

Commercial TRVs

Thermostatic **Radiator Valves**

Studies show that about eight out of ten buildings have inefficient heating systems that waste energy. However, completely replacing an entire system is not always necessary to reduce energy consumption - often, a considerable improvement can be achieved by optimising the existing heating systems for a "green" renovation. Condensing boilers are a prime example – they have the potential to run more efficiently with the right adjustments and components. Optimising the component match with a condensing boiler is an easy, budgetfriendly "hack" to recommend to customers who are interested in improving the energy efficiency of their heating systems. With elements such as fast-reacting thermostatic radiator valves (TRVs) and automatic radiator balancing, condensing boiler efficiency can be fine-tuned for improved performance.

Today's condensing boilers are highly efficient and offer good fuel economy. However, modern condensing boilers only achieve maximum efficiency when they operate in condensing mode most of the time, which requires a low return water temperature. Yet often a new condensing boiler will be connected to the existing room controls, such as manual radiator valves or old TRVs without presetting, neither of which are designed to provide a low return water temperature. While the boiler still works this way, it is significantly less efficient. The result is condensing boilers which are not running in condensing mode, increasing the energy usage and therefore creating energy bills that are much higher than they should be. This can be avoided by matching the condensing boiler with high-quality components right from the start, such as best-in-class TRVs and dynamic valves.

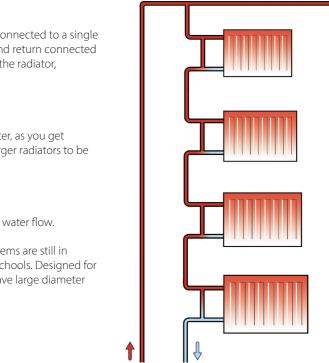
Contents

Single Pipe and Two Pipe Systems
Commercial Radiator Thermostat Selection guide
Valves for 1-Pipe System - RA-G
Fixed Capacity Valve Bodies - <u>RA-FN</u> Valves for 2-Pipe Systems7
Pre-setting Valve Bodies - <u>RA-N</u> Valves for 2-Pipe Systems8
Pressure Independent Thermostatic Radiator Valve - <u>RA-DV</u> 9
Manifold Assemblies for 1-Pipe Systems - <u>RA-KE</u> and <u>RA-KEW</u> 10
Lance Valves for Radiators with 1 Connection Point - RA 15/611
Built-in Sensors - Standard and Tamperproof - Aero® & Aveo® 12
Remote Sensors and Adjusters - Aero®, Aveo® & RA adjusters 13
Lockshield Valves with Drain Off - <u>RLV</u> 14
Lockshield Valves without Drain Off - <u>RLV-S</u>
H-Pieces with Drain Off Feature <u>RLV-K</u> 16
H-Pieces without Drain Off - <u>RLV-KB</u> 17
Spares and Accessories - Gland Seals, Sensors and Adapters18
Compression Fittings for Copper, PEX and ALUPEX Pipe19

There are two main types of radiator system, each with unique operating properties and each requiring a different valve type selection. See below for a quick guide to single and two pipe heating systems:

Single Pipe System

As the name implies, a single pipe system is a collection of radiators all connected to a single loop of pipe work throughout the building. Each radiator has the flow and return connected to the same pipe. Natural convection allowing heated water to rise into the radiator, displacing cooler water back into the single pipe circuit.


Single pipe systems can suffer from certain system specific problems:

- Because each radiator in the circuit extracts heat from the heated water, as you get further down the circuit the flow temperature is reduced requiring larger radiators to be fitted towards the end of the circuit.
- Larger pipe size required to feed the radiators.
- It is difficult to compensate for undersized radiators by increasing the water flow.

Single pipe systems are rarely fitted from new today, however many systems are still in operation and can be found in many industrial buildings, factories and schools. Designed for single pipe heating systems, the RA-G single pipe thermostatic valves have large diameter valve cones which deliver high capacity flow and control.

Two Pipe System

Single Pipe and Two Pipe Systems

In the two pipe system there are separate flow and return pipes, with some form of bypass (preferably automatic) between the flow and the return. Because the flow and return in these systems is separate, the temperature of the water reaching each radiator is basically the same meaning radiator output is roughly the same at each branch of the circuit.

• Two pipe systems benefit from lower material costs due to pipe work and radiator surface area being smaller generally than in a one pipe system.

• Same size radiators can be used throughout the system.

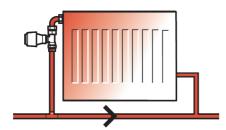
• System balance is important to reduce noise and temperature variations in the system.

Two pipe systems can be fitted with pre-setting (RA-N) or fixed capacity (RA-FN) valves and RA-DV together with a thermostatic sensor from the Aero® and Aveo® ranges.

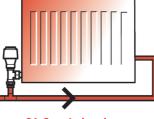
Commercial Radiator Thermostat **Selection Guide**

Ke	≥v						Description							Snap O	n Mount	2/5/8/15m Wall	Cree Or Mount	Law Tama	Tama and a	2m Wall
1		Approved combination Refer to notes for any re Mount sensor horizonta	strictions/advice	е								Snap C	On Mount		Tamperproof	Adjusters	Snap On Mount	Low Temp.	Tamperproof	Adjuster
2		Consider use of remote	-	ve performance		Model							Danker -	Zagli	(Dankar			Total .	(Dayle)	
3		Remote sensor is recom											Aero RA click,	Aero RA click,	Aveo Tamper	RA5062, RA5065	Aero RA click,	Aero RA click,	Aveo Tamper,	
4	1	Valve for mounting in th	he return										"0"	MAX 21°C		RA5068. RA5075 013G5062	RS	RS, MAX 21°C	RS	RA5074
							Codes					<u>015G4590</u>	<u>015G4598</u>	<u>015G4690</u>	<u>015G4040</u>	013G5065 013G5068 013G5075	<u>015G4592</u>	<u>015G4692</u>	<u>015G4042</u>	<u>013G5074</u>
						Temp	perature Range					7-28°C	7-26°C Positive Off	7-21°C	7-28°C	8-28°C	7-28°C	7-21°C	7-28°C	8-28°C
			C	Standa	rd Valves	Valves witl	n pre-setting		depdendent o-balancing)		or low flow cations					6 0				
			Size	Туре	Code No.	Туре	Code No.	Туре	Code No.	Туре	Code No.	1				Sensor Opt	tions			
			1/2"	RA-FN 15	<u>013G0024</u>	RA-N 15	013G0034	RA-DV 15	<u>013G7724</u>	RA-UN 15	<u>013G3004</u>									
			/2	IATIO 15	0150024		0130034		0130/724	RA-UR 15 ⁽⁴⁾	<u>013G3228</u>									
	Straight		½″/15mm	RA-FN 15	013G0084	-	-	-	-	-	-	1 ★	1 ★	1 ★	1 ★	*	*	*	*	*
	Stra		3⁄4″	RA-FN 20	<u>013G0026</u>	RA-N 20	<u>013G0036</u>	RA-DV 20	<u>013G7726</u>	-	-									
			1″	RA-FN 25	<u>013G0028</u>	RA-N 25	<u>013G0038</u>	-	-	-	-									
			3/8″	RA-FN 10	<u>013G0022</u>	RA-N 10	<u>013G0032</u>	RA-DV 10	<u>013G7722</u>	-	-									
	0		1⁄2″	RA-FN 15	<u>013G0023</u>	RA-N 15	013G0033	RA-DV 15	<u>013G7723</u>	RA-UN 15	<u>013G3003</u>	_								
	Vertical Angle									RA-UR 15 ⁽⁴⁾	<u>013G3229</u>	_								
tem	ertical		3⁄4″	RA-FN 20	013G0025	RA-N 20	013G0035	RA-DV 20	<u>013G7725</u>	-	-	2 ★	2 ★	3 ★	2 ★	*	*	*	*	*
2-Pipe System	>		3/8″	RA-FN 25 RA-FN 10	013G0027 013G0021	RA-N 25 RA-N 10	013G0037 013G0031	- RA-DV 10	<u>-</u> 013G7721	-	-	-								
2-Pi			1/2"	-	-	RA-N 10	<u>013G0153</u>	RA-DV 10	<u>013G7710</u>	RA-UN 15	013G3043									
	igle		⁷² ½"/15mm	RA-FN 15	013G0149	-	-	-	-	-	-									
	ital An		3⁄4″	RA-FN 20	<u>013G0145</u>	RA-N 20	013G0155	_	-	-	_	*	*	*	*	*	*	*	*	*
	Horizontal Angle		1″	-		-	-	_	_	_	_	-								
	Ĭ		³ /8″	RA-FN 10	<u>013G0141</u>	RA-N 10	013G0151	RA-DV 10	013G7709	-	-	_								
		4	1/2″	-	-	RA-N 15R	013G0233	RA-DV 15R	013G7719	-	-									
	ngle		1/2″	-	-	RA-N 15L	<u>013G0234</u>	RA-DV 15L	<u>013G7720</u>	-	-									
	Side Angle		³ /8″	-	-	RA-N 10R	<u>013G0231</u>	RA-DV 10R	<u>013G7717</u>	-	-	*	*	*	*	*	*	*	*	*
	01		³ /8″	-	-	RA-N 10L	013G0232	RA-DV 10L	013G7718	-	-									
	Ţ	_	1⁄2″	RA-G 15	013G1675	-	-	-	-	-	-									
۶	Straight		3⁄4″	RA-G 20	<u>013G1677</u>	-	-	-	-	-	-	1 ★	1 ★	1 ★	1 ★	*	*	*	*	*
1-Pipe System	S		1″	RA-G 25	<u>013G1679</u>	-	-	-	-	-	-									
-Pipe	ngle		1⁄2″	RA-G 15	<u>013G1676</u>	-	-	-	-	-	-									
÷	Vertical Angle		3⁄4″	RA-G 20	<u>013G1678</u>	-	-	-	-	-	-	2 ★	2 ★	3 ★	2 ★	*	*	*	*	*
	Vert		1″	RA-G 25	<u>013G1680</u>	-	-	-	-	-	-									

Valves for 1-Pipe Systems RA-G



- RA-G valves in flow
- Suitable for use with all RA2000 sensors
- Available in both vertical angle and straight pattern designs in ½", ¾" and 1" sizes

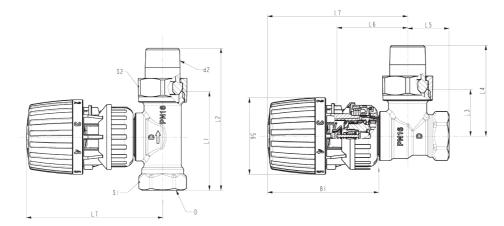

RA-G valves are high capacity low resistance valves for use in conventional 1-pipe heating systems in which water circulation through the radiator is mainly by thermosiphon. In such systems the circulating pressure available to overcome the frictional resistance of the valve and the radiator is extremely low and is generally insufficient to overcome the resistance of normal 2-pipe radiator thermostats.

RA-G valves are specifically designed for use in such systems and have large diameter valve cones which deliver high capacities at low proportional offsets ensuring that comfort temperatures can be maintained under all load conditions.

All valves incorporate a gland-seal assembly that can be replaced without the need for special tools and without draining down the system.

RA-G straight

RA-G vertical angle


	-		Conn	ections	Kv Value
Pattern	Туре	Code No	Pipe ⁽³⁾	Radiator Tail	Xp = 2K ⁽²⁾
	RA-G 15	013G1675	1⁄2″ BSP	1⁄2″ BSP	1.63
Straight	RA-G 20	013G1677	3⁄4″ BSP	3⁄4″ BSP	2.06
	RA-G 25	013G1679	1" BSP	1" BSP	2.27
	RA-G 15	013G1676	1⁄2″ BSP	1⁄2″ BSP	2.06
Vertical Angle (1)	RA-G 20	013G1678	3⁄4″ BSP	3⁄4″ BSP	2.20
	RA-G 25	013G1680	1" BSP	1" BSP	2.41
By-pass restrictor	s for 1-Pipe Sys	stems			
RTD-BR 15/10		013G3210	1/2" interna	ا thread, Kvs: 6.8 m³h	1
RTD-BR 20/15		013G3215	1/2" interna	l thread, Kvs: 15.1 m ³	ĥ

Please note: (1) To ensure optimum performance use remote sensor

(2) Kv values when used with RA2000 Sensors

(3) Not suitable for use with Fittings listed on page 19	
Technical Specifications	
Maximum Operating Temperature	120°C
Maximum Working Pressure	10 Bar
Maximum Differential Pressure (RA-G 25)	0.16 Bar
Maximum Differential Pressure (RA-G 15 & 20)	0.2 Bar

52	103	27	20
		2/	30
54	103	32	37
57	106	41	46

Fixed Capacity Valve Bodies **RA-FN Valves for 2-Pipe Systems**

- RA-FN valves without pre-setting RA-FN valves are easily recognised
- by a grey cover cap
- Wide range of fittings (see page 19)

RA-FN valves are designed for use in 2-pipe heating systems where circulation through both pipe work and radiator is pumped. They are conventional uni-directional valves without pre-setting; system balancing must be made using lockshield valves installed on the radiator return connection. Please refer to pages 14 and 15 for matching lockshield valves.

A wide range of compression fittings for copper, PEX and ALUPEX pipe are available for use with RA-FN valves, see **fittings** on page 19.

All valves incorporate a gland-seal assembly that can be replaced without the need for special tools and without draining down the system.

RA-FN valves are suitable for use with all Aero & Aveo sensors (pages 12 and 13).

Vertical Angle Horizontal Angle

Straight

Vertical

Angle (1)

Angle

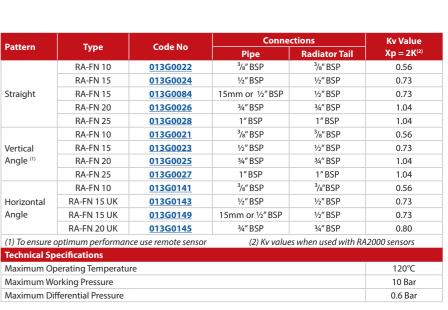
Pattern

Straight

Dimensions

Straight RA-N or RA-FN

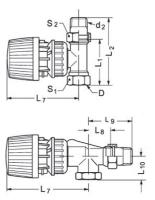
Horizonta Angle

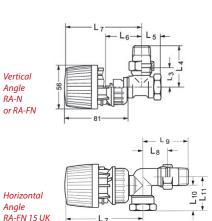

RA-N vertical angle RA-N straight

RA-N horizontal angle

RA-N side angle left

RA-N 10, 15, 2 RA-FN 10 or 20


6



Туре	D	d ₂	L,						L,*					Arc.	Flats
Type	BS	SP	L 1	L ₂	L ₃	L 4	L 5	L ₆	5 7	L ₈	L,	L ₁₀	L ₁₁	S ₁	S ₂
RA-FN 10	³ /8″	³ /8″	60	85				47	96					22	27
RA-FN 15	1⁄2″	1/2″	67	95				47	96					27	30
RA-FN 20	3⁄4″	3⁄4″	74	106				52	101					32	37
RA-FN 25	1″	1″	90	126				52	101					41	46
RA-FN 10	³ /8″	³ /8″			27	52	22	47	96					22	27
RA-FN15	1⁄2″	1⁄2″			30	58	26	47	96					27	30
RA-FN 20	3⁄4″	3⁄4″			34	66	29	52	101					32	37
RA-FN 25	1″	1″			40	75	34	52	101					41	46
RA-FN 10	³ /8″	³ /8″						59	108	26	51	22		22	27
RA-FN 15 UK	1/2″	1/2″						60	98	26	54	33	44	27	30
RA-FN 20	3⁄4″	3⁄4″						61	110	34	66	30		32	27

Vertical Angle RA-N

* Add 32mm to L, to allow for sensor removal.

-1-

Pre-Setting Valve Bodies RA-N Valves for 2-Pipe Systems

Pattern		Code No.	Conn	ections	Kv Value (^{1) (3)} Xp = 2K
Pattern	Туре	Code No	Pipe	Radiator Tail	Min	Max
ĺ	RA-N 10	013G0032	³ /8" BSP	3/8" BSP	0.04	0.56
Church I.	RA-N 15	013G0034	1⁄2″ BSP	1⁄2″ BSP	0.04	0.73
Straight	RA-N 20	013G0036	3⁄4″ BSP	3⁄4″ BSP	0.10	1.04
	RA-N 25	013G0038	1" BSP	1" BSP	0.10	1.04
	RA-N 10	013G0031	3/8" BSP	3/8" BSP	0.04	0.56
Vertical	RA-N 15	013G0033	1⁄2″ BSP	1⁄2″ BSP	0.04	0.73
Angle (2)	RA-N 20	013G0035	3⁄4″ BSP	3⁄4″ BSP	0.10	1.04
	RA-N 25	013G0037	1" BSP	1" BSP	0.10	1.04
	RA-N 10	013G0151	3/8" BSP	³/8″BSP	0.04	0.56
Horizontal	RA-N 15	013G0153	1⁄2″ BSP	1⁄2″ BSP	0.04	0.73
Angle	RA-N 20	013G0155	3⁄4″ BSP	3⁄4″ BSP	0.16	0.80
	RA-N 10L	013G0231	3/8" BSP	3/8" BSP	0.04	0.56
Cide Annaly(I)	RA-N 10R	013G0232	3/8" BSP	3/8" BSP	0.04	0.56
Side Angle ⁽⁴⁾	RA-N 15L	013G0233	1⁄2″ BSP	1⁄2″ BSP	0.04	0.73
	RA-N 15R	013G0234	1⁄2″ BSP	1⁄2″ BSP	0.04	0.73
	, ing table supplie	with RA2000 sensor d with valves to adju	.,	e optimum performa R = Right	nce use remo	te sensor.

reclinical specifications	
Maximum Operating Temperature	120°C
Maximum Working Pressure	10 Bar
Maximum Differential Pressure	0.6 Bar

•	RA-N valves with pre-setting for larger
	heating systems

- RA-N valves in flow
 RA-N valves are easily recognised by a red cover cap
- Available in vertical angle, horizontal angle, side angle and straight pattern versions in 3/8", 1/2", and 1" sizes

RA-N are uni-directional valves with integrated pre-setting. Pre-setting allows the commissioning engineer to precisely set the flow rate through the valve by adjusting the valve capacity to match the radiator heat output requirement. Pre-setting is carried out by setting a calibrated orifice within the valve. The setting is achieved by turning a scale located in the top part of the valve body. The setting mechanism is concealed once the thermostat sensor is fitted. This type of pre-setting is significantly more accurate than that possible with conventional lockshield valves. When pre-setting valves are used the role of the lockshield valve is simply to provide isolation for radiator removal.

Detterm	Turne	D	d,											Arc.	Flats
Pattern	Туре	B		L,	L ₂	L 3	L 4	L	L ₆	L,*	L,	L,	L ₁₀	s ₁	S2
	RA-N 10	³ /8″	³ /8″	60	85				47	96				22	27
Straight	RA-N 15	1⁄2″	1⁄2″	67	95				47	96				27	30
Straight	RA-N 20	3⁄4″	3⁄4″	74	106				52	101				32	37
	RA-N 25	1″	1″	90	126				52	101				41	46
	RA-N 10	³ / ₈ ″	³ / ₈ ″			27	52	22	47	96				22	27
Vertical	RA-N15	1/2″	1/2″			30	58	26	47	96				27	30
Angle	RA-N 20	3⁄4″	3⁄4″			34	66	29	52	101				32	37
	RA-N 25	1″	1″			40	75	34	52	101				41	46
11. 2	RA-N 10	³ / ₈ ″	³ / ₈ ″						59	108	26	51	22	22	27
Horizontal	RA-N 15	1/2″	1⁄2″						60	109	26	55	27	27	30
Angle	RA-N 20	3⁄4″	3⁄4″						61	110	34	66	30	32	27
Cide Anale	RA-N 10	³ / ₈ ″	³ /8″						47	103	27	52	27	22	27
Side Angle	RA-N 15	1⁄2″	1⁄2″						47	96	30	58	33	27	30

* Add 32mm to L_{τ} to allow for sensor removal.

Guide	line basis	RA2000	sensor	Guidel	ine basis	RA2000 9	sensor
	∆T(K)		-		ΔT(K)		the second secon
10K	15K	20K		10K	15K	20K	
	~W	/att			~W	/att	
100	200	250	1	100	200	250	1
250	400	550	2	250	400	550	2
400	650	850	3	400	650	850	3
650	1000	1350	4	700	1100	1450	4
900	1350	1800	5	1100	1650	2150	5
1200	1800	2400	6	11450	2150	2900	6
1350	2050	2750	7	1850	2800	3700	7
2050	3050	4100	N	2650	4000	5350	Ν
	RA-I	N 20			RA-N	20 UK	
Guide	line basis	RA2000	sensor	Guidel	ine basis	RA2000 :	sensor
	∆T(K)		the second secon		ΔT(K)		<u>m</u>
10K	15K	20K		10K	15K	20K	
	~W	/att			~W	/att	
350	550	700	1	550	850	1150	1
550	800	1100	2	700	1100	1450	2
600	900	1200	3	900	1350	1800	3
				1250	1900	2550	4
950	1400	1900	4	1250			
950 1250	1400 1900	1900 2550	5	1700	2550	3400	5
					2550 3250	3400 4350	5 6
1250	1900	2550	5	1700			-

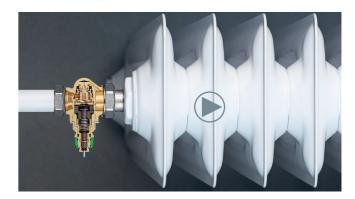
Pressure Independent Thermostatic Radiator Valve **RA-DV**

- Fast consistent and comfortable heating
- Reduced system noise
- Reduced costs

Automatic balancing provides instant benefits under full and partial load conditions. It is quick and easy to achieve and is a one-off investment with a fast payback time.

Eliminating pressure fluctuations is the key to both successful balancing and removing the source of user complaints about over or under-heating, noise and excessive energy costs.

At the same time, the temperature control will benefit from the optimised system conditions, making room temperature more stable and precise.


RA-DV valves are suitable for use with all **Aero[®] and Aveo[®] sensors** (pages 12 and 13).

Please refer to page 19 for **fittings**.

Description	Model	Version	Connection	Flow (l/h)*	Code Number
RA-DV 10	UK (Axial)	DIN	³ /8″	10-135	<u>013G7709</u>
RA-DV 10	Angle	DIN	³ /8″	10-135	<u>013G7721</u>
RA-DV 10	Straight	DIN	³ /8″	10-135	013G7722
RA-DV 10	Angle Right	DIN	³ /8″	10-135	013G7717
RA-DV 10	Angle Left	DIN	³ /8″	10-135	013G7718
RA-DV 15	UK (Axial)	DIN	1/2″	10-135	013G7710
RA-DV 15	Angle	DIN	1/2″	10-135	013G7723
RA-DV 15	Straight	DIN	1/2″	10-135	013G7724
RA-DV 15	Angle Right	DIN	1/2″	10-135	013G7719
RA-DV 15	Angle Left	DIN	1/2″	10-135	<u>013G7720</u>
RA-DV 20	Angle	DIN	³ /4″	10-135	013G7725
RA-DV 20	Straight	DIN	³ /4″	10-135	013G7726

* 9-130 l/h including a gas filled sensor

Description	Code Number
ΔP tool For PFM 100 to verify the differential pressure on a Danfoss valve	<u>013G7861</u>
Demounting tool For replacement of Dynamic Valve [™] inserts and pressure controllers	<u>013G7826</u>

Solutions	Pressure	Radiator	"" " "" " "" " "" " "" " "" " System	Economy
Radiator fitted with RA-DV	Max. differential pressure = 60 kPa	Max. flow = 13/h P = 3140 W at Δ T = 20K P = 4700 W at Δ T = 30K	 Best choice for complex riser designs Best choice when main risers/ return pipes are difficult to access Best choice when main riser/ return pipes are distant from each other 	Best choice for risers with few radiators

Manifold Assemblies for 1-Pipe Systems RA-KE for floor and RA-KEW for wall connection

Туре	Description	Code Number	
RA-KE Set	RA-KE set pack for florr connection incl. valve body with fittings and manifold valve	<u>013G3341</u>	
RA-KEW Set	$\operatorname{RA-KEW}$ set pack for florr connection incl. valve body with fittings and manifold valve	<u>013G3343</u>	
RA-KE	Manifold valve RA-KE for floor connection. Includes compression fittings for connection pipe	<u>013G3366</u>	
RA-KEW	Manifold valve RA-KE for floor connection. Includes compression fittings for connection pipe	013G3368	
Connection Dine	Connection pipe L650 x 15mm		
Connection Pipe Connection pipe L950 x 15mm		013G3377	
Technical Specifications			
Maximum Operatii	ng Temperature	120°C	
Maximum Working Pressure		10 bar	
Maximum Differential Pressure ⁽¹⁾		0.6 bar	
(1) The maximum differential pressure specified is the maximum pressure at which the valves five satisafactory regulation.			

The RA-KE and RA-KEW manifold assemblies are versatile control units for all types of radiators with standard ½" side connections.

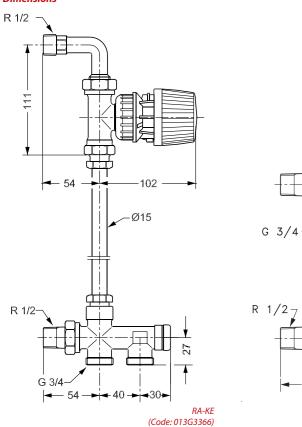
RA-KE and RA-KEW valves are for 1-pipe pumped systems.

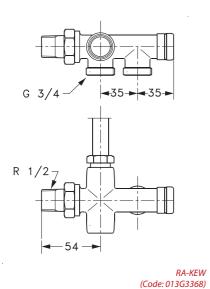
The manifold assembly includes a manifold valve body with shut off facility, a connection pipe and a radiator valve body.

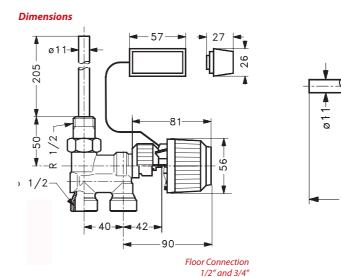
Danfoss manifold assemblies can be used with all <u>Aero® and Aveo® sensors</u> (pages 12 and 13) as well as thermal actuators, type TWA and ABNM.

Please refer to page 19 for fittings.

The RA 15/6 valve bodies fit the **Aero® and Aveo® sensors** (see pages 12 and 13) and the TWA thermal actuators.

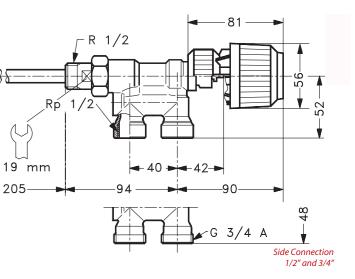

The RA 15/6 is a special lance valve body which allows the radiator to be connected at one point only, at the side of the radiator or underneath it as required.


RA 15/6TB is designed for conventional twopipe systems with pumped circulation and the RA 15/6T is designed for conventional one-pipe systems with pumped circulation.


Please refer to page 19 for fittings.

Type 2-Pipe Systems RA 15/6TB floor 1/2" valv RA 15/6TB wall 1/2" valv 1-Pipe Systems RA 15/6T floor 1/2" valv RA 15/6T wall 1/2" valv **Technical Specifications** Maximum Operating Tempe Maximum Working Pressure Maximum Differential Pressu (1) The maximum differential regulation.

Dimensions



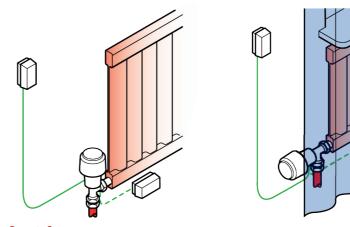
10

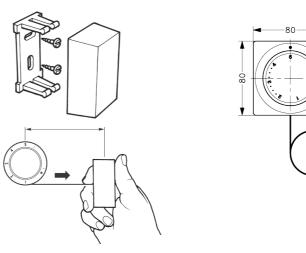
Туре

Lance Valves for radiators with 1 connection point RA 15/6TB and RA15/6T

Description	Code Number
ve with internal 1/2" pipe connections from floor	<u>013G3210</u>
ve with internal 1/2" pipe connections from wall	013G3215
ve with internal 1/2" pipe connections from floor	013G3368
ve with internal 1/2" pipe connections from wall	<u>013G3378</u>
rature	120°C
	10 bar
ure ⁽¹⁾	0.6 bar

Built-in Sensors Aero & Aveo


Remote Sensors and Adjusters


	*
P	
	* For most accurate temperature response use remote sensor

Туре	Code No	Sensor (max. sensor temp 60°C)	Temp Range Xp = 2K
	015G4590 ¹	Built-in	7-28°C
Aero RA 'click'	015G4690 ¹	Built-in, low temperature range model	7-21°C
circit	015G4598 ¹	Built-in, positive shut-off	7-26°C
Aveo RA	015G4040	Tamperproof	7-28°C

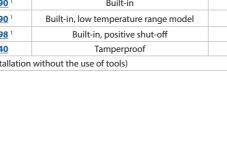
Remote Sens	ors		
Туре	Code No	Sensor (max sensor temp 60°C)	
Aero RS	015G4592 ¹	Remote Sensor, 0-2m capillary tube	
'click'	015G4692 1	Remote Sensor, 0-2m capillary tube	
Aveo RS	015G4042	Remote Sensor, 0-2m capillary tube	
¹ Snap on coup	ling (Easy installation	without the use of tools)	

RA Remote	Remote Sensor Adjusters		
Туре	Code No	Sensor (max sensor temp 60°C)	1
RA5062	013G5062	2m Capillary includes locking and limiting	
RA5065	013G5065	5m Capillary includes locking and limiting	
RA5068	013G5068	8m Capillary includes locking and limiting	
RA5074	013G5074	2m Capillary includes locking and limiting	
RA5075	013G5075	15m Capillary includes locking and limiting	

Features

- Gas technology -fastest and most precise
 temperature control
- Highest-class Control Accuracy (CA 0.2 K)
- Danfoss RA 'Click' Mount fast & tool free
- All models feature locking and limiting
- Use with RA-DV, RA-N, RA-FN or RA-G valves

Danfoss Aero® thermostats use a unique gas filled technology, that gives the fastest reacting self-acting thermostat in the world.


The Danfoss Aero® thermostat is installed onto a radiator valve. The combination of the thermostat and radiator valve, controls the individual room temperature at a given setpoint by adjusting the flow of hot water through the radiator.

The Danfoss Aero® thermostat is applicable to all types of heating systems and thanks to its compact size fits most applications.

In additon to the Danfoss Aero® the tamperproof version of the Danfoss Aveo® thermostat is used for room temperature control in public buildings, e.g. offices, hospitals, schools, etc.

The range includes standard temperature range (7-28°C) and low temperature range (7-21°C) models. Both incorporate range locking and limiting features that allow the commissioning engineer to lock or limit the setting range of the sensor.

For best performance built-in temperature sensors should be mounted horizontally. Care should be taken not to cover the thermostat or to locate it where it may be influenced by heat from electrical appliances or cold draughts.

- Capillary can be adjusted between 0-2
 metres on remote sensors
- Remote adjusters available
- Use with RA-DV, RA-N, RA-FN or RA-G valves

Utilising the same sensor technology as the built-in sensor, remote sensors are ideal for use in situations where built-in sensors may be adversely affected by heat gains or cold draughts.

Remote sensors comprise a setting unit that is mounted on the valve and a remote sensor which can be located up to 2 metres from the setting unit. The two components are interconnected by an ultra-thin capillary tube. During installation, the required length of tube is pulled out and fixed to the wall with clips or by staple gun.

The range includes standard (7-26°C) and low (7-21°C) temperature range models. Both incorporate range locking and limiting features that allow the commissioning engineer to lock or limit the setting range of the sensor.

The remote temperature adjusters are ideal for use in situations where radiators are encased or where the demand is to locate the temperature adjustment at a position more convenient than on the radiator e.g. in residential accommodation for the elderly. The product is also an ideal solution for heated ceiling applications.

The remote temperature adjuster models comprise an actuator that is mounted on the valve and a thermostat unit which provides temperature sensing and adjustment. These are interconnected by an ultra-thin capillary tube. During installation the required length of capillary is pulled out and fixed to the wall using clips or staples.

Temp Range Xp = 2K		
7-26°C		
7-21°C		
7-26°C		

Temp Range Xp = 2K	
8-28°C	

Lockshield Valves with Drain-Off

Lockshield Valves Without Drain-Off **RLV-S**

• Straight or angled versions

RLV

- Use in 1 or 2 pipe systems
- Maximum flow temperature 120°C
- Maximum working pressure 10 bar

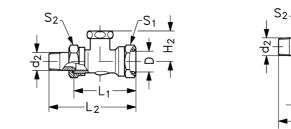
The RLV range of lockshield valves match the finish and style of RA-G, RA-FN, RA-N and RA-DV valve bodies. They are available in vertical angle and straight pattern versions in 3/8", 1/2" and 3/4" sizes for screwed pipe-work and 15mm for copper pipe-work.

Adjustment of the valve is made using a 6mm Allen key. Once set, a screw-on brass cover conceals the valve setting mechanism.

In addition to providing a balancing and isolation function, RLV lockshield valves also incorporate a drain-down/filling feature. To utilise this feature a drain-off accessory is mounted to the valve in place of the decorative cap. The system can then be drained down or filled by connecting a hose to the drain down adapter.

Pattern	Time	Code No	Connec	tion Sizes
rattern	Туре	Code No	Pipe	Radiator
	RLV 10	003L0141	3/8″	3/8″
Vertical Angle	RLV 15	003L0143	1/2″	1/2″
	RLV 20	003L0145	3/4″	3/4″
	RLV 10	003L0142	3/8″	3/8″
Straight	RLV 15	003L0144	1/2″	1/2″
	RLV 20	003L0146	3/4″	3/4″

Drain-cock Adaptor and Compression Fittings for RLV Series Valves Code No


Drain-cock adaptor for use with RLV models only, not RLV-S 003L0152

Specification	
Maximum working pressure	10 Bar
Maximum working temperature	120°C
Test pressure	16 Bar
Valve body finish	Nickel Plated
Gland seal type	Double O-ring
Supplied with LSV cap (nickel plated brass)	Yes
Supplied with wheel head cap	No

Pattern	Type Code No	Code No	Connec	Connection Sizes		
Pattern		Pipe	Radiator			
	RLV-S 10	003L0121	3/8″	3/8″		
Vertical Angle	RLV-S 15	003L0123	1/2″	1/2″		
	RLV-S 20	003L0125	3/4″	3/4″		
	RLV-S 10	003L0122	3/8″	3/8″		
Straight	RLV-S 15	003L0124	1/2″	1/2″		
	RLV-S 20	003L0126	3/4″	3/4″		

Specification	
Maximum working pressure	10 Bar
Maximum working temperature	120°C
Test pressure	16 Bar
Valve body finish	Nickel Plated
Gland seal type	Double O-ring
Supplied with LSV cap (nickel plated brass)	Yes
Supplied with wheel head cap	No

Dimensions

Туре	D	d ₂	Н,	H ₂	L,	L ₂	L ₃	L ₄
RLV-S 10	G _p 3/8	R _P 3/8	42	26	51	75	27	51
RLV-S 15	G _p ½	R _p 1/2	52	28	53	80	30	57
RLV-S 20	G _p 3⁄4	R _P 3⁄4	52	28	61	92	34	65

D

R_₀3/8

R_11/2

R_p3⁄4

R_p3/8

R_11/2

R_₽¾

55

59

62

40

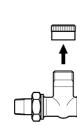
40

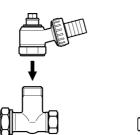
42

49

51

59


Dimensions


Type

RLV 10

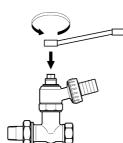
RLV 15

RLV 20

75

80

91


26 29

34

52

58

66

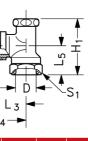
27

30

22 22 27

27 30

32 37


 Straight or angled versior 	۱S

- Use in 1 or 2-pipe systems
- Maximum flow temperature 120°C
- Maximum working pressure 10 bar

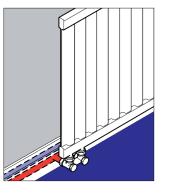
The RLV-S range of lockshield valves match the finish and style of RA-G, RA-FN, RA-N and RA-DV valve bodies. They are available in vertical angle and straight pattern versions in 3/8", 1/2" and 3/4" sizes for screwed pipe-work and 15mm for copper pipe-work.

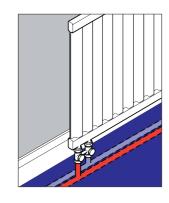
Adjustment of the valve is made using a 6mm Allen key. Once set, a screw-on brass cover conceals the valve setting mechanism.

The RLV-S does not incorporate a drain down feature.

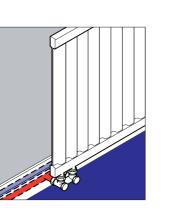
No

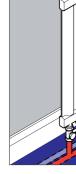
L _s	S ₁	S ₂
23	22	27
27	27	30
30	32	37


H-Pieces with Drain-off feature


RLV-K

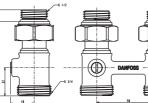
RLV-K H-Pieces without drain facility (1)				
Code No	Description			
<u>003L0280</u>	Bottom connection for use with radiators having $\frac{1}{2}$ internal connections			
003L0282	Back connection for use with radiators having 1/2" internal connections			
003L0281	Bottom connection for use with radiators having 34" external connections			
003L0283	Back connections for use with radiators having 34" external connections			
003L0399	Adapter			
Please note: (1) or	der pipe <mark>fittings</mark> separately, see page 19			

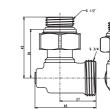

Lockshield valve function


- Use in 2-pipe systems
- Straight or angled versions
- Self sealing radiator connection
- Maximum flow temperature 120°C
- Maximum working pressure 10 bar

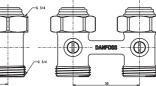
RLV-K H-Pieces allow system radiators with 50mm centre connections to be conveniently connected to copper, PEX or ALUPEX pipe systems. Radiator connections are normally either ½" internal or ¾" external threads and special adaptors ensure that the H-Piece valve can be used with either connection size.

RLV-K H-Pieces provide isolation of both flow and return connections essential for radiator removal. The valves are available for both bottom entry or rear entry pipe-work.

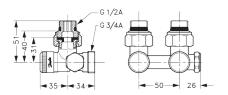

RLV-K incorporates a drain down facility.

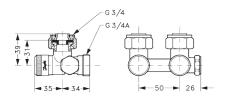


RLV-KB H-Pieces without drain facility (1)			
Code No	Description		
<u>003L0392</u>	Bottom connection for use with radiators having $\frac{1}{2}$ "internal connections		
<u>003L0394</u>	Back connection for use with radiators having $\frac{1}{2}$ " internal connections		
<u>003L0391</u>	Bottom connection for use with radiators having 3/4" external connections		
<u>003L0393</u>	Back connections for use with radiators having 3/4" external connections		
003L0399	Adapter		
Please note: (1) order p	ipe <u>fittings</u> separately, see page 19		

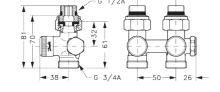

Dimensions

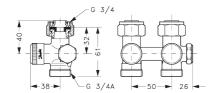
RLV-KB bottom connection, ½" internal connection



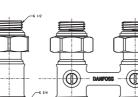

RLV-KB bottom connection, 34" internal connection

RLV-KB back connection, 34" internal connection

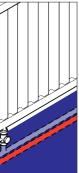

Dimensions


RLV-K bottom connection, ½" internal connection

RLV-K bottom connection, 34" internal connection

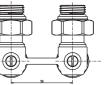


RLV-K back connection, 1/2" internal connection

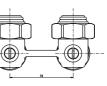


RLV-K back connection, 3/4" internal connection

H-Pieces without Drain Off **RLV-KB**



- Lockshield valve function
- Use in 2-pipe systems
- Straight or angled versions
- Self sealing radiator connection
- Maximum flow temperature 120°C
- Maximum working pressure 10 bar


RLV-KB H-Pieces allow system radiators with 50mm centre connections to be conveniently connected to copper, PEX or ALUPEX pipe systems. Radiator connections are normally either 1/2" internal or 3/4" external threads and special adaptors ensure that the H-Piece valve can be used with either connection size.

RLV-KB H-Pieces provide isolation of both flow and return connections essential for radiator removal. The valves are available for both bottom entry or rear entry pipe-work.

RLV-KB does not provide a drain down facility.

RLV-KB back connection, ½" internal connection

Spare Parts and Accessories **Gland Seals, Sensors and Adapters**

Compression Fittings For Copper, PEX and ALUPEX Pipe

Gland Seal

All gland seals in Danfoss radiator thermostats are designed to provide a long and trouble free in-service life. However, periodically it may be necessary to replace seals should failure occur.

All valves produced by Danfoss since the early 1960s incorporate gland seal assemblies which can be replaced without draining down the system.

- Just two gland seals cover the whole range of Danfoss valves
- Can be replaced without draining down the system

Replacement Sensor

Replacement sensors incorporate Aero® & Aveo[®] sensor technology and design, and provide a simple and straight forward way to upgrade older radiator thermostats without the need to drain down the system.

- Allows easy up-grade of old valves without the need to drain down
- Versions available for RAVL and RAV valve bodies
- · Available in built-in and remote sensor versions

Valve Adaptor

Adaptors to convert RA remote temperature adjusters for use with RAV and RAVL bodies already installed.

Manual Positive Shut-Off Dial

The RA manual positive shut-off dial fits onto all valve bodies in the RA Series and can be used for manual opening and closing of the valve.

Gland Seals					
013G0290	Gland Seal Assembly for RA-FR, RA-FN, RA-N, RA-DV and RA-G Valves				
<u>013U0070</u>	Gland Seal Assembly for RAV and RAVL Valves				
Accessories for Aer	o/Aveo Sensors and Valves				
013G5245	G5245 Anti-Theft plug for snap-lock sensors (20 pieces)				
013G1246	Limiting pins for built-in, remote and service sensors (10 pieces)				
013G1236	Tool kit comprising Allen key and locking pin tool				
013G4950	Protection cap, RA/VL				
015G4951	Protection cap, RA/V				
Accessories for RA2	000 Remote Adjusters				
013G5193	Adaptor for RA5062, 5065 and 5068 for RAV Valves	5			
013G5192	Adaptor for RA5062, 5065 and 5068 for RAVL Valve	25			
Accessories for RA-	DV, RA-FN, RA-N & RA-G Valves				
Code No	Description	RA-DV	RA-FN	RA-N	RA-G
013G5002	RA Hand Wheel	•	•	•	•
013G7861	ΔP tool for PFM 100	•			
013G7826	Demounting tool (RA-DV only)	•			

Selecting a suitable replacement sensor

Aero® Replacement Sensors

	Existing	Replacement Sensor - please note: the Code No's have changed						
ixisting Valve Body Dimensions	Valve Body Type	New Code No	Old Code No	Sensor Type	Description	Temp Range (Xp = 2k)		
26mm		<u>015G4550</u>	013G2950	RA/VL	Built-In Sensor	7 - 28°C		
	RAVL	<u>015G4552</u>	013G2952	RA/VL	Remote Sensor 2m Capillary	7 - 26°C		
∢ ≽ − 34mm ∢		<u>015G4560</u>	013G2960	RA/V	Built-In Sensor	7 - 28°C		
	RAV	<u>015G4562</u>	013G2962	RA/V	Remote Sensor 2m Capillary	7 - 26°C		
	RA-FN RA-G RA-N	Refer to <u>Aero</u>	[®] and Aveo [®] s	ensors on p	o. 12-13	5 		

Compression
Fittings for:
Pipe Type:
013G4100
013G4102
013G4110
013G4112
013G4115
Pipe Type:
013G4144
013G4147
Pipe Type:
013G4174
Please note: Copper pipe m bushes with soft copper pip 3:1990. Maximum operatin must not be exceeded. Design: For use with valve compression nut, dimensio
is also included.
For Valves with Male Thr
Compression Fittings for:
Pipe Type:
<u>013G4120</u>
013G4122
013G4125
Ding Turney

Fittings ior.	
Pipe Type:	Copper
013G4120	3/4" x 10mm
013G4122	3/4" x 12mm
013G4125	3/4" x 15mm
Pipe Type:	PEX
013G4155	3/4" x 15mm x 2.5mm
013G4156	3/4" x 16mm x 2.0mm
013G4157	3/4" x 16mm x 1.5mm
013G4163	3/4" x 16mm x 2.2mm
013G4159	3/4" x 18mm x 2.5 mm
013G4160	3/4" x 20mm x 2.0mm
013G4161	3/4" x 20mm x 2.5mm
Pipe Type:	ALUPEX
013G4184	3/4" x 14mm x 2.0mm
013G4186	3/4" x 16mm x 2.0mm
013G4188	3/4" x 18mm x 2.0mm
013G4190	3/4" x 20mm x 2.0mm
bushes with soft co	pipe must be in accordance with BS2871 part1/BSEN1057. It is recommended to use supporting opper pipes. PEX pipe must be in accordance with DIN16892/16893 or BS7291 part 1:1990 or part

must not be exceeded.

es with Female Threaded Connecti

RA-FN, RA-N, RA-DV Radiator Thermostat Valve Bodies, RLV and RLV-S Lockshield Valve Bodies Copper 3/8" x 10mm

3/8" x 12mm 1/2" x 10mm 1/2" x 12mm 1/2" x 15mm PEX 1/2" x 14 x 2.0mm 1/2" x 15 x 2.5mm ALUPEX

1/2" x 14 x 2mm

must be in accordance with BS2871 part 1/BSEN1057. It is recommended to use supporting pipes. PEX pipe must be in accordance with DIN16892/16893 or BS7291 part 1:1990 or part ing pressure and temperature are given by the pipe manufacturer. However, 6 bar and 95 $^\circ \! C$

res having a female threaded connection. Fitting comprises olive and externally threaded ion of female thread is included in the description. For PEX and ALUPEX a pipe support insert

RA-KE, RA-KEW, RLV-S RLV-K and RLV-KB

3:1990. Maximum operating pressure and temperature are given by the pipe manufacturer. However, 6 bar and 95°C

Design: For use with valves having a 3/4" male threaded connection. Fitting comprises olive and internally threaded compression nut. For PEX and ALUPEX a pipe support insert is also included.

ENGINEERING TOMORROW

Danfoss Ltd

Climate Solutions • danfoss.co.uk • Tel: +44 330 808 6888 • E-mail: customerservice.uk@danfoss.com

Danfoss can accept no responsibility for possible errors in catalogues, brochures, and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequent changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.