimales de 4 bits. El formato de cada byte se muestra en la *Tabla 5.12*.

Bit	de	Byte de datos					Parada	Parad		
inic	io						/	a		
							parida			
									d	

Tabla 5.12 Formato de cada byte

Sistema de codifi-	Binario de 8 bits, hexadecimal 0-9, A-F.		
cación	Dos caracteres hexadecimales contenidos en		
	cada campo de 8 bits del telegrama.		
Bits por byte	1 bit de inicio.		
	8 bits de datos, el menos significativo enviado primero.		
	1 bit de paridad par/impar; sin bit de r paridad.		
	1 bit de parada si se utiliza paridad; 2 bits si no se usa paridad.		
Campo de	Comprobación de redundancia cíclica (CRC).		
comprobación de			
errores			

Tabla 5.13 Detalles del byte

5.8.2 Estructura de telegrama Modbus RTU

El dispositivo emisor coloca un telegrama Modbus RTU en un formato con un comienzo y un punto final conocidos. Esto permite a los dispositivos receptores comenzar al principio del telegrama, leer la parte de la dirección, determinar a qué dispositivo se dirige (o a todos, si el telegrama es una transmisión) y reconocer cuándo se ha completado el telegrama. Los telegramas parciales se detectan y se determinan los errores resultantes. Los caracteres que se van a transmitir deben estar en formato hexadecimal 00-FF en cada campo. El convertidor de frecuencia monitoriza continuamente el bus de red, también durante los intervalos silenciosos. Cuando el primer campo (el campo de dirección) es recibido, cada convertidor de frecuencia o dispositivo lo descodifica para determinar a qué dispositivo se dirige. Los telegramas Modbus RTU dirigidos a cero son telegramas de transmisión. No se permiten respuestas a los telegramas de

transmisión. En la *Tabla 5.14* se muestra un formato típico de telegrama.

Arranqu e	Dirección	Función	Datos	Compro- bación CRC	Fin
T1-T2-T3- -T4	8 bits	8 bits	$N \times 8$ bits	16 bits	T1-T2-T3- -T4

Tabla 5.14 Típica estructura de telegrama Modbus RTU

5.8.3 Campo de arranque/parada

El telegrama comienza con un periodo de silencio de al menos 3,5 intervalos de caracteres. Este periodo silencioso se presenta como un múltiplo de intervalos de caracteres a la velocidad en baudios seleccionada (mostrada como Arranque T1-T2-T3-T4). El primer campo que se transmite es la dirección del dispositivo. Tras el último carácter transmitido, un periodo similar de al menos 3,5 intervalos de carácter marca el fin del telegrama. Después de este periodo, puede comenzar otro telegrama.

Transmita el formato completo de telegrama como un flujo completo. Si se produce un periodo de más de 1,5 intervalos de carácter antes de que se complete el formato, el dispositivo receptor descarta el telegrama incompleto y asume que el siguiente byte es el campo de dirección de un nuevo telegrama. De forma similar, si un nuevo telegrama comienza antes de 3,5 intervalos de carácter tras un telegrama previo, el dispositivo receptor lo considerará una continuación del telegrama anterior. Esto produce un error de tiempo límite (falta de respuesta por parte del esclavo), porque el valor del campo CRC final no es válido para los telegramas combinados.

5.8.4 Campo de dirección

El campo de dirección del formato de un telegrama contiene 8 bits. Las direcciones válidas de dispositivos esclavos están en el rango de 0 a 247 decimal. Los dispositivos esclavos individuales tienen direcciones asignadas en un rango entre 1 y 247. El cero se reserva para el modo de transmisión, que reconocen todos los esclavos. Un maestro se dirige a un esclavo poniendo la dirección de este en el campo de dirección del telegrama. Cuando el esclavo envía su respuesta, pone su propia dirección en dicho campo de dirección, para que el maestro sepa qué esclavo le está contestando.

5.8.5 Campo de función

El campo de función del formato de un telegrama contiene 8 bits. Los códigos válidos están en el rango de 1 a FF. Los campos de función se utilizan para enviar telegramas entre el maestro y el esclavo. Cuando se envía un telegrama desde un maestro a un dispositivo esclavo, el campo de código de función le indica al esclavo la clase de acción que debe realizar. Cuando el esclavo responde al maestro, utiliza el campo de código de función para indicar una respuesta normal (sin error), o que se ha producido un error de alguna clase (esta respuesta se denomina «excepción»).

Para dar una respuesta normal, el esclavo simplemente devuelve el código de función original. Para responder con una excepción, el esclavo devuelve un código equivalente al de la función original, pero con su bit más significativo cambiado a 1 lógico. Además, el esclavo pone un código único en el campo de datos del telegrama de respuesta. Este código le indica al maestro el tipo de error ocurrido o la razón de la excepción. Consulte también el capétulo 5.8.10 Códigos de función admitidos por Modbus RTU y el capétulo 5.8.11 Códigos de excepción Modbus.

5.8.6 Campo de datos

El campo de datos se construye utilizando grupos de dos dígitos hexadecimales, en el intervalo de 00 a FF en hexadecimal. Estos dígitos están hechos con un carácter RTU. El campo de datos de los telegramas enviados desde un maestro a un dispositivo esclavo contiene información más detallada que el esclavo debe utilizar para actuar en consecuencia.

Dicha información puede incluir elementos como:

- Direcciones de registro o de bobinas.
- La cantidad de elementos que se deben manejar.
- El recuento de bytes de datos reales del campo.

5.8.7 Campo de comprobación CRC

Los telegramas incluyen un campo de comprobación de errores, que opera según el método de comprobación de redundancia cíclica (CRC). El campo CRC comprueba el contenido de todo el telegrama. Se aplica independientemente del método de comprobación de paridad utilizado para los caracteres individuales del telegrama. El dispositivo transmisor calcula el valor de CRC y lo añade como último campo en el telegrama. El dispositivo receptor vuelve a calcular un CRC durante la recepción del telegrama y compara el valor calculado con el valor recibido en el campo CRC. Si los dos valores son distintos, se produce un tiempo límite de bus. El campo de comprobación de errores contiene un valor binario de 16 bits implementado como dos bytes de 8 bits. Tras la aplicación,

el byte de orden bajo del campo se añade primero, seguido del byte de orden alto. El byte de orden alto del CRC es el último byte que se envía en el telegrama.

5.8.8 Direccionamiento de bobinas

En Modbus, todos los datos están organizados en bobinas y registros de retención. Las bobinas almacenan un solo bit, mientras que los registros de retención alojan una palabra de 2 bytes (es decir, 16 bits). Todas las direcciones de datos de los telegramas Modbus están referenciadas a cero. La primera aparición de un elemento de datos se gestiona como elemento número cero. Por ejemplo: la bobina conocida como «bobina 1» de un controlador programable se direcciona como «bobina 0000» en el campo de dirección de un telegrama Modbus. La bobina 127 decimal se trata como bobina 007Ehex (126 decimal). El registro de retención 40001 se trata como registro 0000 en el campo de dirección del telegrama. El campo de código de función ya especifica una operación de registro de retención. Por lo tanto, la referencia 4XXXX es implícita. El registro de retención 40108 se procesa como un registro 006Bhex (107 decimal).

Número	Descripción	Dirección de la
de	Descripcion	señal
bobina		Serial
1-16	Código de control del convertidor	De maestro a
10	de frecuencia (consulte la	esclavo
	Tabla 5.16).	esc.uvo
17–32	Velocidad del convertidor de	De maestro a
	frecuencia o intervalo de referencias	esclavo
	de valor de consigna 0x0-0xFFFF (-	
	200 %-~200 %).	
33–48	Código de estado del convertidor	De esclavo a
	de frecuencia (consulte la	maestro
	Tabla 5.17).	
49–64	Modo de lazo abierto: frecuencia de	
	salida del convertidor de frecuencia.	De esclavo a
	Modo de lazo cerrado: señal de	maestro
	realimentación del convertidor de	Illaestio
	frecuencia.	
	Control de escritura de parámetro	
	(maestro a esclavo).	
	0 = los cambios en los parámetros	
65	se escriben en la RAM del	De maestro a
05	convertidor de frecuencia.	esclavo
	1 = los cambios en los parámetros	
	se escriben en la RAM y la EEPROM	
	del convertidor de frecuencia.	
66-65536	Reservado.	-

Tabla 5.15 Registro de bobinas

Bobina	0	1		
01	Referencia interna, bit menos significativo (lsb)			
02	Referencia interna, bit m	nás significativo (msb)		
03	Freno de CC	Sin freno de CC		
04	Paro por inercia	Sin paro por inercia		
05	Parada rápida	Sin parada rápida		
06	Mantener la frecuencia	No mantener la frecuencia		
07	Parada de rampa	Arranque		
08	Sin reinicio	Reinicio		
09	Sin velocidad fija	Velocidad fija		
10	Rampa 1	Rampa 2		
11	Datos no válidos	Datos válidos		
12	Relé 1 desactivado	Relé 1 activado		
13	Relé 2 desactivado Relé 2 activado			
14	Ajuste del bit menos significativo (lsb)			
15	-			
16	Sin cambio de sentido	Cambio de sentido		

Tabla 5.16 Código de control del convertidor de frecuencia (perfil FC)

Bobina	0	1
33	Control no preparado	Ctrl prep.
34	Convertidor de frecuencia	Convertidor de frecuencia
	no preparado	preparado
35	Paro por inercia	Cerrado seguro
36	Sin alarma	Alarma
37	Sin uso	Sin uso
38	Sin uso	Sin uso
39	Sin uso	Sin uso
40	Sin advertencia	Advertencia
41	No en referencia	En referencia
42	Modo manual	Modo automático
43	Fuera de rango de	En rangos de frecuencia
	frecuencia	
44	Detenido	Funcionamiento
45	Sin uso	Sin uso
46	Sin advertencia de tensión	Advertencia de tensión
47	No en límite de intensidad	Límite de intensidad
48	Sin advertencia térmica	Advertencia térmica

Tabla 5.17 Código de estado del convertidor de frecuencia (perfil FC)

Dirección	Registro	Registro	Contenido	Acceso	Descripción
del bus	de bus ¹⁾	de PLC			
0	1	40001	Reserv		Reservado para convertidores de frecuencia antiguos
				_	VLT® 5000 y VLT® 2800.
1	2	40002	Reserv		Reservado para convertidores de frecuencia antiguos
				_	VLT [®] 5000 y VLT [®] 2800.
2	3	40003	Reserv		Reservado para convertidores de frecuencia antiguos
				_	VLT® 5000 y VLT® 2800.
3	4	40004	Libre	-	-
4	5	40005	Libre	-	-
5	6	40006	Configuración de Modbus	Lectura /	Solo TCP. Reservada para Modbus TCP
				escritura	(parámetro 12-28 Grabar valores de datos y
					parámetro 12-29 Almacenar siempre - almacenada, por
					ejemplo, en la EEPROM).
6	7	40007	Último código de fallo	Solo lectura	Código de fallo recibido de la base de datos de
					parámetros; consulte WHAT 38295 para obtener más
					información.
7	8	40008	Registro de último error	Solo lectura	Dirección de registro con que tuvo lugar el último error;
					consulte WHAT 38296 para obtener información
					detallada.
8	9	40009	Indicador de índice	Lectura /	Subíndice de parámetros a los que acceder. Consulte
				escritura	WHAT 38297 para obtener información detallada.
9	10	40010	Parámetro 0-01 Idioma	Dependiente del	Parámetro 0-01 Idioma (Registro Modbus = 10 × número
				acceso del	de parámetro)
				parámetro	20 bytes de espacio reservado para un parámetro en el
					mapa Modbus.
19	20	40020	Parámetro 0-02 Unidad de	Dependiente del	Parámetro 0-02 Unidad de velocidad de motor
			velocidad de motor	acceso del	20 bytes de espacio reservado para un parámetro en el
				parámetro	mapa Modbus.
29	30	40030	Parámetro 0-03 Ajustes	Dependiente del	Parámetro 0-03 Ajustes regionales
			regionales	acceso del	20 bytes de espacio reservado para un parámetro en el
				parámetro	mapa Modbus.

Tabla 5.18 Dirección/registros

1) El valor escrito en el telegrama de Modbus RTU debe ser uno o menos que el número de registro. Por ejemplo, registro de lectura de Modbus 1, escribiendo el valor 0 en el telegrama.

5.8.9 Control del convertidor de frecuencia

Este apartado describe los códigos que se pueden utilizar en los campos de función y datos de un telegrama Modbus RTU.

5.8.10 Códigos de función admitidos por Modbus RTU

Modbus RTU admite el uso de los siguientes códigos en el campo de función de un telegrama:

Función	Código de función
	(hex)
Leer bobinas	1
Leer registros de retención	3
Escribir una sola bobina	5
Escribir un solo registro	6
Escribir múltiples bobinas	F
Escribir múltiples registros	10
Coger contador de eventos de com.	В
Informar de ID de esclavo	11

Tabla 5.19 Códigos de función

Función	Código	Código	Subfunción
	de	de	
	función	subfunción	
Diagnóstico	8	1	Reiniciar comunicación.
		2	Devolver registro de
			diagnóstico.
		10	Borrar contadores y
			registro de diagnóstico.
		11	Mostrar recuento de
			mensajes de bus.
		12	Mostrar recuento de
			errores de comunicación
			de bus.
		13	Mostrar recuento de
			errores de esclavo.
		14	Mostrar recuento de
			mensajes de esclavo.

Tabla 5.20 Códigos de función

5.8.11 Códigos de excepción Modbus

Para obtener una explicación completa sobre la estructura de una excepción, consulte *capétulo 5.8.5 Campo de función*.

Códig o	Nombre	Significado
1	Función incorrecta	El código de función recibido en la petición no es una acción permitida para el servidor (o esclavo). Esto puede ser debido a que el código de la función solo se aplica a dispositivos recientes y no se implementó en la unidad seleccionada. También puede indicar que el servidor (o esclavo) se encuentra en un estado incorrecto para procesar una petición de este tipo, por ejemplo, porque no esté configurado y se le pide devolver valores registrados.
2	Dirección de datos incorrecta	La dirección de datos recibida en la petición no es una dirección admisible para el servidor (o esclavo). Más concretamente, la combinación del número de referencia y la longitud de transferencia no es válida. Para un controlador con 100 registros, se acepta una petición con desviación 96 y longitud 4, mientras que una petición con desviación 96 y longitud 5 genera una excepción 02.

Códig o	Nombre	Significado
3	Valor de datos incorrecto	Un valor contenido en el campo de datos de solicitud no es un valor permitido para el servidor (o esclavo). Esto indica un fallo en la estructura de la parte restante de una petición compleja como, por ejemplo, la de que la longitud implicada es incorrecta. NO significa que un conjunto de datos enviado para su almacenamiento en un registro tenga un valor situado fuera de la expectativa del programa de la aplicación, ya que el protocolo Modbus no conoce el significado de ningún valor determinado de ningún registro en particular.
4	Fallo del dispositivo esclavo	Un error irrecuperable se produjo mientras el servidor (o esclavo) intentaba ejecutar la acción solicitada.

Tabla 5.21 Códigos de excepción Modbus

5.9 Cómo acceder a los parámetros

5.9.1 Gestión de parámetros

El PNU (número de parámetro) se traduce desde la dirección del registro contenida en el telegrama de lectura o escritura Modbus. El número de parámetro se traslada a Modbus como (10 × número de parámetro) decimal.

Ejemplos

lectura parámetro 3-12 Valor de enganche/arriba-abajo (16 bit): el registro de retención 3120 almacena el valor de los parámetros. Un valor de 1352 (decimal) significa que el parámetro está ajustado al 12,52 %.

Lectura del *parámetro 3-14 Referencia interna relativa* (32 bits): los registros de retención 3410 y 3411 almacenan los valores de los parámetros. Un valor de 11 300 (*decimal*) significa que el parámetro está ajustado en 1113,00.

Para obtener más información sobre los parámetros, el tamaño y el índice de conversión, consulte la *Guía de programación del* VLT[®] Midi Drive FC 280.

5.9.2 Almacenamiento de datos

El decimal de la bobina 65 determina si los datos escritos en el convertidor de frecuencia se almacenan en la EEPROM y la RAM (bobina 65 = 1) o solo en la RAM (bobina 65 = 0).

5.9.3 IND (índice)

Algunos de los parámetros del convertidor de frecuencia son parámetros de matrices, p. ej., el parámetro 3-10 Referencia interna. Dado que el Modbus no es compatible con matrices en los registros de retención, el convertidor de frecuencia ha reservado el registro de retención 9 como indicador para la matriz. Antes de leer o escribir un parámetro de matrices, configure el registro de retención 9. Si se configura el registro de retención al valor 2, las siguientes lecturas / escrituras a los parámetros de matrices serán en el índice 2.

5.9.4 Bloques de texto

A los parámetros almacenados como cadenas de texto se accede de la misma forma que a los restantes. El tamaño máximo de un bloque de texto es 20 caracteres. Si se realiza una petición de lectura de un parámetro por más caracteres de los que el parámetro almacena, la respuesta se trunca. Si la petición de lectura se realiza por menos caracteres de los que el parámetro almacena, la respuesta se rellena con espacios en blanco.

5.9.5 Factor de conversión

El valor de un parámetro solo se transfiere como número entero. Para transferir decimales, utilice un factor de conversión.

5.9.6 Valores de parámetros

Tipos de datos estándar

Los tipos de datos estándar son int 16, int 32, uint 8, uint 16 y uint 32. Se guardan como registros 4x (40001-4FFFF). Los parámetros se leen utilizando la función 03 hex Read holding registers (Lectura de registros de retención). Los parámetros se escriben utilizando la función 6 hex Preset single register (Preajustar registro único) para 1 registro (16 bits) y la función 10 hex Preset multiple registers (Preajustar múltiples registros) para 2 registros (32 bits). Los tamaños legibles van desde 1 registro (16 bits) hasta 10 registros (20 caracteres).

Tipos de datos no estándar

Los tipos de datos no estándar son cadenas de texto y se almacenan como registros 4x (40001-4FFF). Los parámetros se leen utilizando la función 03 hex Read holding registers (Lectura de registros de retención) y se escriben utilizando la función 10 hex Preset multiple registers (Preajustar múltiples registros). Los tamaños legibles van desde 1 registro (2 caracteres) hasta 10 registros (20 caracteres).

5.10 Ejemplos

Los siguientes ejemplos ilustran varias órdenes de Modbus RTU.

5.10.1 Lectura de estado de la bobina (01 hex)

Descripción

Esta función lee el estado ON / OFF de las distintas salidas (bobinas) del convertidor de frecuencia. No se admite la transmisión en las lecturas.

Petición

El telegrama de solicitud especifica la bobina inicial y la cantidad de bobinas que se deben leer. Las direcciones de las bobinas comienzan en cero, es decir, la bobina 33 tiene la dirección 32.

Ejemplo de una petición de lectura de las bobinas 33 a 48 (código de estado) del dispositivo esclavo 01.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01 (dirección del convertidor de
	frecuencia)
Función	01 (leer bobinas)
Dirección de inicio HI	00
Dirección de inicio LO	20 (32 decimal) bobina 33
Número de puntos HI	00
Número de puntos LO	10 (16 decimal)
Comprobación de errores (CRC)	-

Tabla 5.22 Petición

Respuesta

El estado de la bobina en el telegrama de respuesta está empaquetado como una bobina por bit del campo de datos. El estado se indica como: 1 = ON; 0 = OFF. El Isb (bit menos significativo) del primer byte de datos contiene la bobina a la que se dirige la consulta. Las otras bobinas siguen hacia el final de mayor nivel del byte, y desde el nivel bajo al nivel alto en los bytes siguientes. Si la cantidad de bobinas devueltas no es múltiplo de ocho, los bits restantes del byte de datos final se rellenan con ceros (hacia la parte alta del byte). El campo contador de bytes especifica el número de bytes de datos completos.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01 (dirección del convertidor de
	frecuencia)
Función	01 (leer bobinas)
Contador de bytes	02 (2 bytes de datos)
Datos (bobinas 40-33)	07
Datos (bobinas 48-41)	06 (STW = 0607hex)
Comprobación de errores	-
(CRC)	

Tabla 5.23 Respuesta

AVISO!

Las bobinas y los registros se direccionan explícitamente con una compensación de –1 en Modbus.

Por ejemplo, la bobina 33 tiene la dirección de bobina 32.

5.10.2 Forzar/escribir una sola bobina (05 hex)

Descripción

Esta función fuerza la bobina a activado o desactivado. Cuando se transmite, la función fuerza las mismas referencias de bobina en todos los esclavos conectados.

Petición

El telegrama de petición especifica que se fuerce la bobina 65 (control de escritura de parámetro). Las direcciones de las bobinas comienzan en cero, es decir, la bobina 65 tiene la dirección 64. Forzar datos = 00 00 hex (OFF) o FF 00 hex (ON).

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01 (dirección del convertidor de
	frecuencia)
Función	05 (escribir una sola bobina)
Dirección de bobina HI	00
Dirección de bobina LO	40 (64 decimal) bobina 65
Forzar datos HI	FF
Forzar datos LO	00 (FF 00 = ON)
Comprobación de errores	-
(CRC)	

Tabla 5.24 Petición

Respuesta

La respuesta normal es un eco de la petición, devuelta tras ser forzado el estado de la bobina.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	05
Forzar datos HI	FF
Forzar datos LO	00
Cantidad de bobinas HI	00
Cantidad de bobinas LO	01
Comprobación de errores (CRC)	-

Tabla 5.25 Respuesta

5.10.3 Forzar/escribir múltiples bobinas (0F hex)

Descripción

Esta función fuerza cada bobina de una secuencia a activado o desactivado. Cuando se transmite, la función fuerza las mismas referencias de bobinas en todos los esclavos conectados.

Petición

El telegrama de petición especifica que se fuercen las bobinas 17 a 32 (valor de consigna de velocidad).

AVISO!

Las direcciones de las bobinas comienzan en cero, es decir, la bobina 17 tiene la dirección 16.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01 (dirección del convertidor de
Direccion dei esciavo	frecuencia)
Función	0F (escribir múltiples bobinas)
Dirección de bobina HI	00
Dirección de bobina LO	10 (dirección de bobina 17)
Cantidad de bobinas HI	00
Cantidad de bobinas LO	10 (16 bobinas)
Contador de bytes	02
Forzar datos HI	20
(Bobinas 8-1)	
Forzar datos LO	00 (referencia = 2000 hex)
(Bobinas 16-9)	
Comprobación de errores	
(CRC)	_

Tabla 5.26 Petición

Respuesta

La respuesta normal devuelve la dirección del esclavo, el código de la función, la dirección de inicio y la cantidad de bobinas forzadas.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01 (dirección del convertidor de
	frecuencia)
Función	0F (escribir múltiples bobinas)
Dirección de bobina HI	00
Dirección de bobina LO	10 (dirección de bobina 17)
Cantidad de bobinas HI	00
Cantidad de bobinas LO	10 (16 bobinas)
Comprobación de errores	
(CRC)	_

Tabla 5.27 Respuesta

5.10.4 Lectura de registros de retención (03 hex)

Descripción

Esta función lee el contenido de los registros de retención del esclavo.

Petición

El telegrama de petición especifica el registro de inicio y la cantidad de registros que se deben leer. Las direcciones de registros comienzan en 0, es decir, los registros 1-4 se tratan como 0-3.

Ejemplo: lectura *parámetro 3-03 Referencia máxima*, registro 03030.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	03 (Leer registros de retención)
Dirección de inicio HI	0B (dirección de registro 3029)
Dirección de inicio LO	D5 (dirección de registro 3029)
Número de puntos HI	00
	02 – (el parámetro 3-03 Referencia
Número de puntos LO	<i>máxima</i> tiene 32 bits de longitud, es
	decir, 2 registros)
Comprobación de	
errores (CRC)	

Tabla 5.28 Petición

Respuesta

Los datos del registro en el telegrama de respuesta están empaquetados a razón de 2 bytes por registro, con los contenidos binarios justificados a la derecha en cada byte. En cada registro, el primer byte contiene los bits de nivel alto y el segundo, los de nivel bajo.

Ejemplo: hex 000088B8 = 35,000 = 35 Hz.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	03
Contador de bytes	04
Datos HI (registro 3030)	00
Datos LO (registro 3030)	16
Datos HI (registro 3031)	E3
Datos LO (registro 3031)	60
Comprobación de errores (CRC)	_

Tabla 5.29 Respuesta

5.10.5 Preajuste de un solo registro (06 hex)

Descripción

Esta función preajusta un valor en un único registro de retención.

Petición

El telegrama de petición especifica la referencia del registro que se debe preajustar. Las direcciones de los registros comienzan en 0, es decir, el registro 1 se trata como 0.

Ejemplo: escribir a *parámetro 1-00 Modo Configuración*, registrar 1000.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	06
Dirección de registro HI	03 (dirección de registro 999)
Dirección de registro LO	E7 (dirección de registro 999)
Datos preajustados HI	00
Datos preajustados LO	01
Comprobación de errores	-
(CRC)	

Tabla 5.30 Petición

Respuesta

La respuesta normal es un eco de la petición, devuelto tras aprobarse el contenido de los registros.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	06
Dirección de registro HI	03
Dirección de registro LO	E7
Datos preajustados HI	00
Datos preajustados LO	01
Comprobación de errores	-
(CRC)	

Tabla 5.31 Respuesta

5.10.6 Preajuste de múltiples registros (10 hex)

Descripción

Esta función preajusta valores en una secuencia de registros de retención.

Petición

El telegrama de petición especifica las referencias del registro que se deben preajustar. Las direcciones de los registros comienzan en 0, es decir, el registro 1 se trata como 0. Ejemplo de una petición para preajustar dos registros (ajustar *parámetro 1-24 Intensidad motor* a 738 [7,38 A]):

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	10
Dirección de inicio HI	04
Dirección de inicio LO	07
Número de registros HI	00
Número de registros LO	02
Contador de bytes	04
Escribir datos HI (Registro 4: 1049)	00
Escribir datos LO (Registro 4: 1049)	00
Escribir datos HI (Registro 4: 1050)	02
Escribir datos LO (Registro 4: 1050)	E2
Comprobación de errores (CRC)	-

Tabla 5.32 Petición

Respuesta

La respuesta normal devuelve la dirección del esclavo, el código de la función, la dirección de inicio y la cantidad de registros preajustados.

Nombre del campo	Ejemplo (hex)
Dirección del esclavo	01
Función	10
Dirección de inicio HI	04
Dirección de inicio LO	19
Número de registros HI	00
Número de registros LO	02
Comprobación de errores (CRC)	-

Tabla 5.33 Respuesta

5.11 Perfil de control FC de Danfoss

5.11.1 Código de control conforme al perfil FC (Protocolo 8-10 = perfil FC)

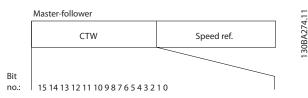


Ilustración 5.13 Código de control según el perfil FC

Bit	Valor de bit = 0	Valor de bit = 1
00	Valor de referencia	Selección externa, bit menos
		significativo (Isb)
01	Valor de referencia	Selección externa, bit más signifi-
01		cativo (msb)
02	Freno de CC	Rampa
03	Funcionamiento por	Sin funcionamiento por inercia
03	inercia	311 Tarretoriamiento por increta
04	Parada rápida	Rampa
05	Mantener frecuencia	Usar rampa
	de salida	osai rampa
06	Parada de rampa	Arranque
07	Sin función	Reinicio
08	Sin función	Velocidad fija
09	Rampa 1	Rampa 2
10	Datos no válidos	Datos válidos
11	Relé 01 abierto	Relé 01 activo
12	Relé 02 abierto	Relé 02 activo
13	Ajuste de	Selección del bit menos signifi-
	parámetros	cativo (lsb)
15	Sin función	Cambio sentido

Tabla 5.34 Código de control según el perfil FC

Explicación de los bits de control Bits 00/01

Los bits 00 y 01 se utilizan para elegir entre los cuatro valores de referencia, que están preprogramados en el parámetro 3-10 Referencia interna, conforme a la Tabla 5.35.

Valor de referencia programado	Parámetro	Bit 01	Bit 00
1	Parámetro 3-10 Referencia interna [0]	0	0
2	Parámetro 3-10 Referencia interna [1]	0	1
3	Parámetro 3-10 Referencia interna [2]	1	0
4	Parámetro 3-10 Referencia interna [3]	1	1

Tabla 5.35 Bits de control

AVISO!

En el parámetro 8-56 Selec. referencia interna, defina cómo se direcciona el bit 00/01 con la función correspondiente en las entradas digitales.

Bit 02: freno de CC

Bit 02 = 0: causa el frenado de CC y la parada. Ajuste la intensidad y duración de frenado en *parámetro 2-01 Intens.* freno CC y en *parámetro 2-02 Tiempo de frenado CC*. Bit 02 = 1: produce una rampa.

Bit 03: funcionamiento por inercia

Bit 03 = 0: el convertidor de frecuencia libera inmediatamente al motor (los transistores de salida se desactivan) y se produce inercia hasta la parada.

Bit 03 = 1: si se cumplen las demás condiciones de arranque, el convertidor de frecuencia arranca el motor.

En el *parámetro 8-50 Selección inercia*, defina cómo se direcciona el bit 03 con la función correspondiente en las entradas digitales.

Bit 04: parada rápida

Bit 04 = 0: hace decelerar el motor hasta pararse (se ajusta en parámetro 3-81 Tiempo rampa parada rápida).

Bit 05: mantener la frecuencia de salida

Bit 05 = 0: la frecuencia de salida actual (en Hz) se mantiene. Cambie la frecuencia de salida mantenida únicamente mediante las entradas digitales programadas en [21] Aceleración y [22] Deceleración (del parámetro 5-10 Terminal 18 Entrada digital al parámetro 5-13 Terminal 29 Entrada digital).

AVISO!

Si está activada la opción Mantener salida, el convertidor de frecuencia solo podrá pararse mediante una de las siguientes opciones:

- Bit 03: paro por inercia.
- Bit 02: freno de CC.
- Entrada digital programada como [5] Freno CC,
 [2] Inercia o [3] Inercia y reinicio (del parámetro 5-10 Terminal 18 Entrada digital al parámetro 5-13 Terminal 29 Entrada digital).

Bit 06: parada/arranque de rampa

Bit 06 = 0: provoca una parada y hace que la velocidad del motor decelere hasta detenerse mediante el parámetro de rampa de deceleración seleccionado.

Bit 06 = 1: permite que el convertidor de frecuencia arranque el motor si se cumplen las demás condiciones de arranque.

En el *parámetro 8-53 Selec. arranque*, defina cómo se direcciona el bit 06, parada/arranque de rampa, con la función correspondiente en una entrada digital.

Bit 07: reinicio

Bit 07 = 0: sin reinicio.

Bit 07 = 1: reinicia una desconexión. El reinicio se activa en el flanco de subida de la señal, es decir, cuando cambia de 0 lógico a 1 lógico.

Bit 08: velocidad fija

Bit 08 = 1: *Parámetro 3-11 Velocidad fija [Hz]* determina la frecuencia de salida.

Bit 09: selección de rampa 1/2

Bit 09 = 0: la rampa 1 está activa (de parámetro 3-41 Rampa 1 tiempo acel. rampa a parámetro 3-42 Rampa 1 tiempo desacel. rampa). Bit 09 = 1: la rampa 2 está activa (de parámetro 3-51 Rampa 2 tiempo acel. rampa a parámetro 3-52 Rampa 2 tiempo desacel. rampa).

Bit 10: datos no válidos / datos válidos

Indica al convertidor de frecuencia si debe utilizar o ignorar el código de control.

Bit 10 = 0: el código de control se ignora.

Bit 10 = 1: el código de control se utiliza. Esta función es relevante porque el telegrama contiene siempre el código de control, independientemente del tipo de telegrama. Si el código de control no es necesario al actualizar o leer el parámetro, desconéctelo.

Bit 11: relé 01

Bit 11 = 0: relé no activado.

Bit 11 = 1: relé 01 activado, siempre que se haya seleccionado [36] Bit código control 11 en el parámetro 5-40 Relé de función.

Bit 12, Relé 02

Bit 12 = 0: el relé 02 no está activado.

Bit 12 = 1: el relé 02 estará activado si se ha seleccionado [37] Bit código control 12 en el parámetro 5-40 Relé de función.

Bits 13: selección de ajustes

Use el bit 13 para seleccionar entre los dos ajustes de menú, según la *Tabla 5.36*.

Ajuste	Bit 13
1	0
2	1

Tabla 5.36 Ajustes de menú

Esta función solo es posible cuando se selecciona [9] Ajuste múltiple en el parámetro 0-10 Ajuste activo.

Para definir cómo se direcciona el bit 13 con la función correspondiente en las entradas digitales, utilice el parámetro 8-55 Selec. ajuste.

Bit 15: cambio del sentido

Bit 15 = 0: sin cambio de sentido.

Bit 15 = 1: Cambio de sentido. En los ajustes predeterminados, el cambio de sentido se ajusta a digital en parámetro 8-54 Selec. sentido inverso. El bit 15 solo causa el

cambio de sentido cuando se ha seleccionado comunicación serie, [2] Lógico Y o [3] Lógico O.

5.11.2 Código de estado según el perfil FC (STW)

Ajuste el parámetro 8-30 Protocolo como [0] FC.

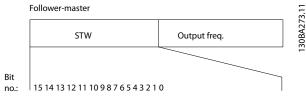


Ilustración 5.14 Código de estado

Bit	Bit = 0	Bit = 1
00	Control no preparado	Ctrl prep.
01	Convertidor de frecuencia	Convertidor de frecuencia
	no preparado	preparado
02	Funcionamiento por inercia	Activar
03	Sin error	Desconexión
04	Sin error	Error (sin desconexión)
05	Reserv	-
06	Sin error	Bloqueo por alarma
07	Sin advertencia	Advertencia
08	Velocidad≠referencia	Velocidad = referencia
09	Funcionamiento local	Control de bus
10	Fuera del límite de	Límite de frecuencia OK
	frecuencia	
11	Sin función	En funcionamiento
12	Convertidor de frecuencia	Detenido, arranque
	ОК	automático
13	Tensión OK	Tensión excedida
14	Par OK	Par excedido
15	Temporizador OK	Temporizador excedido

Tabla 5.37 Código de estado según el perfil FC

Explicación de los bits de estado

Bit 00: control no listo / listo

Bit 00=0: el convertidor de frecuencia se desconecta. Bit 00=1: los controles del convertidor de frecuencia están preparados, pero el componente de potencia podría no estar recibiendo suministro eléctrico (si hay suministro externo de 24 V a los controles).

Bit 01, Convertidor de frecuencia preparado

Bit 01=0: el convertidor de frecuencia no está listo.

Bit 01=1: El convertidor de frecuencia está listo para funcionar.

Bit 02, Paro por inercia

Bit 02=0: el convertidor de frecuencia libera el motor.

Bit 02=1: el convertidor de frecuencia arranca el motor con una orden de arranque.

Bit 03: sin error / desconexión

Bit 03=0: el convertidor de frecuencia no está en modo de fallo

Bit 03=1: el convertidor de frecuencia se desconecta. Para restablecer el funcionamiento, pulse [Reset].

Bit 04: sin error / error (sin desconexión)

Bit 04=0: el convertidor de frecuencia no está en modo de fallo.

Bit 04=1: el convertidor de frecuencia muestra un error pero no se desconecta.

Bit 05: sin uso

El bit 05 no se utiliza en el código de estado.

Bit 06: sin error / bloqueo por alarma

Bit 06=0: el convertidor de frecuencia no está en modo de fallo.

Bit 06=1: el convertidor de frecuencia se ha desconectado y bloqueado.

Bit 07: sin advertencia / advertencia

Bit 07=0: no hay advertencias.

Bit 07=1: se ha producido una advertencia.

Bit 08, velocidad de referencia / velocidad = referencia

Bit 08=0: el motor funciona pero la velocidad actual es distinta a la referencia interna de velocidad. Esto puede ocurrir cuando la velocidad sigue una rampa hacia arriba o hacia abajo durante el arrangue/parada.

Bit 08=1: la velocidad del motor es igual a la referencia interna de velocidad.

Bit 09: funcionamiento local / control de bus

Bit 09=0: [Off/Reset] está activado en la unidad de control o [2] Local está seleccionado en el parámetro 3-13 Lugar de referencia. No es posible controlar el convertidor de frecuencia mediante la comunicación serie.

Bit 09=1: es posible controlar el convertidor de frecuencia a través de la comunicación serie o el fieldbus.

Bit 10: fuera de límite de frecuencia

Bit 10=0: la frecuencia de salida ha alcanzado el valor ajustado en parámetro 4-12 Límite bajo veloc. motor [Hz] o parámetro 4-14 Límite alto veloc. motor [Hz].

Bit 10=1: la frecuencia de salida está dentro de los límites definidos.

Bit 11: sin función / en funcionamiento

Bit 11=0: el motor no está en marcha.

Bit 11=1: el convertidor de frecuencia tiene una señal de arranque sin inercia.

Bit 12, Convertidor de frecuencia OK/parado, arranque automático

Bit 12=0: no hay sobretemperatura temporal en el convertidor de frecuencia.

Bit 12=1: el convertidor de frecuencia se detiene por sobretemperatura pero la unidad no se desconecta y reanuda el funcionamiento una vez normalizada la temperatura.

Bit 13: tensión OK / límite excedido

Bit 13=0: no hay advertencias de tensión.

Bit 13=1: la tensión de CC en el enlace de CC del convertidor de frecuencia es demasiado baja o demasiado alta.

Bit 14: par OK / límite excedido

Bit 14=0: la intensidad del motor es más baja que el límite de intensidad seleccionado en el *parámetro 4-18 Current limit*

Bit 14=1: se ha superado el límite de intensidad del parámetro 4-18 Current Limit.

Bit 15: temporizador OK / límite excedido

Bit 15=0: los temporizadores para la protección térmica del motor y la protección térmica no han sobrepasado el 100 %.

Bit 15=1: uno de los temporizadores supera el 100 %.

5.11.3 Valor de referencia de velocidad de bus

El valor de referencia de la velocidad se transmite al convertidor de frecuencia en forma de valor relativo en %. El valor se transmite en forma de un código de 16 bits. El valor entero 16384 (4000 hex) corresponde a un 100 %. Las cifras negativas se codifican mediante el complemento a dos. La frecuencia real de salida (MAV) se escala de la misma forma que la referencia del bus.

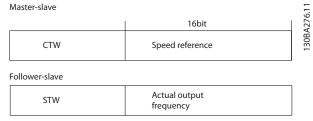


Ilustración 5.15 Frecuencia real de salida (MAV)

La referencia y la MAV se escalan de la siguiente forma:

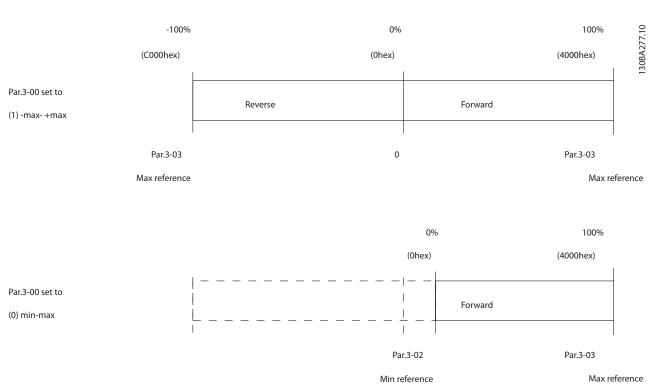


Ilustración 5.16 Referencia y MAV

6 Código descriptivo y selección

6.1 Código descriptivo

El código descriptivo es una cadena de caracteres que describe la configuración del convertidor de frecuencia; consulte la *llustración 6.1*.

Ilustración 6.1 Código descriptivo

Los números que se muestran en la *Tabla 6.1* hacen referencia a la letra o cifra del código descriptivo, leído de izquierda a derecha.

Grupos de productos	1–2
Serie de convertidores de frecuencia	4–6
Potencia de salida	7–10
Fases	11
Tensión de red	12
Protección	13–15
Filtro RFI	16–17
Freno	18
Pantalla (LCP)	19
PCB barnizada	20
Opción de alimentación	21
Adaptación A	22
Adaptación B	23
Versión de software	24–27
Idioma del software	28
Opciones A	29–30

Tabla 6.1 Posiciones de los caracteres en el código descriptivo

A partir del configurador del convertidor de frecuencia en línea, el cliente puede configurar el convertidor de frecuencia adecuado para una aplicación concreta y generar el código descriptivo. El configurador de convertidores de frecuencia genera automáticamente un número de ventas de ocho dígitos que se debe enviar a la oficina de ventas local.

Otra opción es establecer una lista de proyectos con varios productos y enviársela a un representante de ventas de Danfoss.

El configurador de convertidores de frecuencia puede encontrarse en el sitio de Internet: *vltconfig.danfoss.com*.

6.2 Números de pedido: Opciones, accesorios y repuestos

Opciones y accesorios	Número de pedido
VLT® Memory Module MCM 102	132B0359
VLT® Memory Module Programmer	134B0792
MCM 101 ¹⁾	13400792
VLT® Control Panel LCP 21 (numérico)	132B0254
VLT® Control Panel LCP 102 (gráfico)	130B1107
Adaptador de LCP gráfico	132B0281
Panel de control VLT® LCP con tapa ciega	132B0262
Kit de conversión IP21/Tipo 1, K1	132B0335
Kit de conversión IP21/Tipo 1, K2	132B0336
Kit de conversión IP21/Tipo 1, K3	132B0337
Kit de conversión IP21/Tipo 1, K4	132B0338
Kit de conversión IP21/Tipo 1, K5	132B0339
Placa del adaptador, VLT® 2800, tamaño A	132B0363
Placa del adaptador, VLT® 2800, tamaño B	132B0364
Placa del adaptador, VLT® 2800, tamaño C	132B0365
Placa del adaptador, VLT [®] 2800, tamaño D	132B0366
VLT® 24 V DC supply MCB 106 ¹⁾	132B0368
Kit de montaje remoto para LCP, con 3	132B0102
m (10 ft) de cable	13200102
Kit de montaje de LCP, sin LCP	130B1117

Tabla 6.2 Números de pedido para opciones y accesorios

1) Disponible a mediados de 2017.

_	
•	

Bolsa de accesorios, conectores para FC 280 Ventilador 50 × 20 IP21 PWM 132B0351 Ventilador 60 × 20 IP21 PWM 132B0352 Ventilador 70 × 20 IP21 PWM 132B0353 Ventilador 92 × 38 IP21 PWM 132B0371 Ventilador 120 × 38 IP21 PWM 132B0372 Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus Unidad de control VLT® - Profibet Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP Unidad de control VLT® - EtherNet/IP	Repuestos	Número de pedido
FC 280 Ventilador 50 × 20 IP21 PWM Ventilador 60 × 20 IP21 PWM Ventilador 70 × 20 IP21 PWM Ventilador 92 × 38 IP21 PWM Ventilador 120 × 38 IP21 PWM Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	Polsa do accororios conoctoros para	
Ventilador 60 × 20 IP21 PWM Ventilador 70 × 20 IP21 PWM Ventilador 92 × 38 IP21 PWM Ventilador 120 × 38 IP21 PWM Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	'	132B0350
Ventilador 70 × 20 IP21 PWM Ventilador 92 × 38 IP21 PWM 132B0371 Ventilador 120 × 38 IP21 PWM 132B0372 Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	Ventilador 50 × 20 IP21 PWM	132B0351
Ventilador 92 × 38 IP21 PWM Ventilador 120 × 38 IP21 PWM Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	Ventilador 60 × 20 IP21 PWM	132B0352
Ventilador 120 × 38 IP21 PWM Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	Ventilador 70 × 20 IP21 PWM	132B0353
Tapa de terminal para alojamiento de tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 132B0349 132B0349	Ventilador 92 × 38 IP21 PWM	132B0371
tamaño K1 Tapa de terminal para alojamiento de tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 Lisaba349 132B0349	Ventilador 120 × 38 IP21 PWM	132B0372
tamaño K2 Tapa de terminal para alojamiento de tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 132B0349 132B0349		132B0354
tamaño K3 Tapa de terminal para alojamiento de tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0349 132B0349 132B0349	' '	132B0355
tamaño K4 Tapa de terminal para alojamiento de tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349		132B0356
tamaño K5 Kit de desacoplamiento de cable de bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	' '	132B0357
bus, FC 280 Kit de desacoplamiento, I/O de potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar 132B0345 Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet 132B0348 Unidad de control VLT® - EtherNet/IP 132B0349		132B0358
potencia, K1 Kit de desacoplamiento, I/O de potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® CANOpen 132B0346 Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	'	132B0369
potencia, K2/K3 Kit de desacoplamiento, I/O de potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® - CANOpen 132B0345 Unidad de control VLT® - Profibus Unidad de control VLT® - ProfiNet Unidad de control VLT® - EtherNet/IP 132B0349	'	132B0373
potencia, K4/K5 Unidad de control VLT® - Estándar Unidad de control VLT® CANOpen 132B0345 Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet 132B0348 Unidad de control VLT® - EtherNet/IP 132B0349	•	132B0374
Unidad de control VLT® CANOpen 132B0346 Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet 132B0348 Unidad de control VLT® - EtherNet/IP 132B0349	•	132B0375
Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet 132B0348 Unidad de control VLT® - EtherNet/IP 132B0349	Unidad de control VLT® - Estándar	132B0345
Unidad de control VLT® - Profibus 132B0347 Unidad de control VLT® - ProfiNet 132B0348 Unidad de control VLT® - EtherNet/IP 132B0349	Unidad de control VLT® CANOpen	132B0346
Unidad de control VLT® - EtherNet/IP 132B0349	Unidad de control VLT® - Profibus	132B0347
Unidad de control VLT® - EtherNet/IP 132B0349	Unidad de control VLT® - ProfiNet	132B0348
	Unidad de control VLT® - EtherNet/IP	132B0349
	Unidad de control VLT® POWERLINK	132B0378

Tabla 6.3 Números de pedido de los repuestos

6.3 Números de pedido: Resistencias de freno

Danfoss ofrece una amplia variedad de resistencias diferentes especialmente diseñadas para nuestros convertidores de frecuencia. Consulte el *capétulo 2.9.4 Control con Función de freno* para seleccionar las dimensiones de las resistencias de frenado. En este apartado se enumeran los números de pedido para las resistencias de frenado. La resistencia de la resistencia de frenado indicada por el número de pedido puede ser superior a R_{rec}. En este caso, el par de frenado real podría ser inferior al mayor par de frenado que puede suministrar el convertidor de frecuencia.

6.3.1 Números de pedido: resistencias de frenado 10~%

Potencia de salida	P _{m (HO)}	R _{mín} .	R _{br. nom}	R _{rec}	P _{fren med}	Número de pedido	Período	Sección transvers al del cable ¹⁾	Relé térmico	Máximo par de freno con resistencia
Trifásica 380-480 V (T4)	[kW (CV)]	[Ω]	[Ω]	[Ω]	[kW (CV)]	175Uxxxx	[s]	[mm² (AWG)]	[A]	[%]
PK37	0,37 (0,5)	890	1041,98	989	0,030 (0,040)	3000	120	1,5 (16)	0,3	139
PK55	0,55 (0,75)	593	693,79	659	0,045 (0,060)	3001	120	1,5 (16)	0,4	131
PK75	0,75 (1,0)	434	508,78	483	0,061 (0,080)	3002	120	1,5 (16)	0,4	129
P1K1	1,1 (1,5)	288	338,05	321	0,092 (0,120)	3004	120	1,5 (16)	0,5	132
P1K5	1,5 (2,0)	208	244,41	232	0,128 (0,172)	3007	120	1,5 (16)	0,8	145
P2K2	2,2 (3,0)	139	163,95	155	0,190 (0,255)	3008	120	1,5 (16)	0,9	131
P3K0	3 (4,0)	100	118,86	112	0,262 (0,351)	3300	120	1,5 (16)	1,3	131
P4K0	4 (5,0)	74	87,93	83	0,354 (0,475)	3335	120	1,5 (16)	1,9	128
P5K5	5,5 (7,5)	54	63,33	60	0,492 (0,666)	3336	120	1,5 (16)	2,5	127
P7K5	7,5 (10)	38	46,05	43	0,677 (0,894)	3337	120	1,5 (16)	3,3	132
P11K	11 (15)	27	32,99	31	0,945 (1,267)	3338	120	1,5 (16)	5,2	130
P15K	15 (20)	19	24,02	22	1,297 (1,739)	3339	120	1,5 (16)	6,7	129
P18K	18,5 (25)	16	19,36	18	1,610 (2,158)	3340	120	1,5 (16)	8,3	132
P22K	22 (30)	16	18,00	17	1,923 (2,578)	3357	120	1,5 (16)	10,1	128

Tabla 6.4 FC 280 - Alimentación: trifásica de 380-480 V (T4), 10 % del ciclo de trabajo

R_{mín}. Máximo par Potencia de R_{br. nom} R_{rec} Número de Período Sección Relé $P_{m\ (HO)}$ $P_{fren\ med}$ salida de freno con pedido transvers térmico al del resistencia cable¹⁾ [Ω] [Ω] [Ω] Trifásica [kW (CV)] [kW (CV)] 175Uxxxx [s] [A] [%] [mm² 200-240 V (AWG)] (T2) 0,030 PK37 0,37 (0,5) 225 263,22 250 3006 120 1,5 (16) 0,6 140 (0,040) 0,045 PK55 0,55 (0,75) 151 176,90 168 3011 120 1,5 (16) 0,7 142 (0,060)0,062 PK75 0,75 (1,0) 129,92 3016 1,5 (16) 110 123 120 0,8 143 (0,083)0,092 P1K1 1,1 (1,5) 73 86,77 82 3021 120 1,5 (16) 0,9 139 (0,120)0,128 P1K5 53 62,70 59 3026 120 143 1,5 (2,0) 1,5 (16) 1,6 (0,172)0,190 P2K2 2,2 (3,0) 35 42,06 39 3031 120 1,5 (16) 1,9 140 (0,255)0,327 P3K7 3,7 (5,0) 20 24,47 23 3326 120 1,5 (16) 3,5 145 (0,439)

Tabla 6.5 FC 280 - Alimentación: trifásica de 200-240 V (T2), 10 % del ciclo de trabajo

6

¹⁾ Todos los cableados deben cumplir las normas locales y nacionales sobre las secciones transversales de cables y la temperatura ambiente.

6.3.2 Números de pedido: resistencias de frenado 40~%

Potencia de salida	P _{m (HO)}	R _{mín} .	R _{br. nom}	R _{rec}	P _{fren med}	Número de pedido	Período	Sección transversa I del cable ¹⁾	Relé térmico	Máximo par de freno con resistencia
Trifásica	[kW (CV)]	[Ω]	[Ω]	[Ω]	[kW (CV)]	175Uxxxx	[s]	[mm²]	[A]	[%]
380-480 V (T4)										
PK37	0,37 (0,5)	890	1041,98	989	0,127 (0,170)	3101	120	1,5 (16)	0,4	139
PK55	0,55 (0,75)	593	693,79	659	0,191 (0,256)	3308	120	1,5 (16)	0,5	131
PK75	0,75 (1,0)	434	508,78	483	0,260 (0,349)	3309	120	1,5 (16)	0,7	129
P1K1	1,1 (1,5)	288	338,05	321	0,391 (0,524)	3310	120	1,5 (16)	1	132
P1K5	1,5 (2,0)	208	244,41	232	0,541 (0,725)	3311	120	1,5 (16)	1,4	145
P2K2	2,2 (3,0)	139	163,95	155	0,807 (1,082)	3312	120	1,5 (16)	2,1	131
P3K0	3 (4,0)	100	118,86	112	1,113 (1,491)	3313	120	1,5 (16)	2,7	131
P4K0	4 (5,0)	74	87,93	83	1,504 (2,016)	3314	120	1,5 (16)	3,7	128
P5K5	5,5 (7,5)	54	63,33	60	2,088 (2,799)	3315	120	1,5 (16)	5	127
P7K5	7,5 (10)	38	46,05	43	2,872 (3,850)	3316	120	1,5 (16)	7,1	132
P11K	11 (15)	27	32,99	31	4,226 (5,665)	3236	120	2,5 (14)	11,5	130
P15K	15 (20)	19	24,02	22	5,804 (7,780)	3237	120	2,5 (14)	14,7	129
P18K	18,5 (25)	16	19,36	18	7,201 (9,653)	3238	120	4 (12)	19	132
P22K	22 (30)	16	18,00	17	8,604 (11,534)	3203	120	4 (12)	23	128

Tabla 6.6 FC 280 - Alimentación: trifásica de 380-480 V (T4), 40 % del ciclo de trabajo

6

Potencia de salida	P _{m (HO)}	R _{mín} .	R _{br. nom}	R _{rec}	P _{fren med}	Número de pedido	Período	Sección transvers al del cable ¹⁾	Relé térmico	Máximo par de freno con resistencia
Trifásica 200-240 V (T2)	[kW (CV)]	[Ω]	[Ω]	[Ω]	[kW (CV)]	175Uxxxx	[s]	[mm² (AWG)]	[A]	[%]
PK37	0,37 (0,5)	225	263,22	250	0,129 (0,173)	3096	120	1,5 (16)	0,8	140
PK55	0,55 (0,75)	151	176,90	168	0,192 (0,257)	3008	120	1,5 (16)	0,9	142
PK75	0,75 (1,0)	110	129,92	123	0,261 (0,350)	3300	120	1,5 (16)	1,3	143
P1K1	1,1 (1,5)	73	86,77	82	0,391 (0,524)	3301	120	1,5 (16)	2	139
P1K5	1,5 (2,0)	53	62,70	59	0,541 (0,725)	3302	120	1,5 (16)	2,7	143
P2K2	2,2 (3,0)	35	42,06	39	0,807 (1,082)	3303	120	1,5 (16)	4,2	140
P3K7	3,7 (5,0)	20	24,47	23	1,386 (1,859)	3305	120	1,5 (16)	6,8	145

Tabla 6.7 FC 280 - Alimentación: trifásica de 200-240 V (T2), 40 % del ciclo de trabajo

6.4 Números de pedido: Filtros senoidales

Pote	Potencia e intensidad nominales del convertidor de frecuencia				lor de	Intensidad nominal del filtro			Frecuencia de conmutació n ¹⁾	Número de pedido	
[kW (CV)]	[A]	[kW (CV)]	[A]	[kW (CV)]	[A]	[A]	[A]	[A]	[kHz]	-	-
200-	240 V	200-	240 V	200-	240 V	50 Hz	60 Hz	100 Hz	-	IP00	IP20
-	-	0,37 (0,5)	1,2	0,37 (0,5)	1,1						
-	-	0,55 (0,75)	1,7	0,55 (0,75)	1,6	2,5	2,5	2	6	130B2404	130B2439
0,37 (0,5)	2,2	0,75 (1)	2,2	0,75 (1)	2,1						
_	-	1,1 (1,5)	3	1,1 (1,5)	2,8						
0,55 (0,75)	3,2	1,5 (2)	3,7	1,5 (2)	3,4	4,5	4	3,5	6	130B2406	130B2441
0,75 (1)	4,2	2,2 (3)	5,3	2,2 (3)	4,8						
1,1 (1,5)	6	3 (4)	7,2	3 (4)	6,3	8	7,5	5,5	6	130B2408	130B2443
1,5 (2)	6,8	-	_	_	-						
_	-	4 (5,5)	9	4 (5,5)	8,2	10	9,5	7,5	6	130B2409	130B2444
2,2 (3)	9,6	5,5 (7,5)	12	5,5 (7,5)	11	17	16	13	6	130B2411	130B2446
3,7 (5)	15,2	7,5 (10)	15,5	7,5 (10)	14	17	10	15		13002711	13002770
-	ı	11 (15)	23	11 (15)	21	24	23	18	5	130B2412	130B2447
-	ı	15 (20)	31	15 (20)	27						
-	_	18,5 (25)	37	18,5 (25)	34	38	36	28,5	5	130B2413	130B2448

¹⁾ Todos los cableados deben cumplir las normas locales y nacionales sobre las secciones transversales de cables y la temperatura ambiente.

Pote	encia e inte		ridad nominales del convertidor de frecuencia					del filtro	Frecuencia de conmutació n ¹⁾	Número de pedido	
[kW (CV)]	[A]	[kW (CV)]	[A]	[kW (CV)]	[A]	[A]	[A]	[A]	[kHz]	-	-
_	-	22 (30)	42,5	22 (30)	40	48	45,5	36	5	130B2281	130B2307

Tabla 6.8 Filtros senoidales para convertidores de frecuencia de 380-480 V

1) La frecuencia de conmutación podría reducirse a 3 kHz debido a la velocidad de salida (menos del 60 % de la velocidad normal), a una sobrecarga o a un exceso de temperatura. El cliente podría percibir el cambio de ruido del filtro.

Se sugieren los siguientes ajustes de parámetros para el funcionamiento con filtro senoidal:

- Ajuste [1] Filtro senoidal en el parámetro 14-55 Filtro de salida.
- Ajuste el valor adecuado para el filtro individual en el parámetro 14-01 Frecuencia conmutación. Cuando se ajusta [1] Filtro senoidal en el parámetro 14-55 Filtro de salida, las opciones inferiores a 5 kHz se eliminan automáticamente en el parámetro 14-01 Frecuencia conmutación.

6.5 Números de pedido: Filtros dU/dt

Potencia e	intensidad nor frecu	minales del co encia	onvertidor de	Intensidad ı filt	nominal del ro	ı	o		
380	-440 V	441-480 V		380 a 60 Hz 200-400/440 a 50 Hz	460/480 a 60 Hz 500/525 a 50 Hz	IP00 IP20		IP54	
[kW (CV)]	[A]	[kW (CV)]	[A]	[A]	[A]	-	-	-	
11 (15)	23	11 (15)	21					130B2837	
15 (20)	31	15 (20)	27	44	40	130B2835	130B2836		
18,5 (25)	37	18,5 (25)	34	77	70	13002833	13002830		
22 (30)	42,5	22 (30)	40						

Tabla 6.9 Filtros dU/dt para convertidores de frecuencia de 380-480 V

6.6 Números de pedido: filtros de CEM externos

Para los tamaños K1S2 y K2S2, con los filtros de CEM descritos en la *Tabla 6.10*, puede alcanzarse una longitud máxima del cable apantallado de 100 m (328 ft) conforme a la norma EN/CEI 61800-3 C2 (EN 55011 A1), o de 40 m (131,2 ft) conforme a la norma EN/CEI 61800-3 C1 (EN 55011 B).

Para los tamaños K1T4, K2T4 y K3T4, con el filtro interno A1 y los filtros externos de CEM descritos en la *Tabla 6.10*, puede alcanzarse una longitud máxima del cable apantallado de 100 m (328 ft) conforme a la norma EN/CEI 61800-3 C2 (EN 55011 A1), o de 25 m (82 ft) conforme a la norma EN/CEI 61800-3 C1 (EN 55011 B).

Número de pedido del filtro de CEM	134B5466	134B5467	134B5463	134B5464	134B5465	
Tamaño de alojamiento del convertidor de frecuencia	K1S2	K2S2	K1T4	K2T4	K3T4	
Dimensiones A [mm (in)]	250 (9,8)	312,5 (12,3)	250 (9,8)	312,5	(12,3)	
Dimensiones a1 [mm (in)]	234 (9,2)	303 (11,9)	234 (9,2)	303	(11,9)	
Dimensiones a2 [mm (in)]	19,5 (0,77)	21,3 (0,84)	19,5 (0,77)	21,3	(0,84)	
Dimensiones am [mm (in)]	198 (7,8)	260 (10,2)	198 (7,8)	260	(10,2)	
Dimensiones B [mm (in)]	75 (2,95)	90 (3,54)	75 (2,95)	90 (3,54)	115 (4,53)	
Dimensiones b1 [mm (in)]	55 (2,17)	70 (2,76)	55 (2,17)	70 (2,76)	90 (3,54)	
Dimensiones bm [mm (in)]	60 (2,36)	70 (2,76)	60 (2,36)	70 (2,76)	90 (3,54)	
Dimensiones C [mm (in)]			50 (1,97)		•	
Dimensiones c1 [mm (in)]			22,7 (0,89)			
Dimensiones D1 [mm (in)]			Ø5,3 (Ø0,21)			
Dimensiones Dm [mm (in)]	M4	M5	M4	N	15	
Dimensiones e1 [mm (in)]	6,5 (0,26)	5 (0,20)	6,5 (0,26)	5 (0),20)	
Dimensiones f1 [mm (in)]		10 (0	0,39)		12,5 (0,49)	
Dimensiones fm [mm (in)]	7,5 (0,30)	10 (0,39)	7,5 (0,30)	10 (0,39)	12,5 (0,49)	
Tornillos de montaje para el filtro de CEM			M5			
Tornillos de montaje para el convertidor de frecuencia	M4	M5	M4	M5		
Peso [kg (lb)]	1,10 (2,43)	1,50 (3,31)	1,20 (2,65)	1,90 (4,19)	2,10 (4,63)	

Tabla 6.10 Detalles del filtro de CEM para alojamientos K1-K3

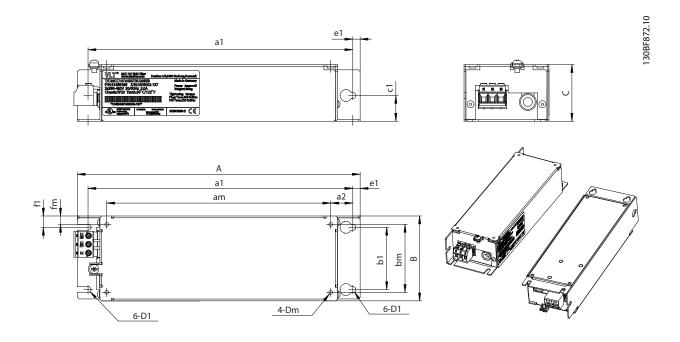


Ilustración 6.2 Dimensiones del filtro de CEM para alojamientos K1-K3

Para los tamaños K4T4 y K5T4, con el filtro interno A1 y los filtros externos de CEM descritos en la *Tabla 6.11*, puede alcanzarse una longitud máxima del cable apantallado de 100 m (328 ft) conforme a la norma EN/CEI 61800-3 C2 (EN 55011 A1), o de 25 m (82 ft) conforme a la norma EN/CEI 61800-3 C1 (EN 55011 B).

Potencia (kW [CV]) Tamaño 380-480 V	Tipo	Α	В	С	D	E	F	G	н	ı	J	к	L1	Par [Nm (in-lb)]	Peso [kg (lb)]	Número de pedido
11–15														1.9-2.2	1,2	
(15–20)	FN3258-30-47	270	50	85	240	255	30	5,4	1	10,6	M5	25 4		(16,8-19,5)	(2,6)	132B0246
18,5-22	EN 2250 42 47	210		۸-	200	205	20	- 1	1	10.6	145	2.5	40	1,9-2,2	1,4	12200247
(25-30)	FN3258-42-47	310	50	85	280	295	30	5,4		10,6	IVI5	25	40	(16,8-19,5)	(3,1)	132B0247

Tabla 6.11 Detalles del filtro de CEM para alojamientos K4-K5

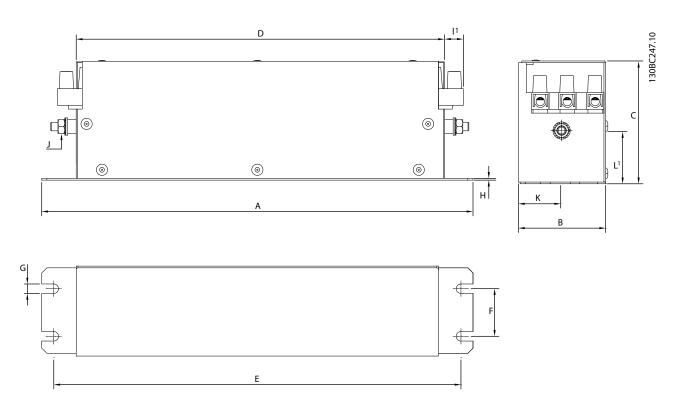


Ilustración 6.3 Dimensiones del filtro de CEM para alojamientos K4-K5

7 Especificaciones

7.1 Datos eléctricos

	PK37	PK55	PK75	P1K1	P1K5	P2K2	P3K0
Eje de salida típico [kW (CV)]	0,37	0,55	0,75	1,1	1,5	2,2	3,0
del convertidor de frecuencia	(0,5)	(0,75)	(1,0)	(1,5)	(2,0)	(3,0)	(4,0)
Clasificación de protección del alojamiento IP20	K1	K1	K1	K1	K1	K1	K2
(IP21/Tipo 1 opcional)	ΚI	NI NI	NI NI	NI NI	NI NI	NI	NZ
Intensidad de salida							
Salida de eje [kW]	0,37	0,55	0,75	1,1	1,5	2,2	3
Continua (3 × 380-440 V) [A]	1,2	1,7	2,2	3	3,7	5,3	7,2
Continua (3 × 441-480 V) [A]	1,1	1,6	2,1	2,8	3,4	4,8	6,3
Intermitente (60 s de sobrecarga) [A]	1,9	2,7	3,5	4,8	5,9	8,5	11,5
Continua kVA (400 V CA) [kVA]	0,9	1,2	1,5	2,1	2,6	3,7	5,0
Continua kVa (480 V CA) [kVA]	0,9	1,3	1,7	2,5	2,8	4,0	5,2
Intensidad de entrada máxima		•		•	•		•
Continua (3 × 380-440 V) [A]	1,2	1,6	2,1	2,6	3,5	4,7	6,3
Continua (3 × 441-480 V) [A]	1,0	1,2	1,8	2,0	2,9	3,9	4,3
Intermitente (60 s de sobrecarga) [A]	1,9	2,6	3,4	4,2	5,6	7,5	10,1
Más especificaciones		•		•	•		
Sección transversal máxima del cable (alimen-							
tación, motor, freno y carga compartida) [mm²				4 (12)			
(AWG)]							
Pérdida de potencia estimada a carga nominal	20,9	25.2	30	40	52.0	74	04.9
máxima [W] ¹⁾	20,9	25,2	30	40	52,9	/4	94,8
Peso, clasificación de protección de alojamiento	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2 5 (5 5)	3,6 (7,9)
IP20 [kg (lb)]	2,3 (3,1)	2,3 (3,1)	2,3 (3,1)	2,3 (3,1)	2,3 (3,1)	2,5 (5,5)	3,6 (7,9)
Peso, clasificación de protección del	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	5,5 (12,1)
alojamiento IP21 [kg (lb)]	7,0 (0,0)	7,0 (0,0)	7,0 (0,0)	+,0 (0,0)	+,0 (0,0)	+,0 (0,0)	3,3 (12,1)
Rendimiento [%] ²⁾	96,0	96,6	96,8	97,2	97,0	97,5	98,0

Tabla 7.1 Fuente de alimentación de red 3 \times 380-480 V CA

P4K0

Eje de salida típico [kW (CV)]

P22K

		7

Eje de salida típico [kW (CV)]							
	4	5,5	7,5	11	15	18,5	22
del convertidor de frecuencia	(5,4)	(7,5)	(10)	(15)	(20)	(25)	(30)
Clasificación de protección del alojamiento IP20	K2	K2	К3	K4	K4	K5	K5
(IP21/Tipo 1 opcional)	N2	NZ	N3	N4	N4		KS
Intensidad de salida							
Salida de eje	4	5,5	7,5	11	15	18,5	22
Continua (3 × 380-440 V) [A]	9	12	15,5	23	31	37	42,5
Continua (3 × 441-480 V) [A]	8,2	11	14	21	27	34	40
Intermitente (60 s de sobrecarga) [A]	14,4	19,2	24,8	34,5	46,5	55,5	63,8
Continua kVA (400 V CA) [kVA]	6,2	8,3	10,7	15,9	21,5	25,6	29,5
Continua kVa (480 V CA) [kVA]	6,8	9,1	11,6	17,5	22,4	28,3	33,3
Intensidad de entrada máxima		!	!				
Continua (3 × 380-440 V) [A]	8,3	11,2	15,1	22,1	29,9	35,2	41,5
Continua (3 × 441-480 V) [A]	6,8	9,4	12,6	18,4	24,7	29,3	34,6
Intermitente (60 s de sobrecarga) [A]	13,3	17,9	24,2	33,2	44,9	52,8	62,3
Más especificaciones		!	!				
Sección transversal máxima del cable (alimen-							
tación, motor, freno y carga compartida) [mm²		4 (12)			16	6 (6)	
(AWG)]							
Pérdida de potencia estimada a carga nominal	115,5	157,5	192,8	289,5	393,4	402,8	467,5
máxima [W] ¹⁾	113,3	137,3	192,0	209,3	393,4	402,0	407,3
Peso, clasificación de protección de alojamiento	3,6 (7,9)	3,6 (7,9)	4,1 (9,0)	9,4 (20,7)	9,5 (20,9)	12,3 (27,1)	12,5 (27,6)
IP20 [kg (lb)]	3,0 (7,9)	3,0 (7,9)	4,1 (9,0)	9,4 (20,7)	9,3 (20,9)	12,3 (27,1)	12,3 (27,0)
Peso, clasificación de protección del alojamiento	5,5 (12,1)	5,5 (12,1)	6,5 (14,3)	10,5 (23,1)	10,5 (23,1)	14,0 (30,9)	14,0 (30,9)
IP21 [kg (lb)]	J,J (12,1)	3,3 (12,1)	0,5 (14,5)	10,5 (23,1)	10,5 (23,1)	17,0 (30,9)	17,0 (30,9)
Rendimiento [%] ²⁾	98,0	97,8	97,7	98,0	98,1	98,0	98,0

P5K5

P11K

P15K

P18K

P7K5

Tabla 7.2 Fuente de alimentación de red 3 \times 380-480 V CA

Eje de salida típico [kW (CV)]	PK37	PK55	PK75	P1K1	P1K5	P2K2	P3K7
del convertidor de frecuencia	0,37	0,55	0,75	1,1	1,5	2,2	3,7
dei convertidor de frecuencia	(0,5)	(0,75)	(1,0)	(1,5)	(2,0)	(3,0)	(5,0)
Clasificación de protección del alojamiento IP20	K1	K1	K1	K1	K1	K2	К3
(IP21/Tipo 1 opcional)	N I	NI NI	l Ni	NI NI	NI NI	NZ	N3
Intensidad de salida							
Continua (3 × 200-240 V) [A]	2,2	3,2	4,2	6	6,8	9,6	15,2
Intermitente (60 s de sobrecarga) [A]	3,5	5,1	6,7	9,6	10,9	15,4	24,3
Continua kVA (230 V CA) [kVA]	0,9	1,3	1,7	2,4	2,7	3,8	6,1
Intensidad de entrada máxima							
Continua (3 × 200-240 V) [A]	1,8	2,7	3,4	4,7	6,3	8,8	14,3
Intermitente (60 s de sobrecarga) [A]	2,9	4,3	5,4	7,5	10,1	14,1	22,9
Más especificaciones							
Sección transversal máxima del cable (alimen-							
tación, motor, freno y carga compartida) [mm²				4 (12)			
(AWG)]							
Pérdida de potencia estimada a carga nominal	29,4	38,5	51,1	60,7	76,1	96,1	147,5
máxima [W] ¹⁾	29,4	30,3	31,1	00,7	70,1	90,1	147,5
Peso, clasificación de protección de alojamiento	2.2 (5.1)	2.2 (5.1)	2.2 /5.1\	2.2 (5.1)	2.2 /5.1)	2 5 /5 5\	26 (70)
IP20 [kg (lb)]	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,5 (5,5)	3,6 (7,9)
Peso, clasificación de protección del	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	5,5 (12,1)	6,5 (14,3)
alojamiento IP21 [kg (lb)]	1 ,0 (0,0)	4,0 (0,0)	4,0 (0,0)	4,0 (0,0)	4,0 (0,0)	J,J (12,1)	0,5 (14,5)
Rendimiento [%] ²⁾	96,4	96,6	96,3	96,6	96,5	96,7	96,7

Tabla 7.3 Fuente de alimentación de red 3 \times 200-240 V CA

Eje de salida típico [kW (CV)] del convertidor de frecuencia	PK37 0,37 (0,5)	PK55 0,55 (0,74)	PK75 0,75 (1,0)	P1K1 1,1 (1,5)	P1K5 1,5 (2,0)	P2K2 2,2 (3,0)	
Clasificación de protección del alojamiento IP20 (IP21/Tipo 1 opcional)	K1	K1	K1	K1	K1	K2	
Intensidad de salida		'	•		•	•	
Continua (3 × 200-240 V) [A]	2,2	3,2	4,2	6	6,8	9,6	
Intermitente (60 s de sobrecarga) [A]	3,5	5,1	6,7	9,6	10,9	15,4	
Continua kVA (230 V CA) [kVA]	0,9	1,3	1,7	2,4	2,7	3,8	
Intensidad de entrada máxima		!			!	•	
Continua (1 × 200-240 V) [A]	2,9	4,4	5,5	7,7	10,4	14,4	
Intermitente (60 s de sobrecarga) [A]	4,6	7,0	8,8	12,3	16,6	23,0	
Más especificaciones		•	•		•		
Sección transversal máxima del cable (alimentación y motor) (mm² [AWG])	4 (12)						
Pérdida de potencia estimada a carga nominal máxima [W] ¹⁾	37,7	46,2	56,2	76,8	97,5	121,6	
Peso, clasificación de protección de alojamiento IP20 [kg (lb)]	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,3 (5,1)	2,5 (5,5)	
Peso, clasificación de protección del alojamiento IP21 [kg (lb)]	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	4,0 (8,8)	5,5 (12,1)	
Rendimiento [%] ²⁾	94,4	95,1	95,1	95,3	95,0	95,4	

Tabla 7.4 Fuente de alimentación de red 1 × 200-240 V CA

1) La pérdida de potencia típica es en condiciones de carga nominal y se espera que esté dentro del ±15 % (la tolerancia está relacionada con la variedad en las condiciones de cable y tensión).

Los valores están basados en el rendimiento típico de un motor (en el límite de IE2 / IE3). Los motores que tienen un rendimiento inferior contribuyen a la pérdida de potencia del convertidor de frecuencia y los motores con mayor rendimiento reducen dicha pérdida de frecuencia. Se aplica para dimensionar la refrigeración del convertidor de frecuencia. Si la frecuencia de conmutación es superior a los ajustes predeterminados, en ocasiones las pérdidas de potencia aumentan. Se incluyen los consumos de energía habituales del LCP y de la tarjeta de control. Otras opciones y la carga del cliente pueden sumar hasta 30 W a las pérdidas (aunque normalmente solo serán 4 W adicionales por un fieldbus o una tarjeta de control a plena carga).

Para conocer los datos de pérdida de potencia conforme a la norma EN 50598-2, consulte www.danfoss.com/vltenergyefficiency.

2) Se mide utilizando cables de motor apantallados de 50 m (164 ft) y en condiciones de carga y frecuencia nominales. Para conocer la clase de rendimiento energético, consulte el capétulo 7.4 Condiciones ambientales. Para conocer las pérdidas a carga parcial, consulte www.danfoss.com/vltenergyefficiency.

7.2 Fuente de alimentación de red

Alimentación de red (L1/N, L2/L y L3)

Terminales de la fuente de alimentación	(L1/N, L2/L y L3)
Tensión de alimentación	380-480 V: -15 % (-25 %) ¹⁾ al +10 %
Tensión de alimentación	200-240 V: -15 % (-25 %) ¹⁾ al +10 %

1) El convertidor de frecuencia puede funcionar con una tensión de entrada de -25 %, con rendimiento reducido. La potencia de salida máxima del convertidor de frecuencia es del 75 % en caso de tensión de entrada de -25 % y del 85 % en caso de tensión de entrada de -15 %.

No se puede esperar un par completo con una tensión de red inferior al 10 % por debajo de la tensión de alimentación nominal más baja del convertidor de frecuencia.

Frecuencia de alimentación	50/60 Hz ±5 %
Máximo desequilibrio transitorio entre fases de red	3,0 % de la tensión de alimentación nominal
Factor de potencia real (λ)	≥0,9 nominal con carga nominal
Factor de potencia de desplazamiento (cos φ)	Prácticamente uno (>0,98)
Conmutación en la entrada de la fuente de alimentación (L1/N, L2/L y L3) (arra	inques) ≤7,5 Dos veces por minuto, como
kW (10 CV)	máximo

Especificaciones	Guía de diseño
------------------	----------------

Conmutación en la entrada de la fuente de alimentación (L1/N, L2/L y L3) (arranques) 11-22 kW (15-30 CV)

Una vez por minuto, como máximo

7.3 Salida del motor y datos del motor

Salida	del	motor	ſŪ.	V١	v W)	i

Tensión de salida	0-100 % de la tensión de alimentación
Frec. de salida	0-500 Hz
Frecuencia de salida en modo VVC+	0-200 Hz
Interruptor en la salida	Ilimitada
Tiempo de rampa	0,01–3600 s

Características de par

Caracteristicas de par	
Par de arranque (par constante)	Máximo del 160 % durante 60 s ¹⁾
Par de sobrecarga (par constante)	Máximo del 160 % durante 60 s ¹⁾
Corriente de arranque	Máximo del 200 % durante 1 s
Tiempo de subida de par en modo VVC+ (independiente de fsw)	Máximo de 50 ms

¹⁾ Porcentaje relativo al par nominal. Es el 150 % en convertidores de frecuencia de 11-22 kW (15-30 CV).

7.4 Condiciones ambientales

Condiciones ambientales

Clase IP	IP20 (IP21/NEMA tipo 1 opcional)
Prueba de vibración para todos los tipos de prote	ección 1,14 g
Humedad relativa 5	-95 % (CEI 721-3-3; clase 3K3 [sin condensación]) durante el funcionamiento
Temperatura ambiente (en el modo de conmutac	ión DPWM)
- con reducción de potencia	Máximo 55 °C (131 °F) ¹⁾²⁾³⁾
- a plena intensidad de salida constante	Máximo 45 °C (113 °F) ⁴⁾
Temperatura ambiente mínima durante el funcior	namiento a escala completa 0 °C (32 °F)
Temperatura ambiente mínima con rendimiento i	reducido –10 °C (14 °F)
Temperatura durante el almacenamiento/transpo	rte De –25 a +65/70 °C (de –13 a +149/158 °F)
Altitud máxima sobre el nivel del mar sin reducci	ón de potencia 1000 m (3280 ft)
Altitud máxima sobre el nivel del mar con reducc	ción de potencia 3000 m (9243 ft)
	EN 61800-3, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11,
Normas CEM, emisión	EN 61000-3-12, EN 61000-6-3/4, EN 55011 y CEI 61800-3
	EN 61800-3, EN 61000-6-1/2, EN 61000-4-2, EN 61000-4-3
Normas CEM, inmunidad	EN 61000-4-4, EN 61000-4-5, EN 61000-4-6 y EN 61326-3-1
Clase de rendimiento energético ⁵⁾	IE2

- 1) Consulte el capétulo 7.12 Condiciones especiales para:
 - Reducción de potencia por temperatura ambiente alta.
 - Reducción de potencia por altitud elevada.
- 2) En los modelos PROFIBUS, PROFINET, Ethernet/IP y POWERLINK del VLT $^{\otimes}$ Midi Drive FC 280, para evitar que la tarjeta de control se sobrecaliente, no realice la carga completa de las I/O digitales/analógicas a una temperatura ambiente superior a 45 $^{\circ}$ C (113 $^{\circ}$ F).
- 3) La temperatura ambiente máxima del K1S2 con reducción de potencia es de 50 $^{\circ}$ C (122 $^{\circ}$ F).
- 4) La temperatura ambiente máxima del K1S2 a plena intensidad de salida constante es de 40 $^{\circ}$ C (104 $^{\circ}$ F).
- 5) Determinada conforme a la norma EN 50598-2 en:
 - Carga nominal.
 - 90 % de la frecuencia nominal.
 - Ajustes de fábrica de la frecuencia de conmutación.
 - Ajustes de fábrica del patrón de conmutación.

- Tipo abierto: temperatura del aire circundante de 45 $\,^{\circ}$ C (113 $\,^{\circ}$ F).
- Tipo 1 (kit NEMA): temperatura ambiente de 45 $^{\circ}$ C (113 $^{\circ}$ F).

7.5 Especificaciones del cable

Longitudes de los cables¹⁾

Longitud máxima del cable de motor, apantallado	50 m (164 ft)
Longitud máxima del cable de motor, sin apantallar	75 m (246 ft)
Sección transversal máxima de los terminales de control, cable rígido/flexible	2,5 mm ² /14 AWG
Sección transversal mínima de los terminales de control	0,55 mm ² / 30 AWG
Máxima longitud del cable de entrada de STO, cable no apantallado	20 m (66 ft)

¹⁾ Para obtener las secciones transversales de los cables de alimentación, consulte la Tabla 7.1, la Tabla 7.2, la Tabla 7.3 y la

Para cumplir las normas EN 55011 1A y EN 55011 1B, deberá acortarse el cable de motor en determinadas circunstancias. Consulte la capétulo 2.6.2 Emisión CEM para ver más detalles.

7.6 Entrada/salida de control y datos de control

Entradas digitales

Número de terminal	18, 19, 27 ¹⁾ , 29, 32, 33
Lógica	PNP o NPN
Nivel de tensión	0-24 V CC
Nivel de tensión, 0 lógico PNP	<5 V CC
Nivel de tensión, 1 lógico PNP	>10 V CC
Nivel de tensión, 0 lógico NPN	>19 V CC
Nivel de tensión, 1 lógico NPN	<14 V CC
Tensión máxima de entrada	28 V CC
Rango de frecuencia de pulsos	4–32 kHz
(Ciclo de trabajo) anchura de impulsos mínima	4,5 ms
Resistencia de entrada, R _i	Aproximadamente 4 kΩ

1) El terminal 27 también puede programarse como salida.

Entradas de STO

Número de terminal	37, 38
Nivel de tensión	0-30 V CC
Nivel de tensión, bajo	<1,8 V CC
Nivel de tensión, alto	>20 V CC
Tensión máxima de entrada	30 V CC
Intensidad de entrada mínima (cada patilla)	6 mA

intensidad de entrada minima (cada patina)	VIIIA
Entradas analógicas	
N.º de entradas analógicas	2
Número de terminal	53 ¹⁾ , 54
Modos	Tensión o corriente
Selección de modo	Software
Nivel de tensión	0-10 V
Resistencia de entrada, R _i	Aproximadamente 10 kΩ
Tensión máxima	De -15 V a +20 V
Nivel de corriente	De 0/4 a 20 mA (escalable)
Resistencia de entrada, R _i	Aproximadamente 200 Ω
Corriente máxima	30 mA
Resolución de entradas analógicas	11 bits
Precisión de las entradas analógicas	Error máximo del 0,5 % de la escala total

Ancho de banda 100 Hz

Las entradas analógicas están galvánicamente aisladas de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.

1) El terminal 53 solo acepta el modo de tensión y también puede usarse como entrada digital.

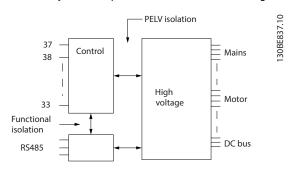


Ilustración 7.1 Aislamiento galvánico

AVISO!

ALTITUD ELEVADA

Para la instalación en altitudes superiores a 2000 m (6562 ft), póngase en contacto con el servicio de atención telefónica de Danfoss en relación con los requisitos de PELV.

Entradas de pulsos
Entradas de pulsos

Entradas de pulsos programables	2
Número de terminal de pulso	29, 33
Frecuencia máxima en los terminales 29 y 33	32 kHz (en contrafase)
Frecuencia máxima en los terminales 29 y 33	5 kHz (colector abierto)
Frecuencia mínima en los terminales 29 y 33	4 Hz
Nivel de tensión	Consulte el apartado sobre entradas digitales
Tensión máxima de entrada	28 V CC
Resistencia de entrada, R _i	Aproximadamente 4 kΩ
Precisión de la entrada de pulsos	Error máximo: un 0,1 % de la escala completa

Salidas digitales

Salidas digitales / de pulsos programables	1
Número de terminal	27 ¹⁾
Nivel de tensión en la salida digital / salida de frecuencia	0-24 V
Intensidad de salida máxima (disipador o fuente)	40 mA
Carga máxima en salida de frecuencia	1 kΩ
Carga capacitiva máxima en salida de frecuencia	10 nF
Frecuencia de salida mín. en salida de frecuencia	4 Hz
Frecuencia de salida máxima en salida de frecuencia	32 kHz
Precisión de salida de frecuencia	Error máximo: un 0,1 % de la escala completa
Resolución en la salida de frecuencia	10 bits

¹⁾ El terminal 27 también puede programarse como una entrada.

La salida digital está galvánicamente aislada de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.

Salidas analógicas

Sundas analogicas	
Número de salidas analógicas programables	1
Número de terminal	42
Rango de intensidad en la salida analógica	0/4-20 mA
Carga de resistencia máxima a común en la salida analógica	500 Ω
Precisión en la salida analógica	Error máximo: 0,8 % de escala completa
Resolución en la salida analógica	10 bits

La salida analógica está galvánicamente aislada de la tensión de alimentación (PELV) y de los demás terminales de tensión alta.

Tarjeta de control, salida de 24 V CC

Número de terminal 12, 13 Carga máxima 100 mA

El suministro externo de 24 V CC está galvánicamente aislado de la tensión de alimentación (PELV). Sin embargo, tiene el mismo potencial que las entradas y salidas analógicas y digitales.

Tarjeta de control, salida de +10 V CC

Número de terminal	50
Tensión de salida	10,5 V ±0,5 V
Carga máxima	15 mA

El suministro de 10 V CC está galvánicamente aislado de la tensión de alimentación (PELV) y de los demás terminales de tensión

Tarjeta de control, comunicación serie RS485

Número de terminal	68 (P,TX+, RX+) y 69 (N,TX-, RX-)
N.º de terminal 61	Común para los terminales 68 y 69

El circuito de comunicación serie RS485 está galvánicamente aislado de la tensión de alimentación (PELV).

Tarjeta de control, comunicación serie USB

USB estándar	1.1 (velocidad máxima)
Conector USB	Conector USB tipo B

La conexión al PC se realiza por medio de un cable USB de dispositivo o host estándar.

La conexión USB se encuentra galvánicamente aislada de la tensión de alimentación (PELV) y del resto de los terminales de tensión alta.

La conexión a tierra USB no se encuentra galvánicamente aislada de la conexión a tierra de protección. Utilice únicamente un ordenador portátil aislado como conexión entre el PC y el terminal USB del convertidor de frecuencia.

Salidas de relé

Salidas de relé programables	1
Relé 01	01-03 (NC), 01-02 (NO)
Máxima carga del terminal (CA-1) ¹⁾ en 01-02 (NO) (carga resistiva)	250 V CA, 3 A
Máxima carga del terminal (CA-15) ¹⁾ en 01-02 (NO) (carga inductiva a cosφ 0,4)	250 V CA, 0,2 A
Máxima carga del terminal (CC-1) ¹⁾ en 01-02 (NO) (carga resistiva)	30 V CC, 2 A
Máxima carga del terminal (CC-13) ¹⁾ en 01-02 (NO) (carga inductiva)	24 V CC, 0,1 A
Máxima carga del terminal (CA-1) ¹⁾ en 01-03 (NC) (carga resistiva)	250 V CA, 3 A
Máxima carga del terminal (CA-15) ¹⁾ en 01-03 (NC) (carga inductiva a cosφ 0,4)	250 V CA, 0,2 A
Máxima carga del terminal (CC-1) ¹⁾ en 01-03 (NC) (carga resistiva)	30 V CC, 2 A
Carga mínima del terminal en 01-03 (NC), 01-02 (NO)	24 V CC 10 mA, 24 V CA 20 mA

1) CEI 60947 partes 4 y 5.

Intervalo de exploración

Los contactos del relé están galvánicamente aislados con respecto al resto del circuito con un aislamiento reforzado.

Rendimiento de la tarjeta de control

Características de control	
Resolución de la frecuencia de salida a 0-500 Hz	±0,003 Hz
Tiempo de respuesta del sistema (terminales 18, 19, 27, 29, 32 y 33)	≤2 ms
Rango de control de velocidad (lazo abierto)	1:100 de velocidad síncrona
Precisión de velocidad (lazo abierto)	±0,5 % de la velocidad nominal
Precisión de velocidad (lazo cerrado)	±0.1 % de la velocidad nominal

Todas las características de control se basan en un motor asíncrono de 4 polos.

1 ms

7.7 Pares de apriete de conexión

Asegúrese de utilizar los pares correctos para apretar las conexiones eléctricas. Un par demasiado alto o demasiado bajo puede causar problemas de conexión eléctrica. Para asegurar la aplicación del par de apriete correcto, utilice una llave dinamométrica. El tipo de destornillador de ranura recomendado es SZS 0.6×3.5 mm.

		Par [Nm (in-lb)]						
Tipo de alojamient o	Potencia (kW [CV])	Alimentación	Motor	Conexión de CC	Freno	Tierra	Control	Relay
K1	0,37-2,2 (0,5-3,0)	0,8 (7,1)	0,8 (7,1)	0,8 (7,1)	0,8 (7,1)	1,6 (14,2)	0,4 (3,5)	0,5 (4,4)
K2	3,0-5,5 (4,0-7,5)	0,8 (7,1)	0,8 (7,1)	0,8 (7,1)	0,8 (7,1)	1,6 (14,2)	0,4 (3,5)	0,5 (4,4)
K3	7,5 (10)	0,8 (7,1)	0,8 (7,1)	0,8 (7,1)	0,8 (7,1)	1,6 (14,2)	0,4 (3,5)	0,5 (4,4)
K4	11–15 (15–20)	1,2 (10,6)	1,2 (10,6)	1,2 (10,6)	1,2 (10,6)	1,6 (14,2)	0,4 (3,5)	0,5 (4,4)
K5	18,5-22 (25-30)	1,2 (10,6)	1,2 (10,6)	1,2 (10,6)	1,2 (10,6)	1,6 (14,2)	0,4 (3,5)	0,5 (4,4)

Tabla 7.5 Pares de apriete

7.8 Fusibles y magnetotérmicos

Utilice fusibles y/o magnetotérmicos en el lado de la fuente de alimentación para proteger de lesiones al personal de mantenimiento y evitar daños en los equipos en caso de avería de los componentes internos del convertidor de frecuencia (primer fallo).

Protección de circuito derivado

Proteja todos los circuitos derivados de las instalaciones (incluidos los aparatos de conmutación y las máquinas) frente a cortocircuitos y sobreintensidades conforme a las normativas nacionales e internacionales.

AVISO!

La protección integral de estado sólido contra cortocircuitos no proporciona protección de circuito derivado. Suministre la debida protección de circuito derivado conforme a las normativas y reglamentos locales y nacionales.

En la *Tabla 7.6* se enumeran los fusibles y magnetotérmicos recomendados que han sido probados.

▲PRECAUCIÓN

RIESGO DE LESIONES PERSONALES Y DE DAÑOS EN EL EQUIPO

Un mal funcionamiento o el incumplimiento de estas recomendaciones podrían dar lugar a riesgos personales y a daños en el convertidor de frecuencia u otros equipos.

 Seleccione los fusibles conforme a las recomendaciones. Los daños potenciales pueden limitarse al interior del convertidor de frecuencia.

AVISO!

DAÑOS MATERIALES

El uso de fusibles y/o magnetotérmicos es obligatorio para garantizar la conformidad con la norma CEI 60364 para CE. El incumplimiento de las recomendaciones de protección podría causar daños en el convertidor de frecuencia.

Danfoss recomienda el uso de fusibles y magnetotérmicos en el *Tabla 7.6* para garantizar la conformidad con las normas UL 508C o CEI 61800-5-1. En aplicaciones que no sean UL, deben utilizarse magnetotérmicos diseñados para proteger circuitos capaz de suministrar un máximo de 50 000 A_{rms} (simétricos), a 240 V / 400 V como máximo. La intensidad nominal de cortocircuito (SCCR) del convertidor de frecuencia es adecuada para su uso en circuitos capaces de suministrar un máximo de 100 000 A_{rms}, a un máximo de 240 V / 480 V, con protección mediante fusibles de clase T.

Tamaño de la proteco	ión	Potencia (kW [CV])	Fusible no conforme con UL	Magnetotérmico no conforme con UL (Eaton)	Fusible UL (Bussmann, clase T)	
		0,37 (0,5)				
		0,55-0,75	gG-10		JJS-6	
	V1	(0,74-1,0)		DK7M0.16		
	K1	1,1-1,5		PKZM0-16	JJS-10	
		(1,48-2,0)	gG-20		712-10	
		2,2 (3,0)	7		JJS-15	
Trifásico 380-480 V	1/2	3,0-5,5		DI/7140 20		
	K2	(4,0-7,5)	gG-25	PKZM0-20	JJS-25	
	K3	7,5 (10)	1	PKZM0-25		
	K4	11–15	gG-50		JJS-50	
	N4	(15–20)	gG-50	_	112-20	
	K5	18,5-22	gG-80		JJS-80	
	KS	(25-30)	gG-80	_	00 666	
		0,37 (0,5)	gG-10		JJN-6	
		0,55 (0,74)			JJN-10	
	K1	0,75 (1,0)	ac 20	PKZM0-16	JJN-15	
Trifásico 200-240 V		1,1 (1,48)	gG-20		JJN-20	
		1,5 (2,0)	7		JJIN-ZO	
	K2	2,2 (3,0)	=C 25	PKZM0-20	UN OF	
	К3	3,7 (5,0)	gG-25	PKZM0-25	JJN-25	
		0,37 (0,5)	gG-10		JJN-6	
		0,55 (0,74)			JJN-10	
Manaffalaa 200 240 V	K1	0,75 (1,0)	1	PKZM0-16	JJN-15	
Monofásico 200-240 V		1,1 (1,48)	gG-20		UN 20	
		1,5 (2,0)	1		JJN-20	
	K2	2,2 (3,0)	gG-25	PKZM0-20	JJN-25	

Tabla 7.6 Fusible y magnetotérmico

7.9 Rendimiento

Rendimiento de los convertidores de frecuencia (ηVLT)

La carga del convertidor de frecuencia apenas influye en su rendimiento. En general, el rendimiento es el mismo a la frecuencia nominal del motor f_{M, N}. Esta regla se aplicará si el motor suministra el 100 % del par nominal en el eje o solo el 75 %, por ejemplo, en caso de cargas parciales.

Esto significa que el rendimiento del convertidor de frecuencia no cambia, aunque se elijan otras características U/f distintas.

Sin embargo, las características U/f influyen en el rendimiento del motor.

El rendimiento disminuye un poco si la frecuencia de conmutación se ajusta en un valor superior al valor predeterminado. El rendimiento también se reduce ligeramente si la tensión de red es de 480 V o si el cable de motor tiene más de 30 m (98,4 ft) de longitud.

Cálculo del rendimiento del convertidor de frecuencia Calcule el rendimiento del convertidor de frecuencia a diferentes cargas basándose en la *llustración 7.2*. Multiplique el factor de la *llustración 7.2* por el factor de rendimiento específico indicado en las tablas de especificaciones del *capétulo 7.1 Datos eléctricos*:

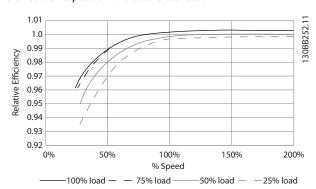


Ilustración 7.2 Curvas de rendimiento típico

Rendimiento del motor (nmotor)

El rendimiento de un motor conectado al convertidor de frecuencia depende del nivel de magnetización. En general, el rendimiento es igual de bueno que si funcionara conectado a la red. El rendimiento del motor depende del tipo de motor.

En el intervalo del 75-100 % del par nominal, el rendimiento del motor es prácticamente constante, tanto cuando lo controla el convertidor de frecuencia como cuando funciona directamente con tensión de red.

En los motores pequeños, la influencia de la característica U/f sobre el rendimiento es mínima. Sin embargo, en motores a partir de 11 kW (14,8 CV) se obtienen ventajas considerables.

En general, la frecuencia de conmutación no afecta al rendimiento de los motores pequeños. Los motores de 11 kW (14,8 CV) y superiores obtienen un rendimiento mejorado (1-2 %) porque la forma senoidal de la intensidad del motor es casi perfecta a una frecuencia de conmutación alta.

Rendimiento del sistema (nsistema)

Para calcular el rendimiento del sistema, el rendimiento del convertidor de frecuencia (η_{VLT}) se multiplica por el rendimiento del motor (η_{MOTOR}):

 $\eta_{\text{SISTEMA}} = \eta_{\text{VLT}} \times \eta_{\text{MOTOR}}$

7.10 Ruido acústico

El ruido acústico del convertidor de frecuencia procede de tres fuentes:

- Bobinas del circuito intermedio de CC.
- El ventilador incorporado.
- La bobina de choque del filtro RFI.

Valores habituales calculados a una distancia de 1 m (3,3 ft) de la unidad:

Tamaño del envolvente [kW (CV)]	80 % de la velocidad del ventilador [dBA]	Velocidad de ventilador máxima [dBA]	Ruido de fondo	
K1				
0,37-2,2	41,4	42,7	33	
(0,5-3,0)				
K2	50,3	54,3	32,9	
3,0-5,5 (4,0-7,5)	30,3	34,3	32,9	
K3	51	54,2	33	
7,5 (10)	31	34,2	33	
K4	59	61,1	32.0	
11-15 (15-20)	39	01,1	32,9	
K5	64,6	65,6	32.0	
18,5-22 (25-30)	04,0	03,0	32,9	

Tabla 7.7 Valores habituales calculados

7.11 Condiciones dU/dt

Cuando se conmuta un transistor en el puente del convertidor de frecuencia, la tensión aplicada al motor se incrementa según una relación dU/dt que depende de los siguientes factores:

- El tipo del cable de motor.
- La sección transversal del cable de motor.
- La longitud del cable de motor.
- Si el cable de motor está apantallado o no.
- La inductancia.

La inducción natural produce una sobremodulación UPICO en la tensión del motor antes de que se autoestabilice en un nivel dependiente de la tensión en el enlace de CC. Tanto el tiempo de subida como la tensión pico UPICO influyen en la vida útil del motor. Si la tensión pico es demasiado alta, esto afectará a los motores sin aislamiento de fase en la bobina. Cuanto más largo sea el cable de motor, mayores serán el tiempo de subida y la tensión pico.

La conmutación de los dispositivos IGBT produce tensión pico en los terminales del motor. El convertidor VLT® Midi Drive FC 280 cumple con las especificaciones de la norma CEI 60034-25 con relación a motores diseñados para ser controlados mediante convertidores de frecuencia. El FC 280 cumple también con la norma CEI 60034-17 relativa a los motores Norm controlados por convertidores de frecuencia.

Los siguientes datos dU/dt se miden en el lado del terminal del motor:

Longitud	Tensión	Tiempo de		
del cable	de red	subida	U _{PICO}	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	400	0,0904	0,718	6,41
50 (164)	400	0,292	1,05	2,84
5 (16,4)	480	0,108	0,835	6,20
50 (164)	480	0,32	1,25	3,09

Tabla 7.8 Datos dU/dt para el FC 280, 2,2 kW (3,0 CV), 3 \times 380-480 V

Longitud	Tensión	Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	400	0,096	0,632	5,31
50 (164)	400	0,306	0,99	2,58
5 (16,4)	480	0,118	0,694	4,67
50 (164)	480	0,308	1,18	3,05

Tabla 7.9 Datos dU/dt para el FC 280, 5,5 kW (7,5 CV), $3 \times 380-480 \text{ V}$

Longitud	Tensión	Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	400	0,128	0,732	4,54
50 (164)	400	0,354	1,01	2,27
5 (16,4)	480	0,134	0,835	5,03
50 (164)	480	0,36	1,21	2,69

Tabla 7.10 Datos dU/dt para el FC 280, 7,5 kW (10 CV), $3 \times 380\text{-}480 \text{ V}$

Longitud	Tensión	Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	400	0,26	0,84	2,57
50 (164)	400	0,738	1,07	1,15
5 (16,4)	480	0,334	0,99	2,36
50 (164)	480	0,692	1,25	1,44

Tabla 7.11 Datos dU/dt para el FC 280, 15 kW (20 CV), $3 \times 380\text{-}480 \text{ V}$

Longitud	Tensión	Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	400	0,258	0,652	2,01
50 (164)	400	0,38	1,03	2,15
5 (16,4)	480	0,258	0,752	2,34
50 (164)	480	0,4	1,23	2,42

Tabla 7.12 Datos dU/dt para el FC 280, 22 kW (30 CV), 3 \times 380-480 V

Longitud del cable	Tensión de red	Tiempo de subida	U _{PICO}	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	240	0,0712	0,484	5,44
50 (164)	240	0,224	0,594	2,11

Tabla 7.13 Datos dU/dt para el FC 280, 1,5 kW (2,0 CV), $3 \times 200\text{-}240 \text{ V}$

Longitud	Tensión	Tiempo de		
del cable	de red	subida	U _{PICO}	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	240	0,072	0,468	5,25
50 (164)	240	0,208	0,592	2,28

Tabla 7.14 Datos dU/dt para el FC 280, 2,2 kW (3,0 CV), 3 \times 200-240 V

Longitud	Tensión	Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	240	0,092	0,526	4,56
50 (164)	240	0,28	0,6	1,72

Tabla 7.15 Datos dU/dt para el FC 280, 3,7 kW (5,0 CV), $3 \times 200\text{-}240 \text{ V}$

Longitud	Tensión	Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	240	0,088	0,414	3,79
50 (164)	240	0,196	0,593	2,41

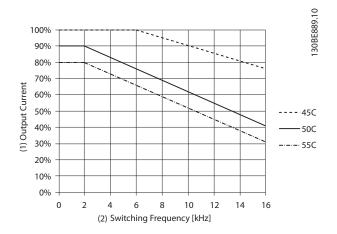
Tabla 7.16 Datos dU/dt para el FC 280, 1,5 kW (2,0 CV), 1 \times 200-240 V

Longitud Tensión		Tiempo de		
del cable	de red	subida	UPICO	dU/dt
[m (ft)]	[V]	[µs]	[kV]	[kV/µs]
5 (16,4)	240	0,112	0,368	2,64
50 (164)	240	0,116	0,362	2,51

Tabla 7.17 Datos dU/dt para el FC 280, 2,2 kW (3,0 CV), 1 \times 200-240 V

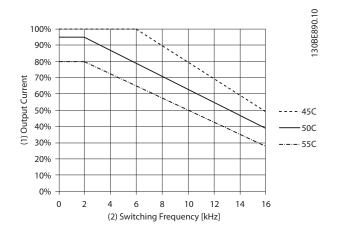
7.12 Condiciones especiales

En determinadas condiciones especiales, en las que se pone el funcionamiento del convertidor de frecuencia en una situación difícil, valore la posibilidad de una reducción de potencia. En algunas condiciones, la reducción de potencia debe hacerse manualmente.


En otras, el convertidor de frecuencia efectúa automáticamente un cierto grado de reducción de potencia cuando es necesario. La reducción de potencia se efectúa para garantizar el rendimiento en fases críticas en las que la alternativa podría ser una desconexión.

7.12.1 Reducción de potencia manual

La reducción de potencia manual debe tenerse en cuenta para:


- Presión atmosférica: para la instalación en altitudes superiores a 1000 m (3281 ft).
- Velocidad del motor: en funcionamiento continuo con r/min bajas en aplicaciones de par constante.
- Temperatura ambiente: por encima de 45 °C (113 °F). Para obtener información más detallada, consulte las ilustraciones de la *llustración 7.3* a la *llustración 7.12*.

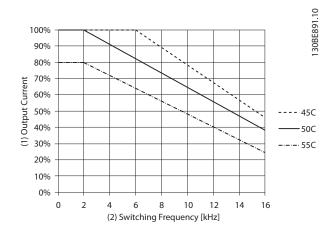

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.3 Curva de reducción de potencia K1T4

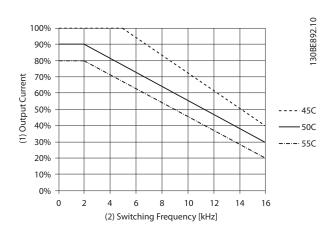
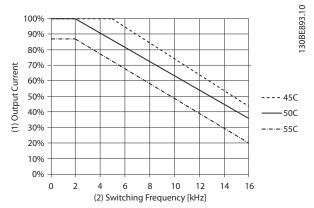
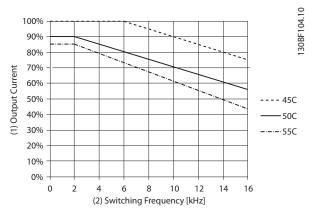

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.4 Curva de reducción de potencia K2T4

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]


Ilustración 7.5 Curva de reducción de potencia K3T4

(1)	Intensidad de salida
(2	2)	Frecuencia de conmutación [kHz]


Ilustración 7.6 Curva de reducción de potencia K4T4

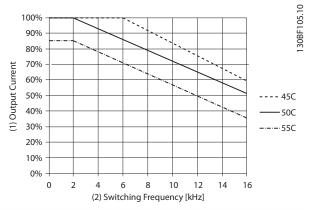

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.7 Curva de reducción de potencia K5T4


(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.8 Curva de reducción de potencia K1T2

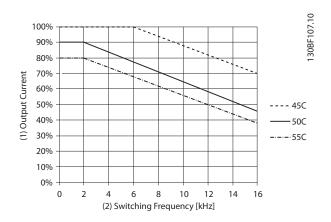

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.9 Curva de reducción de potencia K2T2

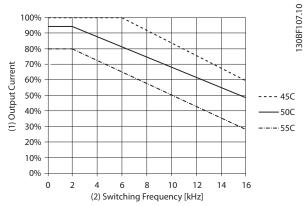

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.10 Curva de reducción de potencia K3T2

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.11 Curva de reducción de potencia K1S2

(1)	Intensidad de salida
(2)	Frecuencia de conmutación [kHz]

Ilustración 7.12 Curva de reducción de potencia K2S2

AVISO!

La frecuencia de conmutación nominal es de 6 kHZ para K1-K3 y de 5 kHz para K4-K5.

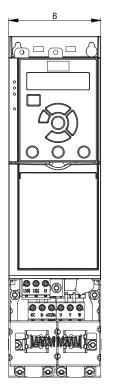
7.12.2 Reducción de potencia automática

El convertidor de frecuencia comprueba constantemente los niveles críticos:

- Temperatura alta crítica en el disipador térmico.
- Carga del motor alta.
- Velocidad del motor baja.
- Las señales de protección (sobretensión / baja tensión, sobrecorriente, fallo de conexión a tierra y cortocircuito) están activadas.

Como respuesta a un nivel crítico, el convertidor de frecuencia ajusta la frecuencia de conmutación.

7



7.13 Tamaños de los alojamientos, potencias de salida y dimensiones

	Tamaño de la protección			K1				K2 K3 K4				K5	;		
	Monofásico	0,37	0,55	0,75	1,1	1	,5	2,2							
	200-240 V	(0,5)	(0,75)	(1,0)	(1,5)		,0)		(3,0)		-	-		-	
	Trifásico	0,37 0,55 0,75 1,1 1,5			2,2			3,7							
Potencia [kW (CV)]	200-240 V	(0,5) (0,75) (1,0) (1,5) (2,0)			(3,0)			(5,0)	-	-	-				
(CV)J	Trifásico	0,37	0,55	0,75	1,1	1,5	2,2	3 (4,0	4	5,5	7,5	11	15	18,5	22
	380-480 V	(0,5)	(0,75)	(1,0)	(1,5)	(2,0)	(3,0))	(5,5)	(7,5)	(10)	(15)	(20)	(25)	(30)
	FC 280 IP20														
	Altura A1	210 (8,3)					272,5 (10,7)			272,5 (10,7)		7,5 2,5)	410 (16,1)		
	Altura A2	278 (10,9)						340 (13,4)			341,5 (13,4)		9,5 1,9)	474 (1	8,7)
	Anchura B		75 (3,0)					90 (3,5)			115 (4,5)	133	(5,2)	150 (5,9)	
	Profundidad C		168 (6,6)						168 (6,	6)	168 (6,6)	245 (9,6) 245		245 (9	9,6)
Dimensiones	FC 280 con kit IP21/UL/Tipo 1														
[mm (in)]	Altura A	338,5 (13,3)						395 (15,6)			395 (15,6)	425 (16,7)		520 (2	(0,5)
	Anchura B	100 (3,9)						115 (4,5)		130 (5,1)	153	(6,0)	170 (6,7)		
	Profundidad C	183 (7,2)						183 (7,2) 183 (7,2)			183 (7,2)	260 (10,2) 260 (10		0,2)	
	FC 280 con tapa inferior de entrada de cable (sin tapa superior)														
	Altura A	294 (11,6)						356 (14)			357 (14,1)	391 (15,4)		486 (1	9,1)
	Anchura B	75 (3,0)					90 (3,5)			115 (4,5)	133 (5,2) 150 (5		5,9)		
	Profundidad C	168 (6,6)					168 (6,6)			168 (6,6)	245	245 (9,6) 245 (9,		9,6)	
Peso	IP20	2,5 (5,5)					3,6 (7,9)		4,6 (10,1)	8,2 (18,1)	11,5 (25,4)			
[kg (lb)]	IP21	4,0 (8,8)					5,5 (12,1)		6,5 (14,3)	10,5	(23,1)	14,0 (30,9)			
	a	198 (7,8)					260 (10,2)		260 (10,2)		7,5 ,7)	390 (15,4)			
Agujeros de montaje [mm	b	60 (2,4)					70 (2,8)		90 (3,5)	105	(4,1)	120 (4	4,7)		
	С	5 (0,2)					6,4 (0,25)		6,5 (0,26)	8 (0	,32)	7,8 (0,31)			
(in)]	d	9 (0,35)					11 (0,43)		11 (0,43)	12,4	(0,49)	12,6 (0,5)		
(111)]	e	4,5 (0,18)					5,5 (0,22)			5,5 (0,22)	6,8 (0,27)	7 (0,28)		
	f	7,3 (0,29)				8,1 (0,32) 9,2 (0,36)		11 (0	0,43)	11,2 (0),44)				

Tabla 7.18 Tamaños de los alojamientos, potencias de salida y dimensiones

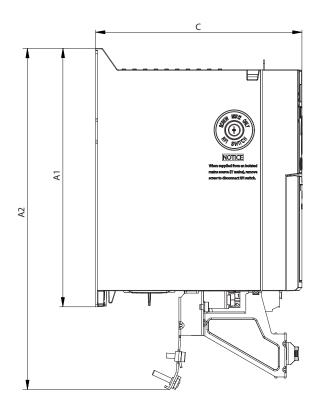
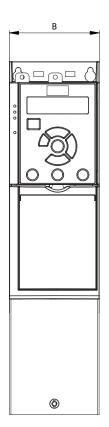



Ilustración 7.13 Estándar con placa de desacoplamiento

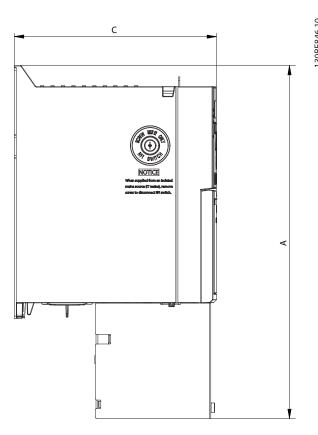


Ilustración 7.14 Estándar con tapa inferior de entrada de cable (sin tapa superior)

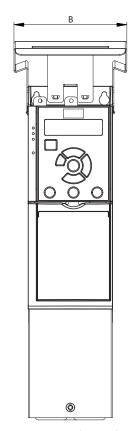


Ilustración 7.15 Estándar con kit IP21/UL/Tipo 1

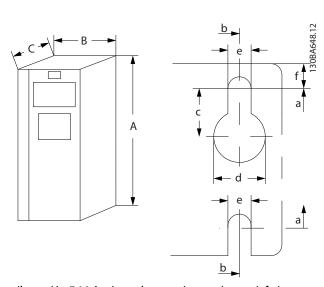
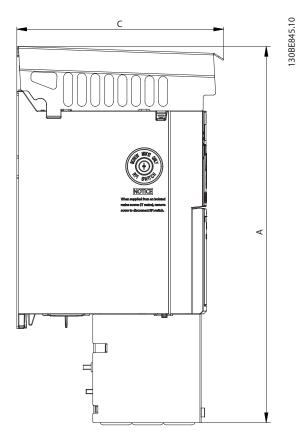



Ilustración 7.16 Agujeros de montaje superiores e inferiores

A	
Adaptación automática del motor	6
Ajuste de hardware	55
Alimentación aislada Corte de red	46 82 7 84
AMA	. 6
AMA con T27 conectado4	49
B Bobina	66
C	
Cable de motor Dimensión del cable Longitud del cable	15
CEI 61800-3 17, 8	85
CEM	85
Ciclo de potencia	
Ciclo de trabajo intermitente	
Circuito intermedio46, 9	91
Clase de rendimiento energético 8	85
Código de estado	71
Código de excepción Modbus	55
Código de función	54
Compensación de deslizamiento	
Comunicación Modbus	55
Comunicación serie Comunicación serie	
Condiciones ambientales	85
Condiciones de funcionamiento extremas4	46
Condiciones especiales	92
Conexión a tierra 15, 1	16
Conexión de red	55
Configuración de red (61
Conformidad Listado como UL	. 9
Conmutación Frecuencia de conmutación45, 7	79
Conmutación en la salida4	46

Control	
Cableado	18
Característica	
Código de control	69
Control de corriente interna, modo VVC+	21
Control de PID de procesos	31
Control de PID de velocidad	28
Corriente de rizado	45
Corriente de fuga	41
Corriente nominal del motor	6
Cortocircuito	46
D	
Desconexión	8
Directiva CEM	8
Directiva de máquinas	. 8
Directiva de tensión baja	
Directiva, CEM	
Directiva, Máquinas	
Directiva, Tensión baja	8
E	
	24
Eficiencia energética 82, 83,	
Eficiencia energética	
Eficiencia energética	23
Eficiencia energética	23 16
Eficiencia energética	23 16 16
Eficiencia energética	16 16 16
Eficiencia energética	16 16 16
Eficiencia energética	23 16 16 16 16
Eficiencia energética	16 16 16 16 86 87
Eficiencia energética	16 16 16 16 86 87
Eficiencia energética	16 16 16 16 86 87 86
Eficiencia energética	23 16 16 16 86 87 86
Eficiencia energética	23 16 16 16 86 87 86 21 47
Eficiencia energética	23 16 16 16 86 87 86 21 47 45 45
Eficiencia energética	23 16 16 16 16 86 87 86 21 47 45 45
Eficiencia energética	23 16 16 16 86 87 86 21 47 45 45 45 17
Eficiencia energética	23 16 16 16 86 87 86 21 47 45 45 45 45 45 45 45 45 45
Eficiencia energética	23 16 16 16 86 87 86 21 47 45 45 45 47 43 44
Eficiencia energética	23 16 16 16 86 87 86 21 47 45 45 45 47 70 43 44 71

VLT® Midi Drive FC 280

		Par de apriete del terminal	89
I		Par de arranque	6
IND	58	Pedidos	
		DU/dt	
ĺ		Filtro senoidal	79
Índice (IND)	58	PELV	51, 88
		PELV, tensión de protección muy baja	41
I		Perfil FC	
Inercia	5	Descripción general del protocolo	
Intensidad de salida		FC con Modbus RTU Perfil FC	
Introducción a la emisión CEM	37	Personal cualificado	
1		PID de velocidad	•
L		Potencia de frenado	7, 44
Lazo abierto	88	Precauciones de CEM	55
LCP	5, 7, 21	Protección	41
Lectura de la bobina	66	Protección de circuito derivado	89
Lectura de registros de retención (03 hex)	68		
Límite de referencia	23	R	
Longitud del telegrama (LGE)		RCD	7
zongitua del teregrania (zoz)		Realimentación analógica	
M		Realimentación por pulsos	
Mantener frecuencia de salida	70	Recursos adicionales	
Mantener referencia			
		Reducción de potencia	
Mantener salida		Referencia analógica	
Marca CE		Referencia de bus	24
Medidas de seguridad	9	Referencia de pulsos	6, 24
Modbus RTU	61	Referencia interna	24
Momento de inercia	46	Registros	66
Motor		Reiniciar alarma	21
Cable		Relé termoelectrónico	7
Fase del motor		consulte también <i>ETR</i>	
Protección térmica del motorSalida del motor		Rendimiento	90
Sobretensión generada por el motor			
Tensión motor		Requisitos de inmunidad CEM	
		Resistencia de frenado	
N		Resultado de las pruebas de CEM	38
Nivel de tensión	86	RS485	
Normas y conformidad para STO		Instalación y ajuste de la interfaz RS485 RS485	
Normativa de control de exportación		Ruido acústico	•
Número de parámetro (PNU)		Nuido acustico	91
Numero de parametro (PNO)	30	S	
Ó			20
		Salida de relé	88
Órdenes de Modbus RTU	66	Salidas Salida analógica	6.07
D		Salida analógicadigitalesdigitales	
P		Sección transversal	
Par			
Características de par Control de par		SIL2	
correror ac par		SILCL de SIL2	9

Índice Guía de diseño

Sobrecarga estática en modo VVC+ 46
Т
Tarjeta de control Comunicación serie RS485
Tecla de control del GLCP
Tecla de control del NLCP21
Tensión de alimentación
Termistor 8, 51
Tiempo de descarga9
Tiempo de subida
Tipo de datos admitidos 59
Triángulo conectado a tierra 17
Triángulo flotante
V
Velocidad de referencia
Velocidad del motor síncrono 6
Velocidad fija 5, 70
Velocidad nominal del motor 6
Visión general de Modbus RTU 60
VVC+
Z
Zona muerta
7ona muerta alrededor de cero 25

Danfoss no acepta ninguna responsabilidad por posibles errores que pudieran aparecer en sus catálogos, folletos o cualquier otro material impreso y se reserva el derecho de alterar sus productos sin previo aviso, incluidos los que estén bajo pedido, si estas modificaciones no afectan las características convenidas con el cliente. Todas las marcas comerciales de este material son propiedad de las respectivas compañías. Danfoss y el logotipo Danfoss son marcas comerciales de Danfoss A/S. Reservados todos los derechos.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

